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HYPERBOLIC DYNAMICAL SYSTEMS WITH

POLYNOMIAL RATE OF MIXING

FRANÇOISE PÈNE AND BENOÎT SAUSSOL

Abstract. We consider some nonuniformly hyperbolic invertible dy-
namical systems which are modeled by a Gibbs-Markov-Young tower.
We assume a polynomial tail for the inducing time and a polynomial
control of hyperbolicity, as introduced by Alves, Pinheiro and Azevedo.
These systems admit a physical measure with polynomial rate of mixing.
In this paper we prove that the distribution of the number of visits to a
ball B(x, r) converges to a Poisson distribution as the radius r → 0 and
after suitable normalization.
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1. Introduction

Many dynamical systems with some hyperbolicity enjoy strong statistical
properties. Let us mention a few of them: existence of physical measure,
exponential decay of correlations, central limit theorem, large deviation prin-
ciples, etc. That is, the probabilistic behavior of these systems mimics an
i.i.d. process. Beyond uniform hyperbolicity the situation may be different.
This has a visible consequence for example in the validity of the CLT, which
is often related to a summable decay of correlation.
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We will consider here a class of nonuniformly hyperbolic systems for which
the polynomial decay of correlation can be arbitrarily slow. The setting, in-
troduced by Alves and Pinheiro [2] and generalized by Alves and Azevedo [1]
is a system modeled by a Young tower on which we have a uniform polyno-
mial control on the contraction along stable manifolds and backward con-
traction along unstable manifolds. The full description of the setting is in
Section 2.

Let f be an invertible map defined on a riemaniann manifold M giving
rise to a metric d. Suppose that µ is an invariant measure for f . Given x
inM, we are interested in the statistical behavior, with respect to µ, of the
number of occurences of entrance times in the ball B(x, r). Namely, setting

N(x, r)(y) = ]

{
n ∈ N : d(fny, x) < r, 1 ≤ n ≤ t

µ(B(x, r))

}
we are interested in the limit distribution ofN(x, r), as r goes to 0. The main
result of the paper is that this limit is the Poisson distribution, for µ-a.e.
x. This question has been adressed for many different dynamical systems.
Our result is a generalization of the recent work by Collet and Chazottes [7]
who studied towers with exponential tail of return time to a setting where
the tail is only polynomial (We refer to [7] and references therein for details
on previous works). Our work applies for example to stadium like billiards.
During the preparation of this work Freitas, Haydn and Nicol [10] obtained a
similar result on Poisson distribution for these billiards by a different method
(inducing the billiard map on a suitable reference set where the induced map
has a tower with exponential tail). We also mention Haydn and Wasilewska
[18] whose approach needs a polynomial tail of sufficiently large order, in a
nonuniformly expanding setting.

Our limit theorem relies on precise mixing estimates for sets defined with
balls. For some systems the indicator functions of balls have a bounded
norm in a good Banach space of functions for which one can use the de-
cay of correlations directly. This leads to a Poisson distribution and even
gives stronger results [3]. Here in our situation one cannot expect to im-
plement this strategy and we need to approximate our balls to get mixing
estimates. That is why we need a control on the measure of neighborhood of
balls as in (3). Outside absolutely continuous measure this leads to delicate
questions. In [7] a general result is obtained for SRB measure with one-
dimensional unstable manifold. The generalization to higher dimensional
systems or polynomial tower being open, we left the condition (3) as an
assumption. We emphasize that this condition is the weakest that one can
ask in our setting.

A major step in our proof of the Poisson distribution is to bypass the
lengthy and delicate study of short returns by a simple argument based on
recurrence rates. Indeed we show that for our systems

min{n ≥ 1: d(fnx, x) < r} ≈ r− dimH µ

for µ-a.e. x, where dimH µ stands for the Hausdorff dimension of µ (See
Section 6 for precise statement). There are some systems with polynomial
decay of correlation for which the above behavior does not hold and it turns
out that the Poisson distribution cannot happen in these cases (See [11]).
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2. Assumptions

We consider an invertible transformation f : M → M on a finite-
dimensional Riemannian manifold satisfying assumptions of [1]. These as-
sumptions ensure the existence of a f -invariant SRB probability measure µ
and that (M, f, µ) can be modeled by a Gibbs Markov Young tower with
good properties as described briefly below for completeness.

Recall that a stable (resp. unstable) manifold is an embedded disk γ ⊂M
such that, for every x, y ∈ γ, dist(fnx, fny)→ 0 (resp. dist(f−nx, f−ny)→
0) as n goes to infinity.

Consider two continuous families Γu and Γs of respectively unstable and
stable C1 manifolds such that there exists αmin > 0 so that, for every
(γs, γu) ∈ Γs × Γu, we have

dim γs + dim γu = dimM, #(γs ∩ γu) = 1 and |∠(γs, γu)| ≥ αmin.

We set Λ := (
⋃
γu∈Γu γ

u)∩ (
⋃
γs∈Γs γ

s) and assume that the following prop-
erties hold

(P1) Markov: there exists a family (Λi)i≥1 of pairwise disjoint subsets of
the form Λi = (

⋃
γu∈Γu γ

u) ∩ (
⋃
γs∈Γsi

γs) for some family (Γsi )i of

pairwise disjoint subsets of Γs such that
(a) for some γ ∈ Γu, we have Lebγ(Λ) > 0 and Lebγ(Λ \

⋃
i Λi) = 0;

(b) For every i ≥ 1, there exists an integerRi ≥ 1 such that fRi(Λi) =
(
⋃
γu∈Γui

γu)∩ (
⋃
γs∈Γs γ

s) for some Γui ⊂ Γu. Moreover, for every

γs ∈ Γsi , there exists γs0 ∈ Γs such that fRi(γs) ⊂ γs0 and, for
every γu ∈ Γu, there exists γu0 ∈ Γui such that γu0 ⊂ fRi(γu).

This enables us to define a particular return time R : Λ → N and the
associated return map fR : Λ→ Λ by setting

R|Λi ≡ Ri and (fR)|Λi ≡ f
Ri .

We also define a separation time s : Λ × Λ → N ∪ {∞} for the return map
as follows:

∀x, y ∈ Λ, s(x, y) := min{n ≥ 0 : ∃j ≥ 1, (fR)n(x) ∈ Λj and (fR)n(y) 6∈ Λj}.

With these notations, we assume that there exist α > 0, β ∈ (0, 1) and
C > 0 such that, for every γu0 , γ

u
1 ∈ Γu and every γs ∈ Γs, we have

(P2) Polynomial contraction on stable leaves: for every x, y ∈ γs and every

n ≥ 1, we have dist(fn(x), fn(y)) ≤ Cn−α;
(P3) Backward polynomial contraction on unstable leaves: for every x, y ∈

γu0 and every n ≥ 1, we have dist(f−n(x), f−n(y)) ≤ Cn−α;
(P4) Bounded distortion: for every x, y ∈ γu0 ∩ Λ, we have

log
detD(fR)u(x)

detD(fR)u(y)
≤ Cβs(fR(x),fR(y)).

