Smooth Loops and Loop Bundles

Sergey Grigorian

University of Texas Rio Grande Valley, Edinburg, TX, USA

Special Geometries and Gauge Theory Workshop June 29, 2020

Outline

Smooth loops

4 Loop bundles

6 Concluding remarks

• A *loop* is an algebraic structure that has an identity element and division, but is not necessarily associative.

- A *loop* is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.

- A *loop* is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.
- It is known that some properties of G_2 -structures on 7-manifolds can be expressed in terms of an octonion bundle. Smooth loop bundles are therefore a generalization of this construction.

- A *loop* is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.
- It is known that some properties of G_2 -structures on 7-manifolds can be expressed in terms of an octonion bundle. Smooth loop bundles are therefore a generalization of this construction.
- In G₂-geometry one of the interesting questions is regarding properties of G₂-structures that correspond to the same Riemannian metric.

- A *loop* is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.
- It is known that some properties of G_2 -structures on 7-manifolds can be expressed in terms of an octonion bundle. Smooth loop bundles are therefore a generalization of this construction.
- In G₂-geometry one of the interesting questions is regarding properties of G₂-structures that correspond to the same Riemannian metric.
- It turns out that some of the properties of G₂-structures and octonion bundles are in fact quite generic and appear in the general framework of smooth loops.

Definition

Definition

A quasigroup $\mathbb L$ is a set together with the following operations $\mathbb L\times\mathbb L\longrightarrow\mathbb L$

- $\textcircled{O} \mathsf{Product} \ (p,q) \mapsto pq$
- $\ensuremath{ @ \ } \ensuremath{ \mathsf{Right} } \ensuremath{ \mathsf{quotient} } \ensuremath{ (p,q) \mapsto p \backslash q } \ensuremath{ \mathsf{p} \backslash q } \ensuremath{ \mathsf{p} \backslash q } \ensuremath{ \mathsf{p} \land q }$
- $\textcircled{O} \text{ Left quotient } (p,q) \mapsto q \backslash p \text{,}$

Definition

Definition

A quasigroup $\mathbb L$ is a set together with the following operations $\mathbb L\times\mathbb L\longrightarrow\mathbb L$

- $\textcircled{\ } \textbf{Product} \ (p,q) \mapsto pq$
- $\textcircled{O} \text{ Left quotient } (p,q) \mapsto q \backslash p,$

that satisfy the following properties

$$(p \backslash q) \, q = p \qquad q \, (q \backslash p) = p \qquad (pq) \, \backslash q = p \qquad p \backslash \, (pq) = q.$$

Definition

Definition

A quasigroup $\mathbb L$ is a set together with the following operations $\mathbb L\times\mathbb L\longrightarrow\mathbb L$

- $\textcircled{\ } \textbf{Product} \ (p,q) \mapsto pq$
- $\ensuremath{ @ \ } \ensuremath{ \mathsf{Right} } \ensuremath{ \mathsf{quotient} } \ensuremath{ (p,q) \mapsto p \backslash q } \ensuremath{ \mathsf{p} \backslash q } \ensuremath{ \mathsf{p} \backslash q } \ensuremath{ \mathsf{p} \land q }$
- $\textbf{ O Left quotient } (p,q) \mapsto q \backslash p,$

that satisfy the following properties

$$(p\backslash q) \, q = p \qquad q \, (q\backslash p) = p \qquad (pq) \, \backslash q = p \qquad p \backslash \, (pq) = q.$$

A *loop* is a quasigroup with an identity element 1. For any $q \in \mathbb{L}$, define left and right inverses

$$q^{
ho} = q \backslash 1$$
 and $q^{\lambda} = 1/q$.

1 Two-sided inverse: for any
$$p \in \mathbb{L}$$
, $p^{\rho} = p^{\lambda}$.

- Two-sided inverse: for any $p \in \mathbb{L}$, $p^{\rho} = p^{\lambda}$.
- **2** Right inverse property: for any $p, q \in \mathbb{L}$, $pq \cdot q^{\rho} = p$.

