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MULTIFRACTAL ANALYSIS OF HYPERBOLIC FLOWS

L. BARREIRA AND B. SAUSSOL

ABSTRACT. We establish the multifractal analysis of hyperbolic flows
and of suspension flows over subshifts of finite type. A non-trivial con-
sequence of our results is that for every Hoélder continuous function non-
cohomologous to a constant, the set of points without Birkhoff average
has full topological entropy.

1. INTRODUCTION

Much attention has been given by physicists and applied mathematicians
to the study of chaotic behavior. Several techniques were put forward as
a mean to deal with the enormous amount of data provided by the asso-
ciated time series. In particular, there has been a growing interest in the
study of multifractal spectra, such as the dimension spectrum for point-
wise dimensions. These spectra conveniently encode information about the
“multifractal” structure of complicated invariant sets. The rigorous mathe-
matical theory of multifractal analysis has been quite developed during the
last decade. We refer the reader to the book [7] for the description of results,
and for a list of references.

We briefly describe here the main elements of multifractal analysis. Let
T: X — X be a continuous map of a compact metric space, and g: X — R
a continuous function. For each o € R, let

R
K, = xeX:nILIEOEZg(Tx):a
i=0
We also consider the set
n .
K=<qzeX: lim — ZQ(TZSC) does not exist
i=0

Clearly

X=KU|J K. (1)
a€eR
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This union is formed by pairwise disjoint T-invariant sets, and is called a
multifractal decomposition of X.
For each o € R such that K, # @, set

D(a) = dimpy Kq,

where dimyg Z denotes the Hausdorfl dimension of Z. Given Z C X and
a > 0, recall that dimy Z = inf{a : m(Z, a) = 0}, where

. . o
m(Z,a) = (151_1)% uﬁf Z (diam U)“,
Uel
and the infimum is taken over all finite or countable covers U of Z by sets
of diameter at most . The function D is called dimension spectrum for
the Birkhoff averages of g, and is one of the main elements of multifractal
analysis.

By Birkhoff’s ergodic theorem, if 1 is a T-invariant finite ergodic measure
on X, and a = [ gdu/pu(X), then u(Ky) = p(X). That is, there exists
a set K, in the multifractal decomposition with full y-measure. Of course
that this does not mean that the other sets in the multifractal decomposition
are empty. In fact, for several classes of hyperbolic dynamical systems it has
been proved that:

1. if K, # @, then K, is a proper dense set;

2. the set {a € R : K, # @} is an interval (in particular it contains an

uncountable number of points);

the function D is real analytic and strictly convex;

4. the irregular set K is everywhere dense and has full Hausdorff dimen-
sion, that is, dimg K = dimg X.

w

This implies that the multifractal decomposition in (1) is composed of an
uncountable number of T-invariant sets, all being everywhere dense, and
all having positive Hausdorff dimension. Thus, multifractal analysis reveals
a very rich “multifractal” structure for hyperbolic dynamical systems. In
particular, this analysis has been effected when g is a Holder continuous
function, and T is either a subshift of finite type, an expanding map, or an
axiom A diffeomorphism. We refer to [7] for details and a list of references.
One of the main objectives of our paper is to establish a version of the
multifractal analysis for a class of hyperbolic flows and suspension flows
over subshifts of finite type. In the multifractal analysis of a flow ® = {¢;}¢
on X, the sets K, and K are replaced respectively by
¢

1
K, = {a: € X:lim— [ g(prz)dr = a}
t—oo ¢ Jg

and .
1
K= {w € X : lim —/ g9(prx) dr does not exist} .
t—oo t 0

Recall that a set A C X is ®-invariant if ¢, A = A for every t € R. Each of
the sets K, and K are ®-invariant.
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For several classes of hyperbolic flows we establish Properties 1, 2, 3, and
4 above. For example, we can give a complete description when & is the
geodesic flow on a compact surface with negative curvature.

Recall that a Borel finite measure p on X is ®-invariant if pu(¢;A) = p(A)
for every measurable set A C X and every ¢t € R. If p is ergodic, i.e., if
®-invariant measurable set has either zero or full y-measure. By Birkhoff’s
ergodic theorem, if g: X — R is a p-integrable measurable function then

im [ (o) dr = - / d @)
im — [ g(prx)dr = —— | gdu
" wX) Jx

t—oo t 0

for p-almost every x € X. Therefore, it is a rare event from the point of
view of measure theory that the limit in (2) does not exist for a given point
x € X. Property 4 above shows that, surprisingly, for suspension flows over
subshifts of finite type, and a generic Holder continuous function g, the set
of points where the limit in (2) does not exist is everywhere dense and has
full topological entropy. In particular, from the point of view of topology
it is a rather common event that the limit in (2) does not exist for a given
point z € X. Our results are counterparts of the corresponding results for
diffeomorphisms on hyperbolic sets developed by Barreira and Schmeling
in [3].

The main theme of our proofs is to use Markov systems and the associated
symbolic dynamics developed by Bowen [4] and Ratner [10] to reduce the
setup for flows to the setup for maps, and then apply the results that are
already available in the case of maps. This is done through a study of
suspension flows over subshifts of finite type associated to Markov systems,
and a careful analysis of the relation between cohomology for flows and
cohomology for the maps associated to Markov systems.

After the completion of this draft, we learned that Pesin and Sadovskaya
[8] recently obtained results related to ours. They use a different approach,
involving the construction of Moran covers associated to Markov systems.

2. HYPERBOLIC FLOWS

2.1. Preliminaries. Let ® = {p;}; be a C! flow of the smooth compact
manifold M. A ®-invariant set A C M is called hyperbolic for ® if there
exists a continuous splitting Ty M = E*® E* @ E°, and constants ¢ > 0 and
A € (0,1) such that for each € A the following properties hold:

1. 4(pux)|i=o generates EO(x);

2. dypiE* () = E* () and dypi EY(x) = E"(psx) for each t € R;
3. ||dzpev]| < eXt]|v]| for every v € E*(x) and t > 0;

4. ||dpp—tv|| < eAt|jv]| for every v € E¥(x) and t > 0.

For example, geodesic flows on compact Riemannian manifolds with negative
sectional curvature have the whole manifold as a hyperbolic set. Further-
more, time changes and small C' perturbations of flows with a hyperbolic
set also possess a hyperbolic set.



4 L. BARREIRA AND B. SAUSSOL

A closed ®P-invariant set A C M is called a basic set of @ if A is hyperbolic,
locally maximal, topologically transitive, and the periodic orbits of ® are
dense in A.

2.2. Irregular sets. For each continuous function g: A — R we define the
irregular set for the Birkhoff averages of g (with respect to ® = {p;}¢) by

1 t
B(g) = {x eA: lim = [ g(prz)dr does not exist} :

One can easily verify that B(g) is ®-invariant. By Birkhoff’s ergodic the-
orem, the set B(g) has zero measure with respect to any ®-invariant finite
measure.

We say that g: A — R is ®-cohomologous to a function h: A — R on A
if there exists a bounded measurable function ¢g: A — R such that

g($) _ h(l‘) _ }tlr% q((ptx)t_ Q(x) (3)
for every x € A. If g: A — R is ®-cohomologous to a constant ¢ € R on A,
then
1 t 1 1 s+t t
;/ g(prx)dr —c| = : lim — / q(prz)dr — / q(prz)dr
0 s—0 8 | /g 0

! /tmq(soTSC)dT—/Osq(soTx)dT (4)

for every x € A and t > 0, and hence, B(g) = 2.

We now present the main result of this section. It shows that for hyper-
bolic flows, if g: A — R is not ®-cohomologous to a constant, then the set
B(g) is non-empty, is everywhere dense, and has full topological entropy. See
Section 4.1 for the definition of topological entropy h(®|Z) on an arbitrary
set Z (not necessarily compact nor invariant).

Theorem 1. Let A be a compact basic set of a topologically mizing C1T¢
flow @, for some € >0, and let g: A — R be a Holder continuous function.
Then the following properties are equivalent:

1. g is not ®-cohomologous to a constant on A;
2. B(g) is a non-empty proper dense set with

h(®@[B(g)) = h(®[A). (5)

In [3], Barreira and Schmeling studied irregular sets with respect to diffeo-
morphisms on hyperbolic sets. Theorem 1 is a counterpart of their results in
the case of flows, and follows from the more general statements formulated
below.

We now show that “most” Hoélder continuous functions are not ®-coho-
mologous to a constant. Let C“(A) be the space of Holder continuous func-
tions on A with Holder exponent «. For a function ¢ € C*(A) we define its
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norm by

lolla = sup{|e(z)|: = € A} +sup{% cx,y € Aand x # y},

where d denotes the distance on M.

