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Motivation

As is well known, any compact Riemann
surface is covered by either CP1, or C,
or the unit disk ∆ ⊂ C, according to
the sign of the curvature of a constant
Gaussian curvature metric that may exist
on it.
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Motivation

As is well known, any compact Riemann
surface is covered by either CP1, or C,
or the unit disk ∆ ⊂ C, according to
the sign of the curvature of a constant
Gaussian curvature metric that may exist
on it.

In complex dimension two, this results generalizes as the following

Theorem
If (M, J, ω) is a compact Kähler-Einstein surface then

c2
1 − 3c2 ≤ 0.

Equality holds if and only if M is covered by either CP2, or C2, or
the unit ball B2 ⊂ C2.
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In higher dimension this results generalizes as the following

Theorem
If (M, J, ω) is a compact Kähler-Einstein n-fold then

(
c2

1 −
2(n + 1)

n
c2

)
∪ [ω]n−2 ≤ 0.

Equality holds if and only if M is covered by either CPn, or Cn, or
the unit ball Bn ⊂ Cn.
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Motivation

The proof of this fact is based on the following two points

I For any Kähler metric ω on (M, J) one proves that

(
c2

1 −
2(n + 1)

n
c2

)
∪ [ω]n−2 =

∫

M

(
k1 |ρ− (s/n)ω|2 − k2|B|2

)
ωn,

where k1, k2 > 0 are constants depending just on n, ρ is the
Ricci form of ω, s is the scalar curvature and
B ∈ Ω2(End(TM)) vanishes if and only if ω has constant
holomorphic sectional curvature (Chern-Weil theory).

I (M, J, ω) has constant holomorphic sectional curvature if and
only if it is isometrically covered by either CPn, or Cn, or
Bn ⊂ Cn equipped with their standard metrics, up to scaling
(Uniformization Theorem).
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Motivation

From now on consider a compact symplectic manifold (M, ω) and
the set of all compatible almost complex structures on it.

Question
Does a compatible almost complex structure J having special
curvature properties constrain the topology of (M, ω)?

Theorem
Let (M, ω) be a compact symplectic 2n-fold. If J is a
compatible almost complex structure satisfying ρ = λω, then

(
c2

1 −
2(n + 1)

n
c2

)
∪[ω]n−2 ≤

∫

M

(
k1λ|N|2 + k2|N|4 + k3|∇N|2

)
ωn

where k1, k2, k3 > 0 are constants depending just on n, N is the
Nijenhuis tensor of J, and ∇ is the Chern connection of J.
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Geometry of compatible complex structures

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the
associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on TM

∇g = 0, T∇ = N, ∇J = 0, ∇ω = 0

2. Chern curvature R ∈ Ω2(M,End(TM))

R(X ,Y ) = ∇X∇Y −∇Y∇X −∇[X ,Y ]

3. Chern-Ricci form ρ ∈ Ω2(M) and Chern class c1 ∈ H2(M)

ρ(X ,Y ) = tr(JR(X ,Y )), dρ = 0, c1 = 1
4π
[ρ]

4. Hermitian scalar curvature s ∈ C∞(M)

s ωn = n ρ ∧ ωn−1, s = scal(g) + 2|N|2g

5. θ ∈ Ω4(M) and Chern class c2 ∈ H4(M)

θ = 1
2
ρ2 + tr(R ∧ R), dθ = 0, c2 = 1

16π2 [θ]
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Special compatible almost complex structures

Definition
A compatible almost complex structure J on (M, ω) is
Chern-Einstein if there is λ ∈ R such that

ρ = λω.

(...sometimes called Hermitian-Einstein or special. Already considered in
Apostolov-Drăghichi 2003)

If J is Chen-Einstein, then 4πc1 = λ[ω]. Therefore (M, ω) is

I symplectic general type if λ < 0,

I symplectic Calabi-Yau if λ = 0,

I symplectic Fano (or monotone) if λ > 0

Moreover, the Hermitian scalar curvature is constant s = nλ.
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Kähler examples and their deformations

Example (After Moser, Aubin, Yau, Chen-Donaldson-Sun, Tian)

If (M, ω) satisfies 4πc1 = λ[ω] and admits a K-stable integrable
J0, then it also admits an integrable Chern-Einstein J.

