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1 Introduction.

We present here several papers dealing with controlled stochastic di�erential equations. They
roughly can be divided into 3 parts:

1. stochastic viability,

2. stochastic di�erential equations with respect to non Brownian normal martingales,

3. stochastic di�erential games.

The �rst part is devoted to stochastic viability. Given a controlled stochastic di�erential
equation (SDE) and a non empty closed set K, we say that K is viable with respect to the SDE
if, for all initial condition x ∈ K, there exists a control for which the solution of the SDE remains
a.s. in K during all its life. We begin to characterize the viability in terms of viscosity supersolu-
tion of some non linear PDE. The result is then generalized to closed sets which depend on time.
We consider also the notion of viability before exit time of some open set and of attainability:
under which conditions is it possible to control the SDE such that the solution attains in a �xed
time a given target ? In the case where the set K is not viable, we study its viability kernel,
i.e. the set of all points in K from which on a solution to the SDE can stay in K. Finally we
consider the close notion of invariance, showing that the invariance of a stochastic control system
is equivalent to the invariance of the associated doubly controlled deterministic system.
The second part contains two articles. In the �rst one, we consider backward stochastic di�er-
ential equations with respect to Azéma's martingale and the associated deterministic equation.
The second one is devoted to a controlled stochastic di�erential system, where not only the pa-
rameters of the system but also the jumps of the driving martingale are controlled.
In the third part, we study stochastic di�erential games. We �rst characterize the Nash equi-
libria of non zero sum games, establishing a Folk Theorem in continuous time. Two papers are
devoted to zero sum stochastic di�erential games with incomplete information. In the �rst one,
we characterize the solution of the game as a dual solution in viscosity sense of a non linear PDE,
where the notion of dual solution is new. Then, in the case where the lack of information is only
on one side, we study the strategy of the fully informed player: to this aim, we introduce an
optimization problem over a set of martingale measures. We analyse the optimal measure and
its importance in the construction of the optimal strategy.
In order to keep a certain cohesion, the present collection of papers doesn't contain the article
〈4〉, which deals with queuing systems, neither the recent work 〈17〉, which proves the existence
of an optimal control for backward stochastic di�erential systems. We write [·] for a general
reference, and 〈·〉 for our bibliography.

2 Viability.

2.1 Introduction.

This section summarizes the articles 〈5〉, 〈7〉, 〈8〉, 〈9〉, 〈11〉, 〈15〉. Their commun subject is the
viability of controlled stochastic di�erential systems (resp. its invariance in 〈15〉).
More precisely we consider on a probability space (Ω,F , P ) a process (Xt, t ≥ 0) with values in
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IRn that satis�es a stochastic di�erential equation (SDE) of the following shape:{
dXx,u

t = b(Xx,u
t , ut)dt+ σ(Xx,u

t , ut)dWt, t ∈ [0,∞),
Xx,u

0 = x ∈ IRn,
(1)

whereW is a multidimensional standard Brownian motion, and the admissible control u a process
which is adapted to the Brownian �ltration IF, with values in a compact metric space U . We call
ν := (Ω,F , P,W, IF) a reference system and denote by Aν the set of admissible controls an ν.

Further we consider a non empty closed set K in IRn. We de�ne the viability of K for the system
(1) as follows:

De�nition 2.1 The closed set K is said to be viable for the system (1) if, for all initial condition
x ∈ K, there exists a reference system ν and a control u ∈ Aν such that, P -a.s., for all time
t ≥ 0, the solution Xx,u of (1) stays in K: P [Xx,u

t ∈ K, t ≥ 0] = 1.

The �rst reference on viability for deterministic di�erential systems goes back to Nagumo [86] in
1943. Then the problem has been studied by many authors. The references can be found in the
monography of Aubin [6]. The central result can be summarized as follows:
Let be a controlled system

x(t) = f(x(t), u(t)). (2)

and a closed set K. Under the assumption that f is of at most linear growth and continuous with
respect to u and that f(x, U) is convex and compact, the following assertions are equivalent:

1. The closed set K is viable for (2): for all x ∈ K, there exists a control u such that the
trajectory of the solution of (2) stays always in K;

2. For all x ∈ K, there exists u ∈ U such that f(x, u) ∈ TK(x), where TK(x) represents the
Bouligand tangent cone of K at x;

3. For all x ∈ K and all proximal normal p on K at x, minu∈U 〈f(x, u), p〉 ≤ 0.

(for the de�nition of a Bouligand tangent cone see [6] and for the proximal normal see [37]).

In order to characterize the stochastic viability, Aubin-Da Prato [7], [8] and Gautier-Thibault
[54] introduce a stochastic tangent cone, which generalizes the tangent cone of condition 2. The
weak point of this approach is that this cone not only depends on the parameters of the di�usion
but also of the di�erent trajectories of the Brownian motion. Thus the criterium they obtain
has to be satis�ed for almost all ω of the underlying probability space. Some other stochastic
characterizations are proposed by Michta [84] and Motyl [85].
The �rst deterministic characterization of stochastic viability was developped by Buckdahn-
Quincampoix-Rascanu [29] for backward SDEs. It is noteworthy that the backward case was
solved before the forward case. Indeed, in contrast to a process which starts at time zero from
a deterministc value and di�uses potentially in all directions of the space, it seemed easier to
oblige to stay in a closed set K a process that goes backward from a random terminal condition
to a deterministic value. It is shown in [29] that K is viable for the backward system, if the
distance function satis�es on all point of the space an equality depending on the parameters of
the system.
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The fundamental idea that permitted us in 〈5〉 to approach the viability for forward systems is
to use the notion of viscosity. Up to this moment, the possibility for the detailed study of the
stochastic viability we present here was given.

We present the results in chronological order: we start by the characterization of the stochastic
viability with the help of an associated PDE, then we give some generalizations and applications.
Further, in the case of a non viable closed set, we study its viability kernel. Finally we consider
the notion of invariance.

2.2 Characterization of the viability.

The central result and starting point of the papers we present in this section is given by the note
au CRAS 〈5〉, written in collaboration with R. Buckdahn, S. Peng and M. Quincampoix. We
suppose that the parameters b and σ satisfy the classical assumptions of uniform continuity and
Lipschitzianity in x uniformly in u. Moreover we suppose that a Filippov type assumption is
satis�ed:

(HF) for all x, the set
{(

1
2σσ

∗(x, v), b(x, v)
)
, v ∈ U

}
is convex and compact.

We introduce the second order operator associated to (1):

L(x,v)ϕ(x) = 〈Dϕ(x), b(x, v)〉+
1
2
tr[D2ϕ(x)σσ∗(x, v)], ϕ ∈ C2(IR),

and de�ne the distance function to K:

for all x ∈ IRn, dK(x) = infy∈K |x− y|.

We get the following theorem:

Theorem 2.1 〈5〉 The following assertions are equivalent:
(i) K is viable for (1) ;
(ii) d2

K is a viscosity supersolution of the following Hamilton-Jacobi-Bellman equation:

inf
v∈U

L(x,v)ϕ(x) + d2
K(x)− Cϕ(x) = 0 (3)

(where C > 0 is a constant that depends on the parameters of the system).

The proof of the theorem is simple. The key point is given by the following elementary lemma:

Lemma 2.1 The closed set K is viable if and only if the function V de�ned by

V (x) = inf
u∈Aν

E

∫ ∞

0
e−Csd2

K (Xx,u
s ) ds (4)

vanishes on K.

Proof of the Theorem: We �rst prove that V is a viscosity solution of (3) (see Crandall-Ishii-
Lyons [39] or Fleming-Soner [51]).
Next we suppose that d2

K is a supersolution of (3). By the comparision theorem between super-
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and subsolutions in viscosity sense of a PDE, we have:

∀x ∈ K, V (x) ≤ d2
K(x) = 0.

Using the lemma, we conclude that K is viable for (1):
The reverse assertion �K viable⇒ d2

K supersolution of (3)� is mainly based on Itô's formula and
standard estimations for SDEs.

Remarks:

1. Several works echo this result. Bardi-Goatin [15] and Bardi-Jensen [16] give a geometric
characterization using a second order normal cone. In the case where K is convex, Da Prato-
Frankovska in [40] and [42] give a su�cient and necessary condition based on the derivatives of
the distance function.
- Let us mention a variation of Theorem 2.1 developped by Buckdahn-Cardaliaguet-Quincampoix
[26] that we will use in the sequel:

Theorem 2.2 ([26]) The following assertions are equivalent:

• K is viable for (1);

• The map u(x) = 1 − 1lK(x) is a discontinuous supersolution in viscosity sense of the
following equation:

inf
v∈U,σ(x,v)∗∇ϕ(x)=0

Lx,vϕ = 0, (5)

• For all function ϕ ∈ C2(IRn, IR) and x ∈ ArgmaxKϕ

inf
v∈U,σ(x,v)∗∇ϕ(x)=0

Lx,vϕ ≤ 0.

2. Theorem 2.1 has been recently generalized by Peng and Zhu [91] to stochastic di�erential
systems with jumps. In [31], Buckdahn, Quincampoix and Tessitore transpose the result for K
convex in in�nite dimension.

In 〈8〉, in collaboration with L.Mazliak, we investigate the possibility to �nd a control u for which
the associated trajectory Xx,u has a non zero probability to stay for at least some time in K,
i.e. there exists a positive stopping time T such that

P [Xx,u
t ∈ K,∀t ∈ [[0, T ]] ] > 0. (6)

We show that every closed set K which satis�es (6) for some control and some stopping time is
automatically viable.
A more di�cult question is still open: how to characterize closed sets K for which there exists
a reference system ν = (Ω,F , P, IF,W ), a control u ∈ Aν and a non vanishing time T such that

∀t ∈ [[0, T ]], P [Xx,u
t ∈ K] > 0.
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2.3 Constraints depending on time and viability for backward stochastic dif-

ferential equations.

The paper 〈7〉, written in collaboration with R. Buckdahn, M. Quincampoix et A. Rascanu,
presents an uni�ed approach of viability for forward and backward SDEs, where the results are
extended to constraints K that can vary in time.

