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Preliminary notations

m (Q, F, ) is a probability space;
m T :Q — Qis a measurable function such that u = Ty;
m M C Fis a o-algebra such that M C T~ M;

m for p € [1,00] and B C A two sub-o-algebras of F,

LP(Q,A,u) o LP(Q,B,u) = {f € L?, f is A-measurable and E (f | B) =0} .

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 3/48



Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))
Let f € LP(Q, M, 1) © LP(Q,Niez T "M, 1) such that

(PC) 3 H]E (f | T“M)
k>0

< 00
P
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(PC) 3 HIE (f | T*M)
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Martingale-coboundary decomposition for strictly stationary sequences

Theorem (Gordin (1969))
Let f € LP(Q, M, 1) ©LP(Q, Nicz T~ M, ) such that

(PC) 3 HIE (f | T*M)

then there exists m in LP(QQ, M, u) © LP(Q2, TM, u) and g in LP(Q, TM, p) such that

< 00
P

(MCD) f=m+g—goT.

The term g — g o T is called a coboundary.
The equation (MCD) is called the martingale-coboundary decomposition of f.

(mo T')iez is a martingale-difference sequence with respect to the filtration (T =" M);cz.
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Central Limit Theorem

For any h: Q — R measurable, we denote S,(h) := 37" ho T'.
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\/ES,,(m) — +/E[m?] - N(0,1) in distribution;
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Central Limit Theorem

For any h: Q — R measurable, we denote S,(h) := 37" ho T'.
m From the Billingsley-lbragimov central limit theorem, we have

1

\/ES,,(m) — E[m?] - N(0,1) in distribution;

m If f: Q — R satisfies (PC) then S,(f) = Sp(m)+g—go T"
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Central Limit Theorem

For any h: Q — R measurable, we denote S,(h) := 37" ho T'.

m From the Billingsley-lbragimov central limit theorem, we have
1
TSn(m) — E[m?] - N(0,1) in distribution;
n

m If f: Q — R satisfies (PC) then S,(f) = Sp(m)+g—go T"
m Since (g — g o T")/+/n — 0 in probability, it follows that
1
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Weak Invariance Principle

For any h: Q — R measurable and any t in [0, 1], we define
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Weak Invariance Principle

For any h: Q — R measurable and any t in [0, 1], we define

[nt]

Sn(h, t) = Z hoT! + (nt _ [nt])ho T[nt]+1.

j=1
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Weak Invariance Principle

For any h: Q — R measurable and any t in [0, 1], we define

[nt]

Sn(h,t) := Zho T+ (nt — [nt])ho Tleg+1

j=1
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If f: Q — R satisfies (PC) then
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where W denotes a standard Brownian motion.
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Weak Invariance Principle

For any h: Q — R measurable and any t in [0, 1], we define

[nt]
Sa(h,t) == ho T+ (nt — [nt])ho TI"IH,

Jj=1
If f: Q — R satisfies (PC) then
n25,(f,.) = /E[m?] - W in distribution in C[0,1]

where W denotes a standard Brownian motion.

This result reduces to the classical Donsker WIP when (f o T*),cz are iid.

M. EI Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016

6/ 48



Weak Invariance Principle

(Xk)keze a stationary real random field.
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Weak Invariance Principle

(Xk)keze a stationary real random field.
A a class of Borel subsets of [0, 1]¢
p(A, B) = \/A(AAB).

For any A € A and any n € N*,

Sa(A) = > AnANR)X;

ie{1,...,n}d

where R; =]ir — 1,i1] x ...x]ig — 1,ig] and X is the Lebesgue measure on R?.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 7/ 48



Weak Invariance Principle

Donsker line:
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Weak Invariance Principle

Donsker line:

For any t € [0,1],

[nt] n
Sa(t) = Zx,- + (nt — [nt]) Xjng 1 = Z A(n[0, t] N [i—1,i]) X;.

So,
{n7125,(8); t e [0.1]} = {n/?5,(A); A€ Qi)

where Q1 = {[0, t]; t € [0,1]}.
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Weak Invariance Principle

Definition (Metric entropy)
H(A, p, €) is the logarithm of the smallest number of open balls of radius € with respect

to p which form a covering of A.
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Weak Invariance Principle

Definition (Metric entropy)
H(A, p, €) is the logarithm of the smallest number of open balls of radius € with respect
to p which form a covering of A.

Assume that A is totally bounded with inclusion i.e. for each positive € there exists a
finite collection .A(€) of Borel subsets of [0, 1] such that for any A € A, there exist A;
and Az in A(e) with A1 C AC Ay and p(A1, Az) <e.
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Weak Invariance Principle

Definition (Metric entropy)
H(A, p, €) is the logarithm of the smallest number of open balls of radius € with respect
to p which form a covering of A.

Assume that A is totally bounded with inclusion i.e. for each positive € there exists a
finite collection .A(€) of Borel subsets of [0, 1] such that for any A € A, there exist A;
and Az in A(e) with A1 C AC Ay and p(A1, Az) <e.

Definition (Bracketing entropy)
H(A, p, €) is the logarithm of the cardinality of the smallest collection A(¢).
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Weak Invariance Principle

Definition (Brownian motion indexed by A)
A standard Brownian motion indexed by A is a mean zero Gaussian process W with
sample paths in C(A) and Cov(W(A),W(B))= A(AN B).
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Weak Invariance Principle

Definition (Brownian motion indexed by A)
A standard Brownian motion indexed by A is a mean zero Gaussian process W with
sample paths in C(A) and Cov(W(A),W(B))= A(AN B).

From Dudley (1973), we know that such a process exists if

1
/ VH(A, p,€) de < co.
0
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Weak Invariance Principle

Definition
We say that the weak invariance principle (WIP) holds if the sequence
{n=9/25,(A); A € A} converges in distribution to a mixture of A-indexed Brownian

motions in the space C(A).
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Weak Invariance Principle

Definition

We say that the weak invariance principle (WIP) holds if the sequence
{n=9/25,(A); A € A} converges in distribution to a mixture of A-indexed Brownian
motions in the space C(.A).