Example (Lejmi 2010)

If (M, J0, ω) is a locally toric Kähler-Einstein complex surface then
there exist Chern-Einstein non-integrable deformations Jε of J0.

These examples include: CP2, CP1 × CP1, CP2#3CP2, Γ\B2,
Γ\(∆×∆).
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Non-Kähler examples

Do special J exist on non-Kähler symplectic manifolds?

Example (Abbena 1984)

The Kodaira-Thurston manifold admits a Chern-Einstein J.

Example (Davidov-Grantcharov-Mus̆karov 2009)

The twistor space of any real hyperbolic 4-fold (equipped with the
Reznikov symplectc form) admits a Chern-Einstein J.

All this examples are

I Chern-Ricci flat (ρ = 0),
I locally homogeneous (M = Γ\G/V )

I V ⊂ G compact
I Γ ⊂ G discrete and torsion-free (lattice)
I ω and J descends from homogeneous structures on G/V
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Non-Kähler examples

Example (Fine-Panov 2009)

The twistor space of a real hyperbolic 4-fold satisfies c1 = 0,
c2 ∪ [ω] < 0.

Let (M, ω) such a twistor space. By Theorem before one has

−8c2 ∪ [ω] ≤ inf
J s.t. ρ=0

{
1

96π2

∫

M

(
253|N|4 + 96|∇N|2

) ω3

6

}

I ‖N‖L4 + ‖N‖W 1,2 cannot be arbitrarily small for a Chern-Ricci
flat J.
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Homogeneous symplectic manifolds

I G connected real Lie group,

I V ⊂ G compact,

I g = v⊕m a V -invariant decomposition,

I σ V -invariant symplectic on m s.t. σ([X ,Y ]m,Z ) + cyclic = 0,

I H V -invariant compatible complex structure on m.

induce homogeneous ω and J on G/V .

Theorem
For all X ,Y ∈ m one has ρ(X ,Y ) = tr

(
adH[X ,Y ]g −H ad[X ,Y ]g

)
.

Corollary

If V has discrete center, then (G/V , ω) has c1 = 0.
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Homogeneous symplectic manifolds - Symplectic Lie groups

A symplectic Lie group (G , ω) is a Homogeneous symplectic
manifold with trivial isotropy V . Equivalently:

I G connected real Lie group,

I σ symplectic on g s.t. σ([X ,Y ]g,Z ) + cyclic = 0.

Therefore (G , ω) has c1 = 0.

Does there exist a Chern-Ricci flat compatible J on (G , ω)?

Theorem (Lauret-Will 2017)

If G is unimodular and 4-dimensional, then a Chern-Ricci flat J on
(G , ω) exists whenever G 6= Nil4 ([e1, e4] = −e3, [e3, e4] = −e2).

Corollary (after Geiges 1992)

Let M be the total space of a T 2-bundle over T 2 and let
c ∈ H2(M) such that c2 6= 0. If c(fiber) 6= 0 then there exist ω
symplectic such that [ω] = c and J Chern-Ricci flat.
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Homogeneous symplectic manifolds - (Co)adjoint orbits

I G connected real semi-simple Lie group,

I v ∈ g with compact isotropy subgroup V ⊂ G ,

I g = v⊕m a V -invariant decomposition,

I σ(X ,Y ) = B(v , [X ,Y ]g) defines a symplectic form σ on m.

Then ω is the Kirillov-Kostant-Souriau form on G/V .

Remark
G and V have the same rank. This is a familiar situation in Hodge
theory. On G/V is defined an integrable almost complex structure
J ′ which, in general, is not compatible with ω.

Definition (ADV, ADV-Gatti, Alekseevsky-Podestà)

There is a canonical homogeneous compatible almost complex
structure J on (G/V , ω).
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Example

The twistor space of a real hyperbolic 2m-fold Γ\H2m is a
symplectc manifold (M, ωΓ) admitting JΓ with ρΓ = 2(m − 2)ωΓ.

I H2m = SO(2m, 1)/SO(2m)

I Γ ⊂ SO(2m, 1) is a lattice

I M = Γ\SO(2m, 1)/U(m)

I SO(2m, 1)/U(m) is an adjoint orbit with ρ = 2(m − 2)ω

I M is not homotopy Kähler if m ≥ 2 (Carlson-Toledo 1989)

I (M, ωΓ) is a symplectic Calabi-Yau 6-fold if m = 2

I (M, ωΓ) is a symplectic Fano m(m + 1)-fold if m > 2
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Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type (2p, q) is a symplectc
manifold (M, ωΓ) admitting JΓ with ρΓ = 2(p − q − 1)ωΓ.

