Chern-Einstein metrics on symplectic manifolds

Alberto Della Vedova University of Milano - Bicocca

Partially based on a joint work with Alice Gatti (LBNL) arXiv:1811.06958

Virtual meeting in Special Geometries and Gauge Theory Google Meet – July 3, 2020

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

As is well known, any compact Riemann surface is covered by either ${\bf CP}^1,$ or ${\bf C},$ or the unit disk $\Delta \subset {\bf C}$, according to the sign of the curvature of a constant Gaussian curvature metric that may exist on it.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ ∽ ♀ ⊘ 2/26

As is well known, any compact Riemann surface is covered by either ${\bf CP^1},$ or ${\bf C},$ or the unit disk $\Delta \subset {\bf C}$, according to the sign of the curvature of a constant Gaussian curvature metric that may exist on it.

In complex dimension two, this results generalizes as the following

Theorem If (M, J, ω) is a compact Kähler-Einstein surface then

$$c_1^2-3c_2\leq 0.$$

Equality holds if and only if M is covered by either \mathbb{CP}^2 , or \mathbb{C}^2 , or the unit ball $B^2 \subset \mathbb{C}^2$.

As is well known, any compact Riemann surface is covered by either ${\bf CP^1}$, or ${\bf C}$, or the unit disk $\Delta \subset {\bf C}$, according to the sign of the curvature of a constant Gaussian curvature metric that may exist on it.

In higher dimension this results generalizes as the following

Theorem

If (M, J, ω) is a compact Kähler-Einstein n-fold then

$$\left(c_1^2-rac{2(n+1)}{n}c_2
ight)\cup [\omega]^{n-2}\leq 0.$$

Equality holds if and only if M is covered by either \mathbb{CP}^n , or \mathbb{C}^n , or the unit ball $B^n \subset \mathbb{C}^n$.

The proof of this fact is based on the following two points

The proof of this fact is based on the following two points

For any Kähler metric ω on (M, J) one proves that

$$\left(c_1^2 - \frac{2(n+1)}{n}c_2\right) \cup [\omega]^{n-2} = \int_M \left(k_1 \left|\rho - (s/n)\omega\right|^2 - k_2 |B|^2\right) \omega^n,$$

where $k_1, k_2 > 0$ are constants depending just on n, ρ is the Ricci form of ω , s is the scalar curvature and $B \in \Omega^2(\text{End}(TM))$ vanishes if and only if ω has constant holomorphic sectional curvature (Chern-Weil theory).

The proof of this fact is based on the following two points

For any Kähler metric ω on (M, J) one proves that

$$\left(c_1^2 - \frac{2(n+1)}{n}c_2\right) \cup [\omega]^{n-2} = \int_M \left(k_1 \left|\rho - (s/n)\omega\right|^2 - k_2 |B|^2\right) \omega^n,$$

where $k_1, k_2 > 0$ are constants depending just on n, ρ is the Ricci form of ω , s is the scalar curvature and $B \in \Omega^2(\text{End}(TM))$ vanishes if and only if ω has constant holomorphic sectional curvature (Chern-Weil theory).

(M, J, ω) has constant holomorphic sectional curvature if and only if it is isometrically covered by either CPⁿ, or Cⁿ, or Bⁿ ⊂ Cⁿ equipped with their standard metrics, up to scaling (Uniformization Theorem).

From now on consider a compact symplectic manifold (M, ω) and the set of all compatible almost complex structures on it.

Question

Does a compatible almost complex structure J having special curvature properties constrain the topology of (M, ω) ?

From now on consider a compact symplectic manifold (M, ω) and the set of all compatible almost complex structures on it.

Question

Does a compatible almost complex structure J having special curvature properties constrain the topology of (M, ω) ?

Theorem

Let (M, ω) be a compact symplectic 2n-fold. If J is a compatible almost complex structure satisfying $\rho = \lambda \omega$, then

$$\left(c_{1}^{2}-rac{2(n+1)}{n}c_{2}
ight)\cup[\omega]^{n-2}\leq\int_{M}\left(k_{1}\lambda|N|^{2}+k_{2}|N|^{4}+k_{3}|\nabla N|^{2}
ight)\omega^{n}$$

where $k_1, k_2, k_3 > 0$ are constants depending just on n, N is the Nijenhuis tensor of J, and ∇ is the Chern connection of J.

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on TM

 $\nabla g = 0, \ T^{\nabla} = N, \ \nabla J = 0, \ \nabla \omega = 0$

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 5/26

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on TM

 $\nabla g = 0, \ T^{\nabla} = N, \ \nabla J = 0, \ \nabla \omega = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 5/26

2. Chern curvature $R \in \Omega^2(M, \text{End}(TM))$ $R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}$

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on TM

 $\nabla g = 0, \ T^{\nabla} = N, \ \nabla J = 0, \ \nabla \omega = 0$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Chern curvature $R \in \Omega^2(M, \operatorname{End}(TM))$ $R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}$
- 3. Chern-Ricci form $\rho \in \Omega^2(M)$ and Chern class $c_1 \in H^2(M)$ $\rho(X, Y) = tr(JR(X, Y)), \quad d\rho = 0, \quad c_1 = \frac{1}{4\pi}[\rho]$

