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Abstract. We present some recurrence results in the context of ergodic the-

ory and dynamical systems. The main focus will be on smooth dynamical

systems, in particular those with some chaotic/hyperbolic behavior. The aim
is to compute recurrence rates, limiting distributions of return times, and

short returns. We choose to give the full proofs of the results directly related
to recurrence, avoiding as possible to hide the ideas behind technical details.

This drove us to consider as our basic dynamical system a one-dimensional

expanding map of the interval. We note however that most of the arguments
still apply to higher dimensional or less uniform situations, so that most of

the statements continue to hold. Some basic notions from the thermodynamic

formalism and the dimension theory of dynamical systems will be recalled.
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1. Classical recurrence results in ergodic theory

In this section we briefly present some classical results on recurrence in the
general context of Ergodic Theory. Most of them are of qualitative nature, and the
main purpose of the lecture will be to give some quantitative refinement of them.
From now on we have a measure preserving dynamical system (X,A, T, µ): X is a
space, A is a σ-algebra on X, T : X → X is a measurable map and µ a probability
measure on (X,A), such that µ(T−1A) = µ(A) for all A ∈ A. We say that the
system is ergodic if the invariant sets are trivial: T−1A = A implies µ(A) = 0 or
µ(A) = 1.

1.1. Some examples of dynamical systems. 1) on the unit circle, the angle
α-rotation Tx = x+ α mod 1 ;
2) on the unit circle, the doubling map Tx = 2x mod 1 ;

3) on the 2-torus, the cat map Tx =
(

2 1
1 1

)
x.

Good thing with these maps : they all preserve the Lebesgue measure.
4) full shift on two symbols, X = {0, 1}N, Tx = (xn+1)n. preserves the infinite

product of a Bernoulli measure.
5) shift of a stationnary process : W = (Wn) a stationary real valued process

and X = RN with the shift map again, and the probability measure PW .

1.2. Hitting and return time. Given a point x ∈ X the sequence of iterations
x, Tx, T 2x, . . . , Tnx, . . . is called its (forward) orbit.

Given a set A and an initial point x, the basic object of study here will be the
(first) hitting time of the orbit of x to the set A. We denote it by τA(x), defined by

τA(x) = min{n : Tnx ∈ A,n = 1, 2, . . .}

or τA(x) = +∞ if the (forward) orbit never enters in A. When x ∈ A we usually
call τA(x) the (first) return time.

The first theorem of this lecture could reasonably not be something else than
the famous Poincaré recurrence theorem itself:

Theorem 1. Let A ∈ A be a measurable set. Then for µ-almost all x ∈ A, the
forward orbit Tnx, n = 1, 2, . . . belongs to A infinitely often.

We will call these points A-recurrent.

Proof. Let n ≥ 1 be an integer. The disjoint union

{τA ≤ n} = {τA ◦ T ≤ n− 1} ∪ T−1
(
A ∩ {τA > n− 1}

)
.

gives using the invariance of the measure

µ(τA = n) = µ(A ∩ {τA ≥ n}) (1)

In particular we have µ(τA = n) ≥ µ(A ∩ {τA = +∞}). The sets {τA = n},
n = 1, 2, . . . are disjoints in the finite measure space, thus the left hand side is
summable with n. So is the right hand side, hence A ∩ {τA = +∞} is a null set.
Therefore ⋃

n≥0

T−n(A ∩ {τA = +∞})

is again a null set. �
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Poincaré recurrence theorem tells in particular that τA(x) < +∞ for µ-almost
every x ∈ A. We emphasize that this theorem is valid for any finite measure
preserving dynamical system and any measurable set. Obviously, for zero measure
sets the statement is empty. Note that this statement only concerns return times,
since the initial point x needs to be in the set A.

When X is a separable metric space (i.e. there is a dense countable subset) we
obtain a corollary of topological nature, somewhat more concrete:

Theorem 2. Assume (X, d) is a separable metric space and that µ is a Borel T -
invariant measure. Then the orbit of almost any initial point returns arbitrarily
close to the initial point:
For µ-almost every x, there exists a subsequence nk such that Tnkx→ x.

Proof. Let {B,B ∈ B} be a countable basis of X (for example balls of rational
radius centered at a dense sequence). By Poincaré recurrence theorem, for each set
B there exists a negligible NB ⊂ B such that any point in B \NB is B-recurrent.
The set N = ∪BNB is negligible. Let x ∈ X \N . Let Bi ∈ B be a sequence of sets
with diameter going to zero and containing x. Since x is Bi-recurrent, there exists
an integer ni such that Tnix ∈ Bi. Therefore Tnix→ x. �

1.3. Mean behavior of return times. We just have seen that the function τA is
almost surely finite on A. If we denote by µA = 1

µ(A)µ|A the conditional measure
on A, then we can look at the expectation of τA:

Theorem 3 (Kač’s lemma [37]). Let A ∈ A be such that µ(A) > 0. We have∫
A

τAdµ = µ({τA < +∞}).

In particular, when the system is ergodic we have
∫
A

τAdµA =
1

µ(A)
, i.e. the mean

return time is equal to the inverse of the measure.

An elegant proof uses towers, however it requires the map to be bi-measurable.

Proof. We recall the relation between hitting and return times (1)

µ(τA = n) = µ(A ∩ {τA ≥ n}).

Summing up over n yields

µ(τA < +∞) =
∞∑
n=1

µ(A ∩ {τA ≥ n}) =
∫
A

τAdµ.

For the last statement, observe that the set {τA < +∞} is invariant by Poincaré
recurrence theorem. �

If x ∈ A is such that τA(x) < +∞, then the iterate TA(x) = T τA(x)x is well
defined and belongs to A again. This defines (almost everywhere) an induced map
on A, called the first return map to A.

Theorem 4. The system (A, TA, µA) is a well defined measure preserving dynam-
ical system. It is ergodic if the original system is ergodic.
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Proof. Let B ⊂ A be a measurable set. To prove the invariance of µA it is sufficient
to prove that µ(T−1

A B) = µ(B). First,

µ(T−1
A B) =

∞∑
n=1

µ(A ∩ {τA = n} ∩ T−nB).

We then refine equation (1) starting from the disjoint union

{τA ≤ n} ∩ T−n−1B = T−1({τA ≤ n− 1} ∩ T−nB) ∪ T−1(A ∩ {τA = n} ∩ T−nB).

This gives by invariance of the measure

µ(A ∩ {τA = n} ∩ T−nB) = µ(Bn)− µ(Bn−1)

where Bn = {τA ≤ n} ∩ T−n−1B. We have µ(Bn)→ µ(B) as n→∞, thus

µ(T−1
A B) = limµ(Bn) = µ(B).

Let us assume now the ergodicity of the original system. Let B ⊂ A be a measurable
TA-invariant subset. For any x ∈ B, the first iterate Tnx (n ≥ 1) that belongs to A
also belongs to B, which means that τB = τA on B. But if µ(B) 6= 0, Kač’s lemma
gives that ∫

B

τBdµ = 1 =
∫
A

τAdµ,

which implies that µ(B \A) = 0, proving ergodicity. �

We will invoke several time the classical Birkhoff ergodic theorem [8], that we
recall without proof.

Theorem 5. Let ϕ be an integrable function. The time average 1
nSnϕ converges

pointwise and in L1 to some function ϕ̃. If the measure µ is ergodic then ϕ̃ a.e.
equal to the space average

∫
ϕdµ.

In an ergodic system, the ergodic theorem gives a quantitative information on
the recurrence property in a given set. More precisely, if A ∈ A then we get that

card{1 ≤ k ≤ n : T kx ∈ A}
n

→ µ(A) for µ-a.e. x.

If we define inductively the nth return time by τ (n)
A (x) = τ

(n−1)
A (x)+τA(Tn−1

A (x)),
we get by the Birkhoff ergodic theorem again (but on the induced map) that

1
n
τ

(n)
A (x)→ 1

µ(A)
for µA-a.e. x

when the system is ergodic and µ(A) > 0.

2. Thermodynamic formalism for expanding maps of the interval.

Sensitivity to initial conditions, i.e. separation of nearby orbits at an exponential
speed, is at the origin of deterministic chaos. A possible mathematical formalisation
of this exponential separation is the hyperbolic dynamic. This geometric property
implies some randomness on the statistical properties of the system, which behaves
much like an i.i.d. process.