I Γ ⊂ SO(2p, q) is a lattice

I V = U(p)× SO(q)

I M = Γ\SO(2p, q)/V

I SO(2p, q)/V is an adjoint orbit with ρ = 2(p − q − 1)ω

I M is not homotopy Kähler if p ≥ 2, and q 6= 2
(Carlson-Toledo 1989)

I M has dimension p(p + 2q + 1)

I (M, ωΓ) is symplectic GT, CY, or Fano according to the sign
of p − q − 1
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Homogeneous symplectic manifolds - (Co)adjoint orbits
In general, we studied the geometry of adjoint orbits (G/V , ω, J).

I Due to homogeneity of ω and J and to semi-simplicity of G ,
most of problems can be translated in the language of Lie
theory (root data, Cartan matrices, fundamental weights...).

I When is (Γ\G/V , ωΓ, JΓ) of Kähler type?

Never if (Γ\G/V , ωΓ) is of symplectic Fano type. Work in progress...

I Classify all Chern-Einstein (G/V , ω, J)?

Up to coverings, (G/V , ω, J) splits as a product of (Gi/Vi , ωi , Ji )
where Gi are simple.

If G is simple and V ⊂ G is a torus (general choice of v ∈ g), then
(G/V , ω, J) is Chern-Einstein iff g = sl(2,R) or su(p + 1, p).
(Alekseevski-Podestà 2018).

Vogan diagrams demonstrated to be the appropriate combinatorial

device for algorithmic listing. No hope to guessing the general

pattern at the moment.
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1

γ1

3

γ2

g2

εγ1 = +1, εγ2 = −1

I v ∈ g ϕ ∈ h∗R
ϕ(u) = −iB(v, u)

I ϕ′ = −2
∑

α∈∆+\ϕ⊥ εαα

I ρ = λω iff ϕ′ = λϕ

γ1

γ2 γ1 + γ2 2γ1 + γ2 3γ1 + γ2

3γ1 + 2γ2
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A2
dim g = 8. One non-compact simple real form
with trivial automorphism: su(1, 2).

Fundamental dominant weights
'1 = 2

3�1 + 1
3�2

'2 = 1
3�1 + 2

3�2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2 '1 no GT �12 4 4 su(1, 2) su(2) � R

1

�1

1

�2

t1'1 + t2'2

for all t1, t2 > 0 no sCY 0 2 6 su(1, 2) R � R

B2
dim g = 10. Two simple non-compact
real forms: so(4, 1), so(2, 3).

Fundamental dominant weights
'1 = �1 + 1

2�2

'2 = �1 + �2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2 '1 no sCY 0 4 6 so(4, 1) su(2) � R

1

�1

2

�2 '2 yes GT �18 4 6 so(2, 3) su(2) � R

G2
dim g = 14. One non-compact simple
real form denoted by g2(2) = G.

Fundamental dominant weights
'1 = 2�1 + �2

'2 = 3�1 + 2�2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

3

�2 '1 yes sGT �30 4 10 g2(2) su(2) � R

1

�1

3

�2 '2 yes sGT �10 4 10 g2(2) su(2) � R

35

A2
dim g = 8. One non-compact simple real form
with trivial automorphism: su(1, 2).
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B2
dim g = 10. Two simple non-compact
real forms: so(4, 1), so(2, 3).

Fundamental dominant weights
'1 = �1 + 1

2�2

'2 = �1 + �2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2 '1 no sCY 0 4 6 so(4, 1) su(2) � R

1

�1

2

�2 '2 yes GT �18 4 6 so(2, 3) su(2) � R

G2
dim g = 14. One non-compact simple
real form denoted by g2(2) = G.

Fundamental dominant weights
'1 = 2�1 + �2

'2 = 3�1 + 2�2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

3

�2 '1 yes sGT �30 4 10 g2(2) su(2) � R

1

�1

3

�2 '2 yes sGT �10 4 10 g2(2) su(2) � R

35
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Homogeneous symplectic manifolds - (Co)adjoint orbits

A2
dim g = 8. One non-compact simple real form
with trivial automorphism: su(1, 2).

