Chern-Einstein metrics on symplectic manifolds

Alberto Della Vedova
University of Milano - Bicocca

Partially based on a joint work with Alice Gatti (LBNL)
arXiv:1811.06958

Virtual meeting in Special Geometries and Gauge Theory Google Meet - July 3, 2020

Motivation

As is well known, any compact Riemann surface is covered by either $\mathbf{C P}{ }^{1}$, or \mathbf{C}, or the unit disk $\Delta \subset \mathbf{C}$, according to the sign of the curvature of a constant Gaussian curvature metric that may exist on it.

Motivation

As is well known, any compact Riemann surface is covered by either $\mathbf{C P}{ }^{1}$, or \mathbf{C}, or the unit disk $\Delta \subset \mathbf{C}$, according to the sign of the curvature of a constant Gaussian curvature metric that may exist on it.

In complex dimension two, this results generalizes as the following
Theorem
If (M, J, ω) is a compact Kähler-Einstein surface then

$$
c_{1}^{2}-3 c_{2} \leq 0
$$

Equality holds if and only if M is covered by either $\mathbf{C P}^{2}$, or \mathbf{C}^{2}, or the unit ball $B^{2} \subset \mathbf{C}^{2}$.

Motivation

As is well known, any compact Riemann surface is covered by either $\mathbf{C P}{ }^{1}$, or \mathbf{C}, or the unit disk $\Delta \subset \mathbf{C}$, according to the sign of the curvature of a constant Gaussian curvature metric that may exist on it.

In higher dimension this results generalizes as the following
Theorem
If (M, J, ω) is a compact Kähler-Einstein n-fold then

$$
\left(c_{1}^{2}-\frac{2(n+1)}{n} c_{2}\right) \cup[\omega]^{n-2} \leq 0
$$

Equality holds if and only if M is covered by either $\mathbf{C} \mathbf{P}^{n}$, or \mathbf{C}^{n}, or the unit ball $B^{n} \subset \mathbf{C}^{n}$.

Motivation

The proof of this fact is based on the following two points

Motivation

The proof of this fact is based on the following two points

- For any Kähler metric ω on (M, J) one proves that
$\left(c_{1}^{2}-\frac{2(n+1)}{n} c_{2}\right) \cup[\omega]^{n-2}=\int_{M}\left(k_{1}|\rho-(s / n) \omega|^{2}-k_{2}|B|^{2}\right) \omega^{n}$,
where $k_{1}, k_{2}>0$ are constants depending just on n, ρ is the Ricci form of ω, s is the scalar curvature and
$B \in \Omega^{2}(\operatorname{End}(T M))$ vanishes if and only if ω has constant holomorphic sectional curvature (Chern-Weil theory).

Motivation

The proof of this fact is based on the following two points

- For any Kähler metric ω on (M, J) one proves that

$$
\left(c_{1}^{2}-\frac{2(n+1)}{n} c_{2}\right) \cup[\omega]^{n-2}=\int_{M}\left(k_{1}|\rho-(s / n) \omega|^{2}-k_{2}|B|^{2}\right) \omega^{n}
$$

where $k_{1}, k_{2}>0$ are constants depending just on n, ρ is the Ricci form of ω, s is the scalar curvature and
$B \in \Omega^{2}(\operatorname{End}(T M))$ vanishes if and only if ω has constant holomorphic sectional curvature (Chern-Weil theory).

- (M, J, ω) has constant holomorphic sectional curvature if and only if it is isometrically covered by either $\mathbf{C} \mathbf{P}^{n}$, or \mathbf{C}^{n}, or $B^{n} \subset \mathbf{C}^{n}$ equipped with their standard metrics, up to scaling (Uniformization Theorem).

Motivation

From now on consider a compact symplectic manifold (M, ω) and the set of all compatible almost complex structures on it.

Question
Does a compatible almost complex structure J having special curvature properties constrain the topology of (M, ω) ?

Motivation

From now on consider a compact symplectic manifold (M, ω) and the set of all compatible almost complex structures on it.

Question

Does a compatible almost complex structure J having special curvature properties constrain the topology of (M, ω) ?

Theorem
Let (M, ω) be a compact symplectic $2 n$-fold. If J is a compatible almost complex structure satisfying $\rho=\lambda \omega$, then

$$
\left(c_{1}^{2}-\frac{2(n+1)}{n} c_{2}\right) \cup[\omega]^{n-2} \leq \int_{M}\left(k_{1} \lambda|N|^{2}+k_{2}|N|^{4}+k_{3}|\nabla N|^{2}\right) \omega^{n}
$$

where $k_{1}, k_{2}, k_{3}>0$ are constants depending just on n, N is the Nijenhuis tensor of J, and ∇ is the Chern connection of J.

Geometry of compatible complex structures

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

Geometry of compatible complex structures

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on $T M$

$$
\nabla g=0, T^{\nabla}=N, \nabla J=0, \nabla \omega=0
$$

Geometry of compatible complex structures

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on $T M$

$$
\nabla g=0, T^{\nabla}=N, \nabla J=0, \nabla \omega=0
$$

2. Chern curvature $R \in \Omega^{2}(M, \operatorname{End}(T M))$

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

Geometry of compatible complex structures

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on $T M$

$$
\nabla g=0, T^{\nabla}=N, \nabla J=0, \nabla \omega=0
$$

2. Chern curvature $R \in \Omega^{2}(M, \operatorname{End}(T M))$

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

3. Chern-Ricci form $\rho \in \Omega^{2}(M)$ and Chern class $c_{1} \in H^{2}(M)$

$$
\rho(X, Y)=\operatorname{tr}(J R(X, Y)), \quad d \rho=0, \quad c_{1}=\frac{1}{4 \pi}[\rho]
$$

Geometry of compatible complex structures

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on $T M$

$$
\nabla g=0, T^{\nabla}=N, \nabla J=0, \nabla \omega=0
$$

2. Chern curvature $R \in \Omega^{2}(M, \operatorname{End}(T M))$

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

3. Chern-Ricci form $\rho \in \Omega^{2}(M)$ and Chern class $c_{1} \in H^{2}(M)$

$$
\rho(X, Y)=\operatorname{tr}(J R(X, Y)), \quad d \rho=0, \quad c_{1}=\frac{1}{4 \pi}[\rho]
$$