(P5) Regularity of the stable foliation: consider the map Θγu0 ,γ
u
1

: γu0 ∩Λ→
γu1 ∩ Λ defined by Θγu0 ,γ

u
1
(x) is the unique x′ for which there exists

γ ∈ Γs such that x ∈ γ ∩ γu0 and x′ ∈ γ ∩ γu1 . We assume that
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(a) Θγu0 ,γ
u
1

is absolutely continuous and

U :=
d((Θγu0 ,γ

u
1
)∗ Lebγu0 )

dLebγu1
=
∏
i≥0

detDfu ◦ f i

detDfu ◦ f i ◦Θ−1
γu0 ,γ

u
1

;

(b) for every x, y ∈ γu1 , we have log(U(x)/U(y)) ≤ Cβs(x,y).

We assume that gcd(Ri, i ≥ 1) = 1. We consider here the case when the
return time R has a polynomial tail distribution, more precisely we assume
that

Lebγ(R > n) ≤ Cn−ζ , for some ζ > 1, (1)

which ensures the integrability of R with respect to Lebγ . Under these
conditions, the systems admits a SRB measure µ: µ has no zero Lyapunov
exponent and the conditional measures on local unstable manifolds are abso-
lutely continuous with respect to the Lebesgue measure on these manifolds.

We recall the definition of the Hausdorff dimension of the measure µ as

dimH µ = inf
µ(Y )=1

dimH Y.

We make the standing assumption that

α >
1

dimH µ
. (2)

We say that u - v to express that there exists a constant C > 0 (depending
only on the dynamical system) such that u ≤ Cv. We also write u ≈ v when
u - v and v - u.

3. Poisson law for the number of entrance to balls

For any x ∈ M and r > 0, we write B(x, r) for the ball of center x and
radius r for the Riemannian distance on M. The main result of the paper
states that for typical centers x, the time spent into the ball B(x, r), up to
time t/µ(B(x, r)), follows asymptotically the Poisson law with mean t.

We assume that, for µ-almost every x ∈M, there exists δ ∈ (1, α dimH µ)
such that

µ(B(x, r + rδ) \B(x, r)) = o(µ(B(x, r))) (3)

(see appendix for discussion on (3)).

Theorem 3.1. Let (M, f, µ) be as above. For µ-a.e. x ∈ M such that (3)
holds,

lim
r→0

µ

y ∈M :

bt/µ(B(x,r))c∑
j=0

1B(x,r)(f
jy) = k


 =

tk

k!
e−t (4)

for any k ≥ 0 and any t ≥ 0.

The condition (3) on the coronas is always satisfied for a subsequence:
(see the appendix for details).

Proposition 3.2. Let θ < 1. For every x ∈ M, there exists a sequence
rn(x) ∈ (θn+1, θn) such that for any δ ∈ (1, α dimH µ), (3) holds for the
sequence r = rn(x).
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A quick look at the proof of Theorem 3.1 (especially Proposition 5.1)
shows that the convergence (4) along the subsequence rn(x) still holds in
this case, provided the other assumptions are satisfied.

3.1. An abstract Poisson approximation result. We use the method
developed by Chazottes and Collet, Theorem 2.1 in [7]. We recall that, for
any probability measures P and Q on a same measurable space (E, E), the
total variation distance dTV (P,Q) between P and Q is

dTV (P,Q) = sup
A∈E

P (A)−Q(A).

If Y and Z are random variables taking integer values, the total variation
distance between their law is written dTV (Y, Z) (with a small abuse of no-
tation) and is given by

dTV (Y, Z) =
1

2

∞∑
k=0

|P(Y = k)− P(Z = k)|.

By Poisson(λ) we denote a Poisson random variable with mean λ > 0,
namely

P(Poisson(λ) = k) =
λk

k!
e−k.

Theorem 3.3 ([7]). Let (Xn)n∈N be a stationary {0, 1}-valued process and

ε := P(X1 = 1). Set Sji = Xi + · · · + Xj for any 0 ≤ i ≤ j. Then, for all
positive integers p,M,N such that M ≤ N − 1, and 2 ≤ p < N , one has

dTV (X1 + · · ·+XN ,Poisson(Nε)) ≤ R(ε,N, p,M)

with

R(ε,N, p,M) = 2NM [R1(ε,N, p) +R2(ε, p)] +R3(ε,N, p,M)

where

R1(ε,N, p) := sup
0≤j≤N−p
0≤q≤N−j−p

∣∣∣P(X1 = 1, SN−jp+1 = q)− εP(SN−jp+1 = q)
∣∣∣

R2(ε, p) := P(X1 = 1, Sp2 ≥ 1)

R3(ε,N, p,M) := 4

(
Mpε(1 +Nε) +

(εN)M

M !
e−Nε +Nε2

)
.

The definition of R2 given here differs slightly from the original statement,
but an eye to the proof shows that the arguments go trough with this tiny
change. However, this modification plays an essential role in the present
paper since it allows a very efficient estimate of the term R2.

3.2. Proof of the main theorem. For a fixed x ∈ M, we will apply
Theorem 3.3 to the processes defined for y ∈M by Xn+1(y) = 1B(x,r)(f

ny),

n ∈ N, r > 0. For any integers p ≤ q, we write Sqp(x, r) for the number of
visits to B(x, r) of the orbit of f between times p and q, i.e.

∀y ∈M, Sqp(x, r)(y) := #{` = p, ..., q : f `(y) ∈ B(x, r)}.
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We denote the error terms R1 and R2 for this process by R1(x, r,N, p)
and R2(x, r, p). That is

R1(x, r,N, p) = sup
0≤j≤j+q≤N−p

∣∣∣Covµ(1B(x,r),1{SN−jp+1 (x,r)=q})
∣∣∣ ,

R2(x, r, p) = µ({y ∈ B(x, r) : Sp2(x, r) ≥ 1}).

Proof of Theorem 3.1. Let t > 0. Let σ < d := dimH µ be such that σα > δ
(with δ as in (3)). For µ-a.e. x, due to (2), by Proposition 5.1, we have with
pr = br−σc and Nr = bt/µ(B(x, r))c,

R1(x, r,Nr, pr) ≤ C ′0µ(B(x, r + rδ))p−ζ+1
r + µ(Cr,rδ(x))(1 +Nrµ(B(x, r + rδ)))

= O(µ(B(x, r)))rσ(ζ−1) + o(µ(B(x, r)))(1 + t+ o(1))

= o(µ(B(x, r)),

due to (3) and since ζ > 1 (see (1)). By Proposition 7.1 we have

R2(x, r, pr) = o(µ(B(x, r))).