Fundamental dominant weights
'1 = 2

3�1 + 1
3�2

'2 = 1
3�1 + 2

3�2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2 '1 no GT �12 4 4 su(1, 2) su(2) � R

1

�1

1

�2

t1'1 + t2'2

for all t1, t2 > 0 no sCY 0 2 6 su(1, 2) R � R

B2
dim g = 10. Two simple non-compact
real forms: so(4, 1), so(2, 3).

Fundamental dominant weights
'1 = �1 + 1

2�2

'2 = �1 + �2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2 '1 no sCY 0 4 6 so(4, 1) su(2) � R

1

�1

2

�2 '2 yes GT �18 4 6 so(2, 3) su(2) � R

G2
dim g = 14. One non-compact simple
real form denoted by g2(2) = G.

Fundamental dominant weights
'1 = 2�1 + �2

'2 = 3�1 + 2�2

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

3

�2 '1 yes sGT �30 4 10 g2(2) su(2) � R

1

�1

3

�2 '2 yes sGT �10 4 10 g2(2) su(2) � R

35

A3

dim g = 15. Two non-compact sim-
ple real forms with trivial automorphism:
su(1, 3), su(2, 2).

Fundamental dominant weights
'1 = 3

4�1 + 1
2�2 + 1

4�3

'2 = 1
2�1 + �2 + 1

2�3

'3 = 1
4�1 + 1

2�2 + 3
4�3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

1

�3 '1 no GT �24 9 6 su(1, 3) su(3) � R

1

�1

1

�2

1

�3 '2 no GT �32 7 8 su(2, 2) su(2) � su(2) � R

1

�1

1

�2

1

�3 '1 + '3 yes sGT �10 5 10 su(2, 2) su(2) � R � R

B3
dim g = 21. Three non-compact simple
real forms: so(6, 1), so(4, 3), so(2, 5).

Fundamental dominant weights
'1 = 3

2�1 + �2 + 1
2�3

'2 = 2�1 + 2�2 + �3

'3 = �1 + �2 + �3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2

2

�3 '1 no sF 24 9 12 so(6, 1) su(3) � R

1

�1

2

�2

2

�3 '2 yes sGT �28 7 14 so(4, 3) su(2) � su(2) � R

1

�1

2

�2

2

�3 '3 yes GT �50 11 10 so(2, 5) so(5) � R

C3
dim g = 21. Two non-compact simple
real forms: sp(1, 2), sp(3,R).

Fundamental dominant weights
'1 = �1 + �2 + 1

2�3

'2 = �1 + 2�2 + �3

'3 = �1 + 2�2 + 3
2�3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

2

�3 '1 no sGT �20 11 10 sp(1, 2) sp(2) � R

1

�1

1

�2

2

�3 '2 yes sF 14 7 14 sp(1, 2) su(2) � su(2) � R

1

�1

1

�2

2

�3 '3 no GT �48 9 12 sp(3,R) su(3) � R

1

�1

1

�2

2

�3 '1 + '3 no sGT �16 5 16 sp(3,R) su(2) � R � R

36
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Homogeneous symplectic manifolds - (Co)adjoint orbits

A3

dim g = 15. Two non-compact sim-
ple real forms with trivial automorphism:
su(1, 3), su(2, 2).

Fundamental dominant weights
'1 = 3

4�1 + 1
2�2 + 1

4�3

'2 = 1
2�1 + �2 + 1

2�3

'3 = 1
4�1 + 1

2�2 + 3
4�3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

1

�3 '1 no GT �24 9 6 su(1, 3) su(3) � R

1

�1

1

�2

1

�3 '2 no GT �32 7 8 su(2, 2) su(2) � su(2) � R

1

�1

1

�2

1

�3 '1 + '3 yes sGT �10 5 10 su(2, 2) su(2) � R � R

B3
dim g = 21. Three non-compact simple
real forms: so(6, 1), so(4, 3), so(2, 5).

Fundamental dominant weights
'1 = 3

2�1 + �2 + 1
2�3

'2 = 2�1 + 2�2 + �3

'3 = �1 + �2 + �3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2

2

�3 '1 no sF 24 9 12 so(6, 1) su(3) � R

1

�1

2

�2

2

�3 '2 yes sGT �28 7 14 so(4, 3) su(2) � su(2) � R

1

�1

2

�2

2

�3 '3 yes GT �50 11 10 so(2, 5) so(5) � R

C3
dim g = 21. Two non-compact simple
real forms: sp(1, 2), sp(3,R).

