RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR RANDOM WALKS ON THE LINE

FRANÇOISE PÈNE, BENOÎT SAUSSOL AND ROLAND ZWEIMÜLLER

Abstract

We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as $\varepsilon \rightarrow 0$, of the return time to $(-\varepsilon, \varepsilon)$. We then refine this result by establishing a limit theorem for the hitting-time distributions of $(x-\varepsilon, x+\varepsilon)$ with arbitrary $x \in \mathbb{R}$.

1. Introduction and Results

We consider a recurrent random walk on $\mathbb{R}, S_{0}:=0$ and $S_{n}:=X_{1}+\cdots+X_{n}, n \geq 1$, where the X_{i} are i.i.d. random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\frac{S_{n}}{A_{n}}$ converges, for positive real numbers A_{n}, in distribution to a stable random variable X with index α. Necessarily (due to recurrence), $\alpha \in[1,2]$, and the sequence $\left(A_{n}\right)_{n \geq 1}$ is regularly varying of index $\frac{1}{\alpha}$, satisfying $\sum_{n \geq 1} \frac{1}{A_{n}}=\infty$.

To capture the speed at which recurrence appears, it is possible to specify, for such a walk, some deterministic sequences $\left(\varepsilon_{n}\right)$ such that $S_{n} \in\left(-\varepsilon_{n}, \varepsilon_{n}\right)$ infinitely often, or $S_{n} \notin\left(-\varepsilon_{n}, \varepsilon_{n}\right)$ eventually, almost surely. This classical question was addressed, for example, in [7] and [5], the results of which have recently been extended in [6].

Here, we are going to study the number of steps it takes to return to some small neighborhood of the origin (or to hit a different small interval for the first time). For related work on random walks in the plane, intimately related to the $\alpha=1$ case of the present paper, we refer to [12].

As an additional standing assumption on our walk, we will always require the distribution of the jumps X_{i} to satisfy the Cramer condition

$$
\begin{equation*}
\limsup _{|t| \rightarrow \infty}\left|\mathbb{E}\left[e^{i t X_{1}}\right]\right|<1 . \tag{1}
\end{equation*}
$$

This readily implies, in particular, that the event $\Omega^{*}:=\left\{S_{n} \neq 0 \forall n \geq 1\right\}$ has positive probability, and Ω^{*} has probability one if and only if no individual path returning to the origin has positive probability.

As a warm-up we first determine the a.s. rate at which the variables

$$
\mathbf{T}_{\varepsilon}:=\min \left\{n \geq 1:\left|S_{n}\right|<\varepsilon\right\}, \quad \varepsilon>0,
$$

diverge on Ω^{*} as $\varepsilon \rightarrow 0$. Let $\beta \in[2, \infty]$ be the exponent conjugate to α, that is, $\alpha^{-1}+\beta^{-1}=1$.
Theorem 1. In the present setup,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\log \mathbf{T}_{\varepsilon}}{\log \varepsilon}=-\beta \quad \text { a.s. on } \Omega^{*} \text {. } \tag{2}
\end{equation*}
$$

[^0]Our main objective then is to determine the precise order of magnitude, and to study the asymptotic distributional behaviour, as $\varepsilon \rightarrow 0$, of the more general hitting times of ε-neighbourhoods of arbitrary given points x on the line. We shall, in fact, do so for the walk $S_{n}^{\prime}:=S_{0}^{\prime}+S_{n}, n \geq 0$, with random initial position S_{0}^{\prime}, independent of $\left(S_{n}\right)_{n \geq 0}$ and having an arbitrary fixed distribution P on \mathbb{R}. For any $x \in \mathbb{R}$ we thus let

$$
\mathbf{T}_{\varepsilon}^{x}:=\inf \left\{m \geq 1:\left|S_{m}^{\prime}-x\right|<\varepsilon\right\}
$$

and $\Omega_{x}^{*}:=\left\{S_{n}^{\prime} \neq x \forall n \geq 1\right\}$. Outside Ω_{x}^{*} we clearly have $\lim _{\varepsilon \rightarrow 0} \mathbf{T}_{\varepsilon}^{x}=\min \left\{m \geq 1: S_{m}^{\prime}=x\right\}$.
It is convenient to state the results in terms of, and work with, the strictly increasing continuous function $G:[0,+\infty) \rightarrow[0,+\infty)$ with $G(0)=0$ which affinely interpolates the values $G(n)=$ $\sum_{k=1}^{n} \frac{1}{A_{k}}, n \geq 1$. We denote by G^{-1} its inverse function. Evidently, $G(n)=o(n)$. Moreover, by the direct half of Karamata's theorem (cf. Propositions 1.5.8 and 1.5.9a of [2]), G is regularly varying with index $\frac{1}{\beta}$, and satisfies

$$
\begin{equation*}
\frac{n}{A_{n}}=o(G(n)) \text { if } \alpha=1, \quad \text { while } \quad \frac{n}{A_{n}} \sim \frac{G(n)}{\beta} \text { in case } \alpha \in(1,2] . \tag{3}
\end{equation*}
$$

We establish a result on convergence in distribution for $\varepsilon G\left(\mathbf{T}_{\varepsilon}^{x}\right)$ conditioned on Ω_{x}^{*} (while $\varepsilon G\left(\mathbf{T}_{\varepsilon}^{x}\right) \rightarrow 0$ outside this set). In the case $\alpha=1$, the limit distribution is the same as for square integrable random walk on the plane, cf. [12]. Recall that X has a density f_{X}. For simplicity we set $\gamma:=2 f_{X}(0) \mathbb{P}\left(\Omega^{*}\right)$.

Theorem 2. Assume that $\alpha=1$, and fix any $x \in \mathbb{R}$. Conditioned on Ω_{x}^{*}, the variables $\varepsilon G\left(\mathbf{T}_{\varepsilon}^{x}\right)$ converge in law,

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\gamma \varepsilon G\left(\mathbf{T}_{\varepsilon}^{x}\right) \leq t \mid \Omega_{x}^{*}\right)=\frac{t}{1+t} \quad \forall t>0 .
$$

For $\alpha \in(1,2]$, different limits distributions arise, and we obtain convergence in law of $\mathbf{T}_{\varepsilon}^{x}$ to the $\frac{1}{\beta}$-stable subordinator at an independent exponential time:
Theorem 3. Assume that $\alpha \in(1,2]$, and fix any $x \in \mathbb{R}$. Conditioned on Ω_{x}^{*}, the variables $\varepsilon G\left(\mathbf{T}_{\varepsilon}^{x}\right)$ converge in law,

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\left.\Gamma\left(\frac{1}{\beta}\right) \frac{\gamma}{\beta} \varepsilon G\left(\mathbf{T}_{\varepsilon}^{x}\right) \leq t \right\rvert\, \Omega_{x}^{*}\right)=\operatorname{Pr}\left(\mathcal{E} \mathcal{G}_{1 / \beta}^{1 / \beta} \leq t\right) \quad \forall t>0,
$$

or, equivalently,

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\left.\left(\Gamma\left(\frac{1}{\beta}\right) \frac{\gamma}{\beta}\right)^{\beta} \frac{\mathbf{T}_{\varepsilon}^{x}}{G^{-1}(1 / \varepsilon)} \leq t \right\rvert\, \Omega_{x}^{*}\right)=\operatorname{Pr}\left(\mathcal{E}^{\beta} \mathcal{G}_{1 / \beta} \leq t\right) \quad \forall t>0
$$

where \mathcal{E} and $\mathcal{G}_{1 / \beta}$ are independent random variables, $\operatorname{Pr}(\mathcal{E}>t)=e^{-t}$, and $\mathcal{G}_{1 / \beta}$ having the one-sided stable law of index $\frac{1}{\beta}$ with Laplace transform $\mathbb{E}\left[e^{-s \mathcal{G}_{1 / \beta}}\right]=e^{-s^{1 / \beta}}, s>0$.