Theorem 2. Let A be a compact basic set of a topologically transitive C*
flow ®. Then, for each o € (0,1), the family of functions in C*(A) which
are not ®-cohomologous to a constant is open and dense in C*(A).

Theorems 1 and 2 immediately imply the following statement, whose for-
mulation has the advantage of not using the notion of cohomology.

Theorem 3. Let A be a compact basic set of a topologically mizing C1+¢
flow @, for some ¢ > 0. Given o > 0, for an open and dense family of

functions g € C*(A), the set B(g) is a non-empty proper dense set with
h(®[B(g)) = h(P[A).

2.3. Multifractal analysis. Let g: A — R be a continuous function. For
each o € R, consider the set

1 t
Ka:{:nGA: lim — g(goT;E)dT:oz}.
t—oo t 0
One can easily verify that K, is ®-invariant. By (4), if g is ®-cohomologous
to a constant ¢ € R on A, then K. = A.

Given « € R, set
E(a) = h(P|K,).

The function € is called the entropy spectrum for the Birkhoff averages of g.
For every real number ¢, let v, be the equilibrium measure of gg, and
write

T(q) = Pa(qyg),

where Pg(qg) is the topological pressure of gg with respect to ®. It is well
known that 7T is a real analytic function. We denote by h, (®|A) the entropy
of ®|A with respect to the ®-invariant measure v. See Section 4.1 for the
definition.

We now present a multifractal analysis of the spectrum & on basic sets.

Theorem 4. Let A be a compact basic set of a topologically mizing C'+e
flow @, for some € >0, and let g: A — R be a Hdélder continuous function
with Pg(g) = 0. Then the following properties hold:

1. the domain of € is a closed interval in [0,00), which coincides with
the range of the function o = —T", and if ¢ € R then

€(alq)) = T(q) + qa(q) = hu, (PIA);
2. if g is not ®-cohomologous to a constant on A, then & and T are real
analytic strictly convex functions.

See Section 4.2 for a more detailed description of the spectrum €.
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2.4. Markov systems. Let A be a compact basic set of the C! flow & =
{1}, and let

Vi(z) ={y € B(z,¢) : d(pry, prx) — 0 as t — 400}

and
VX (z) ={y € B(z,¢) : d(pry, prx) — 0 as t — —oo}

be the local stable and unstable manifolds of size ¢ at the point x € A. For
each sufficiently small ¢ > 0, there exists § > 0 such that if x, y € A are
at a distance d(x,y) < § then there is a unique time t = t(z,y) € [—¢,¢]

def

for which the set [z,y] = V2 (pix) NV (y) consists of a single point, and
[z,y] € A

Let D C M be an open disk of dimension dim M — 1 which is transversal
to the flow @, and let x € D. There exists a diffeomorphism from D x (—¢, ¢)
onto an open neighborhood U(x) of z. The projection map wp: U(z) — D
defined by 7p(¢ry) = y is differentiable. A closed set R C AN D is called
a rectangle if R = int R (where the interior is computed with respect to the
topology of AN D), and nplz,y] € R whenever z,y € R.

Consider a collection of rectangles Ri,..., R C A (each contained in
some disk transversal to the flow) with R; N R; = OR; N OR; for i # j such
that there exists € > 0 with:

k
L A= Ute[o,s] et (Ui Ri)s;
2. for each i # j either (o R;)NR; = @ for allt € [0,¢] or (prR;)NR; = &
for all t € [0, ¢].

We define the transfer function 7: A — [0,00) by

k
T(x):min{t>0:gptaz€URi}.

i=1

Let T: A — Ule R; be the transfer map given by Tz = ¢ (,yz. We note
that the restriction of T' to Ule R; is invertible.

We say that the rectangles Ry, ..., Ry form a Markov system for ® on A
if

T(int(V:(z) N Ry)) C int(VE(Tx) N R;)
and
T (int(V2(Tx) N R;)) C int(VX(z) N R;)

whenever x € int TR;Nint R;. Any basic set A of a C! flow possesses Markov

systems of arbitrary small diameter (see [4, 10]). Furthermore, the map 7
is Holder continuous on each domain of continuity, and

0 < inf 7 <supT < 0. (6)
zeA TEA
Given a Markov system Ry, ..., Ry for ® on the basic set A we define

a k x k matrix A with entries a;; = 1 if int TR; Nint R; # @, and a;; = 0
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otherwise. Consider the set X C {1,...,k}* defined by
X ={(---i_1ipir---) : @jpi,,, = 1 for every n € Z},

and the shift map o0: X — X given by o(---ip---) = (---jo---), where
Jn = iny1 for every n € Z. The map o|X is called a (two-sided) subshift
of finite type with transfer matriz A. We fix 8 > 1 and equip X with the
distance dx defined by

o0

dx((-++ivigir ), (- ddoi =) = Y B in = jl. (7)

n=—0oo

We define a coding map 7w: X — Ule R; for the basic set by

w(-eige-) = [T int Ry,.
JEZL
One can easily check that moo = Tomr. As observed in [4], it is always possible
to choose the constant 3 in such a way that the function 7o7m: X — [0, 00)
is Lipschitz.
Markov systems will be used in the proof of Theorem 1.

2.5. Cohomology for flows and maps. We now discuss the cohomology
assumption in Theorem 1. We show how to use a Markov system to reduce
this assumption to a cohomology assumption using the associated transfer
map instead of the original flow. This relation is crucial to our approach.

Given a continuous function g: A — R and a Markov system for the flow
® = {¢;}+ on the basic set A with transfer function 7: A — [0, 00), we define
a new function I,: A — R by

7(x)
I,(x) = /0 o(pua) ds.

In particular, if ¢ € R, then I. = c7.

We say that a function G: A — R is T-cohomologous to a function
H: A — R on A if there exists a bounded measurable function ¢: A — R
such that

G—H=qoT —qonA.
Theorem 5. Let A be a basic set of the C' flow ®, g: A - R andh: A — R
continuous functions, and T the transfer function of some Markov system
for ® on A. Then the following properties are equivalent:

1. g is ®-cohomologous to h on A and (3) holds for every x € A;
2. 1, is T'-cohomologous to I, on A with

Iy(x) — In(x) = q(Tx) — q(x) for every x € A.

Theorem 5 allow us to translate the results obtained in [3] in the setting
of subshifts of finite type and hyperbolic sets to the setting of hyperbolic
flows.



8 L. BARREIRA AND B. SAUSSOL

Theorem 5 implies that a function g is $-cohomologous to a constant ¢ €
R if and only if I, is T-cohomologous to c7. In particular, the cohomology
assumption in Theorem 1 can be replaced by one in terms of the transfer map
T (associated to some Markov system). Therefore, it would be of interest
to also describe the convergence and the non-convergence of the Birkhoff
averages of the flow ® in terms of 7. This is effected in the following
statement.

Proposition 6. Let A be a basic set of the C* flow ® = {©i}¢, g: A — R
a continuous function, and T the transfer function of some Markov system
for ® on A. Then the following properties hold:

1. if g: A — R is Hélder continuous, then I, is Hélder continuous on
each domain of continuity of T;
2. if x € A, then

1/t S L(T)
lim inf — ds = liminf &4=0-9~
fminf 5 / 9lpst)ds = n il S o (T)
and
I ito1g(T')
lim su —/ z)ds = limsup ==0-92 .
t—»oop ¢/, 9(ps) m_>oop ZOT(TZHT)
3.
m oI (T
B(g) = {x eA: W}EHOO % does not em’st} ) (8)

The identity (8) tells us that any irregular set for a hyperbolic flow can be
described in terms of the map T'. However, contrarily to the maps considered
in [3], T is not invertible nor hyperbolic.

3. SUSPENSION FLOWS

3.1. Preliminaries. Let T: X — X be a homeomorphism of the compact
metric space X, and 7: X — (0,00) a Lipschitz function. Consider the
space

Y={(z,s) e X xR:0<s<7(x)}, 9)
with the points (z,7(x)) and (T'z,0) identified for each z € X. One can
introduce in a natural way a topology on Y which makes Y a compact
topological space. This topology is induced by a distance introduced by
Bowen and Walters in [5] (see Appendix A for details). The metric structure
shall first be used in Section 3.2.

The suspension flow over T with height function 7 is the flow ¥ = {¢y },
on Y where ¢;: Y — Y is defined by

U(x,8) = (x, s+ t). (10)
We extend 7 to a function 7: Y — R by

7(y) = min{t > 0: Yy € X x {0}},
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and extend T toamap T: Y — X x {0} by

Since there is no danger of confusion we continue to use the symbols 7 and

T for the extensions. Given a continuous function ¢g: ¥ — R we define a
function I4: Y — R by

7(y)
I,(y) = /0 7 gabay) ds. (1)

Theorem 7. If U = {1}, is a suspension flow on Y over T: X — X,
and g: Y — R and h: Y — R are continuous functions, then the following
properties are equivalent:

1. g is W-cohomologous to h on'Y with

o) — hiy) =t DI o oy v

2. I, is T'-cohomologous to I, on'Y with

Iy(y) = In(y) = a(Ty) — q(y) for everyy € Y
3. I4|X x {0} is T'-cohomologous to Ip|X x {0} on X x {0} with

Iy(y) — In(y) = q(Ty) — q(y) for every y € X x {0}.