Some results about recurrence that we want to present in this review are only
known in the low dimensional case, or in sufficiently strong mixing conditions. To
give a unified presentation of these results, we decided to work with a class of
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dynamical systems which possess all these features. The choice is thus to consider
Markov maps of the interval together with an equilibrium state.

Remark 6. Our aim is to consider the dynamical system with its natural metric.
For example we will be mainly interested by return time to sets which are natural
(e.g. balls). Therefore, the connection with symbolic dynamics is on purpose main-
tained relatively low. We warn the reader that the existence of a Markov partition
is not essential. Roughly speaking, it makes many geometric and measure theoretic
estimates uniform, which makes our life easier. This simplifying assumption allows
us to give a self-contained proof of Ruelle-Perron-Frobenius theorem, from which
we get precise estimates on decorrelation.

Finally, the choice to consider expanding maps instead of real hyperbolic maps
(with expanding and contracting directions, e.g. Anosov, or Axiom A) is made on
purpose to keep the technicity at a low level.

We refer the reader to [38] for a complete presentation of hyperbolic dynamics,
and also to [48] for the dimensional theory of conformal dynamics.

2.1. Coding and geometry. We assume that X is the interval [0, 1] and that T
is a piecewise C1+α expanding map on X:

(E) there exists some constant β > 1 such that |T ′(x)| ≥ β for every x ∈ X.
There exists a collection J = {J1, . . . , Jp} such that each Ji is a closed interval

and
(M1) T is a C1+α diffeomorphism from int Ji onto its image;
(M2) X = ∪iJi and int Ji ∩ int Jj = ∅ unless i = j;
(M3) T (Ji) ⊃ Jj whenever T (int Ji) ∩ int Jj 6= ∅.
J is called a Markov partition.

Remark 7. For real hyperbolic systems the notion of Markov partition involves
stable and unstable manifolds. The definition here is considerably simpler, although
it is consistent with the general one. The simplification is due to the fact that the
local stable manifold is trivially reduced to a point for expanding maps.

Such Markov maps of the interval can be modeled by symbolic systems as follows.
Define a p × p matrix A = (aij) by aij = 1 if T (Ji) ⊃ Jj and aij = 0 otherwise.
Let A = {1, . . . , p} and ΣA ⊂ AN be the set of sequences ω such that aωi,ωi+1 = 1
for any i ∈ N. Denote by σ = ΣA → ΣA the shift map defined by σ(ω)i = ωi+1 for
any i ∈ N. Setting χ(ω) = ∩∞i=0T

−iJωi gives the symbolic coding of the interval
map (X,T ) by (ΣA, σ):

ΣA
σ−→ ΣA

χ ↓ ↓ χ
X

T−→ X

Let ∂J := ∪i∂Ji. The map χ is one-to-one except on the set S := ∪∞n=0T
−n∂J ,

where it is at most p2-to-one.
For ω ∈ ΣA we denote by Cn(ω) the nth cylinder of ω, that is the set of sequences

ω′ ∈ ΣA such that ωi = ω′i for any i = 0, . . . , n − 1. When x = χ(ω) 6∈ S we let
Jn(x) = χ(Cn(ω)).

Lemma 8. Let ψ : X → R be α-Holdër continuous. For any x, y in the same
n-cylinder, we have

|Snψ(x)− Snψ(y)| ≤ |ψ|αδα
1

βα − 1
.
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Proof. For any k = 0, . . . , n − 1, T kx and T ky are in the same element of the
partition. By the expanding property and an immediate recurrence we get that

d(T kx, T ky) ≤ βk−nd(Tnx, Tny) ≤ βk−n. (2)

Therefore

Snψ(x)− Snψ(y) =
n−1∑
k=0

ψ(T kx)− ψ(T ky)

≤
n−1∑
k=0

|ψ|αd(T kx, T ky)α ≤ |ψ|α
n−1∑
k=0

(δβk−n)α.

�

Proposition 9. There exist two constants c0, c1 such that for any x 6∈ S, any
integer n,

c0|(Tn)′(x)|−1 ≤ diamJn(x) ≤ c1|(Tn)′(x)|−1.

Proof. The function x 7→ log |T ′(x)| is α-Hölder continuous onX. Thus by Lemma 8
there exists some constant D such that for each n ∈ N and x, y in the same n-
cylinder,

|(Tn)′(x)|
|(Tn)′(y)|

≤ D.

The restriction of Tn to the interval Jn(x) is a diffeomorphism, so we can apply
the mean value theorem: there exists y ∈ Jn(x) such that

diamTn(Jn(x)) = |(Tn)′(y)|diamJn(x).

This together with the distortion estimate proves the upper bound with c1 =
D diamX.

We now prove the lower bound. Let ρ = min diam Ji > 0. Since Tn(Jn(x)) is an
union of some of the Ji’s, diamTn(Jn(x)) ≥ ρ. This together with the distortion
estimate proves the second statement with c0 = ρD−1 �

Remark 10. We emphasize that this picture is true in the more general situa-
tion of conformal repellers. X is a compact invariant subset of a C1+α map of
a Riemaniann manifold M , such that (i) T is expanding on X: ‖dxTv‖ ≥ β‖v‖
for all v ∈ TxM , for all x ∈ X; (ii) there exists an open set V ⊂ M such that
X = ∩nT−nV ; In this case there exist Markov partitions of arbitrariy small diame-
ter. Under the additional assumption (iii) T is conformal: dxT is a multiple of an
isometry, for each cylinder Jn(x) the inner and outer diameter are in some range
‖dxTn‖−1[c0, c1].

We assume for simplicity that the map is topologically mixing, that is for
any two open sets A and B, there exists N such that for all n > N , A∩T−nB 6= ∅.
This is equivalent to assume that ΣA is irreducible and aperiodic, i.e. there exists
m0 such that Am0 has only nonzero entries.

2.2. Dimension, entropy and Lyapunov exponent. We now review briefly
some essential notion coming from the thermodynamic formalism of expanding
maps, as well as its relation with dimensions and Lyapunov exponents. We em-
phasize that most of the results are known in much more general situations. It is
out of the scope of this note to present them in full generality, with the weakest
hypothesis.
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2.2.1. Dimensions. We now introduce some dimensions for sets and measures. The
ambient space is RN .

Let α ≥ 0 and define a set function Hα(·) by

Hα(A) = lim
δ→0

inf
∑
i

(diamVi)α

where the infimum is taken among all countable covers of A by sets Vi with
diamVi ≤ δ (the limit exists by monotonicity). Hα(A) is called the Hausdorff
measure of dimension α of the set A.

We define the Hausdorff dimension of the set A, denoted by dimH A, as the
unique number such that Hα(A) = +∞ if α < dimH A and Hα(A) = 0 if α >
dimH A.

Recall that for all α ≥ 0, Hα is an exterior measure, for which Borel sets are
measurable. We recover (a multiple of) the Lebesgue measure when α = N .

For a countable collection of set (An) we have dimH ∪n∈NAn = supn∈N dimH An.
Given a Radon measure (Borel measure finite on compact sets) µ its Hausdorff

dimension is defined by

dimH µ = inf{dimH A : Ac µ-negligeable}.

The pointwise dimensions of a measure µ are defined by

dµ(x) = lim inf
r→0

logµ(B(x, r))
log r

and dµ(x) = lim sup
r→0

logµ(B(x, r))
log r

Theorem 11. For any Radon measure µ we have dimH µ = esssup dµ.

Proof. Fix α > esssup dµ and an integer n ≥ 1. Let

An = {x ∈ B(0, n) : µ(B(x, r)) ≥ rα, ∀r < 1/n}.

Let δ ∈ (0, 1/n). By Vitali’s lemma there exists a countable family (xi, ri) with
xi ∈ An and ri < δ such that B(xi, ri) are disjoints and Vi := B(xi, 3ri) covers An.
Moreover,∑

i

diam(Vi)α ≤
∑
i

(6ri)α ≤ 6α
∑
i

µ(B(xi, ri))α ≤ µ(B(0, n+ 1/n)).

This gives Hα(An) <∞, therefore dimH An ≤ α. Since {dµ < α} = ∪nAn has full
measure, we get dimH µ ≤ α.

