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@ Conditions, fonction harmonique, approximation par martingales.
@ Les résultats principaux.

@ Eléments de preuves, approximation KMT pour les chaines de
Markov.
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Affine Markov walk

© We study the sum S, = Y7, Xk, n > 1.
® (Xn)n=0 is @ Markov chain defined by the stochastic recursion

Xn:aan—1+bn7 n>17 XOZXGRa

where (&g, by )x>1 are i.i.d. of the same law as the pair (a, b).

Notations:
@ P(x, ) - the transition prob. of (Xn)n=0
o Pf(x) = [ f(x)P(x,dx’) - the transition operator:
o Py and Ex - generated by (Xn)n=0 With Xo = x.
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CLT

Conditions of Guivarc’h and Le Page

@ Hi: Ellog|a|| < 400, E|log|b|| < +oo

There exists o« > 2 such that
@ H2: ¢(a) =E|a* =1.
@ H3: E|al®|log|a|| < 400 and E |b|* < +co.

@ H4: No fixed point: P(ax+ b= x)=0 forany x.
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CLT

TLC (Guivarc’h and Le Page (2008)): Under H1-H4 there exist
constants . and o > 0 such that, for any f € R,

Sn—n[,b
]P>X< e gt)—ﬂb(t) as n— +oo. (2)

There are easy expressions of iy and o in terms of law of the pair
(a,b):
_ Eb >  Eb® 1+Ea
F=1"Ea 7 T1-E#1-Ea
In the sequel we consider that:

Eb=0 so that I

I
©
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The exit time

@ Consider the affine Markov walk y + S, with starting point y > 0.
@ The exit time from R’ is defined by

where Ty =min{k >1:y+ S <0},

{ry>n}={y+S>0,...,y+5,>0}.
The problem is twofold:

@ Determine the asymptotic of the probability Pr (7, > n).

@ Determine the asymptotic of the conditional distribution of
%ﬁ(y + Sp), given the event {r, > n}.

Previous results:

@ For sums of i.i.d. r.v’s in R': Bolthausen (1972), Iglehart (1974), Spitzer (1976), Doney
(1985), Bertoin and Doney (1994), Borovkov (2004), Vatutin and Wachtel (2009); (by
Wiener-Hopf factorization).

@ Markov chains: Varapoulos (1999) - upper and lower bounds for Pr (7, > n).
@ Li.d. in RY: Eischelsbacher and Konig (2008), Denisov and Wachtel (2009, 2011).
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Motivation: products of random matrices

G., Le Page and Peigné (2015)

© Denote by B the closed unit ball in R and by B¢ its complement.

Let v be a starting vector: v € B°.

® Assume that g4, ..., gn are independent random elements of G
with common distribution p. Assume that the upper Lyapunov
exponent v = 0.

@ Define the exit time of the random process G,v from B by

v = min{n>1:g,...01v € B}

> 1
= min{n>1:log|gn...g1v| <0}.
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Products of r.m.s

P1: exponential moments for ||g|| and ||g~||.
P2: irreducibility. P2: proximality.

Theorem 1
Assume conditions P1-P3. Then, for any starting point v € B,

IP’(TV>n):L(V)(1 +0(1)) asn— oo,

ovemrn

where V is a positive harmonic function on BC.
Moreover, for any starting point v € B¢, and for any t > 0,

: log[|gn--- g1Vl -
nI|_>mOOIP>< o/ <ty >n) =07 (1),

where & (1) =1 —exp <—§> is the Rayleigh distribution.
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Products of r.m.'s: moments

Denote N (g) = max {||g|l.|lg"[|} (=1, since ||g~"|| = llgl ")
Our first condition requires exponential moments of log N (g) .

P1 (Exponential moments):

There exists oy > 0 such that

/ exp (60 log N (9)) 1 (0lg) = / N (9)"™ 1 (dg) < .
G G

The CLT under less restrictive moment assumptions (only the second moment of log N (g)) have
been obtained only recently.

‘ We refer to the book of Benoist and Quint (2013).
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Products of r.m.’s: irreducibility

Definition: a) A subset T of G is irreducible if the is no proper linear
subspace S of V such that, for any g € T,

g(S) =S.
b) A subset T of G is strongly irreducible if there is no finite family of
proper linear subspaces S1,...,Sy of V such that, forany g € T,

IS1U---USy)=S1U---USp.

Example: g = ( ? (1) ) is irreducible but not strongly irreducible.