- Two-sided inverse: for any $p \in \mathbb{L}$, $p^{\rho} = p^{\lambda}$.
- **2** Right inverse property: for any $p, q \in \mathbb{L}$, $pq \cdot q^{\rho} = p$.
- **③** Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L} .

- Two-sided inverse: for any $p \in \mathbb{L}$, $p^{\rho} = p^{\lambda}$.
- **2** Right inverse property: for any $p, q \in \mathbb{L}$, $pq \cdot q^{\rho} = p$.
- **③** Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L} .
- (Left)-alternative: for any $p, q \in \mathbb{L}$, $p \cdot pq = pp \cdot q$.

- Two-sided inverse: for any $p \in \mathbb{L}$, $p^{\rho} = p^{\lambda}$.
- **2** Right inverse property: for any $p, q \in \mathbb{L}$, $pq \cdot q^{\rho} = p$.
- **③** *Monoassociativity*: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L} .
- (Left)-alternative: for any $p, q \in \mathbb{L}$, $p \cdot pq = pp \cdot q$.
- **()** Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L} .

- Two-sided inverse: for any $p \in \mathbb{L}$, $p^{\rho} = p^{\lambda}$.
- **2** Right inverse property: for any $p, q \in \mathbb{L}$, $pq \cdot q^{\rho} = p$.
- **③** *Monoassociativity*: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L} .
- (Left)-alternative: for any $p, q \in \mathbb{L}$, $p \cdot pq = pp \cdot q$.
- **()** Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L} .
- (Left) Bol loop: for any $p, q, r \in \mathbb{L}$, $p(q \cdot pr) = (p \cdot qp)r$.

- Two-sided inverse: for any $p \in \mathbb{L}$, $p^{\rho} = p^{\lambda}$.
- **2** Right inverse property: for any $p, q \in \mathbb{L}$, $pq \cdot q^{\rho} = p$.
- **③** *Monoassociativity*: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L} .
- (Left)-alternative: for any $p, q \in \mathbb{L}$, $p \cdot pq = pp \cdot q$.
- **()** Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L} .
- **(**Left) Bol loop: for any $p, q, r \in \mathbb{L}$, $p(q \cdot pr) = (p \cdot qp)r$.
- Moufang loop: a loop is a Moufang loop if it satisfies both the left and right Bol identities. (Unit octonions form a Moufang loop.)

- Two-sided inverse: for any $p \in \mathbb{L}$, $p^{\rho} = p^{\lambda}$.
- **2** Right inverse property: for any $p, q \in \mathbb{L}$, $pq \cdot q^{\rho} = p$.
- **③** *Monoassociativity*: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L} .
- (Left)-alternative: for any $p, q \in \mathbb{L}$, $p \cdot pq = pp \cdot q$.
- **(**) Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L} .
- (Left) Bol loop: for any $p, q, r \in \mathbb{L}$, $p(q \cdot pr) = (p \cdot qp)r$.
- Moufang loop: a loop is a Moufang loop if it satisfies both the left and right Bol identities. (Unit octonions form a Moufang loop.)
- Group: clearly any associative loop is a group.

Pseudoautomorphisms

Definition

An invertible map $\alpha : \mathbb{L} \longrightarrow \mathbb{L}$ is a *right pseudoautomorphism* of \mathbb{L} if there exists an element $A \in \mathbb{L}$ such that for any $p, q \in \mathbb{L}$

$$\alpha(p) \cdot \alpha(q) A = \alpha(pq) A.$$
(1)

Pseudoautomorphisms

Definition

An invertible map $\alpha : \mathbb{L} \longrightarrow \mathbb{L}$ is a *right pseudoautomorphism* of \mathbb{L} if there exists an element $A \in \mathbb{L}$ such that for any $p, q \in \mathbb{L}$

$$\alpha(p) \cdot \alpha(q) A = \alpha(pq) A.$$
(1)

Example

Any *automorphism* is a (right) pseudoautomorphism with A = 1.

