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VARIATIONAL PRINCIPLES AND MIXED

MULTIFRACTAL SPECTRA

L. BARREIRA AND B. SAUSSOL

Abstract. We establish a “conditional” variational principle, which
unifies and extends many results in the multifractal analysis of dynam-
ical systems. Namely, instead of considering several quantities of local
nature and studying separately their multifractal spectra we develop a
unified approach which allows us to obtain all spectra from a new mul-
tifractal spectrum. Using the variational principle we are able to study
the regularity of the spectra and the full dimensionality of their irregular
sets for several classes of dynamical systems, including the class of maps
with upper semi-continuous metric entropy.

Another application of the variational principle is the following. The
multifractal analysis of dynamical systems studies multifractal spectra
such as the dimension spectrum for pointwise dimensions and the en-
tropy spectrum for local entropies. It has been a standing open problem
to effect a similar study for the “mixed” multifractal spectra, such as
the dimension spectrum for local entropies and the entropy spectrum for
pointwise dimensions. We show that they are analytic for several classes
of hyperbolic maps. We also show that these spectra are not necessarily
convex, in strong contrast with the “non-mixed” multifractal spectra.

1. Introduction

Dimension spectra are one of the primary components of multifractal
analysis, a theory developed by physicists and applied mathematicians as
a powerful tool for the numerical study of dynamical systems. Dimension
spectra encode important information about a dynamical system. Special-
ists believe that in a number of fundamental situations in dynamics these
spectra can be used to fully recover certain aspects of the information con-
tained in the dynamical system, and thus play the role of multifractal moduli,
i.e., of complete invariants for dynamical systems obtained solely from their
multifractal analysis. As such, multifractal spectra can play a fundamental
role in the theory of dynamical systems.

Given a probability measure µ on a metric space X, we define the point-

wise dimension of µ at the point x ∈ X by

dµ(x) = lim
r→0

log µ(B(x, r))

log r

whenever the limit exists. Here B(x, r) ⊂ X denotes the ball of radius r
centered at x. It was recently shown that if µ is a hyperbolic invariant
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measure for a C1+ε diffeomorphism of a compact manifold, then dµ(x) is
well-defined µ-almost everywhere [2]. The dimension spectrum for pointwise

dimensions DD = D
µ
D is defined by

DD(α) = dimH{x ∈ X : dµ(x) = α}, (1)

where dimH Z denotes the Hausdorff dimension of the set Z (see Section 2.2
for the definition).

Dimension spectra constitute only one class of the general family of mul-
tifractal spectra. We now introduce other spectra. Let f : X → X be
a measurable transformation preserving the measure µ. Consider a finite
measurable partition ξ of X. We define the µ-local entropy of f at the point
x ∈ X (with respect to ξ) by

hµ(f, ξ, x) = lim
n→∞

−
1

n
log µ(ξn(x))

whenever the limit exists. Here ξn(x) is an atom of the partition
∨n
k=0 f

−kξ
which contains x. By the Shannon–McMillan–Breiman theorem the µ-local
entropy is well-defined for µ-almost every x ∈ X. In addition, if ξ is a
generating partition of X (i.e., a partition such that

∨∞
k=0 f

−kξ generates
the Borel σ-algebra of X) and µ is ergodic, then hµ(f, ξ, x) = hµ(f) for
µ-almost every x ∈ X, where hµ(f) denotes the measure-theoretic entropy
of f with respect to µ. The entropy spectrum for local entropies EE = E

µ
E

is defined by

EE(α) = h(f |{x ∈ X : hµ(f, ξ, x) = α}), (2)

where h(f |Z) denotes the topological entropy of f on Z; we stress that the
set Z need not be compact (see Section 2.1 for the definition of topological
entropy on arbitrary sets).

If, in addition, f is a differentiable map, one also considers the Lyapunov
exponents. Given x ∈ X we set

λ(x) = lim
n→+∞

1

n
log‖dxf

n‖

whenever the limit exists. By Kingman’s sub-additive ergodic theorem, if
µ is an f -invariant probability measure, then λ is well-defined µ-almost
everywhere. We define the dimension spectrum for Lyapunov exponents by

LD(α) = dimH{x ∈ X : λ(x) = α}, (3)

and the entropy spectrum for Lyapunov exponents by

LE(α) = h(f |{x ∈ X : λ(x) = α}). (4)

It was shown, in a number of situations ubiquitous in dynamics, that the
multifractal spectra DD, EE, LD, and LE are real analytic. Moreover, they
coincide with the Legendre transform of certain functions characterized in
terms of the topological pressure, and thus are always convex (and are in
fact “generically” strictly convex with respect to the potential of which µ
is an equilibrium measure). We refer to the book [7] for references and full
details.

One can also consider “mixed” multifractal spectra, which intertwine dif-
ferent local characteristics which depend on the dynamics and simultane-
ously on some other attached structure. This is the case of the pointwise
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dimensions and the local entropies which depend not only on the dynamics
but also on the attached measurable structure provided by a given invariant
measure.

These “mixed” spectra include the entropy spectrum for pointwise dimen-

sions DE = D
µ
E defined by

DE(α) = h(f |{x ∈ X : dµ(x) = α}), (5)

and the dimension spectrum for local entropies ED = E
µ
D defined by

ED(α) = dimH{x ∈ X : hµ(f, ξ, x) = α}. (6)

We shall refer to these two multifractal spectra as mixed multifractal spectra.
It has been a standing open problem in multifractal analysis to describe the
spectra DE and ED; see [7] for an explicit formulation. In particular it has
not been know if these spectra are real analytic or if they can be computed
by a Legendre transform.

In order to explain why the study of the mixed multifractal spectra is
essentially different from the study of the non-mixed spectra, we consider
the associated special classes of full measures {µD

α } and {µE
α}. These are

invariant ergodic probability measures such that

dimH µ
D
α = DD(α) and µD

α ({x ∈ X : dµ(x) = α}) = 1,

and
hµE

α
(f) = EE(α) and µE

α({x ∈ X : hµ(f, ξ, x) = α}) = 1

for each α (see, for example, [7] for details), and play a fundamental role in
multifractal analysis. The main difficulty when studying mixed multifractal
spectra is that these two families of measures are in general “transversal”;
more precisely, they do not satisfy any Fubini-type decomposition, and thus
one cannot expect to relate in a simple way mixed and non-mixed spectra.
On the other hand it is this transversality that allows us to consider mixed
multifractal spectra as further moduli in the study of dynamical systems.

In this paper, for subshifts of finite type and repellers of C 1+ε conformal
expanding maps (i.e., expanding maps such that the derivative is a multiple
of an isometry at each point), we prove that if µ is an equilibrium measure
with Hölder continuous potential, then:

1. the functions DE and ED are real analytic;
2. the functions DE and ED are in general not convex, and thus, they

cannot be expressed as Legendre transforms.

These statements follow from much more general results and in particular
from a new “conditional” variational principle established in this paper.
While this variational principle was initially motivated by the study of mixed
multifractal spectra, it is in fact of much broader interest. Indeed it unifies
and extends a considerable number of results in the multifractal analysis
of dynamical systems. Furthermore, it provides a unified approach which
allows us to study simultaneously all spectra by using a new multifractal
spectrum. In particular, it should be noted that the six spectra in (1)–(6)
are only very special cases of the much more general multifractal spectra
discussed in this paper.

Instead of formulating general results here, we illustrate our “conditional”
variational principle with a rigorous statement in a special case already
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revealing the richness of the general framework. Given continuous functions
ϕ : X → R and ψ : X → R with ψ > 0, we write

Kα =

{

x ∈ X : lim
n→∞

∑n
k=0 ϕ(fkx)

∑n
k=0 ψ(fkx)

}

,

and consider the open interval

I =

(

inf
µ

∫

X ϕdµ
∫

X ψ dµ
, sup
µ

∫

X ϕdµ
∫

X ψ dµ

)

,

where the infimum and supremum are taken over all f -invariant probability
measures in X.

Theorem 1. Let X be a repeller of a topologically mixing C 1+ε expanding

map, for some ε > 0, and ϕ, ψ Hölder continuous functions in X, such that

ψ > 0. If α ∈ I then

h(f |Kα) = max

{

hµ(f) : µ is ergodic and

∫

X ϕdµ
∫

X ψ dµ
= α

}

.

We refer to the identity in the theorem as a conditional variational prin-

ciple. Theorem 1 is a particular case of the more general results established
below. In fact we obtain a conditional variational principle for the more
general class of maps with upper semi-continuous metric entropy, which in-
cludes expansive homeomorphisms.