By Theorem 7 (see Properties 2 and 3), each cohomology class in the
base space X induces a cohomology class in the whole space Y, and all
cohomology classes in Y appear in this way.

We also obtain a version of Proposition 6 for suspension flows.
Proposition 8. Let ¥ = {¢y}; be a suspension flow on'Y over T: X — X
with height function 7, and g: Y — R a continuous function. If v € X and
s €10,7(x)], then

1 [ ol (T
it [ sy TS
and . > ,
_ 1 ) oL (Thx)
lim sup — +(x,8))dr = limsup =209~ 13
mawp ¢ [ g(ur(r. ) dr = lmaup ST (1)

Note that for a fixed x € X the limits in (12) and (13) are independent
of s.

One can also consider the case when T: X — X is continuous but not
necessarily a homeomorphism. More precisely, let T" be a local homeomor-
phism in an open neighborhood of each point of the compact metric space X,
7: X — (0,00) a Lipschitz function, and Y as in (9). Note that even if X
is a topological manifold and 7 is a constant function, then Y may not be a
topological manifold. The suspension semi-flow over T with height function
7 is the semi-flow ¥ = {¢;}; on Y where ¢,: Y — Y is defined by (10).
The statements in Theorem 7 and Proposition 8 also hold for suspension
semi-flows.
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3.2. Suspension flows over subshifts of finite type. Let now ¥ = {¢, };
be a suspension flow on Y over T': X — X. The space Y is equipped with the
Bowen—Walters distance (see Appendix A for the definition). Let g: Y — R
be a continuous function. For each o € R, set

E(a) = h(\Il‘Ka)7
where

1 t
K, = {xeY:tlim n g(wa)dT:a}.

The topological entropy is computed with respect to (the topology induced
by) the Bowen—Walters distance on Y. The function & is called the entropy
spectrum for the Birkhoff averages of g. For every real number ¢, let v, be
the equilibrium measure of gg, and write

T(q) = Py(qy).

The following is a version of Theorem 4 for suspension flows over subshifts
of finite type.

Theorem 9. Let ¥ be a suspension flow on Y over a topologically mixing
two-sided subshift of finite type, and g: Y — R a Holder continuous function
with Py(g) = 0. Then the following properties hold:

1. the domain of & is a closed interval in [0,00), which coincides with
the range of the function o = —T", and if ¢ € R then

€(alq)) =T(q) + qalq) = hw, (¥);
2. if g is not W-cohomologous to a constant on'Y, then & and T are real
analytic strictly convex functions.
Given a continuous function g: Y — R we consider the irregular set

1 [t
B(g) = {y eyY: tlim ;/ 9(¢ry) dr does not exist} .

Set . ,
o L (T
C= {:c e X: lim ZZ;()—M
m— 00 Zi:O T(T SL’)
For a suspension flow ¥ and a continuous function g on Y, it follows from
Proposition 8 that
B(g) ={(z,s) €Y :x€Candse|0,7(x)]}.

We now formulate a version of Theorem 1 for suspension flows over sub-
shifts of finite type.

does not exist} .

Theorem 10. Let ¥ be a suspension flow on'Y over a topologically mixing
two-sided subshift of finite type, and g: Y — R a Hélder continuous function.
Then the following properties are equivalent:

1. g is not ¥-cohomologous to a constant on Y ;

2. B(g) is a non-empty proper dense set with

h(¥|B(g)) = h(¥). (14)
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Abramov’s entropy formula shows that

h(\I/) = sup h#(T) — hV(T) ’

w [xTdp [y Tdv

where the supremum is taken over all T-invariant probability measures.
Here, h,(T') is the entropy of T' with respect to p, and v is the equilib-
rium measure of —h(¥)7.

One can also consider one-sided subshifts of finite type T: X — X. It
is easy to verify that in this case T is a local homeomorphism in an open
neighborhood of each point. The statements in Theorem 10 hold for suspen-
sion semi-flows over one-sided subshifts of finite type. See also Section 5.1
below.

Given a basic set of a hyperbolic flow, each Markov system has naturally
associated a suspension flow over a two-sided subshift of finite type. In fact
these are the primary examples of suspensions flows. We now describe this
construction. If A is a basic set of the C! flow ® = {¢;}, then given a
Markov system there is an associated transfer function 7: A — R (which
is Holder continuous on each domain of continuity), and an associated two-
sided subshift of finite type o: X — X with coding map 7: X — A (see
Section 2.4). Therefore, to each Markov system one can naturally associate
the suspension flow ¥ = {¢}; on Y over ¢ with Lipschitz height function
T o7 (see Section 2.4). We extend 7 to a finite-to-one surjection 7: ¥ — A
by m(x,s) = (¢s om)(z) for every (z,s) € Y. Then

T oYy = P OT. (15)

Observe that the function go7: Y — R is Holder continuous whenever
g: A — R is Holder continuous. Using (15) one can show that

B(g) = m(B(gom)).
This can be used to establish the identity in (5) from the identity in (14).

4. MULTIFRACTAL ANALYSIS AND IRREGULAR SETS

4.1. A new Carathéodory dimension for flows. We introduce here a
new Carathéodory dimension characteristic for flows. It is a generalization
of the topological entropy, and is a flow version of a Carathéodory dimension
characteristic introduced in [3] in the case of maps.

Let ¥ = {44 }; be a continuous flow of the compact metric space (Y,d).
Given x € Y, t > 0, and € > 0, we write

B(z,t,e) ={y € Y : d(¢ry,¥rx) < € whenever 0 < 7 < t}
Let u: Y — R be a strictly positive continuous function. We write
t
Utet.e) =sup{ [ utvadrsy € Bt}
0

if B(z,t,e) # @, and U(z,t,e) = —oo otherwise.
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For each set Z C Y and each o € R, we define

M(Z, a,u,e) = Tlglgourlf Z exp(—alU (z,t,¢)),
(z,t)el
where the infimum is taken over all finite or countable sets I' = {(x;,t;)}s
such that (z;,t;) € Y x [T, 00) for each i, and | J; B(x;,t;,¢) DO Z. We define
the number
dim, . Z = inf{a: M(Z,a,u,e) = 0}.
The limit
dim,, Z S lir% dim, . Z

E—
exists, and is called the u-dimension of Z (with respect to ).
If u is the constant function equal to 1, then dim, Z is called topological
entropy of ¥ on Z, and is denoted by h(¥|Z). If Z is compact and W-

invariant, then we recover the well-known notion of topological entropy

log Nz (t, e A log N(t,e

log Nz (t,¢) ): hmhmsupig z(t, ),
e—=0 ¢t 0 t

h(¥|Z) = liIT(l] litm inf

where Nz(t,¢) is the least number of sets B(x,t, ) needed to cover Z.
For every Borel probability measure v on Y, let

dim, ¢ v = inf{dim,, . Z: v(Z) = 1}.
The limit
dim,, v 4 lir% dim,, . v
e—

exists, and is called the u-dimension of v. If u = 1, then dim,, p is called
the entropy of W with respect to v, and is denoted by h, (¥). We also define
the lower and upper u-pointwise dimensions of v at the point z € Y by

1 B t
d, () = lim lim inf — 28/B@:1.2)
s e—0 t—oo U(l’,t, 5‘)

and

. log v(B(a,1,2))
dyw(x) = lim lim sup —
vault) i ot o U(x,t,e)
4.2. Suspension flows over subshifts of finite type. Let ¥ = {4}, be
a suspension flow on Y over a homeomorphism 7': X — X of the compact
metric space X, and p a T-invariant Borel probability measure in X. It is
well known that p induces a W-invariant probability measure v in Y such

that
/Ygdl/:/X/OT(x)g(:c,s)dsdu(:E)//XTd,u (16)

for every continuous function ¢g: ¥ — R, and that any W-invariant measure
v in Y is of this form for some T-invariant Borel probability measure p in X.
We remark that the identity in (16) is equivalent to

/Ygdl/:/XIgdu//XTdu, (17)
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where the function I, is defined by (11).
We now consider the space Y equipped with the Bowen—Walters distance
(see Appendix A). For every real number «, set

K, = {y eyY: dw(y) = Eu,u(y) = a}'

Whenever K, # @ and y € Kq, the common value a of d,,,(y) and dy,.(y)
is denoted by d, ., (y), and is called u-pointwise dimension of v aty. We set

Dy(a) = dimy, K.

