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Centre UCPA des Abers, Landeda

March, 17th 2016

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 1 / 48



M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 2 / 48



Preliminary notations

(Ω,F , µ) is a probability space;

T : Ω→ Ω is a measurable function such that µ = Tµ;

M⊂ F is a σ-algebra such that M⊂ T−1M;

for p ∈ [1,∞] and B ⊂ A two sub-σ-algebras of F ,

Lp(Ω,A, µ)	 Lp(Ω,B, µ) = {f ∈ Lp, f is A-measurable and E (f | B) = 0} .
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Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))

Let f ∈ Lp(Ω,M, µ)	 Lp(Ω,∩i∈ZT
−iM, µ) such that

(PC)
∑
k>0

∥∥∥E(f | T kM
)∥∥∥

p
<∞

then there exists m in Lp(Ω,M, µ)	 Lp(Ω,TM, µ) and g in Lp(Ω,TM, µ) such that

(MCD) f = m + g − g ◦ T .

The term g − g ◦ T is called a coboundary.

The equation (MCD) is called the martingale-coboundary decomposition of f .

(m ◦ T i )i∈Z is a martingale-difference sequence with respect to the filtration (T−iM)i∈Z.
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Central Limit Theorem

For any h : Ω→ R measurable, we denote Sn(h) :=
∑n−1

i=0 h ◦ T i .

From the Billingsley-Ibragimov central limit theorem, we have

1√
n
Sn(m)→

√
E[m2] · N (0, 1) in distribution;

If f : Ω→ R satisfies (PC) then Sn(f ) = Sn(m) + g − g ◦ T n

Since (g − g ◦ T n)/
√
n→ 0 in probability, it follows that

1√
n
Sn(f )→

√
E[m2] · N (0, 1) in distribution.
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Weak Invariance Principle

For any h : Ω→ R measurable and any t in [0, 1], we define

Sn(h, t) :=

[nt]∑
j=1

h ◦ T j + (nt − [nt])h ◦ T [nt]+1.

If f : Ω→ R satisfies (PC) then

n−1/2Sn(f , .)→
√
E[m2] ·W in distribution in C [0, 1]

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when (f ◦ T k)k∈Z are iid.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 6 / 48



Weak Invariance Principle

For any h : Ω→ R measurable and any t in [0, 1], we define

Sn(h, t) :=

[nt]∑
j=1

h ◦ T j + (nt − [nt])h ◦ T [nt]+1.

If f : Ω→ R satisfies (PC) then

n−1/2Sn(f , .)→
√
E[m2] ·W in distribution in C [0, 1]

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when (f ◦ T k)k∈Z are iid.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 6 / 48



Weak Invariance Principle

For any h : Ω→ R measurable and any t in [0, 1], we define

Sn(h, t) :=

[nt]∑
j=1

h ◦ T j + (nt − [nt])h ◦ T [nt]+1.

If f : Ω→ R satisfies (PC) then

n−1/2Sn(f , .)→
√
E[m2] ·W in distribution in C [0, 1]

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when (f ◦ T k)k∈Z are iid.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 6 / 48



Weak Invariance Principle

For any h : Ω→ R measurable and any t in [0, 1], we define

Sn(h, t) :=

[nt]∑
j=1

h ◦ T j + (nt − [nt])h ◦ T [nt]+1.

If f : Ω→ R satisfies (PC) then

n−1/2Sn(f , .)→
√
E[m2] ·W in distribution in C [0, 1]

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when (f ◦ T k)k∈Z are iid.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 6 / 48



Weak Invariance Principle

For any h : Ω→ R measurable and any t in [0, 1], we define

Sn(h, t) :=

[nt]∑
j=1

h ◦ T j + (nt − [nt])h ◦ T [nt]+1.

If f : Ω→ R satisfies (PC) then

n−1/2Sn(f , .)→
√
E[m2] ·W in distribution in C [0, 1]

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when (f ◦ T k)k∈Z are iid.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 6 / 48



Weak Invariance Principle

For any h : Ω→ R measurable and any t in [0, 1], we define

Sn(h, t) :=

[nt]∑
j=1

h ◦ T j + (nt − [nt])h ◦ T [nt]+1.