We consider here a decoupled forward-backward system of the following type:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +
∫ s

t
σ(r,Xt,x

r )dWr, (7)

Y t,x
s = H(Xt,x

T ) +
∫ T

s
F (r,Xt,x

r , Y t,x
r , Zt,xr )dr −

∫ T

s
Zt,xr dWr, s ∈ [t, T ], (8)

where the parameters satisfy standard assumptions and, in order to simplify the presentation,
Xt,x and Y t,x take their values in a same space IRn.
We consider further a set on constraints

K = {K(t), t ∈ [0, T ]},

where each K(t) is a closed set in IRn, and we say that K is viable for (7) (resp. (8)) if, for all
initial condition x ∈ K(t), P [Xt,x

s ∈ K(s), s ∈ [t, T ]] = 1 (resp. if for all application H such that
∀x ∈ IRn,H(x) ∈ K(T ), P [Y t,x

s ∈ K(s), s ∈ [t, T ]] = 1).

The following theorems hold:

Theorem 2.3 Suppose that, for all x ∈ IRn, the map t 7→ d2
K(t)(x) is lower semicontinuous and

the sets K(t) are contained in a same compact set of IRn. Then the following assertions are
equivalent:

• K is viable for (7);

• The map (t, x) 7→ d2
K(t)(x) is a supersolution in viscosity sense of the PDE

∂ϕ(t, x)
∂t

+ Lt,xϕ(t, x)− Cd2
K(t)(x) = 0, (t, x) ∈ [0, T ]× IRn, (9)

where C is a su�ciently large constant.

Theorem 2.4 Suppose that, for all x ∈ IRn, the map t 7→ d2
K(t)(x) is upper semicontinuous and

the sets K(t) are contained in a same compact set of IRn. The following assertions are equivalent

1. K is viable for (8).

2. For all (x, z) ∈ IRn × IRn×n, the map (t, y) 7→ d2
K(t)(y) is a subsolution in viscosity sense

of the PDE:

∂ϕ(t, y)
∂t

+Az(t, x)ϕ(t, y) + Cd2
K(t)(y) = 0, (t, y) ∈ [0, T ]× IRn, (10)
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where

Az(t, x)ϕ(y) =
1
2
Tr[zσσ∗(t, x)z∗D2

yϕ(y)]− 〈F (t, x, y, zσ(t, x),∇yϕ(y)〉,

and where C is a su�ciently large constant.

Remarks:

1. In the backward case, it is possible to characterize the viability for a family of closed sets
which also depend on the space variable x, i.e. to give a necessary and su�cient condition
whether if, for all x ∈ IRn, H(x) ∈ K(T, x), then, P -a.s., for all s ∈ [t, T ], Y t,x

s ∈ K(s,Xt,x
s ).

2. It is known since Pardoux-Peng [89] that the application (t, x) 7→ u(t, x) = Yt is a solution
in sense of viability of a non linear PDE. Therefore the relation (10) represents also a
necessary and su�cient condition wether K is viable for this PDE.

3. In [26], it is shown that, if a closed set K is viable for a BSDE, then it is convex. In the
case where K is varying in time, this results remains of course true.

4. The results applied to a controlled system would give a characterization of the viability for
a class of Hamilton-Jacobi equations. This remains to be done.

2.4 Viability before exit time.

In 〈9〉, written in collaboration with R. Buckdahn, M. Quincampoix, A. Rascanu, we come back
to controlled SDEs EDS of type (1):{

dXx,u
t = b(Xx,u

t , ut)dt+ σ(Xx,u
t , ut)dWt, t ∈ [0,∞),

Xx,u
0 = x ∈ IRn,

(11)

and a constraint K which is constant in time. More precisely, we are interested in systems (11)
for which there exists a control such that the trajectories stay a.s. in K before leaving a given
open set O.

De�nition 2.2 Let O be a nonempty open set in IRn. We say that K is viable before exit

time from O if, for all x ∈ K ∩ O, there exists a reference system ν = (Ω,F , P, IF,W ) and an
admissible control u ∈ Uν such that, for all t ∈ [[0, τu(x)[[, Xt,u

t ∈ K, P -a.s., where we set

τu(x) = inf{s ≥ 0, Xx,u
s 6∈ O}.

We suppose that, during all the section, the following condition is satis�ed:

∀x ∈ O, πK(x) ∈ O,

Setting O = IRn, we can see that the notion of viability before exit time generalize the notion of
viability introduced in 〈5〉.
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The paper starts with the assertion that, in a similar way to 〈5〉, K is viable before exit of O if
and only if the following function vanishes on K:

Ṽ (x) = inf
u∈Aν

E

[∫ τu(x)

0
e−Csd2

K(Xx,u
s )ds

]
, x ∈ IRn.

The di�culty here is that, in contrast to the case where O = IRn, Ṽ is generally not continuous
but only upper semicontinuous. Therefore it is not possible to characterize Ṽ as a viscosity
solution of a PDE. We show that it is a solution in a weaker sense (see Barles [17] for 1st order
PDEs, Ishii [64] for 2nd order PDEs):

Theorem 2.5 The application Ṽ is the smallest non negative lower semicontinuous viscosity
supersolution of the following HJB equation:{

infv∈U
{

1
2 tr(σσ

∗(x, v)D2ϕ(x)) + 〈b(x, v), Dϕ(x)〉
}

+ d2
K(x)− Cϕ(x) = 0

x ∈ O. (12)

In the proof of Theorem 2.1, only the fact that V is a subsolution is used to characterize the
viability. Thus Theorem 2.5 permits us to show that

Theorem 2.6 The closed set K is viable before exit time from O if and only if d2
K is a subsolution

in viscosity sense of (12).

If K is a smooth set, then the viability of K before exit time of O can be directly written as
follows:

Corollary 2.1 Let W ∈ C2(IRn, IRn) such that (W (x) = 0) ⇒ (∇W (x) 6= 0). Then the set

K = {x ∈ IRn,W (x) ≤ 0}

is viable before exit time from O if and only if

inf
v∈U

{
1
2
tr

(
σσ∗(x, v)D2W (x) + 〈b(x, v), DW (x)〉

)}
− CW (x) ≤ 0, x ∈ O,

for some constant C > 0.

In the second part of the paper, we apply this characterization to give a su�cient condition for
small time attainability:

De�nition 2.3 The set K is small time attainable for the system (11) if it is possible to �nd
a time T > 0 and an open domain I ⊃ K such that, for all x ∈ I \K, there exists a control u
that permits to Xx,u to attain K P -a.s. before T .

There exists a large litterature in the deterministic case (see for example Bianchini-Stefani [23],
Veliov [107], Clarke-Wolenski [36] or Krastanov-Quincampoix [69]). In the stochastic case, Soner
and Touzi [98], [99] study target in form of an epigraph.
The theorem we gut here is the following:
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Theorem 2.7 Suppose that, for all T > 0there exists some γ > 0, such that, with the notations
I = K + B(0, γT ) and h(x, y) = 1

2(dK(x)− y)2, the following property holds:
For all all (x, y) ∈ (I \ K) × IR, with y ∈ (0, dK(x)] and ϕ ∈ C2(IRn × IR) such that (x, y) ∈
Argmin(h− ϕ) ,

infv∈U{tr[D2
xϕ(x, y)σσ∗(x, v)] +〈b(x, v), Dxϕ(x, y)〉}

+ γ(dK(x)− y)− (C − 1)h(x, y) ≤ 0.
(13)

Then K is small time attainable for the system (11).

Once again it is possible to give a more direct characterization in the case where K is smooth:

Corollary 2.2 Let W ∈ C2(IRn, IRn) such that (W (x) = 0) ⇒ (∇W (x) 6= 0), set

K = {x ∈ IRn,W (x) ≤ 0},

and for r > 0,
I = {x ∈ IRn,W (x) < r}.

Suppose that the following condition is satis�ed:
there exists γ > 0 and c > 0 such that, for all x ∈ I \K,

inf
v∈U

{
tr

(
D2W (x)σσ∗(x, v)

)
+ 〈b(x, v), DW (x)〉

}
− cW (x) ≤ −γ.

Then K is small time attainable for the system (11).

2.5 The viability kernel.

In this paragraph we still consider the same controlled system (1), but are interested now in
the case where K is not necessarily viable. In this general case, it is still possible to de�ne its
viability kernel:

De�nition 2.4 We call viability kernel N of K for the system (1) the following set:

N = {x ∈ K,∃ν and v ∈ A(ν), such that, P -a.s.,∀t ≥ 0, Xx,v
t ∈ K}.

The paper 〈11〉 with M. Quincampoix is devoted to the study of this viability kernel.
First we show that it is closed and viable. Several characterizations follow:

Proposition 2.1 The viability kernel K for the system (1) is

• the largest subset of K which is viable,

• equal to the set {x ∈ K, V̄ (x) = 0}, for

V̄ (x) = inf
ν,v∈Aν

E[
∫ ∞

0
e−Cs(1− 1lK)(Xx,v

s )ds].

• the largest closed set H included in K such that 1− 1lH is a supersolution of (5).
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An interesting fact in the deterministic case is that the boundary of the viability kernel ∂N
is viable before hitting the boundary of K (see Quincampoix [93] [94]). The result in [93] is
obtained as follows: since N is viable, if ∂N would be not viable, we could �nd a trajectory
starting from some x ∈ ∂N that leaves ∂N after some time and enters inside of int(N). The
parameters of the system being Lipschitz, we can �nd then for all elements of a small ball around
x a trajectory that also enters Int(N) without leaving K. Since this ball contains elements of
K \N , this is in contradiction with the fact that N is the viability kernel of K.
The stochastic case is more di�cult, because the trajectories of the processes starting from two
close points stay close only in mean. Moreover we will see that the result stays true only under
some assumption, and the proof will be more analytic and less intuitive. Let be the following
assumption:
(H) for all (p,A) ∈ IRn×S (where S is the set of symmetric n×n matrix), p 6= 0, the application

x ∈ IRn 7→ inf
v∈U,σ(x,v)∗p=0

(〈b(x, v), p〉+
1
2
tr(σ(x, v)σ(x, v)∗A))

is continuous (with the convention inf ∅ = +∞).