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on TM

 $\nabla g = 0, \ T^{\nabla} = N, \ \nabla J = 0, \ \nabla \omega = 0$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2. Chern curvature $R \in \Omega^2(M, \text{End}(TM))$ $R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}$
- 3. Chern-Ricci form $\rho \in \Omega^2(M)$ and Chern class $c_1 \in H^2(M)$ $\rho(X, Y) = tr(JR(X, Y)), \quad d\rho = 0, \quad c_1 = \frac{1}{4\pi}[\rho]$
- 4. Hermitian scalar curvature $s \in C^{\infty}(M)$ $s \omega^n = n \rho \wedge \omega^{n-1}, \qquad s = \operatorname{scal}(g) + 2|N|_g^2$

Given (M, ω) and J, let N be the Nijenhuis tensor of J, and g the associated almost Kähler metric. Moreover one defines

1. Chern connection ∇ on TM

 $\nabla g = 0, \ T^{\nabla} = N, \ \nabla J = 0, \ \nabla \omega = 0$

- 2. Chern curvature $R \in \Omega^2(M, \operatorname{End}(TM))$ $R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}$
- 3. Chern-Ricci form $\rho \in \Omega^2(M)$ and Chern class $c_1 \in H^2(M)$ $\rho(X, Y) = tr(JR(X, Y)), \quad d\rho = 0, \quad c_1 = \frac{1}{4\pi}[\rho]$
- 4. Hermitian scalar curvature $s \in C^{\infty}(M)$ $s \omega^{n} = n \rho \wedge \omega^{n-1}, \qquad s = \operatorname{scal}(g) + 2|N|_{g}^{2}$
- 5. $\theta \in \Omega^4(M)$ and Chern class $c_2 \in H^4(M)$ $\theta = \frac{1}{2}\rho^2 + \operatorname{tr}(R \wedge R), \quad d\theta = 0, \quad c_2 = \frac{1}{16\pi^2}[\theta]$

Special compatible almost complex structures

Definition

A compatible almost complex structure J on (M, ω) is Chern-Einstein if there is $\lambda \in \mathbf{R}$ such that

$$\rho = \lambda \omega.$$

(...sometimes called Hermitian-Einstein or special. Already considered in Apostolov-Drăghichi 2003)

Special compatible almost complex structures

Definition

A compatible almost complex structure J on (M, ω) is Chern-Einstein if there is $\lambda \in \mathbf{R}$ such that

$$\rho = \lambda \omega.$$

(...sometimes called Hermitian-Einstein or special. Already considered in Apostolov-Drăghichi 2003)

If J is Chen-Einstein, then $4\pi c_1 = \lambda[\omega]$. Therefore (M, ω) is

- symplectic general type if $\lambda < 0$,
- symplectic Calabi-Yau if $\lambda = 0$,
- symplectic Fano (or monotone) if $\lambda > 0$

Moreover, the Hermitian scalar curvature is constant $s = n\lambda$.

Kähler examples and their deformations

Example (After Moser, Aubin, Yau, Chen-Donaldson-Sun, Tian) If (M, ω) satisfies $4\pi c_1 = \lambda[\omega]$ and admits a K-stable integrable J_0 , then it also admits an **integrable Chern-Einstein** J.

Kähler examples and their deformations

Example (After Moser, Aubin, Yau, Chen-Donaldson-Sun, Tian) If (M, ω) satisfies $4\pi c_1 = \lambda[\omega]$ and admits a K-stable integrable J_0 , then it also admits an **integrable Chern-Einstein** J.

Example (Lejmi 2010)

If (M, J_0, ω) is a locally toric Kähler-Einstein complex surface then there exist **Chern-Einstein non-integrable** deformations J_{ε} of J_0 .

These examples include: \mathbb{CP}^2 , $\mathbb{CP}^1 \times \mathbb{CP}^1$, $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$, $\Gamma \setminus B^2$, $\Gamma \setminus (\Delta \times \Delta)$.

Do special J exist on non-Kähler symplectic manifolds?

Do special J exist on non-Kähler symplectic manifolds?

Example (Abbena 1984)

The Kodaira-Thurston manifold admits a Chern-Einstein J.

<□ > < @ > < E > < E > E のQ 8/26

Do special J exist on non-Kähler symplectic manifolds?

Example (Abbena 1984)

The Kodaira-Thurston manifold admits a Chern-Einstein J.

Example (Davidov-Grantcharov-Muškarov 2009)

The twistor space of any real hyperbolic 4-fold (equipped with the Reznikov symplectc form) admits a Chern-Einstein *J*.

Do special J exist on non-Kähler symplectic manifolds?

Example (Abbena 1984)

The Kodaira-Thurston manifold admits a Chern-Einstein J.

Example (Davidov-Grantcharov-Muškarov 2009)

The twistor space of any real hyperbolic 4-fold (equipped with the Reznikov symplectc form) admits a Chern-Einstein *J*.

All this examples are

- Chern-Ricci flat ($\rho = 0$),
- locally homogeneous $(M = \Gamma \setminus G/V)$
 - V ⊂ G compact
 - $\Gamma \subset G$ discrete and torsion-free (lattice)
 - ω and J descends from homogeneous structures on G/V

Example (Fine-Panov 2009)

The twistor space of a real hyperbolic 4-fold satisfies $c_1=0$, $c_2\cup [\omega]<0$.