4. Hermitian scalar curvature $s \in C^{\infty}(M)$

$$
s \omega^{n}=n \rho \wedge \omega^{n-1}, \quad s=\operatorname{scal}(g)+2|N|_{g}^{2}
$$

Geometry of compatible complex structures

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on $T M$

$$
\nabla g=0, T^{\nabla}=N, \nabla J=0, \nabla \omega=0
$$

2. Chern curvature $R \in \Omega^{2}(M, \operatorname{End}(T M))$

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

3. Chern-Ricci form $\rho \in \Omega^{2}(M)$ and Chern class $c_{1} \in H^{2}(M)$

$$
\rho(X, Y)=\operatorname{tr}(J R(X, Y)), \quad d \rho=0, \quad c_{1}=\frac{1}{4 \pi}[\rho]
$$

4. Hermitian scalar curvature $s \in C^{\infty}(M)$

$$
s \omega^{n}=n \rho \wedge \omega^{n-1}, \quad s=\operatorname{scal}(g)+2|N|_{g}^{2}
$$

5. $\theta \in \Omega^{4}(M)$ and Chern class $c_{2} \in H^{4}(M)$

$$
\theta=\frac{1}{2} \rho^{2}+\operatorname{tr}(R \wedge R), \quad d \theta=0, \quad c_{2}=\frac{1}{16 \pi^{2}}[\theta]
$$

Special compatible almost complex structures

Definition

A compatible almost complex structure J on (M, ω) is Chern-Einstein if there is $\lambda \in \mathbf{R}$ such that

$$
\rho=\lambda \omega .
$$

(...sometimes called Hermitian-Einstein or special. Already considered in Apostolov-Drăghichi 2003)

Special compatible almost complex structures

Definition

A compatible almost complex structure J on (M, ω) is
Chern-Einstein if there is $\lambda \in \mathbf{R}$ such that

$$
\rho=\lambda \omega .
$$

(...sometimes called Hermitian-Einstein or special. Already considered in Apostolov-Drăghichi 2003)

If J is Chen-Einstein, then $4 \pi c_{1}=\lambda[\omega]$. Therefore (M, ω) is

- symplectic general type if $\lambda<0$,
- symplectic Calabi-Yau if $\lambda=0$,
- symplectic Fano (or monotone) if $\lambda>0$

Moreover, the Hermitian scalar curvature is constant $s=n \lambda$.

Kähler examples and their deformations

Example (After Moser, Aubin, Yau, Chen-Donaldson-Sun, Tian)
If (M, ω) satisfies $4 \pi c_{1}=\lambda[\omega]$ and admits a K-stable integrable J_{0}, then it also admits an integrable Chern-Einstein J.

Kähler examples and their deformations

Example (After Moser, Aubin, Yau, Chen-Donaldson-Sun, Tian)
If (M, ω) satisfies $4 \pi c_{1}=\lambda[\omega]$ and admits a K-stable integrable J_{0}, then it also admits an integrable Chern-Einstein J.

Example (Lejmi 2010)
If $\left(M, J_{0}, \omega\right)$ is a locally toric Kähler-Einstein complex surface then there exist Chern-Einstein non-integrable deformations J_{ε} of J_{0}.
These examples include: $\mathbf{C P}^{2}, \mathbf{C} \mathbf{P}^{1} \times \mathbf{C P}^{1}, \mathbf{C P}^{2} \# 3 \overline{\mathbf{C P}^{2}}, \Gamma \backslash B^{2}$, $\Gamma \backslash(\Delta \times \Delta)$.

Non-Kähler examples

Do special J exist on non-Kähler symplectic manifolds?

Non-Kähler examples

Do special J exist on non-Kähler symplectic manifolds?

Example (Abbena 1984)
The Kodaira-Thurston manifold admits a Chern-Einstein J.

Non-Kähler examples

Do special J exist on non-Kähler symplectic manifolds?

Example (Abbena 1984)
The Kodaira-Thurston manifold admits a Chern-Einstein J.
Example (Davidov-Grantcharov-Muškarov 2009)
The twistor space of any real hyperbolic 4-fold (equipped with the Reznikov symplectc form) admits a Chern-Einstein J.

Non-Kähler examples

Do special J exist on non-Kähler symplectic manifolds?

Example (Abbena 1984)
The Kodaira-Thurston manifold admits a Chern-Einstein J.

Example (Davidov-Grantcharov-Muškarov 2009)

The twistor space of any real hyperbolic 4-fold (equipped with the Reznikov symplectc form) admits a Chern-Einstein J.

All this examples are

- Chern-Ricci flat $(\rho=0)$,
- locally homogeneous ($M=\Gamma \backslash G / V$)
- $V \subset G$ compact
- $\Gamma \subset G$ discrete and torsion-free (lattice)
- ω and J descends from homogeneous structures on G / V

Non-Kähler examples

Example (Fine-Panov 2009)
The twistor space of a real hyperbolic 4-fold satisfies $c_{1}=0$, $c_{2} \cup[\omega]<0$.

Non-Kähler examples

Example (Fine-Panov 2009)

The twistor space of a real hyperbolic 4-fold satisfies $c_{1}=0$, $c_{2} \cup[\omega]<0$.

Let (M, ω) such a twistor space. By Theorem before one has

$$
-8 c_{2} \cup[\omega] \leq \inf _{J \text { s.t. } \rho=0}\left\{\frac{1}{96 \pi^{2}} \int_{M}\left(253|N|^{4}+96|\nabla N|^{2}\right) \frac{\omega^{3}}{6}\right\}
$$

- $\|N\|_{L^{4}}+\|N\|_{W^{1,2}}$ cannot be arbitrarily small for a Chern-Ricci flat J.