The conclusion follows from Theorem 3.3 by taking Mr → ∞ sufficiently
slowly. �

4. Correlation estimates on towers

We define the tower ∆ and the map F : ∆→ ∆ as follow

∆ := {(x, `) ∈ Λ× Z : 0 ≤ ` < R(x)},

F (x, `) = (x, ` + 1) if ` < R(x) − 1 and F (x,R(x) − 1) = (fR(x), 0). We
define a family of partitions (Qk)k≥0 by

Q0 := {Λi × {`}, i ≥ 1, ` < Ri} and ∀k ≥ 1, Qk :=

k∨
i=0

F−iQ0.

Now we define the projection π : ∆→M by π(x, `) := f `(x). Observe that
f ◦ π = π ◦ F . Due to Lemma 3.1 in [1], there exists C2 > 0 such that, for
every non negative integer k and every Q ∈ Q2k, we have

diam(πF k(Q)) ≤ C2k
−α. (5)

Now we consider the quotient tower ∆̄ := ∆/ ∼ with (x, `) ∼ (y, `′) if ` = `′

and if x and y are on a same γs ∈ Γs. We define π̄ : ∆→ ∆̄ as the canonical
projection and the map F̄ : ∆̄→ ∆̄ such that F̄ ◦ π̄ = π̄ ◦ F . We define Q̄k
as the projection of the partition Qk on ∆̄. It will be also useful to consider
the separation time s̄ : ∆̄× ∆̄→ Z+ ∪ {∞} as follows:

s̄((x, `), (y, `′)) = s(x, y) if ` = `′; s̄((x, `), (y, `′)) = 0 if ` 6= `′.

We fix a γ̂ ∈ Γu and consider the measure m̄ on ∆̄ such that the measure
on ∆̄` corresponds to Lebγ̂ . Recall that there exist probability measures µ,
ν and ν̄ on M, ∆ and ∆̄ respectively such that

f∗µ = µ, F∗ν = ν, F̄∗ν̄ = ν̄, ν̄ = π̄∗ν, µ = π∗ν

and such that

• the measure ν̄ admits a density function ρ̄ with respect to m̄;
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• For every c′ > 0, there exists C ′ such that, for every probability mea-
sure λ̄ absolutely continuous with respect to m̄, with density proba-
bility ϕ : ∆̄→ R+ satisfying

∀Q̄ ∈ Q̄0, ∀x, y ∈ Q̄, |ϕ(x)− ϕ(y)| ≤ c′|ϕ(x)|βs̄(x,y),

we have

∀n ≥ 1, dTV (F̄n∗ λ̄, ν̄) ≤ C ′n−ζ+1 (6)

(see Theorem 3.5 in [1]).

This leads to the following decorrelation result at the core of our estimates.

Lemma 4.1. There exists C ′ > 0 such that, for every non negative inte-
gers k, n with n ≥ 2k, for every A union of atoms of Qk and every B in
σ(∪m≥0Qm), we have

|Covν(1A,1B ◦ Fn)| ≤ C ′n−ζ+1ν(A).

Proof. Notice that A = π̄−1Ā and B = π̄−1B̄ with Ā := π̄A and B̄ := π̄B.
Therefore, we have

|Covν(1A,1B ◦ Fn)| =
∣∣Covν̄(1Ā,1B̄ ◦ F̄n))

∣∣
=

∣∣Em̄ [ρ̄(1Ā − ν̄(Ā))1B̄ ◦ F̄n
]∣∣

= ν̄(Ā)
∣∣∣Em̄ [(φ− ρ̄)1B̄ ◦ F̄n−k

]∣∣∣
≤ ν(A)dTV (F̄n−k∗ (F̄ k∗ λ̄), ν̄),

writing λ̄ for the measure whose density with respect to m̄ is ρ̄1Ā/ν̄(Ā) and
φ for the density function of F̄ k∗ λ̄. Now, due to (20) in [2] (see also Lemma
4.5 in [1]), we observe that

∀Q̄ ∈ Q̄0, ∀y, z ∈ Q̄, |φ(y)− φ(z)| ≤ φ(y)eCρ̄+CF̄ (Cρ̄ + CF̄ )βs̄(y,z)

and, due to (6) and to n− k ≥ n/2, we obtain

|Covν(1A,1B ◦ Fn)| ≤ C ′ν(A)n−ζ+1, (7)

for some C ′ > 0. �

5. Decorrelations between successive returns

The aim of this section is to estimate R1.

Proposition 5.1. There exists C ′0 > 0 such that for any integer p we have

R1(x, r,N, p) ≤ C ′0µ(B(x, r + s))p−ζ+1 + µ(Cr,s(x))(1 +Nµ(B(x, r + s))),

where Cr,s(x) is the corona B(x, r + s) \B(x, r) and s = C2bp/4c−α.

Proof. Let K := bp/4c. We have to estimate the following quantity:

R1(x, r,N, p) = sup
0≤j≤j+q≤N−p

∣∣∣Covµ(1B(x,r),1{SN−jp+1 (x,r)=q})
∣∣∣ .

Using successively f∗µ = µ, µ = π∗ν and f ◦ π = π ◦ F , we obtain



8 FRANÇOISE PÈNE AND BENOÎT SAUSSOL∣∣∣Covµ(1B(x,r),1{SN−jp+1 (x,r)=q})
∣∣∣ =

=
∣∣∣Covµ

(
1B(x,r) ◦ fK ,1{SN−j−p1 (x,r)=q} ◦ f

K+p
)∣∣∣

=
∣∣∣Covν

(
1B(x,r) ◦ π ◦ FK ,1{SN−j−p1 (x,r)=q} ◦ π ◦ F

K+p
)∣∣∣

=
∣∣∣Covν

(
1F−Kπ−1(B(x,r)),1F−Kπ−1({SN−j−p1 (x,r)=q}) ◦ F

p
)∣∣∣ .

First we approximate the sets appearing in this last formula with union of
elements of the Qk’s. More precisely, we approximate F−Kπ−1(B(x, r)) by

D
(K)
x,r with

D(K)
x,r :=

⋃
Q∈Q2K :Q∩F−Kπ−1B(x,r) 6=∅

Q =
⋃

Q∈Q2K :πFKQ∩B(x,r)6=∅

Q

and F−Kπ−1({SN−j−p1 (x, r) = q}) by {SN−j−p,(K)
1 (x, r) = q} where

S
k0,(K)
1 (x, r)(y) := #{` = 1, ..., k0 : y ∈ D(K+`)

x,r }.

Let us set

A′ := D(K)
x,r , A := F−Kπ−1B(x, r), A′′ :=

⋃
Q∈Q2K :Q∩(D

(K)
x,r \F−Kπ−1B(x,r))6=∅

Q,

B′ := {SN−j−p,(K)
1 (x, r)(y) = q}, B := F−Kπ−1({SN−j−p1 (x, r) = q})

and

B′′ :=

N−j−p⋃
`=1

⋃
Q∈Q2(K+`):Q∩(D

(K+`)
x,r \F−K−`π−1B(x,r)) 6=∅

Q.