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 9/26

Example (Fine-Panov 2009)

The twistor space of a real hyperbolic 4-fold satisfies $c_1=0$, $c_2\cup [\omega]<0$.

Let (M, ω) such a twistor space. By Theorem before one has

$$-8c_2 \cup [\omega] \le \inf_{J \text{ s.t. } \rho = 0} \left\{ \frac{1}{96\pi^2} \int_M \left(253|N|^4 + 96|\nabla N|^2 \right) \frac{\omega^3}{6} \right\}$$

▶ $||N||_{L^4} + ||N||_{W^{1,2}}$ cannot be arbitrarily small for a Chern-Ricci flat *J*.

► G connected real Lie group,

► G connected real Lie group,

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 10/26

• $V \subset G$ compact,

- G connected real Lie group,
- \blacktriangleright $V \subset G$ compact,
- ▶ $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ♡ 𝔅 𝔅 10/26

- G connected real Lie group,
- \blacktriangleright $V \subset G$ compact,
- $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,
- σ V-invariant symplectic on \mathfrak{m} s.t. $\sigma([X, Y]_{\mathfrak{m}}, Z) + \text{cyclic} = 0$,

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 · の Q ℃ 10/26

- G connected real Lie group,
- \blacktriangleright $V \subset G$ compact,
- $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,
- σ V-invariant symplectic on \mathfrak{m} s.t. $\sigma([X, Y]_{\mathfrak{m}}, Z) + \text{cyclic} = 0$,

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 10/26

• H V-invariant compatible complex structure on \mathfrak{m} .

induce homogeneous ω and J on G/V.

- G connected real Lie group,
- \blacktriangleright $V \subset G$ compact,
- $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,
- σ V-invariant symplectic on \mathfrak{m} s.t. $\sigma([X, Y]_{\mathfrak{m}}, Z) + \text{cyclic} = 0$,
- H V-invariant compatible complex structure on \mathfrak{m} .

induce homogeneous ω and J on G/V.

Theorem

For all $X, Y \in \mathfrak{m}$ one has $\rho(X, Y) = \operatorname{tr} \left(\operatorname{ad}_{H[X,Y]_{\mathfrak{g}}} - H \operatorname{ad}_{[X,Y]_{\mathfrak{g}}} \right)$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の名で 10/26

- G connected real Lie group,
- \blacktriangleright $V \subset G$ compact,
- $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,
- σ V-invariant symplectic on \mathfrak{m} s.t. $\sigma([X, Y]_{\mathfrak{m}}, Z) + \text{cyclic} = 0$,
- H V-invariant compatible complex structure on \mathfrak{m} .

induce homogeneous ω and J on G/V.

Theorem

For all $X, Y \in \mathfrak{m}$ one has $\rho(X, Y) = \operatorname{tr} \left(\operatorname{ad}_{H[X,Y]_{\mathfrak{g}}} - H \operatorname{ad}_{[X,Y]_{\mathfrak{g}}} \right)$.

Corollary

If V has discrete center, then $(G/V, \omega)$ has $c_1 = 0$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma([X, Y]_{\mathfrak{g}}, Z) + \text{cyclic} = 0$.

Therefore (G, ω) has $c_1 = 0$.

A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma([X, Y]_{\mathfrak{g}}, Z) + \text{cyclic} = 0.$
- Therefore (G, ω) has $c_1 = 0$.

Does there exist a Chern-Ricci flat compatible J on (G, ω) ?

A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma([X, Y]_{\mathfrak{g}}, Z) + \text{cyclic} = 0$.

Therefore (G, ω) has $c_1 = 0$.

Does there exist a Chern-Ricci flat compatible J on (G, ω) ?

Theorem (Lauret-Will 2017)

If G is unimodular and 4-dimensional, then a Chern-Ricci flat J on (G, ω) exists whenever $G \neq \text{Nil}^4$ $([e_1, e_4] = -e_3, [e_3, e_4] = -e_2)$.

◆□▶ < @ ▶ < E ▶ < E ▶ E の < 0 11/26</p>

A symplectic Lie group (G, ω) is a Homogeneous symplectic manifold with trivial isotropy V. Equivalently:

- G connected real Lie group,
- σ symplectic on \mathfrak{g} s.t. $\sigma([X, Y]_{\mathfrak{g}}, Z) + \text{cyclic} = 0.$

Therefore (G, ω) has $c_1 = 0$.

Does there exist a Chern-Ricci flat compatible J on (G, ω) ?

Theorem (Lauret-Will 2017)

If G is unimodular and 4-dimensional, then a Chern-Ricci flat J on (G, ω) exists whenever $G \neq \text{Nil}^4$ ($[e_1, e_4] = -e_3$, $[e_3, e_4] = -e_2$).

Corollary (after Geiges 1992)

Let *M* be the total space of a T^2 -bundle over T^2 and let $c \in H^2(M)$ such that $c^2 \neq 0$. If $c(fiber) \neq 0$ then there exist ω symplectic such that $[\omega] = c$ and *J* Chern-Ricci flat.

► G connected real semi-simple Lie group,

- ► G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with **compact** isotropy subgroup $V \subset G$,

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ⑦ Q ♀ 12/26

- G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with **compact** isotropy subgroup $V \subset G$,
- ▶ $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,

- ► G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with **compact** isotropy subgroup $V \subset G$,
- $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,
- $\sigma(X, Y) = B(v, [X, Y]_{\mathfrak{g}})$ defines a symplectic form σ on \mathfrak{m} .