Homogeneous symplectic manifolds

- G connected real Lie group,

Homogeneous symplectic manifolds

- G connected real Lie group,
- $V \subset G$ compact,

Homogeneous symplectic manifolds

- G connected real Lie group,
- $V \subset G$ compact,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,

Homogeneous symplectic manifolds

- G connected real Lie group,
- $V \subset G$ compact,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,
- σV-invariant symplectic on \mathfrak{m} s.t. $\sigma\left([X, Y]_{\mathfrak{m}}, Z\right)+$ cyclic $=0$,

Homogeneous symplectic manifolds

- G connected real Lie group,
- $V \subset G$ compact,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,
- σV-invariant symplectic on \mathfrak{m} s.t. $\sigma\left([X, Y]_{\mathfrak{m}}, Z\right)+$ cyclic $=0$,
- $H V$-invariant compatible complex structure on \mathfrak{m}.
induce homogeneous ω and J on G / V.

Homogeneous symplectic manifolds

- G connected real Lie group,
- $V \subset G$ compact,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,
- σV-invariant symplectic on \mathfrak{m} s.t. $\sigma\left([X, Y]_{\mathfrak{m}}, Z\right)+$ cyclic $=0$,
- HV-invariant compatible complex structure on \mathfrak{m}.
induce homogeneous ω and J on G / V.

Theorem
For all $X, Y \in \mathfrak{m}$ one has $\rho(X, Y)=\operatorname{tr}\left(\operatorname{ad}_{H[X, Y]_{\mathfrak{g}}}-H \operatorname{ad}_{[X, Y]_{\mathfrak{g}}}\right)$.

Homogeneous symplectic manifolds

- G connected real Lie group,
- $V \subset G$ compact,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,
- σV-invariant symplectic on \mathfrak{m} s.t. $\sigma\left([X, Y]_{\mathfrak{m}}, Z\right)+$ cyclic $=0$,
- $H V$-invariant compatible complex structure on \mathfrak{m}.
induce homogeneous ω and J on G / V.

Theorem
For all $X, Y \in \mathfrak{m}$ one has $\rho(X, Y)=\operatorname{tr}\left(\operatorname{ad}_{H[X, Y]_{\mathfrak{g}}}-H \operatorname{ad}_{[X, Y]_{\mathfrak{g}}}\right)$.
Corollary
If V has discrete center, then $(G / V, \omega)$ has $c_{1}=0$.

Homogeneous symplectic manifolds - Symplectic Lie groups

A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma\left([X, Y]_{\mathfrak{g}}, Z\right)+$ cyclic $=0$.

Therefore (G, ω) has $c_{1}=0$.

Homogeneous symplectic manifolds - Symplectic Lie groups

A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma\left([X, Y]_{\mathfrak{g}}, Z\right)+$ cyclic $=0$.

Therefore (G, ω) has $c_{1}=0$.
Does there exist a Chern-Ricci flat compatible J on (G, ω) ?

Homogeneous symplectic manifolds - Symplectic Lie groups
A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma\left([X, Y]_{\mathfrak{g}}, Z\right)+$ cyclic $=0$.

Therefore (G, ω) has $c_{1}=0$.
Does there exist a Chern-Ricci flat compatible J on (G, ω) ?

Theorem (Lauret-Will 2017)
If G is unimodular and 4-dimensional, then a Chern-Ricci flat J on
(G, ω) exists whenever $G \neq \operatorname{Nil}^{4}\left(\left[e_{1}, e_{4}\right]=-e_{3},\left[e_{3}, e_{4}\right]=-e_{2}\right)$.

Homogeneous symplectic manifolds - Symplectic Lie groups
A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma\left([X, Y]_{\mathfrak{g}}, Z\right)+$ cyclic $=0$.

Therefore (G, ω) has $c_{1}=0$.
Does there exist a Chern-Ricci flat compatible J on (G, ω) ?

Theorem (Lauret-Will 2017)
If G is unimodular and 4-dimensional, then a Chern-Ricci flat J on (G, ω) exists whenever $G \neq \operatorname{Nil}^{4}\left(\left[e_{1}, e_{4}\right]=-e_{3},\left[e_{3}, e_{4}\right]=-e_{2}\right)$.

Corollary (after Geiges 1992)
Let M be the total space of a T^{2}-bundle over T^{2} and let
$c \in H^{2}(M)$ such that $c^{2} \neq 0$. If $c($ fiber $) \neq 0$ then there exist ω symplectic such that $[\omega]=c$ and J Chern-Ricci flat.

Homogeneous symplectic manifolds - (Co)adjoint orbits

- G connected real semi-simple Lie group,

Homogeneous symplectic manifolds - (Co)adjoint orbits

- G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with compact isotropy subgroup $V \subset G$,

Homogeneous symplectic manifolds - (Co)adjoint orbits

- G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with compact isotropy subgroup $V \subset G$,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,

Homogeneous symplectic manifolds - (Co)adjoint orbits

- G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with compact isotropy subgroup $V \subset G$,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,
- $\sigma(X, Y)=B\left(v,[X, Y]_{\mathfrak{g}}\right)$ defines a symplectic form σ on \mathfrak{m}.

Then ω is the Kirillov-Kostant-Souriau form on G / V.

Homogeneous symplectic manifolds - (Co)adjoint orbits

- G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with compact isotropy subgroup $V \subset G$,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,
- $\sigma(X, Y)=B\left(v,[X, Y]_{\mathfrak{g}}\right)$ defines a symplectic form σ on \mathfrak{m}.

Then ω is the Kirillov-Kostant-Souriau form on G / V.

Remark

G and V have the same rank. This is a familiar situation in Hodge theory. On G / V is defined an integrable almost complex structure J^{\prime} which, in general, is not compatible with ω.

Homogeneous symplectic manifolds - (Co)adjoint orbits

- G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with compact isotropy subgroup $V \subset G$,
- $\mathfrak{g}=\mathfrak{v} \oplus \mathfrak{m}$ a V-invariant decomposition,
- $\sigma(X, Y)=B\left(v,[X, Y]_{\mathfrak{g}}\right)$ defines a symplectic form σ on \mathfrak{m}.

Then ω is the Kirillov-Kostant-Souriau form on G / V.

Remark

G and V have the same rank. This is a familiar situation in Hodge theory. On G / V is defined an integrable almost complex structure J^{\prime} which, in general, is not compatible with ω.

Definition (ADV, ADV-Gatti, Alekseevsky-Podestà)

There is a canonical homogeneous compatible almost complex structure J on $(G / V, \omega)$.

