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Brief Outline

Introduction to G, and nearly G, structures.
Dirac operators on nearly G, manifolds.

Hodge theory on nearly G, manifolds.
Infinitesimal deformations of nearly G, structures.
Second-order deformations.

Obstructions to higher-order deformations in Aloff-Wallach spaces.
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Introduction to G, and nearly G, structures

Definition

Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is
non-degenerate.
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Introduction to G, and nearly G, structures

Definition

Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is
non-degenerate.

Given local coordinates x*,...,x" on M, define
0 0

Shubham Dwivedi

Deformation theory of nearly Go manifolds

Special Geometries and Gauge Theory would have be



Introduction to G, and nearly G, structures

Definition
Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is
non-degenerate.

Given local coordinates x*,...,x" on M, define

\BL dxl/\.../\dx7:<8 )/\(8 )/\go

symmetric

Ox' i EJ@

Shubham Dwivedi Deformation theory of nearly Go manifolds Special Geometries and Gauge Theory would have be




Introduction to G, and nearly G, structures

Definition
Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is
non-degenerate.

Given local coordinates x*,...,x" on M, define

\BL dxP AL A dx = (aii_IQO>/\(%_IQD>/\QO

symmetric
From this, define the symmetric bilinear form g;; by

1 B

8ij

O

6% det(B)
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Definition
Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is
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Given local coordinates x*,...,x" on M, define
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¢ Is nondegenerate <= gj; is a Riemannian metric.
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Introduction to G, and nearly G, structures

Definition
Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is
non-degenerate.

Given local coordinates x*,...,x" on M, define

\BL dxP AL A dx = (aii_IQO>/\(%_IQD>/\QO

symmetric
From this, define the symmetric bilinear form g;; by

_1 B
65 det(B)

8ij

O

¢ Is nondegenerate <= gj; is a Riemannian metric.

= A G, structure on M exists if and only if M is orientable and spinnable which is
equivalent to wy(M) = 0 and wy(M) = 0.
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Introduction contd.

Gy structure «~ “non-degenerate” 3-form ¢ ~~ g, and orientation nonlinearly.
and hence a Hodge star *,. Denote *,p = 1.
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Introduction contd.

Gy structure «~ “non-degenerate” 3-form ¢ ~~ g, and orientation nonlinearly.
and hence a Hodge star *,. Denote *,p = 1.

A G, structure is a nearly Gy structure if 7 is the only non-vanishing torsion form.
Equivalently,
dp =10¢, dy=0. (NG2)

In such a case, (M, ) is a nearly G, manifold.
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Introduction contd.

Gy structure «~ “non-degenerate” 3-form ¢ ~~ g, and orientation nonlinearly.
and hence a Hodge star *,. Denote *,p = 1.

A G, structure is a nearly Gy structure if 7 is the only non-vanishing torsion form.
Equivalently,

do =101, dip =0. (NG2)

In such a case, (M, ) is a nearly G, manifold.

If M is connected then differentiating (NG2) and using the fact that - A ¢ is an
isomorphism from Q'(M) to Q3(M) implies 79 = constant.

The constant 7y can be altered by rescaling the metric and readjusting the
orientation. Under our assumptions we fix 79 = 4.
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Introduction contd.

Gy structure «~ “non-degenerate” 3-form ¢ ~~ g, and orientation nonlinearly.
and hence a Hodge star *,. Denote *,p = 1.

A G, structure is a nearly Gy structure if 7 is the only non-vanishing torsion form.
Equivalently,

do =101, dip =0. (NG2)

In such a case, (M, ) is a nearly G, manifold.

If M is connected then differentiating (NG2) and using the fact that - A ¢ is an
isomorphism from Q'(M) to Q3(M) implies 79 = constant.

The constant 7y can be altered by rescaling the metric and readjusting the
orientation. Under our assumptions we fix 79 = 4.

To summarize,

(M7 ) is a nearly G, manifold if ¢ is a Gy-structure such that
do = 4.
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Introduction contd.

Gy structure «~ “non-degenerate” 3-form ¢ ~~ g, and orientation nonlinearly.
and hence a Hodge star *,. Denote *,p = 1.

A G, structure is a nearly Gy structure if 7 is the only non-vanishing torsion form.
Equivalently,

do =101, dip =0. (NG2)

In such a case, (M, ) is a nearly G, manifold.

If M is connected then differentiating (NG2) and using the fact that - A ¢ is an
isomorphism from Q'(M) to Q3(M) implies 79 = constant.

The constant 7y can be altered by rescaling the metric and readjusting the
orientation. Under our assumptions we fix 79 = 4.

To summarize,

(M7 ) is a nearly G, manifold if ¢ is a Gy-structure such that
do = 4.