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 12/26

Then ω is the Kirillov-Kostant-Souriau form on G/V.

- ► G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with **compact** isotropy subgroup $V \subset G$,
- $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,
- $\sigma(X, Y) = B(v, [X, Y]_{\mathfrak{g}})$ defines a symplectic form σ on \mathfrak{m} .

Then ω is the Kirillov-Kostant-Souriau form on G/V.

Remark

G and *V* have the same rank. This is a familiar situation in Hodge theory. On G/V is defined an *integrable* almost complex structure J' which, in general, is not compatible with ω .

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 12/26

- ► G connected real semi-simple Lie group,
- $v \in \mathfrak{g}$ with **compact** isotropy subgroup $V \subset G$,
- $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{m}$ a *V*-invariant decomposition,
- $\sigma(X, Y) = B(v, [X, Y]_{\mathfrak{g}})$ defines a symplectic form σ on \mathfrak{m} .

Then ω is the Kirillov-Kostant-Souriau form on G/V.

Remark

G and *V* have the same rank. This is a familiar situation in Hodge theory. On G/V is defined an *integrable* almost complex structure J' which, in general, is not compatible with ω .

Definition (ADV, ADV-Gatti, Alekseevsky-Podestà)

There is a *canonical* homogeneous compatible almost complex structure J on $(G/V, \omega)$.

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

<□ > < @ > < E > < E > E の Q @ 13/26

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

<□ > < @ > < E > < E > E の Q @ 13/26

•
$$H^{2m} = SO(2m, 1)/SO(2m)$$

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

<□ > < @ > < E > < E > E の Q @ 13/26

•
$$H^{2m} = SO(2m, 1)/SO(2m)$$

•
$$\Gamma \subset SO(2m, 1)$$
 is a lattice

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

•
$$H^{2m} = SO(2m, 1)/SO(2m)$$

•
$$\Gamma \subset SO(2m, 1)$$
 is a lattice

$$\blacktriangleright M = \Gamma \backslash SO(2m, 1) / U(m)$$

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

•
$$H^{2m} = SO(2m, 1)/SO(2m)$$

•
$$\Gamma \subset SO(2m, 1)$$
 is a lattice

$$\blacktriangleright M = \Gamma \backslash SO(2m, 1) / U(m)$$

• SO(2m,1)/U(m) is an adjoint orbit with $ho = 2(m-2)\omega$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 13/26

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

•
$$H^{2m} = SO(2m, 1)/SO(2m)$$

•
$$\Gamma \subset SO(2m, 1)$$
 is a lattice

$$\blacktriangleright M = \Gamma \backslash SO(2m, 1) / U(m)$$

- SO(2m,1)/U(m) is an adjoint orbit with $ho = 2(m-2)\omega$
- *M* is not homotopy Kähler if $m \ge 2$ (Carlson-Toledo 1989)

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の文で 13/26

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

•
$$H^{2m} = SO(2m, 1)/SO(2m)$$

•
$$\Gamma \subset SO(2m, 1)$$
 is a lattice

•
$$M = \Gamma \setminus SO(2m, 1) / U(m)$$

- SO(2m,1)/U(m) is an adjoint orbit with $ho=2(m-2)\omega$
- *M* is not homotopy Kähler if $m \ge 2$ (Carlson-Toledo 1989)

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の文で 13/26

• (M, ω_{Γ}) is a symplectic Calabi-Yau 6-fold if m = 2

Example

The twistor space of a real hyperbolic 2m-fold $\Gamma \setminus H^{2m}$ is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(m-2)\omega_{\Gamma}$.

•
$$H^{2m} = SO(2m, 1)/SO(2m)$$

•
$$\Gamma \subset SO(2m, 1)$$
 is a lattice

•
$$M = \Gamma \setminus SO(2m, 1) / U(m)$$

- SO(2m,1)/U(m) is an adjoint orbit with $ho=2(m-2)\omega$
- *M* is not homotopy Kähler if $m \ge 2$ (Carlson-Toledo 1989)
- (M, ω_{Γ}) is a symplectic Calabi-Yau 6-fold if m = 2
- (M, ω_{Γ}) is a symplectic Fano m(m+1)-fold if m > 2

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

<□ > < @ > < E > < E > E の Q @ 14/26

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

<□ > < @ > < E > < E > E の Q @ 14/26

• $\Gamma \subset SO(2p,q)$ is a lattice

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\Gamma \subset SO(2p,q)$ is a lattice
- $\blacktriangleright V = U(p) \times SO(q)$

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\Gamma \subset SO(2p,q)$ is a lattice
- $\blacktriangleright V = U(p) \times SO(q)$
- $M = \Gamma \setminus SO(2p,q)/V$

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

- $\Gamma \subset SO(2p,q)$ is a lattice
- $\blacktriangleright V = U(p) \times SO(q)$
- $M = \Gamma \setminus SO(2p,q)/V$
- SO(2p,q)/V is an adjoint orbit with $ho=2(p-q-1)\omega$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 14/26