Remarks: The assumption (H) requires in particular that, for all x ∈ IRn and p 6= 0, the set
{v ∈ U, σ(x, v)∗p = 0} is non empty. Furthermore, if this set is no empty, the application is
naturally lower semicontinuous. Under (H), it is also upper semicontinuous.
Assumption (H) seems rather restrictive. Indeed, if the dynamic doesn't depend on any control,
(H) is satis�ed if and only if σ ≡ 0. A non trivial example where (H) holds is given by the mean
curvature motion in Buckdahn-Quincampoix-Cardaliaguet [26]. A similar assumption can also
be found in the paper of Soner-Touzi [98],[99].

Theorem 2.8 Suppose that assumption (H) holds. Then, for all x ∈ ∂N \ ∂K, there exists ν
and v ∈ A(ν) such that,

P -a.s., Xx,v
t ∈ ∂N, for all t ≤ τ v(x) = inf{s ≥ 0, Xx,v

s 6∈ int(K)}.

A last section of 〈11〉 is devoted to an application of the study of the viability kernel to optimal
control with supremum cost.
We consider the dynamic{

dXt,x,u
s = b(Xt,x,u

s , us)ds+ σ(Xt,x,u
s , us)dWs, s ∈ [t, T ],

Xt,x,u
t = x,

(14)

and the value function
W (t, x) = inf

ν,u∈Aν

(ess-supΩg(X
t,x,u
T )).

We are interested in the epigraph of W . Indeed, this epigraph can be written as the viability
kernel of a controlled SDE in an enlarged space:

Theorem 2.9 The epigraph of W is the viability kernel of

K = [0, T ]× IRn × IR,
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with target T × Epi(g), for the dynamic
dSt,x,us = ds

dXt,x,u
s = b(Xt,x,u

s , vs)ds+ σ(Xt,x,u
s , us)dWs,

dY t,x,u
s = 0, s ∈ [t, T ],

St,x,ut = t, Xt,x,u
t = x, Y t,x,u

t = y,

i.e., for all (t, x, y) ∈ [0,+∞)× IRn × IR, P -p.s.,

(s,Xt,x,u
s , y) ∈ [0, T ]× IRn × IR, on {s ≤ τu(x)},

with
τu(x) = inf{r ≥ t, (r,Xt,x,u

r , y) ∈ {T} × Epi(g)}

=
{
T if g(Xt,x,u

T ) ≤ y
+∞ else.

Using the di�erent characterizations of the viability kernel, we deduce from this theorem di�erent
characterizations of W :

Corollary 2.3 1. W is the smallest lower semicontinuous application ϕ which satis�es

(a) ϕ(T, x) = g(x), x ∈ IRn;

(b) 1− 1lEpi(ϕ) is a supersolution of

ψt + inf
v∈U,σ(x,v)∗∇xψ(t,x,y)

(
〈∇xψ(t, x, y), b(x, v)〉+

1
2
tr[D2

xxψ(t, x, y)σσ∗(x, v)]
)

= 0

(15)

2. Under the assumption (H), 1− 1lEpi(W ) is a discontinuous viscosity solution of (15) 1.

3. The application W is the smallest lower semicontinuous supersolution of

ϕt + inf
v∈U,σ(x,v)∗∇xϕ(t,x)=0

Lϕ(t, ·) = 0. (16)

4. Under (H), W is a discontinuous viscosity solution of (16).

5. Suppose that (H) is satis�ed and that g is bounded and uniformly continuous. Then W is
uniformly continuous with respect to x and the unique discontinuous viscosity solution of
(16) with boundary condition W (T, x) = g(x), x ∈ IRn.

2.6 Invariance.

We still consider the same controlled system (1) and a nonempty closed set K.

De�nition 2.5 We say that K is invariant with respect to the system (1) if, for all x ∈ K, ν,
u ∈ Aν and all t ≥ 0, P [Xx,u

t ∈ K] = 1.
1The notion of discontinuous viscosity solution we use here is the following: ψ is a discontinuous viscosity

solution if its upper semicontinuous envelope is a supersolution of (15), its lower semicontinuous envelope a
subsolution (see [64]).
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If the stochastic di�erential equation doesn't depend on any control, the notions of viabil-
ity and invariance coincide. A well known idea in this case (see Doss [44], Sussmann [103],
Aubin-Doss [9]) is to associate to the stochastic system (1) a system of ordinary di�erential
equations(EDOs):

x′(t) = b̃(x(t)), u(t)) + σ(x(t), u(t))v(t), t ≥ 0
x(0) = x,

(17)

where b̃ denotes the Stratonovich drift

b̃(x, u) = b(x, u)− 1
2

d∑
i=1

〈Dxσ
i(x, u), σi(x, u)〉,

and σi(x, u) the ith column of σ(x, u).
In 〈15〉 written in collaboration with R. Buckdahn, M. Quincampoix et J. Teichmann, we are
interested in this approach. More precisely we propose a new proof of a result of Da Prato-
Frankowska [41], that shows that, under minimal assumptions, the invariance of K for the system
(1) is equivalent to invariance for (17).
We remark that the EDO (17) can be interpreted as a doubly controlled system. The notion of
invariance for (17) is de�ned in the following way:

De�nition 2.6 We say that K is invariant w.r.t. (17) if, for all x ∈ K, all u ∈ L∞([0,+∞), U)
and v ∈ L1

loc([0,+∞), IRd) and all t ≥ 0, xx,u,v(t) ∈ K, where xx,u,v is the solution of (17).

We �nally introduce the di�erential operator associated to (17):

L′x,uϕ = 〈b̃(x, u), Dϕ(x)〉.

Theorem 2.10 The following assertions are equivalent:

1. K is invariant w.r.t. (1);

2. For all ϕ ∈ C2 et x ∈ ArgmaxKϕ,{
supu∈U Lx,uϕ ≤ 0,
〈σi(x, u), Dϕ(x)〉 = 0, ∀i ∈ {1, . . . , d}, ∀u ∈ U ;

3. For all ϕ ∈ C2 et x ∈ ArgmaxKϕ,

supu∈U L′x,uϕ ≤ 0,

〈σi(x, u), Dϕ(x)〉 = 0, ∀i ∈ {1, . . . , d}, ∀u ∈ U ;

the matrix Aϕ,x = (aij), with aij = 〈σi(x, u), Dx〉σi(·, u), Dϕ(·)〉(x)〉
is symmetric and positive semide�nite positive;

4. K is invariant for (17);

5. For all ϕ ∈ C2 et x ∈ ArgmaxKϕ,

sup
u∈U,v∈IRd

{
L′x,uϕ(x) + 〈σ(x, u)v,Dϕ(x)〉

}
≤ 0.
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In contrast to [41], our approach is probabilistic. A key point is the equivalence of invariance
for constant controls. Therefore we can reduce the problem to a problem without controls and
apply a convergence scheme of type Wong-Zakai, where the equation (1) is the limit of equations
of type (17) (see Lipster-Shiryaev [77]). This permits us to show that, if the set K is invariant
for (1), it is also invariant for (17). The principal tool for the reverse is a stochastic Taylor
expansion (see Lyons-Victoir [79] or Baudouin [24]).

Remark: Bardi and Cesaroni [14] prove the equivalence of the viability of stochastic and de-
terministic system under the assumption that the boundary of K is a C2-hypersurface. It is an
open question wether this equivalence holds true without this assumption. It seems impossible
to adapt our approach to viability, because the link with a system without control fails, and
there is no convergence scheme for controlled SDEs.

3 Normal martingales, backward stochastic di�erential equations

and control.

In this chapter we present the two papers 〈6〉 and 〈13〉. Their common point is to study stochastic
di�erential equations where the Brownian motion is replaced by some other well chosen normal
martingales, and to deduce stochastic representations for solutions of deterministic functional
equations of a new type.

3.1 Introduction.

De�nition 3.1 1) A real martingale (Xt, t ≥ 0) is said to be normal if its predictable quadratic
variation satis�es, for all t ≥ 0,

〈X,X〉t = t.

2) A normal martingale (Xt, t ≥ 0) satis�es a structure equation if (Xt, t ≥ 0) and its
quadratic variation [X,X]t are linked by an equation of the following type:

[X,X]t = t+
∫ t

0
φsdXs, t ≥ 0,

where (φt, t ≥ 0) is a predictable process.

The main examples are

• the Brownian motion: φt ≡ 0,

• the compound Poisson process: φt ≡ a, a ∈ IR,

• Azéma's martingale: φt = −Xt−, on which we come back later.

Structure equations were introduced by Emery in [48] to study the chaotic representation prop-
erty. Other references on the subject are for example [50], Attal-Emery [5], Pham [92] or 〈1〉. An
important property of martingales which are solution of a structure equation is that they have
the predictable representation property.
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3.2 Backward stochastic di�erential equation with Azéma's martingale.

This section resumes the paper 〈6〉.

There are several ways to de�ne Azéma's martingale. The most natural in our framework is to
use a structure equation [48]:

De�nition 3.2 We call Azéma's martingale a martingale (µt, t ≥ 0) which satisti�es the
structure equation

d[µ, µ]s = ds− µs−dµs, s ≥ 0, (18)

The �rst de�nition of Azéma's martingale in Azéma [11] and Azéma-Yor [12] was its explicit
construction based on a Brownian motion:
Let (Bs, s ≥ 0) be a one-dimensional standard Brownian motion and, for all s ≥ 0, Gs = sup{r ≤
s,Br = 0}, with sup ∅ = 0, its last zero before s. Then the process (sign(Bs)

√
2(s−Gs), s ≥ 0)

(with the convention sign(0) = 0) satis�es the structure equation (18).
Azéma's martingale is also equal, up to a multiplicatif constant, to the projection of the Brow-
nian motion on the �ltration generated by the processes (Gs, s ≥ 0) and (sign(Bs), s ≥ 0).