The function D, is called the u-dimension spectrum for u-pointwise dimen-
sions (with respect to the measure v).
We now consider the special case when T is a subshift of finite type.

Proposition 11. Let ¥ = {1 }; be a suspension flow on'Y over a topologi-
cally mizing two-sided subshift of finite type, v is an equilibrium measure for
U with Hoélder continuous potential, and u: Y — R is a Hélder continuous
positive function. If y € Y and € > 0, then

(y) = liminf — log v(B(y, ,€))
e fO wTy dT

d

Zru

and

_ o
dy(y) = lim sup — 22V BW: 1)

t—o0 f(] ¢Ty dT
Notice that the limits in the proposition are independent of e.
Let g: Y — R be a continuous function. By (17) and Abramov’s entropy
formula, we obtain
T) + [x Igdu

hu(
h, (¥ +/gdu= a ,

whenever p is a T-invariant probability measure in X, and v is the -
invariant probability measure induced by p in Y. Since 7 > 0, we conclude
from (18) that Py(g) = 0 if and only if Pr(ly) = 0, where Pr(ly) is the
topological pressure of I, with respect to T'. Therefore, when Py(g) = 0 the
measure v is an equilibrium measure of g (with respect to ¥) if and only if
e is an equilibrium measure of I4| X (with respect to T').

For every real number ¢, we define the function g,: ¥ — R by

9¢ = —Tu(q@)u + qg,

where the number 7T),(q) is chosen so that Py(g,) = 0. The above discussion
shows that Ty (q) is equivalently specified by the equation Pr(l,,) = 0, where
Pr(I,,) is the topological pressure of I, with respect to T. We denote by v,
and m,,, respectively, the equilibrium measures of g, and — dim,, X - v with
respect to W.

The following is a complete multifractal analysis of the spectrum D, for
suspension flows over subshifts of finite type.

(18)
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Theorem 12. Let ¥ be a suspension flow on Y over a topologically mix-
ing two-sided subshift of finite type, u: Y — R a Hélder continuous positive
function, and v an equilibrium measure for W with Hoélder continuous po-
tential g: Y — R such that Py(g) = 0. Then the following properties hold:

1. for v-almost every y € Y,
_ ()
N fyudy’

2. T, is real analytic, and satisfies T),(q) < 0 and T} (q) > 0 for every
q € R, with T,,(0) = dim,, Y and T,(1) = 0;

3. the domain of Dy, is a closed interval in [0, 00), which coincides with
the range of the function o, = =T, and if ¢ € R then

Du(ow(q)) = Tulg) + qou(q);
4. for every q € R, vy(Ky,(q) =1, and
duq,u($) = Tu(Q) + qau(q)
Jor vg-almost all x € K, (4); moreover,

dyu(®) < Tu(q) + qonu(q)

for every x € K, (g), and Dy(an(q)) = dim,, vy for every q € R;
5. if v # my, then Dy and T, are real analytic strictly convex functions.

dyu(y)

Theorem 12 is a flow version of Theorem 6.6 in [3], which in turn follows
from work of Pesin and Weiss [9], and Schmeling [11].

Setting v = 1 in Theorem 12 we obtain a complete multifractal analysis
of the spectrum

(@) = h(V|{y € Y : hu(y) = a}),
where
hy(y) = lim logv(B(y,t,¢))

t—00 t

1 t
:ﬂngo?/o 9(ry) dr. (19)

The function & is called entropy spectrum for local entropies (with respect
to the measure v), and coincides with the entropy spectrum for the Birkhoff
averages of g. In the case of axiom A diffeomorphisms this spectrum was
studied in [1].

We note that the statements in Proposition 11 and Theorem 12 also hold
for suspension semi-flows over one-sided subshifts of finite type.

4.3. Irregular sets. In this section we establish a version of the results
in Section 3 for u-dimension. Consider again a continuous flow ¥ = {4y}

on Y. Given continuous functions g1, ..., gx: ¥ — R and v: Y — R, with
u positive, we define the irreqular set F(g1,. .., gx;u) by
t
; ds
yeY: lim M does not exist for j =1,..., k ». (20)
b0 f() u(vsy) ds
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One can show that

F(g1,--- 9k u) ={(z,s) : x € C(g1,...,9k;u) and s € [0,7(x)]}, (21)
where C(g1,...,9x;u) is the set

{x € X: lim 2i=0ls (T')

= —d t exist for j=1,..., k. 22
I, ST T T oes not exist for j s } (22)

The proof is a modification of the proof of Proposition 6.

Theorem 13. Let U be a suspension flow on'Y over a topologically mizing
two-sided subshift of finite type, and g1, . .., gi, u: Y — R Holder continuous
functions, with u positive. Then the following properties are equivalent:

1. the function g; is not W-cohomologous to a multiple of uw on'Y for
each j =1, ..., k;
2. dim, F(g1,-..,9k;u) = dim, Y.

Setting u = 1, we have

k
F(g1,--- 9631) = ﬂ B(g)-
j=1

Hence, under the hypotheses of Theorem 13, if the function g; is not W-
cohomologous to a constant on Y for each j =1, ..., k, then

k
h(¥| () Bg;)) = h(¥).
j=1
One can also consider suspension semi-flows over one-sided subshifts of fi-
nite type, and obtain a corresponding version of Theorem 13. An application
of this is given in the following section.

5. SUSPENSIONS OVER HYPERBOLIC DYNAMICAL SYSTEMS

5.1. Suspension semi-flows over expanding maps. Let T: M — M
be a C! map of a smooth compact manifold M, and A C M a T-invariant
set such that T is expanding on A. This means that there exist constants
¢ > 0 and > 1 such that ||d,T"v| > ¢f"|v|| for all z € A, v € T, M, and
n € N. We say that A is a repeller of T'. 1t is well known that repellers admit
Markov partitions of arbitrarily small diameter. Each Markov partition has
associated a one-sided subshift of finite type o: X — X, and a coding map
m: X — A for the repeller, which is Holder continuous, onto, finite-to-one,
and satisfies T owr = 7w oo.

Consider a Markov partition for A, and the associated coding map 7: X —
A. Let ¥ be the associated suspension semi-flow on Y over the one-sided
subshift of finite type o: X — X, with Y equipped with the Bowen—Walters
distance. We define a function u: X — R by

u(x) = log||dr T (23)
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One says that T is conformal on A if d,T is a multiple of an isometry for
each z € A. One can show that if T" is conformal on A, then

dimg Z = 14 dim, 7~ 'Z

for every W-invariant set Z C A. This follows from work of Schmeling [12].
Let v be a W-invariant probability measure on Y. For every real number

a, set
1 B
K, = {y €Y :lim —ogy( (v,7)) = a},
r—0 IOgT

where B(y,r) C Y is the Bowen-Walters ball with radius r centered at
y € Y. The function

D (a) = dim H Ka
is called the dimension spectrum for pointwise dimensions (with respect to
the measure v). Let pu be the measure in X associated to v as in Section 4.2.

By Proposition 17 in Appendix A, for each y = (z,s) € Y there exists ¢ > 1
such that if r is sufficiently small, then

Bx(z,r/c) x (s —r/c,s+1/c) C B(y,r) C Bx(z,cr) x (s —cr,s +cr).

Therefore,

1 B
Ka:{(x,S)GY:lim og #(Bx (. 7)) :a—l}. (24)
r—0 logr

Since each set K, is W-invariant, if w is as in (23), then
D(a) =1+ Dy(a—1).

Proceeding in a similar way to that in Section 4.2 one can now effect a
multifractal analysis of the spectrum D. We use the same notation as in Sec-
tion 4.2. The following is an immediate consequence of Theorem 12 and the
above discussion, together with the appropriate versions of Propositions 17
and 19 in Appendix A for locally invertible maps.

Theorem 14. For a repeller A of a topologically mizing C* map which is
conformal on A, let W be the suspension semi-flow on'Y over the one-sided
subshift of finite type associated to some Markov partition of A, and v an
equilibrium measure for V with Holder continuous potential g: Y — R such
that Py(g) = 0. Then the following properties hold:

1. for v-almost every y € Y,
lim logv(B(y,)) _ hu(T) .
r—0 logr [ (log||dT|| o ) dp’
2. if T=Ty,+1, a=-T', and q € R, then D(a(q)) = T(q) + qa(q);
3. for every q € R, vy(Kyg)) =1, and

iy 108 %a(B(y, 7))
r—0 log r

=T(q) + qa(q)
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Jor vg-almost all x € K(q); moreover,

1 B
lim sup 8V 1)) v(By: 7)) < T(q) +qa(q)
r—0 log r
for every v € Ky (q), and D(a(q)) = dimpy vy for every q € R;
4. if v # my, then D and T are real analytic strictly convex functions.
The following statement follows easily from a version of Theorem 13 for
suspension semi-flows over one-sided subshifts of finite type.

