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Abstract. Under some mild condition, a random walk in the plane is recurrent. In particular
each trajectory is dense, and a natural question is how much time one needs to approach a
given small neighborhood of the origin. We address this question in the case of some extended
dynamical systems similar to planar random walks, including Z2-extension of hyperbolic dy-
namics. We define a pointwise recurrence rate and relate it to the dimension of the process, and
establish a convergence in distribution of the rescaled return times near the origin.

1. Introduction

1.1. Motivation. This work was partly motivated by the recurrence properties of the planar
Lorentz process. Given an initial condition, say x, we thus know that the process will return
back ε close to its starting point x. A basic question is : when ? For finite measure preserving
dynamical systems this question has some deep relations to the Hausdorff dimension of the
underlying invariant measure. Namely, if τε(x) represents this time, in many situations

τε(x) ≈
1

εdim

for typical points x, where dim is the Hausdorff dimension of the underlying invariant measure.
This has been proved for example for interval maps [14] and rapidly mixing systems [1, 13].
Another type of results is the exponential distribution of rescaled return times and the lognormal
fluctuations of the return times [8, 4].

In this paper we are dealing with systems where the underlying natural measure is indeed
infinite. This typically causes the return times to be non integrable, in contrast with the finite
measure case. However, the systems we are thinking about have in common the property that,
in some sense, the behaviors at small scale and at large scale are independent. The large scale
dynamics being some sort of recurrent random walk, and the small scale dynamics a finite measure
preserving system. Although our first motivation was Lorentz process, we will not mention it
further in this paper. We instead provide some results related to processes which are in essence
similar to it. The first case treated in Section 2 is a toy model designed to give the hint of the
general case. Then, in Section 3 we briefly mention the case of planar random walks. Finally, in
Section 4 we give a complete analysis of the quantitative behavior of return times in the case of
Z2-extensions of subshifts of finite type.

1.2. Description of the main result : Z2-extensions of subshifts of finite type. In
this study of the quantitative behavior of recurrence we choose to work with Z2-extensions of
hyperbolic dynamics. We emphasize that this dimension 2 is at the threshold between recurrent
and non recurrent processes, since in higher dimension these processes are neither recurrent
(except if degenerate). It makes sense to show how our results behave with respect to the
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dimension. For completeness, we call the non-extended system itself a Z0-extension. In this non-
extended case, the type of results we have in mind (see Table 1) have already been established
respectively by Ornstein and Weiss [12], Hirata [8] and Collet, Galves and Schmitt [4]. The case
of Z2-extension is completely done in Section 4. The case of Z1-extension can be derived easily
following the technique used in the present paper. The essential difference is that the local limit
theorem has the one-dimensional scaling in 1√

n
, instead of 1

n in the two-dimensional case. The
following table summarizes the different results as the dimension changes. The first line of results
corresponds to Theorem 7, the second to Theorem 8 and the third to Corollary 9. We refer to
Section 4 for precise statements.

Dimension Z0-extension Z1-extension Z2-extension

Scale lim
ε→0

log τε
− log ε

= d lim
ε→0

log τε
− log ε

= 2d lim
ε→0

log logτε
− log ε

= d

Local law ν
(
ν(Bε)τε > t

)
→ e−t ν

(
ν(Bε)2τε > t

)
→ 1

1+β
√
t

ν
(
ν(Bε)logτε > t

)
→ 1

1+βt

Lognormal
fluctuations εdτε ε2dτε εdlogτε

Table 1. Recurrence for Zk-extensions. Bε denotes the ball of radius ε, ν is a
Gibbs measure on the base and d is the Hausdorff dimension of ν.

2. A toy model in dimension two

We present a toy model designed to posses a lot of independence. It has the advantage of
giving the right formulas with elementary proofs.

2.1. Description of the model and statement of the results. Let us consider two sequences
of independent identically distributed random variables (Xn)n≥1 and (Yn)n≥0 independent one
from the other such that :

• the random variable X1 is uniformly distributed on {(1, 0), (−1, 0), (0, 1), (0,−1)};
• the random variable Y0 is uniformly distributed on ]0; 1[2.

Let us notice that Sn :=
∑n

k=1Xk (with the convention S0 := 0) is the symmetric random walk
on Z2. We study a kind of random walk Mn on R2 given by Mn = Sn + Yn.

Another representation of our model could be the following. Let S = Rd and consider the
system Z2 × S. Attached to each site i ∈ Z2 of the lattice, there is a local system which lives on
S and σn is a i.i.d. sequence of S-valued random variable with some density ρ, independent of
the Xn’s. Then we look at the random walk (Sn, σn), thinking at σn as a spin.

We want to study the asymptotic behavior, as ε goes to zero, of the return time in the open
ball B(M0, ε) of radius ε centered at x (for the euclidean metric). Let

τε := min{m ≥ 1: |Mm −M0| < ε}.



QUANTITATIVE RECURRENCE IN TWO-DIMENSIONAL EXTENDED PROCESSES 3

Note that, for all x ∈ [0; 1[2, we have : τε = min{m ≥ 1: |Mm − x| < ε}. We will prove the
following :

Theorem 1. Almost surely,
log log τε
− log ε

converges to the dimension 2 of the Lebesgue measure on

R2 as ε goes to zero.