We need here to make start our martingale at an arbitrary time t ≥ 0 from an arbitrary point
x ∈ IR. Therefore we introduce, for all (t, x) ∈ [0,∞)× IR, the process (µt,xs , s ≥ t), solution of{

d[µt,x, µt,x]s = ds− µt,xs−dµ
t,x
s , s ≥ t,

µt,xt = x.
(19)

Let (F t,x
s , s ≥ t) be the �ltration generated by (µt,xs , s ≥ t) completed and right continuous.

The existence and uniqueness of solutions of BSDEs with respect to martingales which have the
predictable representation property was established by Karoui and Huang in [46].
Here we need just to �x the notations: for T > 0 a deterministic terminal time and some constant
K > 0, we introduce the spaces H2 = H2(K,T, t, x) and H ′2 = H ′2(K,T, t, x) of real-valued,
F t,x-predictable and càdlàg processes U which satisfy

∀s ≥ 0, Us∧t = Ut, Us∨T = UT et E[ sup
s∈[t,T ]

eKsU2
s ] <∞,

(resp. real-valued F t,x-predictable processes V such that

∀s ≥ 0, Vs∧t = Vs∨T = 0 and E[
∫ T

t
eKsV 2

s ] <∞.)

Theorem 3.1 Under standard assumptions on f and g, the following BSDE has a unique solu-
tion (Y, Z) in the space H2 ×H ′2:

Ys = g(µt,xT ) +
∫ T

s
f(r, µr, Yr, Zr)dr +

∫ T

s
Zrdµ

t,x
r , s ∈ [t, T ]. (20)
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The comparison theorem for solutions of classical BSDEs is not always true for non Brownian
martingales. We prove that it holds for Azéma's martingale, under a supplementary assumption
which controls the size and the direction of the jumps.

As in the Brownian case, for all (t, x) ∈ [0, T ] × IR, the random variable Yt is P -a.s equal to a
deterministic value u(t, x).

Theorem 3.2 The application (t, x) 7→ u(t, x) is continuous, of almost polynomial growth and
a viscosity solution of the following equation:

f(t, x, u(t, x), u(t,x)−u(t,0)
x ) + ∂u

∂t (t, x) + u(t,0)−u(t,x)+x ∂u
∂x

(t,x)

x2 = 0, (t, x) ∈ [0, T ]× IR∗,

f(t, 0, u(t, 0), ∂u∂x(t, 0)) + ∂u
∂t (t, 0) + 1

2
∂2u
∂x2 (t, 0) = 0,

u(T, x) = g(x), x ∈ IR.

(21)

(where the notion of viscosity solution has been generalized in a close way to that of PDEs with
integral term in [19]).

By a proof inspired from Barles [18], we get the following comparison theorem and its corollary:

Theorem 3.3 Let u and v be a sub- (resp. a super) solution of (21). If one of the two maps is
of class C1,2 and both satisfy, for a > 0 su�ciently small,

lim
|x|→∞

u(t, x)e−ax
2

= lim
|x|→∞

v(t, x)e−ax
2

= 0, uniformly in t,

then u ≤ v.

Corollary 3.1 If (21) admits a solution v ∈ C1,2 which satis�es lim|x|→∞ v(t, x)e−ax
2

= 0 for
a > 0 su�ciently small, uniformly in t, then this solution is unique.

It is clear that, in the general case, the solution of (21) isn't of class C1,2. And indeed, we are
not able to prove an uniqueness result in the general case, and encounter the same di�culty in
the next chapter. There exists a large litterature about integro-di�erential equations (see for
example Barles-Buckdahn-Pardoux [19], Alvarez-Tourin [1], Amadori-Karlsen-La Chioma [2] or
Jacobsen-Karlsen [65], Barles-Chassaigne-Imbert [20] and Barles-Imbert [21]). But, even if these
papers concern large classes of operators, our operators never form a part of these classes.
However, we can prove an uniqueness result in the case where f ≡ 0:
If f ≡ 0, the functional equation (21) is much simplier:

∂u
∂t (t, x) + u(t,0)−u(t,x)+x ∂u

∂x
(t,x)

x2 = 0, (t, x) ∈ [0, T ]× IR∗,

∂u
∂t (t, 0) + 1

2
∂2u
∂x2 (t, 0) = 0,

u(T, x) = g(x), x ∈ IR.

(22)

Theorem 3.4 For all continuous function g with at least polynomial growth, there exists a unique
viscosity solution of (22).
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Remark: Using the BSDE associated to (22), the Feynman-Ka�c formula and the explicit expres-
sions of certain known distributions (see Revuz-Yor [96] or [25]), this solution can be explicitely
computed.
The existence of a solution follows from 3.2. The proof of the uniqueness is quite involved. It is
strongly based on Theorem 3.3.

In the second part of the paper, we are interested in an asymmetric martingale which we intro-
duced in an anterior work 〈1〉 (see also Hu [63]), namely the solution of the following structure
equation: {

d[X,X]s = ds−X+
s−dXs, s ≥ t,

Xt = x.

Its particularity is to behave like Azéma's martingale if it is positive and like a Brownian motion
else. As in the �rst part, we can prove the existence of a solution of an asymmetric functional
equation, that is a nonlinear PDE on [0, T ]× (−∞, 0] and of type (21) on [0, T ]× (0,∞).

3.3 Structure equations and control.

In this section we present the paper 〈13〉 written in collaboration with R. Buckdahn and J. Ma.
Here it is in a system of controlled SDEs that we replace the Brownian motion by a normal mar-
tingale, which is solution of a structure equation. We will make depend this structure equation
from a control. Roughly speaking, this means that the controller of the system will be able, at
each moment, to in�uence, in addition to the parameters of the system, also the frequency of
the jumps of the driving martingale.

The �rst part of the paper consists in the explicit resolution of a family of structure equations.
P.A. Meyer, in [82], showed that all structure equation of Markovian form

d[X,X]t = dt+ f(Xt−)dXt

admits a solution, if f is continuous. For the study of particular structure equations, we can
cite of course Emery [48] but also Kurtz-Protter [73], 〈1〉 and Pham [92]. Structure equations in
dimension 2 are studied in Attal-Emery [4], [5] and Kurtz [72].
The novelty here is that we leave the Markovian frame.

Let us consider a d-dimensional Brownian-motion B and a Poisson measure µ on IR+× IR∗. We
suppose that B and µ are independent and that the Lévy measure of µ, denoted by ν, satis�es
the assumption ∫

IR∗
(1 ∧ |x|2)ν(dx) <∞.

We consider now the following structure equation:{
d[Xi, X i]t = dt+ uitdXt, 1 ≤ i ≤ d,
d[Xi, Xj ]t = 0, 1 ≤ i < j ≤ d, t ≥ 0,

(23)

where (ut = (u1
t , . . . , u

d
t ), t ≥ 0) is a predictable process for the �ltration IF generated by B and

µ, with values in Ud, a non empty compact set of IRd. This type of structure equation can be
solved explicitely:
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Proposition 3.1 The equation (23) has at least a solution of the following type:

Xt =
∫ t

0
αsdBs +

∫ t

0

∫
IR∗

βs(x)µ̃(dxds), t ≥ 0, (24)

where (α, β) is a couple of IF-predictable processes and µ̃ is the compensated Poisson measure µ.

It is not di�cult to build counterexample which shows that there is no uniqueness, even in law.

This result allows us to insert this new family of martingales in a control problem.
To establish later a dynamic programming principle, we introduce, for all t ∈ [0, T ], the �ltration
Ft, which is trivial before t and generated by (Br −Bt) and (ν(A), A ∈ B([t, r]× IR∗), r ∈ [t, T ]
after. Let be the following structure equation:

d[Xi, X i]s = ds+ uisdX
i
s, 1 ≤ i ≤ d, s ∈ [0, T ],

d[Xi, Xj ]s = 0, 1 ≤ i < j ≤ d, s ∈ [0, T ],
Xs −Xt independent of Ft, s ≥ t,

(25)

with (ut = (u1
t , . . . , u

d
t ), s ∈ [0, T ]) Ft-predictable with values in Ud, compact in IRd.

We also introduce a second compact set U1 in IR, where will live the controls which are classically
involved in the SDE. We set Ū = U1 × Ud.

As before, the equation (25) has a solution which is not always unique even in law. This is why
we call here control a triplet (π, u,X), where the process (π, u) is Ft-predictable with values in
Ū and X is a solution of (25) for this u. For all �xed t ∈ [0, T ], U(t) denotes the set of controls
de�ned in this way.

For all (t, y) ∈ [0, T ]× IRm and a = (π, u,X) ∈ U(t), we consider now the dynamic{
Y t,y,a
s = y +

∫ s
t b(Y

t,y,a
r , πr, ur)dr +

∫ s
t σ(Y t,y,a

r− , πr, ur)dXr, s ∈ [t, T ],
Y t,y,a
s = y, s ∈ [0, t),

(26)

and the value function

V (t, y) = inf
a∈U(t)

E[g(Y t,y,a
T )], (t, y) ∈ [0, T ]× IRm, (27)

where, as usual, b, σ and g are supposed to be uniformly continuous, Lipschitz in y, uniformly
in (π, u), and g is continuous and bounded.
We prove that V is continuous and satisfy a dynamic programming principle. Moreover it satis�es
the following theorem:

Theorem 3.5 The value function V is a viscosity solution of the following equation:{
− ∂
∂tV (t, y)− inf(π,u)∈Ū Lπ,u[V ](t, y) = 0, (t, y) ∈ [0, T ]× IRm,

V (T, y) = g(y), y ∈ IRm,
(28)
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where Lπ,u is of the form

Lπ,u[ϕ](t, y) = ∇yϕ(t, y)b(y, π, u) +
∑d

i=1

{
1l{ui=0}

1
2(D2

yyϕ(t, y)σi(y, π, u), σi(y, π, u))

+1l{ui 6=0}
ϕ(t,y+uiσi(y,π,u)))−ϕ(t,y)−ui∇yϕ(t,y)σi(y,π,u)

(ui)2

}
,

ϕ ∈ C1,2([0, T ]× IRm)
(29)

(again, the de�nition of viscosity solution is generalyzed in an analogue way to [19].)

