

# Exploring the ecological consequences of discarding

Marie Savina-Rolland, Sophie Leforestier, Raphael Girardin



### **Discarding**...

Returning unwanted catch to the sea

- too small
- no value
- no quota
- catch composition rules

Discarding => solve the by-catch issue!



© bowsawblogger



## ...fishing mortality...

Discarding causes mortality, due to :

- The catch process
- The time spend on deck
- Increased exposure to predation
- The incapacity to reach a suitable habitat



© Brian Skerry National Geographic

Uncertainty on survival rates hence on total fishing mortality



### ...and the Landing Obligation



"Implemented" (2015 – 2019) for all commercial species under TACs, or under minimum sizes in European waters :

- Reduction of wasteful practices to the minimum
- Promoting more selectivity
- More reliable catch data

#### Concerns : Mixed fishery and choked species Artisanal fleets and the handling of unwanted catch

Alteration of food webs?



### The fate of discards in marine ecosystems



From Oro et al, 2013 Ecology Letters



#### 17/01/2024

#### 2 potential consequences:

- Food shortage
- Altered exploitation (through new constraints for
- fishing fleets)

=> changes in the relative abundance of different species or group of species?

#### Testing those with a foodweb model

### The Atlantis modelling framework







#### The Atlantis Eastern English Channel model







Girardin, 2015





#### **The scenarios**





Discards survival = 0



#### **Results**

#### Not discarding vs Discarding





BSS CET CRA DAB DEP ECH GAD LBE LBT OFF PLE SB SHK SHP SMD SOL SXX WHE proportion in diet

Realised diet in the baseline run

1.00

0.75-

s 0.50 -

0.25 -

0.00

9

#### **Results**





# Multi-model approach

remer

Azore

S



Also Toni Quetglas (IEO), Robin Cook, Michael Heath (Strathclyde Uni), George Triantaphyllidis, Athanassios Tsikliras (Nays Ltd), Telmo Morato, Ambre Soszynski (UAz), Eider Andonegi (AZTI), Didier Gascuel (Institut Agro)



17/01/2024

#### What about it?

Uncertainties remain about :

- discards flows into the system (flows from quota species are best known, but sampling is still quite low)

- Models ability to capture discards – scavengers interactions



### **Exploratory runs**

| Run number            | Short title                                                                         | Description                                                                             |  |  |
|-----------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| 1                     | Baseline                                                                            |                                                                                         |  |  |
| Availability of       | discards to consumers                                                               |                                                                                         |  |  |
| 2                     | Full access                                                                         | Availability values (P <sub>dis cons</sub> ) set to 1 for identified discards consumers |  |  |
| 3                     | Less consumers                                                                      | s consumers Number of discard consumers reduced to 2 : crabs and deposivores            |  |  |
| 4                     | Specialised consumer                                                                | Crabs have reduced access to other food than discards                                   |  |  |
| <b>Discards flows</b> | flows                                                                               |                                                                                         |  |  |
| 7                     | Max discards                                                                        | Upper range of all estimated discards flow                                              |  |  |
| 8                     | Max discards + Invert                                                               | Upper range of all estimated discards flow + invertebrate discards added                |  |  |
| 9                     | Invert                                                                              | Invertebrate discards added                                                             |  |  |
| <b>Discard comp</b>   | artment dynamic                                                                     |                                                                                         |  |  |
| 5                     | No breakdown Discards accumulate instead of being degraded into detritus (table S1) |                                                                                         |  |  |
| 6                     | Reduced breakdown                                                                   | Reduced degradation rate of discards into detritus                                      |  |  |

$$C_{dis,cons} = f(CR_{cons}, p_{dis,cons}, B_{dis})$$

Msc Sophie Leforestier



#### Availability of discards to consumers

| Run N° | Short title          | Description                                                    |
|--------|----------------------|----------------------------------------------------------------|
|        |                      |                                                                |
| 2      | Full access          | Availability values set to 1 for identified discards consumers |
| 3      | Less consumers       | N° of discard consumers reduced to 2 : crabs and deposivores   |
| 4      | Specialised consumer | Crabs have reduced access to other food than discards          |





#### **Discards flows**

| Run N° | Short title           | Description                                                                 |
|--------|-----------------------|-----------------------------------------------------------------------------|
|        |                       |                                                                             |
| 7      | Max discards          | Upper range of all estimated discards flow                                  |
| 8      | Max discards + Invert | Upper range of all estimated discards flow<br>+ invertebrate discards added |
| 9      | Invert                | Invertebrate discards added                                                 |