For each pair of functions ϕ and ψ, Theorem 1 establishes a condi-
tional variational principle for the corresponding multifractal spectrum α 7→
h(f |Kα). We believe that these spectra can play the role of multifractal mod-
uli. It is an open problem to determine whether a finite number of them is
sufficient to fully characterize the dynamics.

In the special case of mixed multifractal spectra we obtain the following
new results. For a repeller X of a C1+ε conformal expanding map f , if ϕ is a
Hölder continuous function having zero topological pressure and equilibrium
measure µ, then

DE(α) = sup

{

hν(f) : ν is ergodic and −

∫

X ϕdν
∫

X log‖df‖ dν
= α

}

, (7)

where hν(f) is the ν-entropy of f , and

ED(α) = sup

{

dimH ν : ν is ergodic and −

∫

X
ϕdν = α

}

, (8)

where dimH ν = inf{dimH Z : ν(Z) = 1} is the Hausdorff dimension of the
measure ν. In particular:

1. the topological entropy of the set of points for which the pointwise di-
mension is equal to α can be arbitrarily approximated by the entropy
of ergodic measures ν with −

∫

X ϕdν/
∫

X log‖df‖ dν = α;
2. the Hausdorff dimension of the set of points for which the local en-

tropy is equal to α can be arbitrarily approximated by the Hausdorff
dimension of ergodic measures ν with −

∫

X ϕdν = α.

By using the variational principles in (7) and (8) we can show that the
spectra DE and ED are analytic.
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The structure of the paper is as follows. In Section 2 we recall several
notions from the thermodynamic formalism and dimension theory. Section 3
contains our main results, including a conditional variational principle when
the metric entropy is upper semi-continuous. The proofs of the results in
Section 3 are collected in Section 4. The remaining sections provide applica-
tions of this variational principle. In Section 5, we establish the analyticity
of the spectra for subshifts of finite type, expanding maps, and hyperbolic
diffeomorphisms, and study the associated irregular sets. In Section 6 we ob-
tain new results for expanding maps, including the analyticity of the mixed
multifractal spectra, and an explicit example of a non-convex mixed mul-
tifractal spectrum. Section 7 provides an application to the multifractal
analysis of limit sets of geometric constructions.

2. Topological pressure and notions from dimension theory

2.1. Topological pressure. We recall the notion of topological pressure.
Since we need to deal with non-compact sets, we use the notion of topological
pressure introduced by Pesin and Pitskel as a Carathéodory characteristic.
In particular, the level sets of pointwise dimension and the level sets of local
entropy are non-compact virtually for all measures considered in this paper.
In fact, in the appropriate sense this is the generic situation (see [3] for
details).

Let f : X → X be a continuous map of a compact metric space, and
U a finite open cover of X. We denote by Wn(U) the collection of words
U = (U0, . . . , Un) ∈ Un+1. For each U ∈ Wn(U) we write m(U) = n, and
define the open set

X(U) = {x ∈ X : fkx ∈ Uk for k = 0, . . . , n}.

We say that the collection of words Γ ⊂
⋃

n≥1 Wn(U) covers the set Z ⊂ X

provided that
⋃

U∈ΓX(U) ⊃ Z.
Consider a continuous function ϕ : X → R. Given U ∈ Wn(U) we write

ϕ(U) =

{

supX(U)

∑n−1
k=0 ϕ ◦ fk if X(U) 6= ∅

−∞ if X(U) = ∅
. (9)

For each set Z ⊂ X and each number α ∈ R let

M(Z,α, ϕ,U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αm(U) + ϕ(U)),

where the infimum is taken over all collections of words Γ ⊂
⋃

k≥nWn(U)
covering Z. Let diamU be the diameter of the cover U. One can easily show
that the limit

PZ(ϕ)
def
= lim

diam U→0
inf{α : M(Z,α, ϕ,U) = 0}

exists, and we call it the topological pressure of ϕ on the set Z ⊂ X (with
respect to f). We emphasize that Z need not be compact nor f -invariant.

When Z = X (and thus Z is compact and f -invariant), the number PX(ϕ)
coincides with the notion of topological pressure for compact sets introduced
by Ruelle in the case of expansive maps, and by Walters in the general case.
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When ϕ = 0, the number

h(f |Z)
def
= PZ(0) = lim

diam U→0
inf

{

α : lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αm(U)) = 0

}

,

where the infimum in Γ is taken over all collections of words Γ ⊂
⋃

k≥nWn(U)

covering Z, is called topological entropy of f |Z. This is the definition of topo-
logical entropy by Pesin and Pitskel as a Carathéodory characteristic, and
coincides with the notion of topological entropy for non-compact sets pre-
viously introduced by Bowen. Again we emphasize that the set Z need not
be compact nor f -invariant. When Z = X, we recover the classical notion
of topological entropy.

We refer to [7, 1] for references and further details.

2.2. Notions from dimension theory. LetX be a separable metric space.
Given a set Z ⊂ X and α > 0, we define

m(Z,α) = lim
δ→0

inf
U

∑

U∈U

(diamU)α,

where the infimum is taken over all finite or countable cover U of Z by sets
of diameter at most δ. There exists a unique value of α at which m(Z,α)
jumps from +∞ to 0. This value is called Hausdorff dimension of Z and is
denoted by dimH Z. We have

dimH Z = inf{α : m(Z,α) = 0}.

For every Borel probability measure µ on X, we define the Hausdorff di-

mension of µ by

dimH µ = inf{dimH Z : µ(Z) = 1}.

We also recall a Carathéodory dimension characteristic introduced by
Barreira and Schmeling in [3]. We use the notations of Section 2.1.

Let f : X → X be a continuous map of a compact metric space, and U a
finite open cover of X. Let now υ : X → R be a strictly positive continuous
function. For each U ∈ Wn(U) we define υ(U) as in (9).

For each set Z ⊂ X and each number α ∈ R, we define

N(Z,α, υ,U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αυ(U)),

where the infimum is taken over all collections of words Γ ⊂
⋃

k≥nWk(U)
covering Z. Set

dimυ,U Z = inf{α : N(Z,α, υ,U) = 0}.

One can easily show that the limit

dimυ Z
def
= lim

diam U→0
dimυ,U Z

exists, and we call it the υ-dimension of Z (with respect to f).
The following result expresses a relation between the υ-dimension and the

topological pressure, and follows easily from the definitions.

Proposition 2. We have dimυ Z = α, where α is the unique root of the

equation PZ(−αυ) = 0.
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For every Borel probability measure µ on X, let

dimυ,U µ = inf{dimυ,U Z : µ(Z) = 1}.

The limit
dimυ µ

def
= lim

diam U→0
dimυ,U µ

exists, and is called the υ-dimension of µ.
We are particularly interested in the following examples:

1. If υ = 1, then dimυ Z = h(f |Z) for every Z ⊂ X, and dimυ µ = hµ(f).
2. If υ = log‖df‖, where f is a C1+ε conformal expanding map with

repeller Z (see Section 6), then dimυ Z = dimH Z for every Z ⊂ X,
and dimυ µ = dimH µ. This follows from the existence of universal
constants c1, c2 > 0 (due to bounded distortion) such that

c1(diamX(U))α ≤ exp(−αυ(U)) ≤ c2(diamX(U))α.

We also define the lower and upper υ-pointwise dimensions of µ at the
point x ∈ X by

dµ,υ(x) = lim
diam U→0

lim inf
n→∞

inf −
log µ(X(U))

υ(U)

and

dµ,υ(x) = lim
diam U→0

lim sup
n→∞

sup−
log µ(X(U))

υ(U)
,

where the infimum and supremum are taken over all words U ∈ Wn(U) such
that x ∈ X(U).

Proposition 3 ([3]). If µ is an ergodic f -invariant probability measure in X,

then

dimυ µ = lim
diam U→0

dµ,υ(x,U) = lim
diamU→0

dµ,υ(x,U) =
hµ(f)
∫

X υ dµ

for µ-almost every x ∈ X.

Proposition 3 follows from Pesin’s theory of Carathéodory characteristics
(see [7]), together with the Birkhoff ergodic theorem and the Shannon–
McMillan–Breiman theorem.

3. Conditional variational principle

3.1. Preliminaries. Let f : X → X be a continuous map on the compact
metric space X. We denote by C(X) the space of continuous functions
ϕ : X → R. Given functions ϕ, ψ ∈ C(X) with ψ > 0, we set

Kα = Kα(ϕ,ψ) =

{

x ∈ X : lim
n→∞

ϕn(x)

ψn(x)
= α

}

,

where

ϕn(x) =

n−1
∑

k=0

ϕ(fkx) and ψn(x) =

n−1
∑

k=0

ψ(fkx).