Theorem 2. For all t ≥ 0 we have :

lim
ε→0

P (λ(B(M0, ε)) log τε ≤ t) =
1

1 +
π

t

.

2.2. Proof of the pointwise convergence of the recurrence rate to the dimension. To
simplify the exposition we suppose that M0 is in ]0; 1[2 and that ε is so small that B(x, ε) is
contained in [0; 1[2.

First, let us define R1 := min{m ≥ 1: Sm = 0}. According to [6], we know that we have :

P(R1 > s) ∼ π

log s
as s goes to infinity (1)

We then define for any p ≥ 0 the pth return time Rp in [0; 1[2 by induction :

Rp+1 := inf{m > Rp : Sm = 0}.
Observe that Rp is the pth return time at the origin of the random walk Sn on the lattice, thus
the delays between successive return times Rp − Rp−1, setting R0 = 0, are independent and
identically distributed. Consequently :

P(Rp −Rp−1 > s) = P(R1 > s) (2)

The proof of Theorem 1 follows from these two lemmas

Lemma 3. Almost surely,
log logRn

log n
→ 1 as n→∞.

Proof. It suffices to prove that for any 0 < α < 1, almost surely, en1−α ≤ Rn ≤ nen
1+α provided

n is sufficiently large. By independence and equation (2) we have

P(logRn ≤ n1−α) ≤ P(∀p ≤ n, log(Rp −Rp−1) ≤ n1−α) = P(logR1 ≤ n1−α)n.

According to the asymptotic formula (1), for n sufficiently large

P(logR1 ≤ n1−α)n ≤
(
1− π

2n1−α

)n
≤ e−π

nα

2 .

The first inequality follows then from Borel Cantelli lemma.

Moreover, according to formulas (2) and (1), we have
∑

n≥1 P(log(Rn−Rn−1) > n1+α)) < +∞.
Hence, by Borel Cantelli lemma, we know that almost surely, for n sufficiently large, we have
Rn −Rn−1 ≤ en

1+α . From this we get the second inequality. �

Observe that τε = RTε with Tε := min{` ≥ 1 : |YR`
− Y0| < ε}.

Lemma 4. Almost surely, log Tε

− log λ(B(Y0,ε))
→ 1 as ε→ 0.

Proof. By independence of the Y`, the random variable Tε has a geometric distribution with
parameter λε := λ(B(Y0, ε)) = πε2. For any α > 0 we have the simple decomposition

P
(∣∣∣∣ log Tε
− log λε

− 1
∣∣∣∣ > α

)
= P

(
Tε > λ−1−α

ε

)
+ P

(
Tε < λ−1+α

ε

)
.
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The first term is directly handle by Markov inequality :

P
(
Tε > λ−1−α

ε

)
≤ λαε ,

while the second term may be computed using the geometric distribution :

P(Tε < λ−1+α
ε ) = 1− (1− λε)(λ

−1+α
ε )

= 1− exp
[
λ−1+α
ε log(1− λε)

]
≤ −λ−1+α

ε log(1− λε)
= O(λαε ).

Let us define εn := n−1/α. According to the Borel-Cantelli lemma, λεnTεn converges almost
surely to the constant 1. The conclusion follows from the facts that (εn)n≥1 is a decreasing
sequence of real numbers satisfying limn→+∞ εn = 0 and limn→+∞

εn
εn+1

= 1, and Tε is monotone
in ε. �

Proof of Theorem 1. The theorem follows from Lemma 3 and Lemma 4 since
log log τε
− log ε

=
log logRTε

log Tε
log Tε
− log λε

log λε
log ε

→ 1× 1× 2

almost surely as ε→ 0. �

2.3. Proof of the convergence in distribution of the rescaled return time.

Proof of Theorem 2. Let t > 0. By independence of Tε and the Rn we have

Fε(t) := P(λ(B(Y0, ε) log τε ≤ t) =
∑
n≥1

P(Tε = n)P
(

logRn ≤
t

λε

)
.

Since Tε has a geometric law with parameter λε, Fε(t) is equal to Gλε(t) with :

Gδ(t) :=
∑
n≥1

δ(1− δ)n−1P(logRn ≤
t

δ
).

First, we notice that the independence of the successive returns gives for any u > 0 that

P (Rn ≤ u) ≤ P
(

max
k=1,...,n

Rk −Rk−1 ≤ u

)
= P (R1 ≤ u)n

Let α < 1. Using the inequality above and the equivalence relation (1) we get that for any δ > 0
sufficiently small,

Gδ(t) ≤
∑
n≥1

δ(1− δ)n−1

(
1− α

πδ

t

)n
=

1

1 + α
π

t

+O(δ).

This implies that lim supδ→0 Fε(t) ≤ 1
1+π

t
.

Fix A > 0 and keeping the same notations observe that we have Fε(t) ≥ Hλε(t) with :

Hδ(t) :=
∑

1≤n≤A/δ

δ(1− δ)n−1P
(

logRn ≤
t

δ

)
.

Note that the independence gives in addition that for any u > 0

P (Rn ≤ u) ≥ P
(

max
k=1,...,n

Rk −Rk−1 ≤ u/n

)
= P (R1 ≤ u/n)n .
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Let α > 1. Using the inequality above and the equivalence relation (1) we get that for sufficiently
small δ > 0

Hδ(t) ≥
∑

1≤n≤A/δ

δ(1− δ)n−1

(
1− α

π
t
δ − log n

)n
≥

∑
1≤n≤A/δ

δ(1− δ)n−1

(
1− α2πδ

t

)n
.