Theorem (Bass (1985), Alexander and Pyke (1986))
(Xk)eza centered ii.d. random field such that Xo € L? and

1
/ VH(A, p,e) de < 0
0

then the WIP holds.
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Weak Invariance Principle

Theorem (E.M., Ouchti (2006))

For any positive real number p, there exists a stationary field (Xi),czs of independent,
symmetric and p-integrable real random variables and a collection A of Borel subsets of
[0,1]? which satisfies the condition

1
/ VH(A, p,e)de < o0
0

such that {n~9/2S,(A); A € A} do not be tight in the space C(A).
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Weak Invariance Principle

Theorem (Dedecker (2001))

(X«)kezd a centered stationary random field such that Xo € L* and

D IXEXo|Fi)lloo < 00

k<jex0

with Fie = o(Xj; j <tex 0; |j| > |k|) and such that

1
/ VH(A, p,e)de < o0
0

then the WIP holds.
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Weak Invariance Principle

Theorem (Dedecker (2001))
(Xk)xeze a centered stationary random field such that Xo € LP for p > 2 and

D IXKE|F)lle < oo
k<lex0

with Fie = o(Xj; j <iex 0; |j| > |k|) then the WIP holds for A = Qgq.
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Weak Invariance Principle

Let ¢ : Ry — R be a Young function.
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Weak Invariance Principle

Let ¢ : Ry — R be a Young function.

We consider the Orlicz space L, defined by
Ly ={Z[3c >0 E(y(|Z]/c)) < oo}
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Weak Invariance Principle

Let ¢ : Ry — R be a Young function.

We consider the Orlicz space L, defined by
Ly ={Z[3c >0 E((|Z]/c)) < oo}

and the Orlicz norm

[Z]ly = inf{ e > 0; E(4(]2]/¢)) <1}

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016

15 / 48



Weak Invariance Principle

Let ¢ : Ry — R be a Young function.

We consider the Orlicz space L, defined by

Ly ={Z|3c>0 E(y(|Z]/c)) < oo}
and the Orlicz norm

[Z]ly = inf{c >0; E(¢(]Z]/c)) <1}

If p(x) = xP then Ly =L, and ||. |l4 = |- |5
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Weak Invariance Principle

For any x > 0,
Pa(x) = exp(x’) — 1.
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Weak Invariance Principle

For any x > 0,
Pa(x) = exp(x®) — 1.

For any 8 > 0 and any x > 0,
¥ (x) = exp((x + hp)”) — exp(h})

where hs = ((1 — 8)/B8)* Liocp<1y-
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Weak Invariance Principle

Theorem (E.M. (2002))

(X«)kezd a centered and stationary real random field. If there exist 0 < g <2 and 6 > 0
such that E[exp(6]Xo|??)] < oo and

>

k<jex0

where B(q) =2q/(2 — q) and

2
|XkE(X0|.7'-k)| < 00

Y a(q)

1
/ (H(A, p, €))7 de < o
0

then the WIP holds.
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Weak Invariance Principle

Theorem (E.M., Volny (2002))

For any nonnegative real p, there exist a p-integrable stationary real random field
(Xk)xeze and a collection A of regular Borel subsets of [0,1]? such that

m For any k in Z°, E(Xk|o(Xi; i # k)) = 0. We say that the random field (X)xcza is
a strong martingale-difference random field.

m The collection A satisfies the bracketing entropy condition

1
/ VH(A p,2) de < oo.
0

m The partial sum process {n~9/2S,(A); A € A} is not tight in the space C(A).
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Weak Invariance Principle

Theorem (E.M., Ouchti (2006))

Let (Xi)xeza be a stationary field of martingale-difference random variables with finite
variance such that E (X02|0(X,- ; i <iez 0)) is bounded almost surely and assume that

1
/ VH(A, p, ) de < oo,
0

then the WIP holds.
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Weak Invariance Principle

Let (Xi);czs be centered and defined by

X = g(ei—s; s € Z%).
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X = g(ei—s; s € Z%).

where

m (gj)jeze is an i.i.d. random field
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Weak Invariance Principle

Let (Xi);czs be centered and defined by
X; = glei—s; s € Z%).

where

m (gj)jeze is an i.i.d. random field

m g is a measurable function.
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Weak Invariance Principle

Let (E})jezd be an i.i.d. copy of (&);cz4-
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Weak Invariance Principle

Let (E})jezd be an i.i.d. copy of (&);cz4-

We define the coupled version X;* of X; by

X' =g (57—5; s € Zd)
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Weak Invariance Principle

Let (E})jezd be an i.i.d. copy of (&);cz4-

We define the coupled version X" of X; by

X' =g (57—5; s € Zd)

where for any j in Z7,

o g ifj=0
i g ifj#0
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Weak Invariance Principle

Let ¥ : Ry — R be a Young function.
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Weak Invariance Principle

Let ¥ : Ry — R be a Young function.

Following Wu (2005), we consider the physical dependence measure coefficients §;

defined by
i = (|1 Xi = X[ -
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Weak Invariance Principle

Let ¥ : Ry — R be a Young function.

Following Wu (2005), we consider the physical dependence measure coefficients §;
defined by
Sip = [[1Xi = X' [|ap-

If ¥(x) = xP, we denote d;p in place of §; .
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Weak Invariance Principle

Let ¢ : Ry — R be a Young function.

Following Wu (2005), we consider the physical dependence measure coefficients 0;,y

defined by
i = (|1 Xi = X[ -

If ¥(x) = xP, we denote d;p in place of §; .
The random field X defined by

Xi=g (6,‘75; s e Zd)
is said to be -stable if

Ay = ji: 07, < 00.

iezd
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Weak Invariance Principle

Example : (gi);czqs i.i.d with &; € LP, p > 2. The linear random field X defined for any i
in Z9 by

is of the form X; = g(ei—s,s € Zd) with a linear function g.
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Example : (gi);czqs i.i.d with &; € LP, p > 2. The linear random field X defined for any i

in Z9 by

is of the form X; = g(ei—s,s € Zd) with a linear function g.

For any i in Z7,
’
i,p = laillleo — €ollp-
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Weak Invariance Principle

Example : (€i);cze i.i.d with €; € LP, p > 2. The linear random field X defined for any i

in Z9 by

Xi = E as€j—s

sezd

is of the form X; = g(ei—s,s € Zd) with a linear function g.

For any i in Z7,
!’
8i,p = |aillleo — €oll,-

Z |a,-| < 0.

iczd

So, X is p-stable as soon as
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Weak Invariance Principle

Example : (€i);cze i.i.d with €; € LP, p > 2. The linear random field X defined for any i

in Z9 by

Xi = E as€j—s

sezd

is of the form X; = g(E,-,s, se Zd) with a linear function g.