We denote by M(X) the set of f -invariant Borel probability measures on X.
Let

α = α(ϕ,ψ) = inf

{

∫

X ϕdµ
∫

X ψ dµ
: µ ∈ M(X)

}
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and

α = α(ϕ,ψ) = sup

{

∫

X ϕdµ
∫

X ψ dµ
: µ ∈ M(X)

}

.

Given a positive function υ ∈ C(X) we denote by dimυ Z the υ-dimension
of the set Z ⊂ X (see Section 2.2 for the definition). For example, when
υ = 1 the υ-dimension of Z coincides with the topological entropy h(f |Z).
For other examples and for applications see [3].

We remark that by considering the case of an arbitrary function υ, our
approach unifies and extends a considerable number of results in the multi-
fractal analysis of dynamical systems. Furthermore, the case of an arbitrary
function υ is essential to the applications, and in particular in the study of
mixed multifractal spectra in Section 6.

The function Fυ = F
(ϕ,ψ)
υ defined by

Fυ(α) = dimυKα(ϕ,ψ)

is called the υ-dimension spectrum for the pair (ϕ,ψ).
We shall first formulate our results in the case of subshifts of finite type.

Appropriate generalizations are discussed in Section 3.3. Recall that given
a p× p matrix A = (aij) of zeros and ones we consider the set

X = {(i1i2 · · · ) ∈ {1, . . . , p}N : ainin+1=1 for every n ∈ N},

and define the associated subshift of finite type f : X → X by f(i1i2 · · · ) =
(i2i3 · · · ). The map f is topologically mixing if there exists k ∈ N such that
Ak has only positive entries.

3.2. Conditional variational principle. We denote by Cf (X) ⊂ C(X)
the family of continuous functions ϕ : X → R for which there exist ε > 0
and κ > 0 such that

∣

∣

∣

∣

∣

n−1
∑

k=0

ϕ(fkx) −
n−1
∑

k=0

ϕ(fky)

∣

∣

∣

∣

∣

< κ

whenever d(fkx, fky) < ε for every k = 0, . . ., n− 1.

Theorem 4. Let f : X → X be a topologically mixing subshift of finite type,

and ϕ, ψ, υ ∈ Cf (X) such that ψ > 0 and υ > 0. Then the following

properties hold:

1. if α 6∈ [α, α] then Kα = ∅;

2. if α ∈ (α, α) then Kα 6= ∅ and

Fυ(α) = max

{

hµ(f)
∫

X υ dµ
: µ ∈ M(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

. (10)

The identity in (10) is a conditional variational principle for the υ-dimen-
sion.

We recall that when υ = 1, we have dimυ Z = h(f |Z) for every Z ⊂ X,
and dimυ µ = hµ(f) for every measure µ ∈ M(X); see Section 2.2 for details.
Therefore, taking υ = 1 in Theorem 4 we obtain the following conditional
variational principle for the topological entropy.
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Theorem 5. Let f : X → X be a topologically mixing subshift of finite type,

and ϕ, ψ ∈ Cf (X) such that ψ > 0. If α ∈ (α, α) then

h(f |Kα) = max

{

hµ(f) : µ ∈ M(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

.

The statements in this section follow from more general statements for-
mulated below (see Section 3.3). When ψ = 1, the statement in Theorem 5
was established by Olivier [6] in the special case when f is a full shift, with
a substantially different approach.

3.3. Generalizations. In this section we define precisely the most general
situation for which we can establish a conditional variational principle.

The map f : X → X is now an arbitrary continuous map on the compact
metric space X. We denote by D(X) ⊂ C(X) the family of continuous
functions with a unique equilibrium measure. Recall that a measure µ ∈
M(X) is an equilibrium measure of a continuous function ϕ : X → R if

PX(ϕ) = hµ(f) +

∫

X
ϕdµ,

where PX(ϕ) denotes the topological pressure of ϕ with respect to f (see
Section 2.1 for the definition).

Recall that if the metric entropy is upper semi-continuous, or, more pre-
cisely, if the map µ 7→ hµ(f) is upper semi-continuous, then:

1. every function ϕ ∈ C(X) has an equilibrium measure;
2. given ϕ ∈ C(X), the function q 7→ PX(ϕ + qψ) is differentiable at
q = 0 for each ψ ∈ C(X) if and only if ϕ ∈ D(X); in this case the
unique equilibrium measure µϕ is ergodic, and

d

dq
PX(ϕ+ qψ)|q=0 =

∫

X
ψ dµϕ;

3. if ϕ, ψ ∈ C(X) are such that span{ϕ,ψ} ⊂ D(X), then the function
q 7→ PX(ϕ+ qψ) is differentiable on R, and is in fact of class C 1 (see
[5, Theorem 4.2.11]);

4. the family D(X) is dense in C(X) (see [8, Theorem 6.14]).

For example, when f : X → X is a one-sided or two-sided topologically mix-
ing subshift of finite type, or an expansive homeomorphism, then the metric
entropy is upper semi-continuous (see [5, Theorem 4.5.6]). Furthermore, if
f : X → X is a one-sided or two-sided topologically mixing subshift of fi-
nite type, or an expansive homeomorphism which satisfies specification, and
ϕ ∈ Cf (X), then ϕ has a unique equilibrium measure; see [4].

On the other hand, one can exhibit plenty transformations not satisfy-
ing specification for which the entropy is still upper semi-continuous. For
example, all β-shifts are expansive, and thus the entropy is upper semi-
continuous (see [5] for details), but for β in a residual set of full Lebesgue
measure (although the complement has full Hausdorff dimension) the corre-
sponding β-shift does not satisfy specification (see [9]). It follows from work
of Walters [12] that for every β-shift the set of Lipschitz functions is con-
tained in D(X). Theorem 6 below readily applies in this setting. However,
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the multifractal analysis of piecewise monotonic transformations is not yet
completely understood.

The following theorem establishes a conditional variational principle for
the multifractal spectrum Fυ.

Theorem 6. Assume that the metric entropy is upper semi-continuous, and

let ϕ, ψ, υ ∈ C(X) with ψ > 0, υ > 0, and such that span{ϕ,ψ, υ} ⊂ D(X).
Then the following properties hold:

1. if α 6∈ [α, α] then Kα = ∅;

2. if α ∈ (α, α) then Kα 6= ∅ and

Fυ(α) = max

{

hµ(f)
∫

X υ dµ
: µ ∈ M(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

;

3. the function Fυ is continuous on (α, α).

Presumably, in general the function Fυ need not be more regular than
continuous. This contrasts with the situation in Section 5.1, where it is
shown that if f : X → X is a topologically mixing subshift of finite type, and
ϕ, ψ, and υ are Hölder continuous functions, then Fυ is even real analytic.

Taking υ = 1 in Theorem 6 one obtains a conditional variational principle
for the topological entropy.

Theorem 7. Assume that the metric entropy is upper semi-continuous,

and let ϕ, ψ ∈ C(X) with ψ > 0, and such that span{ϕ,ψ} ⊂ D(X). If

α ∈ (α, α) then

h(f |Kα) = max

{

hµ(f) : µ ∈ M(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

.

When ψ = 1, the identity in Theorem 7 was established by Takens and
Verbitski [11] under the assumption that f is a continuous transformation
satisfying specification, and ϕ is an arbitrary continuous function (and thus
may have more than one equilibrium measure), with a very different ap-
proach.

3.4. Relation with the topological pressure. We now show that the
spectrum is given by an equation reminiscent of a Legendre transform of the
topological pressure. However, we remark that the spectrum is in general
not convex; see Proposition 10.

Theorem 8. Assume that the metric entropy is upper semi-continuous, and

let ϕ, ψ, υ ∈ C(X) with ψ > 0, υ > 0, and such that span{ϕ,ψ, υ} ⊂ D(X).
If α ∈ (α, α) then:

1. infq∈R PX(qϕ− qαψ − Fυ(α)υ) = 0;
2. if ∆(p, q) is the unique number such that PX(qϕ−pψ−∆(p, q)υ) = 0,

then

Fυ(α) = inf
q∈R

∆(qα, q). (11)

Recall that two functions ϕ and ψ on X are cohomologous (with respect
to f) if there exists a continuous function χ : X → R such that

ϕ− ψ = χ ◦ f − χ.
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Under the hypotheses of Theorem 8, assume, in addition, that ψ is cohomol-
ogous to a multiple of υ. One easily verifies that in this case ψ must be coho-
mologous to λυ, where λ is the unique number such that PX(ψ) = PX(λυ).
Thus

PX(qϕ− [pλ+ ∆(p, q)]υ) = 0,

and hence, T (q) = pλ+ ∆(p, q) does not depend on p. By (11), we obtain

Fυ(α) = inf
q∈R

[T (q) − qαλ].