Evaluating the limit when δ → 0 of the geometric sum and then letting A→∞ we end up with
lim infδ→0Hδ(t) ≥ 1

1+π
t
. �

3. Random walk on the plane

We now consider a true random walk on R2, Mn = X1 + · · · + Xn where the Xi’s are i.i.d.
random variables distributed with a law µ of zero mean, with invertible finite covariance matrix
Σ2 and characteristic function µ̂(t) =

∫
eit·xdµ(x). Let τε be the minimal time for the walk to

return in the ε-neighborhood of the origin :

τε := min{n ≥ 1: |Mn| < ε}.

Theorem 5. Assume additionally that the distribution µ satisfies the Cramer condition

lim sup
|t|→∞

|µ̂(t)| < 1.

Then almost surely limε→0
log log τε
− log ε = 2.

We remark that a kind of Cramer’s condition on the law is necessary, since there exists some
planar recurrent random walks for which the statement of the theorem is false (the return time
being even larger than expected). We discovered after the completion of the proof of this theorem
that its statement is contained in Theorem 2 of Cheliotis’s recent paper [5]. For completeness
we describe the strategy of our original proof here but leave most details to the reader. A key
point is a uniform version of the local limit theorem. Indeed we need an estimation of the type
P(|Sn| < ε) ∼ cε2

n , with some uniformity in ε (for some c > 0). One can follow the classical proof
of the local limit theorem (see Theorem 10.17 of [3]) to get the following :

Lemma 6. Let δ ∈]0; 1/2[. There exists c1 > 0, c2 > 0, ε0 > 0, a > 0 and an integer N , such
that, for any n > N , for any ε ∈]0; 1[ :

c1ε
2

n
− exp(−an1−2δ)

ε
≤ P (Sn ∈ B(0, ε)) ≤ c2ε

2

n
+

exp(−an1−2δ)
ε

.

Then, this information on the probability of return is strong enough to estimate the first return
time to the ε-neighborhood of the origin.

Proof of Theorem 5. For any α > 1
2 , using εn = 1/ logα n, we get that P(|Sn| < εn) is summable.

By the Borel Cantelli lemma, we have τεn(x) > n eventually almost surely. Thus

lim inf
n→∞

log log τεn

− log εn
≥ lim inf

n→∞

log log n
log logα n

=
1
α
,

which implies by monotonicity and the fact that α is arbitrary that lim infε→0
log log τε
− log ε ≥ 2.

Let α < 1
2 . To control the lim sup, we will take n = nε = dε−

1
α e. We use a similar decomposi-

tion to that of Dvoretski and Erdös in [6]. Let Ak = {|Sk| < ε and ∀p = k+1, . . . , n, |Sp−Sk| >
2ε}. The Ak’s are disjoint, hence by independence and invariance, and with our choice for n :

1 ≥
n∑
k=1

P(Ak) ≥
n∑
k=1

P(|Sk| < ε)P(τ2ε > n−k) ≥
n∑
k=1

P(|Sk| < ε)P(τ2ε > n) ≥
n∑

k=N

cε2

k
P(τ2ε > n).
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Hence we have P(τε > n) ≤ 1
cε2 logn

≤ cε
1
α
−2, if n is large enough. Let εp = p

−2
α−2 . By Borel

Cantelli lemma we have log τεp ≤ ε−αp eventually almost surely, hence lim supp→∞
log log τεp

− log εp
≤ α.

By monotonicity and the fact that α is arbitrary we get the result. �

4. Case of Euclidean extension of hyperbolic systems

4.1. Description of the Z2-extension of a mixing subshift. Let us fix a finite set A called
alphabet. Let us consider a matrix M indexed by A×A with 0-1 entries. We suppose that there
exists a positive integer n0 such that each component of Mn0 is non zero. We define the set of
allowed sequences Σ as follows

Σ := {ω := (ωn)n∈Z : ∀n ∈ Z, M(ωn, ωn+1) = 1}.

We endow Σ with the metric d given by

d
(
ω, ω′

)
:= e−m,

wherem is the greatest integer such that ωi = ω′i whenever |i| < m. We define the shift θ : Σ → Σ
by θ ((ωn)n∈Z) = (ωn+1)n∈Z. For any function f : Σ → R we denote by Snf =

∑n−1
`=0 f ◦ θ` its

ergodic sum. Let us consider an Hölder continuous function ϕ : Σ → Z2. We define the Z2-
extension F of the shift θ by

F : Σ× Z2 → Σ× Z2

(x,m) 7→ (θx,m+ ϕ(x)).

m̀

-

-

O :

(x,m)

F (x,m)

F 2(x,m)

F 3(x,m)
F 4(x,m)

ϕ(x) = (1, 1) ϕ(θx) = (2,−1)

Figure 1. Dynamics of the Z2-extension F of the shift.

We want to know the time needed for a typical orbit starting at (x,m) ∈ Σ × Z2 to return
ε-close to the initial point after iterations of the map F . By translation invariance we can assume
that the orbit starts in the cell m = 0. More precisely, let

τε(x) = min{n ≥ 1: Fn(x, 0) ∈ B(x, ε)× {0}}.

