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Introduction to G2 and nearly G2 structures

Definition

Let M7 be a smooth manifold. A G2 structure on M is a 3-form ' which is
non-degenerate.

Given local coordinates x1, . . . , x7 on M, define

Bij|{z}
symmetric

dx
1
^ . . . ^ dx

7 =
⇣ @

@x i
y'

⌘
^

⇣ @

@x j
y'

⌘
^ '

From this, define the symmetric bilinear form gij by

gij =
1

6
2
9

Bij

det(B)
1
9

' is nondegenerate () gij is a Riemannian metric.

A G2 structure on M exists if and only if M is orientable and spinnable which is
equivalent to w1(M) = 0 and w2(M) = 0.
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Introduction contd.

G2 structure! “non-degenerate” 3-form ' g' and orientation nonlinearly.
and hence a Hodge star ⇤'. Denote ⇤'' =  .

Definition
A G2 structure is a nearly G2 structure if ⌧0 is the only non-vanishing torsion form.
Equivalently,

d' = ⌧0 , d = 0. (NG2)

In such a case, (M,') is a nearly G2 manifold.

If M is connected then di↵erentiating (NG2) and using the fact that · ^  is an
isomorphism from ⌦1(M) to ⌦5

1(M) implies ⌧0 = constant.

The constant ⌧0 can be altered by rescaling the metric and readjusting the
orientation. Under our assumptions we fix ⌧0 = 4.

To summarize,

(M7,') is a nearly G2 manifold if ' is a G2-structure such that

d' = 4 .

Fact. Nearly G2 manifolds are positive Einstein.
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Dirac operators on nearly G2 manifolds

Let /S(M) be the rank 8 spinor bundle over M.

Definition

A spinor ⌘ 2 �(/S(M)) is called a Killing spinor if for any X 2 �(TM)

rX⌘ = �
1

2
X · ⌘

where “ · ” is the Cli↵ord multiplication.

Fact: nearly G2 structures on M
1-1
 ! Killing spinors on /S(M)

If ⌘ is the real Killing spinor corresponding to ' then we have the decomposition

/S(M) = ⌦0(M) ⌘| {z }
Rank 1

�⌦1(M) · ⌘| {z }
Rank 7

⇠= ⌦0(M)� ⌦1(M).
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Dirac operators

Definition

The Dirac operator /D is a first order di↵erential operator on /S(M) defined as
follows. Let s = (f ,X ) 2 �(/S(M)). Then

/D(f ,X ) =
⇣7
2
f + d

⇤
X , df + dXy'� 5

2
X

⌘

Moreover, /D
⇤
= /D and /D

2
(f ,X ) = (�f + d

⇤
X + 49

4 f ,�dX + dXy'+ df + 25
4 X )

and hence is elliptic.

For our purposes we need to define a modified Dirac operator

/̃D(f ,X ) =
⇣
2f �

3

7
d
⇤
X ,

1

2
df + 6X � dXy'

⌘

Since /S(M) ⇠= ⌦0
� ⌦1 ⇠= ⌦4

1 � ⌦4
7 we can see this as an operator

/̃D : ⌦0
� ⌦1

! ⌦4
1 � ⌦4

7

(f ,X ) 7!
1

2
d(f ') + ⇡1�7(d

⇤(X ^  ))
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Hodge theory on nearly G2 manifolds

By explicit computation ker /̃D = K = {Killing vector fields on M}

⌦4
1�7
⇠= Im /̃D � ker /̃D ⇠= d⌦3

1 � ⇡1�7(d
⇤⌦5

7)� {X ^ ',X 2 K}

Thus we have the decomposition

⌦4 = d⌦3
1 � d

⇤⌦5
7 � {X ^ ',X 2 K}� ⌦4

27

⌦4
exact = d⌦3

1 � {X ^ ',X 2 K}� ⌦4
27.exact
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1 � ⇡1�7(d
⇤⌦5

7)� {X ^ ' | X 2 K}

Thus we have the decomposition

⌦4 = d⌦3
1 � d

⇤⌦5
7 � {X ^ ',X 2 K}� ⌦4

27 not L2 orthogonal

⌦4
exact = d⌦3

1 � {X ^ ' | X 2 K}� ⌦4
27,exact L

2 orthogonal

Theorem (D.–Singhal ’20)

Let (M,', ) be a complete nearly G2 manifold not isometric to S
7
. Then every

harmonic 4-form lies in ⌦4
27. Equivalently every harmonic 3-form lies in ⌦3

27.
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Idea of the proof
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Proof contd.
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Cohomology contd.

We also have a partial result on the degree 2 (and 5) cohomology.

Proposition

Let � 2 ⌦2
be a harmonic 2-form on M. Then

� = �7 + �14 = (Xy') + �14.

If curlX = �X with � 6= 12, then � 2 ⌦2
14.

Shubham Dwivedi Deformation theory of nearly G2 manifolds Special Geometries and Gauge Theory would have been in Brest, France. July 3, 2020 based on joint work with Ragini Singhal (University of Waterloo) 10 / 23



11/23

Deformation theory

Aim: Deform the nearly G2 structure (', ) to a nearby nearly G2 structure ('̃,  ̃).