In particular, we have:
Corollary 1. If $\left(X_{n}\right)_{n>1}$ is an i.i.d. sequence of centered random variables with variance 1 , satisfying the Cramer condition, and $x \in \mathbb{R}$, then

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(2 \mathbb{P}\left(\Omega_{x}^{*}\right) \varepsilon \sqrt{\mathbf{T}_{\varepsilon}^{x}} \leq t \mid \Omega_{x}^{*}\right)=\operatorname{Pr}\left(\frac{\mathcal{E}}{|\mathcal{N}|} \leq t\right) \quad \forall t>0
$$

or, equivalently,

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(4 \mathbb{P}\left(\Omega_{x}^{*}\right)^{2} \varepsilon^{2} \mathbf{T}_{\varepsilon}^{x} \leq t \mid \Omega_{x}^{*}\right)=\operatorname{Pr}\left(\left(\frac{\mathcal{E}}{|\mathcal{N}|}\right)^{2} \leq t\right) \quad \forall t>0
$$

where \mathcal{E} and \mathcal{N} are independent variables, \mathcal{N} having a standard Gaussian distribution $\mathcal{N}(0,1)$.
As Cheliotis does in [6], we will use the following extension of Stone's local limit theorem [13].
Proposition 1. Let θ be such that $\lim \sup _{|t| \rightarrow \infty}\left|\mathbb{E}\left[e^{i t X_{1}}\right]\right|<\theta<1$, and let $c>1$. Then there exist a real number $h_{0}>0$ and an integer $n_{0} \geq 1$ such that, for any $n \geq n_{0}$, for any interval I contained in $\left[-h_{0}, h_{0}\right]$, of length larger than θ^{n}, we have

$$
c^{-1} f_{X}(0)|I|<\mathbb{P}\left(\frac{S_{n}}{A_{n}} \in I\right)<c f_{X}(0)|I| .
$$

2. Almost sure convergence : proof of theorem 1

Proof of Theorem 1. To begin with, choose θ, c, and h_{0} as in Proposition 1.
To first establish an estimate from below, we fix any $\xi>1$ and set $\varepsilon_{n}:=G(n)^{-\xi}$. This makes the series $\sum_{n} \mathbb{P}\left(\left|S_{n}\right|<\varepsilon_{n}\right)$ summable: Indeed, by regular variation and (3), we have $\frac{\varepsilon_{n}}{A_{n}}>\theta^{n}$ for n large, while

$$
\frac{\varepsilon_{n}}{A_{n}}=O\left(\frac{G(n)-G(n-1)}{G(n-1)^{\xi}}\right)=O\left(\int_{n-1}^{n} \frac{G^{\prime}(t)}{G(t)^{\xi}} d t\right),
$$

which is summable since $\int_{1}^{\infty} \frac{G^{\prime}(t)}{G(t)^{\xi}} d t=\left[\frac{G(t)^{1-\xi}}{1-\xi}\right]_{1}^{\infty}<\infty$. In particular, $\left(\frac{-\varepsilon_{n}}{A_{n}}, \frac{\varepsilon_{n}}{A_{n}}\right) \subseteq\left[-h_{0}, h_{0}\right]$ for large n. Proposition 1 therefore applies to these intervals, and shows that $\mathbb{P}\left(\left|S_{n}\right|<\varepsilon_{n}\right)=$ $O\left(\frac{\varepsilon_{n}}{A_{n}}\right)$ is summable as well. Hence, by the Borel-Cantelli lemma, $\mathbb{P}\left(\left|S_{n}\right|<\varepsilon_{n}\right.$ i.o. $)=0$. Since $\varepsilon_{n} \searrow 0$, we can conclude that $\mathbf{T}_{\varepsilon_{n}}>n$ eventually, almost surely on Ω^{*}, and we get $\lim \inf _{n \rightarrow \infty} \frac{\log G\left(\mathbf{T}_{\varepsilon_{n}}\right)}{-\log \varepsilon_{n}} \geq \frac{1}{\xi}$ a.s. on Ω^{*}. Using monotonicity of $\log G\left(\mathbf{T}_{\varepsilon}\right)$ and the fact that $\varepsilon_{n+1} \sim \varepsilon_{n}$, this extends from the ε_{n} to the full limit as $\varepsilon \rightarrow 0$, and since $\xi>1$ was arbitrary, we conclude that

$$
\begin{equation*}
\liminf _{\epsilon \rightarrow 0} \frac{\log G\left(\mathbf{T}_{\varepsilon}\right)}{-\log \varepsilon} \geq 1 \quad \text { a.s. on } \Omega^{*} . \tag{4}
\end{equation*}
$$

To control the corresponding limsup, we now fix any $\xi \in(0,1)$. From Proposition 1, using intervals $\left(\frac{-\varepsilon_{n}}{A_{n}}, \frac{\varepsilon_{n}}{A_{n}}\right)$ and regular variation of $\left(A_{n}\right)_{n \geq 1}$, we see that there exists a constant $c^{\prime}>0$ such that for every $\varepsilon \in(0,1)$ there is some m_{ε} satisfying

$$
\mathbb{P}\left(\left|S_{k}\right|<\varepsilon\right) \geq \frac{c^{\prime} \varepsilon}{A_{k}} \quad \text { for } k \geq m_{\varepsilon}
$$

More precisely, the dependence of m_{ε} on ε comes from the requirement $2 \varepsilon / A_{k}>\theta^{k}$ for $k \geq m_{\varepsilon}$ on the length of intervals, which is met by taking $m_{\varepsilon}:=\kappa(-\log \varepsilon)$ with a suitable constant $\kappa>0$. Next, choose integers n_{ε} in such a way that $G\left(n_{\varepsilon}\right) \leq \varepsilon^{-\frac{1}{\xi}}<G\left(n_{\varepsilon}+1\right)$. Inspired by a decomposition used by Dvoretski and Erdös [8], we consider the pairwise disjoint events $E_{k}^{\varepsilon}:=\left\{\left|S_{k}\right|<\varepsilon\right.$ and $\left.\forall j=k+1, \ldots, n_{\varepsilon}:\left|S_{j}-S_{k}\right|>2 \varepsilon\right\}, 1 \leq k \leq n_{\varepsilon}$. By independence and stationarity we have

$$
1 \geq \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \mathbb{P}\left(E_{k}^{\varepsilon}\right) \geq \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \mathbb{P}\left(\left|S_{k}\right|<\varepsilon\right) \mathbb{P}\left(\mathbf{T}_{2 \varepsilon}>n_{\varepsilon}-k\right) \geq c^{\prime} \varepsilon \mathbb{P}\left(\mathbf{T}_{2 \varepsilon}>n_{\varepsilon}\right) \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{1}{A_{k}} .
$$

Combining this with $G\left(m_{\varepsilon}\right)=o\left(G\left(n_{\varepsilon}\right)\right)$ (note that $G\left(m_{\varepsilon}\right)$ is slowly varying), we obtain

$$
\mathbb{P}\left(G\left(\mathbf{T}_{2 \varepsilon}\right)>\varepsilon^{-\frac{1}{\xi}}\right) \leq \mathbb{P}\left(G\left(\mathbf{T}_{2 \varepsilon}\right)>G\left(n_{\varepsilon}\right)\right)=\mathbb{P}\left(\mathbf{T}_{2 \varepsilon}>n_{\varepsilon}\right) \leq \frac{1}{c^{\prime} \varepsilon\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right)} \sim \frac{\varepsilon^{\frac{1}{\xi}-1}}{c^{\prime}} .
$$

Therefore, if we let $\varepsilon_{p}:=p^{-\frac{2}{1-\xi}}, p \geq 1$ the Borel-Cantelli lemma implies $G\left(\mathbf{T}_{2 \varepsilon_{p}}\right) \leq \varepsilon_{p}^{-\frac{1}{\xi}}$ eventually almost surely, showing that $\lim \sup _{p \rightarrow+\infty} \frac{\log G\left(\mathbf{T}_{2 \varepsilon_{p}}\right)}{-\log \left(2 \varepsilon_{p}\right)} \leq \frac{1}{\xi}$. Using monotonicity as before, we can extend this from the ε_{p} to the full limit $\varepsilon \rightarrow 0$, and since this is true for any $\xi \in(0,1)$, we obtain

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \frac{\log G\left(\mathbf{T}_{\varepsilon}\right)}{-\log (\varepsilon)} \leq 1 \quad \text { a.s. on } \Omega \tag{5}
\end{equation*}
$$

To conclude the proof, we note that for any $\alpha \in[1,2]$ we have

$$
\lim _{n \rightarrow \infty} \frac{\log G(n)}{\log n}=\frac{1}{\beta}
$$

which follows readily from regular variation of G (compare Fact 2 in [6]). Together with (4) and (5), this entails

$$
\lim _{\varepsilon \rightarrow 0} \frac{\log \mathbf{T}_{\varepsilon}}{-\log \varepsilon}=\lim _{\varepsilon \rightarrow 0} \frac{\log \mathbf{T}_{\varepsilon}}{\log G\left(\mathbf{T}_{\varepsilon}\right)} \cdot \frac{\log G\left(\mathbf{T}_{\varepsilon}\right)}{-\log \varepsilon}=\beta \quad \text { a.s. on } \Omega^{*}
$$

as required.