For any i in Z7,
!’
8i,p = |aillleo — €oll,-

Z |a,-| < 0.

iczd

So, X is p-stable as soon as

If K is a Lipschitz function then K(X;) is also p-stable under the above condition.
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Weak Invariance Principle

Proposition (E.M., Volny, Wu (2013))
Let T be a finite subset of % and let (a;)icr be a family of real numbers. For any p > 2,
we have

1

2
E aiXi|| < 2p§ a,2 A,
ier o ier

where Ap = .54 0ip.
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Weak Invariance Principle

VC-classes of sets:
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Weak Invariance Principle

VC-classes of sets:

Let A C P ([0, 1]d) and E = {x1, %, ..., x.} C [0,1]°.
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Weak Invariance Principle

VC-classes of sets:
Let A C P ([0,1]9) and E = {x1, %, ..., %} C [0, 1]%.
m A picks out a subset F from E if F = AN E with A € A.

m A shatters E if each of its subsets can be picked out in this manner.

m The VC-index V(A) of A is the smallest n for which no set of size n is shattered by
A.
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Weak Invariance Principle

VC-classes of sets:

Let A C P ([0,1]9) and E = {x1, %, ..., %} C [0, 1]%.

m A picks out a subset F from E if F = AN E with A € A.
m A shatters E if each of its subsets can be picked out in this manner.

m The VC-index V(A) of A is the smallest n for which no set of size n is shattered by
A.

m A is called a VC-class if its index is finite.
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Weak Invariance Principle

VC-classes of sets:

Let A C P ([0,1]9) and E = {x1, %, ..., %} C [0, 1]%.

m A picks out a subset F from E if F= AN E with A € A.

m A shatters E if each of its subsets can be picked out in this manner.

m The VC-index V(A) of A is the smallest n for which no set of size n is shattered by

A.
m A is called a VC-class if its index is finite.

m If Ais a VC-class then for any € > 0,

2(V(A)-1)
N (A, p,e) < KV(A)(4e)"™ (1) .

£

M. ElI Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016

25 / 48



Weak Invariance Principle

Let A C B ([0,1]9) such that one of the following holds:
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Weak Invariance Principle

Let A C B ([0,1]9) such that one of the following holds:

(A1) Ais a VC-class of index V, Xo € L? and A, := 7,54 0ip < 0o with p > 2(V —1).
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Weak Invariance Principle

Let A C B ([0,1]9) such that one of the following holds:

(A1) Ais a VC-class of index V, Xo € L? and A, := 7,54 0ip < 0o with p > 2(V —1).

(A2) There exists # > 0 and 0 < g < 2 such that E (exp(9|Xo|B(q))) < o0 where
B(q) =2q/(2 = q), Dy, = D iczd Oipy < 00 and

1
/ (H(A, p, &)V de < oo.
0
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Weak Invariance Principle

Let A C B ([0,1]9) such that one of the following holds:

(A1) Ais a VC-class of index V, Xo € L? and A, := 7,54 0ip < 0o with p > 2(V —1).

(A2) There exists # > 0 and 0 < g < 2 such that E (exp(9|Xo|B(q))) < o0 where
B(a) =2q/(2=q), Duyy = Xicza divppq < 00 and

1
/ (H(A, p, )9 de < oo.
0

(A3) Xo € L™, Aco =3 ;cpa 000 < 00 and

1
/ VH(A, p,e) de < 0.
0
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Weak Invariance Principle

Theorem (E.M., Volny, Wu (2013))

Let A C B ([0,1]9) and assume that (A1), (A2) or (A3) holds. Let (X;);czs be a
centered random field of the form

Xi =g(ei_s; s € Z9)

Then {n~%/25,(A); A € A} converge in distribution in C(A) to oW where W is an
A-indexed standard Brownian motion and o® =, _,4 E (XoXk).
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Weak Invariance Principle

Theorem (E.M., Volny, Wu (2013))

Let A C B ([0,1]9) and assume that (A1), (A2) or (A3) holds. Let (X;);czs be a
centered random field of the form

Xi=g(ei—s; s € Z%)

Then {n~%/25,(A); A € A} converge in distribution in C(A) to oW where W is an
A-indexed standard Brownian motion and o® =, _,4 E (XoXk).

Biermé and Durieu (2015) extended this result by considering

So(A)= > u(nANR)X;
ie{1,...,n}d

where s is a o-finite measure on R? absolutely continuous with respect to the Lebesgue
measure and such that (nA) = n”(A) for some 8 > 0. In this case, the limit process is
a centered Gaussian process (W/(A))ac.a such that Cov(W(A), W(B)) = u(AN B).
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Weak Invariance Principle

If A= Qg then p > 2(V — 1) becomes p > 2d.
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Weak Invariance Principle

If A= Qg then p > 2(V — 1) becomes p > 2d.

Question : Is it possible to obtain a WIP for A = Q4 when p =27

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 28 / 48



Commuting filtration

Let d be a positive integer.
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m We denote by (d) the set {1,...,d}.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 29 / 48



Commuting filtration

Let d be a positive integer.
m We denote by (d) the set {1,...,d}.

m Forany s = (s1,...,s4) and any t = (t1,..., ts) in Z9, we write s < t (resp. s < t,
s>t and s > t) if and only if s, < tx (resp. sk < tk, sk = tx and s > ti) for any k
in (d).
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s>t and s > t) if and only if s, < tx (resp. sk < tk, sk = tx and s > ti) for any k
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m We denote also sA t = (s1 A ty,...,Sq A tg).
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Commuting filtration

Let d be a positive integer.
m We denote by (d) the set {1,...,d}.

m Forany s = (s1,...,s4) and any t = (t1,..., ts) in Z9, we write s < t (resp. s < t,
s>t and s > t) if and only if s, < tx (resp. sk < tk, sk = tx and s > ti) for any k
in (d).

m We denote also sA t = (s1 A ty,...,Sq A tg).

