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Université de Picardie Jules Verne
80039 Amiens, France

(Communicated by Yuri Kifer)

Abstract. We introduce pointwise dimensions and spectra associated with Poincaré
recurrences. These quantities are then calculated for any ergodic measure of positive

entropy on a weakly specified subshift. We show that they satisfy a relation compa-
rable to Young’s formula for the Hausdorff dimension of measures invariant under

surface diffeomorphisms. A key-result in establishing these formula is to prove that

the Poincaré recurrence for a ‘typical’ cylinder is asymptotically its length. Examples
are provided which show that this is not true for some systems with zero entropy.

Similar results are obtained for special flows and we get a formula relating spectra
for measures of the base to the ones of the flow.

1. Introduction. Poincaré recurrences are main indicators and characteristics of
the repetition of behavior of dynamical systems in time. A traditional approach is
to study statistical properties of the quantity τ(x,U), the first return time of the
orbit through x into a set U , [22] and references therein. These investigations led
to a series of deep results. But they have the disadvantage that one does not get
control on the sets of zero measure. As it was shown in [6], the remaining zero set
can be very large in terms of topological entropy or dimension. We adopt another
point of view: instead of looking at the mean return time or at the return time
of points, we are going to study τ(U), the smallest possible return time into U ,
that is we define the Poincaré recurrence for a set, as the infimum over all
return times of the points inside the set [2]. Poincaré recurrences for a set U can
be very different from return times τ(x,U). If U = ξn(x) is a cylinder of length n,
then the return time τ(x, ξn(x)) of µ-generic point behaves like exp(nhµ(T, ξ)) [14]
(where T is map generating the dynamical system, hµ(T, ξ) is the entropy of µ,
w.r.t. T and ξ), whereas the Poincaré recurrence for ξn(x) is typically of order n,
provided that µ is ergodic, T is weakly specified and hµ(T, ξ) > 0 (Theorem 4.3
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below). Roughly speaking, n-periodic points are uniformly distributed among n-
cylinders about generic points. Let us emphasize that this result does not depend
on a particular choice of a map T , a partition ξ and an ergodic measure µ.

Since we deal with a function of sets (namely U 7→ τ(U)), then it is natural to use
ideas and methods from dimension theory [17]. We define and calculate pointwise
dimensions for Poincaré recurrences (Theorem 5.1) to obtain spectra for
measures for Poincaré recurrences (Theorem 5.2). These quantities reflect
the balance between times needed for the return to the set ξn(x) and diam ξn(x)
for µ-almost every point x, provided that n is big enough. Let us remark that
positiveness of entropy is an unavoidable assumption (Theorem 4.4).

We also study in the present work special flows over weakly specified subshifts.
We introduce and study pointwise dimensions (Theorem 6.3) and spectra for mea-
sures (Theorem 6.4). The distribution of periodic orbits (zeta functions) in this
situation is well-known [15]. Nevertheless asymptotic properties of Poincaré recur-
rences remain not so well understood. Therefore our results provide a new insight
into the nature of recurrences for special flows. For example, we show that for
almost every point of the special space, Poincaré recurrence for the ball about the
point asymptotically behaves logarithmically with respect to the diameter of the
ball (Proposition 6.1).

The article is organized as follows. In Section 2, we define dynamical systems we
deal with, and Poincaré recurrences for balls. In Section 3, we introduce definitions
of dimensions for Poincaré recurrences for maps, flows and measures. Section 4 is
devoted to the study of local rates of return times for cylinders. We show that pos-
itiveness of entropy is an unavoidable assumption by considering two systems with
zero entropy. In Section 5, we prove the existence almost everywhere of pointwise
dimension and show that they coincide with spectra for measures. Similar results
are obtained in Section 6 for special flows. Special flows over subshifts of finite
type are involved in the construction of the symbolic dynamics of hyperbolic and
Anosov flows [7].

The results presented here were announced in [3], though in a slightly different
form and in a less general setting. Let us mention the papers [16, 8, 13] dealing
with a dimension also based on Poincaré recurrences for sets but different from ours.
The present work should rather be considered as a companion of the paper [4] in
which was defined and studied spectra of sets whereas here we deal with measures
responsible for the statistical properties (long-term behavior) of the system.

2. Set-up and definitions for maps and special flows.

2.1. Maps. We shall deal in this work with dynamical systems (X,T ) which are
weakly specified subshifts. This means that there exists a finite set Σ, called the
alphabet, and X is a closed subset of ΣN (non-invertible case) or ΣZ (invertible
case) which is invariant by the shift map T defined by (Tx)i = xi+1. We endow
X with the product topology, which makes X a compact metrizable space. Weak
specification means that given ε > 0, there is an integer N = N(ε) such that for any
two points x(1), x(2) ∈ X, for any integers a1 ≤ b1 < a2 ≤ b2 with ai− bi−1 ≥ N(ε),
i = 1, 2, and for any integer p with p ≥ N(ε) + b2 − a1, there exists z ∈ X
with T pz = z such that d(Tnz, x(i)) ≤ ε, for ai ≤ n ≤ bi, i = 1, 2 (d is any
distance compatible with the product topology). Fundamental examples of specified
subshifts are subshifts of finite type and sofic subshifts (for which in fact the above
property holds given any k arbitrary points x(i), 1 ≤ i ≤ k, k ≥ 1).
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Given a ∈ Σ let [a] = {x ∈ X : x0 = a} and let ξ = {[a] : a ∈ Σ} denote the
partition into 1-cylinders. Our results only concern measures with positive entropy,
so we will assume that (X,T ) has positive topological entropy (which is implied by
weak specification if there exists at least two periodic points in X) ; see [11]. We
now define a metric on X equivalent to the product topology (see Lemma 2.1).

Case when T is not invertible. Denote by ξn the dynamical partition, that
is: ξn

def=
∨n−1
j=0 T

−jξ, ξ0 def= {X, ∅}. Then ξn(x) will be the atom of the refined
partition ξn that contains x and will be referred to as the n-cylinder about x.
Given a continuous function u : X → (0,∞) we endow X with the metric dX
defined by dX(x, y) def= e−u(ξn(x)) whenever y ∈ ξn(x) and y 6∈ ξn+1(x), where

u(ξn(x)) = sup
k≤n

sup
z∈ξk(x)

(
u(z) + u(Tz) + · · ·+ u(T k−1z)

)
, n = 1, 2, ....