The first argument can easily be adapted to prove the lower bound (4) also for $\mathbf{T}_{\varepsilon}^{x}$ with $x \neq 0$.

3. Convergence in distribution for auxiliary processes

We need to introduce auxiliary processes. Let $\left(M_{0}^{\varepsilon}\right)_{\varepsilon>0}$ be a family of random variables, independent of $\left(S_{n}\right)_{n \geq 0}$, such that M_{0}^{ε} has uniform distribution on the interval $(-\varepsilon, \varepsilon)$. For each $\varepsilon>0$ we define the walk $\left(M_{n}^{\varepsilon}\right)_{n \geq 0}$ with random initial position M_{0}^{ε}, that is, $M_{n}^{\varepsilon}:=M_{0}^{\varepsilon}+S_{n}$.

A major step towards Theorems 2 and 3 will be to prove a version which applies to the variables

$$
\tau_{\varepsilon}:=\min \left\{n \geq 1:\left|M_{n}^{\varepsilon}\right|<\varepsilon\right\}, \quad \varepsilon>0
$$

That is, we are interested in the limiting behaviour, as $\varepsilon \rightarrow 0$, of the first return time distribution of the walk $\left(M_{n}^{\varepsilon}\right)_{n \geq 0}$ to the interval $(-\varepsilon, \varepsilon)$. The goal of the present section is to establish
Theorem 4. Assume that $\alpha=1$. Conditioned on Ω^{*}, the variables $\varepsilon G\left(\tau_{\varepsilon}\right)$ converge in law,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\gamma \varepsilon G\left(\tau_{\varepsilon}\right) \leq t \mid \Omega^{*}\right)=\frac{t}{1+t} \quad \forall t>0 \tag{6}
\end{equation*}
$$

Theorem 5. Assume that $\alpha \in(1,2]$. Conditioned on Ω^{*}, the variables $\varepsilon G\left(\tau_{\varepsilon}\right)$ converge in law,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\left.\Gamma\left(\frac{1}{\beta}\right) \frac{\gamma}{\beta} \varepsilon G\left(\tau_{\varepsilon}\right) \leq t \right\rvert\, \Omega^{*}\right)=\operatorname{Pr}\left(\mathcal{E} \mathcal{G}_{1 / \beta}^{1 / \beta} \leq t\right) \quad \forall t>0 \tag{7}
\end{equation*}
$$

Equivalently,

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\left.\left(\Gamma\left(\frac{1}{\beta}\right) \frac{\gamma}{\beta}\right)^{\beta} \frac{\tau_{\varepsilon}}{G^{-1}(1 / \varepsilon)} \leq t \right\rvert\, \Omega^{*}\right)=\operatorname{Pr}\left(\mathcal{E}^{\beta} \mathcal{G}_{1 / \beta} \leq t\right) \quad \forall t>0
$$

Again we start with considerations valid for any $\alpha \in[1,2]$. To begin with, we define, for $\varepsilon>0$, $R>0$, and integers $K>0$, auxiliary events

$$
\Gamma_{\varepsilon, R, K}:=\left\{\forall i=1, \ldots, K: S_{i} \neq 0 \text { and }\left|M_{i}^{\varepsilon}\right| \leq R\right\}
$$

which asymptotically exhaust Ω^{*}, and on which we can work conveniently. As $\varepsilon \rightarrow 0$ we have $\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \rightarrow \mathbb{P}\left(\Gamma_{R, K}\right)$ and $\mathbb{P}\left(\Gamma_{\varepsilon, R, K} \backslash \Omega^{*}\right) \rightarrow \mathbb{P}\left(\Gamma_{R, K} \backslash \Omega^{*}\right)$, where $\Gamma_{R, K}:=\{\forall i=1, \ldots, K: 0<$
$\left.\left|S_{i}\right| \leq R\right\}$ (except, perhaps, for a countable set of R 's which we are going to avoid). Let $n \in \mathbb{N}$. Using again a decomposition similar to that of Dvoretski and Erdös in [8], we find, for $\varepsilon \in\left(0, \frac{1}{2}\right)$,

$$
\begin{equation*}
\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right)=\sum_{k=0}^{n} p_{k}^{-}=\sum_{k=0}^{n} p_{k}^{+} \tag{8}
\end{equation*}
$$

with $p_{k}^{ \pm}=p_{k, n, \varepsilon, R, K}^{ \pm}:=\mathbb{P}\left(\Gamma_{\varepsilon, R, K} \cap\left\{\left|M_{k}^{\varepsilon}\right|<\varepsilon \pm 2 \varepsilon^{2}\right.\right.$ and $\left.\left.\forall \ell=k+1, \ldots, n:\left|M_{\ell}^{\varepsilon}\right| \geq \varepsilon \pm 2 \varepsilon^{2}\right\}\right)$ for $1 \leq k \leq n$, and $p_{0}^{ \pm}=p_{0, n, \varepsilon, R, K}^{ \pm}:=\mathbb{P}\left(\Gamma_{\varepsilon, R, K} \cap\left\{\forall \ell=1, \ldots, n:\left|M_{\ell}^{\varepsilon}\right| \geq \varepsilon \pm 2 \varepsilon^{2}\right\}\right)$. The following estimates are the basis of the argument to follow.

Lemma 1. For arbitrary R, K, and $0<\gamma^{\prime}<2 f_{X}(0)<\gamma^{\prime \prime}$, there is some ε_{1} such that for $0<\varepsilon<\varepsilon_{1}$ and $n_{\varepsilon}>m_{\varepsilon} \geq(\log \varepsilon)^{4}$,

$$
\begin{aligned}
\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \geq \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right) & +\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \gamma^{\prime} \varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}} \\
& -\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) 8 \gamma^{\prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right)-\mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|M_{i}^{\varepsilon}\right|>R\right\}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \leq \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right) & +\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \gamma^{\prime \prime} \varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}}+\mathbb{P}\left(\Gamma_{\varepsilon, R, K} \backslash \Omega^{*}\right) \\
& +\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) 8 \gamma^{\prime \prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right)+\mathbb{P}\left(\Omega^{*} \cap\left\{\tau_{3 \varepsilon} \leq m_{\varepsilon}\right\}\right) .
\end{aligned}
$$

Proof. For the course of this proof, we simplify notations by suppressing the parameters ε, R, and K in $m_{\varepsilon}, n_{\varepsilon}, M_{i}^{\varepsilon}$, and $\Gamma_{\varepsilon, R, K}$. We will apply (8) with $n=n_{\varepsilon}$. Also, let $\nu:=\varepsilon^{2}$.
(i) Starting with the $k=0$ term, we see that

$$
p_{0}^{-} \geq \mathbb{P}\left(\Gamma \cap\left\{\forall \ell=1, \ldots, n:\left|M_{\ell}\right| \geq \varepsilon\right\}\right) \geq \mathbb{P}\left(\Gamma \cap\left\{\tau_{\varepsilon}>n\right\}\right) .
$$