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

- $H^{2 m}=S O(2 m, 1) / S O(2 m)$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

- $H^{2 m}=S O(2 m, 1) / S O(2 m)$
- $\Gamma \subset S O(2 m, 1)$ is a lattice

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

- $H^{2 m}=S O(2 m, 1) / S O(2 m)$
- $\Gamma \subset S O(2 m, 1)$ is a lattice
- $M=\Gamma \backslash S O(2 m, 1) / U(m)$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

- $H^{2 m}=S O(2 m, 1) / S O(2 m)$
- $\Gamma \subset S O(2 m, 1)$ is a lattice
- $M=\Gamma \backslash S O(2 m, 1) / U(m)$
- $S O(2 m, 1) / U(m)$ is an adjoint orbit with $\rho=2(m-2) \omega$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

- $H^{2 m}=S O(2 m, 1) / S O(2 m)$
- $\Gamma \subset S O(2 m, 1)$ is a lattice
- $M=\Gamma \backslash S O(2 m, 1) / U(m)$
- $S O(2 m, 1) / U(m)$ is an adjoint orbit with $\rho=2(m-2) \omega$
- M is not homotopy Kähler if $m \geq 2$ (Carlson-Toledo 1989)

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

- $H^{2 m}=S O(2 m, 1) / S O(2 m)$
- $\Gamma \subset S O(2 m, 1)$ is a lattice
- $M=\Gamma \backslash S O(2 m, 1) / U(m)$
- $S O(2 m, 1) / U(m)$ is an adjoint orbit with $\rho=2(m-2) \omega$
- M is not homotopy Kähler if $m \geq 2$ (Carlson-Toledo 1989)
- $\left(M, \omega_{\Gamma}\right)$ is a symplectic Calabi-Yau 6 -fold if $m=2$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

The twistor space of a real hyperbolic $2 m$-fold $\Gamma \backslash H^{2 m}$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(m-2) \omega_{\Gamma}$.

- $H^{2 m}=S O(2 m, 1) / S O(2 m)$
- $\Gamma \subset S O(2 m, 1)$ is a lattice
- $M=\Gamma \backslash S O(2 m, 1) / U(m)$
- $S O(2 m, 1) / U(m)$ is an adjoint orbit with $\rho=2(m-2) \omega$
- M is not homotopy Kähler if $m \geq 2$ (Carlson-Toledo 1989)
- $\left(M, \omega_{\Gamma}\right)$ is a symplectic Calabi-Yau 6-fold if $m=2$
- $\left(M, \omega_{\Gamma}\right)$ is a symplectic Fano $m(m+1)$-fold if $m>2$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

- $\Gamma \subset S O(2 p, q)$ is a lattice

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

- $\Gamma \subset S O(2 p, q)$ is a lattice
- $V=U(p) \times S O(q)$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

- $\Gamma \subset S O(2 p, q)$ is a lattice
- $V=U(p) \times S O(q)$
- $M=\Gamma \backslash S O(2 p, q) / V$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

- $\Gamma \subset S O(2 p, q)$ is a lattice
- $V=U(p) \times S O(q)$
- $M=\Gamma \backslash S O(2 p, q) / V$
- $S O(2 p, q) / V$ is an adjoint orbit with $\rho=2(p-q-1) \omega$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

- $\Gamma \subset S O(2 p, q)$ is a lattice
- $V=U(p) \times S O(q)$
- $M=\Gamma \backslash S O(2 p, q) / V$
- $S O(2 p, q) / V$ is an adjoint orbit with $\rho=2(p-q-1) \omega$
- M is not homotopy Kähler if $p \geq 2$, and $q \neq 2$ (Carlson-Toledo 1989)

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

- $\Gamma \subset S O(2 p, q)$ is a lattice
- $V=U(p) \times S O(q)$
- $M=\Gamma \backslash S O(2 p, q) / V$
- $S O(2 p, q) / V$ is an adjoint orbit with $\rho=2(p-q-1) \omega$
- M is not homotopy Kähler if $p \geq 2$, and $q \neq 2$ (Carlson-Toledo 1989)
- M has dimension $p(p+2 q+1)$

Homogeneous symplectic manifolds - (Co)adjoint orbits

Example

A weight-two period domain of type $(2 p, q)$ is a symplectc manifold $\left(M, \omega_{\Gamma}\right)$ admitting J_{Γ} with $\rho_{\Gamma}=2(p-q-1) \omega_{\Gamma}$.

- $\Gamma \subset S O(2 p, q)$ is a lattice
- $V=U(p) \times S O(q)$
- $M=\Gamma \backslash S O(2 p, q) / V$
- $S O(2 p, q) / V$ is an adjoint orbit with $\rho=2(p-q-1) \omega$
- M is not homotopy Kähler if $p \geq 2$, and $q \neq 2$ (Carlson-Toledo 1989)
- M has dimension $p(p+2 q+1)$
- $\left(M, \omega_{\Gamma}\right)$ is symplectic GT, CY, or Fano according to the sign of $p-q-1$

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is $\left(\Gamma \backslash G / V, \omega_{\Gamma}, J_{\Gamma}\right)$ of Kähler type?

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is ($\Gamma \backslash G / V, \omega_{\Gamma}, J_{\Gamma}$) of Kähler type?

Never if $\left(\Gamma \backslash G / V, \omega_{\Gamma}\right)$ is of symplectic Fano type. Work in progress...

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is ($\Gamma \backslash G / V, \omega_{\Gamma}, J_{\Gamma}$) of Kähler type?

Never if $\left(\Gamma \backslash G / V, \omega_{\Gamma}\right)$ is of symplectic Fano type. Work in progress...

- Classify all Chern-Einstein $(G / V, \omega, J)$?

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is ($\Gamma \backslash G / V, \omega_{\Gamma}, J_{\Gamma}$) of Kähler type?

Never if $\left(\Gamma \backslash G / V, \omega_{\Gamma}\right)$ is of symplectic Fano type. Work in progress...

- Classify all Chern-Einstein $(G / V, \omega, J)$?

Up to coverings, $(G / V, \omega, J)$ splits as a product of $\left(G_{i} / V_{i}, \omega_{i}, J_{i}\right)$ where G_{i} are simple.

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is ($\left.\Gamma \backslash G / V, \omega_{\Gamma}, J_{\Gamma}\right)$ of Kähler type?