P2 (Strong irreducibility):

The support suppu of p acts strongly irreducibly on'V.

This condition requires, roughly speaking, that the dimension of suppu cannot be reduced.

Affine Markov walks lon Grama 18/03/2016 10/30



H4)

Products of r.m.s: contraction property

Let T,, be the closed semigroup generated by suppy.

P3 (Proximality):
T,, contains a contracting sequence for the projective space P (V).

@ Consider a sequence (Gn),~ in G. Any G, € G admits a polar
decomposition: G, = HVA,H?, where H}, H? are orthogonal and
A, is diagonal with diagonal entries Ap(1) > ... > An(d) > 0.

o Def. (Contracting sequence): The sequence (Gp),,-1 is
contracting if lim,_,.(log An(1) — log An(2)) = occ.

10\ _ 10 1
0 )\),|>\\<1.ThenG,,~v:(0 An)v—><0)asn—>oo.

@ For example P3 is satisfied if T,, contains a matrix with a simple eigenvalue of maximal
modulus.

Example: Let Gp = (
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The idea of the proof for products of r.m.

@ Consider the homogenous Markov chain (Xp),,-, with values in
the product space X = G x P (V) and initial value Xo = (g,V) €
by setting:

Xnp1 = (gn+17gl7"‘g1g ’ V)v nz0.

@ Recall that the norm cocycle is: p (g, V) := log HHQVVHH’ for (9,vV) € G x P(V).

@ Markov walk representation: iterating the cocycle property
p(g"g V) =p(g",9" - V)+p(g',V)

n
logllgn---91gvI =y +> p(Xk) =y +Sn, y=log|gv|
k=1
® Martingale approximation:

HDX (:SlJF)|£;n - Aﬂn’ $§ C{) == 1.

n=0
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Retourn to affine Markov walks:
Conditions
Condition 1 (which implies 3 of the spectral gap).

@ There exists a > 2 s.t. ¢(a) = E(e*'°918) = E(]a|*) < 1 and
E(1b]") < +oo.
@ bis non-degenerated (P(b # 0) > 0) and E(b) = 0.

C.1 is less restrictive that the conditions H1-H4 of Guivarc’h and Le Page:

Refined CLT: Under Condition 1, for any ¢ > 0 and any x € R,

Sn - I’Iu C £
sup |P <) =0 ()] < 2221+ xP). 3
ple (22 <) -0 < (). @
The CLT above is a consequence of more general results for the associated Markov walk
(v + Sn)n>0- J

Further conditions C2 and C3 are related to the harmonic function.
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Harmonic function

@ (Xn,y + Sp) est une chaine de Markov.
@ Q(x,y,dx, dy’) - the transition probability of (X, y + Sp).
® Qi(x,y,dx’,dy’) - the restriction on R x R .

@ Definition:
The function V : R x R* — R is positive Q-harmonic if

QJrV(Xay):V(Xay)a X,yGRXRi.

@ Equivalent formulation: Doob’s transform
The function V : R x R% — R is positive Q-harmonic if

QV(X1,y+ Sty >1)=V(x,y), x,yeRxR]

or, by iteration,

QV(Xn,y + Sn; 7y > n) = V(x,y), X, yeRxR,n>1.
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More conditions:
Positivity of the harmonic function

Conditions for the existence of a positive harmonic function:

Condition 2. (siE(a) > 0) foranyxeRandy >0:
@ Py(ry >1)=Px(y +X; >0)=P(ax +b> —y) > 0.

Condition 3. (siE(a) < 0) foranyx e Randy >03dn > 1s.t.
@ Py(y + Spy > C(1 + | Xny|P, 7y > ng) > 0.
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Martingale approximation

@ Consider the Poisson equation: u — Pu = Id
0(x) = 2o PHId(X) = 2.

Define Gordin’s Px-martingale:

o0

Mp =" (0(Xk) — PO(Xk—1)) -
k=0

@ In another form:

Ea

MOZOa Mn:Sn‘i‘m(

Xn— X).

@ With the notation p = %2_ we have:

(y + Sn) - (Zx7y + Mn) - _an, Zx7y - y + pX’ Px-a.S.
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Existence of the harmonic function

Theorem 1
Assume Ea > 0, C1,C2 or Ea < 0, C1, C3. Then:

@ forany x e Rand y > 0, it holds Ex (|M;,|) < +oco and therefore

the function V(x, y) = —ExM,, is well defined.
@ the function V is positive and Q.-harmonic:

Q+V(Xay):V(X7y)a XER’y>O'

@ properties:

for any x € R: V(x, ) is non-decreasing

forany x € R: limp_, o @ =1

V(x,y) = max0,(1+d)y — csp(1 + |x|°)
Vx,y) < (14600 +1xP7) y + csp(1 + x17),
forany 6 > 0,p € (2, ).