Definition (Cairoli (1969))

Let (2, F, 1) be a probability space. A family (Gi);czs of o-algebras is a commuting
filtration if G C G; C F for any i and j in 79 such that i < j and

E(E(Z|Gs)|G) =E(Z]|Gsae) as.

for any s and t in Z¢ and any bounded random variable Z.
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Let (2, F, 1) be a probability space. A family (Gi);czs of o-algebras is a commuting
filtration if G; C G; C F for any i and j in 79 such that i < j and

E(E(Z|Gs)|G) =E(Z]|Gsae) as.

for any s and t in Z¢ and any bounded random variable Z.

This is also known as the F4 condition.
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Commuting filtration

Let d be a positive integer.
m We denote by (d) the set {1,...,d}.

m Forany s = (s1,...,s4) and any t = (t1,..., ts) in Z9, we write s < t (resp. s < t,
s>t and s > t) if and only if s, < tx (resp. sk < tk, sk = tx and s > ti) for any k
in (d).

m We denote also sA t = (s1 A ty,...,Sq A tg).

Definition (Cairoli (1969))

Let (2, F, 1) be a probability space. A family (Gi);czs of o-algebras is a commuting
filtration if G; C G; C F for any i and j in 79 such that i < j and

E(E(Z|Gs)|G) =E(Z]|Gsae) as.

for any s and t in Z¢ and any bounded random variable Z.

This is also known as the F4 condition.

Example: if (¢;);cze is an independent random field and F; := o (g;,j < i), then (Fj);czq
is a commuting filtration.
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Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let (2, F, ) be a probability space. A random field (Xi),cza is an
orthomartingale-difference (OMD) random field if there exists a commuting filtration
(Gi)icza such that X belongs to L'(Q, Gk, n) © LY(Q, G, 1) a.s. for any | # k and k in
z°.
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Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let (2, F, ) be a probability space. A random field (Xi),cza is an
orthomartingale-difference (OMD) random field if there exists a commuting filtration
(Gi)icza such that X belongs to L'(Q, Gk, n) © LY(Q, G, 1) a.s. for any | # k and k in
Zd

m For any k in Zf’, T¥:Q — Q is a measure-preserving operator satisfying
T'oT/=T" forany i and j in Z°
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Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let (2, F, ) be a probability space. A random field (Xi),cza is an
orthomartingale-difference (OMD) random field if there exists a commuting filtration
(Gi)icza such that X belongs to L'(Q, Gk, n) © LY(Q, G, 1) a.s. for any | # k and k in
Zd

m For any k in Zf’, T¥:Q — Q is a measure-preserving operator satisfying
T'oT/=T" forany i and j in Z°

m for any s in (d), we denote T, = T where e, = (e, ..., el”) is the unique

element of Z¢ such that e{) =1 and e”) = 0 for any i in (d)\{s};

S
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Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let (2, F, ) be a probability space. A random field (Xi),cza is an
orthomartingale-difference (OMD) random field if there exists a commuting filtration
(Gi)icza such that X belongs to L'(Q, Gk, n) © LY(Q, G, 1) a.s. for any | # k and k in
Zd

m For any k in Zf’, T¥:Q — Q is a measure-preserving operator satisfying
T'oT/=T" forany i and j in Z°

m for any s in (d), we denote T, = T where e, = (e, ..., el”) is the unique

element of Z¢ such that e{) =1 and e”) = 0 for any i in (d)\{s};

S

m U is the operator defined by Ush = ho T for any function h: Q — R;
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Orthomartingale-difference random fields

Definition (Cairoli (1969))

Let (2, F, ) be a probability space. A random field (Xi),cza is an
orthomartingale-difference (OMD) random field if there exists a commuting filtration
(Gi)icza such that X belongs to L'(Q, Gk, n) © LY(Q, G, 1) a.s. for any | # k and k in
Zd

For any k in Zf’, T¥:Q — Q is a measure-preserving operator satisfying
T'oT/=T" forany i and j in Z°

for any s in (d), we denote T, = T° where e, = (e, ..., el”) is the unique
element of Z¢ such that e{) =1 and e”) = 0 for any i in (d)\{s};

Us is the operator defined by Ush = ho T for any function h: Q — R;

U, is the product operator MNs¢,Us for any 0 C J C (d).
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Main result

Theorem (EM, Giraudo (2015))

Let p>1 and let M C F be a o-algebra such that (T”'/\/l),-ezd is a commuting
filtration. If f belongs to ILP(Q, M, u1) © LP(Q, Ngewe T*M, 1) and

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 31 /48



Main result

Theorem (EM, Giraudo (2015))

Let p>1 and let M C F be a o-algebra such that (T”'/\/l),-ezd is a commuting
filtration. If f belongs to ILP(Q, M, u1) © LP(Q, Ngewe T*M, 1) and

(OMPC) 3 HIE (f| T"M)H <o
keNd P

then f admits the decomposition
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Main result

Theorem (EM, Giraudo (2015))

Let p>1 and let M C F be a o-algebra such that (T ' M) z4 is a commuting
filtration. If f belongs to ILP(Q, M, u1) © LP(Q, Ngewe T*M, 1) and

(OMPC) 3 HE (1 T"M)H < o0
kend P
then f admits the decomposition

(OMCD) f=m+ > H/—U)mJ+H/—

DCJIC(d) sed

where
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(OMPC) 3 HE (1 T"M)H < o0
kend P
then f admits the decomposition

(OMCD) f=m+ > H/—U)mJ+H/—

DCJIC(d) sed

where
m m belongs to LP(Q, M, ),
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Main result

Theorem (EM, Giraudo (2015))

Let p>1 and let M C F be a o-algebra such that (T ' M) z4 is a commuting
filtration. If f belongs to ILP(Q, M, u1) © LP(Q, Ngewe T*M, 1) and

(OMPC) 3 HE (1 T"M)H < o0
kend P
then f admits the decomposition

(OMCD) f=m+ > HI—U)mJ—l-HI—

DCJIC(d) sed

where
m m belongs to LP(Q, M, ),
m g belongs to ILP(£2, ngl T M, ),
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Main result

Theorem (EM, Giraudo (2015))

Let p>1 and let M C F be a o-algebra such that (T ' M) z4 is a commuting
filtration. If f belongs to ILP(Q, M, u1) © LP(Q, Ngewe T*M, 1) and

(OMPC) 3 HE (1 T"M)H < o0
keNd P
then f admits the decomposition

(OMCD) f=m+ > HI—U)mJ—l-HI—

0CIC(d) s€J
where
m m belongs to LP(Q, M, ),
m g belongs to LP(Q, T[], T-M, ),
m my belongs to LP(Q, [, TsM, ),
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Main result