Remark that the standard metric is recovered by choosing u ≡ 1. Choosing u(x) =
− log λ(x0), which is a constant on each atom of ξ, gives

dX(x, y) =
n−1∏
`=0

λ(x`), and diam ξn(x) =
n−1∏
`=0

λ(x`) ,

i.e. we have a situation familiar to that encountered in Moran-like geometric con-
struction. More generally, a Hölder continuous function u will gives the distance
used to generate Cantor-like sets in Rd [4, 17] modeled by subshifts.

Case when T is invertible. Denote by ξnm the dynamical partition, that is:
ξnm

def= Tmξ ∨Tm−1ξ ∨ · · · ∨T−n+1ξ, ξ0
0

def= {X, ∅}, where m ≥ 0, n ≥ 0. Then ξnm(x)
will be the atom of the refined partition ξnm that contains x and will be referred to
as the (m,n)-cylinder about x. Given two continuous functions u, v : X → (0,∞)
such that u(x) = u(y) whenever ξn0 (x) = ξn0 (y) for every n ≥ 0 and v(x) = v(y)
whenever ξ0

m(x) = ξ0
m(y) for every m ≥ 0, we endow X with the metric dX defined

by (2.1) below. For an arbitrary pair x, y ∈ X, there is a unique pair (m,n) such
that y ∈ ξnm(x) and y /∈ (ξnm+1(x) ∪ ξn+1

m (x)). Then

dX(x, y) def= max
{

e−u(ξn0 (x)) , e−v(ξ0
m(x))

}
(2.1)

where

u(ξn0 (x)) = sup
k≤n

sup
z∈ξk0 (x)

(
u(z) + u(Tz) + · · ·+ u(T k−1z)

)
, n = 1, 2, ...,

v(ξ0
m(x)) = sup

k≤m
sup

z∈ξ0
k(x)

(
v(z) + v(T−1z) + · · ·+ v(T−k+1z)

)
,m = 1, 2, ....

Taking u(x) = − log λ(x0), v(x) = − log γ(x−1), which is constant on each atom of
ξ1
0 and ξ0

1 , respectively, gives

diam ξnm(x) = max
{ m∏
`=1

γ(x−`),
n−1∏
`=0

λ(x`)
}
·

Such a situation occurs, for example, in the case of a piecewise linear Smale
horseshoe. In the general case of basic axiom A sets on surfaces, there exists an
associated subshift of finite type (X,T ) and some functions u, v satisfying the above
assumptions (i.e. depending only on forward, respectively backward, itineraries)
giving rise to a metric dX which is “adapted” to the initial system.

Although X is not a smooth manifold, by analogy with the smooth case it makes
sense to call the numbers eu(x) and e−v(x) the derivative of the map T at the point
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x in the unstable and stable directions. If µ is an invariant probability measure it
is natural to call the numbers

χ+
µ

def=
∫

u(x)dµ(x), χ−µ
def=
∫
−v(x)dµ(x) (2.2)

the Lyapunov exponents of the map.
Given x ∈ X and ε > 0 we denote by B(x, ε) the open ball of radius ε centered

at x in the metric dX .

Lemma 2.1. (X,dX) is an ultra-metric space, and for any x ∈ X and ε > 0 we
have

1. B(x, ε) = ξnx,ε(x) where we set nx,ε = min{n ∈ N : e−u(ξn(x)) < ε} in the
non-invertible case;

2. B(x, ε) = ξ
nx,ε
mx,ε(x) where we set nx,ε = min{n ∈ N : e−u(ξn0 (x)) < ε} and

mx,ε = min{m ∈ N : e−v(ξm0 (x)) < ε} in the invertible case;
3. The topology generated by dX is equivalent to the product topology.

Proof. We write the proof in the non-invertible case, the invertible case can be done
along the same lines.

Let x, z ∈ X, with x 6= z. There exists n such that ξn(x) = ξn(z) but ξn+1(x) 6=
ξn+1(z). This implies that dX(x, z) = e−u(ξn(x)) = e−u(ξn(z)). For any y ∈ X either
y /∈ ξn+1(x) or (and) y /∈ ξn+1(z). Suppose for simplicity that y /∈ ξn+1(x). Then
there exists k ≤ n such that y ∈ ξk(x) but y /∈ ξk+1(x), hence dX(x, y) = e−u(ξk(x)).
Since u(ξk(x)) is increasing, we get that dX(x, y) ≥ dX(x, z). This proves that

dX(x, z) ≤ max{dX(x, y),dX(y, z)}.

Thus, dX is a distance, and in addition the space (X,dX) is ultra-metric (since the
precedent strong inequality holds instead of the usual ‘triangle inequality’).

Let x ∈ X, ε > 0, and set nε = min{n ∈ N : e−u(ξn(x)) < ε}.
For any y ∈ ξnε(x), y 6= x, there exists n ≥ nε such that y ∈ ξn(x) but

y /∈ ξn+1(x), and by definition dX(x, y) = e−u(ξn(x)) ≤ e−u(ξnε (x)) < ε. Thus
y ∈ B(x, ε).

Let y ∈ B(x, ε), y 6= x, and n such that y ∈ ξn(x) but y /∈ ξn+1(x). By definition
we have e−u(ξn(x)) = dX(x, y) < ε, hence, n ≥ nε, and y ∈ ξnε(x). This proves that
any ball is indeed a cylinder, and Statement 3 is now an immediate consequence.

2.2. Poincaré recurrences for maps. Assume that T preserves a Borel proba-
bility measure µ. For any measurable subset U of X, we define the first return time
of a point x ∈ U into U :

τT (x,U) def= inf{k ≥ 1 : T kx ∈ U} .

By convention we put that this return time is infinite if the point x never comes
back to U .

For any T -invariant measure µ, Poincaré’s recurrence Theorem asserts that µ-
almost every point returns to any measurable subset U of positive measure. In the
case when µ is ergodic, Kac’s Theorem tells us that the mean value of τ(·, U) over
U (suppose that µ(U) > 0) is the inverse measure of U . (See [19] for instance for
these two basic results.)

We adopt another point of view: instead of looking at the mean return time
or at the return time of points, we are going to study the smallest possible return
time into U , that is we define the first return time of a set, as the infimum over all
return times of the points of the set. More precisely:
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Definition 2.1 ([2]). Let U be a subset of X. Then,

τT (U) def= inf{τT (x,U) : x ∈ U} .

We collect in the following proposition various basic properties of the Poincaré
recurrence of sets.