Observe that A ⊂ A′ ⊂ A ∪A′′ and B ⊂ B′ ⊂ B ∪B′′ so that we obtain
|Covν(1A,1B ◦ F p)− Covν(1A′ ,1B′ ◦ F p)| ≤

≤ |E[(1A′ − 1A)1B′ ◦ F p] + E[1A(1B′ − 1B) ◦ F p]
−(ν(A′)− ν(A))ν(B′)− ν(A)(ν(B′)− ν(B))|

≤ |Covν(1A′′ ,1B′ ◦ F p)|+ |Covν(1A′ ,1B′′ ◦ F p)|+
+2ν(A′′)ν(B′) + 2ν(A′)ν(B′′). (8)

Now, due to (5) and (3), we observe that

ν(A′′) ≤ ν(F−kπ−1(B(x, r + s) \B(x, r)))

≤ µ(Cr,s(x)) (9)

and that

ν(B′′) ≤
N−j−p∑
`=1

ν(D(K+`)
x,r \ F−(K+`)π−1(B(x, r)))

≤
N−j−p∑
`=1

ν(F−(K+`)π−1(B(x, r + s) \B(x, r))

≤ Nµ(Cr,s(x)). (10)
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Proposition 5.1 follows from (8), (9), (10), ν(A′) ≤ µ(B(x, r+s)), ν(B′) ≤ 1
together with Lemma 4.1 applied three times (with (A′, B′), (A′, B′′) and
(A′′, B′) respectively). �

6. Recurrence rate for tower systems

Recall the definition of the recurrence rate

Rec(x) = lim
r→0

log τr(x)

− log r
,

when the limit exists, where

τr(x) = inf{n ≥ 1: d(fnx, x) < r}. (11)

A large lower bound for Rec will allow a more efficient estimate of the second
error term R2 in the next section. For systems modeled by a Young tower
as described in Section 2, we show below that the recurrence rate is as large
as it can be.

Since the measure µ is hyperbolic, its pointwise dimension exists a.e. [5]
and we have

lim
r→0

logµ(B(x, r))

log r
= dimH µ µ-a.e.. (12)

In the case of super-polynomial decay of correlation, [16] applies and gives
Rec = dimH µ µ-a.e.. In our setting this decay might be only polynomial
hence the general result above may not apply. However, thanks to the
Markov-tower structure we can refine the argument in [16].

Theorem 6.1. For a system (f, µ) modeled by a Young tower we have
Rec = dimH µ µ-a.e.

First, we need the following decorrelation lemma (we use the notation
d := dimH µ).

Lemma 6.2. There exists C > 0 such that for all x and r > 0 we have

µ(B(x, r)∩ f−n{S`1(x, r) ≥ 1}) ≤ C[µ(B(x, r+ s))n−ζ+1 + `µ(B(x, r+ s))2]

where s = bn/4c−α.

Proof. We define the set A′ := D
(K)
x,r as in the proof in Section 5, but here

we take K = bn/4c. We have F−Kπ−1B(x, r) ⊂ A′. In the same way, the
set F−Kπ−1{S`1(x, r) ≥ 1} is contained in B′ := ∪`j=1F

−jA′. Hence, due to
Lemma 4.1,

µ(B(x, r) ∩ f−n{S`1(x, r) ≥ 1}) ≤ ν(A′ ∩ F−nB′)

≤ C ′ν(A′)n−ζ+1 + ν(A′)ν(B′).

We remark that ν(A′) ≤ µ(B(x, r+K−α)) since π(FKA′) ⊂ B(x, r+K−α)
due to (2). Moreover, by invariance of ν, ν(B′) ≤ `ν(A′), which finishes the
proof. �

The proof of Theorem 6.1 follows the lines of Lemma 16 in [16] but takes
advantage of the (Markov) tower structure, which allows to use the much
more efficient decorrelation Lemma 6.2 above instead of an approximation
by Lipschitz functions.
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Proof of Theorem 6.1. Let ε > 0 and take β = 1
d−4ε with ε > 0 so small

that β ≤ α and 1 + 2εβ < ζ. Set

G(ε, r̃) = {x ∈M : ∀r < r̃, rd+ε ≤ µ(B(x, r)) ≤ rd−ε}

with r̃ so small that that µ(G(ε, r̃)) > 1− ε (see (12)).
Choose q = b1/(ζ − 1− 2εβ)c. Let `k = kq and set nk+1 = `1 + · · ·+ `k.

We have nk ≈ kq+1. Set rk = n−βk . We have n−αk ≤ rk since β ≤ α.
By Lemma 6.2 we have for x ∈ G(ε, r̃) and k sufficiently large so that
rk + n−αk < r̃

µ(B(x, rk) ∩ f−nk{S`k1 (x, rk) ≥ 1}) ≤ 22dC[rd−εk n−ζ+1
k + `kr

2d−2ε
k ].

Conditioning on B(x, rk) we get

µ(f−nk{S`k1 (x, rk) ≥ 1}|B(x, rk)) ≤ 22dC[r−2ε
k n−ζ+1

k + `kr
d−3ε
k ].

Let Tk = {y ∈ M : ∃j = nk + 1, . . . , nk+1, d(f j(y), y) < rk/2}. Take a
maximal rk/4-separated subset Gk ⊂ G(ε, r̃). The balls B(x, rk/2), x ∈
Gk, cover G(ε, r̃). Moreover the balls B(x, rk) cover it with a multiplicity
bounded by some constant C ′′ depending only on the finite dimensional
manifold M. Summing up over x ∈ Gk we get

µ(G(ε, r̃) ∩ Tk) ≤
∑
x∈Gk

µ(B(x, rk/2) ∩ Tk)

≤
∑
x∈Gk

µ(B(x, rk) ∩ f−nk{S`k1 (x, rk) ≥ 1})

≤ 22dCC ′′[r−2ε
k n−ζ+1

k + `kr
d−3ε
k ]

≤ C ′′′(k(q+1)(1−ζ+2εβ) + kq−(q+1)β(d−3ε)).

This upper bound is summable in k by construction. An application of Borel-
Cantelli lemma shows that for µ-a.e. x ∈ G(ε, r̃) there exists k(x) such that
x 6∈ Tk for k ≥ k(x). For x non periodic we have τr(x) → ∞. Hence there
exists r(x) such that τr(x)(x) > nk(x). Let r < min(r(x), rk(x))/2. Take
k ≥ k(x) such that rk+1 < 2r ≤ rk. Since x does not belong to any of the
Tj ’s, k(x) ≤ j ≤ k, we get τr(x) ≥ nk. Hence

log τr(x)

− log r
≥ log nk
− log rk+1/2

→ 1

β
.

Since ε is arbitrary this proves that for µ-a.e. x

lim
r→0

log τr(x)

− log r
≥ dimH µ.