We conclude that when ψ is cohomologous to a multiple of υ, the spectrum
Fυ is a Legendre transform, and hence it is convex. For example, this implies
that for a conformal expanding map the “non-mixed” multifractal spectra
DD and EE in Section 1 are always convex.

We also observe that under the hypotheses of Theorem 8, if υ = 1 then

h(f |Kα) = inf
q∈R

PX(qϕ− qαψ). (12)

4. Proofs of the results in Section 3

We start with some preparatory lemmas. In the sequel we shall always
assume that the metric entropy is upper semi-continuous, and that ϕ, ψ,
υ ∈ C(X) with ψ > 0 and υ > 0, and such that span{ϕ,ψ, υ} ⊂ D(X).

Lemma 1. If α ∈ R, then

inf
q∈R

PX(qϕ− qαψ − Fυ(α)υ) ≥ 0.

Proof of the lemma. By Proposition 2 the number Fυ(α) coincides with the
unique root δ of the equation PKα(−δυ) = 0. Given δ > 0 and τ ∈ N

consider the sets

Lδ,τ = {x ∈ X : |ϕn(x) − αψn(x)| < δn for every n ≥ τ},

where

ϕn =
n−1
∑

k=0

ϕ ◦ fk and ψn =
n−1
∑

k=0

ψ ◦ fk.

Since ψ > 0 one can easily show that Kα ⊂
⋂

δ>0

⋃

τ∈N
Lδ,τ . Let now U

be an open cover of X with sufficiently small diameter such that if n is
sufficiently large, U ∈

⋃

k≥nWk(U), and x ∈ X(U), then

|ϕ(U) − ϕm(U)(x)| ≤ δm(U) and |ψ(U) − ψm(U)(x)| ≤ δm(U).

Hence, if U ∈
⋃

k≥nWk(U) and X(U) ∩ Lδ,τ 6= ∅ then

|ϕ(U) − αψ(U)| < (2 + |α|)δm(U).

Thus

PLδ,τ
(−Fυ(α)υ,U) ≤ PLδ,τ

(qϕ− qαψ − Fυ(α)υ,U) + (2 + |α|)δ|q|.

Letting the diameter of U going to zero yields

PLδ,τ
(−Fυ(α)υ) ≤ PX(qϕ− qαψ − Fυ(α)υ) + (2 + |α|)δ|q|,
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and hence,

0 ≤ P⋃
τ∈N

Lδ,τ
(−Fυ(α)υ) = sup

τ∈N

PLδ,τ
(−Fυ(α)υ)

≤ PX(qϕ− qαψ − Fυ(α)υ) + (2 + |α|)δ|q|.

Since δ is arbitrary, we obtain

inf
q∈R

PX(qϕ− qαψ − Fυ(α)υ) ≥ 0.

This completes the proof. �

In the sequel we shall always denote by ζ = ζq,α,δ the unique equilib-
rium measure of qϕ − qαψ − δυ, which is well-defined in our setting (see
Section 3.3).

Lemma 2. For each α ∈ (α, α) and δ ∈ R there exists q = q(δ, α) such that
∫

X ϕdζ/
∫

X ψ dζ = α.

Proof of the lemma. Let δ ∈ R and α ∈ (α, α). Define a function S : R → R

by

S(q)
def
=

∫

X
ϕdζ − α

∫

X
ψ dζ =

d

dq
PX(qϕ− qαψ − δυ). (13)

It follows from the upper semi-continuity of the entropy that the function
q 7→ PX(qϕ− qαψ− δυ) is of class C1 (see for example [5, Theorem 4.2.11]),
and thus S is continuous.

We shall prove that S(q) > 0 if q > 0 is sufficiently large. Since ζ is an
equilibrium measure, if q > 0 then

S(q) =
1

q

[

PX(qϕ− qαψ − δυ) + δ

∫

X
υ dζ − hζ(f)

]

= sup
µ

[
∫

X
ϕdµ− α

∫

X
ψ dµ+

δ(
∫

X υ dζ −
∫

X υ dµ) + hµ(f) − hζ(f)

q

]

≥ sup
µ

[
∫

X
ϕdµ− α

∫

X
ψ dµ+

δ(
∫

X υ dζ −
∫

X υ dµ) + hµ(f) − hζ(f)

q

]

+ (α− α) inf ψ.

Since υ and the entropies are bounded and (α − α) inf ψ > 0, we conclude
that S(q) > 0 for all sufficiently large q > 0. A similar argument shows that
S(q) < 0 for all sufficiently small q < 0. The desired result follows from the
continuity of S. �

Lemma 3. Given α ∈ (α, α), if δ is such that PX(qϕ − qαψ − δυ) ≥ 0 for

every q ∈ R, then there exists an ergodic measure µ ∈ M(X) such that
∫

X
ϕdµ/

∫

X
ψ dµ = α and dimυ µ ≥ δ.

Proof of the lemma. Let q = q(δ, α) be as in Lemma 2, and continue to write
ζ = ζq,α,δ. Since PX(qϕ− qαψ − δυ) ≥ 0 we obtain

hζ(f) + q

∫

X
ϕdζ − qα

∫

X
ψ dζ − δ

∫

X
υ dζ ≥ 0.

By Proposition 3, we conclude that δ ≤ hζ(f)/
∫

X υ dζ = dimυ ζ. �
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Lemma 4. If α ∈ (α, α) then Kα 6= ∅ and

Fυ(α) = sup

{

dimυ µ : µ ∈ ME(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

.

Proof of the lemma. By Lemma 1 we can apply Lemma 3 with δ = Fυ(α)
to obtain

Fυ(α) ≤ sup

{

dimυ µ : µ ∈ ME(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

.

Let µ ∈ ME(X) be a measure such that
∫

X
ϕdµ/

∫

X
ψ dµ = α.

Birkhoff’s ergodic theorem implies that µ(Kα) = 1, and hence, by Proposi-
tion 3, we obtain

Fυ(α) ≥ dimυ µ =
hµ(f)
∫

X υ dµ
.

This completes the proof. �

Lemma 5. If α ∈ (α, α) then

inf
q∈R

PX(qϕ− qαψ − Fυ(α)υ) = 0.

Proof of the lemma. Since υ is positive it follows from Lemma 1 and the
continuity of the topological pressure (in the supremum norm) that there
exists δ∗ ≥ Fυ(α) such that

inf
q∈R

PX(qϕ− qαψ − δ∗υ) = 0.

On the other hand, Lemma 3 ensures the existence of an ergodic measure µ
such that

∫

X
ϕdµ/

∫

X
ψ dµ = α and dimυ µ ≥ δ∗.

Lemma 4 yields Fυ(α) ≥ δ∗. This completes the proof. �

We now establish the continuity of the spectrum.

Lemma 6. The function Fυ is continuous on (α, α).

Proof of the lemma. We first show that Fυ is upper semi-continuous. Let
α ∈ (α, α) and αn ∈ (α, α) be any sequence converging to α. By Lemma 2
there exists qn ∈ R such that

∫

X
ϕdµn = αn

∫

X
ψ dµn,

where µn = ζqn,αn,Fυ(αn). By Lemma 5 the function

q 7→ PX(qϕ− qαnψ − Fυ(αn)υ)

attains its infimum (which is zero) at q = qn. Since µn is an equilibrium
measure, we have

hµn(f) = Fυ(αn)

∫

X
υ dµn.

Let β = lim supn→∞ Fυ(αn). Taking a subsequence, if necessary, we may
assume that Fυ(αn) converges to β and that the sequence of measures µn
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converges weakly to some measure µ. Since the entropy is upper semi-
continuous, we obtain

hµ(f) ≥ lim sup
n→∞

hµn(f) = lim sup
n→∞

Fυ(αn)

∫

X
υ dµ. (14)

Since µn → µ and αn → α, we have
∫

X ϕdµ − α
∫

X ψ dµ = 0, and hence if
q ∈ R then

PX(qϕ− qαψ − Fυ(α)υ) ≥ hµ(f) − Fυ(α)

∫

X
υ dµ.

Taking the infimum over q, by Lemma 5 we obtain Fυ(α)
∫

X υ dµ ≥ hµ(f).
Since υ > 0, by (14) we conclude that Fυ is upper semi-continuous.