The di�culty to prove some uniqueness result for (28) comes from the fact that the Hamiltonian
associated to this problem,

H(t, y, v, p, S) = inf(π,u)
(
pb(y, π, u) +

∑d
i=1

{
1l{ui=0}

1
2(Sσi(y, π, u), σi(y, π, u))

+1l{ui 6=0}
ϕ(t,y+uiσi(y,π,u)))−ϕ(t,y)−uipσi(y,π,u)

(ui)2

})
,

is not continuous in (p, S). We get around this problem by by introducing, for d = 1, the
following assumption:
(HC) There exists a compact set U0 ⊂ IR such that

1. 0 6∈ U0,

2. U = U0 ou U = {0} ∪ U0.

Theorem 3.6 Under the assumption (HC), the value function V : [0, T ] × IRm de�ned in (27)
is the unique viscosity solution of (28) in the class of continuous and bounded functions.

We are not able to solve the problem of uniqueness without assumption (HC). In the other hand,
another perspective which probably would not rise di�culties is to consider a non linear cost,
i.e. to replace the system (26) by a decoupled forward-backward system.

4 Stochastic di�erential games.

4.1 Introduction.

In this section, we present the 4 papers 〈10〉, 〈12〉, 〈14〉, 〈16〉, treating on stochastic di�erential
games. These games are based on the following dynamic:{

dXs = f(Xs, us, vs)ds+ σ(Xs, us, vs)dWs, s ∈ [t, T ],
Xt = x ∈ IRn,

(30)

whereW is a d-dimensional standard Brownian motion and u and v are two processes with values
in some compact metric spaces U and V . The processes u and v represent the controls played
by Player 1 and 2, respectively.
Each player needs to maximize some payo�

Ji(t, x, u, v) = E

[
gi(XT ) +

∫ T

t
li(s,Xs, us, vs)ds

]
, i ∈ {1, 2}. (31)
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The parameters gi and li will vary according to the di�erent problems, in particular wether we
consider a zero-sum or a nonzero-sum game. They will be known or unknown by the players
and, to simplify the problems, will vanish successively.

The �rst references on stochastic di�erential games are Friedman [53] and Varaya [106] in
the seventies of last century. Their approach consists in �nding Markovian optimal controls
u = u(t, x), which can be obtained by solving the associated Hamilton-Jacobi-Bellman equa-
tion. Several authors continue in this way (for example Bensoussan-Frehse [22] and Mannucci
[80]). Conversely, using plainely the stochastic character, Elliott [47] gives another interpreta-
tion of stochastic di�erential games, by letting intervene the players through Girsanov trans-
formations. This approach is taken up and considerably simpli�ed by the use of BSDEs in the
papers of Hamadène et al. (for example Hamadène-Lepeltier [61], Hamadène-Lepeltier-Peng
[62], Hamadène [58]). A weak point of all these approaches is that the di�usion term has to
be uniformly elliptic and cannot contain any control. Finally a third way is opened in 1989 by
Fleming-Souganidis [52] (see also Nisio [87]). For a nonzero sum game, they de�ne rigorousely
all possible actions of the players and establish directly the existence and characterization of the
value of the game, through a dynamic programming principle. Unlike the other approaches, this
doesn't need to suppose the existence of a Markovian optimal control, and permits so to raise
the restrictive assumptions we mensioned above. It is way we follow in the papers we present
here.
In 〈10〉 and 〈12〉, we study a nonzero-sum game. We prove the existence of a Nash equilibrium
payment, give a characterization of it and make a link to the approach of Hamadène-Lepeltier-
Peng.
In 〈14〉, we are interested in a nonzero-sum game, where the players have only a partial knowledge
of the parameters of the value funtion. More precisely, these parameters are chosen randomly
in a set of functions (gkl, lkl, (k, l) ∈ {1, . . . , I} × {1, . . . , J}, then each player is informed on one
of the two indices of the chosen parameter. Finally one player has to minimize, the other to
maximize the resulting payo�. We show that, under Isaacs' condition, the game has a value and
give a characterization, in terms of viscosity solutions of a new type. In 〈16〉, in ordrer to go
more into details, we simplify a lot the game: we consider a game without dynamic, where only
one player has a lack of information (J = 1). This permits us to analyse the behavior of the
fully informed player: we show that it is narrowly linked to a certain martingale with values in
the simplex ∆(I), whose role is to manage the amount of information used (and thus revealed)
along the game.

Let us precise the common frame of all the presented papers:

As usal, T > 0 denotes a deterministic �nal time, IFt = (F t
t,s, t ≤ s ≤ T ) is the �ltration

generated by the increments Bs −Bt of the Brownian motion, and U(t) and V(t) are the sets of
admissible controls for the two players.
The assumptions on the parameters of the game guaranty a strong solution of the system (30):
f : [0, T ] × IRn × U × V → IRn, σ : [0, T ] × IRn × U × V → IRn×d, g : IRn → IR and
l : [0, T ] × IRn × U × V → IR are measurable, bounded, continous, Lipschitz in (t, x) (or in
x for g), uniformly in (u, v).
For all t ∈ [0, T ], x ∈ IRd and (u, v) ∈ U(t)× V(t), we denote by Xt,x,u,v the solution of (30).
We introduce Isaacs' condition:
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(HI) For all (t, x, A, p) ∈ [0, T ]× IRn × S × IRn,

supu∈U infv∈V
{
〈p, f(t, x, u, v)〉+ 1

2(Aσσ∗(t, x, u, v))
}

= infv∈V supu∈U
{
〈p, f(t, x, u, v)〉+ 1

2(Aσσ∗(t, x, u, v))
}
.

A fundamental notion in game theory is the notion of strategy. Indeed, each player has to
adjust his actions at each moment of the game. Thus, these actions have to be applications that,
at each moment, reply to the control of the opponent player and the observed dynamic by the
control he consider to be the best adapted.
Ther are several ways to de�ne strategies. We use here the following:

De�nition 4.1 A strategy for Player 1 starting at time t is a Borel-measurable application
α : [t, T ] × C([t, T ], IRn) × L2([t, T ], V ) → U for which there exists δ > 0 such that, for all
s ∈ [t, T ], f, f ′ ∈ C([t, T ], IRn) and g, g′ ∈ L2([t, T ], V ), if f = f ′ and g = g′ a.s. on [t, s], then
α(·, f, g) = α(·, f ′, g′) on [t, s+ δ].
We de�ne strategies for Player 2 in a symmetric way and denote by A(t) (resp. B(t) the set of
strategies for Player 1 (resp. Player 2).

Remarks:

1. In [52], a strategy is an application that answers to a control of the opponent player by
another control, i.e. it associates to a stochastic process another stochastic process. This
rises strong technical di�culties and need heavy assumptions on the sets of strategies. After
adopting this de�nition in our �rst paper 〈10〉, we have changed from 〈11〉 on to 4.1. Beside
the fact that the new de�nition is much simplier and also simplier to handle, it seems more
pertinent to us, that the players only can observe and react to some trajectories and not
to the hole processes.

2. It is worthy to mension that the strategies we de�ned in 4.1 are strategies with delay.
This property is crucial to make each couple of strategies �playable�, as it is formulated in
the next lemma. We remark that this delay isn't not necessarily the same for all strategies.

Lemma 4.1 For all (t, x) ∈ [0, T ]× IRn and all (α, β) ∈ A(t)×B(t), there exists a unique couple
of controls (u, v) ∈ U(t)× V(t) which satisfy P -a.s.

(u, v) = (α(·, Xt,x,u,v
· , v·), β(·, Xt,x,u,v

· , u·)) a.s. on [t, T ]. (32)

Notation 4.1 For all (t, x) ∈ [0, T ]× IRd and (α, β) ∈ A(t)× B(t), we set

Xt,x,α,β = Xt,x,u,v and Ji(t, x, α, β) = Ji(t, x, u, v),

where (u, v) ∈ U(t)× V(t) is �xed by the relation (32).

Finally let us recall the well understoud case of zero-sum games g := g2 = −g1 and l := l2 = −l1.
We set

J(t, x, u, v) = E

[
g(XT ) +

∫ T

t
l(s,Xs, us, vs)ds

]
.
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Player 1 has to minimize the value function J , Player 2 has to minimize it.
Following Fleming-Souganidis [52], under Isaacs' condition (HI), the game has a value:

W (t, x) := inf
α∈A(t)

sup
v∈V(t)

J(t, x, α(v), v)) = sup
β∈B(t)

inf
u∈U(t)

J(t, x, u, β(u)).

The function W is the unique viscosity solution of the following nonlinear PDE:{
wt + infu∈U supv∈V H(t, x,Dw,D2w, u, v) = 0, t ∈ [0, T ],
w(T, x) = g(x),

with

H(t, x, p, A, u, v) = 〈p, f(t, x, u, v)〉+
1
2
(Aσ(t, x, u, v)σ∗(t, x, u, v)) + l(t, x, u, v).

4.2 Nash Equilibria for nonzero-sum stochastic di�erential games.

In this section, we present the results of the paper 〈10〉 written in collaboration with R. Buckdahn
and P. Cardaliaguet, and of the paper 〈12〉.
We consider a game de�ned by the dynamic (30) and the value functions introduced by (31),
where, to simplify, we omit the integral term:

Ji(t, x, u, v) = E [gi(XT )] , i ∈ {1, 2}.

Each player i has to maximize his payo� Ji. We are interested to the Nash equilibria of this
game.
Concerning the litterature on nonzero-sum stochastic di�erential games, among the authors cited
before, we will come back more precisely on some works of Hamadène et al. [61], [62]. There are
also the papers of Ghosh and Kumar (for example [55]) based on �xe point arguments, and Kush-
ner [70], [71] who treates numerical approximations. Finally a recent and important courrant
are mean �eld games introduced by Lasry and Lions [74] (see also [75],[76], Buckdahn, Djehiche,
Li and Peng [27] and [28]).
Let's remark that only 2-player games are considered here, but the results can be easily gener-
alized to an arbitrary number of players.