On the other hand the limsup is always bounded by the dimension [6],
whence the convergence of the recurrence rate and its equality with the
dimension of µ. �

7. Estimate of short returns : R2

We now provide an optimal estimate of R2 in the following sense: By
Kac’s Lemma the mean return time into B(x, r) cannot be larger than
1/µ(B(x, r)). Thus it is clear that any σ > dimH µ would contradict (13).
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Proposition 7.1. Let σ < dimH µ. For µ-a.e. x ∈M we have

R2(B(x, r), br−σc) = o(µ(B(x, r))). (13)

Proof. Let η > 0. Let r1 > 0 and define

Kσ,r1 = {x ∈M : ∀r < r1, τ2r(x) > r−σ}.

Let ι > 0. By Theorem 6.1 there exists r1 > 0 such that µ(M\Kσ,r1) < ι.

Let K̃σ,r1 be the set of the Lebesgue density points of Kσ,r1 with respect to

the measure µ. For x ∈ K̃σ,r1 we have

lim
r→0

µ(B(x, r) ∩Kσ,r1)

µ(B(x, r))
= 1.

Let r2 < r1 and set

K̃σ,r1,r2 =

{
x ∈M : ∀r < r2,

µ(B(x, r) ∩Kσ,r1)

µ(B(x, r))
> 1− η

}
.

Take r2 > 0 so small that µ(Kσ,r1 \Kσ,r1,r2) < ι. If x ∈ K̃σ,r1,r2 and r < r2

we get

R2(B(x, r), br−σc) = µ({y ∈ B(x, r) : τB(x,r)(y) ≤ r−σ})
≤ µ({y ∈ B(x, r) : τ2r(y) ≤ r−σ})
≤ µ(B(x, r) \Kσ,r1)

≤ ηµ(B(x, r)).

This concerns all points inM except a subset of measure 2ι arbitrary small,
which proves the proposition. �

8. Application to solenoid with intermittency

We can apply our main theorem to the example considered by [2]: Let
g : T1 → T1 (with T1 = R/Z) be a continuous map of degree d ≥ 2 such that

• g is C2 on T1 \ {0} and g′ > 1 on T1 \ {0},
• g(0) = 0, g′(0+) = 1 (right derivative at 0) and there is γ > 0 such

that −xf ′′(x) ∼ |x|γ in the right vicinity of 0,
• g′(0−) > 1 (left derivative at 0).

Let J0 = (0, x1), J1 = (x1, x2),...,Jd−1 = (xd−1, 0) be the successive intervals
(from the left to the right) on which g defines a bijection onto T1 \ {0} (the
xi are the non zero preimages of 0 by g). Let D ⊂ C be the unit disk and
consider the solid torus M = T1 × D. We define the map

f(x, z) = (g(x), θz +
1

2
e2iπx),

where θ ∈ (0, 1) is such that θ‖g′‖∞ < 1− θ (i.e. 0 < θ < 1/(1 + ‖g′‖∞)).
It was already proven by Alves and Pinheiro that this map fits into the

general scheme described in Section 2 with the parameters ζ = 1/γ > 1 and
α = 1 + 1/γ. In particular the map f admits an SRB measure µ if and only
if γ < 1. Let

d((x, z), (x′, z′)) = max(|x− x′|, |z − z′|).
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Theorem 8.1. For any γ <
√

2/2, the conclusion of Theorem 3.1 holds for
µ-almost every x ∈M, i.e. for µ-almost every x ∈M, the number of visits
to B(x, r) up to time bt/µ(B(x, r))c converges in distribution (with respect
to µ) to a Poisson random variable of mean t.

The only condition that is left to verify to prove Theorem 8.1 is that (3)
about coronas. This condition is in principle highly dependent on the choice
of the metric we put onM. We will prove it for d, which is the most natural
metric on T1 × C, but the proof could be adapted to the Euclidean metric
as well.

Proposition 8.2. If γ <
√

2/2, for µ-almost every x ∈M, the assumption
(3) on the coronas is satisfied.

The measure µ is supported on the attractor Λ =
⋂
n≥0 f

nM. Let Z be

the essential partition of M into Kj = Jj × D (j = 0, ..., d − 1). This is

a Markov partition for f . We denote by Znm =
∨n−1
j=m f

−jZ. Its elements

Z ∈ Znm will be denoted indifferently by their code [am, . . . , an−1] meaning
that f jZ ∈ Kaj for any j = m, . . . , n− 1.

Let µ̄ be the marginal of µ on T1. It is indeed the SRB measure of g, we
denote its density h̄. The partition (mod µ̄) Z̄ = {J0, · · · , Jd−1} is again a
Markov partition for g.

Let Z̄n = Z̄∨g−1Z̄∨· · ·∨g−n+1Z̄. We denote indifferently by [a0 . . . an−1] ∈
Z̄n the element Z ∈ Z̄n such that gjZ ⊂ Jaj for any j = 0, . . . , n.

We collect below some elementary facts on the interval map g needed to
study its statistical properties.

Proposition 8.3 (e.g. [14, 20]). (i) The density is uniformly controlled on
cylinders:

H := sup
n

sup
[0n]6=Z̄∈Z̄n

maxZ̄ h̄

minZ̄ h̄
<∞. (14)

(ii) For any n0 there exists a constant D(n0) > 0 such that: for any integer
n ≥ n0, for any y, y′ ∈ Z = [a0 . . . an−1] ∈ Z̄n such that an−n0 6= 0 we have

(gn)′(y′)

(gn)′(y)
≤ D(n0)eD(n0)|gn(y′)−gn(y)|. (15)

In particular for any subintervals I, J ⊂ Z̄
|gnI|
|gnJ |

≤ D(n0)eD(n0) |I|
|J |

. (16)

(iii) There exists a constant D1 > 0 such that, for every nonnegative
integers m and k and, for every cylinder Z̄ = [0kak+1 · · · ak+m] ∈ Z̄m+k

with ak+1 6= 0, and any z ∈ Z̄ we have

k + 1

D1
≤ h̄(z) ≤ D1(k+1),

(k + 1)−1−1/γ

D1
≤ |Z̄|
|[ak+1 · · · ak+m]|

≤ D1(k+1)−1−1/γ

(17)
and so

µ̄(Z̄) ≈ (k + 1)−1/γ |[ak+1 · · · ak+m]|. (18)
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Lemma 8.4. Let p < min(2, 1/γ). For µ-a.e. ξ ∈M we have∑̀
j=0

1K0(f−n+j(ξ)) ≤ µ(K0)`+ o(n1/p).

Proof. By Theorem 1.6 in [9] we have

∞∑
n=0

1

n
µ̄

x : max
1≤k≤n

∣∣∣∣∣∣
k∑
j=0

1J0(gjx)− kµ̄(J0)

∣∣∣∣∣∣ > n1/p


 <∞

and using the invariance of µ we get that

∞∑
n=0

1

n
µ

ξ : max
1≤k≤n

∣∣∣∣∣∣
k∑
j=0

1K0(f−n+jξ)− kµ(K0)

∣∣∣∣∣∣ > n1/p


 <∞.