We now show that Fυ is lower semi-continuous. Let α∗ ∈ (α, α). We
define

χq = qϕ− qα∗ψ − Fυ(α∗)υ and F (q) = PX(χq).

By Lemma 1 we have F (q) ≥ 0 for every q. The function F is of class C 1

and its derivative is

S(q) =

∫

X
ϕdµq − α∗

∫

X
ψ dµq,

where µq denotes the equilibrium measure of χq. We note that S is increas-
ing, by the convexity of the topological pressure. By Lemma 2 there exists
q∗ = q∗(α∗) ∈ R such that S(q∗) = 0. It is shown in the proof of Lemma 2
that S(q) > 0 if q > 0 is sufficiently large, and that S(q) < 0 if q < 0 is
sufficiently small. Therefore, we can always choose q∗ in such a way that
S(q) > 0 for every q > q∗ (in what follows it is in fact enough that any
neighborhood of q∗ contains points where S is positive).

Let ε > 0. Since S is continuous, one can always choose δ ∈ (0, ε) such
that

sup{|S(q)| : q ∈ (q∗ − δ, q∗ + δ)} ≤ ε inf υ.

Since µq is the equilibrium measure of χq and F (q) ≥ 0, it follows from
Proposition 3 that

dimυ µq =
hµq (f)
∫

X υ dµq
= Fυ(α∗) +

F (q) − qS(q)
∫

X υ dµq

≥ Fυ(α∗) −
qS(q)
∫

X υ dµq
≥ Fυ(α∗) − (|q∗| + ε)ε.

(15)

For every α > α∗ sufficiently small it follows from the continuity of S and
the choice of q∗ that there exists q = q(α) ∈ (q∗, q∗ + δ) such that α =
α∗ + S(q)/

∫

X ψ dµq, and hence
∫

X ϕdµq = α
∫

X ψ dµq. By Lemma 4 and
(15) we conclude that

Fυ(α) ≥ dimυ µq ≥ Fυ(α∗) − (|q∗| + ε)ε. (16)

Since ε is arbitrary, this establishes the right lower semi-continuity of Fυ.
The left lower semi-continuity can be established in a similar way. If

necessary we first rechoose q∗ in such a way that S(q) < 0 for every q < q∗.
For every α < α∗ sufficiently small there exists q = q(α) ∈ (q∗ − δ, q∗)
such that α = α∗ + S(q)/

∫

X ψ dµq, and hence
∫

X ϕdµq = α
∫

X ψ dµq. By
Lemma 4 and (15) we obtain (16) once more, and conclude that Fυ is left
lower semi-continuous. This completes the proof of the lemma. �
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We now establish the results in Section 3.

Proof of Theorem 6. Setting δ = Fυ(α) in Lemma 2 we conclude that the
ergodic measure ζ = ζq,α,δ satisfies

PX(qϕ− qαψ − Fυ(α)υ) = hζ(f) − Fυ(α)

∫

X
υ dζ,

and hence, Fυ(α) = hζ(f)/
∫

X υ dζ = dimυ ζ. This shows that in Lemma 4
one can replace each of the suprema by a maximum.

Let now µ ∈ M(X) be a measure such that
∫

X ϕdµ/
∫

X ψ dµ = α (note
that µ is not necessarily ergodic). To complete the proof of Statement 2 it
is enough to show that Fυ(α) ≥ hµ(f)/

∫

X υ dµ. Observe that

PX(qϕ− qαψ − Fυ(α)υ)

≥ hµ(f) + q

∫

X
ϕdµ− qα

∫

X
ψ dµ− Fυ(α)

∫

X
υ dµ

= hµ(f) − Fυ(α)

∫

X
υ dµ.

Taking the infimum over q, Lemma 5 yields 0 ≥ hµ(f)−Fυ(α)
∫

X υ dµ, and
hence,

Fυ(α) ≥
hµ(f)
∫

X υ dµ
,

as we wanted to show. This establishes Statement 2. Statement 1 is an
immediate consequence of Statement 2.

Finally, the continuity of Fυ is established in Lemma 6. This completes
the proof. �

Proof of Theorem 4. It is well known that for topologically mixing subshifts
of finite type and potentials in Cf (X) the assumptions in Theorem 6 are
satisfied. The desired statement is thus an immediate consequence of The-
orem 6. �

Proof of Theorem 8. Statement 1 is established in Lemma 5. Statement 2
is an immediate consequence of Statement 1. �

5. Applications

5.1. Analyticity and non-convexity of the spectrum. We continue to
use the notations of Section 3. We show that for subshifts of finite type
the multifractal spectrum Fυ is real analytic, thus substantially improving
Statement 3 in Theorem 6 for this class of dynamical systems.

Theorem 9. Let f : X → X be a topologically mixing subshift of finite type,

and ϕ, ψ, and υ Hölder continuous functions on X with ψ > 0 and υ > 0.
Then the following properties hold:

1. If ϕ is cohomologous to some multiple of ψ, then α = α.

2. If ϕ is not cohomologous to any multiple of ψ, then the function Fυ

is real analytic on the non-empty interval (α, α).
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Proof. Assume first that there exists β ∈ R and a continuous function
χ : X → R such that ϕ− βψ = χ ◦ f − χ. Then

ϕn
ψn

− β =
χ ◦ fn − χ

ψn
→ 0 as n→ ∞.

Hence, Kβ(ϕ,ψ) = X and Ka(ϕ,ψ) = ∅ for every a 6= β. By Birkhoff’s
ergodic theorem, if µ ∈ M(X) is ergodic then

∫

X ϕdµ/
∫

X ψ dµ = β, and
hence, α = α = β. This establishes the first property.

We now prove an auxiliary lemma.

Lemma 7. If ϕ− βψ is cohomologous to no constant for every β ∈ R then

the spectrum Fυ is real analytic on the non empty interval (α, α).

Proof of the lemma. Let α ∈ (α, α) and put

F (q, δ, α) = PX(qϕ− qαψ − δυ).

By Theorem 8 the number Fυ(α) coincides with the unique δ such that
infq F (q, δ, α) = 0. It is well known that F is real analytic in all variables.
In addition, the function q 7→ F (q, δ, α) is strictly convex because of the
cohomology assumption. Hence if there exists q ∈ R such that its derivative
∂qF vanishes, then this is the minimum. But

∂qF (q, δ, α) = S(q),

with S(q) as in (13). It is shown in the proof of Lemma 2, that there exists a
point q = q(δ, α) ∈ R such that S(q) = 0; such a point is necessarily unique
by the strict convexity of q 7→ F (q, δ, α). The dimension is then given by
the unique root δ = δ(α) of the system of equations

F (q(δ, α), δ, α) = ∂qF (q(δ, α), δ, α) = 0.

We want to apply the implicit function theorem in order to get the regu-
larity of q(α) = q(δ(α), α) and δ(α). To do this, let

G(q, δ, α) =

(

F (q, δ, α)
∂qF (q, δ, α)

)

.

It is enough to show that

det[(∂q, ∂δ)G] = ∂qF · ∂δ∂qF − ∂2
qF · ∂δF

never vanishes when δ = δ(α) and q = q(δ(α), α). Since ∂qF = 0 on
q(δ, α), it is enough to check that ∂2

qF and ∂δF are non zero. Observe that
∫

X(ϕ − αψ) dζq,α,δ
= 0 when q = q(δ(α), α) and δ = δ(α). Since ϕ − αψ is

not cohomologous to a constant ∂2
qF does not vanish (see [8]). Finally,

∂δF = −

∫

X
υ dζq,α,δ ≤ − inf υ < 0.

This proves that δ(α) and q(α) are analytic. �

We proceed with the proof of the theorem. Assume that ϕ is not coho-
mologous to βψ for every β ∈ R. We want to prove that α < α, and that
the spectrum Fυ is real analytic on (α, α).

By Lemma 7, it remains to consider the case when there exists β, c ∈ R

with c 6= 0, and a continuous function χ : X → R such that

ϕ− βψ = c+ χ ◦ f − χ. (17)
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One can easily show that x ∈ Kα(ϕ,ψ) if and only if x ∈ Kc/(α−β)(ψ, 1).
Furthermore, it follows from (17) that

ϕn
ψn

− β =
cn

ψn
+
χ ◦ fn − χ

ψn
.

Since ψ > 0 and c 6= 0 we conclude that β 6= α for every α ∈ R such that
Kα(ϕ,ψ) 6= ∅. Hence, the function α 7→ c/(α−β) is real analytic on (α, α).