Observe that Fn(x,m) = (θnx,m+ Snϕ(x)), thus

τε(x) = min{n ≥ 1: Snϕ(x) = 0 and d(θnx, x) < ε)}.
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Let ν be the Gibbs measure associated to some Hölder continuous potential h, and denote by
σ2
h the asymptotic variance of h under the measure ν. Recall that σ2

h vanishes if and only if h is
cohomologous to a constant, and in this case ν is the unique measure of maximal entropy.

We know that there exists a positive integer m0 such that the function ϕ is constant on each
m0-cylinders.

Let us denote by σ2
ϕ the asymptotic covariance matrix of ϕ :

σ2
ϕ = lim

n→+∞
Covν

(
1√
n
Snϕ

)
.

We suppose that σ2
ϕ is invertible. Note that if it is not the case then it means that range

of Snϕ is essentially contained in a one-dimensional lattice; in this case we can reduce our study
to the corresponding Z-extension.

We add the following hypothesis of non-arithmeticity on ϕ : We suppose that, for
any u ∈ [−π;π]2 \{(0, 0)} the only solutions (λ, g), with λ ∈ C and g : Σ → C measurable
with |g| = 1, of the functional equation

g ◦ σg = λeiu·ϕ

is the trivial one λ = 1 and g = const. Note that if it is not the case then it should mean
that the range of Snϕ is essentially contained in a sub-lattice; in this case we could just do a
change of basis and apply our result to the new twisted Z2-extension. We emphasize that this
non-arithmeticity condition is equivalent to the fact that all the circle extensions Tu defined by
Tu(x, t) = (θ(x), t+ u · ϕ(x)) are weakly-mixing for u ∈ [−π;π]2 \ {(0, 0)}.

In this context, we prove the following results :

Theorem 7. The sequence of random variables log log τε
− log ε converges almost surely as ε→ 0 to the

Hausdorff dimension d of the measure ν.

Theorem 8. The sequence of random variables ν(Bε(·)) log τε(·) converges in distribution as
ε → 0 to a random variable with distribution function of density t 7→ βt

1+βt1(0;+∞)(t), with
β := 1

2π
√

detσ2
ϕ

.

Corollary 9. If the measure ν is not the measure of maximal entropy, then the sequence of
random variables log log τε+d log ε√

− log ε
converges in distribution as ε→ 0 to a centered gaussian random

variable of variance 2σ2
h.

In the case where ν is the measure of maximal entropy, then the sequence of random variables
εd log τε converges in distribution to a finite mixture of the law found in the previous theorem, i.e.
there exists some probability vector α = (αn) and positive constants βn such that the sequence
of random variables εd log τε converges in distribution to a random variable with distribution
function of density

∑
n αn

βnt
1+βnt

1(0;+∞)(t).

Examples 10. We provide an example where the function ϕ(x) only depends on the first co-
ordinate x0, i.e. ϕ(x) = ϕ(x0). On the shift Σ = {E,N,W, S}Z the function ϕ(E) = (1, 0),
ϕ(N) = (0, 1), ϕ(W ) = (−1, 0) and ϕ(S) = (0,−1) fulfill the hypotheses.

The rest of the section is devoted to the proof of these results. In Subsection 4.2 we recall
some preliminary results and prove a uniform conditional local limit theorem. In Subsection 4.3
we prove Theorem 7 and in Subsection 4.4 we prove Theorem 8 and Corollary 9.
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4.2. Spectral analysis of the Perron-Frobenius operator and Local Limit Theorem.
In order to exploit the spectral properties of the Perron-Frobenius operator we quotient out the
"past". We define :

Σ̂ := {ω := (ωn)n∈N : ∀n ∈ N, M(ωn, ωn+1) = 1},

d̂
(
(ωn)n≥0, (ω′n)n≥0

)
:= e−r̂(ω,ω

′)

with r̂((ωn)n≥0, (ω′n)n≥0) = inf{m ≥ 0 : ωm 6= ω′m} and

θ̂ ((ωn)n≥0) = (ωn+1)n≥0.

Let us define the canonical projection Π : Σ → Σ̂ defined by π ((ωn)n∈Z) = (ωn)n≥0. Let ν̂ be
the image probability measure (on Σ̂) of ν by Π. There exists a function ψ : Σ̂ → Z2 such that
ψ ◦Π = ϕ ◦ θm0 .

Let us denote by P : L2(ν̂) → L2(ν̂) the Perron-Frobenius operator such that :

∀f, g ∈ L2(ν̂),
∫

Σ̂
Pf(x)g(x) dν̂(x) =

∫
Σ+

f(x)g ◦ θ̂(x) dν̂(x).

Let η ∈]0; 1[. Let us denote by B the set of bounded η-Hölder continuous function g : Σ̂ → C
endowed with the usual Hölder norm :

‖g‖B := ‖g‖∞ + sup
x 6=y

|g(y)− g(x)|
d̂(x, y)η

.

We denote by B∗ the topological dual of B. For all u ∈ R2, we consider the operator Pu defined
on (B, ‖ · ‖B) by :

Pu(f) := P (eiuψf).

Note that the hypothesis of non-arithmeticity of ϕ is equivalent to the following one on ψ :
for any u ∈ [−π;π]2 \ {(0, 0)}, the operator Pu has no eigenvalue on the unit circle.