We now conclude accordingly that for µ-a.e. ξ

lim
n

|
∑k

j=0 1K0(f−n+jξ)− kµ(K0)|
n1/p

<∞.

The conclusion follows since p < 1/γ was arbitrary. �

From now on we fix p < 1/γ and ξ = (x, z) ∈ Λ satisfying the conclusion

of Lemma 8.4. The code Z0
−n(ξ) = [a−n, . . . , a−1] is such that `n = o(n1/p),

where `n is the minimal integer ` ≥ 0 such that a−n+` 6= 0.
We also take n0 ≥ 1 the minimal integer such that a−n0 6= 0.
An immediate computation gives

fn(x, z) = (gn(x), θnz +
1

2

n−1∑
j=0

θn−1−je2iπgj(x)). (19)

We consider the natural projections πX :M→ T1 and πD :M→ D.

Lemma 8.5. For any ξ = (x, z) ∈M \ ∂Z and any r < |x− 0| we have

fn+k0(M) ∩B(ξ, r) ⊂ Z0
−n(ξ).

with n = blog(r)/ log(θ)c − k0, for some constant k0 independent of ξ, r.

Observe that, with the notations of this lemma, we have θn+k0+1 < r ≤
θn+k0 .

Proof of Lemma 8.5.

Claim 8.6. Let ξ′ ∈ fn(M) such that d(ξ, ξ′) < r. There exists ξ′′ ∈
Z0
−n(ξ′) such that πXξ = πXξ

′′ and |πDξ − πDξ′′| < 4r.

Proof. Taking y the preimage by gn of πXξ lying in the same branch of gn

than πXf
−n(ξ′) gives a point ξ′′ = fn(y, πD(f−n(ξ))) ∈ Z0

−n(ξ′) such that
πXξ = πXξ

′′ and |πDξ − πDξ′′| < π
1−θr < 4r. �

Claim 8.7. There exists a constant k0 such that πXf
−n+k0ξ = πXf

−n+k0ξ′′,
in particular ξ′′ ∈ Z0

−n+k0
(ξ), where n is the smallest integer such that

r < θn.
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Proof. Set ξ′′ = (x, z′′) with |z − z′′| < 4r. Remark that if g(u) = g(v)
and u 6= v we have |e2iπu − e2iπv| ≥ 2 sin(π|u − v|) ≥ 2 sin( π

‖g′‖∞ ). Set

(x−n, z−n) = f−nξ and (x′′−n, z
′′
−n) = f−nξ′′. Let k denote the largest integer

≤ n− 1 such that gk(x−n) 6= gk(x′′−n) (if any). We have

4r > |z − z′′| =

∣∣∣∣∣∣θn(z−n − z′′−n) +
1

2

k∑
j=0

θn−1−j(e2iπgj(x−n) − e2iπgj(x′′−n))

∣∣∣∣∣∣
from which we get

θn−1−k sin(
π

‖g′‖∞
) < 8r + 4θn +

θn−k

1− θ
and thus

1

‖g′‖∞
≤ sin(

π

‖g′‖∞
) < 12θk+1 +

θ

1− θ
.

Taking k0 the smallest integer k such that the above formula does not
hold shows that the section {x} × D4r(z) is contained in a unique cylin-
der Z0

−n+k0
(ξ). �

A change of indices finishes the proof of the lemma. �

Let us write D(z, r) := {z′ ∈ C : |z− z′| < r} for the open disc of center
z and radius r in C. If Z0

−j(ξ) = [a−j · · · a0], we set (g−j)ξ for the inverse

branch of gj restricted to Z̄j0(πXf
−jξ).

Lemma 8.8. The cylinder Z0
−n(ξ) is the tube

Z0
−n(ξ) = {(x, z) ∈ T×D : x ∈]0, 1[, z ∈ D(γξ,n(x), θn)}.

around the curve γξ,n : ]0, 1[→ C defined by

γξ,n(x) =
1

2

n∑
j=1

θj−1e2iπ(g−j)ξ(x)

with slope γ′ξ,n(x) = un(γξ,n(x)) where

un(ξ′) := iπ
n∑
j=1

θj−1 1

(gj)′(πXf−jξ′)
e2iππXf

−jξ′ .

Proof. A change of indices in Expression 19 shows the first assertion, the
second follows by derivation. �

For every ξ′ = (x′, z′) ∈ Λ, we also define u∞(ξ′) as follows

u∞(ξ′) = iπ
∑
j≥1

θj−1 1

(gj)′(πXf−jξ′)
e2iππXf

−jξ′ .

Observe that (1, u∞(ξ′)) corresponds to the direction of the solenoid at ξ′.

Lemma 8.9. There exist c > 0, c0 > 0, c1 > 0 and C(n0) > 0 such that for
any n ≥ n0 and r < |x− 0|, we have

(i) The direction un(ξ) is uniformly bounded away from zero and infinity:
c0 < |un(ξ)| < c1.
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(ii) For any ξ′ ∈ Z0
−n(ξ) such that |πXξ − πXξ′| < r, and any k ≥ 0, the

directions satisfy

|un(ξ)− un+k(ξ
′)| ≤ C(n0)r +

πθn

1− θ
.

Proof. (i) The upper bound c1 = π/(1−θ) is obvious since |g′| > 1. Isolating
the j = 1 term gives the lower bound

|un(ξ)| ≥
∣∣∣∣ π

g′(πX(f−1ξ))

∣∣∣∣− πθ

1− θ
≥ π

(
1

‖g′‖∞
− θ

1− θ

)
=: c0.

(ii) The sum in un+k(ξ
′) differs from that of un(ξ′) only by the last terms

j = n+1, . . . , n+k, and this is bounded by the rest of the convergent series,
so it suffices to prove the claim for k = 0. The distortion bound (15) yields,
since |πXf−jξ′ − πXf−jξ| < r for all j = 1, . . . , n,∣∣∣∣∣(gj)′(πXf−jξ)e2iππXf

−jξ′

(gj)′(πXf−jξ′)e2iππXf−jξ
− 1

∣∣∣∣∣ ≤ D(n0)eD(n0)r+2πr.

�

We now prove Proposition 8.2.

Proof. Let ξ = (x, z) ∈M with x 6= 0. Since

B(ξ, r) = (x− r, x+ r)×D(z, r),

setting Cr,s(x) and Cr,s(z) the coronas in T1 and C respectively, we get

Cr,s(ξ) = (Cr,s(x)×D(z, r + s)) ∪ ((x− r, x+ r)× Cr,s(z)).

The first term is roughly bounded by the help of the marginal measure µ̄,
whose density is bounded in a neighborhood of x 6= 0, hence

µ(Cr,s(x)×D(z, r + s)) ≤ µ̄(Cr,s(x)) ≤ cs,

provided r is sufficiently small and s < r. For typical ξ the decay of
µ(B(ξ, r)) is ruled by the dimension dimH µ (see(12)), hence choosing δ =
1+α

2 dimH µ and s = rδ the last bound satisfies cs = o(µ(B(ξ, r))).
The second term deserves more attention. It suffices to show that

µ(W ) = o(µ(B(ξ, r))), where W := (x− r, x+ r)× Cr,s(z).