Fundamental dominant weights
'1 = �1 + �2 + 1

2�3

'2 = �1 + 2�2 + �3

'3 = �1 + 2�2 + 3
2�3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

2

�3 '1 no sGT �20 11 10 sp(1, 2) sp(2) � R

1

�1

1

�2

2

�3 '2 yes sF 14 7 14 sp(1, 2) su(2) � su(2) � R

1

�1

1

�2

2

�3 '3 no GT �48 9 12 sp(3,R) su(3) � R

1

�1

1

�2

2

�3 '1 + '3 no sGT �16 5 16 sp(3,R) su(2) � R � R

36
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Homogeneous symplectic manifolds - (Co)adjoint orbits

A3

dim g = 15. Two non-compact sim-
ple real forms with trivial automorphism:
su(1, 3), su(2, 2).

Fundamental dominant weights
'1 = 3

4�1 + 1
2�2 + 1

4�3

'2 = 1
2�1 + �2 + 1

2�3

'3 = 1
4�1 + 1

2�2 + 3
4�3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

1

�3 '1 no GT �24 9 6 su(1, 3) su(3) � R

1

�1

1

�2

1

�3 '2 no GT �32 7 8 su(2, 2) su(2) � su(2) � R

1

�1

1

�2

1

�3 '1 + '3 yes sGT �10 5 10 su(2, 2) su(2) � R � R

B3
dim g = 21. Three non-compact simple
real forms: so(6, 1), so(4, 3), so(2, 5).

Fundamental dominant weights
'1 = 3

2�1 + �2 + 1
2�3

'2 = 2�1 + 2�2 + �3

'3 = �1 + �2 + �3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2

2

�3 '1 no sF 24 9 12 so(6, 1) su(3) � R

1

�1

2

�2

2

�3 '2 yes sGT �28 7 14 so(4, 3) su(2) � su(2) � R

1

�1

2

�2

2

�3 '3 yes GT �50 11 10 so(2, 5) so(5) � R

C3
dim g = 21. Two non-compact simple
real forms: sp(1, 2), sp(3,R).

Fundamental dominant weights
'1 = �1 + �2 + 1

2�3

'2 = �1 + 2�2 + �3

'3 = �1 + 2�2 + 3
2�3

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

2

�3 '1 no sGT �20 11 10 sp(1, 2) sp(2) � R

1

�1

1

�2

2

�3 '2 yes sF 14 7 14 sp(1, 2) su(2) � su(2) � R

1

�1

1

�2

2

�3 '3 no GT �48 9 12 sp(3,R) su(3) � R

1

�1

1

�2

2

�3 '1 + '3 no sGT �16 5 16 sp(3,R) su(2) � R � R

36
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Homogeneous symplectic manifolds - (Co)adjoint orbits

A4

dim g = 24. Two non-compact sim-
ple real forms with trivial automorphism:
su(1, 4), su(2, 3).

Fundamental dominant weights
'1 = 4

5�1 + 3
5�2 + 2

5�3 + 1
5�4

'2 = 3
5�1 + 6

5�2 + 4
5�3 + 2

5�4

'3 = 2
5�1 + 4

5�2 + 6
5�3 + 3

5�4

'4 = 1
5�1 + 2

5�2 + 3
5�3 + 4

5�4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

1

�3

1

�4 '1 no GT �40 16 8 su(1, 4) su(4) � R

1

�1

1

�2

1

�3

1

�4 '2 no GT �60 12 12 su(2, 3) su(3) � su(2) � R

1

�1

1

�2

1

�3

1

�4 '1 + '4 yes sGT �28 10 14 su(2, 3) su(3) � R � R

1

�1

1

�2

1

�3

1

�4 '2 + '3 no sF 16 8 16 su(1, 4) su(2) � su(2) � R � R

1

�1

1

�2

1

�3

1

�4

P4
i=1 ti'i

for all ti > 0 no sCY 0 4 20 su(2, 3) R � R � R � R

B4

dim g = 36. Four non-compact sim-
ple real forms: so(8, 1), so(6, 3), so(4, 5),
so(2, 7).