We prove the upper bound. Let α < esssup dµ. Let Y be a measurable set with
µ(Y c) = 0. There exists n ≥ 1 such that

Z := {x ∈ Y : µ(B(x, r)) ≤ rα, ∀r < 1/n}

has positive measure. Let δ < 1/2n and consider a δ-cover (Vi) of Z. Let xi ∈ Vi∩Z
(if the intersection is empty we simply discard this set). We have∑

i

(diamVi)α ≥
∑
i

µ(B(xi,diamVi)) ≥ µ(∪iVi) ≥ µ(Z).

This proves that dimH Y ≥ dimH Z ≥ α. Therefore dimH µ ≥ α. �
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2.2.2. Entropy. From now on and until the end of Section 2.2 µ will denote an
invariant measure. Its entropy with respect to a finite measurable partition ξ is
defined by

hµ(T, ξ) = lim− 1
n

∫
logµ(ξn(x))dµ(x),

where ξn = ξ ∨ T−1ξ ∨ · · · ∨ T−n+1ξ and x ∈ ξn(x) ∈ ξn. We will invoke several
time the Shannon-McMillan-Breiman theorem, that we recall without proof (but
see Proposition 17).

Theorem 12. The limit of − 1
n logµ(ξn(x)) exists for µ-a.e. x. It is called the

local entropy at x, denoted by hµ(x). If the measure µ is ergodic then the limit is
a.e. equal to the entropy hµ(T, ξ).

The entropy hµ(T ) of the map is defined by the supremum of the metric entropies
hµ(T, ξ), taken among all finite measurable partitions. It can be proved that any
generating partition achieves this supremum. In particular for our Markov partition
J the entropy is maximal.

In the case of the full shift on m symbols endowed by the Bernoulli measure µp
with weights p = (p1, . . . , pm), the entropy is

hµp(σ) = −
m∑
i=1

pi log pi,

which is maximal for the uniform measure pi = 1
m for all i’s. The supremum logm

is equal to the topological entropy. This is a special case of the variational principle
(see Section 2.3 below).

In the case of the shift on m symbols with a Markov measure µP,π, where P is
the stochastic matrix giving the transition probabilities and π is the left eigenvector
πP = π, the entropy is simply

hµP,π = −
m∑

i,j=1

πiPi,j logPi,j .

2.2.3. Lyapunov exponents. Let x 6∈ S. A small interval I 3 x is mapped by the
map Tn to some larger interval Tn(I); as long as I ⊂ Jn(x), Tn expands the length
of I by a factor |(Tn)′(x)| up to a multiplicative correction e±D. The average
expansion factor of T is thus

|(Tn)′(x)|1/n = exp
1
n

log |(Tn)′(x)|.

up to a correction e±D/n. The limit

λ(x) = lim
1
n

log |(Tn)′(x)| = lim
1
n
Sn log |T ′|(x),

if it exists, is called the Lyapunov exponent of T at the point x.

Proposition 13. For µ-a.e. x ∈ X the Lyapunov exponent exists and if the
measure is ergodic then

lim
1
n

log |(Tn)′(x)| =
∫
X

log |T ′|dµ.
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Proof. By the ergodic theorem this limit exists µ-a.e. when µ is an invariant mea-
sure. If furthermore this measure is ergodic then it is constant and equal to the
Lyapunov exponent of the measure

λµ =
∫
X

log |T ′|dµ.

�

Remark 14. In higher dimension: the image of a ball in Rd by a linear map is
in general an ellipsoid, with axes of different length and directions. This picture
remains in a loose sense in the nonlinear case: approximation of Tn in a vicinity
of x by its differential dxTn shows that the iterate by the map Tn of a small ball
B(x, r) looks like an ellipsoid, with axes En,i(x) and length eλn,i(x)nr, i = 1, . . . , d.
By Oseledet’s theorem [45], for µ-a.e. x the directions En,i(x) and the exponents
λn,i(x) converge to some asymptotic value Ei(x) and λi(x); moreover these values
are constant a.e. if the measure µ is ergodic.

2.2.4. Their relation. These three quantities attached to a measure preserving map
of the interval are linked through the following relation:

Theorem 15. The pointwise dimension dµ(x) exists a.e. and dµ(x) =
hµ(x)
λ(x)

a.e.

If the measure is ergodic, for µ-a.e. x we have

dµ(x) =
hµ(T )
λµ(T )

= dimH µ.

Proof. Let ε > 0. Let x ∈ X be such that µ(Jn(x)) ≥ e−n(hµ(x)+ε) and diamJn(x) ≤
e−n(λ(x)−ε) for any n sufficiently small. This concerns a.e. points by Shannon-
McMillan-Breiman theorem (Theorem 12), Proposition 9 and Proposition 13. Given
r > 0 sufficiently small, we take n the smallest integer such that e−n(λ(x)−ε) < r.
Since Jn(x) ⊂ B(x, r) we have

logµ(B(x, r))
log r

≤ logµ(Jn(x))
log r

This proves dµ(x) ≤ hµ(x)+ε
λ(x)−ε .

Let us define the set

Gε(m) = {x ∈ X : ∀n > m,µ(Jn(x)) ≤ e−n(hµ(x)−ε) and diam(Jn(x)) ≥ e−n(λ(x)+ε)}.
Let x be a density point of Gε(m). Given r > 0 we take the largest n = n(r) such
that e−n(λ(x)+ε) > r. For any r sufficiently small (so that n > m) we have

µ(B(x, r)) ≤ 2µ(Gε(m) ∩B(x, r)) ≤ 4e−n(hµ(x)−ε),

since the ball B(x, r) can intersects at most two cylinders from Gε(m). This proves
dµ(x) ≥ hµ(x)−ε

λ(x)+ε .
In the ergodic case the last identity follows from Theorem 11. �

Remark 16. The existence of the pointwise dimension has been prove by Young [58]
in the case of C2 surface diffeomorphisms with nonzero entropy. Then Ledrappier
and Young [42], and finally Barreira, Pesin and Schmeling [5] extended the result in
arbitrary dimensions for C1+α diffeomorphism, for measures without zero Lyapunov
exponents.
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2.3. Equilibrium states or Gibbs measures. An important class of invariant
measures in the ergodic theory of smooth dynamical systems is equilibrium states.
This notion comes from thermodynamics, via the symbolic dynamics and is cen-
tral in the thermodynamic formalism of dynamical systems. In our setting they
are also Gibbs measures: the behavior at small scale of these measures is precisely
controlled by a function, the potential. In particular, natural measures (e.g. abso-
lutely continuous or physical measure) are equilibrium states. The second interest
of these measures lies in the fact that they posses strong statistical properties.

2.3.1. Gibbs measures. Let ϕ : X → R be a Hölder continuous function. An in-
variant measure µ is called a Gibbs measure for the potential ϕ if there exists a
constant PT (ϕ) ∈ R, called the pressure, such that for some κϕ ≥ 1, for any x and
any n we have

1
κϕ
≤ µ(Jn(x))

exp (Snϕ(x)− nPT (ϕ))
≤ κϕ. (3)

The case of Markov measures is recovered if one takes the potential ϕ(x) =
logPx0,x1 where P is the stochastic transition matrix. The potential ϕ = − log |T ′|
gives the absolutely continuous invariant measure. Note that this measure is
Markov essentially in the case of piecewise affine maps.

Proposition 17. For a Gibbs measure µ, the statement of the Shannon-Mc Millan-
Breiman theorem with the partition J follows immediately from Birkhoff ergodic
theorem and

PT (ϕ) = hµ(T ) +
∫
ϕdµ.

Proof. Indeed, we have − 1
n logµ(Jn(x)) ∼ − 1

nSnϕ(x) + PT (ϕ) which converges
a.e. by birkhoff ergodic theorem. The dominated convergence theorem proves the
indentity. �

Remark 18. A measure which attains the supremum

sup
ν
hν(T ) +

∫
ϕdν

among all T -invariant measures ν, is called an equilibrium measure. According to
the variational principle, the supremum is indeed the pressure PT (ϕ).

It turns out that for Markov expanding maps of the interval this supremum is
attained at an unique measure µϕ, which is also the (unique) gibbs measure. For a
general account on equilibrium states, and a proof of these results, we refer to [10,
40].

Our Gibbs measure has the following mixing property: there exist some constants
c > 0 and θ ∈ (0, 1) such that for any cylinder set A of rank n and any measurable
set B we have

|µϕ(A ∩ T−`B)− µϕ(A)µϕ(B)| ≤ cθ`−nµ(A)µ(B).