Proposition 2.2. Let (X,B, µ, T ) be a dynamical system, ξ a partition of X and
U ⊂ X any set. Then the following properties hold:

1. τT (U) = inf{k > 0 : T kU ∩ U 6= ∅} = inf{k > 0 : T−kU ∩ U 6= ∅}.
2. τT (U) = τT (T−1U). If T is invertible then τT (TU) = τT (U).
3. Monotonicity: A ⊂ B ⇒ τT (A) ≥ τT (B).
4. For any n ≥ 1 and any x ∈ X, τT (ξn−1(Tx)) ≤ τT (ξn(x)).

Proof. 1. Let z ∈ U such that Tnz ∈ U and n = τT (U). Then Tnz ∈ TnU and
therefore U∩TnU 6= ∅. 2. Take the same z as before. Then z ∈ T−nU by definition,
so T−nU ∩ U 6= ∅. 3. τT (T−1U) = inf{k > 0 : T−(k+1)U ∩ T−1U 6= ∅} = inf{k >
0 : T−1

(
T−kU ∩ U

)
6= ∅} = τT (U) because T−1A 6= ∅ if and only if A 6= ∅. 4. This

is a trivial consequence of the definition. 5. Let x ∈ X. For each integer n > 0, we
have:

ξn(x) ∩ T kξn(x) 6= ∅ ⇒ ξn−1(Tx) ∩ T kξn−1(Tx) 6= ∅ ,

which implies the desired result.

2.3. Special flows. Let X be a compact metric space with a distance dX , T : X →
X a continuous map, and ϕ : X → R a strictly positive Lipschitz continuous
function.

Define the special space and the special flow as follows:

Xϕ def= {x = (x, t) : x ∈ X, 0 ≤ t ≤ ϕ(x)} ,

where we identify the points (x, ϕ(x)) and (Tx, 0) for each x ∈ X, and{
Φs(x, t) = (x, t+ s) if t+ s < ϕ(x)
Φs(x, t) = (Tx, t+ s− ϕ(x)) if t+ s ≥ ϕ(x) .

We now recall the definition of the Bowen-Walters metric on Xϕ as in [10]. Assume
for a moment that ϕ ≡ 1. Let us recall the definition of the distance on X1.
Consider the subset X × {t} of X × [0, 1] and let ρt denote the metric on X ×
{t} defined by ρt((x, t), (y, t))

def= (1 − t)dX(x, y) + tdX(Tx, Ty), x, y ∈ X. Thus,
ρ0((x, 0), (y, 0)) = dX(x, y) and ρ1((x, 1), (y, 1)) = dX(Tx, Ty). Consider a chain
w0 = x,w1, ..., wn = y between x and y where for each i either wi and wi+1

belong to X × {t} for some t ([wi, wi+1] is said to be a horizontal segment and
length([wi, wi+1]) def= ρt((wi, t), (wi+1, t))) or wi and wi+1 are on the same orbit
([wi, wi+1] is said to be a vertical segment and length([wi, wi+1]) is the shortest
temporal distance between wi and wi+1 along the orbit). The length of the chain
is defined to be the sum of the lengths of its segments. Then dX1(x,y) is defined
to be the infimum of the lengths of all finite chains between x and y.

Set h(x) def= (x, sϕ(x)) for any x = (x, s) ∈ X1. This map is continuous and
one-to-one (h−1(x, s) = (x, s/ϕ(x))). We now introduce the following distance on
Xϕ:

dXϕ(x,y) def= dX1(h−1(x), h−1(y)) . (2.3)
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Given (x, s), (y, t) ∈ Xϕ we define as in [5]

dπ((x, s), (y, t)) = min

 dX(x, y) + |s− t|,
dX(Tx, y) + ϕ(x)− s+ t,
dX(x, Ty) + ϕ(y)− t+ s

 . (2.4)

Note that dπ needs not to be a metric on Xϕ. Nevertheless, we recall Proposition 17
in [5] which says that there exists some constant δ > 0 such that for each x, y ∈ Xϕ

the following property holds:

δ−1dπ(x,y) ≤ dXϕ(x,y) ≤ δdπ(x,y). (2.5)

Now we define as usual by B(x, ε) = {y ∈ Xϕ : dXϕ(x,y) < ε} the open ball of
radius ε centered at x.

For continuous time dynamical systems it does not make sense to define the
return time of a point x ∈ U into an open set U ⊂ Xϕ as for maps, because the
point has first to escape. Thus let us define for x ∈ U the escape time

eΦ(x,U) = inf{t > 0 : Φtx 6∈ U},
and then the return time

τΦ(x,U) def= inf{t > eΦ(x,U) : Φtx ∈ U}.
We can now define the first return time of the set U as usual:

Definition 2.2. For any x ∈ Xϕ the Poincaré recurrence for the set U is

τΦ(U) def= inf{τΦ(x,U) : x ∈ U}.

If µ is a T -invariant probability measure on X, then we define a Φ-invariant
probability measure µ by∫

Xϕ
F (x) dµ(x) def=

∫
X

( ∫ ϕ(x)

0
F (x, s) ds

)
dµ(x)∫

X
ϕ(x) dµ(x)

, (2.6)

for any continuous function F : Xϕ → R. That is, µ is the normalization on Xϕ

obtained by taking the direct product of µ with Lebesgue measure on R. Note that
any Φ-invariant probability measure on Xϕ can be obtained in this way from a
T -invariant probability measure on X.

It has been shown by Abramov [1] that hµ(Φt) = |t|hµ(Φ1). This gives a natural
definition of the entropy of the flow as hµ(Φ) def= hµ(Φ1), similarly one has htop(Φ) def=
htop(Φ1). Abramov also showed that

hµ(Φ) =
hµ(T )∫
ϕdµ

· (2.7)

Let ρ : [0, 1] → R be a continuous function such that
∫ 1

0
ρ(t)dt = 1 and ρ(0) =

ρ(1) = 0. Define u,v : Xϕ → R by

u(x, s) =
u(x)
ϕ(x)

ρ(s/ϕ(x)), v(x, s) =
v(x)
ϕ(x)

ρ(s/ϕ(x)).

For instance we could take ρ(t) = 6t(1 − t). Although the space Xϕ is only a
topological manifold, it makes sense to think of the two functions eu and e−v as
the derivative of the special flow along the unstable and stable direction. In fact the
“derivative” of the flow depends on the way we do the identification, i.e. depends
on ρ. However, if µ is an invariant measure then the quantities

χ+
µ (Φ) =

∫
u(x)dµ(x), χ−µ (Φ) =

∫
−v(x)dµ(x)
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will not depend on the particular choice of the smooth function ρ. This justifies
calling these numbers the Lyapunov exponents of the flow.

