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Modeling of fish
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Fishery modelling
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Fishery modelling
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Fishery modelling
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Fishery modelling

dn
dt

az
dt

= f(n) — h(n, E),

= d)(ph(n7 E)— CE)



Fishery modelling
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Fishery modelling
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Fishery modelling
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dt
L] f(n):rn(l—%) .
m h(n,E) = qnE i ¢(Pan - cE)

p= constant, g= constant, ¢ = 1
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Condition for fishery persistence
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Mathematical Model of a Fishery with a Variable Price of the Resource
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Derivation of the aggregated model

P A
dr ~ P+po

—[(1=n)gNE+65]=0 (1)

This equation admits one solution P* given by the following expression :

A

pf— - -
(1—-m)gNE+46S

Do (2)

The second equation now becomes

dE
== = A-pol(1 —ngNE+65] - cE

This aggregation makes us obtain the following system of three differential equations :

N=rN(1-N)—-gNE
E=A—-po[(l1 —n)gNE + 48] —cE (3)

S =ngNE — S



Derivation of the aggregated model

N=rN(1-N)—-gNE

0 (4)
E=A-pg |:(1 —n)gNE + nq/ 5e%9 N (0)E(0)d0 | — cE

— 00

where
Ni(0) =N(t+0), E((0)=FE({t+6) witht>0andf <0

denote the history functions. In system (4), the kernel w given by

w(0) = de’, 0 <0, (5)



Qualitative analysis of the aggregated model

It can be checked that model (4) can admit up to three nonnegative equilibria : The
"catastrophic" equilibrium defined by CE = (0, A/c) and up to two nontrivial equilibria
(N*, E*) where

A

~ pogN* +c

*
while N* € (0,1) is a positive root of the following quadratic equation :

FN) = poaN? + (= moa)N + (22— ) =0. (6)



Qualitative analysis of the aggregated model

The number of non catastrophic equilibrium points of system (4) is given by the number
of positive real roots of Eq.(6) on the interval (0,1).

As F(1) = qA/r > 0, we have the following two cases :

Case I : If F(0) < 0, that is if ¢ > gA/r, then, there exists a unique positive equilibrium
(N*,E*) where N* is given by

(e pog) + /(e + pon)? — 414

*
= . (7)
2poq
Case II : If F(0) > 0, that is if ¢ < gA/r, we have the following two subcases :
4pog? A
o If (¢ eroq)2 < %, the system (4) has no positive equilibrium.
4pog? A
o If (chpoq)2 > POT 2 and e < pog, then there exist two positive equilibria (Ni7 Ei)7
r

where

—@—pwﬁt¢®+pwf—4mgé A
and ET =

Nt = . —
2poq pogN* + ¢

(®)

We note that 0 < N~ < NT < 1.



Stability An:
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Figure — Dynamics of fish stock, fishing effort and price. (Left) Case of a stable CE with
parameter values : r =1, ¢g=1, ¢ =2, po=1, A=0.9, d =1, n = 0.5. Initial conditions
are : N(0) = 0.3, E() = 0.4 for —50 < 6 < 0.(Right) Price versus time.
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Figure — (Left) Dynamics of fish stock and fishing effort. (Right) The phase diagram
obtained from the reduced model (3). Parameter values are :
r=1,¢=1,¢=2, po=1, A=0.9, 6 =1, n = 0.5. Initial conditions are :
N(6) = 0.3, E(0) = 0.4 for —50 < 6 < 0.
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Ficure — Dynamics of fish stock and fishing effort. Parameter values are :



Bifurcation diagram

Population density
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Figure — Bifurcation diagram in the plan (¢, N). The other parameters are fixed as follows :
r=3,po=2,A=26,q9=0.5.



Effect of fish storage on the dynamics of the fishery

We assume that the institution in charge of fisheries management decides to implement
a tax per unit of fishing effort on the storage of fish.

We assume an additional storage cost aﬂ.

The total cost per unit of fishing effort reads as follows :

c=c1+ oaﬂ 9)
é
where c; represents all the other costs such as fuel for the boats, fishermen’s wages,
other taxes, the minimum profit required by the shipowner, etc.



Effect of fish storage on the dynamics of the fishery

A A
Recall that when ¢ > q—, we have two equilibria (0, —) which is unstable and (N*, E*)
r c

is LAS and the previous condition rewrites :

1 qA
Ts (22 o). (10)
6 o T
a4 ilibri A - B + gt
When ¢ < — we have three equilibria (0, —), (N7, E™) and (N, E™) where
r c
(N7, E7) is unstable and the two others equilibria are LAS. As we have ¢ = ¢1 + ag,
we have the inverse condition :
1 qA
T (& o) (11)
6 o T



Effect of fish storage on the dynamics of the fishery
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Figure — Graphic illustrations of the results, where storage parameters are changed from a
certain time. The initial trajectory for 0 < ¢ < 15 moves towards the resource extinction
equilibrium, then for ¢ > 15, it is modified to move towards the sustainable fishery
equilibrium. For t < 15, § = 0.9 and n = 0.1 and for ¢ > 15 § = 0.2 and n = 0.9.



Thank you for your attention

Un poisson mathématique — par Theo Engell- Nielsen
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Fishing Effort
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