We recall the notion of Nash equilibria:

De�nition 4.2 A Nash equilibrium at some point (t, x) is a couple (ᾱ, β̄) ∈ A(t)×B(t) such
that, for all (α, β) ∈ A(t)× B(t), it holds that

J1(t, x, ᾱ, β̄) ≥ J1(t, x, α, β̄) and J2(t, x, ᾱ, β̄) ≥ J2(t, x, ᾱ, β). (33)

In our framework, such equilibria not always exist. This motivates the following de�nition:

De�nition 4.3 A Nash equilibrium payment (NEP) at (t, x) is a couple (e1, e2) ∈ IR2 such
that, for all ε > 0, there exists a couple of strategies (αε, βε) ∈ A(t)×B(t) which satis�es, for all
(α, β) ∈ A(t)× B(t),

1. J1(t, x, αε, βε) ≥ J1(t, x, α, βε)− ε et J2(t, x, αε, βε) ≥ J2(t, x, αε, β)− ε,

2. for i = 1, 2, |Ji(t, x, αε, βε)− ei| ≤ ε.
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The principal result of 〈10〉 is the existence of such NEPs and their characterization:

Theorem 4.1 Under Isaacs' condition (HI), for any initial condition (t, x), there exists a NEP.

To formulate a characterization of a NEP, we have to introduce W1 and W2, the values of the
two zero-sum games

W1(t, x) = inf
β∈B(t)

sup
u∈U(t)

J1(t, x, u, β(u))

and
W2(t, x) = inf

α∈A(t)
sup
v∈V(t)

J2(t, x, α(v), v).

Theorem 4.2 Still under Isaacs' condition, a couple (e1, e2) ∈ IR2 is a NEP at (t, x) if and only
if, for all ε > 0, there exists a couple of controls (uε, vε) ∈ U(t)× V(t) such that

1. for all s ∈ [t, T ] and i ∈ {1, 2},

P {E[gi(Xε
T )|Ft,s] ≥Wi(s,Xε

s)− ε} ≥ 1− ε,

with Xε = Xt,x,uε,vε ,

2. for i ∈ {1, 2},
|E[gi(Xε

T )]− ei| ≤ ε.

These results were established in the deterministic framework by Kononenko [68] and Tolwinski-
Haurie-Leitmann [104]. Their techniques cannot be generalized to the stochastic case. Therefore
our approach is completely di�erent.
Close to the Folk Theorem for repeated games, Theorem 4.2 heuristically says that there is a
Nash equilibrium if and only if, at each moment, if one of the players deviates, the other can
punish him by minimizing its value function, We will use Theorem 4.2 in the sequel to identify
NEPs as the equilibrium payments obtained in the framework of Hamadène et al. [61], [62].

Comparison with the Nash equilibria of Hamadène et al.

The approach of Hamadène et al. consists in making intervene the players by a change of
probability. Since their introduction by Elliott [47] until the recent developments on mixed games
[59] (see also Karatzas-Zam�rescu [67]), this approach was developped absolutely independently
to the others. Therefore it seemed interesting to us to make some link.
In [62], the following SDE is considered:

Xt,x
s = x+

∫ s

t
σ(r,Xt,x

r )dBr, s ∈ [t, T ], x ∈ IRn,

where B is still a d-dimensional Brownian motion on a probability space (Ω,F , P ), and σ is
supposed to be strictly elliptic.
The controls of the players are introduced via a change of probability: for all u and v controls
with values in U (resp. V ), some probability P u,v is de�ned by

dP u,v

dP
= exp

{∫ T

t
σ−1(s,Xs)f(s,Xs, us, vs)dBs

−1
2

∫ T
t |σ

−1(s,Xs)f(s,Xs, us, vs)|2ds
}
.

(34)
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and one de�nes

Bu,v
s = Bs −Bt −

∫ s

t
σ−1(r,Xr)f(r,Xr, ur, vr)dr.

By Girsanovs Theorem, Bu,v is a P u,v-Brownian motion and Xt,x can be written as a solution
of the controlled SDE

dXt,x
s = f(s,Xt,x

s , us, vs)ds+ σ(s,Xt,x
s )dBu,v

s , s ∈ [t, T ].

The payo�s are de�ned here as follows:

J i(t, x, u, v) = Eu,v
[
gi(XT ) +

∫ T

t
hi(s,Xs, us, vs)ds

]
, i ∈ {1, 2}, (u, v) ∈ U(t)× V(t),

and a Nash equilibrium is a couple of controls (u∗, v∗) ∈ U(t) × V(t) which satis�es, for all
(u, v) ∈ U(t)× V(t),

J1(t, x, u∗, v∗) ≥ J1(t, x, u, v∗) and J2(t, x, u∗, v∗) ≥ J2(t, x, u∗, v). (35)

For i ∈ {1, 2}, let be the following Hamiltoniens

Gi(t, x, p, u, v) = 〈p, f(t, x, u, v)〉+ hi(t, x, u, v),

and the assumption (HH):

(HH) a) there exist two borelian maps u∗, v∗ from [0, T ] × IR3n to U × V such that, for all
(t, x, p, q, u, v) ∈ [0, T ]× IR3n × U × V ,

G1(t, x, u∗(t, x, p, q), v∗(t, x, p, q)) ≥ G1(t, x, u, v∗(t, x, p, q))

and
G2(t, x, u∗(t, x, p, q), v∗(t, x, p, q)) ≥ G2(t, x, u∗1(t, x, p, q), v).

b) the map that, to (p, q) ∈ IR2n associates

(G1(t, x, u∗(t, x, p, q), v∗(t, x, p, q)), G2(t, x, u∗(t, x, p, q), v∗(t, x, p, q))

is continuous.
Under (HH), the following result holds:

Theorem 4.3 ([62]) There are two couples of processes (W 1, Z1) and (W 2, Z2) which satisfy,
for i ∈ {1, 2}, s ∈ [t, T ], P -a.s.,

W i
s = gi(XT ) +

∫ T

s
Gi(r,Xr, Z

i
r, u

∗(r,Xr, Z
1
r , Z

2
r ), v

∗(r,Xr, Z
1
r , Z

2
r ))dr −

∫ T

s
ZirdXr, (36)

and the couples of controls (u∗, v∗) := (u∗(r,Xr, Z
1
r , Z

2
r ), v

∗(r,Xr, Z
1
r , Z

2
r )) are Nash equilibriums

in the sense of (35).
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Remark: The probabilities P and P u,v are always equivalent, but it can happen that the �l-
tration Fu,v generated by Bu,v is strictly smaller than that generated by B. In particular, in
this case, arbitrary controls u, v are not necessarily adapted to Fu,v. An example for such a
situation is given by σ = I, f(t, x, u, v) = u, and u given by the example of Tsirel'son [105] (see
also [96]). But, using a result of Bahlali [13], we can show that, under the present assumptions,
the equations (36) admit strong solutions. In this case the two �ltrations coincide.

Another preliminary result is that the values of the zerosum game of Hamadène-Lepeltier intro-
duced in [60] coincide with W1 and W2 in Fleming-Souganidis [52]:

Proposition 4.1 Under the assumption (HH), we have, for all (t, x) ∈ [0, T ]× IRn,

W1(t, x) = supu∈U(t) infv∈V(t) J
1(t, x, u, v) = infv∈V(t) supu∈U(t) J

1(t, x, u, v),

W2(t, x) = infu∈U(t) supv∈V(t) J
2(t, x, u, v) = supv∈V(t) infu∈U(t) J

2(t, x, u, v).

(37)

Finally we show that the Nash equilibria in [62] identi�ed by Theorem 4.2 give raise to a NEP
in our sense:

Theorem 4.4 Under the assumption (HH), (J1(t, x, u∗, v∗), J2(t, x, u∗, v∗)) is a Nash equilib-
rium in the sense de�ned by 4.3.

4.3 Di�erential games with lack of information.

4.3.1 Description of the game.

This section resumes the papers 〈14〉 and 〈16〉 written in collaboration with P. Cardaliaguet.
We are interested here in a stochastic di�erential zerosum-game with still the same dynamic (30):{

dXs = f(Xs, us, vs)ds+ σ(Xs, us, vs)dWs, s ∈ [t, T ],
Xt = x ∈ IRn.

To simplify, we suppose here again that there is no integral cost in the payo� (31). However,
the results of this section stay true even if the integral term is not equal to zero. This will be
important for the last section.
The particularity here is to consider a hole family of applications (gij , i ∈ {1, . . . I}, j ∈ {1, . . . , J})
which permit to de�ne I × J di�erent payo�s

Jij(t, x, u, v) = E[gij(X
t,x,u,v
T )],

among which will be randomly chosen the payo�s the players have to optimize. To this aim, are
given to probabilities p ∈ ∆(I) and q ∈ ∆(J) (where, for all K ∈ IN∗, ∆(K) denotes the set of
probabilities on {1, . . . ,K}). The game is played in two steps:

1. The couple of (i, j) is randomly chosen according to the probability p⊗ q. Then index i is
communicated to Player 1, index j to Player 2.
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2. Player 1 has to minimize the payo� Jij(t, x, u, v), Player 2 has to maximize it. More
precisely, the players have to optimize the average∑

i,j

piqjJij(t, x, ui, vj).

We will show that, under Isaacs' condition, the game has a value, and we characterize it as the
unique solution in a dual sense of a Hamilton-Jacobi-Isaacs equation.

The subject of this paper is close to the idea of insider trading (see for example Amendinger-
Becherer-Schweizer [3] or Corcuera-Imkeller-Kohatzu-Higa [38]), but our approach is very di�er-
ent. We take our inspiration in the repeated games with incomplete information. These were
introduced by Aumann and Maschler in the sixties of last century (see [10] or [100]) and were
treated by a large number of authors, for example De Meyer-Rosenberg [43], Mertens-Zamir [81],
Rosenberg-Solan-Vieille [97] or Sorin [100]. In continuous time, the subject was treated for the
�rst time only in 2006 by Cardaliaguet in [32]. This paper considered the determinstic case.