If f : Ω→ R satisfies (PC) then

n−1/2Sn(f , .)→
√
E[m2] ·W in distribution in C [0, 1]

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when (f ◦ T k)k∈Z are iid.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 6 / 48



Weak Invariance Principle

(Xk)k∈Zd a stationary real random field.

A a class of Borel subsets of [0, 1]d

ρ(A,B) =
√
λ(A∆B).

For any A ∈ A and any n ∈ N∗,

Sn(A) =
∑

i∈{1,...,n}d
λ(nA ∩ Ri )Xi

where Ri =]i1 − 1, i1]× ...×]id − 1, id ] and λ is the Lebesgue measure on Rd .
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Weak Invariance Principle

Donsker line:

For any t ∈ [0, 1],

Sn(t) =

[nt]∑
i=1

Xi + (nt − [nt])X[nt]+1 =
n∑

i=1

λ (n[0, t] ∩ [i − 1, i ])Xi .

So,
{n−1/2Sn(t) ; t ∈ [0, 1]} = {n−1/2Sn(A) ; A ∈ Q1}

where Q1 = {[0, t] ; t ∈ [0, 1]}.
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Weak Invariance Principle

Definition (Metric entropy)

H(A, ρ, ε) is the logarithm of the smallest number of open balls of radius ε with respect
to ρ which form a covering of A.

Assume that A is totally bounded with inclusion i.e. for each positive ε there exists a
finite collection A(ε) of Borel subsets of [0, 1]d such that for any A ∈ A, there exist A1

and A2 in A(ε) with A1 ⊆ A ⊆ A2 and ρ(A1,A2) ≤ ε.

Definition (Bracketing entropy)

H(A, ρ, ε) is the logarithm of the cardinality of the smallest collection A(ε).
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Weak Invariance Principle

Definition (Brownian motion indexed by A)

A standard Brownian motion indexed by A is a mean zero Gaussian process W with
sample paths in C(A) and Cov(W(A),W(B))= λ(A ∩ B).

From Dudley (1973), we know that such a process exists if∫ 1

0

√
H(A, ρ, ε) dε <∞.
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Weak Invariance Principle

Definition
We say that the weak invariance principle (WIP) holds if the sequence
{n−d/2Sn(A) ; A ∈ A} converges in distribution to a mixture of A-indexed Brownian
motions in the space C(A).

Theorem (Bass (1985), Alexander and Pyke (1986))

(Xk)k∈Zd centered i.i.d. random field such that X0 ∈ L2 and∫ 1

0

√
H(A, ρ, ε) dε <∞

then the WIP holds.
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Weak Invariance Principle

Theorem (E.M., Ouchti (2006))

For any positive real number p, there exists a stationary field (Xk)k∈Zd of independent,
symmetric and p-integrable real random variables and a collection A of Borel subsets of
[0, 1]d which satisfies the condition∫ 1

0

√
H(A, ρ, ε) dε <∞

such that {n−d/2Sn(A) ; A ∈ A} do not be tight in the space C(A).
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Weak Invariance Principle

Theorem (Dedecker (2001))

(Xk)k∈Zd a centered stationary random field such that X0 ∈ L∞ and∑
k<lex 0

‖XkE(X0|Fk)‖∞ <∞

with Fk = σ(Xj ; j <lex 0 ; |j | ≥ |k|) and such that∫ 1

0

√
H(A, ρ, ε) dε <∞

then the WIP holds.
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Weak Invariance Principle

Theorem (Dedecker (2001))

(Xk)k∈Zd a centered stationary random field such that X0 ∈ Lp for p > 2 and∑
k<lex 0

‖XkE(X0|Fk)‖ p
2
<∞

with Fk = σ(Xj ; j <lex 0 ; |j | ≥ |k|) then the WIP holds for A = Qd .
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Weak Invariance Principle

Let ψ : R+ → R be a Young function.

We consider the Orlicz space Lψ defined by

Lψ = {Z | ∃c > 0 E (ψ(|Z |/c)) <∞}

and the Orlicz norm

‖Z‖ψ = inf{ c > 0 ; E (ψ(|Z |/c)) ≤ 1 }.