Fact. Nearly G, manifolds are positive Einstein.
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Dirac operators on nearly G, manifolds

Let $(M) be the rank 8 spinor bundle over M.

A spinor n € T($(M)) is called a Killing spinor if for any X € I'(TM)
1
Vxn = _EX "7

b "

where

is the Clifford multiplication.
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Dirac operators on nearly G, manifolds

Let $(M) be the rank 8 spinor bundle over M.

A spinor n € T($(M)) is called a Killing spinor if for any X € I'(TM)
1
Vxn = _EX "7

b "

where

is the Clifford multiplication.

Fact: nearly Gy structures on M & Killing spinors on $(M)

If 1 is the real Killing spinor corresponding to ¢ then we have the decomposition

$(M) = Q%(M) n® Q' (M) - n = Q°(M) & Q1 (M).

Rank 1 Rank 7
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Dirac operators

The Dirac operator [D is a first order differential operator on $(M) defined as
follows. Let s = (f,X) € I'($(M)). Then

:
B(fF,X) = <§f +d* X, df + dX_p — gx)

Moreover, " = [ and [°(f, X) = (AFf 4+ d* X + 29F, AgX + dX_p + df + 2X)
and hence is elliptic.

v
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Dirac operators

The Dirac operator [D is a first order differential operator on $(M) defined as
follows. Let s = (f,X) € I'($(M)). Then

:
B(fF,X) = <§f +d* X, df + dX_p — gx)

Moreover, " = [ and [°(f, X) = (AFf 4+ d* X + 29F, AgX + dX_p + df + 2X)
and hence is elliptic.

v

For our purposes we need to define a modified Dirac operator
~ 1
D(f, X) = (2f - ;d*X, Sdf 46X - dX_ngo)

Since $(M) = Q% @ Q! =~ Q% © Q3 we can see this as an operator

D:- QLo - Qe

(F.X) s Sd(F) + masa(d" (X M)
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Hodge theory on nearly G, manifolds

By explicit computation ker D=K= {Killing vector fields on M}

Qs 2 ImD @ ker B = dQ3 @ m107(d*Q3) ® {X A g, X € K}
Thus we have the decomposition
P =dB od* VB o {XAp, XK},

Q L =dBe{XANp,XeKte

27.exact

exact —
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Hodge theory on nearly G, manifolds

By explicit computation ker D = K = {Killing vector fields on M}
Qler 2 ImD @ ker D 2 dQ3 @ ma7(d* W) @ {X Ap | X € K}
Thus we have the decomposition

L =dBod* Vo {XAp,XcK}dQy,  not L? orthogonal

QL =dBe{Xrnp|XeKldQs L? orthogonal

exact — 27,exact

Theorem (D.—Singhal '20)

Let (M, p,1)) be a complete nearly G, manifold not isometric to S”. Then every
harmonic 4-form lies in Q4,. Equivalently every harmonic 3-form lies in Q3.
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|dea of the proof
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Cohomology contd.

We also have a partial result on the degree 2 (and 5) cohomology.

Let B € Q2 be a harmonic 2-form on M. Then

B = B7 + P1a = (X2p) + P1a.

If curl X = AX with \ # 12, then 3 € Q2,.
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Special Geometries and Gauge Theory would have be



Deformation theory

~

Aim: Deform the nearly G, structure (¢, ) to a nearby nearly G, structure (3, ).
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Deformation theory

~

Aim: Deform the nearly G, structure (¢, ) to a nearby nearly G, structure (3, ).

Infinitesimal deformations:

P := space of G, structures on M

p = (¢, 9) € P, nearly Gy structure on M.
Oy, := Orbit of p under Diffo(M)

We are interested in finding the complement C of T,Oy in T,P.
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Infinitesimal deformations

Let (&,71) € T,P. For some (f, X, Y, &) € QU(M) x K x Ktz x Q3
n=—4XNp+d(fe)+d (Y A)+ %
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Infinitesimal deformations

Let (&,71) € T,P. For some (f, X, Y, &) € QU(M) x K x Ktz x Q3
n= —4X Ny +d(fp)+d*(Y A ) + *&
N——
LxPET, O,

thus modulo Diffy(M)

1
n = (4f — ?d*Y)w—k (df +dY 1 —2Y) A+ x&

¢ = (3f — %d* Y)o — (df +dY 1o —2Y) ) — &

Hence, C =2 Q°(M) x Ktz x Q3.