In opposition to classical games, the player have to use here random strategies. This can be
explained by the fact that, if a player use immediately and plainely its knowledge, he reveals it
also at the same moment to the opponent player and looses his advantage. It is obvious that
the opposite strategy consisting by never revealing, hence by never using it, is also not optimal.
Therefore the player will have to navigate between the two extrema. This is possible only by
introducing randomness. We give following de�nition:

De�nition 4.4 A random strategy for Player 1 is a couple ((Ωα,Fα,Pα), α), where (Ωα,Fα,Pα)
is a probability space and α a random variable with values in the set of strategies A(t).

It is again possible to make play two random strategies together and to make sense to the
following de�nition:
For (α̂, β̂) = (αi, βj)1≤i≤I,1≤j≤J ∈ Ar(t)I × Br(t)J and (p, q) ∈ ∆(I)×∆(J), we set

Jp,q(t, x, α̂, β̂) = Eα,β

∑
i,j

piqjJij(t, x, ui, vj)

 ,
where the expectation is taken with respect to the probability Pα ⊗ Pβ and where (ui, vj) is the
unique couple of random controls associated ω-wise by Lemma 4.1 to (αi, βj) .

4.3.2 The value of a game with incomplete information.

We de�ne the upper- and lower value functions by:

V +(t, x, p, q) := inf α̂∈Ar(t)I supβ̂∈Br(t)J J
p,q(t, x, α̂, β̂),

V −(t, x, p, q) := supβ̂∈Br(t)J inf α̂∈Ar(t)I Jp,q(t, x, α̂, β̂).

In opposition to a game with perfect information, these value functions don't satisfy a dynamic
programming principle (PPD). Indeed, each player collects informations on the knowledge of his
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opponent during all the game. This implies that he would not be able to play in an optimal way
if he would start from zero on at some arbitrary time, as if a PPD holds. Therefore it is not
possible to characterize the value functions as classical viscosity solutions of a Hamilton-Jacobi
equation.

An important property of V + and V − is:

Proposition 4.2 The value functions V + and V − are convex in p and concave in q.

This motivates the introduction of Fenchel transformates:

V −∗(t, x, p̂, q) := sup
p∈∆(I)

{
〈p̂, p〉 − V −(t, x, p̂, q)

}
, (t, x, p̂, q) ∈ [0, T ]× IRn × IRI ×∆(J),

V +](t, x, p, q̂) := inf
q∈∆(J)

{
〈q̂, q〉 − V +(t, x, p, q̂)

}
, (t, x, p, q̂) ∈ [0, T ]× IRn ×∆(I)× IRJ .

The following theorem holds:

Theorem 4.5 Under Isaacs' condition (HI), for all (t, x, p, q) ∈ [0, T ]× IRn×∆(I)×∆(J), the
game has a value V (t, x, p, q) := V +(t, x, p, q) = V −(t, x, p, q). It is the unique viscosity solution
in dual sense of

wt +H(t, x,Dw,D2w, p, q) = 0 (38)

with terminal condition

V +(T, x, p, q) = V −(T, x, p, q) =
I∑
i=1

J∑
j=1

piqjgij(x) ∀(x, p, q) ∈ IRn ×∆(I)×∆(J) ,

where

H(s, y, ξ, A, p, q) = inf
u∈U

sup
v∈V

{
〈b(t, x, u, v), p〉+

1
2
Tr (Aσσ∗(t, x, u, v))

}
. (39)

and where V is a dual solution of (38) if

(i) V is convex with respect to p and concave with respect to q,

(ii) V −∗ is a viscosity subsolution of the Hamilton-Jacobi-Isaacs equation

wt + inf
v∈V

sup
u∈U

{
〈b(t, x, u, v), p〉+

1
2
Tr (Aσσ∗(t, x, u, v))

}
= 0

(iii) V +] is a supersolution of

wt + sup
u∈U

inf
v∈V

{
〈b(t, x, u, v), p〉+

1
2
Tr (Aσσ∗(t, x, u, v))

}
= 0.

In Cardaliaguet [33], the author proposes an equivalent formulation of 4.5: he shows that a
function is a solution in a dual sense of (38) if and only if it is solution in a direct sense of an
obstacle problem:
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Theorem 4.6 ([33]) Let w : IRN ×∆(I)×∆(J) → IR bounded, continuous application, that is
convex in p and concave in q.
w is a subsolution (resp. supersolution) in a dual sense of (38) if and only if it is a viscosity sub-
(resp. super-) solution of the equation

min
{

max
{
w +H(x,Dw,D2w, p, q);−λmin

(
∂2w

∂p2

)}
;−λmax

(
∂2w

∂q2

)}
= 0, (40)

where λmin(A) (resp. λmax(A)) is the smallest (resp. largest) eigenvalue of the matrix A.

(for precise de�nitions see [33]).

Corollary 4.1 Under (HI), V := V − = V + is the unique viscosity solution of (40).

Remarks:

1. This corollary follows from the theorems 4.5 and 4.6. It is the characterization of the value
function that we will keep for the sequel, because its formulation is simplier and easier to
handle than 4.5. Therefore it would be interesting to �nd a direct proof of it. This is an
open question.

2. Theorem 4.5 and Corollary 4.1 stay true if the payments are more general:

Jij(t, x, u, v) = E

[∫ T

t
lij(s,Xt,x,u,v

s , us, vs)ds+ gij(X
t,x,u,v
T )

]
, (41)

provided that the Hamiltonian de�ned by (39) is replaced by

H(t, x, ξ, A, p, q) = infu∈U supv∈V
{
〈b(t, x, u, v), p〉

+1
2Tr (Aσσ∗(t, x, u, v))−

∑
ij lij(t, x, u, v)piqj

}
and Isaacs' condition and the equations satis�ed by the Fenchel transformates are adapted.

4.3.3 Game without dynamic: analysis of the strategy of the informed player.

Introduction.

In 〈16〉, we consider the case where only Player 2 has a lack of information, and we are inter-
ested in the strategy of Player 1, in particular in the way he reveals his information along the
game. We will see that his strategy is strongly related to a martingale p living on the sim-
plex ∆(I). This martingale is known in the framework of repeated games under the name of
"martingale of posteriors" (see [100]). The crucial point here is the equivalence between the
game and a certain optimization problem on the set of probabilities which optimum is precisely
attained on the law of the martingale p. This will permit us to construct explicitely the strategy
of the informed player. Then we will analyse this martingale. Finally we shall see some examples.

We consider here a much simpli�ed game, without any dynamic, where the payo�s are as follows:∫ T

t0

li(s, us, vs)ds, i ∈ {1, . . . , I},
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where (us) and (vs) denote the controls used by Player 1 (resp.Player 2).
As in the previous section, we �x some probability p ∈ ∆(I), choose an index i at random
among the set {1, . . . , I} according to p and communicate it to Player 1. Player 2 only knows
the probability p according to which the index was chosen.
Isaacs' condition is here as follows:

(HI') For all (t, p) ∈ [0, T ]×∆(I), H(t, p) := inf
u∈U

sup
v∈V

I∑
i=1

pili(t, u, v) = sup
v∈V

inf
u∈U

I∑
i=1

pili(t, u, v).

The results of the last section apply here and lead to the following theorem:

Theorem 4.7 Under Isaacs assumption (HI'), the game has a value

V (t, p) = inf(αi)∈(Ar(t))I supβ∈Br(t)

∑I
i=1 piEαiβ

[∫ T
t `i(s, αi(s), β(s))ds

]
= supβ∈Br(t0) inf(αi)∈(Ar(t))I

∑I
i=1 piEαiβ

[∫ T
t `i(s, αi(s), β(s))ds

]
,

which is the unique viscosity solution of the Hamilton Jacobi equation

min
{
wt +H(t, p);λmin

(
∂2w

∂p2

)}
= 0, (t, p) ∈ [0, T ]×∆(I). (42)

An equivalent optimization problem.

We introduce the following notations: Let D(t) be the set of càdlàg functions from IR to ∆(I)
which are constant on (−∞, t) and [T,+∞), and t 7→ p(t) the coordinate mapping on D(t).
Then, for p ∈ ∆(I), we denote by M(t, p) the set of probabilities P on D(t), under P, p is a
martingale that satis�es

∀s < t, p(s) = p, and ∀s ≥ T,p(s) ∈ {ei, i = 1, . . . , I} P-a.s.,

where {e1, . . . , eI} is the canonical basis of IRI .
The principal result is:

Theorem 4.8

V(t, p) = min
P∈M(t,p)

EP

[∫ T

t
H(s,p(s))ds

]
∀(t, p) ∈ [0, T ]×∆(I) . (43)

Remark: In the introduction, we mensioned an optimization problem over a set of martingales.
But for technical reasons, it is easier to think in terms of martingales measures on the canonical
set of càdlàg paths rather than in terms of martingales. Therefore the process p is an optimal
martingale under the optimal martingale measure.

We have two proofs of this result: a constructive one, by discretization, and one which is
based on a dynamic programming principle.
Since the set M(t, p) is compact for the topology of Meyer-Zheng (see Meyer-Zheng [83]) and
the Hamiltonian H is continuous and bounded, we have easily an existence result:
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Proposition 4.3 For all (t, p), there exists at least one optimal martingale measure for the
problem (43).

Let P̄ denote such an optimal measure.

The optimal strategy.

As already mensioned, we will use Theorem 4.8 to construct an optimal strategy for the informed
Player 1:
Following the de�nition ofM(t, p), the sets Ei = {p(T ) = ei} form a partition ofD(t). Therefore
we get, for all index i = 1, . . . , I, a probability measure P̄i by setting

∀A mesurable, P̄i(A) = P̄[A|Ei].

Then we set
ū(s) = u∗(s,p(s)), s ∈ [t, T ],

where u∗ = u∗(s, p) is a measurable selection of Argminu∈U (maxv∈V
∑I

i=1 pili(s, u, v)).
Finally let ūi be the random control ū under the probability P̄i.

Theorem 4.9 The strategy which consist in playing the random control (ūi)i=1,...,I is optimal
for V (t, p):

V (t, p) = sup
β∈Br(t)

I∑
i=1

piEūi

[∫ T

t
li(s, ūi(s), β(ūi)(s))ds

]
. (44)

Remark: The optimal behavior of the noninformed player was analysed by Souquière [102].