If ψ(x) = xp then Lψ = Lp and ‖ . ‖ψ = ‖ . ‖p.
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Weak Invariance Principle

For any x ≥ 0,
ψ2(x) = exp(x2)− 1.

For any β > 0 and any x ≥ 0,

ψβ(x) = exp((x + hβ)β)− exp(hββ)

where hβ = ((1− β)/β)1/β 11{0<β<1}.
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Weak Invariance Principle

Theorem (E.M. (2002))

(Xk)k∈Zd a centered and stationary real random field. If there exist 0 < q < 2 and θ > 0
such that E [exp(θ|X0|β(q))] <∞ and

∑
k<lex 0

∥∥∥∥√|XkE(X0|Fk)|
∥∥∥∥2

ψβ(q)

<∞

where β(q) = 2q/(2− q) and ∫ 1

0

(H(A, ρ, ε))1/q dε <∞

then the WIP holds.
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Weak Invariance Principle

Theorem (E.M., Volný (2002))

For any nonnegative real p, there exist a p-integrable stationary real random field
(Xk)k∈Zd and a collection A of regular Borel subsets of [0, 1]d such that

For any k in Zd , E (Xk |σ(Xi ; i 6= k)) = 0. We say that the random field (Xk)k∈Zd is
a strong martingale-difference random field.

The collection A satisfies the bracketing entropy condition∫ 1

0

√
H(A, ρ, ε) dε <∞.

The partial sum process {n−d/2Sn(A) ; A ∈ A} is not tight in the space C(A).
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Weak Invariance Principle

Theorem (E.M., Ouchti (2006))

Let (Xk)k∈Zd be a stationary field of martingale-difference random variables with finite
variance such that E

(
X 2

0 |σ(Xi ; i <lex 0)
)

is bounded almost surely and assume that∫ 1

0

√
H(A, ρ, ε) dε <∞,

then the WIP holds.
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Weak Invariance Principle

Let (Xi )i∈Zd be centered and defined by

Xi = g(εi−s ; s ∈ Zd).

where

(εj)j∈Zd is an i.i.d. random field

g is a measurable function.
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Weak Invariance Principle

Let (ε
′
j )j∈Zd be an i.i.d. copy of (εj)j∈Zd .

We define the coupled version X ∗i of Xi by

X ∗i = g
(
ε∗i−s ; s ∈ Zd

)
where for any j in Zd ,

ε∗j =

{
ε
′
0 if j = 0
εj if j 6= 0
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Weak Invariance Principle

Let ψ : R+ → R be a Young function.

Following Wu (2005), we consider the physical dependence measure coefficients δi,ψ
defined by

δi,ψ = ‖Xi − X ∗i ‖ψ.

If ψ(x) = xp, we denote δi,p in place of δi,ψ.

The random field X defined by

Xi = g
(
εi−s ; s ∈ Zd

)
is said to be ψ-stable if

∆ψ :=
∑
i∈Zd

δi,ψ <∞.
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Weak Invariance Principle

Example : (εi )i∈Zd i.i.d with εi ∈ Lp, p ≥ 2. The linear random field X defined for any i
in Zd by

Xi =
∑
s∈Zd

asεi−s

is of the form Xi = g(εi−s , s ∈ Zd) with a linear function g .

For any i in Zd ,

δi,p = |ai |‖ε0 − ε
′
0‖p.

So, X is p-stable as soon as ∑
i∈Zd

|ai | <∞.

If K is a Lipschitz function then K(Xi ) is also p-stable under the above condition.
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Weak Invariance Principle

Proposition (E.M., Volný, Wu (2013))

Let Γ be a finite subset of Zd and let (ai )i∈Γ be a family of real numbers. For any p ≥ 2,
we have ∥∥∥∥∥∑

i∈Γ

aiXi

∥∥∥∥∥
p

≤

(
2p
∑
i∈Γ

a2
i

) 1
2

∆p

where ∆p =
∑

i∈Zd δi,p.
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Weak Invariance Principle

VC-classes of sets:

Let A ⊂ P
(
[0, 1]d

)
and E = {x1, x2, ..., xn} ⊂ [0, 1]d .