©

e o o

Affine Markov walks lon Grama

18/03/2016

17/30



H4)

Main resulis

Theorem 2

Assume Ea > 0,C1,C2 or Ea< 0, C1, C3. Then:
@ forany x € R and y > 0, it holds
VNPx (1, > n) < cp(1+y + [x|P), withp> 2.
@ for any fixed x € R and fixed y > 0, it holds

2V(x,

@ Corollary: forany v < 1and p > 2,

Ex (7}7) <Cpy(1+y+ |x[P).
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Main resulis

Theorem 3

Assume Ea > 0,C1,C2 or Ea < 0, C1, C3. Then, for any x € R and
y > 0, it holds

Y+Sn
Py t
(U\/_

Ty > n) — <D+(l‘),

2
where ®*(f) = 1 — e~z is the Rayleigh d.f.

Extension for y<0:
Define DT = {(x,y) e R x R_ : Px(ax + b > —y) > 0}. Then

@ Vis Q. -harmonic on DT UR x R%.
and

@ Theorem 2 and 3 hold true for (x,y) € D*.
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Discussion on Conditions 2 and 3
The case E(a) > 0 (Eb = 0, b non-degenerated)
@ C2. Py(1y > 1) =Px(y + X1 >0)=P(ax+ b > —y) > 0.
@ C2a. a, b dependent, P(b > Cla|) > 0, forany C > 0.

@ C2b. a, b independent, b no conditions (for example: b -
Rademabher), P(]al < ) > 0 for any € > 0 (for instance a = 0).

@ C2c. a, bindependent, a no conditions, P(b > A) > 0 for any
A>0.

The case E(a) < 0 (Eb = 0, b non-degenerated)

@ C3. P(y + Sp, > C(1 + | X, [P, 7y > o) > 0.

@ C3a. a, bindependent, b no conditions, P(a € (—1,0)) > 0 and
P(ae (0,1)) > 0.

@ C3b. a, bdependent, P((a,b) € (—1,0) x [0,c]) > 0 and
P((a,b) € (0,1) x [0,c]) > 0, for some ¢ > 0.
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Proofs

Existence of the positive harmonic function (the case E(a) > 0)
It is important to approximate y + S, by a martingale:

Ea
1—Ea’

(Y + Sn) = (2x,y + Mp) = —pXn, Zxy =Y+ pX, p=

Etape 1. Integrability of |[M;,| (main difficulty)
® (2xy + Mn)1(;,~n is @ submartingale:
Up = Ex (2x,y + Mp; 7y > n) is increasing.
@ we show that, for any e>0

1 _
<(1+ )U[n1 e G+ y + [x])(1 +xP71,

which implies that up is uniformly bounded in n.
o IEfx(‘zx,y + M’Ty Ty < n) = _Ex(zxy + M;, Ty < )
= —Ex(zx,y + Mp; 1y < n) = —Ex(zxy + M) +up =

—Zx,y + Un,

using the fact that p = W > 0 implies an ordering among y + S, and zX y+Mpon{r, =n}:
(2x,y +Mr,)) = (y + Sr)) + pXr, < (2+ Sry) <
where X-, < 0 by the definition of 7, (and by th. de convergence monotone).
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Proofs

Etape 2. Harmonicity: The function V(x, y) = ExM,, 3.
@ We show that

V(x,y) = nli_)moo Ex (zx,y + Mp; 7y > n)
= nILmOOEX (y+ Snimy > n)
@ Proof (first): using dominated conv. theorem as n — oo

up = Ex(2x,y + Mn; 7y > n) = Ex(2x,y + Mp) — Ex(2x,y + Mn; 7y < n)
= Zx,y — Ex(2x,y + Mq—y;Ty <n) = —Ex(Mr,) = V(x,y).

@ Proof (second): use (y + S») — (2x,y + Mn) ~ X, and moments assumptions.
@ Hamonicity is easy: by Markov’s property

Using an upper bound for V and taking lim,_ it follows that V is a Doob’s transform.
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Proofs
Etape 3. Positivity:

@ Since V is a Doob transform

Vix,y)

Ex (V(X1,y + S1);1y > 1)
> Ex(V(X1,y+ S1);7y > 1,B),
where the event B will be chosen below.