Without loss of generality we will suppose, for this part of the proof only,
that s = rδ for some fixed δ, 1 < δ < min(2, α dimH µ). Let k be such that
θn+k = s. Let β = s

rn
ν for some exponent ν that will be fixed later. Note

that r2 � s� r � β. Recall that `n is the minimal integer ` ≥ 0 such that
a−n+ 6̀=0. We let Z = Z0

−n(ξ) and set U := g`nπX(f−nZ) ∈ Z̄n−`n . Note
that the code of U starts with a non zero symbol. To simplify the exposition
we introduce the notation

I nB := {(t, z) : t ∈ I, (t, z) ∈ B} = π−1
X (I) ∩B,

for I ⊂ T1 and B ⊂M. We decompose W with the pieces of element Z ′ of
the partition Z0

−n−k which intersect it.
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Lemma 8.10. Each Z ′ ∩W (with Z ′ ∈ Z0
−n−k) is contained in a tube TZ′

Z ′ ∩W ⊂ I n Z ′ ⊂ TZ′ := {(t, z) ∈M : t ∈ I, |z − z0 − (t− t0)uZ′ | < D1s}

where D1 = 2 +C(n0) + π/(1− θ), I ⊂ (x− r, x+ r), (t0, z0) ∈ Z ′ ∩W and
|uZ′ − un(ξ)| < cr.

There are two type of intersections, transversal and non transversal (See
Figure 1).

Figure 1. The green rods represent the pieces of cylinders
Z ′ intersecting W . The non transversal intersections happen
in the red boxes.

Let vn = un(ξ)/|un(ξ)|. We say that Z ′ intersects W non transversally
if there exists ξ′ = (x′, z′) ∈ Z ′ ∩ Λ such that the angle between u∞(ξ′)
and the circle of center z and radius |z − z′| is smaller than β. But since
∠(vn, u∞(ξ′)) - r � β, such a transversal intersection can only occur in

(x− r, x+ r)× {z′ ∈ C : z′ = z + (±r + q)vne
ip, |q| < s, |p| - β}.

Now, for any ξ′′ ∈ ((x − r, x + r) n Z ′) ∩ Λ, we have ∠(u∞(ξ′′), u∞(ξ′))| -
r � β. So for such a Z ′, the intersection Z ′ ∩ Λ ∩W is contained in one of
the boxes NT

NT = (x− r, x+ r)× {z + pvn + (±r + q)ivn : |p| < 2rβ, |q| < s}

(since r| sinβ| ≤ rβ and r(1 − cosβ) ≤ rβ2 � s). These two boxes are
parallel to the plane defined by the x-axis and the vector un(ξ), of length
r, height of order rβ and thickness s. There are at most Cr/s different
Z ′ intersecting W non transversally, since they are separated by a distance
of order s and they point in the same direction bounded away from the
horizontal axis (the x-axis). Moreover, each Z ′ ∩W is contained in a set
IZ′ n Z ′ for some interval IZ′ of length at most crβ.

Lemma 8.11. For any interval I ⊂ T1 \ {0} and any cylinder Z ′ ∈ Z0
−n−k

such that Z ′ ⊂ Z we have

µ(I n Z ′) ≈ µ(Z ′)|I|.
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Proof. The set f−n−k(I n Z ′) is of the form J × D where the interval J is
a subset of the cylinder Z̄ ′ = πX(f−n−kZ) ∈ Z̄n+k and gn+kJ = I. By
invariance we have µ(I nZ ′) = µ̄(J). Observe that Z̄ ′ and Z̄ have the same
code. By distortion (16) we have

|J |
|Z̄ ′|
≈ |I|
|T1|

.

This ratio of length transfers to a ratio of measures by (14), proving the
lemma since by invariance again µ̄(Z̄ ′) = µ(Z ′). �

Note that except the very particular cylinder Z ′ = [0kZ] ∈ Z0
−n−k which

has a measure

µ([0kZ]) ≈ (k + `n)−1/γ |U | ≈ k−1/γ |U |,
(due (18)), all the other Z ′ ∈ Z0

−n−k contained in Z do have at least a non
zero symbol in their code at some position −n−m0 ∈ {−n−k, . . . ,−n−1}.
Applying (18) to them, we obtain

µ(Z ′) ≈ (k −m0 + 1)−1/γ |[a−n−m0 · · · a0]|

- (k −m0 + 1)−1/γ(m0 + `n)−1−1/γ |U |

- (k−1/γ(1 + `n)−1−1/γ + k−1−1/γ)|U |

(considering separately the cases m0 ≤ k/2 and m0 > k/2). Therefore the
total measure coming from non transversal intersections is bounded by

µ(
⋃

Z′∩NT 6=∅

Z ′) - [k−1/γ +
r

s
(k−1/γ(1 + `n)−1−1/γ + k−1−1/γ)]|U |crβ. (20)

For transversal intersections, the angle is at least β. Thus Z ′ ∩ W ⊂
IZ′ nZ ′ for some interval IZ′ of length less than s/β. Hence the measure of
the intersection µ(Z ′ ∩W ) - s

βµ(Z ′). Therefore

µ(
⋃

Z′ 6∈NT
Z ′) -

s

β
µ(Z) -

s

β
c(1 + `n)−1/γ |U |. (21)

Finally, the ball B(ξ, r) contains the set InZ∗ for some cylinder Z∗ ∈ Z0
−n−2,

Z∗ ⊂ Z, and an interval I of length say r/4. Thus

µ(B(ξ, r)) ≥ µ(I n Z∗) % µ(Z∗)r % (1 + `n)−1−1/γ |U |r. (22)

Putting (20), (21) and (22) together, we obtain

µ(W )

µ(B(ξ, r))
- (I) + (II) + (III) + (IV )

where

(I) = k−1/γβ(1 + `n)1+1/γ =
s

r
O(n−1/γ+ν+(1+1/γ)/p)

(II) = k−1/γ rβ

s
= O(n−1/γ+ν)

(III) = k−1−1/γ rβ

s
(1 + `n)1/γ+1 = O(n−1−1/γ+ν+(1/γ+1)/p)

(IV ) =
s

rβ
(1 + `n) = O(n−ν+1/p).
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�

The first term (I) goes to zero exponentially fast in n. The second term
(II) goes to zero provided ν < 1/γ, the third one provided ν < 1/γ +
1 − (1/γ + 1)/p and the last one provided ν > 1/p. If γ > 1/2, all these
conditions are satisfied whenever the interval (γ, 1/γ − γ) is nonempty (i.e.
whenever γ < 1/

√
2), taking ν in the interval and p sufficiently close to 1/γ.

If γ ≤ 1/2, (I), (II), (III) and (IV ) go to zero provided p is close enough
to 2.