A picks out a subset F from E if F = A ∩ E with A ∈ A.

A shatters E if each of its subsets can be picked out in this manner.

The VC -index V (A) of A is the smallest n for which no set of size n is shattered by
A.

A is called a VC -class if its index is finite.

If A is a VC -class then for any ε > 0,

N (A, ρ, ε) ≤ KV (A)(4e)V (A)

(
1

ε

)2(V (A)−1)

.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 25 / 48



Weak Invariance Principle

VC-classes of sets:

Let A ⊂ P
(
[0, 1]d

)
and E = {x1, x2, ..., xn} ⊂ [0, 1]d .

A picks out a subset F from E if F = A ∩ E with A ∈ A.

A shatters E if each of its subsets can be picked out in this manner.

The VC -index V (A) of A is the smallest n for which no set of size n is shattered by
A.

A is called a VC -class if its index is finite.

If A is a VC -class then for any ε > 0,

N (A, ρ, ε) ≤ KV (A)(4e)V (A)

(
1

ε

)2(V (A)−1)

.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 25 / 48



Weak Invariance Principle

VC-classes of sets:

Let A ⊂ P
(
[0, 1]d

)
and E = {x1, x2, ..., xn} ⊂ [0, 1]d .

A picks out a subset F from E if F = A ∩ E with A ∈ A.

A shatters E if each of its subsets can be picked out in this manner.

The VC -index V (A) of A is the smallest n for which no set of size n is shattered by
A.

A is called a VC -class if its index is finite.

If A is a VC -class then for any ε > 0,

N (A, ρ, ε) ≤ KV (A)(4e)V (A)

(
1

ε

)2(V (A)−1)

.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 25 / 48



Weak Invariance Principle

VC-classes of sets:

Let A ⊂ P
(
[0, 1]d

)
and E = {x1, x2, ..., xn} ⊂ [0, 1]d .

A picks out a subset F from E if F = A ∩ E with A ∈ A.

A shatters E if each of its subsets can be picked out in this manner.

The VC -index V (A) of A is the smallest n for which no set of size n is shattered by
A.

A is called a VC -class if its index is finite.

If A is a VC -class then for any ε > 0,

N (A, ρ, ε) ≤ KV (A)(4e)V (A)

(
1

ε

)2(V (A)−1)

.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 25 / 48



Weak Invariance Principle

VC-classes of sets:

Let A ⊂ P
(
[0, 1]d

)
and E = {x1, x2, ..., xn} ⊂ [0, 1]d .

A picks out a subset F from E if F = A ∩ E with A ∈ A.

A shatters E if each of its subsets can be picked out in this manner.

The VC -index V (A) of A is the smallest n for which no set of size n is shattered by
A.

A is called a VC -class if its index is finite.

If A is a VC -class then for any ε > 0,

N (A, ρ, ε) ≤ KV (A)(4e)V (A)

(
1

ε

)2(V (A)−1)

.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 25 / 48



Weak Invariance Principle

VC-classes of sets:

Let A ⊂ P
(
[0, 1]d

)
and E = {x1, x2, ..., xn} ⊂ [0, 1]d .

A picks out a subset F from E if F = A ∩ E with A ∈ A.

A shatters E if each of its subsets can be picked out in this manner.

The VC -index V (A) of A is the smallest n for which no set of size n is shattered by
A.

A is called a VC -class if its index is finite.

If A is a VC -class then for any ε > 0,

N (A, ρ, ε) ≤ KV (A)(4e)V (A)

(
1

ε

)2(V (A)−1)

.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 25 / 48



Weak Invariance Principle

VC-classes of sets:

Let A ⊂ P
(
[0, 1]d

)
and E = {x1, x2, ..., xn} ⊂ [0, 1]d .

A picks out a subset F from E if F = A ∩ E with A ∈ A.

A shatters E if each of its subsets can be picked out in this manner.

The VC -index V (A) of A is the smallest n for which no set of size n is shattered by
A.

A is called a VC -class if its index is finite.