Analysis of the optimal martingale measure.

Now that we have shown that the measure P̄ is crucial for the elaboration of optimal strategies
of the informed player, we analyse the behavior of the process p under P̄.
To simplify the presentation, we suppose here that the value function V is of class C1,2.
Therefore, the fact that V is a solution of the obstacle problem

min
{
wt +H(t, p);λmin

(
∂2w

∂p2

)}
= 0, (t, p) ∈ [0, T ]×∆(I),

means that, for all couple (t, p), at least one of the following conditions is satis�ed:

• Vt = −H(t, p),

• λmin

(
∂2V
∂p2

)
= 0.

This motivates us to have a closer look at the set

H := {(t, p) ∈ [0, T ]×∆(I)|Vt = −H(t, p)} ,

and its link to the optimal martingale measure.

Theorem 4.10 Let P̄ be an optimal martingale measure for (43).
Then, for all s ∈ [t, T ], P̄-p.s.,
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1. (s,p(s)) ∈ H,

2. V (s,p(s))− V (s,p(s−) = 〈∂V∂p (s,p(s−)),p(s)− p(s−)〉 .

Remark: Recall that V is convex in p. Therefore, for all s ∈ [0, T ], P̄-a.s.,

V (s,p(s))− V (s,p(s−) ≥ 〈∂V
∂p

(s,p(s−)),p(s)− p(s−)〉 .

Thus condition 2. implies that, on the segment [p(s−),p(s)], P̄-a.s., V is a�ne. Therefore, if p
jumps, it steps over a part of the domain of [0, T ]×∆(I) where the second part of the obstacle
problem is satis�ed:

λmin

(
∂2V

∂p2

)
= 0.

The counterpart of Theorem 4.10 can be announced as follows:

Theorem 4.11 (Veri�cation theorem)
For (t, p) ∈ [0, T ]×∆(I), let P ∈M(t, p) such that for all s ∈ [t, T ] P-a.s.,

1. (s,p(s)) ∈ H,

2. V (s,p(s))− V (s,p(s−) = 〈∂V∂p ,p(s)− p(s−)〉,

3. P is purely discontinuous.

Then P is optimal in problem (43).

Remark: The function V is supposed here to be of class C1,2. Therefore we can apply directly
Itô's formula, and the veri�cation theorem follows, under the condition that the following holds

EP̄

[∫ T

t0

∂2V

∂p̂2
(s,p(s−))d〈pc〉s

]
= 0,

where pc denotes the continuous part of the martingale p. Indeed, this term vanishes if p is
purely discontinuous. But we ignore whether this relation stays true without condition 3.
In the next paragraph, we will give examples of situations where at least one optimal martin-
gale measure is purely discontinuous, others where there exist a continuous optimal martingale
measure.

Examples:

1. The autonomious case:
li = li(u, v), i = 1, . . . , I.

It is proved in [101] that
V (t, p) = (T − t)VexH(p).

This is also what Aumann-Maschler formula states for repeated games wih incomplete informa-
tion on one side (see [10]). The optimal martingale is here as follows: starting on (−∞, p) from
p, it jumps directly at time t to some points p1, . . . , pI , remains constant on [t, T ) and joins at
time T the extrema e1, . . . , eI .
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2. I = 2.
The elements of ∆(2) are the couples (p, 1−p), with p ∈ [0, 1]. These probabilities are completely
determined by the parameter p ∈ [0, 1], and the set H can be identi�ed with some closed subset
of [0, T ]× [0, 1].
We consider here the following assumption:
(H12) There exists h1, h2 : [0, T ] → [0, 1] continuous, h1 ≤ h2, h1 decreasing, h2 increasing, such
that

1. VexH(t, p) = H(t, p) ⇔ p ∈ [0, h1(t)] ∪ [h2(t), 1],

2. ∂2H
∂p2

(t, p) > 0 ∀(t, p) with p ∈ [0, h1(t)) ∪ (h2(t), 1].

Proposition 4.4 Under assumption (H12),

V (t, p) =
∫ T

t
VexH(s, p)ds ∀(t, p) ∈ [0, T ]×∆(I) (45)

and
H = {(t, p) ∈ [0, T ]× [0, 1] | p ∈ [0, h1(t)] ∪ [h2(t), 1]} .

In particular V is of class C1,2.

Proposition 4.5 Under the assumption (H12), there is a unique optimal martingale measure
P̄. Under this mesure, p is a purely discontinuous martingale and satis�es:

p(s−) = p ∀s ∈ [t, t∗] P̄-a.s., where t∗ = inf {s ≥ t | p0 ∈ [h1(s), h2(s)]}

et
p(s) ∈ {h1(s), h2(s)} ∀s ∈ [t∗, T ) P̄-a.s. .

In particular,

P̄ [p(s) = h1(s) | p(r) = h1(r)] =
h2(s)− h1(r)
h2(s)− h1(s)

∀t∗ ≤ r ≤ s < T . (46)

Remarks: 1. We don't know if, for I = 2, the assumption (H12) is necessary to get the
uniqueness of an optimal martingale measure, neither if there exist non purely discontinuous
optimal martingale measures. Here is some su�cient condition for the existence of a purely
discontinuous optimal martingale measure:

Theorem 4.12 Suppose that there is some non decreasing map K : [0, T ] → [0,+∞) such that

∀s, t ∈ [0, T ) with s ≤ t, ∀p ∈ H(s), ∃p′ ∈ H(t) with |p′ − p| ≤ K(t)−K(s) . (47)

Then, for any initial position (t, p), there exists a martingale measure P ∈M(t, p) under which
the process p satis�es the conditions 1.-3. of Theorem 4.11.

2. The discret approximation of the optimal martingale in the �rst proof of 4.8 takes here the
following form:
For all subdivision {tk = t+ k(T−t)

n , k = 1, . . . , n}, we set:
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• πn0 = p,

• for all k = 0, . . . , n, if πnk−1 is de�ned,

� we set πnk = πnk−1 on the set {(tk, πnk−1) ∈ H},
� on {(tk, πnk−1) 6∈ H} πnk takes its values in the set {h1(tk), h2(tk)}, and the conditional

distribution of the jumps is uniquely determined by the fact that πn is a martingale.

Then we construct a martingale on continuous time, by setting pn = p on (−∞, t) and pns = πnk+1

on [tk, tk+1).
An interesting problem is to consider the same construction in a more abstract frame:
Let H a closed set in [0, T ] × [0, 1] which contains the set [0, T ] × {0, 1}. In the same way as
above, we can de�ne a sequence of martingales (pn)n≥1, replacing the couple (h1(tk), h2(tk)) by
the narrowest neighbors of πnk−1 in H(tk). The sequence of distributions of these martingales
contains at least one converging subsequence. Several questions can be raised:

• Is this limit always unique, as under the assumption (H12) ?

• Are the limit measures always purely discontinuous ?

but also

• Do the limit measures depend on the discretization ?

• Are they Markovian ?

• It is possible to caracterize these martingale measures without speaking about the sequence
from which they come from ?

We close this section with an example that makes a link to some well known martingale.

Example 4.1 We set T = 1
4 , h1(s) = 1

2 −
√
s, h2(s) = 1

2 +
√
s, s ∈ [0, T ], t = 0 and p = 1

2 . The
process p, under the optimal martingale measure is, up to a constant, Azéma's martingale with
parameter 2: under P̄, (Xt := p(t)− 1

2 , t ∈ [0, T ]) satis�es the structure equation

d[X]t = dt− 2Xt−dXt, t ∈ [0, T ], X0 = 0.

(voir Emery [48])

3. In higher dimensions.
When the example for I = 2 is extended to higher space dimensions, Proposition 4.4 remains
true. Concerning the optimal measures, two interesting phenomena occur: as for I = 2, there
exists a purely discontinuous optimal martingale measure, but simultanuously, there are also
optimal martingale measures under which p is continuous.
For arbitrary I ≥ 2, we introduce the following assumption:
(HK) There exists a smoothly evolving and increasing family of open family convex subsets
(K(t))t∈[0,T ], whose closure is contained in the interior of in ∆(I) such that, for all t ∈ [0, T ],

1. VexH(t, p) = H(t, p) ⇔ p /∈ K(t) ,
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2. H(t, ·) is a�ne on K(t),

3. ∂2H
∂p2

(t, p) is de�nite positive for p /∈ K(t).

We get:

Proposition 4.6 Under the asumption (HK),

V (t, p) =
∫ T

t
VexH(s, p)ds ∀(t, p) ∈ [0, T ]×∆(I)

and
H = {(t, p) ∈ [0, T ]×∆(I) | p /∈ K(t)} .

In particular, V is of class C1,2.

Proposition 4.7 Under the assumption (HK), any optimal martingale measure P̄ has the fol-
lowing structure:

p(s−) = p ∀s ∈ [t, t∗] and p(s) ∈ ∂K(s) ∀s ≥ t∗, P̄-a.s.,

où t∗ = sup{s ≥ t | p /∈ K(s)}. Moreover there exists an optimal martingale measure under
which p is purely discontinuous.
If (K(t))t∈[0,T ] has a positive minimal curvature and if p /∈ K(t), then there is also an optimal
martingale measure under which p is continuous.

Remarks:

1. If the family of sets t → ∂K(T − t) is moving according to its mean curvature, then there
exists, for all p ∈ ∂K(t), an optimal martingale measure under which p satis�es

dp(t) =
√

2 (I − ν(t,p(t))⊗ ν(t,p(t))) dWt ,

where I is the identity matrix of size (I−1), (Wt) a (I−1)-dimensional Brownian motion condi-
tionned to live in the hyperplan generated by ∆(I) and ν(t, p) denotes the unit outward normal
to K(t) at p ∈ ∂K(t) (see Buckdahn-Cardaliaguet-Quincampoix [26] , Soner-Touzi [98]).

2. A large number of questions remain open, in particular the ones we already have mensioned
concerning the optimal martingale measures. Furthermore the above analysis was done in the
very narrow framework of games without dynamic and with lack of information only at one side.
The characterization of the value function through martingale measures for a game with dynamic
and lack of information at both sides has still to be done.
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