We now consider the case where $m \leq k \leq n$. Let $\mathcal{A}:=(2 \nu \mathbb{Z}) \cap(-\varepsilon+3 \nu, \varepsilon-3 \nu)$. Notice that the sets $Q_{a}:=(a-\nu, a+\nu)$ with $a \in \mathcal{A}$ are disjoint and contained in $(-\varepsilon+2 \nu, \varepsilon-2 \nu)$. Therefore the k th term in equation (8) satisfies

$$
\begin{align*}
p_{k}^{-} & \geq \sum_{a \in \mathcal{A}} \mathbb{P}\left(\Gamma \cap\left\{M_{k} \in Q_{a} \text { and } \forall \ell=k+1, \ldots, n:\left|M_{\ell}\right| \geq \varepsilon-2 \nu\right\}\right) \\
& \geq \sum_{a \in \mathcal{A}} \mathbb{P}\left(\Gamma \cap\left\{M_{k} \in Q_{a} \text { and } \forall \ell=k+1, \ldots, n:\left|S_{\ell}-S_{k}+a\right| \geq \varepsilon-\nu\right\}\right) \tag{9}\\
& =\sum_{a \in \mathcal{A}} \mathbb{P}\left(\Gamma \cap\left\{M_{k} \in Q_{a}\right\}\right) \mathbb{P}\left(\forall \ell=1, \ldots, n-k:\left|S_{\ell}+a\right| \geq \varepsilon-\nu\right)
\end{align*}
$$

by independence (where we assume that ε is so small that $(\log \varepsilon)^{4}>K$). Note that

$$
\mathbb{P}\left(\Gamma \cap\left\{M_{k} \in Q_{a}\right\}\right)=\int_{\left\{\forall i: x_{i} \neq x_{0},\left|x_{i}\right| \leq R\right\}} \mathbb{P}\left(S_{k-K} \in Q_{a}-x_{K}\right) d \mathbb{P}_{\left(M_{0}, \ldots, M_{K}\right)}\left(x_{0}, \ldots, x_{K}\right),
$$

with $d \mathbb{P}_{\left(M_{0}, \ldots, M_{K}\right)}$ denoting the distribution of $\left(M_{0}, \ldots, M_{K}\right)$. Now fix θ as in Proposition 1, and $c \in(0,1)$ such that $\gamma^{\prime}<2 f_{X}(0) / c$. Elementary considerations (based on our condition on $m=m_{\varepsilon}$) show that Proposition 1 applies to $I=\frac{1}{A_{k-K}}\left(Q_{a}-x_{K}\right)$ if ε is sufficiently small, and in this case gives

$$
\begin{equation*}
\mathbb{P}\left(\Gamma \cap\left\{M_{k} \in Q_{a}\right\}\right) \geq \mathbb{P}(\Gamma) \frac{\gamma^{\prime} \nu}{A_{k}} . \tag{10}
\end{equation*}
$$

Using this, plus the observation that conditioning on $\left\{M_{0} \in Q_{a}\right\}$ amounts to looking at $M_{n}^{*}:=$ $M_{0}^{*}+S_{n}, n \geq 0$, with M_{0}^{*} uniformly distributed on Q_{a}, we can continue to estimate, for small ε,

$$
\begin{align*}
p_{k}^{-} & \left.\geq \mathbb{P}(\Gamma) \frac{\gamma^{\prime} \nu}{A_{k}} \sum_{a \in \mathcal{A}} \mathbb{P}\left(\forall \ell=1, \ldots, n-k:\left|S_{\ell}+a\right| \geq \varepsilon-\nu\right\}\right) \\
& \geq \mathbb{P}(\Gamma) \frac{\gamma^{\prime} \nu}{A_{k}} \sum_{a \in \mathcal{A}} \mathbb{P}\left(\left\{\forall \ell=1, \ldots, n-k:\left|M_{\ell}\right| \geq \varepsilon\right\} \mid\left\{M_{0} \in Q_{a}\right\}\right) \\
& \geq \mathbb{P}(\Gamma) \frac{\gamma^{\prime} \varepsilon}{A_{k}} \sum_{a \in \mathcal{A}} \mathbb{P}\left(\left\{\forall \ell=1, \ldots, n-k:\left|M_{\ell}\right| \geq \varepsilon\right\} \cap\left\{M_{0} \in Q_{a}\right\}\right) \tag{11}\\
& \geq \mathbb{P}(\Gamma) \frac{\gamma^{\prime} \varepsilon}{A_{k}}\left(\mathbb{P}\left(\forall \ell=1, \ldots, n-k:\left|M_{\ell}\right| \geq \varepsilon\right)-\mathbb{P}\left(\varepsilon-4 \nu \leq\left|M_{0}\right| \leq \varepsilon\right)\right) \\
& =\mathbb{P}(\Gamma) \frac{\gamma^{\prime} \varepsilon}{A_{k}}\left(\mathbb{P}\left(\tau_{\varepsilon}>n-k\right)-8 \nu\right)
\end{align*}
$$

Putting together these estimates via Equation (8) gives

$$
\mathbb{P}\left(\Gamma \cap\left\{\tau_{\varepsilon}>n\right\}\right)+\mathbb{P}(\Gamma) \gamma^{\prime} \varepsilon \sum_{k=m}^{n} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n-k\right)}{A_{k}} \leq \mathbb{P}(\Gamma)+\mathbb{P}(\Gamma) 8 \gamma^{\prime} \varepsilon \nu(G(n)-G(m))
$$

Since $\Gamma^{c} \cap\left\{\tau_{\varepsilon}>n\right\} \subseteq \bigcup_{i=1}^{K}\left\{\left|M_{i}\right|>R\right\}$ for ε so small that $n=n_{\varepsilon}>K$, this proves the first assertion of the lemma.
(ii) We only provide a sketch of the proof of the second point since the arguments are very similar to the above. Using Equation (8) gives

$$
\mathbb{P}(\Gamma) \leq \mathbb{P}\left(\Gamma \cap\left\{\tau_{\varepsilon}>n\right\}\right)+\mathbb{P}\left(\Gamma \backslash \Omega^{*}\right)+\mathbb{P}\left(\Omega^{*} \cap\left\{\tau_{3 \varepsilon} \leq m\right\}\right)+\sum_{k=m}^{n} p_{k}^{+}
$$

since $\sum_{k=1}^{m} p_{k}^{+} \leq \mathbb{P}\left(\Gamma \cap\left\{\tau_{3 \varepsilon} \leq m\right\}\right)$. Next, take $\overline{\mathcal{A}}:=(2 \nu \mathbb{Z}) \cap(-\varepsilon-3 \nu, \varepsilon+3 \nu)$ and intervals $\bar{Q}_{a}:=[a-\nu, a+\nu], a \in \overline{\mathcal{A}}$, which cover $(-\varepsilon-2 \nu, \varepsilon+2 \nu)$. We can then use arguments parallel to those of part (i) to obtain

$$
\begin{aligned}
\sum_{k=m}^{n} p_{k}^{+} & \left.\leq \sum_{k=m}^{n} \sum_{a \in \overline{\mathcal{A}}} \mathbb{P}\left(\Gamma \cap\left\{M_{k} \in \bar{Q}_{a} \text { and } \forall \ell=k+1, \ldots, n:\left|M_{\ell}\right|>\varepsilon+2 \nu\right)\right\}\right) \\
& \vdots \\
& \leq \mathbb{P}(\Gamma) \gamma^{\prime \prime} \varepsilon \sum_{k=m}^{n} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n-k\right)}{A_{k}}+\mathbb{P}(\Gamma) 8 \gamma^{\prime \prime} \varepsilon \nu(G(n)-G(m)),
\end{aligned}
$$

which proves our claim.
Suitable choice of the n_{ε} then enables us to derive an asymptotic bound for the tails of the distributions of the $\varepsilon G\left(\tau_{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$.