Never if $\left(\Gamma \backslash G / V, \omega_{\Gamma}\right)$ is of symplectic Fano type. Work in progress...

- Classify all Chern-Einstein $(G / V, \omega, J)$?

Up to coverings, $(G / V, \omega, J)$ splits as a product of $\left(G_{i} / V_{i}, \omega_{i}, J_{i}\right)$ where G_{i} are simple.
If G is simple and $V \subset G$ is a torus (general choice of $v \in \mathfrak{g}$), then $(G / V, \omega, J)$ is Chern-Einstein iff $\mathfrak{g}=\mathfrak{s l}(2, \mathbf{R})$ or $\mathfrak{s u}(p+1, p)$.
(Alekseevski-Podestà 2018).

Homogeneous symplectic manifolds - (Co)adjoint orbits

In general, we studied the geometry of adjoint orbits ($G / V, \omega, J$).

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is $\left(\Gamma \backslash G / V, \omega_{\Gamma}, J_{\Gamma}\right)$ of Kähler type?

Never if $\left(\Gamma \backslash G / V, \omega_{\Gamma}\right)$ is of symplectic Fano type. Work in progress...

- Classify all Chern-Einstein $(G / V, \omega, J)$?

Up to coverings, $(G / V, \omega, J)$ splits as a product of $\left(G_{i} / V_{i}, \omega_{i}, J_{i}\right)$ where G_{i} are simple.
If G is simple and $V \subset G$ is a torus (general choice of $v \in \mathfrak{g}$), then $(G / V, \omega, J)$ is Chern-Einstein iff $\mathfrak{g}=\mathfrak{s l}(2, \mathbf{R})$ or $\mathfrak{s u}(p+1, p)$. (Alekseevski-Podestà 2018).
Vogan diagrams demonstrated to be the appropriate combinatorial device for algorithmic listing. No hope to guessing the general pattern at the moment.

Homogeneous symplectic manifolds - (Co)adjoint orbits

Homogeneous symplectic manifolds - (Co)adjoint orbits

Homogeneous symplectic manifolds - (Co)adjoint orbits

Homogeneous symplectic manifolds - (Co)adjoint orbits

- $v \in \mathfrak{g} \rightsquigarrow \varphi \in \mathfrak{h}_{\mathbf{R}}^{*}$

$$
\varphi(u)=-i B(v, u)
$$

- $\varphi^{\prime}=-2 \sum_{\alpha \in \Delta^{+} \backslash \varphi^{\perp}} \varepsilon_{\alpha} \alpha$
- $\rho=\lambda \omega \quad$ iff $\quad \varphi^{\prime}=\lambda \varphi$

Homogeneous symplectic manifolds - (Co)adjoint orbits

A_{2}	$\operatorname{dim} \mathfrak{g}=8$. One non-compact simple real form with trivial automorphism: $\mathfrak{s u}(1,2)$.					Fundamental dominant weights$\begin{aligned} & \varphi_{1}=\frac{2}{3} \gamma_{1}+\frac{1}{3} \gamma_{2} \\ & \varphi_{2}=\frac{1}{3} \gamma_{1}+\frac{2}{3} \gamma_{2} \\ & \hline \hline \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
1 1 \bullet $\boldsymbol{\gamma}_{1}$ γ_{2}	φ_{1}	no	GT	-12	4	4	$\mathfrak{s u}(1,2)$	$\mathfrak{s u}(2) \oplus \mathbf{R}$
$\begin{array}{rrr}1 & 1 \\ \dot{\gamma}_{1} & \boldsymbol{\gamma}_{2}\end{array}$	$\begin{gathered} t_{1} \varphi_{1}+t_{2} \varphi_{2} \\ \text { for all } t_{1}, t_{2}>0 \\ \hline \end{gathered}$	no	sCY	0	2	6	$\mathfrak{s u}(1,2)$	$\mathbf{R} \oplus \mathbf{R}$

B_{2}	$\operatorname{dim} \mathfrak{g}=10$. Two simple non-compact real forms: $\mathfrak{s o}(4,1), \mathfrak{s o}(2,3)$.					Fundamental dominant weights$\begin{aligned} & \varphi_{1}=\gamma_{1}+\frac{1}{2} \gamma_{2} \\ & \varphi_{2}=\gamma_{1}+\gamma_{2} \\ & \hline \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{cc} 1 & 2 \\ \stackrel{\circ}{\gamma_{1}}= & 0 \\ \gamma_{2} \end{array}$	φ_{1}	no	sCY	0	4	6	$\mathfrak{s o}(4,1)$	$\mathfrak{s u}(2) \oplus \mathbf{R}$
$\begin{array}{cr} \hline 1 & 2 \\ \circ \\ \gamma_{1} & = \\ \gamma_{2} \end{array}$	φ_{2}	yes	GT	-18	4	6	$\mathfrak{s o}(2,3)$	$\mathfrak{s u}(2) \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

G_{2}	$\operatorname{dim} \mathfrak{g}=14$. One non-compact simple real form denoted by $\mathfrak{g}_{2(2)}=\mathrm{G}$.					Fundamental dominant weights$\begin{aligned} & \varphi_{1}=2 \gamma_{1}+\gamma_{2} \\ & \varphi_{2}=3 \gamma_{1}+2 \gamma_{2} \\ & \hline \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{cc}1 & 3 \\ \bullet & =0 \\ \gamma_{1} & \gamma_{2}\end{array}$	φ_{1}	yes	sGT	-30	4	10	$\mathfrak{g}_{2(2)}$	$\mathfrak{s u}(2) \oplus \mathbf{R}$
$\begin{array}{lr} \hline 1 & 3 \\ \stackrel{1}{\circ} \\ \gamma_{1} & \gamma_{2} \end{array}$	φ_{2}	yes	sGT	-10	4	10	$\mathfrak{g}_{2(2)}$	$\mathfrak{s u}(2) \oplus \mathbf{R}$