If A is a VC -class then for any ε > 0,

N (A, ρ, ε) ≤ KV (A)(4e)V (A)

(
1

ε

)2(V (A)−1)

.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 25 / 48



Weak Invariance Principle

Let A ⊂ B
(
[0, 1]d

)
such that one of the following holds:

(A1) A is a VC -class of index V , X0 ∈ Lp and ∆p :=
∑

i∈Zd δi,p <∞ with p > 2(V − 1).

(A2) There exists θ > 0 and 0 < q < 2 such that E
(

exp(θ|X0|β(q))
)
<∞ where

β(q) = 2q/(2− q), ∆ψβ(q)
:=
∑

i∈Zd δi,ψβ(q)
<∞ and∫ 1

0

(H(A, ρ, ε))1/q dε <∞.

(A3) X0 ∈ L∞, ∆∞ :=
∑

i∈Zd δi,∞ <∞ and∫ 1

0

√
H(A, ρ, ε) dε <∞.
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Weak Invariance Principle

Theorem (E.M., Volný, Wu (2013))

Let A ⊂ B
(
[0, 1]d

)
and assume that (A1), (A2) or (A3) holds. Let (Xi )i∈Zd be a

centered random field of the form

Xi = g(εi−s ; s ∈ Zd)

Then {n−d/2Sn(A) ; A ∈ A} converge in distribution in C(A) to σW where W is an
A-indexed standard Brownian motion and σ2 =

∑
k∈Zd E (X0Xk).

Biermé and Durieu (2015) extended this result by considering

Sn(A) =
∑

i∈{1,...,n}d
µ(nA ∩ Ri )Xi

where µ is a σ-finite measure on Rd absolutely continuous with respect to the Lebesgue
measure and such that µ(nA) = nβµ(A) for some β > 0. In this case, the limit process is
a centered Gaussian process (W (A))A∈A such that Cov(W (A),W (B)) = µ(A ∩ B).
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Weak Invariance Principle

If A = Qd then p > 2(V − 1) becomes p > 2d .

Question : Is it possible to obtain a WIP for A = Qd when p = 2 ?
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Commuting filtration

Let d be a positive integer.

We denote by 〈d〉 the set {1, . . . , d}.
For any s = (s1, . . . , sd) and any t = (t1, . . . , td) in Zd , we write s � t (resp. s ≺ t,
s � t and s � t) if and only if sk 6 tk (resp. sk < tk , sk > tk and sk > tk) for any k
in 〈d〉.
We denote also s ∧ t = (s1 ∧ t1, . . . , sd ∧ td).

Definition (Cairoli (1969))

Let (Ω,F , µ) be a probability space. A family (Gi )i∈Zd of σ-algebras is a commuting
filtration if Gi ⊂ Gj ⊂ F for any i and j in Zd such that i � j and

E (E (Z | Gs) | Gt) = E (Z | Gs∧t) a.s.

for any s and t in Zd and any bounded random variable Z .

This is also known as the F4 condition.

Example: if (εj)j∈Zd is an independent random field and Fi := σ(εj , j ≺ i), then (Fi )i∈Zd

is a commuting filtration.
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Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let (Ω,F , µ) be a probability space. A random field (Xk)k∈Zd is an
orthomartingale-difference (OMD) random field if there exists a commuting filtration
(Gi )i∈Zd such that Xk belongs to L1(Ω,Gk , µ)	 L1(Ω,Gl , µ) a.s. for any l � k and k in
Zd .

For any k in Zd , T k : Ω→ Ω is a measure-preserving operator satisfying
T i ◦ T j = T i+j for any i and j in Zd ;

for any s in 〈d〉, we denote Ts = T es where es = (e
(1)
s , . . . , e

(d)
s ) is the unique

element of Zd such that e
(s)
s = 1 and e

(i)
s = 0 for any i in 〈d〉\{s};

Us is the operator defined by Ush = h ◦ Ts for any function h : Ω→ R;

UJ is the product operator Πs∈JUs for any ∅ ( J ⊂ 〈d〉.
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Main result

Theorem (EM, Giraudo (2015))

Let p > 1 and let M⊂ F be a σ-algebra such that (T−iM)i∈Zd is a commuting
filtration. If f belongs to Lp(Ω,M, µ)	 Lp(Ω,∩k∈NdT kM, µ) and