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

- $\Gamma \subset SO(2p,q)$ is a lattice
- $\blacktriangleright V = U(p) \times SO(q)$
- $M = \Gamma \setminus SO(2p,q)/V$
- SO(2p,q)/V is an adjoint orbit with $\rho = 2(p-q-1)\omega$

 M is not homotopy Kähler if p ≥ 2, and q ≠ 2 (Carlson-Toledo 1989)

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

- $\Gamma \subset SO(2p,q)$ is a lattice
- $\blacktriangleright V = U(p) \times SO(q)$
- $M = \Gamma \setminus SO(2p,q)/V$
- SO(2p,q)/V is an adjoint orbit with $ho=2(p-q-1)\omega$

 M is not homotopy Kähler if p ≥ 2, and q ≠ 2 (Carlson-Toledo 1989)

• *M* has dimension
$$p(p+2q+1)$$

Example

A weight-two period domain of type (2p, q) is a symplectc manifold (M, ω_{Γ}) admitting J_{Γ} with $\rho_{\Gamma} = 2(p - q - 1)\omega_{\Gamma}$.

- $\Gamma \subset SO(2p,q)$ is a lattice
- $\blacktriangleright V = U(p) \times SO(q)$
- $M = \Gamma \setminus SO(2p,q)/V$
- SO(2p,q)/V is an adjoint orbit with $\rho = 2(p-q-1)\omega$
- M is not homotopy Kähler if p ≥ 2, and q ≠ 2 (Carlson-Toledo 1989)
- *M* has dimension p(p+2q+1)
- (M, ω_{Γ}) is symplectic GT, CY, or Fano according to the sign of p q 1

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 15/26

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 15/26

• When is $(\Gamma \setminus G/V, \omega_{\Gamma}, J_{\Gamma})$ of Kähler type?

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is (Γ\G/V, ω_Γ, J_Γ) of Kähler type? Never if (Γ\G/V, ω_Γ) is of symplectic Fano type. Work in progress...

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 15/26

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is (Γ\G/V, ω_Γ, J_Γ) of Kähler type? Never if (Γ\G/V, ω_Γ) is of symplectic Fano type. Work in progress...

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q ○ 15/26

• Classify all Chern-Einstein $(G/V, \omega, J)$?

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is (Γ\G/V, ω_Γ, J_Γ) of Kähler type? Never if (Γ\G/V, ω_Γ) is of symplectic Fano type. Work in progress...
- Classify all Chern-Einstein (G/V, ω, J)?
 Up to coverings, (G/V, ω, J) splits as a product of (G_i/V_i, ω_i, J_i) where G_i are simple.

▲□▶▲圖▶▲圖▶▲圖▶ ■ の名で 15/26

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is (Γ\G/V, ω_Γ, J_Γ) of Kähler type? Never if (Γ\G/V, ω_Γ) is of symplectic Fano type. Work in progress...
- Classify all Chern-Einstein (G/V, ω, J)?
 Up to coverings, (G/V, ω, J) splits as a product of (G_i/V_i, ω_i, J_i) where G_i are simple.
 If G is simple and V ⊂ G is a torus (general choice of v ∈ g), then (G/V, ω, J) is Chern-Einstein iff g = sl(2, R) or su(p + 1, p).

▲□▶▲圖▶▲圖▶▲圖▶ ■ の名で 15/26

(Alekseevski-Podestà 2018).

In general, we studied the geometry of adjoint orbits $(G/V, \omega, J)$.

- Due to homogeneity of ω and J and to semi-simplicity of G, most of problems can be translated in the language of Lie theory (root data, Cartan matrices, fundamental weights...).
- When is (Γ\G/V, ω_Γ, J_Γ) of Kähler type? Never if (Γ\G/V, ω_Γ) is of symplectic Fano type. Work in progress...
- Classify all Chern-Einstein (G/V, ω, J)?
 Up to coverings, (G/V, ω, J) splits as a product of (G_i/V_i, ω_i, J_i) where G_i are simple.

If G is simple and $V \subset G$ is a torus (general choice of $v \in \mathfrak{g}$), then $(G/V, \omega, J)$ is Chern-Einstein iff $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$ or $\mathfrak{su}(p+1, p)$. (Alekseevski-Podestà 2018).

Vogan diagrams demonstrated to be the appropriate combinatorial device for algorithmic listing. No hope to guessing the general pattern at the moment.

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ = ⑦ Q ○ 16/26

A_2	$\dim \mathfrak{g} = 8. \text{One}$ with trivial autor				real form	Fundamental dominant weights $\begin{array}{rcl} \varphi_1 &=& \frac{2}{3}\gamma_1 + \frac{1}{3}\gamma_2 \\ \varphi_2 &=& \frac{1}{3}\gamma_1 + \frac{2}{3}\gamma_2 \end{array}$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	v	
$1 - 1 \circ \gamma_1 \gamma_2$	φ_1	no	GT	4	$\mathfrak{su}(1,2)$	$\mathfrak{su}(2)\oplus \mathbf{R}$			
$\begin{array}{c}1\\\bullet\\\gamma_1\\\gamma_2\end{array}$	$t_1\varphi_1 + t_2\varphi_2$ for all $t_1, t_2 > 0$	no	sCY	6	$\mathfrak{su}(1,2)$	$\mathbf{R}\oplus\mathbf{R}$			