A_{3}	$\operatorname{dim} \mathfrak{g}=15 . \quad$ Two non-compact simple real forms with trivial automorphism: $\mathfrak{s u}(1,3), \mathfrak{s u}(2,2)$.					Fundamental dominant weights$\begin{aligned} \varphi_{1} & =\frac{3}{4} \gamma_{1}+\frac{1}{2} \gamma_{2}+\frac{1}{4} \gamma_{3} \\ \varphi_{2} & =\frac{1}{2} \gamma_{1}+\gamma_{2}+\frac{1}{2} \gamma_{3} \\ \varphi_{3} & =\frac{1}{4} \gamma_{1}+\frac{1}{2} \gamma_{2}+\frac{3}{4} \gamma_{3} \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	s	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
	φ_{1}	no	GT	-24	9	6	$\mathfrak{s u}(1,3)$	$\mathfrak{s u}(3) \oplus \mathbf{R}$
$\begin{array}{ccc}1 & 1 & 1 \\ \stackrel{\text { ¢ }}{1} & \bullet & \gamma_{2} \\ & \gamma_{3}\end{array}$	φ_{2}	no	GT	-32	7	8	$\mathfrak{s u}(2,2)$	$\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
$\begin{array}{ccc}1 & 1 & 1 \\ \bullet \bullet-1 & \\ \gamma_{1} & \gamma_{2} & \gamma_{3}\end{array}$	$\varphi_{1}+\varphi_{3}$	yes	sGT	-10	5	10	$\mathfrak{s u}(2,2)$	$\mathfrak{s u}(2) \oplus \mathbf{R} \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

B_{3}	$\operatorname{dim} \mathfrak{g}=21$. Three non-compact simple real forms: $\mathfrak{s o}(6,1), \mathfrak{s o}(4,3), \mathfrak{s o}(2,5)$.					Fundamental dominant weights$\begin{aligned} & \varphi_{1}=\frac{3}{2} \gamma_{1}+\gamma_{2}+\frac{1}{2} \gamma_{3} \\ & \varphi_{2}=2 \gamma_{1}+2 \gamma_{2}+\gamma_{3} \\ & \varphi_{3}=\gamma_{1}+\gamma_{2}+\gamma_{3} \\ & \hline \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	s	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{ccc}1 & 2 & 2 \\ \bullet \gamma_{1} & \gamma_{2} & \stackrel{1}{\gamma_{3}}\end{array}$	φ_{1}	no	sF	24	9	12	$\mathfrak{s o}(6,1)$	$\mathfrak{s u}(3) \oplus \mathbf{R}$
	φ_{2}	yes	sGT	-28	7	14	$\mathfrak{s o}(4,3)$	$\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
$\begin{array}{ccc}1 & 2 & 2 \\ \stackrel{\circ}{\gamma_{1}} & \gamma_{2} & \gamma_{3}\end{array}$	φ_{3}	yes	GT	-50	11	10	$\mathfrak{s o}(2,5)$	$\mathfrak{s o}(5) \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

C3	$\operatorname{dim} \mathfrak{g}=21$. Two non-compact simple real forms: $\mathfrak{s p}(1,2), \mathfrak{s p}(3, \mathbf{R})$.					Fundamental dominant weights$\begin{aligned} \varphi_{1} & =\gamma_{1}+\gamma_{2}+\frac{1}{2} \gamma_{3} \\ \varphi_{2} & =\gamma_{1}+2 \gamma_{2}+\gamma_{3} \\ \varphi_{3} & =\gamma_{1}+2 \gamma_{2}+\frac{3}{2} \gamma_{3} \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{\|ccc} \hline 1 & 1 & 2 \\ \bullet \bullet & \stackrel{2}{\circ} & \stackrel{0}{\circ} \\ \gamma_{1} & \gamma_{2} & \gamma_{3} \end{array}$	φ_{1}	no	sGT	-20	11	10	$\mathfrak{s p}(1,2)$	$\mathfrak{s p}(2) \oplus \mathbf{R}$
$\begin{array}{ccc} \hline 1 & 1 & 2 \\ \circ & \bullet & \circ \\ \gamma_{1} & \gamma_{2} & \gamma_{3} \end{array}$	φ_{2}	yes	sF	14	7	14	$\mathfrak{s p}(1,2)$	$\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
$$	φ_{3}	no	GT	-48	9	12	$\mathfrak{s p}(3, \mathbf{R})$	$\mathfrak{s u}(3) \oplus \mathbf{R}$
$\begin{array}{rrr} 1 & 1 & 2 \\ \bullet- & \mathbf{\circ} & = \\ \gamma_{1} & \gamma_{2} & \gamma_{3} \end{array}$	$\varphi_{1}+\varphi_{3}$	no	sGT	-16	5	16	$\mathfrak{s p}(3, \mathbf{R})$	$\mathfrak{s u}(2) \oplus \mathbf{R} \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

A_{4}	$\operatorname{dimg}=24$. Two non-compact simple real forms with trivial automorphism: $\mathfrak{s u}(1,4), \mathfrak{s u}(2,3)$.					$\begin{aligned} & \text { Fundamental dominant weights } \\ & \begin{array}{cl} \varphi_{1} & =\frac{4}{5} \gamma_{1}+\frac{3}{5} \gamma_{2}+\frac{2}{5} \gamma_{3}+\frac{1}{5} \gamma_{4} \\ \varphi_{2} & =\frac{3}{5} \gamma_{1}+\frac{6}{5} \gamma_{2}+\frac{4}{5} \gamma_{3}+\frac{2}{5} \gamma_{4} \\ \varphi_{3} & =\frac{2}{5} \gamma_{1}+\frac{4}{5} \gamma_{2}+\frac{6}{5} \gamma_{3}+\frac{3}{5} \gamma_{4} \\ \varphi_{4} & =\frac{1}{5} \gamma_{1}+\frac{2}{5} \gamma_{2}+\frac{3}{5} \gamma_{3}+\frac{4}{5} \gamma_{4} \end{array} \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{cccc} 1 & 1 & 1 & 1 \\ \stackrel{\bullet}{\gamma_{1}} & \stackrel{1}{\circ} & -\stackrel{\circ}{\circ} & \gamma_{3} \\ \stackrel{\circ}{\gamma_{4}} \end{array}$	φ_{1}	no	GT	-40	16	8	$\mathfrak{s u}(1,4)$	$\mathfrak{s u}(4) \oplus \mathbf{R}$
$\begin{array}{cccc} \hline \stackrel{1}{\circ} & 1 & 1 & 1 \\ \gamma_{1} & \gamma_{2} & \stackrel{\circ}{\circ} & \gamma_{3} \\ \stackrel{\circ}{\gamma_{4}} \end{array}$	φ_{2}	no	GT	-60	12	12	$\mathfrak{s u}(2,3)$	$\mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
	$\varphi_{1}+\varphi_{4}$	yes	sGT	-28	10	14	$\mathfrak{s u}(2,3)$	$\mathfrak{s u}(3) \oplus \mathbf{R} \oplus \mathbf{R}$
$\begin{array}{cccc} \hline 1 & 1 & 1 & 1 \\ \stackrel{\circ}{\gamma_{1}} & \bullet & \gamma_{2} & \gamma_{3} \\ \stackrel{\circ}{\gamma_{4}} \end{array}$	$\varphi_{2}+\varphi_{3}$	no	sF	16	8	16	$\mathfrak{s u}(1,4)$	$\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathbf{R} \oplus \mathbf{R}$
	$\begin{aligned} & \sum_{i=1}^{4} t_{i} \varphi_{i} \\ & \text { for all } t_{i}>0 \end{aligned}$	no	sCY	0	4	20	$\mathfrak{s u}(2,3)$	$\mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