(OMPC)
∑
k∈Nd

∥∥∥E(f | T kM
)∥∥∥

p
<∞

then f admits the decomposition

(OMCD) f = m +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)mJ +
d∏

s=1

(I − Us)g ,

where

m belongs to Lp(Ω,M, µ),

g belongs to Lp(Ω,
∏d

s=1 TsM, µ),

mJ belongs to Lp(Ω,
∏

s∈J TsM, µ),

(U im)i∈Zd and
(
U i

JcmJ

)
i∈Zd−|J| are OMD random fields.
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Main result

If d = 1, our result reduces to Gordin’s result.

If d = 2 then (OMCD) reduces to

f = m + (I − U1)m1 + (I − U2)m2 + (I − U1)(I − U2)g ,

where (U im)i∈Z2 is an OMD random field and (Uk
2 m1)k∈Z and (Uk

1 m2)k∈Z are MD
sequences.

If d = 3 then (OMCD) becomes

f = m + (I − U1)m1 + (I − U2)m2 + (I − U3)m3

+ (I − U1)(I − U2)m{1,2} + (I − U1)(I − U3)m{1,3} + (I − U2)(I − U3)m{2,3}

+ (I − U1)(I − U2)(I − U3)g

where (U im)i∈Z3 , (U i
{2,3}m1)i∈Z2 , (U i

{1,3}m2)i∈Z2 and (U i
{1,2}m3)i∈Z2 are OMD random

fields and (Uk
1 m{2,3})k∈Z, (Uk

2 m{1,3})k∈Z and (Uk
3 m{1,2})k∈Z are MD sequences.
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Linear Random Fields

Proposition

Let (εi )i∈Zd be an iid real random field defined on (Ω,F , µ) such that ε0 has zero mean
and belongs to Lp(Ω,F , µ) for some p > 2. Consider the linear random field (Xk)k∈Zd

defined for any k in Zd by Xk =
∑

j∈Nd ajεk−j where (aj)j∈Nd is a family of real numbers

satisfying
∑

j∈Nd a
2
j <∞. Then the condition (OMPC) holds if and only if

∑
k∈Nd

√∑
j<k

a2
j <∞.
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Proof of the main result

The proof is done by induction on d .

Proposition

Let d be a positive integer. Let p > 1 and M⊂ F such that (T−iM)i∈Zd+1 is a
commuting filtration. Assume that f belongs to Lp(Ω,M, µ)	 Lp(Ω,∩k∈Nd+1T kM, µ)
and ∑

k∈Nd+1

∥∥∥E(f | T kM
)∥∥∥

p
<∞.

Then there exist M ∈ Lp(Ω,M, µ)	 Lp(Ω,Td+1M, µ) and G ∈ Lp(Ω,Td+1M, µ) such
that

f = M + G − G ◦ Td+1

and ∑
k∈Nd

∥∥∥E(M | T (k,0)M
)∥∥∥

p
+
∥∥∥E(G | T (k,0)M

)∥∥∥
p
<∞.
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Proof of the main result. For d = 1, the result reduces to Gordin’s theorem.

Let d be a positive integer and assume the result is true for d .

Let p > 1 and let M⊂ F such that (T−iM)i∈Zd+1 is a commuting filtration.

Let f in Lp(Ω,M, µ) such that∑
k∈Nd+1

∥∥∥E(f | T kM
)∥∥∥

p
<∞.

By the previous proposition, there exist M ∈ Lp(Ω,M, µ)	 Lp(Ω,Td+1M, µ) and
G ∈ Lp(Ω,Td+1M, µ) such that

f = M + G − G ◦ Td+1

and ∑
k∈Nd

∥∥∥E(M | T (k,0)M
)∥∥∥

p
+
∥∥∥E(G | T (k,0)M

)∥∥∥
p
<∞.
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So, by the induction hypothesis, we have

M = m′ +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)m
′
J +

d∏
s=1

(I − Us)g
′,

G = m′′ +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)m
′′
J +

d∏
s=1

(I − Us)g
′′

with

m′ and m′′ in Lp(Ω,M, µ)	 Lp(Ω,TiM, µ) for each i in 〈d〉.
m′J and m′′J in Lp(Ω,

∏
s∈J TsM, µ)	 Lp(Ω,Ti

∏
s∈J TsM, µ) for each i in 〈d〉 \ J.