We will use the method introduced by Nagaev in [10, 11], adapted by Guivarch and Hardy in
[7] and extended by Hennion and Hervé in [9]. It is based on the family of operators (Pu)u and
their spectral properties expressed in these two propositions.

Proposition 11 (Uniform contraction). There exists α ∈ (0; 1), C > 0 such that, for all u ∈
[−π;π]2 \ [−β;β]2 and all integer n ≥ 0, for all f ∈ B, we have :

‖Pnu (f)‖B ≤ Cαn‖f‖B.

This property easily follows from the fact that the spectral radius is smaller than 1 for u 6= 0.
In addition, since P is a quasicompact operator on B and since u 7→ Pu is a regular perturbation
of P0 = P , we have :

Proposition 12 (Perturbation result). There exists α > 0, β > 0, C > 0, c1 > 0, θ ∈]0; 1[
such that : there exists u 7→ λu belonging to C3([−β;β]2 → C), there exists u 7→ vu belonging
to C3([−β;β]2 → B), there exists u 7→ φu belonging to C3([−β;β]2 → B∗) such that, for all
u ∈ [−β;β]2, for all f ∈ B and for all n ≥ 0, we have the decomposition :

Pu
n(f) = λu

nφu(f)vu +Nn
u (f),

with

(1) ‖Nu
n(f)‖B ≤ Cαn‖f‖B,

(2) |λu| ≤ e−c1|u|
2 and c1|u|2 ≤ σ2

φu · u,
(3) with initial values : v0 = 1, φ0 = ν̂, ∇λu=0 = 0 and D2λu=0 = −σ2

ϕ.
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This result is a multidimensional version of IV-8, IV-11, IV-12 of [9], in this context.

Next proposition is essential to our work. It may be viewed as a doubly local version of the
central limit theorem : first, it is local in the sense that we are looking at the probability that
Snϕ = 0 while the classical central limit theorem is only concerned with the probability that
|Snϕ| ≤ ε

√
n ; second, it is local in the sense that we are looking at this probability conditioned

to the fact that we are starting from a set A and landing at a set B on the base.

Proposition 13. There exists a real number C1 > 0 such that, for all integer n > k > m0 and
all q > 0, all q-cylinder A of Σ and all measurable subset B of Σ+, we have :∣∣∣∣∣∣ν

(
A ∩ {Snϕ = 0} ∩ θ−n(θk(Π−1(B)))

)
− ν(A)ν̂(B)

2π(n− k)
√
det(σ2

ϕ)

∣∣∣∣∣∣ ≤ C1
ν̂(B)keηq

(n− k)3/2
.

Proof. We want to estimate the measure of the set Q = A∩{Snϕ = 0}∩ θ−n(θkΠ−1B). Since A
is a q-cylinder, θ−qA = Π−1Â for the cylinder set Â = Πθ−qA. Next, since ϕ ◦ θm0 = ψ ◦ Π we
have the identity {Snϕ◦θm0 = 0} = {Snψ ◦Π = 0}. Thus using the semi-conjugacy θ̂ ◦Π = Π◦θ

θ−q−m0Q = θ−m0(Π−1Â) ∩ {Snψ ◦Π ◦ θq = 0} ∩ θ−n−q+(k−m0)(Π−1B))

= Π−1(θ̂−m0(Â) ∩ {Snψ ◦ θ̂q = 0} ∩ θ̂−n−q+(k−m0)(B))

Since ψ is integer-valued, the relation 1{k=0} = 1
(2π)2

∫
[−π,π]2 e

iu·kdu for any k ∈ Z2 gives, by
invariance of ν,

ν(Q) = Eν̂

(
1Â ◦ θ̂

m01B ◦ θ̂q+n−(k−m0) 1
(2π)2

∫
[−π,π]2

exp(iu · Snψ ◦ θ̂q)du

)

=
1

(2π)2

∫
[−π,π]2

Eν̂
(
1Â ◦ θ̂

m01B ◦ θ̂q+n−(k−m0) exp(iu · Snψ ◦ θ̂q)
)
du

We then estimate the expectation a(u) = Eν̂(· · · ). Using the fact that the Perron-Frobenius P
is the dual of θ̂ we get

a(u) = Eν̂
(
P q(1Â ◦ θ̂

m0) exp(iu · Snψ)1B ◦ θ̂n−(k−m0)
)

= Eν̂
(
Pnu (P q(1Â ◦ θ̂

m0)1B ◦ θ̂n−(k−m0)
)

= Eν̂
(
P k−m0
u (1BPn−(k−m0)

u P q(1Â ◦ θ̂
m0))

)
.

Let us denote for simplicity ` = n− (k −m0). We first show that for large u, the quantity a(u)
is negligeable. Using the contraction inequality given in proposition 11 applied to Pu`(1), the
fact that ‖P q(1Â ◦ θ̂

m0)‖B ≤ 1 + eη(q+m0), and the fact that |Eν̂ [Puk−m0(1Bg)]| ≤ ν+(B)‖g‖B,
we get whenever u 6∈ [−β, β]2,

|a(u)| ≤ Eν̂
(
1BP `P q(1Â ◦ θ̂

m0)
)

= O(ν̂(B)α`eηq). (3)

We then estimate the main term, coming from small values of u. The decomposition given in
Theorem 12 gives for any u ∈ [−β, β]2

a(u) = λ`uφu(P
q(1Â ◦ θ̂

m0))Eν̂ [Puk−m0(1Bvu)]︸ ︷︷ ︸
a1(u)