Observe that ψ cannot be cohomologous to a constant γ ∈ R. Otherwise
the function ϕ would be cohomologous to βψ+ c = (β+ c/γ)ψ (since ψ > 0
the constant γ would be positive), which is a contradiction. Hence we can

apply Lemma 7 to the pair of functions (ψ, 1) to conclude that F
(ψ,1)
υ is real

analytic on the non-empty interval (β, β), where

β = inf

{
∫

X
ψ dµ : µ ∈ M(X)

}

,

β = sup

{
∫

X
ψ dµ : µ ∈ M(X)

}

.

Since ψ > 0 we have β > 0.

Since F
(ϕ,ψ)
υ is the composition of the real analytic functions α 7→ c/(α−β)

and F
(ψ,1)
υ , we conclude that it is real analytic. Furthermore,

(α, α) =

{

(β + c/β, β + c/β) when c > 0

(β + c/β, β + c/β) when c < 0
.

This completes the proof of the theorem. �

We now provide an explicit example for which the spectrum Fυ is not
convex. This strongly contrasts with the well studied (non-mixed) multi-
fractal spectra, which can be computed as Legendre transforms, and hence
are always convex.

Proposition 10. Let f : X → X be the full shift on two symbols. There

exist Hölder continuous functions ϕ, ψ, and υ on X, depending only on the

first coordinates, such that the spectrum Fυ is not convex, and hence it is

not a Legendre transform.

Construction. Let X = {0, 1}N. Set ϕ(x0x1 . . .) = ϕx0
, with ϕ0 = 0 and

ϕ1 = 1, ψ = 1, and υ(x0x1 . . .) = υx0
for some positive numbers υ0 and υ1.

Write βµ = µ({x ∈ X : x0 = 1}). By Theorem 4, we have

Fυ(α) = max

{

hµ(f)

v0(1 − βµ) + v1βµ
: βµ = α

}

=
max {hµ(f) : βµ = α}

−α(v0 − v1) + v0
.

Let ξ be the partition of X into cylinders of length 1. Then

hµ(f) = inf
n

1

n
Hµ

(

n−1
∨

k=0

f−kξ

)

≤ Hµ(ξ) = −α logα− (1 − α) log(1 − α),

with equality if µ is the Bernoulli measure on ξ with βµ = α. Therefore

Fυ(α) =
α log α+ (1 − α) log(1 − α)

α(υ0 − υ1) − υ0
.
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Figure 1. A non-convex spectrum

Taking, for example, υ0 = 1 and υ1 = 100, the function Fυ is not convex.
See Figure 1 for a graph of the spectrum Fυ. �

5.2. Irregular sets. Consider functions ϕ, ψ ∈ C(X) such that ψ > 0.
Note that the space X can be written as the disjoint union

X =
⋃

α∈[α,α]

Kα(ϕ,ψ) ∪ I(ϕ,ψ),

where

I(ϕ,ψ) =

{

x ∈ X : lim
n→∞

ϕn(x)

ψn(x)
does not exist

}

is the irregular set for the pair (ϕ,ψ). By Birkhoff’s ergodic theorem the
set I(ϕ,ψ) has zero measure with respect to any invariant measure. The
following result shows that from the point of view of dimension theory the
set I(ϕ,ψ) is as large as the whole set X.

We recall that a subshift is said to satisfy the specification property if
there exists a positive integer m such that for all cylinders C1, C2 there
exists another cylinder C of length m such that the juxtaposition C1CC2 is
a cylinder appearing in the subshift.

Theorem 11. Let f : X → X be a subshift with the specification property,

and ϕ, ψ, υ ∈ C(X) with ψ > 0 and υ > 0. If span{ϕ,ψ, υ} ⊂ D(X) and

α < α, then

dimυ I(ϕ,ψ) = dimυX.

Proof. By Theorem 6, the function Fυ is continuous on (α, α). We want to
argue that the function Fυ is also continuous where it attains its maximum
even if it occurs when α ∈ {α, α}. Let µυ be the equilibrium measure of the
potential

−dimυX · υ = 0(ϕ− αψ) − dimυX · υ.

Since µυ is the unique f -invariant probability measure such that dimυ µυ =
dimυX, we have Fυ(α) ≤ dimυ µυ for every α. One can easily see that if
α =

∫

X ϕdµυ/
∫

X ψ dµυ then Fυ(α) = dimυ µυ. Thus, if α ∈ {α, α} then
one can use a similar argument to that in the proof of Lemma 6 to establish
the continuity at α.
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We need the following statement, which is an immediate consequence of
a result of Barreira and Schmeling (see [3, Theorem 7.2]).

Lemma 8. If f : X → X is a subshift with the specification property, and

µ1, µ2 ∈ ME(X) are such that
∫

X ϕdµ1
∫

X ψ dµ1
6=

∫

X ϕdµ2
∫

X ψ dµ2
,

then dimυ I(ϕ,ψ) ≥ min{dimυ µ1,dimυ µ2}.

The continuity of Fυ at the point α =
∫

X ϕdµυ/
∫

X ψ dµυ assures that
for each ε > 0 there exists a measure µ ∈ ME(X) (which is an equilibrium
measure) such that

∫

X ϕdµ/
∫

X ψ dµ 6= α and dimυ µ > dimυX − ε. By
Lemma 8 we conclude that

dimυ I(ϕ,ψ) ≥ min{dimυ µυ,dimυ µ} > dimυX − ε.

The arbitrariness of ε implies the desired result. �

For example, if the continuous functions ϕ, ψ, and υ are in Cf (X), then
span{ϕ,ψ, υ} ⊂ D(X). In the special case of topologically mixing subshifts
of finite type and Hölder continuous functions, the statement in Theorem 11
is due to Barreira and Schmeling [3]. The proof of Theorem 11 also uses
their techniques.

When f : X → X is a subshift with the specification property, and ϕi, ψi,
υ ∈ C(X) with ψi > 0 and υ > 0, are such that span{ϕi, ψi, υ} ⊂ D(X) and
α(ϕi, ψi) < α(ϕi, ψi) for i = 1, . . ., k, following the techniques in [3] one can
also show that

dimυ

k
⋂

i=1

I(ϕi, ψi) = dimυX.

For topologically mixing subshifts of finite type, this statement was estab-
lished in [3].

5.3. Repellers. Let M be a smooth Riemannian manifold and f : M →M
a C1 map. Consider a compact f -invariant set X ⊂ M . We say that f is
expanding and that X is a repeller of f if there exist constants c > 0 and
β > 1 such that ‖dxf

nu‖ ≥ cβn‖u‖ for all x ∈ X, u ∈ TxM , and n ≥ 1.
Recall that a finite cover {R1, . . ., Rp} of X by closed sets is a Markov

partition if:

1. intRi = Ri for each i = 1, . . ., p;
2. intRi ∩ intRj = ∅ if i 6= j;
3. each fRi is a union of sets Rj.

It is well known that repellers admit Markov partitions of arbitrarily small
diameter. We define a p × p transfer matrix A = (aij) by setting aij = 1
if intRi ∩ f

−1 intRj 6= ∅, and aij = 0 otherwise. Consider the associated
subshift of finite type σ : Σ → Σ. For each ω = (i1i2 · · · ) ∈ Σ, we set

χ(ω) = {x ∈ X : fk−1x ∈ Rik for every k ∈ N}.

The set χ(ω) consists of a single point in X, and we obtain a coding map
χ : Σ → X. The map χ is continuous, onto, and satisfies χ ◦ σ = f ◦ χ.
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For expanding maps, one can also establish a conditional variational prin-
ciple for the υ-dimension, and the analyticity of the spectrum Fυ. Further-
more, one can establish the full υ-dimensionality of irregular sets, and relate
the spectrum with a Legendre-type transform. We collect all the results in
the following statement.

Theorem 12. Let X be a repeller of a topologically mixing C 1+ε expanding

map f , for some ε > 0, and ϕ, ψ, υ Hölder continuous on X with ψ > 0
and υ > 0. If ϕ is not cohomologous to any multiple of ψ, then:

1. the function Fυ is real analytic on (α, α);
2. if α ∈ (α, α) then

Fυ(α) = max

{

hµ(f)
∫

X υ dµ
: µ ∈ M(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

= inf
q∈R

∆(qα, q),

where ∆(p, q) is such that PX(qϕ− pψ − ∆(p, q)υ) = 0;
3. infq∈R PX(qϕ− qαψ − Fυ(α)υ) = 0 for every α ∈ (α, α);
4. dimυ I(ϕ,ψ) = dimυX.

Proof. Let {R1, . . ., Rp} be Markov partition of X, and χ : Σ → X the
associated coding map. The following result is due to Schmeling [10], and
constitutes a far-reaching generalization of work of Barreira and Schmeling
in [3].