g ′ and g ′′ belong to Lp(Ω,
∏d

s=1 TsM, µ);
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g ′ and g ′′ belong to Lp(Ω,
∏d

s=1 TsM, µ);
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Since E[M | Td+1M] = 0 and

M = m′ +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)m
′
J +

d∏
s=1

(I − Us)g
′,

we derive

E[m′ | Td+1M] = −
∑
∅(J(〈d〉

E

[∏
s∈J

(I − Us)m
′
J | Td+1M

]
− E

[
d∏

s=1

(I − Us)g
′ | Td+1M

]
.

Moreover,

E

[∏
s∈J

(I − Us)m
′
J | Td+1M

]
= E

[∑
A⊂J

(−1)|A|
∏
s∈A

Usm
′
J | Td+1M

]

=
∑
A⊂J

(−1)|A|E

[∏
s∈A

Usm
′
J | Td+1M

]

=
∑
A⊂J

(−1)|A|
∏
s∈A

UsE

[
m′J |

∏
s∈A

TsTd+1M

]
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So, we have

E

[∏
s∈J

(I − Us)m
′
J | Td+1M

]
=
∑
A⊂J

(−1)|A|
∏
s∈A

UsE

[
m′J |

∏
s∈A

TsTd+1M

]
.

Let A ⊂ J be fixed. Since (T−kM)k∈Zd+1 is a commuting filtration, we have

E

[
m′J |

∏
s∈A

TsTd+1M

]
= E

[
E

[
m′J |

∏
s∈A

TsM

]
| Td+1M

]
.

Using the measurability of m′J with respect to
∏

s∈A TsM, we obtain

E

[
m′J |

∏
s∈A

TsTd+1M

]
= E[m′J | Td+1M].

Consequently,

E

[∏
s∈J

(I − Us)m
′
J | Td+1M

]
=
∏
s∈J

(I − Us)E
[
m′J | Td+1M

]
.

Similarly, since g ′ is
∏d

s=1 TsM-measurable, we have also

E

[
d∏

s=1

(I − Us)g
′ | Td+1M

]
=

d∏
s=1

(I − Us)E
[
g ′ | Td+1M

]
.
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Consequently,

E[m′ | Td+1M] = −
∑
∅(J(〈d〉

∏
s∈J

(I − Us)E
[
m′J | Td+1M

]
−

d∏
s=1

(I − Us)E
[
g ′ | Td+1M

]
.

So, denoting m := m′ − E[m′ | Td+1M] and keeping in mind that

M = m′ +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)m
′
J +

d∏
s=1

(I − Us)g
′,

we obtain

M = m+
∑
∅(J(〈d〉

∏
s∈J

(I−Us)
(
m′J − E

[
m′J | Td+1M

])
+

d∏
s=1

(I−Us)
(
g ′ − E

[
g ′ | Td+1M

])
where m is M-measurable and E[m | TsM] = 0 for each s in 〈d + 1〉.
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So, we have f = M + G − G ◦ Td+1,

M = m+
∑
∅(J(〈d〉

∏
s∈J

(I−Us)
(
m′J − E

[
m′J | Td+1M

])
+

d∏
s=1

(I−Us)
(
g ′ − E

[
g ′ | Td+1M

])
and

G = m′′ +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)m
′′
J +

d∏
s=1

(I − Us)g
′′.

That is,

f = m +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)
(
m′J − E

[
m′J | Td+1M

])
+

d∏
s=1

(I − Us)
(
g ′ − E

[
g ′ | Td+1M

])

+ (I − Ud+1)

m′′ +
∑
∅(J(〈d〉

∏
s∈J

(I − Us)m
′′
J +

d∏
s=1

(I − Us)g
′′

 .
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Indeed, let ∅ ( J ( 〈d + 1〉 be fixed.