This is called the ψ-mixing property (with exponential rate). Observe that in
particular such a measure µ is mixing, hence ergodic.

The mixing property can also be stated in a different and weaker way, which will
be sufficient for the sequel. If f is a Lipschitz function and g an integrable function
we have ∣∣∣∣∫ fg ◦ T `dµϕ −

∫
fdµϕ

∫
gdµϕ

∣∣∣∣ ≤ cθ`‖f‖Lip‖g‖L∞ . (4)
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For the sake of completeness we provide in Section 2.3.2 below a proof of the
existence of Gibbs measures and the computation of the rate of decay of correla-
tion (4).

Remark 19. Such a result on decay of correlations holds in a large variety of
settings, where one has some expanding behavior [43]. This includes some dynamical
systems with singularities, or without Markov partition, in any dimensions. For
some nonuniformly expanding systems, the decay rate is polynomial.

In the case of invertible maps (e.g. hyperbolic diffeomorphisms), the second
function g has to be regular also [10, 58].

2.3.2. Ruelle-Perron-Frobenius theorem. We closely follow the presentation of the
monograph [10] (See also [46]). Suppose that the potential ϕ : X → R is α-Hölder.
For convenience we will work on the subshift of finite type (ΣA, σ) defined in Sec-
tion 2.1, instead of working directly on the interval map (X,T ). Let δ = β−α.
We endow ΣA with the metric d(ω, ω′) = δn if n is the largest integer such that
Cn(ω) = Cn(ω′). Note that this makes the potential on the symbolic space ϕ ◦ π
Lipschitz. To simplify notations we still denote it by ϕ. Let ` be its Lispchitz
constant. For all a ∈ A, if aω and aω′ exist then d(aω, aω′) ≤ δd(ω, ω′) (σ is locally
expanding, its inverse contracting).

We assume that for some integer N , AN has only positive entries. The Ruelle-
Perron-Frobenius is defined by

Lϕ(f)(ω) =
∑

a∈A,Aaω0=1

eϕ(aω)f(aω).

Lϕ acts on continuous functions. It is a bounded operator on the space of continuous
function, as well as on the space of Lipschitz functions. We can iterate it

Lnϕf(ω) =
∑

σnω′=ω

eSnϕ(ω′)f(ω′).

Lemma 20. There exists a probability measure ν and a constant λ > 0 such that
L∗ϕν = λν.

Proof. The dual L∗ϕ acts on probability measures. The map defined on the convex

compact set M(ΣA) of probability measures by m 7→ T (m) = L∗ϕm

L∗ϕm(1) has a fixed
point by Schauder-Tychonoff theorem. Putting λ = L∗ϕν(1), this fixed point ν
satisfies, ∫

ΣA

Lϕfdν =
∫

ΣA

d(L∗ϕ)ν = λ

∫
ΣA

fdν.

�

Without loss of generality we assume that λ = 1, changing if necessary ϕ by
ϕ− log λ. Let b > 0 such that b ≥ `+ b and

Cb = {f ≥ 0: f(ω) ≤ f(ω′)ebd(ω,ω′) if ω0 = ω′0, and ν(f) = 1}.

Lemma 21. There exist c ∈ (0, 1) such that if f ∈ Cb then c ≤ LNϕ f and f ≤ c−1.

Proof. Let ω and ω′′ in Σ. There exists ω′ such that ω0 = ω′0 and σNω′ = ω′′.
Thus

LNϕ f(ω′′) ≥ eSNϕ(ω′)f(ω′) ≥ (inf eSNϕ)e−bf(ω).
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This shows that inf LNϕ f ≥ eb

inf eSNϕ
sup f . The conclusion follows from the remark

that ν(f) = 1 and ν(LNϕ f) = 1. �

Notice that if f ∈ Cb then log f , hence f , are Lipschitz. Moreover the Lipschitz
norm

‖f‖ := ‖f‖∞ + |f |Lip ≤M,

for some constant M = c−1 max(3, b+ 1).

Lemma 22. There exists h ∈ Cb such that Lϕh = h and h > 0.

Proof. The set Cb is relatively compact in the set of continuous functions by Ascoli-
Arzela . Moreover, it is clearly closed, thus compact, and convex. In addition,
whenever f ∈ Cb and ω0 = ω′0 we have

Lϕf(ω) =
∑
a

eϕ(aω)f(aω)

≤
∑
a

eϕ(aω)−ϕ(aω′)eϕ(aω′)f(aω′)ebd(aω,aω′)

≤ eδ[`+b]d(ω,ω′)Lϕf(ω′),

which shows that Lϕ(Cb) ⊂ Cb. Schauder-Tychonoff theorem applies again and
shows the existence of a fixed point h ∈ Cb, which satisfies Lϕh = h. By Lemma 21
we have h = LNϕ h ≥ c > 0. �

Note that the measure µ = hν is invariant. Without loss of generality we
assume that h = 1, changing if necessary ϕ by ϕ+ log h− log h ◦ σ, and ν by hν.

Theorem 23. The measure µ is a Gibbs measure for the potential ϕ.

Proof. Let ω ∈ ΣA and n an integer. Let f = 1Cn(ω) be the indicator function of
the n-cylinder about ω. We have

µ(Cn(ω)) = µ(Lnϕf) ≤ sup
Cn(ω)

eSnϕ ≤ κeSnϕ(ω)

for some constant κ only depending on ϕ.
The argument in Lemma 21 gives Lnϕf ≥ infCn(ω) eSnϕ1[ω0], and Ln+Nf ≥

(inf eSNϕ)(inf eSnϕ). The previous computation yields

µ(Cn(ω)) = ν(Ln+N
ϕ f) ≥ 1

κ
eSnϕ(ω),

changing the constant κ if necessary. �

Despite its extreme simplicity, the following lemma is the core of the estimate
on decay of correlation. The interpretation is that after each iteration by TN , at
least η-percent of the remaining density is chopped out and follows the invariant
measure. The exponential convergence will follow immediately.

Lemma 24. There exists η ∈ (0, 1) such that for any f ∈ Cb, LNϕ f = η+ (1− η)f ′

with f ′ ∈ Cb.

Proof. Let η = c2 < 1. Let f ∈ Cb. Put g = LNϕ f . Write g = η1 + (g − η). Since
g − η ≥ c− ηc−1 ≥ 0 and both g ∈ Cb and 1 ∈ Cb, we have g − ηh ∈ RCb. �
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Lemma 25. There exist constants C > 0 and θ ∈ (0, 1) such that

‖Lnϕf − 1‖ ≤ Cθn

for all f ∈ Cb and n ≥ 0, where ‖ · ‖ stands for the Lipschitz norm.

Proof. By applying Lemma 24 successively, we obtain that for all p ≥ 1,

LpNϕ f = (1− (1− η)p) + (1− η)pfp

for some fp ∈ Cb. Write n = pN + r. We have

‖Lnϕf − 1‖ ≤ ‖|Lrϕ‖|(1− η)p‖1 + fp‖.

Putting θ = (1− η)
1
N and C = supr<N ‖|Lrϕ‖|2M/(1− η) gives the conclusion. �

Theorem 26. The measure µ is mixing and the decay of correlation for Lipschitz
f and integrable g is∣∣∣∣∫ fg ◦ σndµ−

∫
fdµ

∫
gdµ

∣∣∣∣ ≤ c‖f‖‖g‖∞θn.
Proof. Let f be a Lipschitz function. Taking u = (1+b−1)‖f‖ ensures that f +u ∈
RCb. By Lemma 25 this gives the result. �

From now on we fix a Gibbs measure µ of a Hölder potential. We will
prove quantitative recurrence results for the dynamical system (X,T, µ).

3. Recurrence rate

By the topological version of Poincaré recurrence theorem, i.e. Theorem 2, a.e.
point x return arbitrarily close after iteration by T . A very natural question is the
behavior when r → 0 of the first return time

τr(x) = τB(x,r)(x) = min{n ≥ 1: d(Tnx, x) < r},

that is the first time that the orbit of x is back in the r-neighborhood of the point x.
This is quantified by the following notion.

Definition 27. We define the lower and upper recurrence rate of a point x by the
limits

R(x) := lim inf
r→0

log τr(x)
− log r

, R(x) := lim sup
r→0

log τr(x)
− log r

.