Theorem (Alexandrov—Semmelmann’12, D.—Singhal.’20)

Let (M, p,1)) be a complete nearly G, manifold. Then the infinitesimal

deformations of the nearly Gy structure are in one to one correspondence with
(X7§0) e K x 937 with

>I<d€0 = —450 and AX =12X
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|dea of the proof.
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Second order deformations

Given a nearly Gy structure (g, %0) and an infinitesimal deformation (&1,71), a
second order deformation of (g, %) in the direction of (£1,71) is a pair
(&2,m2) € 23 x Q% such that

2 2

€ €
902900+€§1+§€2, Y =1 +em+ =

2"72

is a nearly Gy structure up to terms of order O(€?). An infinitesimal deformation
(£1,7m1) is said to be obstructed to second order if there exists no second-order
deformation in its direction.

In order to find the second order deformation we need to enlarge the space
under consideration.
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Second order deformations

Let U C Q% . be a small neighborhood of the 4-form ).
if [|7[l, is small. =9 +n € Q4 e

~

The pair of positive forms (p,1)) defines a nearly G, structure if there exists a
Z € T(TM) such that

d@ — 4) = d * d(Z)).

This condition is equivalent to the vanishing of the map

®:UxT(TM) = Q¢

exact

(0, 2) — d x 1 — 4 — d « d(Z0).
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Second order deformations

The obstructions on the first order deformation of the nearly G, structure (, 1)
are given by Im(D®) which is characterized by

Let (p,) be a nearly Gy structure and (£,7) € 3, x Q3 be their first order

27,exact

deformation in P. Then o € Q% .., lies in the image of D® if and only if

(d*a—4*xa,x)2=0

for all co-closed x € Q3 such that Ay = 16y.

Shubham Dwivedi Deformation theory of nearly Go manifolds Special Geometries and Gauge Theory would have be



Sketch of the proof.
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Sketch of the proof.
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Second order deformations contd.

Consider the formal power series defining positive exact 4-form (up to order 2)

2
€

e = o +em + o (ni € Qéac
2

pe = o+ c1 + (1 — Qu(m))
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Second order deformations contd.

Consider the formal power series defining positive exact 4-form

2
€
¢€ - ¢0 + €n + ?772 (77i € ngact)
2
€ -
(1) = pe = @o + €61 + 5(772 — Q(m))
——

quadratic term arising on taking dual

(72 — Q(n1),72) is a second order deformation of the nearly G, structure (o, ¥o)
if and only if

(*Q(m),dx —4*x)2 =0

for all x € Q3 such that d*x = 0, Ax = 16¥.
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Second order deformations contd.

Consider the formal power series defining positive exact 4-form

2
€
¢€ - ¢0 + €n + 5772 (77i € ngact)
2
€ -
(1) = pe = @o + €61 + 5(772 — Q(m))
——

quadratic term arising on taking dual

(72 — Q(n1),72) is a second order deformation of the nearly G, structure (o, ¥o)
if and only if

(xQ(n1),dx —4xx)2=0
for all x € Q3 such that d*x = 0, Ax = 16¥.

Remarks:
@ Foscolo [2017] proved similar results for nearly Kahler 6-manifolds.
@ Infinitesimal deformations on Flag manifold [F3 were found to be obstructed.

@ He showed that the " inner product” does not always vanish.
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Deformations of the Aloff-Wallach space.

SU(3) x SU(2)
SU(2) x U(1)

@ Aloff-Wallach space is the normal homogeneous space

e SU(2)y = span {( (8 (1)) ,a) EXS SU(2)} and

It

U(l):span{< 0 et 0 ,1)|t€R}
0 0 e—2lt
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Deformations of the Aloff-Wallach space.

SU(3) x SU(2)
SU(2) x U(1)

@ Aloff-Wallach space is the normal homogeneous space

e SU(2)y = span {( (8 (1)) ,a) EXS SU(2)} and

U(l):span{< 0 et 0 ,1)|t€R}
0 0 e—2/t

Theorem (Alexandrov—Semmelmann’ 12)

The space of infinitesimal deformations of the nearly G, structure on A-W space
is isomorphic to 8-dimensional su(3) as an SU(3) x SU(2) representation.
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Deformations of the Aloff-Wallach space.

SU(3) x SU(2)
SU(2) x U(1)

@ Aloff-Wallach space is the normal homogeneous space

e SU(2)y = span {( (8 (1)) ,a) EXS SU(2)} and

U(1)=span{( 0 et 0 ,1)|t€R}
0 0 e—2/t

Theorem (Alexandrov—Semmelmann’ 12)

The space of infinitesimal deformations of the nearly G, structure on A-W space
is isomorphic to 8-dimensional su(3) as an SU(3) x SU(2) representation.

Theorem (D.-Singhal’20)

The infinitesimal deformations of A—W space are all obstructed.
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|dea of the proof.

Theorem (D.-Singhal’20)

The infinitesimal deformations of A—W space are all obstructed.
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