If d + 1 ∈ J, we denote

mJ =

{
m′′ if J = {d + 1}
m′′J\{d+1} if J \ {d + 1} 6= ∅

and if d + 1 /∈ J, we denote

mJ =

{
m′J − E [m′J | Td+1M] if J 6= 〈d〉
g ′ − E [g ′ | Td+1M] if J = 〈d〉.

Finally, denoting g = g ′′, we obtain

f = m +
∑

∅(J(〈d+1〉

∏
s∈J

(I − Us)mJ +
d+1∏
s=1

(I − Us)g . �
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Moment inequalities

Proposition

Let (Xi )i∈Zd be an OMD random field. There exists a positive constant κ such that for
any p > 2 and any n in Nd ,

(MI)

∥∥∥∥∥∥
∑

04k4n

Xk

∥∥∥∥∥∥
p

6 κpd/2

 ∑
04k4n

‖Xk‖2
p

1/2

and the constant pd/2 in (MI) is optimal in the following sense: there exists a stationary
OMD random field (Zk)k∈Zd with ‖Z0‖∞ = 1 and a positive constant κ such that for any
p > 2

inf

C > 0 ;

∥∥∥∥∥∥
∑

04k4n

Zk

∥∥∥∥∥∥
p

6 C

 ∑
04k4n

‖Zk‖2
p

1/2

∀n ∈ Nd

 > κpd/2.
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Moment inequalities

Proposition

Let (Xi )i∈Zd be a stationary real random field defined on a probability space (Ω,F , µ)
and (Fi )i∈Zd be a commuting filtration such that Xi is Fi -measurable for each i in Zd .

If there exists p > 2 such that X0 belongs to Lp(Ω,F0, µ)	 Lp(Ω,∩k∈NdF−k , µ) and∑
k∈Nd

‖E (X0 | F−k)‖p <∞

then for any n = (n1, ..., nd) in Nd ,∥∥∥∥∥∥
∑

04k4n

Xk

∥∥∥∥∥∥
p

6 Cd p
d/2 |n|d/2

∑
k∈Nd

‖E (X0 | F−k)‖p

where |n| =
∏d

i=1 ni and Cd is a positive constant depending only on d .
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Weak Invariance Principle

For any positive integer n and any t in [0, 1]d , we denote

Sn(t) =
∑

i∈〈n〉d
λ([0, nt] ∩ Ri )Xi

where λ is the Lebesgue measure on Rd and Ri = (i1 − 1, i1]× · · · × (id − 1, id ].

W is a standard Brownian sheet and C([0, 1]d) equipped with the uniform norm
‖.‖∞ is the space of continuous real functions defined on [0, 1]d .

Theorem (EM, Giraudo (2015))

Let (εj)j∈Zd be an iid real random field defined on a probability space (Ω,F , µ). Consider
the commuting filtration (Fi )i∈Zd where Fi is the σ-algebra generated by εj for j � i . Let
(Xi )i∈Zd be a stationary real random field such that Xi is Fi -measurable for each i in Zd

and ∑
k∈Nd

‖E (X0 | F−k)‖2 <∞.

Then, {n−d/2Sn(t) ; t ∈ [0, 1]d} converges in distribution in C([0, 1]d) to
√
E (X 2

0 )W .
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Related results

Under the condition ∑
k∈Nd

‖E (Xk |F0)‖p
|k|1/2

<∞

Wang and Woodroofe (2013) obtained the CLT for p = 2 and the WIP for p > 2.

For a filtration (Fj)j∈Zd and q ∈ 〈d〉, define

F (q)
l :=

∨
i∈Zd ,iq6l

Fi , P
(q)
l (f ) := E

(
f | F (q)

l

)
and Pj :=

d∏
q=1

P
(q)
jq
.

Volný and Wang (2014) obtained the WIP under the weaker condition∑
j∈Zd

‖Pj(f )‖2 <∞.
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Related results

Cuny, Dedecker and Volný (2016) obtained recently a WIP for fields of commuting
transformations via martingale approximation under a condition in the spirit of
Hannan.

Volný (2016) obtained recently the orthomartingale-coboundary decomposition of a
regular and square integrable function f under the condition∑

j∈Zd

j2
1 j

2
2 ...j

2
d ‖Pj(f )‖2

2 <∞.
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Thank you !
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