9. Billiard in a stadium

Let ` > 0. We consider the convex domain Q of the plane corresponding
to the union of the rectangle [−`/2, `/2]× [−1, 1] with the two discs of radius
1 centered at (−`/2, 0) and (`/2, 0) respectively. This domain Q is called
stadium.

Figure 2. The stadium billard

The billiard system (M, f, µ) will describe (at reflection times) the evolu-
tion of a point particle moving in Q with elastic reflection off ∂Q and going
straight on between two reflection times. The phase space M corresponds
to the set of unit vectors based on ∂Q and pointing inwards. We define it
as follows:

M :=
R

2(π + `)Z
×
]
−π

2
,
π

2

[
.

A particle has configuration x = (r, ϕ) ∈ M if its position p ∈ ∂Q has
curvilinear abscissa r (∂Q being oriented counterclockwise and r = 0 corre-
sponding to the point (`/2,−1)) and if its reflected vector makes the angle ϕ
with ~n(p), where ~n(p) is the unit normal vector to ∂Q at p oriented inwards.

The transformation f :M→M maps a configuration at a reflection time
to the configuration at the next reflection time.

This transformation preserves the probability measure µ on M given by

dµ =
cosϕ

4(π + `)
drdϕ.

Here again we consider the metric d((r, ϕ), (r′, ϕ′)) := max(|r− r′|, |ϕ−ϕ′|)
(but our result also holds for the other usual metrics).
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f(x)

x

Figure 3. The billard map f .

Theorem 9.1. For the billiard system (M, f, µ) in the stadium described
above, the conclusion of Theorem 3.1 holds true for µ-almost every x ∈M,
i.e. for µ-almost every x ∈ M, the number of visits to B(x, r) up to time
bt/µ(B(x, r))c converges in distribution (with respect to µ) to a Poisson
random variable of mean t.

Proof. The fact that (M, f, µ) can be modeled by a Young tower satisfying
(P1)–(P5) can be found in [15, 8, 4]. Namely, the fact that (P2)–(P3) hold
with α = 1 (and so (2)) comes from Propositions 2.1 and 2.3 of [4] and the
fact that (1) holds with ζ = 2 is proved in Section 9 of [8]. Finally, because
of the continuity and positivity of the density function of µ with respect to
the Lebesgue measure, (3) holds for every x ∈ M (See the Appendix for
details). �

Appendix A. Measure of coronas

In this section we discuss various conditions under which Assumption (3)
holds and more precisely on the following condition: ∃C0, r0 > 0 such that

∀0 < s < r, µ(B(x, r + s) \B(x, r)) ≤ C0s
ar−bµ(B(x, 2r)). (23)

Indeed, we observe that, if α dimH µ > b/a, (23) implies (3) for any δ ∈
(b/a, α dimH µ).

Proposition A.1. Suppose that µ is absolutely continuous with respect to
the Lebesgue measure.

(i) For any continuity point x of the density, we have (23) with a = b = 1
and so (3) since α dimH µ > 1.

(ii) If the density is in Lploc for some p > 1 then Assumption (23) holds
a.e. with a = 1/q and b = (1 + d(q − 1))/q, where 1/p+ 1/q = 1.

Proof. (ii) Suppose that the density h is in Lp on some open set V and take
x ∈ V with B(x, 2r) ⊂ V . By the Hölder inequality for any s < r

µ(B(x, r+s)\B(x, r)) =

∫
V
h1B(x,r+s)\B(x,r) ≤ ‖h‖Lp(V )C((r+s)d−rd)1/q.

The upper bound is of order r(d−1)/qs1/q while the measure of the ball is
lower bounded by Const× rd for a.e. x. �
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In particular for Billiard systems one can take a = b = 1.

Proposition A.2. If µ is non-atomic and satisfies (23) at some x ∈ supp(µ),
then b ≥ a.

Proof. Assume that µ satisfies (23) with b < a. Let η ∈ (0, a − b). Then
there exists n0 such that, for every integer n ≥ n0, we have

µ(B(x, 2−n) \B(x, 2−n−1)) ≤ 2−ηnµ(B(x, 2−n)),

i.e. (1 − 2−ηn)µ(B(x, 2−n)) ≤ µ(B(x, 2−n−1)). Therefore, for any n > n0,
we have

µ(B(x, 2−n0))

n−1∏
k=n0

(1− 2−ηn) ≤ µ(B(x, 2−n))

and so µ({x}) = limn→+∞ µ(B(x, 2−n)) > 0 if µ(B(x, 2−n0)) > 0. �

Now let us prove Proposition 3.2

Proposition A.3. Let θ < 1. For any a ∈ (0, 1), for every x ∈ M, there
exists a constant C0 such that there exists a sequence rn(x) ∈ (θn+1, θn) such
that, for all n, (23) holds with b = a for the sequence r = rn(x).

Proof. Up to a change of θ in one of its integer roots, we assume without
loss of generality that 1/2 < θ < 1. Fix x ∈ M and n ∈ N. Let λ < 1/2
and set ρ = (1− 2λ)/3. We define a measure on [0, 1] by setting m([0, t]) =
µ(B(x, θn+1 + t(θn − θn+1))) − µ(B(x, θn+1)) for t ∈ [0, 1]. We construct
a sequence of nested intervals Ik by dichotomy as follows. Let I0 = (0, 1).
Given Ik (for some k ≥ 0), we consider two intervals of length λ|Ik| included
in Ik, at distance ρ|Ik| from the left and right endpoints of Ik respectively
and we define Ik+1 as the one with smallest measure. We have |Ik| = λk and
m(Ik) ≤ 2−km(I0). Let {t∗} be the intersection of the Ik’s. By construction,
since t∗ ∈ Ik the ρλk-neighborhood of t∗ is contained in Ik−1. Let us prove
that the radius r = θn+1 + t∗(θ

n − θn+1) satisfies (23) with a = − ln 2/ lnλ,
with a constant C0 not depending on n. Let sk := ρλkθn(1− θ). For every
k ≥ 1 and every s ∈ [sk+1, sk], we observe that

µ(B(x, r + s) \B(x, r)) ≤ µ(B(x, r + sk) \B(x, r))

≤ m(Ik−1) = 2−k+1m(I0)

≤ 2−k+1µ(B(x, θn) \B(x, θn+1))

≤ 2−k+1µ(B(x, 2r)), since θn <
r

θ
< 2r

≤ 4sar−a
(

θ

ρ(1− θ)

)a
µ(B(x, 2r)),

since sa ≥ sak+1 = 2−k−1(ρθn(1 − θ))a and r−a ≥ (θn)−aθ−a. Now, for
s ∈ [s1, r], we have s/r ≥ ρλ(1− θ) and so

µ(B(x, r + s) \B(x, r)) ≤ µ(B(x, 2r)) ≤ sar−a(ρλ(1− θ))−aµ(B(x, 2r)).

�
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