Theorem 15. Under the hypothesis of Theorem 14, if v # m,, then

dimp {yEY:limw

does not ewist} =dimpgY.
r—0 log r

5.2. Suspension flows over axiom A diffeomorphisms. Let A be a
basic set of a C! flow ®. Given a Markov system, we consider the associated
two-sided subshift of finite type 0: X — X, and coding map m: X — A (see
Sections 2.4 and 3.2).
Let B5: X — R and 3,: X — R be Holder continuous positive functions.
For each cylinder set
Cz',nmim = {(]0) jk :ik for —n < kgm},
write
m
Bs(Ci_, .i,,) = sup {H Bs(ckz):x € Ci_n---im}
k=0
and

Bu(Ci_,..i,,) = sup {H Bu(c ™)z e Ci_n...im} .
k=0

Given a € R, consider the function

u EERTH _ B

(Z,0) =liminf }  exp(—afs(C) — afu(C)),
cer

where the infimum is taken over all covers I'' of Z by cylinders C;_ with

m > ¢ and n > {. We define the (0, 8,)-dimension of Z by

dimg, g, Z = inf{a : M(Z, o) = 0}.

Let again A be a basic set of a C! flow ® = {¢;};. We say that the flow
® is conformal on A if the maps

dypt|EP(z): E%(x) — E°(pix) and  dyoi| EY(x): EY(x) — E*(¢x)

n'“im

are multiples of isometries for each x € A and t € R. We give two examples
of (s, fu)-dimension:

1. Let A be a basic set of a C' flow ® such that ® is conformal on A. Let
T be the transfer map associated to some Markov system for ® on
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A, and 7: Y — A the associated coding map. Consider the functions
Bs: X — R and (§,: X — R defined by

Bs(x) = 1og||drsr(ra) | E* (72 || (25)
and
Bu(z) = —log||drs 7 (ra) | E* (). (26)
Note that
n—1
I 8:(c*2) = loglldrapr, (na) | E* (7)),
k=0
n—1
1 Buloc™ ) = log|ldrsp—r, (ra | E* ()
k=0
where
n—1
Tn(mx) = T(ﬂ'(aka:)).
k=0
Then
dimy Z =1+ dimg, g, 7' Z (27)

for every W-invariant set Z C A.

2. Let A be a basic set of a C! axiom A diffeomorphism f such that
d. f|E*(x) and d, f|E"(x) are multiples of isometries for each x € A.
Consider a Markov partition for A, and the associated coding map
m: X — A. Define functions Gs: X — R and 3,: X — R by

Bs(z) = log||drs fIE°(mz)|| and  Bu(x) = —log||dxy f|E* (7).
Then
dimpy Z = dimg, g, 7' Z (28)
for every set Z C A.
The identities in (27) and (28) follow from work of Schmeling [12]. In what
follows we shall only consider the first situation. A straightforward modifi-
cation applies to the second one.

We briefly present another description of the (s, 5,)-dimension. When
X is equipped with the distance in (7), the map 7 is in general only Holder
continuous. We will introduce a new distance dy in X (inducing the same
topology as dx ) such that for a certain class of flows (the flows which are con-
formal on A; see the definition below in this section) the map m: (X, d. x) —
m(X) is locally Lipschitz with Lipschitz inverse, and thus it preserves the
Hausdorff dimension. We define a new distance d. x in X by

dx((-++io-++), (- do-++)) = lio = Jol + Bo(Ci_ i) + BulCi_p,win,)s
where
ns = max{n € N : iy, = jj for all k <n}
and
ny, = max{n € N : iy, = jj for all k > —n}.
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Since
diamg_C = f(C) + 4(C)

for every cylinder C, the (ﬁs, (y)-dimension coincides with the Hausdorff

dimension with respect to dX The distance dX induces a new Bowen-—
Walters distance in Y. One can easily verify that this distance induces
the same topology in Y as the original Bowen—Walters distance obtained
from dx.

Let A be a basic set of a C! flow ®, and v be a ®-invariant probability
measure on A. For every a € R, let

K, {yGA lim w:a},

r—0 log r

With the help of a Markov system, one can show that the set K, satisfies
an identity similar to that in (24). It follows from work of Barreira, Pesin,
and Schmeling [2] that v({J,cr Ka) = 1.

Consider now the dimension spectrum for pointwise dimensions (with
respect to the measure v) defined by

D(a) = dimpy K,.
In a similar way to that in Section 5.1, if ® is conformal on A, then
D(a) =1+ dimg, g,(X N7 1 Kqa-1),

with 35 and 3, as in (25) and (26).
Given a continuous function g: A — R, let t5(¢) and ¢,(q) be the unique
numbers such that

Pr(—ts(q)Bs + qgom) = Pr(—tu(q)Bu + qgom) =0
We write
T(q) = 1+ts(q) + tulq)-
One can also formulate a version of Theorem 14 for basic sets.

Theorem 16. Let A be a compact basic set of a topologically mizing C'+e
flow ®, for some € > 0, such that ® is conformal on A, and v an equilibrium
measure for ® with Hélder continuous potential g: A — R such that Pg(g) =
0. Then the following properties hold:

1. for v-almost every y € A,

I logv(B(y,7)) hu(T) hu(T)

im———="" =1— — ;

r—0 log r Jx Bsdp [y Budp

2. if a = =T" then D(a(q)) = T(q) + qa(q) for every q € R;

3. if p is not a measure of mazximal dimension on X, then D and T are
real analytic strictly convex functions.

The proof can be obtained from that of the corresponding result for ax-
iom A diffeomorphisms due to Simpelaere [13].



20 L. BARREIRA AND B. SAUSSOL

6. PROOFS

6.1. Proofs of the results in Section 3.

Proof of Theorem 7. Assume that g is ¥-cohomologousto honY. If x € Y
then

(@) x) — x
Iy(x) — Ip(z) = /0 lim a(Ysz) = a(¢s7) ds

t—0 t

1 T(x)+t 7(x)
—tmy ([ awayds— [ s
- t 0

. 1 T(x)+t 7(x)
“tmy ([ awa)ds— [ s
- 0 0

1 t
—lim - [ q(¢sx)ds

t—=01 Jy
= Q<¢T(I)x) - Q(x>
= q(Tz) — q(x).

Therefore, I, is T-cohomologous to I on Y.

Assume now that I, is T-cohomologous to I, on Y. If z € Y then
T(¢Ypx) = 7(x) — t for every sufficiently small ¢ > 0 (depending on x). Thus,
T(¢Yyx) = Tz, and

Iy(Yx) — In(ex) = q(Tx) — q(Ysx).

Since
L) —Iy(x) 17 _
Jim S5 = }g%t/o 9(Ysz) ds = —g(2),
we obtain
. Ig(l/’tx) — In(ix) Ig(x) — Ip(7)
9(@) = hiz) = lim <_ t . + t : >
_ q(Tz) —q(Prz) | q(Tz) —q(x)
= Jm, <_ t * t > (29)
~ im q(rz) — g )‘
t—0+ t

We also have
T(x)+t ifx g X x {0}
t if x € X x {0}

T(Yrx) = {

for every sufficiently small ¢ > 0 (depending on z). When x ¢ X x {0} we
have T'(¢_4x) = Tz and one can proceed in a similar fashion to the one
above to show that

q(¢e) — q(x)

g(z) — hla) = lim LEEZLL) (30)
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When z € X x {0} we have T'(¢p_x) = z, and
Ig(p—rx) — In(Y—sx) = q(x) — q(p—x).

Since

. L) 1[0 -
Jim === = lim o _tg(d)sx) ds = g(z),

we obtain

o) — hla) = fimg P ZDD)_ py LRy

By (29), (30), and (31), if x € Y then

. q(x) — q(z)
g(z) — h(z) = lim EEEE—

Therefore, g is ¥-cohomologous to h on Y.