B_2		$\mathfrak{g} = 10.$ forms: \mathfrak{s}			non-compact).	Fundamental dominant weights $\begin{array}{l} \varphi_1 &= \gamma_1 + \frac{1}{2}\gamma_2 \\ \varphi_2 &= \gamma_1 + \gamma_2 \end{array}$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	v	
$\begin{array}{c}1 \\ \bullet \\ \gamma_1 \\ \gamma_2 \end{array}$	φ_1	no	sCY	0	4	6	$\mathfrak{so}(4,1)$	$\mathfrak{su}(2)\oplus \mathbf{R}$	
1 2 $\gamma_1 \gamma_2$	φ_2	yes	GT	-18	4	6	$\mathfrak{so}(2,3)$	$\mathfrak{su}(2)\oplus \mathbf{R}$	

G_2		$\mathfrak{g} = 14$ form de			empact simple = G.	Fundamental dominant weights $\varphi_1 = 2\gamma_1 + \gamma_2$ $\varphi_2 = 3\gamma_1 + 2\gamma_2$		
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	υ
1 3 $\gamma_1 \gamma_2$	φ_1	yes	sGT	-30	4	10	$\mathfrak{g}_{2(2)}$	$\mathfrak{su}(2)\oplus \mathbf{R}$
1 3 $\gamma_1 \gamma_2$	φ_2	yes	sGT	-10	4	10	$\mathfrak{g}_{2(2)}$	$\mathfrak{su}(2)\oplus \mathbf{R}$

A_3	$\dim \mathfrak{g} =$ ple real for $\mathfrak{su}(1,3), \mathfrak{s}$	orms with				Fundamental dominant weights $ \begin{aligned} \varphi_1 &= \frac{3}{4}\gamma_1 + \frac{1}{2}\gamma_2 + \frac{1}{4}\gamma_3 \\ \varphi_2 &= \frac{1}{2}\gamma_1 + \gamma_2 + \frac{1}{2}\gamma_3 \end{aligned} $			
	5u(1,5), 5	5tt(2,2).				$\begin{array}{l} \varphi_2 &= \frac{1}{2}\gamma_1 + \gamma_2 + \frac{1}{2}\gamma_3 \\ \varphi_3 &= \frac{1}{4}\gamma_1 + \frac{1}{2}\gamma_2 + \frac{3}{4}\gamma_3 \end{array}$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	v	
1 1 1									
$\gamma_1 \gamma_2 \gamma_3$	φ_1	no	\mathbf{GT}	-24	9	6	$\mathfrak{su}(1,3)$	$\mathfrak{su}(3)\oplus \mathbf{R}$	
$\gamma_1 \gamma_2 \gamma_3$	φ_2	no	GT	-32	7	8	$\mathfrak{su}(2,2)$	$\mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathbf{R}$	
1 1 1									
$\gamma_1 \gamma_2 \gamma_3$	$\varphi_1 + \varphi_3$	yes	$_{\rm sGT}$	-10	5	10	$\mathfrak{su}(2,2)$	$\mathfrak{su}(2)\oplus \mathbf{R}\oplus \mathbf{R}$	

<i>B</i> ₃		~			pmpact simple), $\mathfrak{so}(2,5)$.	Fundamental dominant weights $\begin{split} \varphi_1 &= \frac{3}{2}\gamma_1 + \gamma_2 + \frac{1}{2}\gamma_3 \\ \varphi_2 &= 2\gamma_1 + 2\gamma_2 + \gamma_3 \\ \varphi_3 &= \gamma_1 + \gamma_2 + \gamma_3 \end{split}$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	υ	
$ \begin{array}{c} 1 \\ \bullet \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \begin{array}{c} 2 \\ \circ \\ \gamma_3 \end{array} $	φ_1	no	sF	24	9	12	$\mathfrak{so}(6,1)$	$\mathfrak{su}(3)\oplus \mathbf{R}$	
$ \begin{array}{c} 1 \\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \begin{array}{c} 2 \\ \circ \\ \circ \\ \gamma_3 \end{array} $	φ_2	yes	sGT	-28	7	14	$\mathfrak{so}(4,3)$	$\mathfrak{su}(2)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$	
$\begin{array}{c c}1&2&2\\ \bullet & \bullet \\ \gamma_1&\gamma_2&\gamma_3\end{array}$	φ_3	yes	GT	-50	11	10	$\mathfrak{so}(2,5)$	$\mathfrak{so}(5)\oplus {f R}$	