B_{4}	$\operatorname{dim} \mathfrak{g}=36$. Four non-compact simple real forms: $\mathfrak{s o}(8,1), \mathfrak{s o}(6,3), \mathfrak{s o}(4,5)$, $\mathfrak{s o}(2,7)$.					Fundamental dominant weights$\begin{aligned} & \varphi_{1}=2 \gamma_{1}+\frac{3}{2} \gamma_{2}+\gamma_{3}+\frac{1}{2} \gamma_{4} \\ & \varphi_{2}=3 \gamma_{1}+3 \gamma_{2}+2 \gamma_{3}+\gamma_{4} \\ & \varphi_{3}=2 \gamma_{1}+2 \gamma_{2}+2 \gamma_{3}+\gamma_{4} \\ & \varphi_{4}=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4} \\ & \hline \hline \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{llll} 1 & 2 & 2 & 2 \\ \stackrel{\bullet}{\gamma_{1}} & =\stackrel{\gamma}{\circ} & \stackrel{\circ}{\circ} & - \\ \gamma_{3} & \stackrel{\circ}{\gamma_{4}} \end{array}$	$\begin{gathered} \varphi_{1} \\ \varphi_{1}+2 \varphi_{4} \end{gathered}$	no no	$\begin{aligned} & \mathrm{sF} \\ & \mathrm{sF} \end{aligned}$	$\begin{aligned} & 80 \\ & 52 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	$\begin{aligned} & \mathfrak{s o}(8,1) \\ & \mathfrak{s o}(8,1) \\ & \hline \end{aligned}$	$\begin{gathered} \mathfrak{s u}(4) \oplus \mathbf{R} \\ \mathfrak{s u}(3) \oplus \mathbf{R} \oplus \mathbf{R} \end{gathered}$
$\begin{array}{cccc} \hline 1 \\ \stackrel{1}{\circ} & 2 & 2 & 2 \\ \gamma_{1} & \gamma_{2} & \stackrel{\circ}{\circ} & \gamma_{3} \\ \gamma_{4} \end{array}$	φ_{2}	no	sGT	-24	12	24	$\mathfrak{s o}(6,3)$	$\mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
$\begin{array}{cccc} 1 & 2 & 2 & 2 \\ \stackrel{\circ}{\gamma_{1}} & \stackrel{\gamma}{\circ} & - & \bullet \\ \gamma_{3} & \stackrel{\circ}{\circ} \end{array}$	φ_{3}	yes	sGT	-88	14	22	$\mathfrak{s o}(4,5)$	$\mathfrak{s o}(5) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
$\begin{array}{cccc} \hline 1 & 2 & 2 & 2 \\ \stackrel{\circ}{\gamma_{1}} & \gamma_{2} & \gamma_{3} & \gamma_{4} \end{array}$	φ_{4}	yes	GT	-98	22	14	$\mathfrak{s o}(2,7)$	$\mathfrak{s o}(7) \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

C_{4}	$\operatorname{dim} \mathfrak{g}=36$. Three non-compact simple real forms: $\mathfrak{s p}(1,3), \mathfrak{s p}(2,2), \mathfrak{s p}(4, \mathbf{R})$.					Fundamental dominant weights$\begin{aligned} \varphi_{1} & =\gamma_{1}+\gamma_{2}+\gamma_{3}+\frac{1}{2} \gamma_{4} \\ \varphi_{2} & =\gamma_{1}+2 \gamma_{2}+2 \gamma_{3}+\gamma_{4} \\ \varphi_{3} & =\gamma_{1}+2 \gamma_{2}+3 \gamma_{3}+\frac{3}{2} \gamma_{4} \\ \varphi_{4} & =\gamma_{1}+2 \gamma_{2}+3 \gamma_{3}+2 \gamma_{4} \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{cccc} 1 & 1 & 1 & 2 \\ \bullet & \circ & \circ & \stackrel{\circ}{\circ} \\ \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} \end{array}$	φ_{1}	no	sGT	-56	22	14	$\mathfrak{s p}(1,3)$	$\mathfrak{s p}(3) \oplus \mathbf{R}$
$\begin{array}{cccc} \hline 1 & 1 & 1 & 2 \\ \stackrel{\circ}{\circ}- & \stackrel{\circ}{\circ} & \stackrel{\circ}{\circ} & \stackrel{\circ}{\gamma_{1}} \end{array}$	φ_{2}	yes	sGT	-22	14	22	$\mathfrak{s p}(2,2)$	$\mathfrak{s u}(2) \oplus \mathfrak{s p}(2) \oplus \mathbf{R}$
$\begin{array}{cccc} 1 & 1 & 1 & 2 \\ \circ & \circ & \circ & \circ \\ \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} \end{array}$	φ_{3} $3 \varphi_{1}+\varphi_{3}$	no no	$\begin{aligned} & \mathrm{sF} \\ & \mathrm{sF} \end{aligned}$	$\begin{aligned} & 48 \\ & 28 \end{aligned}$	$\begin{gathered} 12 \\ 8 \end{gathered}$	24 28	$\begin{array}{r} \mathfrak{s p}(1,3) \\ \mathfrak{s p}(1,3) \\ \hline \end{array}$	$\begin{gathered} \mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathbf{R} \\ \mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathbf{R} \oplus \mathbf{R} \\ \hline \end{gathered}$
$\begin{array}{cccc} 1 & 1 & 1 & 2 \\ \stackrel{\circ}{\circ}- & \stackrel{\circ}{\circ} & \stackrel{\gamma}{\circ} & = \\ \gamma_{1} \end{array}$	φ_{4}	no	GT	-100	16	20	$\mathfrak{s p}(4, \mathbf{R})$	$\mathfrak{s u}(4) \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