Lemma 2. For all $\alpha \in[1,2]$ and any $t>0$ we have

$$
\limsup _{\varepsilon \rightarrow 0} \mathbb{P}\left(\gamma \varepsilon G\left(\tau_{\varepsilon}\right)>t\right) \leq \frac{\mathbb{P}\left(\Omega^{*}\right)}{1+t}
$$

Proof. Fix t, R, K, and $0<\gamma^{\prime}<2 f_{X}(0)$. For $\varepsilon>0$ we take $m_{\varepsilon}:=(\log \varepsilon)^{4}$ and choose n_{ε} so that $G\left(n_{\varepsilon}\right) \leq \frac{t}{\gamma \varepsilon} \leq G\left(n_{\varepsilon}+1\right)$, whence $\mathbb{P}\left(\varepsilon \gamma G\left(\tau_{\varepsilon}\right)>t\right) \sim \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)$. As in the proof of Theorem

1 we see that $G\left(m_{\varepsilon}\right)=o\left(G\left(n_{\varepsilon}\right)\right)$. Therefore

$$
\begin{equation*}
\varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}} \geq \varepsilon\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right) \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right) \sim \frac{t}{\gamma} \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right) \tag{12}
\end{equation*}
$$

Together with the first part of Lemma 1, this yields

$$
\limsup _{\varepsilon \rightarrow 0} \mathbb{P}\left(\varepsilon \gamma G\left(\tau_{\varepsilon}\right)>t\right) \leq \frac{\mathbb{P}\left(\Gamma_{R, K}\right)+\mathbb{P}\left(\exists 1 \leq i \leq K:\left|S_{i}\right|>R-1\right)}{1+t \frac{\gamma^{\prime}}{\gamma} \mathbb{P}\left(\Gamma_{R, K}\right)},
$$

since $8 \gamma^{\prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right) \rightarrow 0$.
Taking successively $R \rightarrow \infty$, then $K \rightarrow \infty$, and finally $\gamma^{\prime} \rightarrow 2 f_{X}(0)$, we obtain the lemma.
When $\alpha=1$, this upper bound actually is the limit:
Lemma 3. If $\alpha=1$, then for any $t>0$ we have

$$
\liminf _{\varepsilon \rightarrow 0} \mathbb{P}\left(\gamma \varepsilon G\left(\tau_{\varepsilon}\right)>t\right) \geq \frac{\mathbb{P}\left(\Omega^{*}\right)}{1+t}
$$

Proof. Fix t, R, K, and $\gamma^{\prime \prime}>2 f_{X}(0)$, and choose m_{ε} and n_{ε} as in the previous proof. Similar to that situation we have $\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) 8 \gamma^{\prime \prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right) \rightarrow 0$, and, as a consequence of Theorem 1 , also $\mathbb{P}\left(\Omega^{*} \cap\left\{\tau_{3 \varepsilon} \leq m_{\varepsilon}\right\}\right) \rightarrow 0$.

Since $\alpha=1$ means that G is slowly varying, we have $G\left(2 n_{\varepsilon}\right)-G\left(n_{\varepsilon}\right)=o\left(G\left(n_{\varepsilon}\right)\right)$. Hence

$$
\begin{align*}
& \mathbb{P}\left(\tau_{\varepsilon}>2 n_{\varepsilon}\right)+\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \gamma^{\prime \prime} \varepsilon \sum_{k=m_{\varepsilon}}^{2 n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>2 n_{\varepsilon}-k\right)}{A_{k}} \\
& \leq \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)+\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \gamma^{\prime \prime} \varepsilon\left(\sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)}{A_{k}}+\sum_{k=n_{\varepsilon}}^{2 n_{\varepsilon}} \frac{1}{A_{k}}\right) \tag{13}\\
& \leq \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)+\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \gamma^{\prime \prime} \varepsilon G\left(n_{\varepsilon}\right)\left[\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)+o(1)\right] \\
& \leq \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)+t \frac{\gamma^{\prime \prime}}{\gamma} \mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)+o(1) .
\end{align*}
$$

Combining these observations with the second estimate of Lemma 1 (replacing n_{ε} by $2 n_{\varepsilon}$) entails

$$
\liminf _{\varepsilon \rightarrow 0} \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right) \geq \frac{\mathbb{P}\left(\Gamma_{R, K}\right)-\mathbb{P}\left(\Gamma_{R, K} \backslash \Omega^{*}\right)}{1+t \frac{\gamma^{\prime \prime}}{\gamma} \mathbb{P}\left(\Gamma_{R, K}\right)}
$$

We conclude by successively taking $R \rightarrow \infty, K \rightarrow \infty$, and $\gamma^{\prime \prime} \rightarrow 2 f_{X}(0)$.
Proof of Theorem 4. Immediate from Lemmas 2 and 3, as $\varepsilon G\left(\tau_{\varepsilon}\right) \rightarrow 0$ outside Ω^{*}.

When $\alpha \in(1,2]$, Lemma 1 does not yet give the limit distribution. Still, it immediately implies the tightness of the family of distributions with the normalisation given there:

Lemma 4. The family of distributions of the random variables $\varepsilon G\left(\tau_{\varepsilon}\right), \varepsilon \in(0,1)$, is tight.
Hence it will be enough to prove that the advertised limit law is the only possible accumulation point of our distributions. We henceforth abbreviate

$$
Z_{\varepsilon}:=\frac{\gamma}{\beta} \varepsilon G\left(\tau_{\varepsilon}\right), \quad \varepsilon>0
$$

Lemma 5. Suppose that $\alpha \in(1,2]$. Let $\left(\varepsilon_{p}\right)_{p \geq 1}$ be a positive sequence with $\lim _{p \rightarrow \infty} \varepsilon_{p}=0$, and such that the conditional distributions of the $Z_{\varepsilon_{p}}$ on Ω^{*} converge to the law of some random variable Y. Then its tail satisfies the integral equation

$$
1=\operatorname{Pr}(Y>t)+t \int_{0}^{1} \frac{\operatorname{Pr}\left(Y>t(1-u)^{\frac{1}{\beta}}\right)}{u^{\frac{1}{\alpha}}} d u \quad \forall t>0
$$

Proof. (i) We write $f(t):=\operatorname{Pr}(Y>t)$, and first prove that

$$
\forall t>0, \quad 1 \geq f(t)+t \int_{0}^{1} u^{-\frac{1}{\alpha}} f\left(t(1-u)^{\frac{1}{\beta}}\right) d u
$$

Let us only consider ε belonging to $\left\{\varepsilon_{p}, p \geq 1\right\}$. Note that by monotonicity and right continuity of f it suffices to prove the inequality for all $t \in(0, \infty)$ such that, for all $N \geq 1$ and all $r=0, \ldots, N-1$, the function f is continuous at $t\left(1-\frac{r}{N}\right)^{\frac{1}{\beta}}$. Henceforth such a t will be fixed.

Now take some $\delta>0$, and choose $N_{\delta}>1$ such that for all $N \geq N_{\delta}$,

$$
\left|\int_{0}^{1} \frac{f\left(t(1-u)^{\frac{1}{\beta}}\right)}{u^{\frac{1}{\alpha}}} d u-\frac{1}{N} \sum_{r=1}^{N-1} \frac{f\left(t(1-(r / N))^{\frac{1}{\beta}}\right)}{((r+1) / N)^{\frac{1}{\alpha}}}\right| \leq \delta
$$

Now fix integers $N \geq N_{\delta}, K \geq 1$, and some $0<\gamma^{\prime}<2 f_{X}(0)$. For $\varepsilon>0$ small enough take n_{ε} such that $G\left(n_{\varepsilon}\right) \leq \frac{\beta t}{\gamma \varepsilon}<G\left(n_{\varepsilon}+1\right)$ (and hence $G\left(n_{\varepsilon}\right) \sim \frac{\beta t}{\gamma \varepsilon}$). Finally, let $m_{\varepsilon}:=n_{\varepsilon} / N$.