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ● ⑦ Q ○ 19/26

<i>C</i> ₃	$\dim \mathfrak{g} =$ real form				ct simple	Fundamental dominant weights $\begin{aligned} \varphi_1 &= \gamma_1 + \gamma_2 + \frac{1}{2}\gamma_3 \\ \varphi_2 &= \gamma_1 + 2\gamma_2 + \gamma_3 \\ \varphi_3 &= \gamma_1 + 2\gamma_2 + \frac{3}{2}\gamma_3 \end{aligned}$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	v	
$ \begin{array}{c} 1 \\ \bullet \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \begin{array}{c} 2 \\ \circ \\ \gamma_3 \end{array} $	φ_1	no	sGT	-20	11	10	$\mathfrak{sp}(1,2)$	$\mathfrak{sp}(2)\oplus \mathbf{R}$	
$ \begin{array}{c} 1 \\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \begin{array}{c} 2 \\ \circ \\ \gamma_3 \end{array} $	φ_2	yes	sF	14	7	14	$\mathfrak{sp}(1,2)$	$\mathfrak{su}(2)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$	
$ \begin{array}{c} 1 \\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \begin{array}{c} 2 \\ \bullet \\ \gamma_3 \end{array} $	φ_3	no	GT	-48	9	12	$\mathfrak{sp}(3,\mathbf{R})$	$\mathfrak{su}(3)\oplus \mathbf{R}$	
$\begin{array}{c c}1 & 1 & 2\\ \bullet & & \bullet \\ \gamma_1 & \gamma_2 & \gamma_3\end{array}$	$\varphi_1 + \varphi_3$	no	sGT	-16	5	16	$\mathfrak{sp}(3,\mathbf{R})$	$\mathfrak{su}(2)\oplus \mathbf{R}\oplus \mathbf{R}$	

A4	$\dim \mathfrak{g} = 2$ ple real form $\mathfrak{su}(1,4), \mathfrak{su}($			$ \begin{array}{l} \mbox{Fundamental dominant weights} \\ \varphi_1 &= \frac{4}{5}\gamma_1 + \frac{3}{5}\gamma_2 + \frac{2}{5}\gamma_3 + \frac{1}{5}\gamma_4 \\ \varphi_2 &= \frac{3}{5}\gamma_1 + \frac{6}{5}\gamma_2 + \frac{4}{5}\gamma_3 + \frac{2}{5}\gamma_4 \\ \varphi_3 &= \frac{2}{5}\gamma_1 + \frac{4}{5}\gamma_2 + \frac{6}{5}\gamma_3 + \frac{3}{5}\gamma_4 \\ \varphi_4 &= \frac{1}{5}\gamma_1 + \frac{2}{5}\gamma_2 + \frac{3}{5}\gamma_3 + \frac{4}{5}\gamma_4 \end{array} $				
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	φ_1	no	GT	-40	16	8	$\mathfrak{su}(1,4)$	$\mathfrak{su}(4)\oplus \mathbf{R}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	φ_2						$\mathfrak{su}(2,3)$	$\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\varphi_1 + \varphi_4$	yes	sGT	-28	10	14	$\mathfrak{su}(2,3)$	$\mathfrak{su}(3)\oplus \mathbf{R}\oplus \mathbf{R}$
$\begin{array}{c c}1 & 1 & 1 & 1\\ \circ & & \bullet & \bullet \\ \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4\end{array}$	$\varphi_2 + \varphi_3$	no	sF	16	8	16	$\mathfrak{su}(1,4)$	$\mathfrak{su}(2)\oplus\mathfrak{su}(2)\oplus\mathbf{R}\oplus\mathbf{R}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \sum_{i=1}^{4} t_i \varphi_i \\ \text{for all } t_i > 0 \end{array}$	no	sCY	0	4	20	$\mathfrak{su}(2,3)$	$\mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R}$

B_4	$\dim \mathfrak{g} = $ ple real fo $\mathfrak{so}(2,7).$					Fundamental dominant weights $\varphi_1 = 2\gamma_1 + \frac{3}{3}\gamma_2 + \gamma_3 + \frac{1}{2}\gamma_4$ $\varphi_2 = 3\gamma_1 + 3\gamma_2 + 2\gamma_3 + \gamma_4$ $\varphi_3 = 2\gamma_1 + 2\gamma_2 + 2\gamma_3 + \gamma_4$ $\varphi_4 = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	υ	
$ \begin{array}{c} 1 \\ \bullet \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{array} $	φ_1 $\varphi_1 + 2\varphi_4$	no	sF sF	80 52	16 10	20 26	so(8,1)	$\mathfrak{su}(4)\oplus \mathbf{R}$ $\mathfrak{su}(3)\oplus \mathbf{R}\oplus \mathbf{R}$	
$\begin{array}{c c}1&2&2&2\\\circ&&\circ&\circ\\\gamma_1&\gamma_2&\gamma_3&\gamma_4\end{array}$	φ_2	no	sGT	-24	12	24	so(6,3)	$\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$	
$\begin{array}{c}1 \\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{array} \begin{array}{c}2 \\ \circ \\ \gamma_4 \\ \gamma_4 \end{array}$	φ_3	yes	sGT	-88	14	22	$\mathfrak{so}(4,5)$	$\mathfrak{so}(5)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$	
$\begin{array}{c}1 \\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{array} \begin{array}{c}2 \\ \circ \\ \gamma_4 \end{array} \begin{array}{c}2 \\ \circ \\ \gamma_4 \end{array}$	φ_4	yes	GT	-98	22	14	$\mathfrak{so}(2,7)$	$\mathfrak{so}(7)\oplus \mathbf{R}$	