D_{4}	$\operatorname{dim} \mathfrak{g}=28$. Two non-compact simple real forms with trivial automorphism: $\mathfrak{s o}(2,6), \mathfrak{s o}(4,4)$.					Fundamental dominant weights$\begin{aligned} & \varphi_{1}=\gamma_{1}+\gamma_{2}+\frac{1}{2} \gamma_{3}+\frac{1}{2} \gamma_{4} \\ & \varphi_{2}=\gamma_{1}+2 \gamma_{2}+\gamma_{3}+\gamma_{4} \\ & \varphi_{3}=\frac{1}{2} \gamma_{1}+\gamma_{2}+\gamma_{3}+\frac{1}{2} \gamma_{4} \\ & \varphi_{4}=\frac{1}{2} \gamma_{1}+\gamma_{2}+\frac{1}{2} \gamma_{3}+\gamma_{4} \\ & \hline \hline \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	S	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
	φ_{1}	no	GT	-72	16	12	$\mathfrak{s o}(2,6)$	$\mathfrak{s u}(4) \oplus \mathbf{R}$
	φ_{2}	yes	sGT	-54	10	18	$\mathfrak{s o}(4,4)$	$\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
	$\begin{gathered} t_{1} \varphi_{1}+t_{2} \varphi_{3} \\ \text { for all } t_{1}, t_{2}>0 \\ \hline \end{gathered}$	no	sCY	0	10	18	$\mathfrak{s o}(2,6)$	$\mathfrak{s u}(3) \oplus \mathbf{R} \oplus \mathbf{R}$
$\gamma_{1} \quad \gamma_{2}$	$\varphi_{1}+\varphi_{3}+\varphi_{4}$	no	sGT	-22	6	22	$\mathfrak{s o}(4,4)$	$\mathfrak{s u}(2) \oplus \mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R}$

Homogeneous symplectic manifolds - (Co)adjoint orbits

F_{4}	$\operatorname{dim} \mathfrak{g}=52$. Two non-compact simple real forms denoted by $\mathfrak{f}_{4(4)}=\mathrm{FI}$, $f_{4(-20)}=$ F II.					$\begin{aligned} & \text { Fundamental dominant weights } \\ & \varphi_{1}=2 \gamma_{1}+3 \gamma_{2}+2 \gamma_{3}+\gamma_{4} \\ & \varphi_{2}=3 \gamma_{1}+6 \gamma_{2}+4 \gamma_{3}+2 \gamma_{4} \\ & \varphi_{3}=4 \gamma_{1}+8 \gamma_{2}+6 \gamma_{3}+3 \gamma_{4} \\ & \varphi_{4}=2 \gamma_{1}+4 \gamma_{2}+3 \gamma_{3}+2 \gamma_{4} \\ & \hline \hline \end{aligned}$		
Vogan diagram	φ	$\varphi \in \Delta$	Type	s	$\operatorname{dim} V$	$\operatorname{dim} G / V$	\mathfrak{g}	\mathfrak{v}
$\begin{array}{ccccc}1 & 1 & 2 & 2 \\ \stackrel{\gamma_{1}}{-} & \stackrel{\gamma}{\gamma} & = & \gamma_{3} & \stackrel{\circ}{\gamma_{4}}\end{array}$	φ_{1}	yes	sF	90	22	30	$\mathrm{f}_{4(-20)}$	$\mathfrak{s o}(7) \oplus \mathbf{R}$
$\begin{array}{cccc}1 & 1 & 2 & 2 \\ \bigcirc \gamma_{1} & \gamma_{2} & = & \gamma_{3} \\ & \gamma_{4}\end{array}$	$\begin{gathered} \varphi_{2} \\ \varphi_{1}+\varphi_{2} \\ \varphi_{2}+3 \varphi_{4} \\ \hline \end{gathered}$	no no no	sF sF sF	$\begin{aligned} & 120 \\ & 84 \\ & 44 \end{aligned}$	$\begin{gathered} 12 \\ 10 \\ 8 \end{gathered}$	40 42 44	$\begin{aligned} & \mathfrak{f}_{4(-20)} \\ & \mathfrak{f}_{4(-20)} \\ & f_{4(-20)} \end{aligned}$	$\begin{gathered} \mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathbf{R} \\ \mathfrak{s u}(3) \oplus \mathbf{R} \oplus \mathbf{R} \\ \mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathbf{R} \oplus \mathbf{R} \end{gathered}$
$\begin{array}{cccc}1 & 1 \\ \stackrel{1}{\circ} & 2 & 2 \\ \gamma_{1} & \gamma_{2} & \gamma_{3} & \stackrel{2}{\gamma_{4}}\end{array}$	φ_{3}	no	sGT	-40	12	40	$\mathrm{f}_{4(4)}$	$\mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathbf{R}$
	φ_{4}	yes	sGT	-180	22	30	$\mathrm{f}_{4(4)}$	$\mathfrak{s p}(3) \oplus \mathbf{R}$
	$\varphi_{1}+\varphi_{2}$	no	sF	84	10	42	$\mathrm{f}_{4(-20)}$	$\mathfrak{s u}(3) \oplus \mathbf{R} \oplus \mathbf{R}$
(1)	$2 \varphi_{1}+\varphi_{4}$	no	sGT	-40	12	40	$\mathrm{f}_{4(4)}$	$\mathfrak{s o}(5) \oplus \mathbf{R} \oplus \mathbf{R}$

Thank you for your attention!