It remains to prove that Property 3 implies Property 2. Assume that
Property 3 holds with the function ¢: X x {0} — R. We can extend ¢ to a
function ¢: Y — R by

t
) = o)~ [ Tatwa) ~ bl ds
for every y = (x,0) and t € [0,7(x)). For every t € [0,7(x)) we have
Ty = Ty and by (11) we obtain
9(Ty) — q(¥ey) = ¢(Ty) — q(¥r)

7(y)
- / [9(%at) — h(tbu)] ds

= Iy(vry) — In(Yry).
This completes the proof of the theorem. O

Proof of Proposition 8. The proof is a straightforward modification of the
corresponding arguments in the proof of Proposition 6 (see Section 6.2 be-
low). O

Proof of Theorem 9. By (19), the desired statements follow immediately
from Theorem 12 by setting u = 1. O

Proof of Theorem 10. This follows immediately from Theorem 13 by setting
k=191 =g,and u=1. O

6.2. Proofs of the results in Section 2.

Proof of Theorem 1. If g is ®-cohomologous to a constant, then B(g) = 2.
Assume now that g is not ®-cohomologous to a constant. Consider a
Markov system, and the associated suspension flow ¥ = {44 }; and coding
map 7: Y — A satisfying (15). The map 7 can be used to transfer the
results from the symbolic dynamics to the dynamics on the manifold.
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By (15), we obtain m(B(gom)) C B(g). A priori one cannot discard that
there exists a point x € X such that

1 [ I
litm inf p / (g om)(Yrx)dr < limsup i / (g om)(¢rx)dr (32)
= 0 t—00 0

and

I I
lig(i)gf;/o g(@Z)T(wx))dT:hmsupZ/o g, (mz)) dr. (33)

t—o0
With slight changes to the proof of Theorem 7.4 in [3] (see also the proof
of Theorem 21.1 in [7], and in particular that of Lemmas 2 and 3 inside
Theorem 21.1) one can prove the following.

Lemma 1. We have
I I
lim inf — / (g om)(¢rx)dr = limsup — / (gom)(¢Yrz)dr =«
t—oo 1 Jo t—oo t Jo
if and only if
1 [ 1
lim inf — / g(r(mx)) dr = limsup — / g(Yr(mx)) dr = «.
t—oo ¢ 0 t—oo T 0

The lemma shows that (32) and (33) cannot hold simultaneously, and
hence, B(g) C m(B(gom)). Therefore,

B(g) = m(B(gom)). (34)

We now proceed as in [3]. Let R C A be the “boundary” of the Markov

system, i.e., the set of points y € A such that ¢z is in the boundary of some

element of the Markov system for some ¢t € R. Note that R is ®-invariant,

and that 7: 77!(A\ R) — A\ R is a homeomorphism. Furthermore, since
there exist cylinders C' C X such that 7(C) is disjoint from R, we have

h(¥|r'R) < h(¥) and h(®|R) < h(®|A).

By (34), we conclude that
h(@[B(g)) = h(¥[B(g o).

By Theorem 10, we obtain

h(@|A) = h(¥) = h(¥[B(g o)) = h(P[B(g)).
This completes the proof of the theorem. O
Proof of Theorem 2. Let

G {ge C?A) : g is not $-cohomologous to a constant},

and g € G. By Livschitz’s theorem for flows (see, for example, Theo-
rem 19.2.4 in [6]), there exist two points z; = ¢pna; for i = 0, 1 such
that

1

To 1 Ty
0= —/ 9(przo) dr — ?/ g(prz1)dr| # 0.
0 1.Jo

To
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For any f € C*(A) such that [|f — g|la < 0/2 we have

1

T;
—/ (f — 9)(prx;) dr
0

. < sup{f(2) — g(a)| s € A} <1  glla < 2

27

for ¢ = 0, 1, and hence,

1 [T I

— d — dr.

T J flprzo) dr # T J, flprar)dr
This implies that f is not ®-cohomologous to a constant. Hence, G is open.

Let 'y and I'y be two distinct periodic orbits, and choose a function

h € C*(A) such that hlp, =i for i = 0, 1. Let g ¢ G. For any ¢ > 0,
the function g. = g +eh € C*(A) is not ®-cohomologous to a constant,
because averages on I'g and I'y differ by . Moreover, ||g: — glla < €||h/|as
and hence the function g can be arbitrarily well approximated by functions

in G. Therefore, G is dense in C“(A). O

Proof of Theorem 4. Consider a Markov system, and the associated suspen-
sion flow ¥ = {41 }; and coding map 7: Y — A satisfying (15). By Lemma 1
(see the proof of Theorem 1), we have &(«) = D, («) for every a, with u = 1,
and D, as in Section 4.2. Therefore, the desired statements follow immedi-
ately from Theorem 12 by setting u = 1. O

Proof of Theorem 5. The proof is a straightforward modification of the cor-
responding arguments in the proof of Theorem 7 (see Section 6.1 above). O

Proof of Proposition 6. Given m € N, define a function 7,,: A — R by

m—1

Tm(z) = Z 7(T'z). (35)

If x € A and m € N then
TTVL(I)
[ stewras =3 [ gtpa)as
i=0 7T

7(T"z) )
=3 [ steTins (36)

Given t > 0 there exists a unique m € N such that 7,,(z) < t < Tp11(2).
One can write t = 7, () 4+ & for some « € (inf 7,sup 7) and thus

1 me(I) g(gpsx) ds + f(;rm(ﬂf)+'§ g(gos,’]}) ds

t
- x)ds = 0
t /0 9(psz) ds Tm(x) + K
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and

1 t 1 Tm(:l?)
! /0 glsz) ds — /0 glsz) ds

t Tm ()
1 1 m(@) K supl|g|
_ o2)|ds + ———20
Tm(@) + Kk Tim(2) /0 l9(ps)| ds + Tm(x) + K

(Tm (%) + £)Tm () Tm(z) + £
2 sup 7 sup|g|
Tm () '

By (6), if t — oo, then m — oo and 7, (x) — oo. Hence, by (36),

<

m—1

L Cglpsa)ds — —— 3" 1,(T)
— | g(psz)ds — z
t Jo Tm () =0 I

— 0 ast — o0.

This immediately implies Statements 2 and 3.
Assume now that ¢ is Holder continuous. If z and y lie in the same
domain of continuity of 7, then

7(x) 7(y)
Io(e) = L)l =| [ glea)ds+ / " lglpe) — glouy)) ds

()
<suplg| - |7(x) — 7(y)|

+sup7- sup |g(ps7) — g(psy)|
56(077—(3/))

< cd(z,y)* +c sup |d=ps]|*d(z, ),
s € (0,supt), z€ M

for some positive constants ¢ and . This shows that I, is Holder continuous
on each domain of continuity of 7. O

6.3. Proofs of the results in Section 4.

Proof of Proposition 11. For each m € N, let 7,,,: X — R be the function
defined by (35). Given z € X, let m = m(z,t) € N be the unique integer
satisfying 7,,—1(x) < t < 7,(z). By Proposition 19 in Appendix A there
exists a constant ¢ > 1 such that if y = (z,s) € Y, ¢t > 0, and € > 0 is
sufficiently small, then

Bx(xz,m,e) x (s — 2,34— %) C B(y,t,e) C Bx(x,m—1,¢) x (s—ce,s+ce),
(37)

where
Bx(z,m,e) = {2’ € X : dx(T*2', T"z) < e for k=0, ..., m}. (38)

By Proposition 18 in Appendix A the function I, is Holder continuous on X.
Since p is an equilibrium measure of I, it has the Gibbs property. Therefore,
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the limit
o logu(Byte) . . logu(Bx(z,m,e))
1 f— =1 f—
it eSS @)
is independent of €. Let
6(e) = sup{[u(y1) — uw(y2)| : dy (y1,92) <&}
and observe that
t
. i(e)ld
Ultie) _ Bwe) +0@0dr 30 0
"~ Jou($ry) dr Jo ul¥ry) dr tinfu
y (39) and (40), we conclude that
1 B(y,t 1 t
L (o) i BB o r(Bpte))
’ t—o0 U(y7t7 6) t—00 fO wTy dT
A similar argument applies to dy, ., (y). O

Proof of Theorem 12. We shall reduce our setup to the case of maps.

Lemma 2. Ify = (z,s) € Y, then

.. Z’(ZO I, (TZ"L')
d,.(y) =liminf - =r———+——
Yy, (y) 00 Zi:O Iu (sz)
and '
Z?io I (T'x)

d = limsup - =" —~.
V,u(y) m—>oop ZTLZO [u(sz)
Proof of the lemma. Let 7,,: Y — R be the function defined by (35). Given
t > 0, let m € N be the unique integer such that 7,,,(z) <t < Tpp41(x), and
write t = 7, () + £ with £ € (inf 7,sup 7). Proceeding as in the proof of
Proposition 6 we obtain

1 t m—1
/ u( u( — 0 ast— oo. (41)
t 0 1=0
Let Bx(xz,m,¢) be as in (38). B ( 7),
‘—logV(B(y,t,fs)) ;. log n(Bx (z,m, £)) ’ 0ast—oo.  (42)

t Tm ()
Note that T%(z,s) = T%(x,0) for every i € N, and hence,
m—1 m—1
Z Iu(Tiy) = Z Iu(Tix)
i=0 =0
Write

—logv(B(y,t,¢)) n log u(Bx (z,m,¢€)) '

A= t m—1 i
Jo u(¥ry) dr >ico Lu(T'z)
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Since 0 < infu < supu < oo, by (41) and (42) we obtain

[ —log u(Bx(x,m,¢)) o t
A= ( + (t)) 7f0

Tm(z) 1/1ry
1 B t
+ Og:u’( X(x7m7€)) —I—O(t) ’
Tm(fL‘) fo %y
and hence,
1 h,(T)

Al < [ —— 4+ L) o(t).