Theorem (EM, Giraudo (2015))

Let p>1 and let M C F be a o-algebra such that (T ' M) z4 is a commuting
filtration. If f belongs to ILP(Q, M, u1) © LP(Q, Ngewe T*M, 1) and

(OMPC) 3 HE (1 T"M)H < o0
keNd P
then f admits the decomposition

(OMCD) f=m+ > HI—U)mJ—l-HI—

0CIC(d) s€J
where
m m belongs to LP(Q, M, ),
m g belongs to LP(Q, T[], T-M, ),
m my belongs to LP(Q, [, TsM, ),
m (U'm);cza and (chmJ)ieZd—Ul are OMD random fields.
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Main result

If d =1, our result reduces to Gordin's result.
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Main result

If d =1, our result reduces to Gordin's result.
If d =2 then (OMCD) reduces to

f=m+ (I — Ul)m1 + (/ — Uz)mz + (/ — U1)(I — Uz)g,

where (U'm);cz2 is an OMD random field and (Ufmi)kez and (Ufmz)kez are MD
sequences.
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Main result

If d =1, our result reduces to Gordin's result.

If d =2 then (OMCD) reduces to
f=m+({—U)m+ (- U)m+ (I — V)l —U)g,

where (U'm);cz2 is an OMD random field and (Ufmi)kez and (Ufm2)kez are MD
sequences.

If d = 3 then (OMCD) becomes

f=m+ (I - Ul)m1 —+ (I - Uz)mg —+ (I - U3)m3
+ (I — Ul)(l — Uz)m{lyz} + (/ — U1)(/ — U3)m{173} + (/ — U2)(/ — U3)m{2,3}
+ (I = U)(l — Ua)(I — Us)g

where (Uim)iez3, (U£273}m1),‘622, (Uhj}mz),-ezz and (Uilyz}m3),‘€22 are OMD random
fields and (Uf mya 3y )kez, (USmy13y)kez and (Usmyy 2y )kez are MD sequences.
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Linear Random Fields

Proposition

Let (&i)icze be an iid real random field defined on (Q, F, i) such that eo has zero mean
and belongs to LP(Q, F, u) for some p > 2. Consider the linear random field (Xy)cz4
defined for any k in Z¢ by Xy = > jend aj€k—j where (aj);cne is a family of real numbers
satisfying 3 na a; < co. Then the condition (OMPC) holds if and only if

Z Zaf<oo.

keNd || jFk
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Proof of the main result

The proof is done by induction on d.
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Proof of the main result

The proof is done by induction on d.

Proposition

Let d be a positive integer. Let p > 1 and M C F such that (T"M),—ez‘w is a
commuting filtration. Assume that f belongs to LP(Q, M, u) © LP(Q, Nyenarr TEM, 1)

and
}:HEQ|ﬂwQ
keNd+1

Then there exist M € LP(Q2, M, u) © LP(Q, Tg1M, ) and G € LP(Q, Tg11 M, p) such
that

< 00.
P

f=M+G—Go Ty

2 [ (M1 7 OM)| + 2 (61 700)
kenNd P

and

< 0.
P
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Proof of the proposition. From Gordin's result, we know that f = M+ (/ — Ug+1)G with
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Proof of the proposition. From Gordin's result, we know that f = M+ (/ — Ug+1)G with

M:ZE(U{,HHM)—E(U{MH Td+1M) and G:ZE(U{,HH TdHM).

j=0 j=0
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M:ZE(U{,HHM)—E(U{MH Td+1M) and G:ZE(U{MH TdHM).

j=0 j=0

Let k = (ku, ..., kq) be fixed in N?. Since (T "M),czq4+1 is a commuting filtration
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Proof of the proposition. From Gordin's result, we know that f = M+ (/ — Ug+1)G with

M:ZE(U{,HHM)—E(U{MH Td+1M) and G:ZE(U{MH TosaM).

j=0 j=0

Let k = (ku, ..., kq) be fixed in N?. Since (T "M),czq4+1 is a commuting filtration

E(M| TEOM) =SBV | TEOM] = Y EUL f | TED M),

>0 >0
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Proof of the proposition. From Gordin's result, we know that f = M+ (/ — Ug+1)G with

M:ZE(U{,HHM)—E(U{MH Td+1M) and G:ZE(U{MH TosaM).

j=0 j=0

Let k = (ku, ..., kq) be fixed in N?. Since (T "M),czq4+1 is a commuting filtration

E(M| TEOM) =SBV | TEOM] = Y EUL f | TED M),

>0 >0

we derive
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Proof of the proposition. From Gordin's result, we know that f = M+ (/ — Ug+1)G with

M=3"E (U{,Hf | /\/l) ~E (U{,Hf | Td+1M) and G=Y E (U{,Hf | TaaM).
j20 j20
Let k = (ku, ..., kq) be fixed in N?. Since (T "M),czq4+1 is a commuting filtration
E(M| TEOM) =SBV | TEOM] = Y EUL f | TED M),
j20 j20

we derive

(1 700

p

<23 Bl | TOM| =237 Bl T
j=0 p =0 P
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Finally,
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Proof of the proposition. From Gordin's result, we know that f = M+ (/ — Ug+1)G with

M=3"E (Usf | M) —E (Upaf | TeaM)  and G =3 B (U f | TanM).

>0 >0

Let k = (ku, ..., kq) be fixed in N?. Since (T "M),czq4+1 is a commuting filtration

E(M| TEOM) =SBV | TEOM] = Y EUL f | TED M),
Jj=0 =0

we derive

(1 700

p

Finally,

3 HIE(M\ T(k’O)M)H <2 Z ZHE[H T M]H < 0.

keNd cNd j=0
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Proof of the proposition. From Gordin's result, we know that f = M+ (/ — Ug+1)G with

M=3"E (Usf | M) —E (Upaf | TeaM)  and G =3 B (U f | TanM).

>0 >0

Let k = (ku, ..., kq) be fixed in N?. Since (T "M),czq4+1 is a commuting filtration

E(M| TEOM) =SBV | TEOM] = Y EUL f | TED M),
Jj=0 =0

we derive

(1 700

p

Finally,

3 HIE(M\ T(k’O)M)H <2 Z ZHE[H T M]H < 0.

keNd cNd j=0

E(G| T("’O)M)

Similarly, we have also ), o < oo0. O
P
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Proof of the main result. For d = 1, the result reduces to Gordin's theorem.
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Proof of the main result. For d = 1, the result reduces to Gordin's theorem.