3. Dimensions and spectra for Poincaré recurrences. In this section, we
first introduce general spectra following Pesin’s framework [17]. Then we proceed
with the spectra for Poincaré recurrence, for maps and flows.

3.1. Preliminaries. We start by the general Carathéodory-Pesin construction.
Let X be a separable metric space satisfying the Vitali condition1 and τ a set
function such that τ(S) ∈ (0,∞] for any S ⊆ X. For any A ⊆ X, any α ∈ R and
any q ∈ R we define

Mτ(A,α, q, ε) def= inf
(xi,εi)
εi≤ε

∑
i

exp
(
− qτ(B(xi, εi))

)
εαi , (3.8)

where the infimum is taken over all finite or countable collections (xi, εi) such
that

⋃
iB(xi, εi) ⊇ A. The limit Mτ(A,α, q) def= limε→0 Mτ(A,α, q, ε) exists by

monotonicity and we give the following definition

Definition 3.3. For any non-empty A ⊂ X and any q ∈ R,

ατ(A, q)
def=
{

inf{α : Mτ(A,α, q) = 0} if q ≥ 0
sup{α : Mτ(A,α, q) =∞} if q < 0 (3.9)

is called the spectrum for the set-function τ of the set A.

It is easy to see that whenever ατ(A, q) is finite one has

ατ(A, q) = inf{α : Mτ(A,α, q) = 0} = sup{α : Mτ(A,α, q) =∞}.

Remark 3.1. Note that ατ(A, 0) is nothing but the Hausdorff dimension of A.

Now we proceed to the definition of the spectra for measures, following [17].

Definition 3.4 (Spectra for measures). Let ατ(., q) be the spectrum defined above.
Let µ be a Borel probability measure on X.

αµτ (q) def= inf{ατ(Y, q) : Y ⊂ X, µ(Y ) = 1} .

The next definition is the local version of these quantities, called pointwise di-
mensions for the corresponding structure. Inspired by the ideas of [17], we define
the following quantities.

Definition 3.5 (Lower pointwise dimension). The lower q-pointwise dimension of
µ at the point x is defined by

dτµ,q(x) def= lim inf
ε→0

inf
y∈B(x,ε)

logµ(B(y, ε)) + qτ(B(y, ε))
log ε

(3.10)

This definition is not exactly as in [17]. However, by adopting such a definition
we may show directly that when the lower pointwise dimension is essentially a
constant, then the spectrum for a measure coincides with that constant.

Proposition 3.1. Let µ be a probability measure on X and q ∈ R. If there exists
some constant γ such that for µ-almost every x we have dτµ,q(x) = γ then

αµτ (q) = γ.

1That is to say, there exists some constant M such that if {B(xi, εi) : i ∈ I} covers the
subset Λ ⊂ X, and for any x ∈ Λ there exists a sequence i1, i2, . . . with εin → 0 such that

∩nB(xin , εin ) = {x}, then there exists a countable subcover with a finite multiplicity bounded

by M .
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We omit the proof of this proposition because it is direct consequence of the
general theorem proved in [9]. (The interested reader should compare our definition
and the general theorem just mentioned with the definition p. 24 and Theorem 4.2
p. 28 in [17].)

3.2. Dimension characteristics for Poincaré recurrence. Now we apply the
general framework to the specific situation where τ refers to the Poincaré recurrence
of sets, under the dynamical system under consideration. Namely, if T : X → X
is a map preserving the Borel probability measure µ, A ⊆ X and q ∈ R, then we
denote

MT (A,α, q, ε) def= MτT (A,α, q, ε);

αT (A, q) def= ατT (A, q);

αµT (q) def= αµτT (q);

dTµ,q(x) def= dτTµ,q(x).

Similarly, if Φ : Xϕ → Xϕ is a special flow preserving the Borel probability measure
µ, A ⊆ Xϕ, q ∈ R then we denote

MΦ(A, α, q, ε) def= MτΦ(A, α, q, ε);

αΦ(A, q) def= ατΦ(A, q);

αµΦ(q) def= αµτΦ(q);

dΦ
µ,q(x) def= dτΦµ,q(x).

4. Poincaré recurrences of cylinders. In this section, we establish a central
result needed to prove existence almost-everywhere of pointwise dimensions for
Poincaré recurrences with respect to any ergodic measure of positive entropy. This
results tells us that the return time of a cylinder of length n typically grows like n.

4.1. Local rate of return time for cylinders. We now define the local rate of
return time for cylinders.

Definition 4.6 ([12]). Lower and upper local rates of Poincaré recurrences for
cylinders are defined respectively for non-invertible and invertible transformations
by

Rξ(x) def= lim
n→∞

τ(ξn(x))
n

and Rξ(x) def= lim
n+m→∞

τ(ξnm(x))
m+ n

·

Weak specification property immediately implies the following result (we omit
the proof which is straightforward):

Proposition 4.1. If the system (X,T ) is weakly specified, then Rξ(x) ≤ 1.

The following result will be crucial in what follows. We mention that it is
established (in the non-invertible case) in [20] by using the notion of Kolmogorov
complexity of an orbit and a theorem connecting it to entropy. The proof given
here is a direct application of the Shannon-McMillan-Breiman Theorem.

Theorem 4.2. Let (X,B, µ) be a probability space where µ is ergodic with respect
to a measurable transformation T : X → X. If ξ is a finite or countable measurable
partition with strictly positive entropy hµ(T, ξ), then the lower rate of Poincaré
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recurrences for cylinders is almost surely bigger than one, i.e., for µ-a.e. x ∈ X,
one has:

lim inf
n+m→∞

τ(ξnm(x))
n+m

≥ 1 in the case of invertible T,

lim inf
n→∞

τ(ξn(x))
n

≥ 1 in the case of non-invertible T.

Proof. For the sake of definiteness, we write the proof for the case of invertible
T . The case of non-invertible T can be obtained in a similar way after evident
simplifications.

It suffices to prove the theorem for finite partitions, the case of countable ξ will
follow easily. More precisely, if ξ = {B1, B2, . . . } is countable, then for some m <∞
the finite partition ξ̂ = {B1, B2, . . . , Bm,∪`>mB`} will have positive entropy. In
addition, ξ is finer than ξ̂, hence τ(ξnm(x)) ≥ τ(ξ̂nm(x)), and the statement follows.