When the limit exists we denote it by R(x).

Theorem 28. The recurrence rate is a.e. equal to the dimension of the measure:
R(x) = dimH µ for µ-a.e. x.

Recurrence rates were introduced and studied in [55] in the case of interval maps,
and [6, 7] in the case of axiom A diffeomorphisms and some class of repellers.
The corresponding results for hitting or waiting times were then considered by
Galatolo [25, 26]; see also [27, 28] for subsequent developments.

Remark 29. We emphasize that some assumption on the system is necessary, since
there exist examples of dynamical systems where the conclusion of Theorem 28 is
false (e.g. rotations with special diophantine type [6]).
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3.1. The rapid mixing method. In this section we prove Theorem 28 using the
method developped in [52].

Remark 30. The theorem is indeed valid in a more general situation than Markov
expanding maps of the interval. The core assumption is the decay of correlation for
Lipschitz functions (4) with a superpolynomial rate. Without assuming the existence
of the pointwise dimension one still gets the identities R = dµ and R = dµ µ-a.e.

Let δ = dimH µ. The following lemma is a direct consequence of Theorem 15
about the existence of the pointwise dimension and Egorov theorem.

Lemma 31. Good set for the pointwise dimension: For any ε > 0 there exists
r0 > 0 such that the measurable set K ⊂ X defined by

Kε = {x ∈ X : ∀r < r0, r
δ+ε ≤ µ(B(x, r)) ≤ rδ−ε}

has measure at least 1− ε.

Lemma 32. For µ-a.e. x ∈ Kε, we have lim infr→0
log τr(x)
− log r ≥ δ − 4ε.

Proof. Fix ε > 0 and let Kε be as in Lemma 31. Take α = 1
δ−4ε , set rn = 1

nα and
define

Ln = {x ∈ Kε : d(Tnx, x) < rn}.
For a ball B = B(x, r) and a constant a > 0 we denote by aB the ball B(x, ar).
Let (Bi)i be a collection of balls of radius rn centered at points in Kε that covers
Ln and such that the collection of balls ( 1

2Bi)i is disjoint. We have

µ(Ln) = µ(∪iBi ∩ Ln) ≤
∑
i

µ(Bi ∩ Ln) ≤
∑
i

µ(Bi ∩ T−n2Bi).

For each i define the function φi(x) = max(0, 1 − r−1
n d(x, 2Bi)). We remark that

φi is r−1
n -Lipschitz, and 12Bi ≤ φi ≤ 13Bi . We have

µ(Bi ∩T−n2Bi) ≤
∫
φiφi ◦Tndµ ≤

(∫
φidµ

)2

+ cθn‖φi‖Lip ≤ µ(3Bi)2 + cθnr−1
n .

using the decay of correlations formula (4). Since the balls are centered on Kε

we have µ(3Bi) ≤ (3rn)δ−ε and (1
2rn)δ+ε ≤ µ( 1

2Bi). This last inequality and the
fact that the balls are disjoint imply that their number is bounded by ( 1

2rn)−δ−ε.
Therefore, ∑

i

µ(Bi ∩ T−n2Bi) ≤ (
1
2
rn)−δ−ε

[
(3rn)2δ−2ε + cθnr−1

n

]
.

Thus we have
∑
n µ(Ln) < +∞. By Borel-Cantelli lemma, for µ-a.e. x there exists

n0(x) such that for any n > n0(x), x 6∈ Ln thus d(x, Tnx) ≥ rn. Therefore, for any
r and n such that rn ≤ r < min{d(x, T jx) : j = 1, . . . , n0(x)} we have τr(x) > n.
Hence, since the set of periodic points has zero measure,

lim inf
r→0

log τr(x)
− log r

≥ lim
n→∞

log n
log rn

=
1
α

= δ − 4ε.

for µ-a.e. x ∈ Kε. �

Lemma 33. For µ-a.e. x ∈ Kε, we have lim supr→0
log τr(x)
− log r ≤ δ + 2ε.
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Proof. Define
Mr = {x ∈ Kε : τ2r(x) ≥ r−δ−2ε}.

Let Bi be a family of balls of radius r centered at points of Kε that covers Mr and
such that the balls 1

2Bi are disjoints.
We have

µ(Mr) = µ(∪iBi ∩Mr) ≤
∑
i

µ(Bi ∩Mr)

But observe that by the triangle inequality

µ(Bi ∩Mr) ≤ µ(Bi ∩ {τBi ≥ r−δ−2ε}).

By Kač’s lemma and Markov inequality this is bounded by

rδ+2ε

∫
Bi

τBidµ = rδ+2ε.

Since the number of balls Bi is bounded by ( 1
2r)
−δ−ε, we end up with

µ(Mr) ≤ 2δ+εrε.

Therefore the sequence rn = e−n satisfies∑
n

µ(Mrn) < +∞.

By Borel Cantelli lemma, for µ-a.e. x ∈ Kε there exists n1(x) such that for any
n > n1(x), x 6∈Mrn . Hence τ2rn(x) < r−δ−2ε

n , therefore

lim sup
n

log τ2rn
− log 2rn

≤ δ + 2ε.

The conclusion follows since log rn
log rn+1

converges to 1. �

Theorem 28 follows from Lemmas 31, 32 and 33.

3.2. Repetition times, minimal distance. In the symbolic setting, a result
comparable to Theorem 28 on recurrence rate exists. Let ξ be a finite or countable
measurable partition of X. We define the first repetition time of the first n-symbols
by

Rn(x, ξ) = min{k ≥ 1: ξn(x) = ξn(T kx)}.

Theorem 34 (Ornstein-Weiss). Let (X,T, µ) be any ergodic measure preserving
dynamical system. Let ξ a finite measurable partition of X. Then for µ-a.e. x we
have

lim
n→∞

1
n

logRn(x, ξ) = hµ(T, ξ).

The initial statement was indeed for the non-overlapping return time Rnon (we
impose that k ≥ n in the definition of Rn) but Quas observed in [50] that they
are a.e. eventually equal when the entropy is positive. There it is also shown that
the result holds for countable partitions. Although our interest is more on smooth
dynamical systems than in symbolic systems, we provide a proof of the theorem in
Section 3.2.1 below.
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Remark 35. Theorem 34 can be applied with the Markov partition J and a Gibbs
measure µ. Using the approximation argument of balls by cylinders present for
example in Lemma 51, we recover the statement of Theorem 28. However this
strategy, which was succesfull in the one-dimensional case [55] does not survive in
higher dimensional systems, while the method presented in the previous section does
not depend on the dimension.

The analogy with recurrence rates is also made precise if one takes the pseudo-
distance d(x, y) = e−n whenever n is the largest integer such that ξk(x) = ξk(y) for
any k < n. In this case one has Rn(x, ξ) = τe−n(x), while the Hausdorff dimension
of the ergodic measure µ is equal to the entropy hµ(T, ξ).

Remark 36. At the same time and independently, Boshernitzan in [9] established
a quantitative version of the topological version of Poincaré recurrence theorem,
that is Theorem 2. The statement of this elegant result is the following:

If the α-dimensional Hausdorff measure is σ-finite on X then

lim inf
n→∞

n
1
α d(Tnx, x) <∞ for µ-a.e. x. (5)

Recurrence rates are concerned with the time necessary to achieve a certain dis-
tance, while this result consider the distance as a function of time. For sure these
results are correlated, and in fact it is an exercise to see that the statement (5)
implies that R ≤ α almost surely. The reciprocal is a little bit weaker and read
as follows: R < α implies the statement (5). We do not reproduce here the proof
of Boshernitzan’s theorem; although much more general, it is close in spirit to our
Lemma 33, where the core argument is lying in Kač’s Lemma.

3.2.1. Repetition time and entropy. The proof of Theorem 34 is based on Shannon-
Mc Millan-Breiman theorem and some combinatorial arguments that we extract in
the two lemmas below.

To simplify the notations we work directly on a space Σ = {1, . . . , p}N for some
integer p, endowed with the shift map σ and an ergodic invariant measure µ with
entropy hµ.

We call interval a set of consecutive integers, denote them by [|m,n|] = {k ∈
N : m ≤ k ≤ n} and denote the singleton [|m,m|] by [|m|]. Given ω = (ωi)i≥0 ∈ Σ
and m ≤ n we denote the word wmωm+1 · · ·ωn by ω[|m,n|]. The n-repetition time
reads Rn(ω) = min{k ≥ 1: ωk+[|0,n−1|] = ω[|0,n−1|]}.