+ Eν̂ [P k−m0
u (1BN `

u(P
q(1Â ◦ θ̂

m0)))]︸ ︷︷ ︸
a2(u)

Notice that the second term is, by inequality (1) in Proposition 12, of order

a2(u) = O
(
ν̂(B)α`eηq

)
. (4)
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Moreover, since u 7→ vu and u 7→ φu are C1-regular with v0 = 1 and φ0 = ν̂, the first term has
the estimate

a1(u) = λ`uν̂(Â)Eν̂ [Puk−m0(1B)] +O
(
λ`u|u|ν̂(B)eηq

)
= λ`uν̂(Â)ν̂(B) +O

(
λ`u|u|ν̂(B)keηq

)
where the second estimate is obtained by reintroducing the unperturbed Perron-Frobenius oper-
ator P in Pu, |Eν̂ [Puk−m0(1B)]− ν̂(B)| = |Eν̂((eiu·Sk−m0

ψ − 1)1B)| ≤ |u|(k −m0)‖ψ‖∞ν̂(B).

In addition, the intermediate value theorem yields, using C3 smoothness of λu and Theorem
1 (the bounds 2 and initial values 3)∣∣∣∣λ`u − exp(− `

2
σ2
ϕu · u)

∣∣∣∣ ≤ `(exp−c1|u|2)`−1|λu−exp(−1
2
σ2
ϕ·u)| ≤ C0`e

−c1`|u|2 |u|3 = O
(
e−c2`|u|

2 |u|
)

for the constant c2 = c1/2. Thus

a1(u) = exp(− `
2
σ2
ϕu · u)ν̂(Â)ν̂(B) +O

(
e−c2`|u|

2 |u|ν̂(B)keηq
)
.

By the classical change of variable v = u
√
` and gaussian integral one easily see that∫

[−β,β]2
exp(− `

2
σ2
ϕu · u)du =

1
`

∫
[−β

√
`,β

√
`]2

exp(−1
2
σ2
ϕv · v)dv =

2π

`
√

detσ2
ϕ

+O

(
1
`3/2

)
.

Proceeding similarly with the error term one gets as well∫
[−β,β]2

|u|e−c2`|u|2du =
1
`3/2

∫
[−β

√
`,β

√
`]2
e−c2|v|

2
dv = O

(
1
`3/2

)
.

Combining these two computations gives by integration of the approximation of a1(u) obtained
above that ∫

[−β,β]2
a1(u)du =

2π

`
√

detσ2
ϕ

ν̂(Â)ν̂(B) +O

(
ν̂(B)keηq

`3/2

)
.

From this main estimate and (3) and (4) it follows immediately that

1
(2π)2

∫
[−π,π]2

a(u)du =
1

2π`
√

detσ2
ϕ

ν̂(Â)ν̂(B) +O

(
ν̂(B)keηq

(n− k)3/2

)
.

�

4.3. Proof of the pointwise convergence of the recurrence rate to the dimension. Let
us denote by Gn(ε) the set of points for which n is an ε-return :

Gn(ε) := {x ∈ Σ : Snϕ(x) = 0 and d(θn(x), x) < ε} .
Let us consider the first return time in a ε-neighborhood of a starting point x ∈ Σ :

τε(x) := inf {m ≥ 1 : Smϕ(x) = 0 and d(θm(x), x) < ε} = inf{m ≥ 1 : x ∈ Gm(ε)}.

Proof of Theorem 7. Let us denote by Ck the set of k-cylinders of Σ. For any δ > 0 denote
by Cδk ⊂ Ck the set of cylinders C ∈ Ck such that ν(C) ∈ (e−(d+δ)k, e−(d−δ)k). For any x ∈ Σ
let Ck(x) ∈ Ck be the k-cylinder which contains x. Since d is twice1 the entropy of the ergodic
measure ν, by the Shannon-McMillan-Breiman theorem, the set Kδ

N = {x ∈ Σ: ∀k ≥ N,Ck(x) ∈
Cδk} has a measure ν(Kδ

N ) > 1− δ provided N is taken sufficiently large.

1Note that we are working with the two-sided symbolic space Σ.
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* Let us prove that, almost surely :

lim inf
ε→0

log log τε
− log ε

≥ d.

Let α > 1
d and 0 < δ < d − 1

α . Let us take εn := log−α n and kn := d−log εne. According to
Proposition 13, whenever kn ≥ N we have :

ν(Kδ
N ∩Gn(εn)) = ν

(
{x ∈ Kδ

N : Snϕ(x) = 0 and θn(x) ∈ Ckn(x)}
)

=
∑
C∈Cδ

kn

ν
(
C ∩ {Snϕ = 0} ∩ θ−nθkn(θ−knC)

)

=
∑
C∈Cδ

kn

[
ν(C)ν(C)

n
+O

(
ν(C)kneηkn

n3/2

)]
.

Observe that for C ∈ Cδkn
we have

kne
ηkn

√
n

=
α log log n logαη n√

n
= O(εd+δn ) = O(ν(C)),

hence it follows that

ν(Kδ
N ∩Gn(εn)) = O

 ∑
C∈Cδ

kn

ν(C)2

n

 = O

(
1

n(log n)(d−δ)α

)

Hence, by a Borel Cantelli argument, for a.e. x ∈ Kδ
N , if n is large enough, we have : τεn(x) > n.