Al < <infu+ inf 7 )O()
This completes the proof of the lemma. O

Given Z C X and 0 € R, set

m(C)—1
Ng(Z) = lim inf Z exp | —(sup L(T'z):z€C , (43)
{—00
cel =0
with the infimum taken over all covers I' of Z by cylinders C;_, ...;,, such

that m(C;_,....,,) = m > L.
Lemma 3. If Z C X is T-invariant, then
dim,{(z,s) e Y:x € Z and s € [0,7(x)]} = inf{F: N3(Z) = 0}.

Proof of the lemma. We use the same notation as in the proof of Lemma 2.
The inequality

m—1

/ w(tp, ) dT—ZI (T'z)

implies the desired statement. O

< Ksupu

By Lemmas 2 and 3 we have

Ko ={(z,5) €Y :2 € Z, and s € [0,7(2)]},

Za:{a:EX lim %:a},
m=oe 3 ity Lu(Ttx)

where

and

Dy(a) =inf{B : Ng(Z,) = 0}.

T)//Xfud,u:hy(\ll)//yudy.

Lemma 4. We have
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Proof of the lemma. By (11),

/I d,u//Tdu // ) dsdp(z)
/ / " (@ 8)) dv(z, )
—/Yudy

Abramov’s entropy formula shows that

//Iduh /Tdu//fduh //udu

This establishes the desired identity. O

By Lemmas 2 and 4, we obtain d,,(y) = h,(¥)/ [, udv for v-almost
every y € Y. We can now apply Theorem 6.6 in [3] to obtain the remaining
properties in the theorem. O

Proof of Theorem 13. Proceeding as in the proof of Theorem 12, one can
reduce our setup to the case of maps. More precisely, Lemma 2 establishes
the identity (21), with F(g1,...,gx;u) and €(g1,...,9k;uw) as in (20) and
(22). Furthermore, by Lemma 3 we have
dim, Y =inf{g8 : Ng(X) =0} (44)

and

dimy, F (g1, ..., gk u) = inf{B : Ng(€(¢g1,...,9x;u)) =0}, (45)
with Ng(Z) asin (43). Note that the set €(g1, ..., gx; u) is defined entirely in
terms of the map T, and the functions I,, and Iy, for each j. By Theorem 7,
the function g; is ¥-cohomologous to a multiple of v on Y if and only if Iy,
is T-cohomologous to a multiple of I, on X, and hence, if and only if I, is
T-cohomologous to Iy = a;l, on X, where o is the unique number such
that Pr(l,,) = Pr(a;l,). Therefore we have the setup of Theorem 7.1 in
[3], which implies that

inf{3: Ng(€C(g1,...,9ku)) =0} =inf{3 : Ng(X) = 0}.
The desired result follows from (44) and (45). O

APPENDIX A. BOWEN-WALTERS DISTANCE FOR SUSPENSION FLOWS

We recall here a distance introduced by Bowen and Walters in [5] for
suspension flows with an arbitrary height function. We also establish several
properties which are needed in the proofs of the statements in Sections 2-5.
We would like to thank Valentin Afraimovich and Jean-René Chazottes for
bringing the paper [5] to our attention.

As in Section 3.1, let T: X — X be a homeomorphism of the compact
metric space (X, dx), and 7: X — (0, 00) a Lipschitz function. Without loss
of generality one can assume that the diameter diam X of X is at most 1.
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If this is not the case then since X is compact one can simply consider the
new distance dx/diam X on X.

We also consider the space Y in (9) with the points (x, 7(x)) and (T'x,0)
identified for each x € X. The suspension flow over T with height function
7 is the flow U = {¢,}; on Y with ¢;: Y — Y defined as in (10).

We first assume that 7 = 1 on X, and introduce the Bowen—Walters
distance d; on the corresponding space Y. We shall first consider horizontal
and vertical segments. Given z, y € X and ¢ € [0, 1] we define the length of
the horizontal segment [(x,t), (y,t)] by

pr((z,t), (y,t) = (1 — t)dx (2, y) + tdx (Tx, Ty). (46)
Note that

pr((2,0), (y,0)) = dx(z,y) and  pp((2,1),(y,1)) = dx(Tz,Ty).

Furthermore, given (z,t), (y,s) € Y on the same orbit we define the length
of the vertical segment [(z,t), (y,s)] by

po((x,1), (y,8)) = nf{|r| : ¢ (x,1) = (y,s) and r € R}. (47)
Finally, given two points (z,t), (y,s) € Y the distance di((x,t), (y,s)) is
defined as the infimum of the lengths of paths between (z,t) and (y,s)
composed by a finite number of horizontal and vertical segments.
More precisely, for each n € N we consider all finite chains zy = (z,t), 22,
.4y Zn—1, 2n = (y, s) of points in Y such that for each i either z; and z;y;
are on the same segment X x {t} for some ¢ € [0, 1] (in which case [z;, z;11]
is called a horizontal segment), or z; and z;4; are on the same orbit of the
flow (in which case [z, zi+1] is called a wvertical segment). The lengths of
horizontal and vertical segments are defined respectively in (46) and (47).
We remark that when [z;, z;11] is simultaneously a horizontal and a vertical
segment, since by hypothesis the space X has diameter at most 1, the length
of [2i, zi+1] is computed thinking of it as a horizontal segment. The length
of the chain from zy to z, is finally defined as the sum of the lengths of the
segments [z;, z;41] fori =0, ..., n— 1.
We now consider the case of an arbitrary Lipschitz height function 7: X —
(0,00), and introduce the Bowen—Walters distance dy on Y. Given two
points (x,t), (y,s) € Y, we set

dy ((z,1), (y,5)) = di((z, t/7(x)), (y, /7 (5))),
where dp is the Bowen—Walters distance when 7 is the constant 1. Note that
a horizontal segment is now of the form w = [(z, t7(x)), (y,t7(y))], and that
its length is
Kh(w) = (1 — t)dx(l',y) + tdx(T.%', Ty).
The length of a vertical segment w = [(z,1), (z, s)] now becomes
by(w) = [t — s|/7(x),

provided that ¢ and s are sufficiently close (or otherwise when z is not a
fixed point of T').
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We shall from now on assume that 7" is an invertible Lipschitz map with
Lipschitz inverse. We consider a number L > max{1/min7,sup 7, 1} which
is simultaneously a Lipschitz constant for 7, 7', and 7.

Given (z,t), (y,s) € Y we define

dX(xay) + ’t - 8’7
dr((z,t),(y,8)) =min{ dx(Tz,y)+7(x)—t+s, . (48)
dx(z, Ty) +7(y) — s +1
Note that d; need not be a metric. Nevertheless, the following statement
relates d; with the Bowen—Walters distance dy .

Proposition 17. There exists a constant ¢ > 1 such that for each p, ¢ €Y
the following property holds:

¢ tdr(p,q) < dy(p.q) < cdr(p, q). (49)
Proof. Let (z,t), (y,s) € Y. We easily obtain
t s

L_1|t75|7L2dX("E7y) < SL|t75|+L2dX(‘T7y) (50)

(x)  7(y)
We now consider the chain formed by the points (z,t), (y,t7(y)/7(x)), and
(y,s), which is composed of a horizontal and a vertical segment. We obtain

dy((l‘, t)a (ya 5))

< Ln((@, 1), (y, t7(y)/7(x))) + Lo ((y, t7(y) /7(x)), (y, 5))
t t
< (1 - %) dx(z,y) + %dX(Tx,T?/) +
< Ldx(z,y) + L|t — s| + L*dx(z,v),
using (50). Therefore

dy (1), (y,5)) < cldx(z,y) + [t = 5[] (52)

whenever ¢ > L + L?. Considering the chain formed by the points (z,t),
(x,7(x)) = (Tz,0), (y,0), and (y, s) we obtain

dy (2.0 (:5) < TS () +

T(y) (53)
< Lldx(Tz,y) + 7(x) — t + s].

By (52), (53), and the symmetry of dy we conclude that

dY((J:7 t)v (y’ S)) < Cdﬂ'((x’ t)’ (ya 5))

whenever ¢ > L + L2.