According to the first point of Lemma 1, we have

$$
\begin{aligned}
\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \geq \mathbb{P}\left(Z_{\varepsilon}>t\right) & +\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) \gamma^{\prime} \varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}} \\
& -\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) 8 \gamma^{\prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right)-\mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|M_{i}^{\varepsilon}\right|>R\right\}\right)
\end{aligned}
$$

Due to our assumption on the $Z_{\varepsilon_{p}}$ and t, we see that $\mathbb{P}\left(Z_{\varepsilon}>t\right) \rightarrow \mathbb{P}\left(\Omega^{*}\right) f(t)$ as $\varepsilon_{p} \rightarrow 0$. Next, by monotonicity,

$$
\begin{aligned}
\sum_{k=n_{\varepsilon} / N}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}} & \geq \sum_{r=1}^{N-1} \sum_{k=0}^{n_{\varepsilon} / N-1} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k-\left(r n_{\varepsilon} / N\right)\right)}{A_{k+\left(r n_{\varepsilon} / N\right)}} \\
& \geq \sum_{r=1}^{N-1}\left(G\left(\frac{r+1}{N} n_{\varepsilon}\right)-G\left(\frac{r}{N} n_{\varepsilon}\right)\right) \mathbb{P}\left(\tau_{\varepsilon}>\left(1-\frac{r}{N}\right) n_{\varepsilon}\right) .
\end{aligned}
$$

By regular variation, the first term of the product is asymptotically equivalent to

$$
G\left(n_{\varepsilon}\right)\left[\left(\frac{r+1}{N}\right)^{\frac{1}{\beta}}-\left(\frac{r}{N}\right)^{\frac{1}{\beta}}\right] \geq \frac{G\left(n_{\varepsilon}\right)}{\beta N\left(\frac{r+1}{N}\right)^{\frac{1}{\alpha}}}
$$

as $\varepsilon_{p} \rightarrow 0$. On the other hand, the second term is equal to

$$
\mathbb{P}\left(Z_{\varepsilon}>\varepsilon \frac{\gamma}{\beta} G\left(\left(1-\frac{r}{N}\right) n_{\varepsilon}\right)\right) \rightarrow \mathbb{P}\left(\Omega^{*}\right) f\left(t\left(1-\frac{r}{N}\right)^{\frac{1}{\beta}}\right)
$$

since $G\left(\left(1-\frac{r}{N}\right) n_{\varepsilon}\right) \sim\left(1-\frac{r}{N}\right)^{\frac{1}{\beta}} G\left(n_{\varepsilon}\right)$. As a consequence, we see that

$$
\begin{align*}
\liminf _{p \rightarrow \infty} \varepsilon_{p} \sum_{k=n_{\varepsilon_{p}} / N}^{n_{\varepsilon_{p}}} \frac{\mathbb{P}\left(\tau_{\varepsilon_{p}}>n_{\varepsilon_{p}}-k\right)}{A_{k}} & \geq \mathbb{P}\left(\Omega^{*}\right) \frac{t}{\gamma} \frac{1}{N} \sum_{r=1}^{N-1} \frac{f\left(t\left(1-\frac{r}{N}\right)^{1-\frac{1}{\alpha}}\right)}{\left(\frac{r+1}{N}\right)^{\frac{1}{\alpha}}} \tag{14}\\
& \geq \mathbb{P}\left(\Omega^{*}\right) \frac{t}{\gamma}\left(\int_{0}^{1} \frac{f\left(t(1-u)^{1-\frac{1}{\alpha}}\right)}{u^{\frac{1}{\alpha}}} d u-\delta\right) .
\end{align*}
$$

Furthermore, we again have $\mathbb{P}\left(\Gamma_{\varepsilon, R, K}\right) 8 \gamma^{\prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right) \rightarrow 0$. Moreover, $\mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|M_{i}^{\varepsilon}\right|>\right.\right.$ $R\}) \rightarrow \mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|S_{i}\right|>R\right\}\right)$. Combining all these asymptotic estimates and taking the limit $\varepsilon_{p} \rightarrow 0$, we end then up with

$$
\mathbb{P}\left(\Gamma_{R, K}\right) \geq \mathbb{P}\left(\Omega^{*}\right)\left[f(t)+\frac{\mathbb{P}\left(\Gamma_{R, K}\right) \gamma^{\prime} t}{\gamma}\left(\int_{0}^{1} \frac{f\left(t(1-u)^{1-\frac{1}{\alpha}}\right)}{u^{\frac{1}{\alpha}}} d u-\delta\right)\right]-\mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|S_{i}\right|>R\right\}\right) .
$$

Successively letting $R \rightarrow \infty, K \rightarrow \infty, \gamma^{\prime} \rightarrow 2 f_{X}(0)$ and $\delta \rightarrow 0$ we obtain the desired inequality.
(ii) The converse inequality is proved analogously, using the other half of Lemma 1 and the fact that $\mathbb{P}\left(\Omega^{*} \cap\left\{\tau_{3 \varepsilon} \leq m_{\varepsilon}\right\}\right)=o(1)$.

Now let us identify the limit distribution satisfying the equality given by Lemma 5. To this end we consider the variables

$$
Z_{\varepsilon}^{\prime}:=\left(\frac{\gamma}{\beta}\right)^{\beta} \frac{\tau_{\varepsilon}}{G^{-1}(1 / \varepsilon)}, \quad \varepsilon>0 .
$$

Lemma 6. The conditional distributions of the $Z_{\varepsilon_{p}}$ converge to a random variable Y iff the conditional distributions of the $Z_{\varepsilon_{p}}^{\prime}$ converge to Y^{β}. The latter then satisfies

$$
1=\operatorname{Pr}\left(Y^{\beta}>t\right)+\int_{0}^{t} \frac{\operatorname{Pr}\left(Y^{\beta}>t-v\right)}{v^{\frac{1}{\alpha}}} d v \quad \forall t>0 .
$$

Proof. The equivalence of the two conditional distributional convergence statements follows from regular variation of G^{-1}, see e.g. Lemma 1 of [4]. Suppose that they hold. Then, according to Lemma 5 , for any $t>0$, we have

$$
1=\operatorname{Pr}\left(Y^{\beta}>t\right)+t^{\frac{1}{\beta}} \int_{0}^{1} \frac{\operatorname{Pr}\left(Y^{\beta}>t(1-u)\right)}{u^{\frac{1}{\alpha}}} d u,
$$

and the conclusion follows by a change of variables, $v=t u$.
Lemma 7. Let W be a random variable with values in $[0, \infty)$ satisfying

$$
\begin{equation*}
\operatorname{Pr}(W \leq t)=\int_{0}^{t} \frac{\operatorname{Pr}(W>t-v)}{v^{\frac{1}{\alpha}}} d v \quad \forall t>0 . \tag{15}
\end{equation*}
$$

Then

$$
\mathbb{E}\left[e^{-s W}\right]=\frac{1}{1+c_{\beta} s^{\frac{1}{\beta}}} \quad \forall s>0,
$$

with $c_{\beta}:=\Gamma\left(\frac{1}{\beta}\right)^{-1}$. In particular, the distribution of W coincides with that of $c_{\beta}^{\beta} \mathcal{E}^{\beta} \mathcal{G}_{\frac{1}{\beta}}$, where the independent variables \mathcal{E} and $\mathcal{G}_{\frac{1}{\beta}}$ are as in the statement of Theorem 3.

Proof. Let $s>0$. We have
$\mathbb{E}\left[e^{-s W}\right]=\int_{0}^{+\infty} \operatorname{Pr}\left(e^{-s W} \geq u\right) d u=\int_{0}^{+\infty} \operatorname{Pr}\left(W \leq-\frac{\log (u)}{s}\right) d u=\int_{0}^{+\infty} \operatorname{Pr}(W \leq v) s e^{-s v} d v$.
Hence, for any $s>0$, we find

$$
\begin{aligned}
\mathbb{E}\left[e^{-s W}\right] & =\int_{0}^{+\infty}\left[\int_{0}^{v} \frac{\operatorname{Pr}(W \geq v-w)}{w^{\frac{1}{\alpha}}} d w\right] s e^{-s v} d v \\
& =\int_{0}^{+\infty} \frac{1}{w^{\frac{1}{\alpha}}}\left[\int_{w}^{+\infty} \operatorname{Pr}(W \geq v-w) s e^{-s v} d v\right] d w \\
& =\int_{0}^{+\infty} \frac{e^{-s w}}{w^{\frac{1}{\alpha}}}\left[\int_{0}^{+\infty} \operatorname{Pr}(W \geq z) s e^{-s z} d z\right] d w \\
& =\int_{0}^{+\infty} \frac{e^{-s w}}{w^{\frac{1}{\alpha}}}\left[1-\int_{0}^{+\infty} \operatorname{Pr}(W \leq z) s e^{-s z} d z\right] d w \\
& =\int_{0}^{+\infty} \frac{e^{-s w}}{w^{\frac{1}{\alpha}}} d w \cdot\left[1-\mathbb{E}\left[e^{-s W}\right]\right]
\end{aligned}
$$

and our claim about the Laplace transform of W follows since

$$
\int_{0}^{+\infty} \frac{e^{-s w}}{w^{\frac{1}{\alpha}}} d w=\frac{\beta}{s^{\frac{1}{\beta}}} \int_{0}^{+\infty} e^{-z^{\beta}} d z=\frac{1}{c_{\beta} s^{\frac{1}{\beta}}} \quad \text { with } \quad c_{\beta}:=\frac{1}{\Gamma\left(\frac{1}{\beta}\right)} .
$$

Given this, a routine calculation (cf. XIII.11.10 of [9]) shows that W indeed has the same Laplace transform as $c_{\beta}^{\beta} \mathcal{E}^{\beta} \mathcal{G}_{\frac{1}{\beta}}$.