Let d be a positive integer and assume the result is true for d.
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Proof of the main result. For d = 1, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.

Let p > 1 and let M C F such that (T ~'M);czas1 is a commuting filtration.

M. ElI Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 36 /48



Proof of the main result. For d =1, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.
Let p > 1 and let M C F such that (T ~'M);czas1 is a commuting filtration.

Let f in LP(2, M, ) such that

3 HE (f | Tk/\/l)Hp < 0.

keNd+1
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Let f in LP(2, M, ) such that

kz HE (f | Tk/\/l)Hp < 0.

€Nd+1

By the previous proposition, there exist M € LP(Q, M, ) © LP(Q, Ty11M, ) and
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Let p > 1 and let M C F such that (T ~'M);czas1 is a commuting filtration.

Let f in LP(2, M, ) such that

kz HE (f | Tk/\/l)Hp < 0.

€Nd+1

By the previous proposition, there exist M € LP(Q, M, ) © LP(Q, Ty11M, ) and
G € LP(Q, Tg41M, p) such that

f=M+G—GOTd+1

and

M. ElI Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016

36 / 48



Proof of the main result. For d =1, the result reduces to Gordin's theorem.
Let d be a positive integer and assume the result is true for d.
Let p > 1 and let M C F such that (T ~'M);czas1 is a commuting filtration.

Let f in LP(2, M, ) such that

kz HE (f | Tk/\/l)Hp < 0.

€Nd+1

By the previous proposition, there exist M € LP(Q, M, ) © LP(Q, Ty11M, ) and
G € LP(Q, Tg41M, p) such that

f=M+G—GOTd+1

< 00.
P

> [ (M1 T oM 2 (e 1 7OM)
keNd i
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So, by the induction hypothesis, we have
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So, by the induction hypothesis, we have

d
M = m/ + Z H(I - Us)m_ll + H(I - Us)gl7

0CIC(d) s€J
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So, by the induction hypothesis, we have

d
M = m/ + Z H(I - Us)m_ll + H(I - Us)gl7

0CIC(d) s€J

d
G=m"+ > JJU-U)mj+]](1 - Us)g”
s=1

0CJIC(d) s€J
with
m m' and m” in LP(Q, M, 1) © LP(Q, T:M, u) for each i in (d).
m m)yand mf in LP(Q,[],c, ToM, n) © LP(Q, Ti [1,c, TsM, ) for each i in (d) \ J.
m g’ and g’ belong to LP(Q, [1, T-M, p);
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Since E[M | Tg;1M] =0 and

M=m'+ > H(I—Ust+H(I—U5 ,

PCJIC(d) sed
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Since E[M | Tg;1M] =0 and

M=m'+ > TJU-U) mJ+H(/—U5 ,
PCJIC(d) sed
we derive

d

[10 = U)g" | TaaMm

s=1

E[m/ | TaraM] = — Z E H(I - US)m/J | Td+1M:| —

0CJIC(d) Lsey
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Since E[M | Tg;1M] =0 and

M=m'+ > H(I—Ust+H(I—U5 ,

PCJIC(d) sed

we derive
d
E[m' | ToaM]=— > E|]J(/ - Us)m) | TdHM] —E|(JJ0 - Us)e" | TdHM} .
0CIC(d) seJ s=1
Moreover,
E [H(/ — Us)m) | Td+1M] =K [2(1)“' [ usm) | Td+1M}
seJ ACJ sEA
=> (-)ME ] Usm) | TdHM]
ACJ SEA

=> )] uE

AcCJ SEA

M. El Machkouri (LMRS)

On the martingale-coboundary decomposition for random fields

m/J ‘ H Ts Tg1 M

sEA :|

March, 17th 2016 38 /48



So, we have

E|JJ0 - v)m) | ToaM | =S (D) T GE [m)) | [] Ts TaraMm

seJd ACJ seA seA
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So, we have

E|JJ0 - v)m) | ToaM | =S (D) T GE [m)) | [] Ts TaraMm

seJd ACJ seA seA

Let A C J be fixed. Since (T ¥M),cz4+1 is a commuting filtration, we have
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So, we have

E [H(/ — U)m) | Td+1/\/l] => ()] GE [mg RIRE Td+1M} .
seJd ACJ seA seA
Let A C J be fixed. Since (T ¥M),cz4+1 is a commuting filtration, we have

E [m'J T TSM] | Td+1M] .

sEA

E [mg [T+ TeaM| =E

seEA
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So, we have

seJd ACJ seA seA

Let A C J be fixed. Since (T ¥M),cz4+1 is a commuting filtration, we have

E [m'J T TSM] | Td+1M] .

sEA

E [mg [T+ TeaM| =E

seEA

Using the measurability of m’, with respect to []__, TsM, we obtain

s€A

E |:mlJ | H Ts Td+1M:| = E[mlj | Td+1M].

sEA
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Using the measurability of m’, with respect to []__, TsM, we obtain

s€A

E |:mlJ | H Ts Td+1M:| = E[mlj | Td+1M].

sEA
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So, we have

seJd ACJ seA seA

Let A C J be fixed. Since (T ¥M),cz4+1 is a commuting filtration, we have

E [m'J T TSM] | Td+1M] .

E [mg [T+ TeaM| =E

seEA

sEA

Using the measurability of m’, with respect to []__, TsM, we obtain

s€A

E [nﬂ| II 7;7}+1A4] ::E[nﬂ| TQ+LA41

sEA

Consequently,

E

[0 = vom) | TdHM] =[]0/ = U)E [m) | TaraM].

seJ seJ
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So, we have

seJd ACJ seA seA

Let A C J be fixed. Since (T ¥M),cz4+1 is a commuting filtration, we have

E [m'J T TSM] | Td+1/\/l] .

E [mg [T+ TeaM| =E

seEA

sEA

Using the measurability of m’, with respect to []__, TsM, we obtain

s€A

E |:mlJ | H Ts Td+1M:| = E[m'J | Td+1M].

sEA

Consequently,

[10=v)m) | Taam| =T]( = UDE [m) | TayaM].

seJ i seJ

E

Similarly, since g’ is Hg;l TsM-measurable, we have also

d b d
E [H(/ —Us)g" | TanM H Eg"| ToaM].

s=1
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Consequently,
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Consequently,

d

Elm' | TgaMl == > []0 = U)E [m) | TaaM] = [J(/ = UE [g" | TaraM].