Pseudoautomorphisms

Definition

An invertible map $\alpha : \mathbb{L} \longrightarrow \mathbb{L}$ is a *right pseudoautomorphism* of \mathbb{L} if there exists an element $A \in \mathbb{L}$ such that for any $p, q \in \mathbb{L}$

$$\alpha(p) \cdot \alpha(q) A = \alpha(pq) A.$$
(1)

Example

Any *automorphism* is a (right) pseudoautomorphism with A = 1.

Example

In a Moufang loop, the map Ad_q , given by $p \mapsto qpq^{-1}$ is a right pseudoautomorphism with companion q^3 .

Definition

 $\operatorname{PsAut}^{R}(\mathbb{L})$ is the group of all right pseudoautomorphisms of \mathbb{L} . In particular $\operatorname{PsAut}^{R}(\mathbb{L})$ preserves 1.

Definition

 $\operatorname{PsAut}^{R}(\mathbb{L})$ is the group of all right pseudoautomorphisms of \mathbb{L} . In particular $\operatorname{PsAut}^{R}(\mathbb{L})$ preserves 1.

Lemma

The set $\Psi^{R}(\mathbb{L})$ of all pairs (α, A) , where $\alpha \in PsAut^{R}(\mathbb{L})$ and $A \in \mathbb{L}$ is its companion, is a group with identity element (id, 1) and the following group operations:

product:
$$(\alpha_1, A_1) (\alpha_2, A_2) = (\alpha_1 \circ \alpha_2, \alpha_1 (A_2) A_1)$$
 (2a)
inverse: $(\alpha, A)^{-1} = (\alpha^{-1}, \alpha^{-1} (A^{\lambda})) = (\alpha^{-1}, (\alpha^{-1} (A))^{\rho}).$ (2b)

• $\Psi^{R}(\mathbb{L})$ has two actions on \mathbb{L} . Let $h = (\alpha, A) \in \Psi^{R}(\mathbb{L})$ and $p \in \mathbb{L}$,

non-faithful $h'(p) = \alpha(p)$ faithful $h(p) = \alpha(p) A$.

• $\Psi^{R}(\mathbb{L})$ has two actions on \mathbb{L} . Let $h = (\alpha, A) \in \Psi^{R}(\mathbb{L})$ and $p \in \mathbb{L}$,

non-faithful
$$h'(p) = \alpha(p)$$

faithful $h(p) = \alpha(p) A$.

 Denote by L̃ the set L equipped with the faithful action of Ψ^R (L). In this case, Aut (L) ≅ Stab_{Ψ^R(L)} (1). The set of companions
 C^R (L) = Orb_{Ψ^R(L)} (1). If Ψ^R (L) acts transitively, L̃ is known as a *G*-loop.

• $\Psi^{R}(\mathbb{L})$ has two actions on \mathbb{L} . Let $h = (\alpha, A) \in \Psi^{R}(\mathbb{L})$ and $p \in \mathbb{L}$,

non-faithful
$$h'(p) = \alpha(p)$$

faithful $h(p) = \alpha(p) A$.

 Denote by L̃ the set L equipped with the faithful action of Ψ^R (L). In this case, Aut (L) ≅ Stab_{Ψ^R(L)} (1). The set of companions
 C^R (L) = Orb_{Ψ^R(L)} (1). If Ψ^R (L) acts transitively, L̃ is known as a *G*-loop.

• By (1), for $p,q \in \mathbb{L}$, we have

$$h(pq) = h'(p) \cdot h(q).$$

Example

Suppose $\mathbb{L} = S^3$ - the group of unit quaternions. We know that $\operatorname{Aut}(S^3) \cong SO(3)$. Now however, $\Psi^R(S^3)$ consists of all pairs $(\alpha, A) \in SO(3) \times S^3$ with the group structure defined by (2a),which is the semi-direct product

$$\Psi^{R}\left(S^{3}\right) \cong SO\left(3\right) \ltimes S^{3} \cong Sp\left(1\right)Sp\left(1\right) \cong SO\left(4\right).$$