Lemma 9. If X is a repeller of a topologically mixing C 1+ε expanding map,

for some ε > 0, then dimυ◦χ(χ
−1Z) = dimυ Z for every set Z ⊂ X.

The desired statement is now an immediate consequence of Theorems 4,
8, 9, 11, and Lemma 9 applied to each of the level sets Kα. �

Under the hypotheses of Theorem 12, one can also show that if α 6∈ (α, α)
then Kα = ∅, and that if ϕ is cohomologous to some multiple of ψ, then
α = α.

5.4. Hyperbolic sets. One can also consider diffeomorphisms possessing
hyperbolic sets. Let f : M →M be a diffeomorphism of a smooth manifold,
and X ⊂M a compact f -invariant set. We say that X is a hyperbolic set of
f if there is a continuous splitting of the tangent bundle TXM = Es ⊕Eu,
and constants κ > 0 and λ ∈ (0, 1) such that for each x ∈ X:

1. dxf E
s
x = Esfx and dxf E

u
x = Eufx;

2. ‖dxf
nv‖ ≤ κλn‖v‖ for all v ∈ Es

x and n ≥ 0;
3. ‖dxf

−nv‖ ≤ κλn‖v‖ for all v ∈ Eu
x and n ≥ 0.

The following is a version of Theorem 12 for hyperbolic sets.

Theorem 13. Let X be a locally maximal hyperbolic set of a C 1+ε diffeo-

morphism f , for some ε > 0, and ϕ, ψ, υ Hölder continuous on X with

ψ > 0 and υ > 0. If ϕ is not cohomologous to any multiple of ψ, then:

1. the function Fυ is real analytic on (α, α);
2. if α ∈ (α, α) then

Fυ(α) = max

{

hµ(f)
∫

X υ dµ
: µ ∈ M(X) and

∫

X ϕdµ
∫

X ψ dµ
= α

}

= inf
q∈R

∆(qα, q),

where ∆(p, q) is such that PX(qϕ− pψ − ∆(p, q)υ) = 0;
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3. infq∈R PX(qϕ− qαψ − Fυ(α)υ) = 0 for every α ∈ (α, α);
4. dimυ I(ϕ,ψ) = dimυX.

Proof. Locally maximal hyperbolic sets have Markov partitions of arbitrar-
ily small diameter, and each Markov partition has associated a two-sided
subshift of finite type σ, and a coding map χ : Σ → X for the hyperbolic
set, which is Hölder continuous, onto, and satisfies f ◦ χ = χ ◦ σ. Further-
more, one can also establish the following version of Lemma 9 for hyperbolic
sets (see [10] for details).

Lemma 10. If X is a locally maximal hyperbolic set of a C 1+ε diffeomor-

phism, for some ε > 0, then dimυ◦χ(χ
−1Z) = dimυ Z for every set Z ⊂ X.

The desired statement is now an immediate consequence of Theorems 4,
8, 9, 11, and Lemma 10 applied to each of the level sets Kα. �

6. Mixed multifractal spectra

Let M be a smooth Riemannian manifold and f : M → M a C 1 map.
Consider a compact f -invariant set X ⊂M . Recall that f is expanding and
that X is a repeller of f if there exist constants c > 0 and β > 1 such that
‖dxf

nu‖ ≥ cβn‖u‖ for all x ∈ X, u ∈ TxM , and n ≥ 1. We say that f is
conformal on X if dxf is a multiple of an isometry for every x ∈ X.

Let M(X) be the set of f -invariant Borel probability measures on X,
and ME(X) ⊂ M(X) the subset of ergodic measures. Consider a Hölder
continuous function ϕ : X → R and define the sets

D =

{

−

∫

X ϕdµ
∫

X log‖df‖ dµ
: µ ∈ M(X)

}

,

E =

{

−

∫

X
ϕdµ : µ ∈ M(X)

}

, L =

{
∫

X
log‖df‖ dµ : µ ∈ M(X)

}

.

When f is a topologically mixing expanding map, each Hölder continuous
function ϕ has a unique equilibrium measure which we denote by µϕ.

The following statement establishes a conditional variational principle for
each of the six multifractal spectra introduced in Section 1; see (1)–(6).

Theorem 14. Let X be a repeller of a topologically mixing C 1+ε expanding

map f , for some ε > 0, such that f is conformal on X. If ϕ is a Hölder

continuous function with PX(ϕ) = 0, then:

1. the set D is an interval or a point, it coincides with the domains of

the functions D
µϕ

D and D
µϕ

E , and if α ∈ int D then

D
µϕ

D (α) = max

{

dimH µ : µ ∈ ME(X) and −

∫

X ϕdµ
∫

X log‖df‖ dµ
= α

}

,

D
µϕ

E (α) = max

{

hµ(f) : µ ∈ ME(X) and −

∫

X ϕdµ
∫

X log‖df‖ dµ
= α

}

;
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2. the set E is an interval or a point, it coincides with the domains of

the functions E
µϕ

D and E
µϕ

E , and if α ∈ int E then

E
µϕ

D (α) = max

{

dimH µ : µ ∈ ME(X) and −

∫

X
ϕdµ = α

}

,

E
µϕ

E (α) = max

{

hµ(f) : µ ∈ ME(X) and −

∫

X
ϕdµ = α

}

;

3. the set L is an interval or a point, it coincides with the domains of

the functions LD and LE, and if α ∈ int L then

LD(α) = max

{

dimH µ : µ ∈ ME(X) and

∫

X
log‖df‖ dµ = α

}

,

LE(α) = max

{

hµ(f) : µ ∈ ME(X) and

∫

X
log‖df‖ dµ = α

}

.

Proof. Recall that when υ = 1 we have dimυK = h(f |K) for any subset
K ⊂ X, and dimυ µ = hµ(f) for any measure µ ∈ M(X). Furthermore,
when υ = log‖df‖ we have dimυK = dimH K for any subset K ⊂ X, and
dimυ µ = dimH µ for any measure µ ∈ M(X). See Section 2.2 for details.

Let {R1, . . ., Rp} be Markov partition ofX, and χ : Σ → X the associated
coding map. The following is an immediate consequence of Lemma 9.

Lemma 11. If X is a repeller of a topologically mixing C 1+ε expanding map

f , for some ε > 0, then h(σ|χ−1Z) = h(f |Z) for every set Z ⊂ X. If, in

addition, f is conformal on X, then dimυ(χ
−1Z) = dimH Z for every set

Z ⊂ X, where υ = log‖df‖ ◦ χ.

Define a function ψ on X by ψ = log‖df‖. We have

dµϕ(x) = lim
n→∞

−
ϕn(x)

ψn(x)
,

hµϕ(x) = lim
n→∞

−
ϕn(x)

n
,

λ(x) = lim
n→∞

ψn(x)

n
,

whenever the corresponding limits exist.
By Lemma 11, setting υ = log‖df‖ we obtain each of the first identities

in Statements 1, 2, and 3, considering respectively the pairs of functions
(ϕ,−ψ), (ϕ,−1), and (ψ, 1) in Theorem 6.

Again by Lemma 11, setting υ = 1 we obtain each of the second identities
in Statements 1, 2, and 3, considering respectively the pairs of functions
(ϕ,−ψ), (ϕ,−1), and (ψ, 1) in Theorem 6. �

We remark that the conformality hypothesis for f is essential to all but the
spectrum E

µϕ

E . In fact, one can formulate the following stronger statement
for this spectrum.

Theorem 15. Let X be a repeller of a topologically mixing C 1+ε expanding

map f , for some ε > 0. If ϕ is a Hölder continuous function with PX(ϕ) = 0,
and α ∈ int E then

E
µϕ

E (α) = max

{

hµ(f) : µ ∈ ME(X) and −

∫

X
ϕdµ = α

}

.
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Proof. Define the function ψ = −1 on X. The statement is an immediate
consequence of Theorem 5 and Lemma 11. �

These results follow from a much more general statement formulated be-
low (see Theorem 12).

Under the hypothesis of Theorem 14, it is know that D
µϕ

D is analytic on D,
and that LD and LE are analytic on L. Furthermore, under the hypothesis
of Theorem 15, it is known that E

µϕ

E is analytic on E. See [7] for references
and full details.

It has been a standing open problem in multifractal analysis to decide
whether the spectra DE and ED are analytic. We shall use the conditional
variational principles for DE and ED formulated in Theorem 14 to establish
that the spectra DE and ED are indeed also analytic. We remark that the
other four variational principles can also be used to establish the analyticity
of the spectra DD, EE , LD, and LE . However, as mentioned before, for
these four multifractal spectra such a statement is known, and hence, we
shall not discuss it any further.