We shall prove now that the exponential growth of Rn and Rno is governed
by the entropy. Indeed, these two quantities are asymptotically equal when the
entropy is positive.

Lemma 37 ([50]). If then entropy hµ > 0 then Rn(ω) = Rnon (ω) eventually a.e.

Proof. Observe that Rn(ω) 6= Rnon (ω) iff Rn(ω) < n. Suppose this is the case, and
let k < n such that Rn(ω) = k, where ω[|0,n−1|] = ωk+[|0,n−1|]. Hence ω[|0,k−1|] =
ω[|k,2k−1|].

Let ε ∈ (0, hµ/3) and consider, for some integer N , the set

Γ = Γ(N) :=
{
ω ∈ Σ: ∀k ≥ N,

∣∣∣∣1k logµ(ω[|0,k−1|]) + hµ

∣∣∣∣ < ε

}
. (6)

We can estimate the measure of the set

Γk := {ω ∈ Γ: ω[|0,k−1|] = ω[|k,2k−1|]}.
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Indeed, if we denote by ss the concatenation of a finite sequence s of length |s| = k,
we have

µ(Γk) =
∑
|s|=k

µ(ω ∈ Γk : ω[|0,k−1|] = s) ≤
∑
|s|=k

µ(Γ ∩ ss).

Remark that if |s| = k and Γ∩ss 6= ∅ then µ(ss) ≤ e−2k(hµ−ε) and s∩Γ 6= ∅, which
imply that µ(s) ≥ e−k(hµ+ε). Hence there can be at most ek(hµ+ε) such s. Thus
µ(Γk) ≤ e−k(hµ−3ε). Consequently,

∑
k µ(Γk) < ∞. By Borel-Cantelli lemma, for

µ-a.e. ω ∈ Γ, there exists kω such that for all k > kω we have ω 6∈ Γk. If in
addition ω is not periodic then Rn(ω) → ∞ as n → ∞, hence for n sufficiently
large Rn(ω) > kω, which implies that Rn(ω) = Rnon (ω). The conclusion follows
then from Shannon-McMillan-Breiman theorem, since µ(∪NΓ(N)) = 1, and the
measure µ is aperiodic (does not give any mass to the set of periodic points). �

Given an integer L we call pattern a partition S of the interval [|0, L − 1|] by
disjoints sub-intervals, [|0, L − 1|] = ∪S∈SS. If S = [|m,n|] is an element of a
pattern we denote its length by |S| := m− n+ 1.

For integers 1 < M < N < L and reals b > 0 and ε ∈ (0, 1) we say that a
sequence ω = ω[|0,L−1|] ∈ {1, . . . , p}L follows the pattern S if

• each S ∈ S is either
– a singleton,
– or an interval of length |S| ∈ [|M,N |] such that for some t ∈ [|M, ebN |]
ωt+S = ωS , in this case we say that S is a long interval

• and the interval [|0, L− 1|] is almost filled by long intervals:∑
long S∈S

|S| ≥ (1− ε)L.

Lemma 38. For any δ > 0 there exists ε > 0 such that for any M < 1/ε, N and
L, the number of admissible patterns is bounded by eδL.

Proof. A number j of singletons can be in
(
L
j

)
different positions in [|0, L − 1|].

Moreover, we have 0 ≤ j ≤ εL. Hence there are at most
∑
j≤εL

(
L
j

)
choices for the

position of the singletons.
Each long interval S has a length at least equal to M , therefore there is at

most L/M ≤ εL long intervals. Once the configuration of singletons fixed, the
position and the length of the long intervals is determined by the position of they
left extremity, thus there are at most

(
L
k

)
choices for them when there are k long

intervals. Hence there is at most
∑
k≤εL

(
L
k

)
choices for the configuration of the

long intervals.
We then use the simple estimation∑

j≤εL

(
L

j

)
≤ ε−εL

∑
j≤εL

(
L

j

)
εj ≤

(
1 + ε

εε

)L
.

For any δ > 0, if ε is sufficiently small the number of different addmissible patterns
is bounded by eδL. �

Lemma 39. There is at most pεLebL admissible sequences of length L following
the same pattern.
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Proof. Fix a pattern S. We first fill the singletons. They are at most εL, which
gives at most pεL possibilities.

Once the configuration of singleton is fixed, we fill the long intervals, from right
to left. For the first S, there exists a time t ≤ eb|S| such that ωS = ωt+S . Since
ωt+S is on the right, it is already determined. Hence ωS is one of the ωj+S , j ∈
{N, . . . , beb|S|c}. This leaves at most eb|S| different choices for ωS . We proceed
similarly for the second interval, and so on and so forth. Finally, there is at most∏

S∈S
eb|S| ≤ ebL

different ways of filling the long intervals. �

Proof of Theorem 34. LetR(ω) = lim inf
n→∞

logRnon (ω)
n

andR(ω) = lim sup
n→∞

logRn(ω)
n

.

First we claim that R(ω) ≤ hµ pour µ-a.e. ω. Indeed, let ε > 0 and h > hµ + ε.
For n ≥ N we have

µ(Γ(N) ∩ {Rn ≥ enh}) ≤ e−nh
∫

Γ(N)

Rndµ

≤ e−nh
∑
|C|=n

∫
C∩Γ(N)

τCdµ ≤ e−nhen(hµ+ε)

by Kač’s lemma. This upper bound is summable in n, hence by Borel-Cantelli
lemma we have Rn < enh eventually a.e. Hence R < hµ µ-a.e.

Assume that hµ > 0, otherwise the proof is finished. By Lemma 37, it suffices
to prove that R(ω) ≥ hµ for µ-a.e. ω.

Since Rnon (σω) ≤ Rnon+1(ω), we have R(σω) ≤ R(ω) for all ω. This implies that
R ◦σ = R µ-a.e., hence R is equal to a constant b0 a.e. Suppose for a contradiction
that b0 < hµ, and fix b < h ∈ (b0, hµ).

Let δ ∈ (0, h− b), take ε > 0 given by Lemma 38 such that pεeb+δ < eh, and fix
M < 1/ε. Let

AN = {ω ∈ Σ: ∃n ∈ [|M,N |], logRnon (ω)
n

< b}.

If N is sufficiently large then µ(AN ) > 1− ε/2. Let

BL = {ω ∈ Σ:
1
L

L∑
k=0

1AN (σkω) > 1− ε/2}.

If L is sufficiently large, it follows from Birkhoff ergodic theorem that µ(BL) >
0.1 and furthermore p(ebN ) < εL/2.

We now count the number of cylinders of length L which may contain an ω ∈ BL.
Let ω ∈ BL. We see a pattern S in ω[|0,L−1|] in that way: If ω 6∈ AN then the
first element of S is the singleton [|0|], otherwise we take [|0, n − 1|] where n is
between M and N , and Rnon (ω) < ebn. If the pattern is already constructed up to
the position k − 1 ≤ L − ebN , then the next element will be the singleton [|k|] if
σkω 6∈ AN , otherwise the interval [|k, k + n − 1|] where n is between M and N ,
and Rnon (σkω) < ebn. The remaining part of the pattern is made by singletons [|k|],
with k ∈ [|L− ebN , L− 1|]. There are at most ebN + ε/2 < εL singletons, hence the
sequence ω[|0,L−1|] follows the pattern S.
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By Lemma 39 there are at most pεLebL sequences following the pattern S. In ad-
dition, By Lemma 38 there are at most eδL patterns, hence the number of sequences
is bounded by

pεLeδLebL < ehL.
The contradiction comes from the fact that h < hµ, and µ(BL) > 0.1 for some L
arbitrarily large. �

4. Fluctuation of the return time

The literature on this subject is vast and still growing rapidly in different direc-
tions. Again we will focus here on a particular aspect. We invite the reader to the
reviews on this subject by Z. Coelho [15] and Abadi and Galves [1]. They are cer-
tainly an excellent starting point for a broader and also for an historical exposition
on the field.

4.1. Exponential law. The exponential law and the Poisson distributions are
often called law of rare events. Indeed the time before the first occurrence of
an event in a i.i.d. process has a geometric law; in the limit of rare events (i.e.
the probability of the event is small), geometric laws are well approximated by
exponential laws.