Example

Suppose $\mathbb{L} = S^3$ - the group of unit quaternions. We know that $\operatorname{Aut}(S^3) \cong SO(3)$. Now however, $\Psi^R(S^3)$ consists of all pairs $(\alpha, A) \in SO(3) \times S^3$ with the group structure defined by (2a),which is the semi-direct product

$$\Psi^{R}\left(S^{3}\right) \cong SO\left(3\right) \ltimes S^{3} \cong Sp\left(1\right)Sp\left(1\right) \cong SO\left(4\right).$$

Example

Suppose $\mathbb{L} = S^7$ - the Moufang loop of unit octonions. In this case, $\Psi^R(S^7) \cong Spin(7)$ and $\operatorname{PsAut}^R(S^7) \cong SO(7)$. The (right) nucleus is $\{\pm 1\}$, so the projection of a pair $(\alpha, A) \in \Psi^R(S^7)$ to $\alpha \in \operatorname{PsAut}^R(S^7)$ corresponds to the double cover $Spin(7) \longrightarrow SO(7)$.

Modified product

• Let $r \in \mathbb{L}$, and define the modified product \circ_r on \mathbb{L} via

$$p \circ_r q = \left(p \cdot qr\right)/r. \tag{3}$$

Denote by (\mathbb{L}, \circ_r) the loop with the new product.

Modified product

• Let $r \in \mathbb{L}$, and define the modified product \circ_r on \mathbb{L} via

$$p \circ_r q = \left(p \cdot qr\right)/r. \tag{3}$$

Denote by (\mathbb{L}, \circ_r) the loop with the new product.

Modified product

• Let $r \in \mathbb{L}$, and define the modified product \circ_r on \mathbb{L} via

$$p \circ_r q = \left(p \cdot qr\right)/r. \tag{3}$$

Denote by (\mathbb{L}, \circ_r) the loop with the new product.

Lemma

Let $h \in \Psi^{R}(\mathbb{L}, \cdot)$ and $p, q, r, x \in \mathbb{L}$, then

$$h'(p \circ_r q) = h'(p) \circ_{h(r)} h'(q).$$

and

$$p \circ_{rx} q = \left(p \circ_x (q \circ_x r)\right) /_x r.$$
(5)

(4)

• Suppose the loop L is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.

- Suppose the loop $\mathbb L$ is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.
- Assume that $\Psi^{R}(\mathbb{L})$ acts smoothly on \mathbb{L} (then $\Psi^{R}(\mathbb{L})$, $\operatorname{PsAut}^{R}(\mathbb{L})$, and $s \in \mathring{\mathbb{L}}$, $\operatorname{Aut}(\mathbb{L}, \circ_{s}) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(s)$, are all Lie groups).

- Suppose the loop L is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.
- Assume that $\Psi^{R}(\mathbb{L})$ acts smoothly on \mathbb{L} (then $\Psi^{R}(\mathbb{L})$, $\operatorname{PsAut}^{R}(\mathbb{L})$, and $s \in \mathring{\mathbb{L}}$, $\operatorname{Aut}(\mathbb{L}, \circ_{s}) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(s)$, are all Lie groups).
- For any $r \in \mathbb{L}$, define the diffeomorphisms

$$\begin{array}{ccc} L_r: \mathbb{L} \longrightarrow \mathbb{L} & R_r: \mathbb{L} \longrightarrow \mathbb{L} \\ q \longmapsto rq & q \longmapsto qr. \end{array}$$

Similarly, define $L_r^{(s)}$ and $R_r^{(s)}$ for products with respect to \circ_s .

- Suppose the loop L is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.
- Assume that $\Psi^{R}(\mathbb{L})$ acts smoothly on \mathbb{L} (then $\Psi^{R}(\mathbb{L})$, $\operatorname{PsAut}^{R}(\mathbb{L})$, and $s \in \mathring{\mathbb{L}}$, $\operatorname{Aut}(\mathbb{L}, \circ_{s}) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(s)$, are all Lie groups).
- For any $r \in \mathbb{L}$, define the diffeomorphisms

 $\begin{array}{ccc} L_r: \mathbb{L} \longrightarrow \mathbb{L} & R_r: \mathbb{L} \longrightarrow \mathbb{L} \\ q \longmapsto rq & q \longmapsto qr. \end{array}$

Similarly, define $L_r^{(s)}$ and $R_r^{(s)}$ for products with respect to \circ_s .