Proof of Theorem 5. According to Lemma 4 the family of distributions of the $Z_{\varepsilon}, \varepsilon \in(0,1)$, is tight. By Lemma 5, Lemma 6 and Lemma 7, the law of $c_{\beta} \mathcal{E G}_{1 / \beta}^{1 / \beta}$ is the only possible accumulation point of these distributions.

4. Convergence in distribution for $\mathbf{T}_{\varepsilon}^{x}$

To complete the proof of Theorems 2 and 3 we now utilize Theorems 4 and 5 . Note first that it suffices to prove Theorems 2 and 3 under the additional assumption that $S_{0}^{\prime}=0$, in which case

$$
\mathbf{T}_{\varepsilon}^{x}=\hat{\mathbf{T}}_{\varepsilon}^{x}:=\inf \left\{n \geq 1:\left|S_{n}-x\right|<\varepsilon\right\} \text { and } \Omega_{x}^{*}=\hat{\Omega}_{x}^{*}:=\left\{S_{n} \neq x \forall n\right\} .
$$

Indeed, in the situation of Theorem 2, with arbitrary distribution P of S_{0}^{\prime}, we then have

$$
\mathbb{P}\left(\gamma \varepsilon G\left(\mathbf{T}_{\varepsilon}^{x}\right) \leq t\right)=\int_{\mathbb{R}} \mathbb{P}\left(\gamma \varepsilon G\left(\hat{\mathbf{T}}_{\varepsilon}^{x-y}\right) \leq t\right) d P(y) \rightarrow \int_{\mathbb{R}} \mathbb{P}\left(\hat{\Omega}_{x-y}^{*}\right) d P(y) \cdot \frac{t}{1+t}
$$

by the $P=\delta_{0}$ case of Theorem 2 and dominated convergence. Analogously for Theorem 3.
Therefore, for the remainder of this section we assume that $S_{0}^{\prime}=0$.
Next, we observe that our key lemma (Lemma 1) can be adapted as follows. Let $\Gamma_{R, K}^{x}$ be the event defined by

$$
\Gamma_{R, K}^{x}:=\left\{\forall i=1, \ldots, K: S_{i} \neq x \text { and }\left|S_{i}\right| \leq R\right\} .
$$

Lemma 8. For arbitrary R, K, and $0<\gamma^{\prime}<2 f_{X}(0)<\gamma^{\prime \prime}$, there is some $\varepsilon_{1}>0$ such that for $0<\varepsilon<\varepsilon_{1}$ and $n_{\varepsilon}>m_{\varepsilon} \geq(\log \varepsilon)^{4}$,

$$
\begin{aligned}
\mathbb{P}\left(\Gamma_{R, K}^{x}\right) \geq \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) & +\mathbb{P}\left(\Gamma_{R, K}^{x}\right) \gamma^{\prime} \varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}} \\
& -\mathbb{P}\left(\Gamma_{R, K}^{x}\right) 8 \gamma^{\prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right)-\mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|S_{i}\right|>R\right\}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{P}\left(\Gamma_{R, K}^{x}\right) \leq \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) & +\mathbb{P}\left(\Gamma_{R, K}^{x}\right) \gamma^{\prime \prime} \varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}}+\mathbb{P}\left(\Gamma_{R, K}^{x} \backslash \Omega_{x}^{*}\right) \\
& +\mathbb{P}\left(\Gamma_{R, K}^{x}\right) 8 \gamma^{\prime \prime} \varepsilon^{3}\left(G\left(n_{\varepsilon}\right)-G\left(m_{\varepsilon}\right)\right)+\mathbb{P}\left(\Omega_{x}^{*} \cap\left\{\mathbf{T}_{3 \varepsilon} \leq m_{\varepsilon}\right\}\right)
\end{aligned}
$$

Proof of Lemma 8. We have the following analogue of formula (8),

$$
\begin{equation*}
\mathbb{P}\left(\Gamma_{R, K}^{x}\right)=\sum_{k=0}^{n_{\varepsilon}} p_{k}^{x,-}=\sum_{k=0}^{n_{\varepsilon}} p_{k}^{x,+}, \tag{16}
\end{equation*}
$$

with

$$
p_{0}^{x, \pm}:=\mathbb{P}\left(\Gamma_{R, K}^{x} \cap\left\{\forall \ell=1, \ldots, n_{\varepsilon}:\left|S_{\ell}-x\right| \geq \varepsilon \pm 2 \varepsilon^{2}\right\}\right)
$$

and

$$
p_{k}^{x, \pm}:=\mathbb{P}\left(\Gamma_{R, K}^{x} \cap\left\{\left|S_{k}-x\right|<\varepsilon \pm 2 \varepsilon^{2} \text { and } \forall \ell=k+1, \ldots, n_{\varepsilon}:\left|S_{\ell}-x\right| \geq \varepsilon \pm 2 \varepsilon^{2}\right\}\right)
$$

We follow the proof of Lemma 1.
(i) Observe first that

$$
p_{0}^{x,-} \geq \mathbb{P}\left(\Gamma_{R, K}^{x} \cap\left\{\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right\}\right)
$$

Now consider indices with $m_{\varepsilon} \leq k \leq n_{\varepsilon}$. With the same set \mathcal{A} as in the proof of Lemma 1 , we find, arguing as in (9), that

$$
\begin{aligned}
p_{k}^{x,-} & \geq \sum_{a \in \mathcal{A}} \mathbb{P}\left(\Gamma_{R, K}^{x} \cap\left\{S_{k}-x \in Q_{a} \text { and } \forall \ell=k+1, \ldots, n_{\varepsilon}:\left|S_{\ell}-x\right| \geq \varepsilon-2 \nu\right\}\right) \\
& \geq \sum_{a \in \mathcal{A}} \mathbb{P}\left(\Gamma_{R, K}^{x} \cap\left\{S_{k}-x \in Q_{a}\right\}\right) \mathbb{P}\left(\forall \ell=1, \ldots, n_{\varepsilon}-k:\left|S_{\ell}+a\right| \geq \varepsilon-\nu\right) .
\end{aligned}
$$

A proof parallel to that of (10) shows that

$$
\mathbb{P}\left(\Gamma_{R, K}^{x} \cap\left\{S_{k}-x \in Q_{a}\right\}\right) \geq \mathbb{P}\left(\Gamma_{R, K}^{x}\right) \frac{\gamma^{\prime} \nu}{A_{k}}
$$

if ε is sufficiently small. Therefore,

$$
\begin{aligned}
p_{k}^{x,-} & \left.\geq \mathbb{P}\left(\Gamma_{R, K}^{x}\right) \frac{\gamma^{\prime} \nu}{A_{k}} \sum_{a \in \mathcal{A}} \mathbb{P}\left(\forall \ell=1, \ldots, n_{\varepsilon}-k:\left|S_{\ell}+a\right| \geq \varepsilon-\nu\right\}\right) \\
& \geq \mathbb{P}\left(\Gamma_{R, K}^{x}\right) \frac{\gamma^{\prime} \varepsilon}{A_{k}}\left(\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)-8 \nu\right)
\end{aligned}
$$

where the second step uses an estimate contained in (11). Continuing as in the proof of Lemma 1 , we obtain the first assertion of our lemma.
(ii) Similar adaptations give the second assertion of the lemma.

We can now complete the proofs of our main distributional limit theorems:

Proof of Theorem 2. We go back to Lemmas 2 and 3, observing that we already have (6) at our disposal. Take $t \in(0, \infty), R, K \geq 1$, and $\gamma^{\prime}<2 f_{X}(0)<\gamma^{\prime \prime}$. For $\varepsilon>0$ let $m_{\varepsilon}:=(\log \varepsilon)^{4}$ and choose n_{ε}, such that $G\left(n_{\varepsilon}\right) \leq \frac{t}{\gamma \varepsilon} \leq G\left(n_{\varepsilon}+1\right)$, meaning that $\mathbb{P}\left(\varepsilon \gamma G\left(\mathbf{T}_{\varepsilon}^{x}\right)>t\right) \sim \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right)$.