#### Raising discards for fish and commercial invertebrates





#### Raising discards for non-commercial invertebrates

### **Discards flows**

| Run N° | Short title           | Description                                                                 |
|--------|-----------------------|-----------------------------------------------------------------------------|
|        |                       |                                                                             |
| 7      | Max discards          | Upper range of all estimated discards flow                                  |
| 8      | Max discards + Invert | Upper range of all estimated discards flow<br>+ invertebrate discards added |
| 9      | Invert                | Invertebrate discards added                                                 |





#### **Discards compartment dynamics**

| Run N°                      | Short title       | Description                                                 |
|-----------------------------|-------------------|-------------------------------------------------------------|
| Discard compartment dynamic |                   |                                                             |
| 5                           | No breakdown      | Discards accumulate instead of being degraded into detritus |
| 6                           | Reduced breakdown | Reduced degradation rate of discards into detritus          |

SUS

ZOC ZOG









3e+06-

2e+06-

1e+06 -

#### **Discards compartment dynamics**

| Run N°                      | Short title       | Description                                                 |
|-----------------------------|-------------------|-------------------------------------------------------------|
| Discard compartment dynamic |                   |                                                             |
| 5                           | No breakdown      | Discards accumulate instead of being degraded into detritus |
| 6                           | Reduced breakdown | Reduced degradation rate of discards into detritus          |





17/01/2024

|    | Discards -                        |      |     |   |    |     |
|----|-----------------------------------|------|-----|---|----|-----|
|    | Refractory detrital -             |      |     |   |    |     |
|    | Labile detrital -                 |      |     |   |    |     |
|    | Pelagic bacteria -                |      |     |   |    |     |
|    | Benthic bacteria -                |      |     |   |    |     |
|    | Phytoplankton -                   |      |     |   |    |     |
| G  | Selatinous zooplankton -          |      |     | • |    |     |
| Ca | arnivorous zooplankton -          |      |     |   |    |     |
|    | Zooplankton -                     |      |     |   |    |     |
|    | Echinoderms -                     |      |     |   |    |     |
|    | Bivalves -                        |      |     |   |    |     |
|    | Scallops -                        |      |     |   |    |     |
|    | Deposit feeder -                  |      |     |   |    |     |
|    | Suspension feeder -               |      |     |   |    |     |
|    | Whelke -                          |      |     | _ |    |     |
|    | Shrimns -                         |      |     |   |    |     |
|    | Crabs -                           |      |     |   |    |     |
|    | Labstara -                        |      |     |   |    |     |
|    | Constitution of the second factor |      |     |   |    |     |
| 2  | Small demersal lish-              |      |     |   |    |     |
| 0  | Other Gadolds -                   |      |     |   |    |     |
|    | Mugilidae -                       |      |     |   |    |     |
|    | Gurnards -                        |      |     |   |    |     |
|    | Sparidae -                        |      |     |   |    |     |
|    | Clupeidae -                       |      |     |   |    |     |
|    | Mackerels -                       |      |     |   |    |     |
|    | Other flatfish -                  |      |     |   |    |     |
|    | Common Dab -                      |      |     |   |    |     |
|    | Plaice -                          |      |     |   |    |     |
|    | Common Sole -                     |      |     |   |    |     |
|    | European Seabass -                |      |     |   |    |     |
|    | Large Bottom fish -               |      |     |   |    |     |
|    | Pollack-                          |      |     |   |    |     |
|    | Whiting -                         |      |     |   |    |     |
|    | Cephalopods -                     |      |     | - |    |     |
|    | Sharks -                          |      |     |   |    |     |
|    | Rays and Dogfish -                |      |     |   |    |     |
|    | Atlantic Cod -                    |      |     |   |    |     |
|    | Seals -                           |      |     |   |    |     |
|    | Toothed cetaceans -               |      |     |   |    |     |
|    | Seabirds -                        |      |     |   |    |     |
|    |                                   | -100 | -50 | 0 | 50 | 100 |
|    |                                   |      |     | % |    |     |

No breakdown

Reduced breakdown

# On the importance of discards as a food source and the likelihood of food shortages

Unlikely at the scale studies (seabirds)

Corroborated by results from complementary approaches



#### The nature and role of detritus

Discards = 1 group Detritus = 2 groups



17/01/2024







- Dynamic and productivity of benthic invertebrates
- Importance of terrestrial inputs



#### Impact of fishing on non-commercial benthic invertebrates



Lakshmannan et al 2021



Boussarie et al 2020







Marie Savina-Rolland, Raphael Girardin, Sophie Leforestier