Assume now that ξ is finite. Observe that h def= hµ(T, ξ) is non-zero and finite.
Fix ε ∈ (0, h/3). By Shannon-McMillan-Breiman theorem (see [19] for instance)
for µ-a.e. x, there exists N(x) such that if n+m > N(x) then∣∣∣∣ 1

n+m
logµ(ξnm(x)) + h

∣∣∣∣ ≤ ε.
By Egoroff’s theorem if M = M(ε) is sufficiently large then EM

def= {x ∈ X :
N(x) < M} will have a measure µ(EM(ε)) > 1− ε. We can choose c so large that
for any x ∈ EM(ε) and any positive integers n,m

c−1e[−(n+m)h−(n+m)ε] ≤ µ(ξnm(x)) ≤ ce[−(n+m)h+(n+m)ε]. (4.11)

We write now E = EM(ε). Let δ = 1− 3
hε and set

An
m

def= {x ∈ E : τ(ξnm(x)) ≤ δ(n+m)}.

Obviously An
m = ∪δ(n+m)

k=1 Rnm(k) where

Rnm(k) def= {x ∈ E : τ(ξnm(x)) = k}.

We shall prove that
∑
n,m µ(An

m) < ∞. Let n,m positive integers and 0 ≤ k ≤
n + m. If the return time of the cylinder C = [amam+1 · · · a0 · · · an−1] ∈ ξnm is
equal to k, i.e. τ(C) = k, then it can be readily checked that aj+k = aj , for all
−m ≤ j ≤ n− k− 1. This means that any block made with k consecutive symbols
completely determines the cylinder C. In particular, since there exists p ≥ 0 such
that p ≤ m and 0 ≤ k − p ≤ n, we can choose the cylinder Z = ξk−pp (x) ⊃ ξnm(x).
Let

Z = {ξk−pp (x) : x ∈ Rnm(k)}.

Because of the structure of cylinders under consideration, for any cylinder Z ∈ Z
there is a unique cylinder CZ ∈ ξnm such that CZ ⊂ Z and one has Z∩Rnm(k) ⊂ CZ .
This implies

µ(Rnm(k)) =
∑
Z∈Z

µ(Z ∩Rnm(k)) ≤
∑
Z∈Z

µ(CZ).

But for each Z ∈ Z we have Z ∩ E 6= ∅ and CZ ∩ E 6= ∅, thus there exists x ∈ E
such that Z = ξk−pp (x) and CZ = ξnm(x). Using (4.11) we get

µ(ξnm(x)) ≤ c exp[−(n+m)h+ (n+m)ε]
1 ≤ cµ(ξk−pp (x)) exp[kh+ kε].
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Multiplying these inequalities we get

µ(CZ) ≤ c2 exp[−(n+m)h+ (n+m)ε] exp[kh+ kε]µ(Z).

Summing up on Z ∈ Z we get (recall that k ≤ n+m)

µ(Rnm(k)) ≤ c2 exp[−(n+m− k)h+ 2(n+m)ε].

This implies that

µ(An
m) =

δ(n+m)∑
k=1

µ(Rnm(k))

≤ c2 eh

eh − 1
exp [−(n+m)(h− δh− 2ε)] .

Since h− δh− 2ε = h− (1− 3
hε)h− 2ε = ε > 0, we get that∑
m≥1,n≥1

µ(An
m) < +∞.

In view of Borel-Cantelli Lemma, we finally get that for µ-almost every x ∈ E,
τ(ξnm(x)) ≥ (1− 3

hε)(n+m) except for finitely many pairs of integer (n,m). Since
in addition µ(E) > 1− ε, the arbitrariness of ε implies the desired result.

Let us point out that according to Theorem 4.2 the lower rate of return is greater
or equal than one independently of the particular choice of a map T , a partition
ξ and an ergodic measure µ. This theorem can also be rephrased by saying that
if T is a K-automorphism, then the local rate of return is greater or equal than
one. The assumption of positiveness of entropy in Theorem 4.2 is unavoidable, as
we shall show by some examples in the next section.

By Statement 4 of Proposition 2.2, it is easy to deduce that Rξ(x) and Rξ(x) are
subinvariant functions so they are actually invariant since (X,B, µ) is a probability
space. By ergodicity they are almost everywhere constant: Rξ(x) = r,Rξ(x) = r.
Moreover, one has r ≤ r by definition. Proposition 4.1 and Theorem 4.2 immedi-
ately imply that r ≤ 1 and r ≥ 1, respectively, that is r = r

def= Rξ(x) = 1 almost
everywhere. This establishes the following theorem.

Theorem 4.3. Let µ be an ergodic measure of the dynamical system (X,T ) and ξ
be the finite partition of X defined in the set-up, such that hµ(T ) > 0. Assume that
(X,T, dX) is weakly specified. Then

Rξ(x) = 1 µ−a.e. .

Theorem 4.3 shows us that, provided that the system is weakly specified and has
positive entropy, then the local rate of return of cylinders is equal to one, so it is
independent of the partition ξ, the measure µ and the map T .

4.2. Two examples with fast recurrence. We consider two examples which
show that positiveness of entropy is essential in the hypothesis of Theorem 4.2 to
get the lower limit greater or equal to 1.

Dyadic adding machine. Let Ω+
2

def= {0, 1}N be the set of all one-sided infinite
sequences, endowed with the usual distance. Denote by T : Ω+

2 	 the following
map: if ω = (1, 1, ...) then Tω = (0, 0, ...); if ω = (i0, i1, ...), ik = 1, k = 0, 1, ..., j−1
and ij = 0, then (Tω)k = 0, k = 0, 1, ..., j − 1, (Tω)j = 1, (Tω)j+s = ij+s,
s = 1, 2, ...; if ω = (0, i1, ...) then Tω = (1, i1, ...). It is simple to see that T is
one-to-one and continuous. The dynamical system (Ω+

2 , T ) is called the dyadic
adding machine. Let ζ0 be the partition of Ω+

2 by m-cylinders [i0, ..., iim−1 ] for
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some m ≥ 1. Since T−1([i0, ..., iim−1 ]) = [j0, ..., jim−1 ] then ζn
def=

n−1∨
j=0

T−jζ0 = ζ0.

Moreover, τT ([i0, ..., iim−1 ]) = 2m. Therefore

τT (ζn(ω))
n

=
2m

n
→ 0

as n→∞ for any ω ∈ Ω+
2 .