@ Minoration:
V(x,y) = —Ex(Mr,) = zx,y — Ex(2x,y + Mr,) > 2x,y = y + px

again we used: p = 5 [E]E > 0 implies the ordering (zx,y + Mr,) <

@ Positivity: with B = < X7 > 2(1+p)}

(v +55) <

V(x,y) Ex (V(Xi,y + Si);7y > 1, B)

Ex (y + St + pXi;71y > 1,B)

TP (X > —y/2(1+ ) >0,

VoWV

WV

by C2.
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Komlos-Major-Tusnady approximation

@ As to the asymptotic properties of the exit time 7, and of the conditional distribution

Y+
Pr(—a\/g <t

v > n) they are deduced from the respective properties of the continuous
time standard Brownian motion (Bs).

Theorem (G - Le Page - Peigné 2014)

Under C1 there is a construction on the same probability space of the
associated Markov process (Sk) and of a standard Brownian motion
(B;) such that for any x € X and any ¢ € (0, 1),

Py | 02 sup |Sim — 0Bun| > n7° | < cpen=(1 + |x[P),
0<t<1

where ¢, is a constant depending only on p > 2 and «.

More general result on KMT approximation result for Markov chains:
Sn = > "r_q f(Xx) and (Xk) is a Markov chain.
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Komlos-Major-Tusnady approximation
Sn = k4 f(Xk), where (Xx) is a Markov chain with values in X and f

a real function on X.
Theorem (G - Le Page - Peigné 2014)

Assume that the Markov chain (Xn),>0 and the function f satisfy the hypotheses M1, M2, M3

and M4, with o > 0. Let 0 < o < 4. Then there exists a Markov transition kernel x — Py (-) from
(X, X) to (2, B()) such that £ ((?,) . |@X) 2r ((f(x,-)),.>1 [Px) , the W, i > 1, are
i> z

independent standard normal r.v’s under Py and for any 0 < p < E(%M)’
1 K 1
=~ o _ +a
By (N-Zsup|> (Y,- - aw,-) > 6N“’> < C(x)N-OT5s +o(2+2a)
k<N |;
ST =

with C (x) = Cy (1 4 s (X) + [|0x]l 5 )2 , where C; is a constant
depending only on 4, o, k, Cp, Cq, ||€]|z and ||v|| 5 -
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Exit time for the Brownian motion

Define the exit time 7™ = inf{t > 0, y 4+ 0B; <

The following assertion is due to Levy (1954).
@ Foranyy>0,0<a<bandn>1,

2 y o &
P(o" > n) = / e 2n2 ds.
(Ty > v2rno Jo

From this one can deduce easily:
@ Forany y > 0,

P (r}f’m > n) <c L.

vn

@ For any sequence of real numbers (65)n=0

P(7om > n
sup P (" >n) y2y ) 1
y€[0:6nV/n] 2mho
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Exit time for (y + S))

The KMT approximation allows to prove the following intermediate
result for y large enough:

Lemma

Lete € (0,e90) and (0n),~¢ be a sequence of positive numbers such
that 0, — 0 and 0,n°/* — oo as n — oo. Then:

€ There exists a constant c. > 0 such that forany n > 1 and
y > > n1/2 a’

supPyx (1y > n) < c.—= 14

XeX \/I_7

@ There exists a constant ¢ > 0 such that, for n sufficiently large,

Py (1y > n
sup % — 1| < cbp.
1/2— 1/2 =y
xex, yeliz< o] | A
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Asymptotic for 7,

© Py(ry >n) =Px (1 > Mmuvp < n'7°) + Py (1y > Mvp > n'—9)

Ji .

@ By Markov property
Ji =Px (1y > vy < n1*5) =

[ [Py (X,,n cedx,y+S,,edy;ty >vpvn< n1_5)
X Py (Ty/ > n—yn)

2/ — 2_(1+0(1))

since Py (7, > N —vn) = V2n(n—va) — V2mn

~ \/217r7nE (y+ Sl/n;Ty > Vn,Vn < n17€) — \/217,7V(X,y)

@ Rappel: E(y + Sp; 7y > n) — V(X,y).

Replace nby vn

Affine Markov walks lon Grama 18/03/2016

28/30



Future investigations

@ Local theorem: rates n—3/2
@ The case E(b) < 0.

@ Matrix affine random walks or more general Markov chains
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