Infinitesimal deformations:
P := space of G2 structures on M

p = (', ) 2 P, nearly G2 structure on M.
Op := Orbit of p under Di↵0(M)

We are interested in finding the complement C of TpOp in TpP.
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Infinitesimal deformations

Let (⇠, ⌘) 2 TpP. For some (f ,X ,Y , ⇠0) 2 ⌦0(M)⇥K ⇥K
?L2 ⇥ ⌦3

27

⌘ = �4X ^ '+ d(f ') + d
⇤(Y ^  ) + ⇤⇠0

⌘ = �4X ^ '| {z }
LX 2TpOp

+d(f ') + d
⇤(Y ^  ) + ⇤⇠0

thus modulo Di↵0(M)

⌘ = (4f �
1

7
d
⇤
Y ) + (df + dY y'� 2Y ) ^ '+ ⇤⇠0

⇠ = (3f �
3

28
d
⇤
Y )'� (df + dY y'� 2Y )y � ⇠0

Hence, C ⇠= ⌦0(M)⇥K
?L2 ⇥ ⌦4

27.

Theorem (Alexandrov–Semmelmann’12, D.–Singhal.’20)

Let (M,', ) be a complete nearly G2 manifold. Then the infinitesimal

deformations of the nearly G2 structure are in one to one correspondence with

(X , ⇠0) 2 K ⇥ ⌦3
27 with

⇤d⇠0 = �4⇠0 and �X = 12X
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Idea of the proof.

Shubham Dwivedi Deformation theory of nearly G2 manifolds Special Geometries and Gauge Theory would have been in Brest, France. July 3, 2020 based on joint work with Ragini Singhal (University of Waterloo) 13 / 23

If Bin nearly Gz deformation n exact

o n defy 1 14 no
K 52427

D z Sfp Cxtdf JV No

and dZ an af Ff no f 0

by Obata's aim



14/23

Proof contd.
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Second order deformations

Definition

Given a nearly G2 structure ('0, 0) and an infinitesimal deformation (⇠1, ⌘1), a
second order deformation of ('0, 0) in the direction of (⇠1, ⌘1) is a pair
(⇠2, ⌘2) 2 ⌦3

⇥ ⌦4 such that

' = '0 + ✏⇠1 +
✏2

2
⇠2,  =  0 + ✏⌘1 +

✏2

2
⌘2

is a nearly G2 structure up to terms of order O(✏2). An infinitesimal deformation
(⇠1, ⌘1) is said to be obstructed to second order if there exists no second-order
deformation in its direction.

In order to find the second order deformation we need to enlarge the space
under consideration.
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Second order deformations

Let U ⇢ ⌦4
+,exact be a small neighborhood of the 4-form  .

if k⌘k' is small.  ̃ =  + ⌘ 2 ⌦4
+,exact

Proposition

The pair of positive forms ('̃,  ̃) defines a nearly G2 structure if there exists a

Z 2 �(TM) such that

d'̃� 4 ̃ = d ⇤ d(Zy ̃).

This condition is equivalent to the vanishing of the map

� : U ⇥ �(TM)! ⌦4
exact

( ̃,Z ) 7! d ⇤  ̃ � 4 ̃ � d ⇤ d(Zy ̃).
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Second order deformations

The obstructions on the first order deformation of the nearly G2 structure (', )
are given by Im(D�) which is characterized by

Proposition

Let (', ) be a nearly G2 structure and (⇠, ⌘) 2 ⌦3
27 ⇥ ⌦4

27,exact be their first order

deformation in P. Then ↵ 2 ⌦4
exact lies in the image of D� if and only if

hd
⇤↵� 4 ⇤ ↵,�iL2 = 0

for all co-closed � 2 ⌦3
27 such that �� = 16�.
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Sketch of the proof.
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Sketch of the proof.
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Second order deformations contd.

Consider the formal power series defining positive exact 4-form (up to order 2)

 ✏ =  0 + ✏⌘1 +
✏2

2
⌘2 (⌘i 2 ⌦4

exact)

'✏ = '0 + ✏⇠1 +
✏2

2
( b⌘2 � Q1(⌘1))

( b⌘2 � Q(⌘1), ⌘2) is a second order deformation of the nearly G2 structure ('0, 0)
if and only if

h⇤Q(⌘1), d�� 4 ⇤ �iL2 = 0

for all � 2 ⌦3
27 such that d⇤� = 0,�� = 16�.

Remarks:

Foscolo [2017] proved similar results for nearly Kähler 6-manifolds.

Infinitesimal deformations on Flag manifold F3 were found to be obstructed.

He showed that the ”inner product” does not always vanish.
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Deformations of the Alo↵–Wallach space.

Alo↵–Wallach space is the normal homogeneous space
SU(3)⇥ SU(2)

SU(2)⇥U(1)
.

SU(2)d = span
n⇣✓

a 0
0 1

◆
, a
⌘
| a 2 SU(2)

o
and

U(1) = span
n⇣

0

@
e
it 0 0
0 e

it 0
0 0 e

�2it

1

A , 1
⌘
| t 2 R

o

Theorem (Alexandrov–Semmelmann’ 12)

The space of infinitesimal deformations of the nearly G2 structure on A–W space

is isomorphic to 8-dimensional su(3) as an SU(3)⇥ SU(2) representation.

Theorem (D.–Singhal’20)

The infinitesimal deformations of A–W space are all obstructed.
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Idea of the proof.

Theorem (D.–Singhal’20)

The infinitesimal deformations of A–W space are all obstructed.
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