0CIC(d) st s=1
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Consequently,

E[m" | TgaM] = — [0 = U)E [m) | TasaM] =[]0/ = UE [g" | TasaM] .

0CIC(d) sed s=1

So, denoting m := m’ — E[m’ | Ty:1.M] and keeping in mind that

M=m'+ > JJ0-U)m)+]]0- Us)g',

0CIC(d) sed
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Consequently,

d

Elm' | TgaMl == > []0 = U)E [m) | TaaM] = [J(/ = UE [g" | TaraM].

0CIC(d) s€J s=1
So, denoting m := m’ — E[m’ | Ty:1.M] and keeping in mind that
M=m'+ > TJU-U mJ+H(I—
0CIC(d) sed
we obtain
d
=m+ > JJ0-Us) (m)—E[m)| TeaM])+][(1-U:) (&' —E [g" | TeraM])
0CIC(d)y s€J s=1

where m is M-measurable and E[m | T, M] = 0 for each s in (d + 1).
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So, we have f = M+ G — G o Tyy1,
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So, we have f = M+ G — G o Tyy1,

M=m+ > J[0=0s) (m)=E[m)| TeaM])+][(1-Us) (&' —E [g | ToraM])

0CIC(d) s€d s=1
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So, we have f = M+ G — G o Tyy1,

M=m+ > J[0=0s) (m)=E[m)| TeaM])+][(1-Us) (&' —E [g | ToraM])

0CIC(d) s€d

and

s=1

d
G=m"+ > [[0-U)mi+ ][0~ U)g"
s=1

M. El Machkouri (LMRS)

BCIC(d) s€J

On the martingale-coboundary decomposition for random fields

March, 17th 2016
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So, we have f = M+ G — G o Tyy1,

M=m+ > J[0=0s) (m)=E[m)| TeaM])+][(1-Us) (&' —E [g | ToraM])

0CIC(d) s€d =1
and
d
G=m"+ > JJU—-U)mj+]](1— Us)g"
0CJC(d) seJ s=1
That is,

f=m+ Z H(I — Us) (m) — E [m]) | TazaM] +H(/ —Us) (g —E[g' | TaaM])

0CIC(d) seJ s=1
d

+ (= Uaa) [ m"+ > JJU=U)mi + 01— Us)g” | -
0CJIC(d) s€J s=1
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Indeed, let O C J C (d + 1) be fixed.
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Indeed, let § C J C (d + 1) be fixed.If d + 1 € J, we denote

m’ if J={d+1}
my = .
mpgary FIN{d+1}#0
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Indeed, let § C J C (d + 1) be fixed.If d + 1 € J, we denote

m’ if J={d+1}
my = .
mpgary FIN{d+1}#0

and if d +1 ¢ J, we denote

_ Jmh—E[m) | TapM] if J # (d)
g —Elg'| ToaM] if J=(d).
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Indeed, let § C J C (d + 1) be fixed.If d + 1 € J, we denote
m’ if J={d+1}
my = .
mpgary FIN{d+1}#0
and if d +1 ¢ J, we denote
o — 4 M= E[my | TauM]if J # (d)
g —Elg'| TaaM]  if J = (d).

Finally, denoting g = g”, we obtain

d+1

f=m+ Z HlstmJ+Hlst O

DCIC(d+1) sed
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Moment inequalities

Proposition

Let (Xi)jcze be an OMD random field. There exists a positive constant k such that for
any p > 2 and any n in N
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Moment inequalities

Proposition
Let (Xi)jcze be an OMD random field. There exists a positive constant k such that for
any p > 2 and any n in N

1/2

(M1 ST Xkl <mp [ X

0<k=<n o 0<k=<n
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Moment inequalities

Proposition

Let (Xi);cze be an OMD random field. There exists a positive constant k such that for

any p > 2 and any n in N

1/2

d/2 2
(MI) > Xe|| <np D Xl

0<k=<n o 0<k=<n

d/2

and the constant p®/< in (MI) is optimal in the following sense:
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Moment inequalities

Proposition
Let (Xi);cze be an OMD random field. There exists a positive constant k such that for
any p > 2 and any n in N

1/2

d/2 2
(MI) > Xe|| <np D Xl

0<k=<n o 0k=<n

and the constant p?/? in (M) is optimal in the following sense: there exists a stationary
OMD random field (Zy) ez with || Zo||, =1 and a positive constant k such that for any

p=2
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Moment inequalities

Proposition
Let (Xi);cze be an OMD random field. There exists a positive constant k such that for
any p > 2 and any n in N

1/2

d/2 2
(MI) > Xe|| <np D Xl

0<k=<n o 0k=<n

and the constant p?/? in (M) is optimal in the following sense: there exists a stationary
OMD random field (Zy) ez with || Zo||, =1 and a positive constant k such that for any
p=2

1/2

infe C>0; | > Z| <C| D lzdi]| ¥neN'§ > rp??

0<k=<n o 0<k=<n
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Moment inequalities

Proposition
Let (X;);cze be a stationary real random field defined on a probability space (Q, F, i)
and (Fi)jczs be a commuting filtration such that X; is Fi-measurable for each i in Ze.
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Moment inequalities

Proposition
Let (X;);cze be a stationary real random field defined on a probability space (Q, F, i)
and (Fi)jczs be a commuting filtration such that X; is Fi-measurable for each i in VAS

If there exists p > 2 such that Xo belongs to LP(Q2, Fo, 1) © LP(2, Ngend F -k, 1) and

D IEXo [ F-i)ll, < oo
keNd
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Moment inequalities
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Let (X;);cze be a stationary real random field defined on a probability space (Q, F, i)
and (Fi)jczs be a commuting filtration such that X; is Fi-measurable for each i in VAS

If there exists p > 2 such that Xo belongs to LP(Q2, Fo, 1) © LP(2, Ngend F -k, 1) and

D IEXo | Foi)ll, < oo
keNd

then for any n = (ny,...,nq) in N9,

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 44 | 48



Moment inequalities

Proposition
Let (X;);cze be a stationary real random field defined on a probability space (Q, F, i)
and (Fi)jczs be a commuting filtration such that X; is Fi-measurable for each i in VAS