Rotation on the circle. Consider a rotation fω : x 7→ x − ωmod 1 (i.e.
f−1
ω x = x + ωmod 1), on the circle S1 = {x, mod 1}, where 0 < ω < 1 is an

irrational number. The number ω can be approximated by rational numbers p/q
(p and q are relatively prime) in such a way that∣∣ω − p

q

∣∣ < 1
qβ+1

(4.12)

for some value β and some pair (p, q). Let β(ω) def= supβ where the supremum is
taken over all β for which inequality (4.12) has infinitely many solutions (p, q) with
q > 0. Assume that β(ω) < ∞, i.e. ω is a Diophantine number. Then for every
δ ∈ (0, 1) the inequality ∣∣ω − p

q

∣∣ < 1
qβ(ω)+1−δ (4.13)

holds for infinitely many relatively prime pairs (pi, qi), with qi → ∞, as i → ∞.
Consider a partition ξ0 of S1 made with two closed intervals [0, ω] and [ω, 1], and
let ξn

def=
∨n−1
i=0 f

−i
ω ξ0. Denote by ξn(x) an element of ξn containing a point x

(the definition is correct for all x except for a point belonging to the set of the
endpoints of intervals in ξn). The rotation is metrically isomorphic to the subshift
clos(π([0, 1)), where the coding map π : [0, 1] → {0, 1}N is defined in the obvious
way by π(x)n = 0 is fnω (x) ∈ [0, ω) and π(x)n = 1 if fnω (x) ∈ [ω, 1). We now state
the following theorem:

Theorem 4.4. If β(ω) > 3 then

Rξ(x) = lim inf
n→∞

1
n
τfω (x) = 0 (4.14)

for almost every x with respect to the Lebesgue measure on S1.

Proof. Start by choosing δ to be so small that

β(ω)− δ > 3 . (4.15)

Without loss of generality we may assume that∣∣ω − pi
qi

∣∣ = inf
p∈Z

∣∣ω − p

qi

∣∣ .
Then because of (4.13), we have

dist(x, fqiω x) = inf
p∈Z
|x+ qiω − x− p| = qi

∣∣ω − pi
qi

∣∣ < 1

q
β(ω)−δ
i

· (4.16)

Now introduce a number α > 1 such that 1 + 2α < β(ω)− δ. Let mi
def= [q1+α

i ] the
integer part of q1+α

i and let

Ami
def= #

{
ξmi(x) : diam ξmi(x) ≥ 1

q1+2α
i

}
,

Bmi
def= #

{
ξmi(x) : diam ξmi(x) <

1
q1+2α
i

}
.
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Since Ami + Bmi = 2mi then Ami + Bmi ≤ 2q1+α
i . This inequality implies that

Bmi ≤ 2q1+α
i . Moreover, µ

(
Bmi

)
≤ 2q1+α

i · q−(1+2α)
i = 2q−αi , where

Bmi
def=

⋃
diam ξmi (x)<q

−(1+2α)
i

ξmi(x) ,

the union of the elements of the partition ξmi of small diameter. In view of Borel-
Cantelli Lemma (recall that α > 1), we have that µ-almost every point x belongs
to the complement of Bmi provided that mi is large enough, i.e. diam ξmi(x) ≥
q
−(1+2α)
i .

Now because of (4.16) and the assumption β(ω) > 3, we have

τfω (ξmi(x)) ≤ qi .
Therefore,

lim inf
n→∞

τfω (ξn(x)
n

≤ lim
i→∞

qi

q1+α
i

= 0 Lebesgue-almost everywhere.

5. Existence of Pointwise dimensions and computation of the spectra
for measures. If (X,T, d) is weakly specified and µ is ergodic, then we can find
formulas for pointwise dimensions and the spectrum for the measure.

Theorem 5.1. Under the assumptions of Theorem 4.3, for any q ∈ R and for
µ-a.e. x ∈ X, one has:

dTµ,q(x) =
hµ(T )− q
χ+
µ (T )

in the non-invertible case, and (5.17)

dTµ,q(x) = (hµ(T )− q)
(

1
χ+
µ (T )

− 1
χ−µ (T )

)
in the invertible case . (5.18)

Proof. For the sake of definiteness, we write the proof for the case of invertible T .
We have to calculate the limit of the ratio in (3.10). Let x ∈ X be fixed. For any
ε ∈ (0, 1) Lemma 2.1 gives that B(x, ε) = ξ

nx,ε
mx,ε(x). Note that in particular we have

B(y, ε) = B(x, ε) for every y ∈ B(x, ε). In addition, since u and v are bounded,
mx,ε → ∞ and nx,ε → ∞ as ε → 0. Hence we only have to calculate the limit of
the following ratio

logµ(ξnx,εmx,ε(x)) + qτT (ξnx,εmx,ε(x))
log ε

·

Because of the continuity of u, there exists a sequence c(k) with c(k)→ 0 as k →∞
such that

|u(x) + u(Tx) + · · ·+ u(Tn−1x)− u(ξn0 (x))| ≤ c(n)n

for any integer n > 0. Similarly, we get

|v(x) + v(T−1x) + · · ·+ v(T−m+1x)− v(ξ0
m(x))| ≤ c(m)m

for any integer m > 0. Birkhoff ergodic Theorem and Lemma 2.1 then give

lim
ε→0

nx,ε
log ε

= − 1∫
udµ

and lim
ε→0

mx,ε

log ε
= − 1∫

vdµ
µ-a.e.. (5.19)

Shannon-McMillan-Breiman Theorem asserts that

lim
ε→0

1
nx,ε +mx,ε

logµ(ξnx,εmx,ε(x)) = −hµ(T ) µ-a.e. . (5.20)
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Finally, by Theorem 4.3, we have

lim
ε→0

τT (ξnx,εmx,ε(x))
nx,ε +mx,ε

= 1 µ-a.e. . (5.21)

We conclude that for any x ∈ X such that (5.19), (5.20) and (5.21) hold, we have

lim
ε→0

logµ(ξnx,εmx,ε(x)) + qτT (ξnx,εmx,ε(x))
log ε

= (hµ(T )− q)
(

1∫
u dµ

+
1∫
v dµ

)
,

and the conclusion follows by using (5.19) since these points form a set of full
µ-measure (recall (2.2)).

One could see relations derived in Theorem 5.1 as an analog of Young’s for-
mula [21] for dimensions for Poincaré recurrences. It is explicit if q = 0. Note also
that the spectrum for the set X, αT (X, q), was obtained for certain subshifts in [4],
where it has been shown that it satisfies a non-homogeneous Bowen equation.