C_4	$\dim \mathfrak{g} = 3$ real forms					Fundamental dominant weights $\varphi_1 = \gamma_1 + \gamma_2 + \gamma_3 + \frac{1}{2}\gamma_4$ $\varphi_2 = \gamma_1 + 2\gamma_2 + 2\gamma_3 + \gamma_4$ $\varphi_3 = \gamma_1 + 2\gamma_2 + 3\gamma_3 + \frac{3}{2}\gamma_4$ $\varphi_4 = \gamma_1 + 2\gamma_2 + 3\gamma_3 + 2\gamma_4$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	v	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	φ_1	no	sGT	-56	22	14	$\mathfrak{sp}(1,3)$	$\mathfrak{sp}(3)\oplus \mathbf{R}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	φ_2	yes	sGT	-22	14	22	$\mathfrak{sp}(2,2)$	$\mathfrak{su}(2)\oplus\mathfrak{sp}(2)\oplus\mathbf{R}$	
$\begin{array}{c}1\\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4\end{array} \begin{array}{c}2\\ \circ \\ \gamma_4\end{array}$	φ_3 $3\varphi_1 + \varphi_3$	no	sF sF	48 28	12	24 28	<pre>sp(1,3) sp(1,3)</pre>	$\mathfrak{su}(3) \oplus \mathfrak{su}(2) \oplus \mathbf{R}$ $\mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathbf{R} \oplus \mathbf{R}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	φ_4	no	GT	-100	16	20	$\mathfrak{sp}(4,\mathbf{R})$	$\mathfrak{su}(4)\oplus \mathbf{R}$	

D_4	$\dim \mathfrak{g} = 28.$ ple real forms $\mathfrak{so}(2,6), \mathfrak{so}(4,$	with triv			Fundamental dominant weights $\varphi_1 = \gamma_1 + \gamma_2 + \frac{1}{2}\gamma_3 + \frac{1}{2}\gamma_4$ $\varphi_2 = \gamma_1 + 2\gamma_2 + \gamma_3 + \gamma_4$ $\varphi_3 = \frac{1}{2}\gamma_1 + \gamma_2 + \gamma_3 + \frac{1}{2}\gamma_4$ $\varphi_4 = \frac{1}{2}\gamma_1 + \gamma_2 + \frac{1}{2}\gamma_3 + \gamma_4$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	υ
$\gamma_1 \gamma_2 \circ \gamma_4$	φ_1	no	GT	-72	16	12	$\mathfrak{so}(2,6)$	$\mathfrak{su}(4)\oplus \mathbf{R}$
$\gamma_1 \gamma_2 \gamma_4$	φ_2							$\mathfrak{su}(2)\oplus\mathfrak{su}(2)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$
$\gamma_1 \gamma_2 \gamma_2 \gamma_4$	$\begin{array}{c} t_1 \varphi_1 + t_2 \varphi_3 \\ \text{for all } t_1, t_2 > 0 \end{array}$	no	sCY	0	10	18	$\mathfrak{so}(2,6)$	$\mathfrak{su}(3) \oplus \mathbf{R} \oplus \mathbf{R}$
$\gamma_1 \gamma_2 \gamma_4$	$\varphi_1 + \varphi_3 + \varphi_4$	no	sGT	-22	6	22	$\mathfrak{so}(4,4)$	$\mathfrak{su}(2)\oplus \mathbf{R}\oplus \mathbf{R}\oplus \mathbf{R}$

F_4	$\dim \mathfrak{g} = \mathfrak{g}$ ple real f $\mathfrak{f}_{4(-20)} = \mathfrak{f}_{4(-20)}$	forms de				Fundamental dominant weights $\varphi_1 = 2\gamma_1 + 3\gamma_2 + 2\gamma_3 + \gamma_4$ $\varphi_2 = 3\gamma_1 + 6\gamma_2 + 4\gamma_3 + 2\gamma_4$ $\varphi_3 = 4\gamma_1 + 8\gamma_2 + 6\gamma_3 + 3\gamma_4$ $\varphi_4 = 2\gamma_1 + 4\gamma_2 + 3\gamma_3 + 2\gamma_4$			
Vogan diagram	φ	$\varphi\in\Delta$	Type	s	$\dim V$	$\dim G/V$	g	v	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	φ_1	yes	sF	90	22	30	$f_{4(-20)}$	$\mathfrak{so}(7)\oplus \mathbf{R}$	
$ \begin{array}{c} 1 \\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{array} $	φ_2	no	sF	120	12	40	$\mathfrak{f}_{4(-20)}$	$\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$	
	$\varphi_1 + \varphi_2$	no	$_{\rm sF}$	84	10	42	$\mathfrak{f}_{4(-20)}$	$\mathfrak{su}(3)\oplus \mathbf{R}\oplus \mathbf{R}$	
	$\varphi_2 + 3\varphi_4$	no	$_{\rm sF}$	44	8	44	$f_{4(-20)}$	$\mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathbf{R} \oplus \mathbf{R}$	
$ \begin{array}{c} 1 \\ \circ \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{array} \begin{array}{c} 2 \\ \circ \\ \gamma_4 \\ \gamma_4 \end{array} $	φ_3	no	sGT	-40	12	40	Ĵ4(4)	$\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbf{R}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	φ_4	yes	sGT	-180	22	30	$\mathfrak{f}_{4(4)}$	$\mathfrak{sp}(3)\oplus \mathbf{R}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\varphi_1 + \varphi_2$	no	sF	84	10	42	f4(-20)	$\mathfrak{su}(3)\oplus \mathbf{R}\oplus \mathbf{R}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2\varphi_1 + \varphi_4$	no	sGT	-40	12	40	Ĵ4(4)	$\mathfrak{so}(5)\oplus \mathbf{R}\oplus \mathbf{R}$	

Thank you for your attention!