• Given a tangent vector $\xi \in T_1 \mathbb{L}$, define the vector field $\rho(\xi)$ given by

$$\rho\left(\xi\right)_q = \left(R_q\right)_* \xi \tag{6}$$

at any $p \in \mathbb{L}$. If \mathbb{L} is a Lie group, this is equivalent to the standard definition of a right-invariant vector field X such that $(R_q)_* X_p = X_{pq}$, however in the non-associative case, $R_q \circ R_p \neq R_{pq}$, so in that case, $\rho(\xi)$ is not right-invariant.

Exponential map

 If the loop (L, ◦_s) is monoassociative, it was shown by Kuz'min in 1971 that one can define an exponential map exp_s : T₁L → L as the solution of the equation (7) for some ξ ∈ T₁L:

$$\begin{cases}
\frac{dp_{\xi}(t)}{dt} = \left(R_{p_{\xi}(t)}^{(s)}\right)_{*}\xi \\
p_{\xi}(0) = 1.
\end{cases}$$
(7)

The solution to (7) with s = 1 but $p_{\zeta}(0) = q$, is then $p_{\xi}(t) = \exp_q(t\xi) q$.

Exponential map

 If the loop (L, ∘_s) is monoassociative, it was shown by Kuz'min in 1971 that one can define an exponential map exp_s : T₁L → L as the solution of the equation (7) for some ξ ∈ T₁L:

$$\begin{cases}
\frac{dp_{\xi}(t)}{dt} = \left(R_{p_{\xi}(t)}^{(s)}\right)_{*}\xi \\
p_{\xi}(0) = 1.
\end{cases}$$
(7)

The solution to (7) with s = 1 but $p_{\zeta}(0) = q$, is then $p_{\xi}(t) = \exp_q(t\xi) q$.

• Suppose (\mathbb{L}, \cdot) is power-associative and moreover, power left-alternative, i.e. $x^k (x^l q) = x^{k+l}q$ for all $x, q \in \mathbb{L}$. Then, it can be shown that the exponential functions are equal for all $q \in \mathbb{L}$.

Exponential map

 If the loop (L, ◦_s) is monoassociative, it was shown by Kuz'min in 1971 that one can define an exponential map exp_s : T₁L → L as the solution of the equation (7) for some ξ ∈ T₁L:

$$\begin{cases}
\frac{dp_{\xi}(t)}{dt} = \left(R_{p_{\xi}(t)}^{(s)}\right)_{*}\xi \\
p_{\xi}(0) = 1.
\end{cases}$$
(7)

The solution to (7) with s = 1 but $p_{\zeta}(0) = q$, is then $p_{\xi}(t) = \exp_q(t\xi) q$.

- Suppose (\mathbb{L}, \cdot) is power-associative and moreover, power left-alternative, i.e. $x^k (x^l q) = x^{k+l}q$ for all $x, q \in \mathbb{L}$. Then, it can be shown that the exponential functions are equal for all $q \in \mathbb{L}$.
- In general they will be different functions, but with the same derivative at t = 0.

• For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_q^{(p)} : \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto (q \circ_p r) / pq$.

• For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_q^{(p)} : \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto (q \circ_p r) / pq$.

• For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_q^{(p)} : \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto (q \circ_p r) /_p q$.

Definition

For any $\xi, \gamma \in T_1 \mathbb{L}$, the *p*-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$\left[\xi,\gamma\right]^{(p)} = \left.\frac{d}{dt}\left(\left(\operatorname{Ad}_{\exp_p(t\xi)}^{(p)}\right)_*\gamma\right)\right|_{t=0} = -\left(R_p^{-1}\right)_*\left[\rho\left(\xi\right),\rho\left(\gamma\right)\right]_p.$$
(8)

• For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_q^{(p)} : \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto (q \circ_p r) / pq$.