Fundamental dominant weights
'1 = 2�1 + 3

2�2 + �3 + 1
2�4

'2 = 3�1 + 3�2 + 2�3 + �4

'3 = 2�1 + 2�2 + 2�3 + �4

'4 = �1 + �2 + �3 + �4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2

2

�3

2

�4 '1 no sF 80 16 20 so(8, 1) su(4) � R

'1 + 2'4 no sF 52 10 26 so(8, 1) su(3) � R � R

1

�1

2

�2

2

�3

2

�4 '2 no sGT �24 12 24 so(6, 3) su(3) � su(2) � R

1

�1

2

�2

2

�3

2

�4 '3 yes sGT �88 14 22 so(4, 5) so(5) � su(2) � R

1

�1

2

�2

2

�3

2

�4 '4 yes GT �98 22 14 so(2, 7) so(7) � R

37
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Homogeneous symplectic manifolds - (Co)adjoint orbits

A4

dim g = 24. Two non-compact sim-
ple real forms with trivial automorphism:
su(1, 4), su(2, 3).

Fundamental dominant weights
'1 = 4

5�1 + 3
5�2 + 2

5�3 + 1
5�4

'2 = 3
5�1 + 6

5�2 + 4
5�3 + 2

5�4

'3 = 2
5�1 + 4

5�2 + 6
5�3 + 3

5�4

'4 = 1
5�1 + 2

5�2 + 3
5�3 + 4

5�4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

1

�3

1

�4 '1 no GT �40 16 8 su(1, 4) su(4) � R

1

�1

1

�2

1

�3

1

�4 '2 no GT �60 12 12 su(2, 3) su(3) � su(2) � R

1

�1

1

�2

1

�3

1

�4 '1 + '4 yes sGT �28 10 14 su(2, 3) su(3) � R � R

1

�1

1

�2

1

�3

1

�4 '2 + '3 no sF 16 8 16 su(1, 4) su(2) � su(2) � R � R

1

�1

1

�2

1

�3

1

�4

P4
i=1 ti'i

for all ti > 0 no sCY 0 4 20 su(2, 3) R � R � R � R

B4

dim g = 36. Four non-compact sim-
ple real forms: so(8, 1), so(6, 3), so(4, 5),
so(2, 7).

Fundamental dominant weights
'1 = 2�1 + 3

2�2 + �3 + 1
2�4

'2 = 3�1 + 3�2 + 2�3 + �4

'3 = 2�1 + 2�2 + 2�3 + �4

'4 = �1 + �2 + �3 + �4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

2

�2

2

�3

2

�4 '1 no sF 80 16 20 so(8, 1) su(4) � R

'1 + 2'4 no sF 52 10 26 so(8, 1) su(3) � R � R

1

�1

2

�2

2

�3

2

�4 '2 no sGT �24 12 24 so(6, 3) su(3) � su(2) � R

1

�1

2

�2

2

�3

2

�4 '3 yes sGT �88 14 22 so(4, 5) so(5) � su(2) � R

1

�1

2

�2

2

�3

2

�4 '4 yes GT �98 22 14 so(2, 7) so(7) � R

37
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Homogeneous symplectic manifolds - (Co)adjoint orbits

C4
dim g = 36. Three non-compact simple
real forms: sp(1, 3), sp(2, 2), sp(4,R).

Fundamental dominant weights
'1 = �1 + �2 + �3 + 1

2�4

'2 = �1 + 2�2 + 2�3 + �4

'3 = �1 + 2�2 + 3�3 + 3
2�4

'4 = �1 + 2�2 + 3�3 + 2�4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

1

�3

2

�4 '1 no sGT �56 22 14 sp(1, 3) sp(3) � R

1

�1

1

�2

1

�3

2

�4 '2 yes sGT �22 14 22 sp(2, 2) su(2) � sp(2) � R

1

�1

1

�2

1

�3

2

�4 '3 no sF 48 12 24 sp(1, 3) su(3) � su(2) � R

3'1 + '3 no sF 28 8 28 sp(1, 3) su(2) � su(2) � R � R

1

�1

1

�2

1

�3

2

�4 '4 no GT �100 16 20 sp(4,R) su(4) � R

D4

dim g = 28. Two non-compact sim-
ple real forms with trivial automorphism:
so(2, 6), so(4, 4).