Theorem 40. For µ-a.e. x0, the random variable µ(B(x0, r))τB(x0,r)(·) converges
in distribution, under the laws of µ or µB(x0,r), to an exponential with parameter
one.

We note that most of the works on this subject are considering cylinder sets
of a symbolic dynamic. Few works considering return time to balls or natural
sets [16, 17, 35, 20, 19] are emerging.

If x0 is a periodic point of period p, a large proportion of points in B(x0, r)
should be back in the ball after p iterations (this depends on the measure also).
Therefore the statement for return times should be false for periodic points. An
extra Dirac mass at the origin of the distribution should appear in the limiting law,
if it exists. Indeed, an exponential approximation for the hitting time is often valid,
but with a different normalization [29].

The first approach to establish a version of the theorem was to discard points
with short recurrence, e.g. the exponential law is proved for cylinders which do not
recur before half of their length. And prove that this concerns almost all cylinders.

The novel approach presented here is to consider Lebesgue density points for
the property that recurrence rate and dimension coincide. The advantage is that
it allows to give a very short and simple proof, not based on the symbolic dy-
namics. This is essential when looking at return time to balls, especially in higher
dimensional systems.

The next lemma exploits the basic idea that the geometric distribution appears
when there is a loss of memory.

Lemma 41. Let A be a measurable set with µ(A) > 0. If

δ(A) := sup
k
|µ(τA > k)− µA(τA > k)| .

Then for any integer n we have

|µ(τA > n)− (1− µ(A))n| ≤ δ(A).
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Proof. For any integer k ≥ 0, the same argument as in (1) gives

µ(τA > k + 1) = µ(τA > k)− µ(A)µA(τA > k)

= (1− µ(A))µ(τA > k) + µ(A)(µ(τA > k)− µA(τA > k)).

by invariance of the measure. Thus

|µ(τA > k + 1)− (1− µ(A))µ(τA > k)| ≤ µ(A)δ(A).

Therefore, by an immediate recurrence, for any integer n

|µ(τA > n)− (1− µ(A))n| ≤
n−1∑
k=0

(1− µ(A))kδ(A)µ(A) ≤ 1
µ(A)

δ(A)µ(A) ≤ δ(A).

�

The point is now to estimate the distance δ(B(x0, r)) between the distribution
of return and entrance times in B(x0, r). Clearly this has to do with the mixing
property. However, for short returns the mixing may not be strong enough, there-
fore one has to take care of them in a special manner. For short returns, this is
done by a direct application of the recurrence rate result Theorem 28.

Lemma 42. For any d ∈ (0,dimH µ), we have

µB(x0,r)(τB(x0,r) ≤ r
−d)→ 0 as r → 0 (7)

for µ-a.e. x0 ∈ X. We call such x0 a non-sticky point.

Proof. Let
L = {x ∈ X : ∀r < r0, τ2r(x) > r−d}.

Let x0 ∈ L be a Lebesgue density point of L, that is µB(x0,r)(L)→ 1 as r → 0.
Let r < r0. If x ∈ B(x0, r) and τB(x0,r)(x) ≤ r−d we have τ2r(x) ≤ r−d as well,

hence x ∈ Lc. Therefore

µB(x0,r)(τB(x0,r) ≤ r
−d) ≤ µB(x0,r)(L

c).

The conclusion follows by taking r0 → 0, which by Theorem 28 ensures that µ(L)→
1, and the Lebesgue density theorem which says that density points form a set of
full measure. �

Lemma 43. For any d ∈ (0,dimH µ), one has for µ-a.e. x0 ∈ X

µ(τB(x0,r) ≤ r
−d)→ 0 as r → 0.

Proof. This is a direct consequence of the inequality

µ(τA ≤ n) ≤ nµ(A)

valid for any measurable set A and the existence of the pointwise dimension. �

Inevitably, one will need a geometric measure theoretic hypothesis of the form:
Hypothesis A. x0 is such that there exists a > 0 and b ≥ 0 such that

µ(B(x0, r) \B(x0, r − ρ)) ≤ r−bρa (8)

for any r > 0 sufficiently small.

Lemma 44. In our setting the hypothesis A is satisfied for any points x0.
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Proof. The Gibbs property and uniform expansion implies that there exists two
constants a, b > 0 such that for any integer k

µ(Jk(x)) ≤ e−ak and e−bk ≤ diam(Jk(x)).

Therefore any interval of length e−bk has non empty intersection with at most two
cylinders, hence its measure is bounded by 2e−ak. Hence there exists c, d > 0 such
that any interval I has a measure

µ(I) ≤ cdiam(I)d. (9)

�

For large times, and around such a point x0, one can use the mixing property to
estimate δ(B(x0, r)).

Lemma 45. For µ-a.e. x0 we have δ(B(x0, r))→ 0 as r → 0.

Proof. Let d ∈ (0,dimH µ) and let x0 be a non-sticky point. Write for simplicity
A = B(x0, r) and En = {τA ≥ n}. Let A′ = B(x0, r − ρ), g ≤ n be an integer
and define the function φ(x) = max(0, 1 − ρ−1d(x,A′)). We remark that φ is
ρ−1-Lipschitz and that 1A′ ≤ φ ≤ 1A. We make several approximations:

|µ(A ∩ En)− µ(A ∩ T−gEn−g)| ≤ µ(A ∩ {τA ≤ g}) (10)

|µ(A ∩ T−gEn−g)−
∫
φ1En−g ◦ T gdµ| ≤ µ(A \A′) (11)

|
∫
φ1En−g ◦ T gdµ− µ(En−g)

∫
φdµ| ≤ cθgρ−1 (12)

|
∫
φdµ− µ(A)| ≤ µ(A \A′) (13)

|µ(T−gEn−g)− µ(En)| ≤ µ(τA ≤ g). (14)

Putting together all these estimates gives

|µA(En)− µ(En)| = 1
µ(A)

|µ(A ∩ En)− µ(A)µ(En)|

≤ µA(τA ≤ g) +
2µ(A \A′)
µ(A)

+
c

µ(A)
θgρ−1 + µ(τA ≤ g).

Observe that this upper bound holds even for n ≤ g, so that it is also an upper
bound for δ(B(x0, r)). Now we choose g = br−dc and ρ = θg/2. The first term
goes to zero by Lemma 42, the last one by Lemma 43. The measure µ(A \ A′) is
bounded by r−bθag/2 by (8) thanks to Lemma 44. This proves δ(B(x0, r))→ 0. �

Proof of the theorem. Fix t > 0. We still write A = B(x0, r). Taking n = bt/µ(A)c,
since µ(µ(A)τA > t) = µ(τA > n) we get by Lemma 41 that

|µ(µ(A)τA > t)− e−t| ≤ δ(A) + |(1− µ(A))n − e−t|.
By Lemma 45 it suffices to show that the last term goes to zero when r → 0. It is
bounded by

|(1− t

n
)n − e−t|+ |(1− µ(A))n − (1− t

n
)n|.

It is well known that the first term goes to zero as n → ∞, and the second term
is bounded by n|µ(A)− t

n | ≤
t
n . This shows that the hitting time, rescaled by the

measure of the ball, converges in distribution to an exponential. The statement for
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the return time follows since the two distributions differ by δ(B(x0, r)), which goes
to zero as r → 0. �

Remark 46. It was shown by Lacroix [41] that if instead of a ball B(x, r) one allows
any type of neighborhoods, then any possible limiting distributions can appear; see
also [21]. On the other side, if a limiting distribution exists for the return time, then
it also exists for the hitting time, and the two are related by an integral relation [31].
The only fixed point of this relation is, not by chance, the exponential distribution.

For successive return times, one expect a Poisson limit distribution [17, 34, 30,
49, 54], or more generally a compound Poisson.

5. Smallest return time in balls

We now investigate the first return time of a set A ⊂ X:

τ(A) := min{n ≥ 1: A ∩ T−nA 6= ∅} = inf
x∈A

τA(x).

This quantity arised in two different contexts. First, it is the basic ingredient in the
definition of the dimension for Poincaré recurrence introduced by Afraimovich [2].
The second motivation was the proof of exponential law [18, 35]. As already said
before, for cylinders with a short periodic orbit the distribution of return times is
not exponential. It is also related to the speed of approximation to the exponential
law [51].