This readily implies that :

lim inf
n→∞

log log τεn

− log εn
≥ 1
α

a.e.,

which proves the lower bound on the lim inf since (εn)n decreases to zero and limn→+∞
εn
εn+1

= 1.

* Let us prove that, almost surely :

lim sup
ε→0

log log τε
− log ε

≤ d.

Let 0 < α < 1
d and δ > 0 such that 1−αd−αδ > 0. Let us take εn := log−α n and kn := d−log εne.

For all ` = 1, ..., n, we define :

A`(ε) := G`(ε) ∩ θ−`{τε > n− `}

Let us take Ln := dloga ne, with a > 2α(d+ δ + η). The sets A`(ε) are pairwise disjoint thus :

1 ≥
n∑
`=0

ν(A`(εn)) ≥
n∑

`=Ln

∑
C∈Cδ

kn

ν(C ∩A`(εn)).

According to Proposition 13, we have

ν(C ∩A`(εn)) = ν
(
C ∩ {S`ϕ = 0} ∩ θ−` (C ∩ {τε > n− `})

)
=
[

ν(C)

2π
√

detσ2
+O(

kne
ηkn

√
`− kn

)
]

1
`− kn

ν (C ∩ {τε > n})

≥ cεd+δn

1
`− kn

ν (C ∩ {τε > n})
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for any C ∈ Cδkn
provided kn ≥ N ; indeed, the error term is negligible since :

kne
ηkn

√
`− kn

= O

(
(log log n) logαη n

loga/2(n)

)
= o(εnd+δ),

since a > 2α(d+ δ + η). This chain of inequalities gives

ν(Kδ
N ∩ {τε > n}) ≤

∑
C∈Cδ

kn

ν(C ∩ {τε > n}) ≤
(
εd+δn log

n− kn
Ln − kn

)−1

= O

(
1

log1−αd−αδ n

)
.

Now let us take np := bexp(p2/(1−αd−αδ))c. We have :∑
p≥1

ν(Kδ
N ∩ {τεnp

> np}) < +∞.

Hence, by the Borel-Cantelli lemma, almost surely x ∈ Kδ
N , we have :

lim sup
p→+∞

log log τ2εnp

− log εnp

≤ 1
α
.

This gives the estimate lim sup since (εnp)p decreases to zero and since limp→+∞
εnp

εnp+1
= 1. �

4.4. Fluctuations of the rescaled return time. Recall that Ck(x) = {y ∈ Σ: d(x, y) < e−k}.
Let Rk(y) = min{n ≥ 1: θn(y) ∈ Ck(y)} denotes the first return time of a point y into its k-
cylinders Ck(y), or equivalently the first repetition time of the first k symbols of y. There have
been a lot of studies on this quantity, among all the results we will use the following.

Proposition 14 (Hirata [8]). For ν-almost every point x ∈ Σ, the return time into the cylinders
Ck(x) are asymptotically exponentially distributed in the sense that

lim
k→∞

νCk(x)

(
Rk(·) >

t

ν(Ck(x))

)
= e−t

for a.e. x, where the convergence is uniform in t.

Lemma 15. Let x be such that limk→∞ νCk(x)

(
Rk(·) > t

ν(Ck(x))

)
= e−t for all t > 0. Then, for

all t > 0, we have :

lim
k→+∞

ν

(
τe−k > exp

(
t

ν(Ck(x))

)∣∣∣∣Ck(x)) =
1

1 + βt
,

with β := 1

2π
√
detσ2

.

Proof. We are inspired by the method used by Dvoretzky and Erdös in [6]. Let k ≥ m0 and n
be some integers. We make a partition of a cylinder Ck(x) according to the value ` ≤ n of the
last passage in the time interval 0, . . . , n of the orbit of (x, 0) by the map F into Ck(x) × {0}.
This gives the following equality :

ν(Ck(x)) =
n∑
`=0

ν
(
Ck(x) ∩ {S` = 0} ∩ θ−` (Ck(x) ∩ {τe−k > n− `})

)
. (5)

Upper bound. Let nk =
⌊
e

t
ν(Ck(x))

⌋
. First we claim that :

lim sup
k→+∞

ν ({τe−k > nk}|Ck(x)) ≤
1

1 + βt
.
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Let a > 2η and Lk = eak. According to the decomposition (5) and to Proposition 13, there
exists C ′

1 > 0 such that we have :

ν(Ck(x)) ≥ ν (Ck(x) ∩ {τe−k > nk}) +
nk∑
`=Lk

β
ν(Ck(x))ν (Ck(x) ∩ {τe−k > nk})

`− k

−C1

nk∑
`=Lk

keηkν (Ck(x) ∩ {τe−k > nk − `})
(`− k)

3
2

≥ ν (Ck(x) ∩ {τe−k > nk})

1 + βν(Ck(x))
nk∑
`=Lk

1
`− k

− C ′
1ν(Ck(x))ke

ηke
−ak

2 .

Hence, we get :
ν (Ck(x) ∩ {τe−k > nk})

ν(Ck(x))
≤ 1− C ′

1ke
k(η−a

2 )

1 + βν(Ck(x))
∑nk

`=Lk

1
`−k

.

The claim follows from the fact that a > 2η.