Fundamental dominant weights

'1 = �1 + �2 + 1
2�3 + 1

2�4

'2 = �1 + 2�2 + �3 + �4

'3 = 1
2�1 + �2 + �3 + 1

2�4

'4 = 1
2�1 + �2 + 1

2�3 + �4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

�1 �2

�3

�4 '1 no GT �72 16 12 so(2, 6) su(4) � R

�1 �2

�3

�4 '2 yes sGT �54 10 18 so(4, 4) su(2) � su(2) � su(2) � R

�1 �2

�3

�4
t1'1 + t2'3

for all t1, t2 > 0 no sCY 0 10 18 so(2, 6) su(3) � R � R

�1 �2

�3

�4 '1 + '3 + '4 no sGT �22 6 22 so(4, 4) su(2) � R � R � R
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Homogeneous symplectic manifolds - (Co)adjoint orbits

C4
dim g = 36. Three non-compact simple
real forms: sp(1, 3), sp(2, 2), sp(4,R).

Fundamental dominant weights
'1 = �1 + �2 + �3 + 1

2�4

'2 = �1 + 2�2 + 2�3 + �4

'3 = �1 + 2�2 + 3�3 + 3
2�4

'4 = �1 + 2�2 + 3�3 + 2�4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

1

�3

2

�4 '1 no sGT �56 22 14 sp(1, 3) sp(3) � R

1

�1

1

�2

1

�3

2

�4 '2 yes sGT �22 14 22 sp(2, 2) su(2) � sp(2) � R

1

�1

1

�2

1

�3

2

�4 '3 no sF 48 12 24 sp(1, 3) su(3) � su(2) � R

3'1 + '3 no sF 28 8 28 sp(1, 3) su(2) � su(2) � R � R

1

�1

1

�2

1

�3

2

�4 '4 no GT �100 16 20 sp(4,R) su(4) � R

D4

dim g = 28. Two non-compact sim-
ple real forms with trivial automorphism:
so(2, 6), so(4, 4).

Fundamental dominant weights

'1 = �1 + �2 + 1
2�3 + 1

2�4

'2 = �1 + 2�2 + �3 + �4

'3 = 1
2�1 + �2 + �3 + 1

2�4

'4 = 1
2�1 + �2 + 1

2�3 + �4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

�1 �2

�3

�4 '1 no GT �72 16 12 so(2, 6) su(4) � R

�1 �2

�3

�4 '2 yes sGT �54 10 18 so(4, 4) su(2) � su(2) � su(2) � R

�1 �2

�3

�4
t1'1 + t2'3

for all t1, t2 > 0 no sCY 0 10 18 so(2, 6) su(3) � R � R

�1 �2

�3

�4 '1 + '3 + '4 no sGT �22 6 22 so(4, 4) su(2) � R � R � R
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Homogeneous symplectic manifolds - (Co)adjoint orbits

F4

dim g = 52. Two non-compact sim-
ple real forms denoted by f4(4) = F I,
f4(�20) = F II.

Fundamental dominant weights
'1 = 2�1 + 3�2 + 2�3 + �4

'2 = 3�1 + 6�2 + 4�3 + 2�4

'3 = 4�1 + 8�2 + 6�3 + 3�4

'4 = 2�1 + 4�2 + 3�3 + 2�4

Vogan diagram ' ' 2 � Type s dim V dim G/V g v

1

�1

1

�2

2

�3

2

�4 '1 yes sF 90 22 30 f4(�20) so(7) � R

1

�1

1

�2

2

�3

2

�4 '2 no sF 120 12 40 f4(�20) su(3) � su(2) � R

'1 + '2 no sF 84 10 42 f4(�20) su(3) � R � R

'2 + 3'4 no sF 44 8 44 f4(�20) su(2) � su(2) � R � R

1

�1

1

�2

2

�3

2

�4 '3 no sGT �40 12 40 f4(4) su(3) � su(2) � R

1

�1

1

�2

2

�3

2

�4 '4 yes sGT �180 22 30 f4(4) sp(3) � R

1

�1

1

�2

2

�3

2

�4 '1 + '2 no sF 84 10 42 f4(�20) su(3) � R � R

1

�1

1

�2

2

�3

2

�4 2'1 + '4 no sGT �40 12 40 f4(4) so(5) � R � R
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Thank you for your attention!