Theorem 5.1 and Proposition 3.1 immediately give the expression for the spec-
trum for the measure:

Theorem 5.2. Under the assumptions of Theorem 4.3, for any q ∈ R one has

αµT (q) =
hµ(T )− q
χ+
µ (T )

in the non-invertible case, and

αµT (q) = (hµ(T )− q)
(

1
χ+
µ (T )

− 1
χ−µ (T )

)
in the invertible case .

Corollary 5.3. The value of q for which αµT vanishes is equal to hµ(T ) def= qT0 .

6. Pointwise dimensions and spectra for special flows. In this section, we
prove the existence almost-everywhere of pointwise dimensions associated with
Poincaré recurrences, and obtain a precise formula, for special flows. This is done
with respect to any ergodic measure invariant under the flow constructed with an
ergodic measure with positive entropy given on the space X.

The strategy is as follows. We know by (2.5) that a ball in the special space is
approximately the product of a ball in the base and an interval. Next, we can relate
the return time of the ball to the Birkhoff sum of the roof function. The number of
terms in this sum equals the return time of the ball in the base (see (6.25)), thus
we can relate precisely return times for maps and special flows.

Proposition 6.1. Let µ be the measure on Xϕ induced by the measure ergodic µ
on X where X and µ satisfy hypothesis of Theorem 4.3. We have for µ-almost
every point x ∈ Xϕ that

lim
ε→0

τΦ(B(x, ε))
− log ε

=

(
1

χ+
µ (Φ)

− 1
χ−µ (Φ)

)
in the case of invertible Φ

lim
ε→0

τΦ(B(x, ε))
− log ε

=
1

χ+
µ (Φ)

in the case of non-invertible Φ

Proof. As before we only write down the proof in the invertible case.
By Fubini’s theorem we have µ({x = (x, s) : x ∈ Y, 0 < s < ϕ(x)}) = 1 whenever

µ(Y ) = 1. We choose Y to be the set of points such that (5.19) and (5.21) in the
proof of Theorem 5.1 hold and such that

lim
n,m→∞

ϕ(T−mx) + · · ·+ ϕ(x) + · · ·+ ϕ(Tn−1x)
n+m

=
∫
X

ϕdµ. (6.22)
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Let x ∈ Y and 0 < s < ϕ(x). It is clear that if ε > 0 is sufficiently small then (see
(2.4))

{y : dπ(x,y) < ε} = B(x, ε)× (s− ε, s+ ε).

Accordingly by (2.5) we have for some δ > 0 independent of ε

B(x, δε)× (s− δε, s+ δε) ⊂ B(x, ε) ⊂ B(x, ε/δ)× (s− ε/δ, s+ ε/δ). (6.23)

Because of (6.23) it is enough to prove the following:

lim
ε→0

τΦ(B(x, ε)× [s− ε, s+ ε])
− log ε

=

(
1
χ+
µ

− 1
χ−µ

)
. (6.24)

We first remark that
τΦ(B(x, ε)× [s− ε, s+ ε]) = τΦ(B(x, ε)× {0})− 2ε

= inf
y∈B(x,ε)

inf{t > 0 : Φt(y, 0) ∈ ξnx,εmx,ε × {0}}

= inf
y∈B(x,ε)

τT (y,B(x,ε))−1∑
k=0

ϕ(T ky) def= t(x, ε).

(6.25)

Let us put varkϕ
def= sup{|ϕ(z) − ϕ(z′)| : z′ ∈ ξkk(z)}. Since ϕ is continuous we

have varkϕ → 0 as k →∞. Let us remark that (1/n)
∑n
k=0 varkϕ → 0 as well, by

Césaro’s Lemma. Given an integer n and y ∈ ξn0 (x), for any k ∈ {0, . . . , n− 1} we
have T ky ∈ ξn−k−k (T kx) and then

|ϕ(T ky)− ϕ(T kx)| ≤ varmin(k,n−k)ϕ, ∀k ∈ {0, . . . , n− 1}.

The same is true if y ∈ ξ0
m(x) for some integer m, namely,

|ϕ(T−ky)− ϕ(T−kx)| ≤ varmin(m−k,k)ϕ, ∀k ∈ {1, . . . ,m}.

Notice that by Lemma 2.1 we have B(x, ε) = ξ
nx,ε
mx,ε(x), thus if τT (y,B(x, ε)) = ` <

∞ then y ∈ ξnx,ε0 (x) and T `y ∈ ξ0
mx,ε(x), which implies that∣∣∣∣∣

nx,ε−1∑
k=0

ϕ(T ky)−
nx,ε−1∑
k=0

ϕ(T kx)

∣∣∣∣∣ ≤ 2
nx,ε/2∑
k=0

vark(ϕ) = o(nx,ε),∣∣∣∣∣∣
`−1∑

k=`−mx,ε

ϕ(T ky)−
−1∑

k=−mx,ε

ϕ(T kx)

∣∣∣∣∣∣ ≤ 2
mx,ε/2∑
k=0

vark(ϕ) = o(mx,ε).

(6.26)

By (5.21) we have

|τT (B(x, ε))− nx,ε −mx,ε| = o(nx,ε +mx,ε). (6.27)

In addition, Since ` ≥ τT (B(x, ε)) , (6.27) and (6.26) give

t(x, ε) ≥
nx,ε−1∑
k=−mx,ε

ϕ(T kx)− o(nx,ε +mx,ε). (6.28)

Next, if y is such that τT (y,B(x, ε)) = τT (B(x, ε)) then by (6.27) and (6.26) we
find out that

t(x, ε) ≤
nx,ε−1∑
k=−mx,ε

ϕ(T kx) + o(nx,ε +mx,ε). (6.29)
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By (6.22) and the estimates (6.28) and (6.29) we get

t(x, ε) = (nx,ε +mx,ε)
∫
ϕdµ+ o(nx,ε +mx,ε).

The relation (6.24) is now a consequence of this equation together with (5.19) and
(6.25). This finishes the proof of the proposition.

Lemma 6.2. Let µ be the measure on Xϕ induced by the measure µ on X. There
exists some constant c > 0 such that for any point x = (x, s) ∈ Xϕ and ε > 0,

cµ(B(x, cε)) · ε ≤ µ(B(x, ε)) ≤ c−1µ(B(x, c−1ε)) · ε. (6.30)

Proof. Since the flow is Lipschitz and preserves the measure µ, we can always as-
sume that the ball is centered at some point x = (x, s) far away from the roof.
Then the conclusion follows from (6.23) in the proof of Proposition 6.1 and for-
mula (2.6).