Lower bound. Let b = lim inf −1
k log ν(Ck(x)) > 0. Without loss of generality we assume that

the Hölder exponent η is such that b > 2η. Let qk =
⌊
e

t
ν(Ck(x))

⌋
, nk = bqk log(qk)c, mk = nk− qk

and choose δ > 0 such that 2η < b(1− δ). We now claim that :

lim inf
k→+∞

ν ({τe−k > qk}|Ck(x)) ≥
1

1 + βt
.

Let us denote by A`(k, x) the sets involved in the decomposition (5) :

A`(k, x) := Ck(x) ∩ {S` = 0} ∩ θ−` (Ck(x) ∩ {τe−k > nk − `}) .
For ` = 0 we have

ν(A0(k, x)) ≤ ν(Ck(x) ∩ {τe−k > qk}). (6)

Let Mk = bν(Ck(x)−1+δc. We first show that the contribution from small ` is negligible.
According to the exponential statistics for return times, there exists εk, with limk→+∞ εk = 0,
such that we have (remember that the A`(k, x) are disjoints) :

Mk∑
`=1

ν(A`(k, x)) ≤ ν (Ck(x) ∩ {Rk ≤Mk})

≤ ν(Ck(x))
(
1− exp

(
ν(Ck(x))δ

)
+ εk

)
≤ o(ν(Ck(x))). (7)

We now estimate the measure of A`(k, x) for large values of `. According to our local limit
theorem (Proposition 13), for all ` = Mk + 1, . . . , nk, we have :

ν(A`(k, x)) ≤ β
ν(Ck(x))ν (Ck(x) ∩ {τe−k > nk − `})

`− k︸ ︷︷ ︸
main term

+C1
keηkν (Ck(x) ∩ {τe−k > nk − `})

(`− k)
3
2︸ ︷︷ ︸

error term

.

(8)
Observe that the error term is controlled, for some constant C2 > 0, by∑

`≥Mk+1

keηkν (Ck(x))

(`− k)
3
2

≤ C2ν(Ck(x))keηk(ν(Ck(x))−1+δ − k)−
1
2 = o(ν(Ck(x))). (9)

On the other hand the main term may be estimated for non extremal values of ` by :
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mk∑
`=Mk+1

ν(Ck(x))ν (Ck(x) ∩ {τe−k > nk − `})
`− k

≤ ν(Ck(x))ν (Ck(x) ∩ {τe−k > qk})
mk∑

`=Mk+1

1
`− k

(10)
and for extremal values of ` the simple bound below holds :

nk∑
`=mk+1

ν(Ck(x))ν (Ck(x) ∩ {τe−k > nk − `})
`− k

≤ ν(Ck(x))2
nk∑

`=mk+1

1
`− k

≤ C3ν(Ck(x))2 log
(
nk − k

mk − k

)
= o(ν(Ck(x))). (11)

Using the decomposition (5) and putting together formulas (6), (7), (8), (9), (10), (11), we get :

ν(Ck(x)) ≤ ν(Ck(x) ∩ {τe−k > qk})

1 + βν(Ck(x))
nk∑

`=Mk+1

1
`− k

+ o(ν(Ck))

≤ ν(Ck(x) ∩ {τe−k > qk}) (1 + βν(Ck(x)) log nk) + o(ν(Ck(x)).

This proves the claim, which achieves the proof of the lemma. �

Proof of Theorem 8. Since the exponential statistics of return time holds a.e. by Proposition 14,
Lemma 15 applies a.e. and by integration, using Lebesgue dominated convergence theorem, we
get that

lim
k→∞

ν

(
log τe−k(·) > t

ν(Ck(·))

)
=

1
1 + βt

for all t ≥ 0. �

Proof of Corollary 9. Nonzero variance. Let us write :

Yk :=
log log τe−k(·)− kd√

k
.

In this case ν is a Gibbs measure with a non degenerate hölder potential h. The logarithm
of the measure of the k-cylinder about x is, up to some constants, given by the birkhoff sum∑k

j=−k h ◦ σk(x) of h on the orbit of x. It is well known that such sums follow a central limit
theorem (e.g. [2]). This readily implies that Xk = log(ν(Ck(·))+kd√

k
converges in distribution to a

centered gaussian random variable of variance 2σ2
h. It is enough to prove that Yk +Xk converges

in probability to 0. This will be true if Yk +Xk converges in distribution to 0. This follows from
Theorem 8 and from the formula :

Yk +Xk =
log log τe−k(·) + log(ν(Ck))√

k
.

Zero variance. In this case the potential is cohomologous to a constant and the measure ν is the
measure of maximal entropy, which is a Markov measure. Denote by π the transition matrix
and by p the left eigenvector such that pπ = p. The measure of a cylinder Ck(x) is equal to
px−k

∏k−1
j=−k πxjxj+1 . Since the function log πx0x1 has to be cohomologous to the entropy, the

measure of a cylinder Ck(x) simplifies down to

ν(Ck(x)) = Qx−kxk
e−(2k+1) d

2 ,
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where Q = (Qij) is a (constant) matrix. Proceeding as in the proof of Theorem 8, we get that

lim
k→∞

ν
(
e−kd log τe−k > t

)
=
∑
i,j∈A

lim
k→∞

∫
{x−k=i,xk=j}

1{e−kd log τ
e−k>t}dν =

∑
i,j∈A

pipj
1

1 + βQijt
.

�
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