If there exists p > 2 such that Xo belongs to LP(Q2, Fo, 1) © LP(2, Ngend F -k, 1) and

D IEXo | Foi)ll, < oo
keNd

then for any n = (ny,...,nq) in N9,

D Xl < Cap™n? Y IE X | F-i)l,

0<k=<n o keNd
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Moment inequalities

Proposition
Let (X;);cze be a stationary real random field defined on a probability space (Q, F, i)
and (Fi)jczs be a commuting filtration such that X; is Fi-measurable for each i in VAS

If there exists p > 2 such that Xo belongs to LP(Q2, Fo, 1) © LP(2, Ngend F -k, 1) and

D IEXo | Foi)ll, < oo
keNd

then for any n = (ny,...,nq) in N9,

D Xl < Cap™n? Y IE X | F-i)l,

0<k=<n o keNd

where |n| = ]2, n; and Cy is a positive constant depending only on d.
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Weak Invariance Principle

m For any positive integer n and any t in [0,1]¢, we denote

So(t) = > A0, nt] N R)X;

i€ (nyd
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Weak Invariance Principle

m For any positive integer n and any t in [0,1]¢, we denote

So(t) = > A0, nt] N R)X;

i€ (nyd

where ) is the Lebesgue measure on R? and Ry = (i — 1, 1] x -+~ X (ig — 1, ia].
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Weak Invariance Principle

m For any positive integer n and any t in [0,1]¢, we denote

Sa(t) = > A([0,nt] N R)Xi

i€ (nyd
where ) is the Lebesgue measure on R? and Ry = (i — 1, 1] x -+~ X (ig — 1, ia].

m W is a standard Brownian sheet and C([0,1]?) equipped with the uniform norm
|||, is the space of continuous real functions defined on [0, 1]°.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 45 / 48



Weak Invariance Principle

m For any positive integer n and any t in [0,1]¢, we denote

Sa(t) = > A([0,nt] N R)Xi

i€ (nyd
where ) is the Lebesgue measure on R? and Ry = (i — 1, 1] x -+~ X (ig — 1, ia].

m W is a standard Brownian sheet and C([0,1]?) equipped with the uniform norm
|||, is the space of continuous real functions defined on [0, 1]°.

M. El Machkouri (LMRS) On the martingale-coboundary decomposition for random fields March, 17th 2016 45 / 48



Weak Invariance Principle

m For any positive integer n and any t in [0,1]¢, we denote
Sa(t) = > A([0,nt] N R)Xi
i€ (nyd
where ) is the Lebesgue measure on R? and Ry = (i — 1, 1] x -+~ X (ig — 1, ia].

m W is a standard Brownian sheet and C([0,1]?) equipped with the uniform norm
|||, is the space of continuous real functions defined on [0, 1]°.

Theorem (EM, Giraudo (2015))

Let (j)jeza be an iid real random field defined on a probability space (2, F, i1). Consider
the commuting filtration (F;);cz¢ where Fj is the o-algebra generated by ¢; for j < i. Let
(Xi)icza be a stationary real random field such that X; is Fi-measurable for each i in Z°
and
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m For any positive integer n and any t in [0,1]¢, we denote

Sa(t) = > A([0,nt] N R)Xi

i€ (nyd
where ) is the Lebesgue measure on R? and Ry = (i — 1, 1] x -+~ X (ig — 1, ia].

m W is a standard Brownian sheet and C([0,1]?) equipped with the uniform norm
|||, is the space of continuous real functions defined on [0, 1]°.

Theorem (EM, Giraudo (2015))

Let (j)jeza be an iid real random field defined on a probability space (2, F, i1). Consider
the commuting filtration (F;);cz¢ where Fj is the o-algebra generated by ¢; for j < i. Let
(Xi)icza be a stationary real random field such that X; is Fi-measurable for each i in Z°
and

D IEXo | F-i)ll, < oo

keNd
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Weak Invariance Principle

m For any positive integer n and any t in [0,1]¢, we denote

Sa(t) = > A([0,nt] N R)Xi
i€ (nyd
where ) is the Lebesgue measure on R? and Ry = (i — 1, 1] x -+~ X (ig — 1, ia].

m W is a standard Brownian sheet and C([0,1]?) equipped with the uniform norm
|||, is the space of continuous real functions defined on [0, 1]°.

Theorem (EM, Giraudo (2015))

Let (j)jeza be an iid real random field defined on a probability space (2, F, i1). Consider
the commuting filtration (F;);cz¢ where Fj is the o-algebra generated by ¢; for j < i. Let

(Xi)icza be a stationary real random field such that X; is Fi-measurable for each i in Z°
and

S E (X | Fo)l, < oo

keNd

Then, {n~9/2S,(t); t € [0,1]%} converges in distribution in C([0,1]) to \/E (XZ)W.
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Related results

m Under the condition
IE (X« Fo)ll,

|k|1/2

>

keNd
Wang and Woodroofe (2013) obtained the CLT for p = 2 and the WIP for p > 2.
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Related results

m Under the condition
IE (X« Fo)ll,

|k|1/2

>

keNd
Wang and Woodroofe (2013) obtained the CLT for p = 2 and the WIP for p > 2.

m For a filtration (F});cz¢ and q € (d), define

d
Fr= ) F PR =E(FIF?) and p=]]P.
q=1

iezd ig<I
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Related results

m Under the condition
IE (X« Fo)ll,

|k|1/2

>

keNd
Wang and Woodroofe (2013) obtained the CLT for p = 2 and the WIP for p > 2.

m For a filtration (F});cz¢ and q € (d), define
d
Fr= ) F PR =E(FIF?) and p=]]P.
i€zd,ig<I g=1

Volny and Wang (2014) obtained the WIP under the weaker condition

> IRl < oo

jezd
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Related results

m Cuny, Dedecker and Volny (2016) obtained recently a WIP for fields of commuting
transformations via martingale approximation under a condition in the spirit of
Hannan.
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Related results

m Cuny, Dedecker and Volny (2016) obtained recently a WIP for fields of commuting
transformations via martingale approximation under a condition in the spirit of
Hannan.

m Volny (2016) obtained recently the orthomartingale-coboundary decomposition of a
regular and square integrable function f under the condition

> itis - IP(F); < oo
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Thank you !
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