Definition

For any $\xi, \gamma \in T_1 \mathbb{L}$, the *p*-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$\left[\xi,\gamma\right]^{(p)} = \left.\frac{d}{dt}\left(\left(\operatorname{Ad}_{\exp_p(t\xi)}^{(p)}\right)_*\gamma\right)\right|_{t=0} = -\left(R_p^{-1}\right)_*\left[\rho\left(\xi\right),\rho\left(\gamma\right)\right]_p.$$
(8)

Definition

The vector space $T_1 \mathbb{L}$ together with the bracket $[\cdot, \cdot]^{(p)}$ is the *tangent algebra* $\mathfrak{l}^{(p)}$ of (\mathbb{L}, \circ_p) .

• For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_q^{(p)} : \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto (q \circ_p r) / pq$.

Definition

For any $\xi, \gamma \in T_1 \mathbb{L}$, the *p*-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$\left[\xi,\gamma\right]^{(p)} = \left.\frac{d}{dt}\left(\left(\operatorname{Ad}_{\exp_p(t\xi)}^{(p)}\right)_*\gamma\right)\right|_{t=0} = -\left(R_p^{-1}\right)_*\left[\rho\left(\xi\right),\rho\left(\gamma\right)\right]_p.$$
(8)

Definition

The vector space $T_1 \mathbb{L}$ together with the bracket $[\cdot, \cdot]^{(p)}$ is the *tangent algebra* $\mathfrak{l}^{(p)}$ of (\mathbb{L}, \circ_p) .

• The key difference with Lie algebras is that every $p \in \mathbb{L}$ defines a bracket. If p and q are in different orbits of $\Psi^{R}(\mathbb{L})$, then these algebras do not need to be isomorphic.

Sergey Grigorian

• Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l},$ define θ_p to be

$$\theta_p\left(\rho\left(\xi\right)_p\right) = \left(R_p^{-1}\right)_* \rho\left(\xi\right)_p = \xi.$$
(9)

• Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define θ_p to be

$$\theta_p\left(\rho\left(\xi\right)_p\right) = \left(R_p^{-1}\right)_* \rho\left(\xi\right)_p = \xi.$$
(9)

 This is an l-valued 1-form. The right-fundamental vector fields still form a global frame for TL, so this is sufficient to define the 1-form.

• Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define θ_p to be

$$\theta_p\left(\rho\left(\xi\right)_p\right) = \left(R_p^{-1}\right)_* \rho\left(\xi\right)_p = \xi.$$
(9)

 This is an l-valued 1-form. The right-fundamental vector fields still form a global frame for TL, so this is sufficient to define the 1-form.

• Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define θ_p to be

$$\theta_p\left(\rho\left(\xi\right)_p\right) = \left(R_p^{-1}\right)_* \rho\left(\xi\right)_p = \xi.$$
(9)

 This is an l-valued 1-form. The right-fundamental vector fields still form a global frame for TL, so this is sufficient to define the 1-form.

Theorem

Let $p \in \mathbb{L}$ and let $[\cdot, \cdot]^{(p)}$ be bracket on $\mathfrak{l}^{(p)}$. Then θ satisfies the following equation at p:

$$\left(d\theta\right)_p - \frac{1}{2} \left[\theta, \theta\right]^{(p)} = 0, \tag{10}$$

where $[\theta, \theta]^{(p)}$ is the bracket of \mathbb{L} -algebra-valued 1-forms such that for any $X, Y \in T_p \mathbb{L}$, $\frac{1}{2} [\theta, \theta]^{(p)} (X, Y) = [\theta(X), \theta(Y)]^{(p)}$.