Theorem 6.3. Let µ be the measure on Xϕ induced by the ergodic measure µ on
X, where X and µ satisfy hypothesis of Theorem 4.3. For all q ∈ R, the lower
pointwise dimension is µ-a.e. x ∈ Xϕ is equal to

dΦ
µ,q(x) = 1 +

hµ(Φ)− q
χ+
µ (Φ)

in the non-invertible case, and

dΦ
µ,q(x) = 1 + (hµ(Φ)− q)

(
1

χ+
µ (Φ)

− 1
χ−µ (Φ)

)
in the invertible case.

Proof. For the sake of definiteness, we write the proof for the case of invertible
T . The non-invertible case follows straightforwardly. We will compute the limit of
infimum of the ratio in (3.10). By definition it is obvious that for any x ∈ Xϕ

dµ(x) ≤ lim inf
ε→0

logµ(B(x, ε)) + qτΦ(B(x, ε))
log ε

.

Let (x, s) = x with 0 < s < ϕ(x). For any y ∈ B(x, ε) we have B(y, ε) ⊂ B(x, 2ε)
hence

logµ(B(y, ε))
log ε

≥ logµ(B(x, 2ε))
log ε

provided ε < 1. We now consider the two different cases q ≤ 0 and q > 0:

q ≤ 0 : In this case we have q/ log ε ≥ 0 if ε < 1, hence

qτΦ(B(y, ε))
log ε

≥ qτΦ(B(x, 2ε))
log ε

(6.31)

because τΦ(B(y, ε)) ≥ τΦ(B(x, 2ε)).
q > 0 : For any y = (y, t) we have by construction B(y, ε)× {t} ⊂ B(y, ε). Thus

τΦ(B(y, ε)) ≤ τΦ(B(y, ε)× {t})

≤
τT (B(y,ε))∑

k=0

ϕ(T kz),

where z ∈ B(y, ε) is such that τT (z,B(y, ε)) = τT (B(y, ε)). By Lemma 2.1
there existsmy,ε and ny,ε such thatB(y, ε) = ξ

ny,ε
my,ε(y) and by weak-specification
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we have τT (ξny,εmy,ε(y)) ≤ my,ε + ny,ε + o(my,ε + ny,ε). Proceeding as in the
proof of Proposition 6.1 we find out that

τΦ(B(y, ε)) ≤
ny,ε∑

k=−my,ε

ϕ(T ky) + o(my,ε + ny,ε).

Whenever y = (y, t) ∈ B(x, ε), since 0 < s < ϕ(x) (2.5) implies that (see also
(2.4)) if ε > 0 is sufficiently small then y ∈ B(x, δε). Proceeding again as
in the proof of Proposition 6.1 (and also Theorem 5.1) we find out that the
continuity of the functions ϕ,u and v implies

|nx,ε − ny,ε| = o(nx,ε),
|mx,ε −my,ε| = o(mx,ε),∣∣∣∣∣∣

ny,ε∑
k=−my,ε

ϕ(T ky)−
nx,ε∑

k=−mx,ε

ϕ(T kx)

∣∣∣∣∣∣ = o(mx,ε + nx,ε).

Since we have q/ log ε < 0 if ε < 1, we get

qτΦ(B(y, ε))
log ε

≥ q

log ε

 nx,ε∑
k=−mx,ε

ϕ(T kx)

− o(mx,ε + nx,ε). (6.32)

Whatever the sign of q is, the lower bound in (6.31) and (6.32) have µ-a.e. the
same limit (given by Proposition 6.1) that is equal to

q

(
1

χ+
µ (Φ)

− 1
χ−µ (Φ)

)
·

By Lemma 6.2 we also have

lim
ε→0

logµ((x, s), ε))
log ε

= 1 + lim
ε→0

logµ(B(x, ε))
log ε

·

This last quantity converges for µ-a.e. x ∈ X to

1 + hµ(T )
(

1
χ+
µ (T )

− 1
χ−µ (T )

)
= 1 + hµ(Φ)

(
1

χ+
µ (Φ)

− 1
χ−µ (Φ)

)
by Abramov formula (2.7). This finishes the proof of our theorem.

Now we can state the following theorem :

Theorem 6.4. Under the conditions of Theorem 6.3, the spectrum for the measure
µ is given for all q ∈ R by

αµΦ(q) = 1 +
hµ(Φ)− q
χ+
µ (Φ)

in the non-invertible case, and

αµΦ(q) = 1 + (hµ(Φ)− q)

(
1

χ+
µ (Φ)

− 1
χ−µ (Φ)

)
in the invertible case.

Proof. By Theorem 6.3 we are in the condition to apply Proposition 3.1. This
proves the theorem.

The following Corollary is straightforward but useful:

Corollary 6.5. Under assumptions of Theorems 5.2 and 6.4, one has

αµΦ

(
q∫
ϕdµ

)
= 1 + αµT (q) .
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Proof. Abramov formula and Theorems 5.2 and 6.4 give the relation.

Corollary 6.6. The value of q for which αµΦ vanishes is equal to

hµ(Φ) + χ+
µ (Φ) def= qΦ

0 in the non-invertible case, and

hµ(Φ) +
1

1
χ+
µ (Φ)

− 1
χ−µ (Φ)

def= qΦ
0 in the invertible case.

We can express qΦ
0 as a function of qT0 by observing that qT0 = hµ(T ) to get (in the

non-invertible case):

qΦ
0 =

qT0∫
ϕdµ

+ χ+
µ (Φ) ·

7. Closing note. Our results may be generalized in different directions. First of
all, it would be worthwhile to extend our study to conformal Axiom A diffeomor-
phisms and flows. We mention the work [18] in which Hausdorff dimension in the
case of conformal Axiom A flows is studied. Secondly, multifractal analysis for
Poincaré recurrences seems to be feasible: Theorems 5.1 and 6.3 can be viewed
as the first steps in this direction. Furthermore, we did not study both capaci-
ties and box dimensions associated with Poincaré recurrences (see [17] for general
definitions). We did not investigate the problem of existence of measures of full
dimensions (for Poincaré recurrences), either. As in [4] for the case of maps, we
can expect to derive some nonhomogeneous Bowen equations for special flows.
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