Theorem 16. If X is a repeller of a topologically mixing C 1+ε expanding

map f , for some ε > 0, such that f is conformal on X, and ϕ a Hölder

continuous function with PX(ϕ) = 0, then:

1. if ϕ is not cohomologous to a constant, then the function E
µϕ

D is real

analytic on the non-empty interval E;

2. if ϕ is not cohomologous to any multiple of log‖df‖, then the function

D
µϕ

E is real analytic on the non-empty interval D.

Proof. Proceeding as in the proof of Theorem 14, the desired statement is
an immediate consequence of Statement 2 in Theorem 9. �

It is well known that under the hypothesis of Theorem 16 there exist
a unique invariant probability measure mE of maximal entropy, i.e., such
that hmE

(f) = h(f |X), and a unique invariant probability measure mD of
maximal dimension, i.e., such that dimH mD = dimH X. The measures mE

and mD are respectively the equilibrium measures of the functions 0 and
−dimH X · log‖df‖. Hence, one can reformulate Theorem 16 as follows.

Theorem 17. If X is a repeller of a C1+ε expanding map f , for some ε > 0,
such that f is conformal on X, and µ is an equilibrium measure with Hölder

continuous potential, then:

1. if µ 6= mE then the function E
µϕ

D is real analytic on E;

2. if µ 6= mD then the function D
µϕ

E is real analytic on D.

Furthermore, if mE 6= mD (that is, if log‖df‖ is not cohomologous to
a constant) then for every equilibrium measure µ with Hölder continuous
potential at least one of the spectra E

µϕ

D and D
µϕ

E is real analytic.
It is known that the multifractal spectra DD, EE , LD, and LE either

reduce to a point or are strictly convex (see [7] for details and references).
We now illustrate that the mixed multifractal spectra DE and ED may
in general not be convex. Since Legendre transforms are always convex
this implies that the multifractal spectra DE and ED in general cannot be
expressed as Legendre transforms, with strong contrast with the other four
multifractal spectra.
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Proposition 18. There exists a repeller of a topologically mixing piecewise

linear expanding map of [0, 1], and a Bernoulli measure µ on [0, 1], such that

the spectrum E
µ
D is not convex, and hence it is not a Legendre transform.

Construction. For an example with the properties indicated in Proposi-
tion 18 one can consider the piecewise linear expanding map f defined on
the union of the intervals I0 = [0, e−100] and I1 = [1 − e−1, 1] such that
f(I0) = f(I1) = [0, 1]. Then

X =
∞
⋂

k=1

f−k(I0 ∩ I1)

is a repeller of f . Let µ be the Bernoulli measure on two symbols such that
µ(I0) = 1/(1 + e) and µ(I1) = e/(1 + e). Using the conditional variational
principle in Theorem 14 one can explicitly compute E

µ
D, and verify that it

is not convex; see Proposition 10 above for full details. See Figure 1 for a
graph of this spectrum. �

A similar construction can be effected for the spectrum DE .

7. Geometric constructions

7.1. Non-additive topological pressure. We recall the non-additive ver-
sion of the topological pressure introduced by Barreira in [1]. We use the
notations of Section 2.1.

Let f : X → X be a continuous map of a compact metric space, and U a
finite open cover of X. Consider a sequence Φ of functions ϕn : X → R. For
each n ∈ N let

γn(Φ,U) = sup{|ϕn(x) − ϕn(y)| : x, y ∈ X(U) for some U ∈ Wn(U)}.

We assume that

lim sup
diam U→0

lim sup
n→∞

γn(Φ,U)

n
= 0. (18)

Given U ∈ Wn(U) we set

Φ(U) =

{

supX(U) ϕn if X(U) 6= ∅

−∞ if X(U) = ∅
.

For each set Z ⊂ X and number α ∈ R, let

M(Z,α,Φ,U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αm(U) + Φ(U)),

where the infimum is taken over all Γ ⊂
⋃

k≥nWn(U) covering Z. We define
the non-additive topological pressure of the sequence of functions Φ on the
set Z (with respect to f) by

PZ(Φ) = lim
diam U→0

inf{α : M(Z,α,Φ,U) = 0}.

When Φ is the sequence of functions ϕn =
∑n−1

k=0 ϕ◦f
k, for some continuous

function ϕ : X → R, the assumption (18) is satisfied, and PX(Φ) coincides
with the topological pressure PX(ϕ) introduced in Section 2.1.
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The non-additive thermodynamic formalism has been applied with success
to a number of problems in dimension theory of dynamical systems; see [1, 7]
for details.

7.2. Formulation of the results. We can also establish a non-additive
version of Theorem 8. Consider three sequences of functions Φ = {ϕn},
Ψ = {ψn}, and Υ = {υn} on the space X. We assume that Φ, Ψ, and Υ
satisfy hypothesis (18). Consider the set

Lα =

{

x ∈ X : lim
n→∞

ϕn(x)

ψn(x)
= α

}

.

Theorem 19. If sup{|ψn(x)|/n : x ∈ X,n ∈ N} <∞ then

PLα(Υ) ≤ inf
q∈R

PX(qΦ − qαΨ + Υ).

Proof. This is a modification of the proof of Lemma 1. By defining sets Lδ,τ
as in the proof of Lemma 1 and using similar arguments we conclude that

PLδ,τ
(Υ,U) ≤ PLδ,τ

(q(Φ − αΨ) + Υ,U) + (2 + |α|)δ|q|.

Letting the diameter of U going to zero yields

PLδ,τ
(Υ) ≤ PX(qΦ − qαΨ + Υ) + (2 + |α|)δ|q|,

and hence,

PLα(Υ) ≤ sup
τ∈N

PLδ,τ
(Υ) ≤ PX(qΦ − qαΨ + Υ) + (2 + |α|)δ|q|.

Since δ is arbitrary, we obtain PLα(Υ) ≤ PX(qΦ − qαΨ + Υ). �

Taking Υ = 0 in Theorem 19 one obtains the following.

Theorem 20. Under the hypotheses of Theorem 19, we have

h(f |Lα) ≤ inf
q∈R

PX(qΦ − qαΨ).

This provides a non-additive generalization of the identity (12). Theo-
rem 20 can be used to establish the foundations of a multifractal analysis
for limit sets of geometric constructions. Here we shall only discuss a first
application. Further topics will be discussed elsewhere.

A symbolic geometric construction in R
m is defined by:

1. a compact set Q ⊂ {1, . . . , p}N which is invariant under the shift map
f : {1, . . . , p}N → {1, . . . , p}N;

2. a decreasing sequence of compact sets ∆i1···in ⊂ R
m for each sequence

(i1i2 · · · ) ∈ Q, with diameter diam ∆i1···in → 0 as n→ ∞.

The limit set of the construction is the compact set

F =
⋂

n∈N

⋃

i1···in

∆i1···in ,

where the union is taken over all tuples (i1 · · · in) such that (i1 · · · in) =
(j1 · · · jn) for some (j1 · · · ) ∈ Q. We notice that these constructions include
as trivial examples any iterated function systems defined by a family of
contraction maps.
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Consider the sequence of functions ϕn(i1i2 · · · ) = log diam∆i1···in on Q,
and denote it Φ. It is easy to verify that Φ satisfies hypothesis (18). We
assume that:

1. the set ∆i1···in is a ball of diameter di1···in ;
2. ∆i1···in ∩ ∆j1···jn = ∅ whenever (i1 · · · in) 6= (j1 · · · jn);
3. ϕn+m ≤ ϕn + ϕm ◦ fn for every n, m ∈ N;
4. sup{ϕn(ω) − ϕn+1(ω) : ω ∈ Q and n ∈ N} <∞.

We notice that the numbers di1···in may depend on all the symbolic past,
and may satisfy no asymptotic behavior. It follows from [1, Theorem 2.1]
that under those hypotheses, we have dimH F = s, where s is the unique
number such that PQ(sΦ) = 0.

The following is an immediate consequence of Theorem 20.

Theorem 21. We have

h

(

f
∣

∣

{

(i1i2 · · · ) ∈ Q : lim
n→∞

−
log di1···in

n
= α

})

≤ inf
q∈R

(PQ(qΦ) + qα).

This statement establishes an upper bound for the entropy spectrum of
Lyapunov exponents associated with the geometric construction. Notice
that the upper bound is a Legendre transform involving the non-additive
topological pressure. It is an open problem to obtain a sharp lower bound.
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