Consider now a chain zy, ..., z, between (z,t) and (y, s), and denote its
length by ¢(zg, ..., 2,). Assume further that the chain does not intersect the
roof of Y. Let H and V denote the set of indices in the chain corresponding
respectively to horizontal and vertical segments, and write

ly = Zeh(ziazi—i—l) and fy = Z&J(ziyzi—&—l)-
icH iev
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Let us denote z; = (x;,7;) € Y. Since the chain does not cross the roof, for
the horizontal length we have

ly = Z(l —13)dx (@i, xip1) + ridx (Tz;, Txiq)

iGHl ) (54)
> L 2(1 —13)dx (@i, Ti1) + ridx (vi, wip1) = L dx (2, y).
i€H
For the vertical length, using (50) we obtain
by > |t/7(x) = s/T(y)| = L7t — 5| = L2dx(x,y). (55)
It follows from (54) and (55) that
DLH(21, .. 2) > (L4 + L)l + Lby > dx(z,9) + |t — 5. (56)

It is easy to see that for any chain of length ¢ there exists another chain
with the same endpoints and of length at most L¢, such that at most one
segment intersects the roof of Y. Notice that if a chain crosses the roof of Y’
at least two times in the same direction then its length is at least 2, which
is always larger than the length of the chain used to establish (51). Hence
Ldy ((x,t), (y,s)) is bounded from below by the infimum of the length of all
chains between (z,t) and (y, s) which intersect the roof at most once. Let
then zy, ..., z, be a chain intersecting the roof of Y exactly once. Without
loss of generality one can assume that there exists 1 < j < n such that
rj = 7(x;) where z; = (z,7;), and that [2;_1,2;] is a vertical segment. If
z; is after z;_; along the orbit then by (56) we obtain

2L (20 ..., 2j) + (25 -y 2n)] > dx (2, 25) + 7(x) — t + dx (Txj,y) + 5.
Since

Ld(z,z;) + d(Txj,y) > d(Tz,Tx;) + d(Tzj,y) > d(Tz,y)
we conclude that
2L0(21, ..., 2n) > dx(Tz,y) + 7(x) — t + 5. (57)
If z; is before z;_1 along the orbit then a similar computation gives
2L°0(z1, .-y 2) 2 dx (2, Ty) +7(y) — s +t. (58)
By (56), (57), and (58) we conclude that

dx((z,1), (y, ) < cdy ((2,1), (y, 5))
provided that ¢ > 2LS.
Setting ¢ = 2L% we obtained the desired inequalities in (49). O
Given a continuous function g: ¥ — R we define a new function I,: X —
R by (11).

Proposition 18. If g is a Holder continuous function on Y, then I, is
Hoélder continuous on X.
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Proof. We proceed in a similar way to that in the proof of Proposition 6.
Let z, y € X and assume without loss of generality that 7(z) > 7(y). We
obtain

7(x) 7(y)
Io(e) = L)l = | [ gleu)ds + / " lgoe) — glou)) ds

()
<suplg| - |7(x) — 7(y)|

+sup7- sup |g(psT) — g(psy)l
56(077—(3}))

<suplg|- Ldx(xz,y) +b sup dy((z,s),(y,s))",
s€(0,7(y))

for some positive constants « and b. It follows from Proposition 17 and (59)
(see also (48)) that

L) — I,(y)| < suplg| - Ldx(x,) + b (cdn((z, 5), (3, )"
< [suplgl - L + beldx ()"

This shows that I, is Holder continuous on X. O

We now consider Bowen balls in X and Y, defined respectively by
Bx(z,me)™ (| T7"Bx(T",e),

0<n<m
BY(Z/v P 5) d:ef m w—tBY(wt:% 5)'
0<t<p

We say that T has bounded distortion if for each Holder continuous function
g: X — R there exists a constant D > 0 such that if z € X, m € N, ¢ > 0,
and y € Bx(x, m,¢) then

m—1 m—1
> g(TFa) =Y g(Thy)| < De.
k=0 k=0

Recall also the definition of the function 7, in (35).

Proposition 19. Assume thatT" has bounded distortion. There exists k > 0

such that for every x € X, 0 < s < 7(x), and m € N, if e > 0 is sufficiently

small then

1

By ((z,8), Tim(z), ;5) C Bx(xz,m,e) x (s —e,s+¢) C By ((z,8), Tm(z), ke).
(60)

Proof. Let € € (0, 5-) with ¢ as in Proposition 17. Let also (z,t) € Y with

t € (ce,7(x) —ce), and (y,t) € By ((z,s), Tm (), €).

If m = 0 then by Proposition 17 we have d.((x,t), (y,s)) < ce. Since
T(x)—t+s>7(x)—t>ce and 7(y)—s+t>t>ce

we must have

dx(z,y) + [t — s| = d((z,1), (y,s)) < ce,
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which implies that dx (z,y) < ce and |t — s| < ce. This establishes the first
inclusion when m = 0.

For any 1 < n < m set t, = 7,(x) — t and s, = 7,(y) — s. It is easy to
see that ¢y (z,t) = (T"z,0) and ¥, (y,s) = (T™y,0). By Proposition 17
we obtain

dx ("2, T"y) < cdy (Y, (2, ), ¥s, (4, 5))
< CdY(wtn (.%', t)7 ¢tn (y7 8)) + CdY(wtn (yv 8)7 wsn (ya S)) (61>
< ce + |ty — Snl.
Furthermore, by (48) we have

dﬂ(¢tn ($7 t)u wtn (3/7 8)) S ce.
Thus there exists y, € X and r, € (¢, — ce,t, + ce) such that ¢, (y,s) =
(yn,0). Moreover the sequence 1y, is strictly increasing, since t,, 41 —t, > 2ce.
Hence s, < r, <t, + ce. By symmetry we obtain ¢,, < s, + c¢, and hence
|tn, — sn| < ce. By (61) we conclude that

dx(T"z, T"y) < c¢(1 + c)e.

This establishes the first inclusion in (60) provided that x > ¢(1 + ¢).

Let now y € Bx(x,m,e) and s € (t —¢e,t +¢). Take r € (0,7, (x)) and
choose n such that 7,,(x) < r+t < 741(x). Write v’ = r 4+t — 7,(x) > 0.
By Proposition 17, the bounded distortion property, and (48) we obtain

dy (¥r(z, 1), (y, 5)) < dy (T"2,7"), (T"y, 7)) + dy (T"y, "), ¥ (y, 5))

S de((Tn.ﬁ, ’I”/), (Tny7 7"/)) + CdTF((Tny7 7"/)7 w'l“(yv 3))
cdx (T"z, T"y) + c|r' + 1 (y) — r — 3|
cdx (T"x, T"y) + clt — 5| + clmn(2) — T (y)]
¢(2+ D)e.
This establishes the second inclusion in (60) provided that k > ¢(2 + D).

Setting x = max{c(1+c¢),c(2+ D)} we obtain the desired inclusions. O

VANVANVAN

REFERENCES

1. L. Barreira, Ya. Pesin and J. Schmeling, Multifractal spectra and multifractal rigidity
for horseshoes, J. Dynam. Control Systems 3 (1997), 33-49.

2. L. Barreira, Ya. Pesin and J. Schmeling, Dimension and product structure of hyperbolic
measures, Ann. of Math. (2) 149 (1999), 755-783.

3. L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy
and full Hausdorff dimension, Israel J. Math., to appear.

4. R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460.

5. R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations
12 (1972), 180-193.

6. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,
Encyclopedia of mathematics and its applications, vol. 54, Cambridge Univ. Press,
1995.

7. Ya. Pesin, Dimension theory in dynamical systems: contemporary views and applica-
tions, Chicago Lectures in Mathematics, Chicago University Press, 1997.



MULTIFRACTAL ANALYSIS OF HYPERBOLIC FLOWS 33

8. Ya. Pesin and V. Sadovskaya, Multifractal analysis of conformal azxiom A flows,
preprint.

9. Ya. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for confor-
mal expanding maps and Markov Moran geometric constructions, J. Statist. Phys. 86
(1997), 233-275.

10. M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel J.
Math. 15 (1973), 92-114.

11. J. Schmeling, On the completeness of multifractal spectra, Ergodic Theory Dynam.
Systems, 19 (1999), 1595-1616.

12. J. Schmeling, Entropy preservation under Markov coding, preprint.

13. D. Simpelaere, Dimension spectrum of axiom A diffeomorphisms. II. Gibbs measures,
J. Statist. Phys. 76 (1994), 1359-1375.

DEPARTAMENTO DE MATEMATICA, INSTITUTO SUPERIOR TECNICO, P-1049-001 Lis-
BOA, PORTUGAL

E-mail address: barreira@math.ist.utl.pt

URL: http://wuw.math.ist.utl.pt/~barreira/

E-mail address: saussol@math.ist.utl.pt

URL: http://www.math.ist.utl.pt/~saussol/