In view of (6), the estimate (12) of Lemma 2 becomes

$$
\liminf _{\varepsilon \rightarrow 0} \varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}} \geq \frac{\mathbb{P}\left(\Omega^{*}\right)}{\gamma} \frac{t}{1+t}
$$

Combining this with the first part of Lemma 8 leads to

$$
\limsup _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) \leq \mathbb{P}\left(\Gamma_{R, K}^{*}\right)\left(1-\frac{\gamma^{\prime}}{2 f_{X}(0)} \frac{t}{1+t}\right)+\mathbb{P}\left(\exists 1 \leq i \leq K:\left|S_{i}\right|>R-1\right)
$$

Successively letting $R \rightarrow \infty$, then $K \rightarrow \infty$, and finally $\gamma^{\prime} \rightarrow 2 f_{X}(0)$, we obtain

$$
\limsup _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) \leq \frac{\mathbb{P}\left(\Omega_{x}^{*}\right)}{1+t}
$$

To get the corresponding lower bound, recall that $\mathbb{P}\left(\Omega^{*} \cap\left\{\mathbf{T}_{3 \varepsilon}^{x} \leq m_{\varepsilon}\right\}\right) \rightarrow 0$ by Theorem 1 . Parallel to (13) we have
$\mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>2 n_{\varepsilon}\right)+\mathbb{P}\left(\Gamma_{R, K}^{x}\right) \gamma^{\prime \prime} \varepsilon \sum_{k=m_{\varepsilon}}^{2 n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>2 n_{\varepsilon}-k\right)}{A_{k}} \leq \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right)+t \frac{\gamma^{\prime \prime}}{\gamma} \mathbb{P}\left(\Gamma_{R, K}^{x}\right) \mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}\right)+o(1)$.
Together with the second part of Lemma 8 (with n_{ε} replaced by $2 n_{\varepsilon}$) and (6), this implies

$$
\liminf _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) \geq \frac{\mathbb{P}\left(\Omega_{x}^{*}\right)}{1+t}
$$

completing the proof.
Proof of Theorem 3. We fix $t \in(0, \infty)$, and choose n_{ε} such that $G\left(n_{\varepsilon}\right) \leq \frac{\beta t}{\gamma \varepsilon}<G\left(n_{\varepsilon}+1\right)$.
According to the proof of Theorem 5 (see, in particular, (14) in Lemma 5), we know that for m_{ε} with $m_{\varepsilon}=o\left(n_{\varepsilon}\right)$,

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \sum_{k=m_{\varepsilon}}^{n_{\varepsilon}} \frac{\mathbb{P}\left(\tau_{\varepsilon}>n_{\varepsilon}-k\right)}{A_{k}}=\frac{\mathbb{P}\left(\Omega^{*}\right)}{\gamma} \operatorname{Pr}(Y \geq t)=: \psi
$$

where $Y=\Gamma\left(\frac{1}{\beta}\right)^{-1} \mathcal{E} \mathcal{G}_{1 / \beta}^{1 / \beta}$ is the limiting random variable of the $\gamma \beta^{-1} \varepsilon G\left(\tau_{\varepsilon}\right)$. Therefore, if we take $m_{\varepsilon}:=(\log \varepsilon)^{4}$, then Lemma 8 implies that for $R, K \geq 1$ and $\gamma^{\prime}<2 f_{X}(0)<\gamma^{\prime \prime}$,

$$
\limsup _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) \leq \mathbb{P}\left(\Gamma_{R, K}^{x}\right)\left(1-\gamma^{\prime} \psi\right)+\mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|S_{i}\right|>R\right\}\right)
$$

and

$$
\liminf _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) \geq \mathbb{P}\left(\Gamma_{R, K}^{x}\right)\left(1-\gamma^{\prime \prime} \psi\right)-\mathbb{P}\left(\Gamma_{R, K} \backslash \Omega_{x}^{*}\right)
$$

Since $\lim _{K \rightarrow+\infty} \lim _{R \rightarrow+\infty} \mathbb{P}\left(\Gamma_{R, K}^{x}\right)=\mathbb{P}\left(\Omega_{x}^{*}\right)$ and $\lim _{K \rightarrow+\infty} \lim _{R \rightarrow+\infty} \mathbb{P}\left(\bigcup_{i=1}^{K}\left\{\left|S_{i}\right|>R\right\}\right)=0$, we get

$$
\mathbb{P}\left(\Omega_{x}^{*}\right)\left(1-\gamma^{\prime \prime} \psi\right) \leq \liminf _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) \leq \limsup _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right) \leq \mathbb{P}\left(\Omega_{x}^{*}\right)\left(1-\gamma^{\prime} \psi\right)
$$

and hence

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\mathbf{T}_{\varepsilon}^{x}>n_{\varepsilon}\right)=\mathbb{P}\left(\Omega_{x}^{*}\right)\left(1-2 f_{X}(0) \psi\right)=\mathbb{P}\left(\Omega_{x}^{*}\right) \operatorname{Pr}(Y>t)
$$

as required.

Proof of Corollary 1. This is an $\alpha=2$ case with $A_{n}=\sqrt{n}$ and $f_{X}(0)=\frac{1}{\sqrt{2 \pi}}$. Recalling that $\mathcal{G}_{1 / 2}=\frac{1}{2 \mathcal{N}^{2}}$ in distribution (cf. XIII.3.b of [9]) proves our claim.

References

[1] J. Aaronson, M. Denker, Characteristic functions of random variables attracted to 1-stable laws, Ann. Probab. 26 (1998), no. 1, 399-415.
[2] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, 1987.
[3] L. Breiman, Probability, Addison-Wesley, Reading Mass., 1968
[4] X. Bressaud, R. Zweimüller, Non exponential law of entrance times in asymptotically rare events for intermittent maps with infinite invariant measure, Ann. Henri Poincaré 2 (2001) 501-512.
[5] J. Bretagnolle and D. Dacunha-Castelle, Théorèmes limites à distance finie pour les marches aléatoires, Ann. Instit. H. Poincaré B 4-1 (1968) 25-73.
[6] D. Cheliotis, A note on recurrent random walks, Statistics and Probability Letters 76 (2006) 1025-1031
[7] K.L. Chung and P. Erdös, On the lower limit of sums of independent random variables, Ann. Math. 48, no. 4 (1947) 1003-1013.
[8] A. Dvoretzky \& P. Erdös, Some problems on random walk in space, Proc. Berkeley Sympos. math. Statist. Probab. (1951) 353-367
[9] W. Feller, An introduction to probability theory and its applications, vol. 2, John Wiley and Sons, Inc., New York-London-Sydney, second edn., 1971
[10] I.A. Ibragimov, Yu. Linnik, Independent and stationary sequences of random variables. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J.F. C. Kingman, WoltersNoordho Publishing, Groningen, 1971
[11] J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bulletin de la Société Mathématique de France, 61 (1933), p. 55-62
[12] F. Pène, B. Saussol, Quantitative recurrence in two-dimensional extended processes, Ann. Instit. H. Poincaré - Proba. stat. 45-4 (2009) 1065-1084.
[13] C. Stone, A local limit theorem for non-lattice multidimensional distribution functions, Ann. Math. Statist 36 (1965) 546-551

Françoise Pène and Benoît Saussol: Université Européenne de Bretagne, Université de Brest, Laboratoire de mathématiques de Brest, CNRS UMR 6205, 6, avenue Victor Le Gorgeu, CS 93837, 29238 BREST Cedex 3, FRANCE

Roland Zweimüller: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 WIEN, AUSTRIA

E-mail address: francoise.pene@univ-brest.fr
E-mail address: benoit.saussol@univ-brest.fr
E-mail address: rzweimue@member.ams.org

[^0]: Date: March 18, 2010.
 The authors thank the ANR project TEMI (Théorie ergodique en mesure infinie) for its support.