5.1. Rate of recurrence for cylinders under positive entropy. We show now
that in a symbolic system with positive entropy, the first return time of a cylinder
is at least of the order of its size. This result was established in [55]. The proof
presented here is from [3].

Theorem 47. Let ξ be a finite measurable partition with strictly positive entropy
hµ(T, ξ). Then the lower rate of Poincaré recurrences for cylinders is almost surely
larger than one, i.e. for µ-a.e. x ∈ X one has

lim inf
n→∞

τ(ξn(x))
n

≥ 1.

Proof. We keep the notations from Section 3.2.1 and write the proof in the symbolic
representation. Fix ε ∈ (0, hµ/3). We choose N so large that Γ = Γ(N) (see (6))
has a measure at least 1− ε. We can choose c so large that for any ω ∈ Γ and any
positive integer n

c−1e[−nhµ−nε] ≤ µ(Cn(ω)) ≤ ce[−nhµ+nε]. (15)

Let δ = 1− 3
hµ
ε and set

An := {ω ∈ Γ: τ(Cn(ω)) ≤ δn}.

Obviously An = ∪bδnck=1 Pn(k) where

Pn(k) := {ω ∈ Γ : τ(Cn(ω)) = k}.
We shall prove that

∑
n µ(An) <∞. Let n be a positive integer and 0 ≤ k ≤ n. If

the return time of the cylinder C = [w0 · · ·wn−1] is equal to k, i.e. τ(C) = k, then
it can be readily checked that ωj+k = ωj , for all 0 ≤ j ≤ n−k−1. This means that
any block made with k consecutive symbols completely determines the cylinder C.
Let

Z = {Ck(ω) : ω ∈ Pn(k)}.
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Because of the structure of cylinders under consideration, for any cylinder Z ∈ Z
there is a unique cylinder CZ of length n such that CZ ⊂ Z and one has Z∩Pn(k) ⊂
CZ . This implies

µ(Pn(k)) =
∑
Z∈Z

µ(Z ∩ Pn(k)) ≤
∑
Z∈Z

µ(CZ).

But for each Z ∈ Z we have Z ∩ Γ 6= ∅ and CZ ∩ Γ 6= ∅, thus there exists ω ∈ Γ
such that Z = Ck(ω) and CZ = Cn(ω). Using (15) we get

µ(Cn(ω)) ≤ c exp[−nhµ + nε] and 1 ≤ cµ(Ck(ω)) exp[khµ + kε].

Multiplying these inequalities we get

µ(CZ) ≤ c2 exp[−nhµ + nε] exp[khµ + kε]µ(Z).

Summing up on Z ∈ Z we get (recall that k ≤ n)

µ(Pn(k)) ≤ c2 exp[−(n− k)hµ + 2nε].

This implies that

µ(An) =
bδnc∑
k=1

µ(Pn(k))

≤ c2 ehµ

ehµ − 1
exp [−n(hµ − δhµ − 2ε)] .

Since hµ − δhµ − 2ε = hµ − (1− 3
hµ
ε)hµ − 2ε = ε > 0, we get that∑

n≥1

µ(An) < +∞.

In view of Borel-Cantelli Lemma, we finally get that for µ-almost every ω ∈ Γ
τ(Cn(ω)) ≥ (1 − 3

hµ
ε)n, except for finitely many integers n. Since in addition

µ(Γ) > 1− ε, the arbitrariness of ε implies the desired result. �

In the special case of a Markov partition the other inequality is easy:

Proposition 48. For the Markov partition J we have for any x ∈ X

lim sup
n→∞

τ(Jn(x))
n

≤ 1.

Proof. By the Markov property, any cylinder Jn(x) contains a periodic point of
period at most n+m0. Therefore, τ(Jn(x)) ≤ n+m0. �

5.2. Local rate of return for balls. These symbolic recurrence rate can be trans-
lated to estimate return time of balls. That is to estimate τ(B(x, r)).

Definition 49. We call a point x ∈ X super-regular with respect to a partition
ξ if its orbit does not approach exponentially fast the boundary of the partition:
lim 1

n log d(Tnx, ∂ξ) = 0.

Lemma 50. Let µ be any Gibbs measure of an Hölder potential. Then almost every
points are super-regular with respect to the Markov partition J .
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Proof. The boundary of the partition is composed by a finite number p of points
therefore by equation (9) in the proof of Lemma 44 we get

µ(x : d(x, ∂ξ) < ε) ≤ pcεd

for any ε > 0. By invariance of the measure this implies that for any ν > 0∑
n

µ(x : d(Tnx, ∂ξ) < e−νn) <∞.

The conclusion follows then by Borel Cantelli lemma. �

Lemma 51. If x is super-regular with respect to the partition J and λ > λ̄(x) :=
lim sup 1

n log |(Tn)′(x)|, we have B(x, e−λn) ⊂ Jn(x) for any n sufficiently large.

Proof. Let ν > 0 be such that λ̄(x) + ν < λ. By super-regularity there exists c > 0
such that for any integer k,

d(T kx, ∂ξ) ≥ ce−νk. (16)

Let n0 be such that for any n > n0,

|(Tn)′(x)| ≤ c

D
e(λ−ν)n. (17)

We claim that for any n > n0, and any k ≤ n,B(x, e−λn) ⊂ Jk(x). Indeed this is
true for k = 0 since e−λn ≤ c. Moreover, if this holds for some integer k < n then
we get

T k(B(x, e−λn)) ⊂ B(T kx,D|(T k)′(x)|e−λn) ⊂ J0(T kx),

by (16) and (17). Therefore the ball B(x, e−λn) is contained in Jk+1(x). This
proves the claim by recurrence. �

Theorem 52. Let µ be a Gibbs measure of a Hölder potential. Then for µ-a.e. x
we have

lim
r→0

τ(B(x, r))
| log r|

=
1
λµ
.

Proof. Let x be a point which has a Lyapunov exponent λ(x) equal to λµ, which is
super-regular with respect to the Markov partition and such that the lower recur-
rence rate for cylinders Jn(x) is at least equal to one. This concerns a.e. points by
Lemma 50 and Theorem 47. By Lemma 51, for any λ > λµ we have

lim inf
n→∞

τ(B(x, e−λn))
| log e−λn|

≥ lim inf
n→∞

1
λ

τ(Jn(x))
n

.

This proves the lower bound.
By Proposition 9 we have diam(Jn(x)) ≤ c1|(Tn)′(x)|−1. Taking n = n(r) the

smallest integer such that the upper bound is less than r, we get that Jn(x) ⊂
B(x, r). The conclusion follows now by Proposition 48. �

Remark 53. The upper bound lim supr→0
τ(B(x,r))
| log r−| ≤

1
λµ

still holds in higher di-
mension for (non-conformal) expanding maps, under some Markov assumption.
The lower bound in the first part of the proof may be generalized to higher dimen-
sional dynamical systems [56], under a weak regularity condition (of the type in [39]
which ensures the existence of Lyapunov charts). In that case one has to replace
λµ by the largest Lyapunov exponent Λµ := lim 1

n

∫
log ‖dxTn‖dµ.
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Unfortunately these two inequalities only give a range of possible values for the
local rate of return for balls. There are examples [56] where the bounds are at-
tained, and also where there are not sharp. This suggests that the existence and the
computation of the local rate of return in the non-conformal case is still far away.

5.3. Dimension for Poincaré recurrence. These rate of return for balls are
the base ingredient of the definition of the dimension for Poincaré recurrence, or
Afraimovich-Pesin dimension [2, 47]. Define for A ⊂ X, q ∈ R and α ∈ R the
quantity

M(A, q, α) = lim
ε→0

inf
{Bi}

∑
i

e−qτ(Bi)(diamBi)α

where the infimum is taken among all countable covers of A by balls Bi. Let α(A, q)
denote the transition point of M(A, q, α) from +∞ to zero. The spectrum α(·, ·)
is a generalization of the Hausdorff dimension and has been introduced and com-
puted for some geometric constructions and Markov maps of the interval [4, 23].
The behavior of τ(B(x, r))/| log r| is closely related to a corresponding pointwise
dimension [14, 3]. This spectrum has also been computed for surface diffeomor-
phisms [56] and for a general class of interval maps [36].
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dynamics, Astérisque 187-188, 1990.
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Université de Brest ; CNRS, UMR 6205 Laboratoire de Mathématiques, ISSTB, 6 Av.
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