• Define $b:\mathbb{L}\longrightarrow\mathfrak{l}\otimes\Lambda^{2}\mathfrak{l}^{*}$ given by $p\mapsto [\cdot,\cdot]^{(p)}$. Then,

$$db|_{p}(\eta,\gamma) = [\eta,\gamma,\theta_{p}]^{(p)} - [\gamma,\eta,\theta_{p}]^{(p)}, \qquad (11)$$

• Define $b:\mathbb{L}\longrightarrow\mathfrak{l}\otimes\Lambda^{2}\mathfrak{l}^{*}$ given by $p\mapsto [\cdot,\cdot]^{(p)}$. Then,

$$db|_{p}(\eta,\gamma) = [\eta,\gamma,\theta_{p}]^{(p)} - [\gamma,\eta,\theta_{p}]^{(p)}, \qquad (11)$$

• Define $b:\mathbb{L}\longrightarrow\mathfrak{l}\otimes\Lambda^{2}\mathfrak{l}^{*}$ given by $p\mapsto [\cdot,\cdot]^{(p)}$. Then,

$$db|_{p}(\eta,\gamma) = [\eta,\gamma,\theta_{p}]^{(p)} - [\gamma,\eta,\theta_{p}]^{(p)}, \qquad (11)$$

where $\left[\cdot,\cdot,\cdot
ight]^{(p)}$ is the \mathbb{L} -algebra associator on $\mathfrak{l}^{(p)}$ given by

$$[\eta, \gamma, \xi]^{(p)} = \frac{d^3}{dt d\tau d\tau'} \exp(\tau \eta) \circ_p \left(\exp\left(\tau' \gamma\right) \circ_p \exp\left(t\xi\right) \right) \Big|_{t, \tau, \tau'=0} (12) \\ - \frac{d^3}{dt d\tau d\tau'} \left(\exp\left(\tau \eta\right) \circ_p \exp\left(\tau' \gamma\right) \right) \circ_p \exp\left(t\xi\right) \Big|_{t, \tau, \tau'=0} .$$

• In a left-alternative loop, the associator is skew in first two entries, but not in general so. Define $a_p(\eta, \gamma, \xi) = [\eta, \gamma, \xi]^{(p)} - [\gamma, \eta, \xi]^{(p)}$.

• Define $b: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \Lambda^2 \mathfrak{l}^*$ given by $p \mapsto [\cdot, \cdot]^{(p)}$. Then,

$$db|_{p}(\eta,\gamma) = [\eta,\gamma,\theta_{p}]^{(p)} - [\gamma,\eta,\theta_{p}]^{(p)}, \qquad (11)$$

where $\left[\cdot,\cdot,\cdot
ight]^{(p)}$ is the \mathbb{L} -algebra associator on $\mathfrak{l}^{(p)}$ given by

$$[\eta, \gamma, \xi]^{(p)} = \frac{d^3}{dt d\tau d\tau'} \exp(\tau \eta) \circ_p \left(\exp\left(\tau' \gamma\right) \circ_p \exp\left(t\xi\right) \right) \Big|_{t, \tau, \tau'=0} (12) \\ - \frac{d^3}{dt d\tau d\tau'} \left(\exp\left(\tau \eta\right) \circ_p \exp\left(\tau' \gamma\right) \right) \circ_p \exp\left(t\xi\right) \Big|_{t, \tau, \tau'=0} .$$

- In a left-alternative loop, the associator is skew in first two entries, but not in general so. Define $a_p(\eta, \gamma, \xi) = [\eta, \gamma, \xi]^{(p)} [\gamma, \eta, \xi]^{(p)}$.
- In a Lie group, the exterior derivative of the Maurer-Cartan equation gives the Jacobi identity. In general, from (11) we obtain a generalization (known as the Akivis identity)

$$\operatorname{Jac}^{(p)}\left(\xi,\eta,\gamma\right) = a_p\left(\xi,\eta,\gamma\right) + a_p\left(\eta,\gamma,\xi\right) + a_p\left(\gamma,\xi,\eta\right).$$
(13)

• Let \mathfrak{p} be the Lie algebra of $\Psi^{R}\left(\mathbb{L}\right).$ Then, we have the following map that relates \mathfrak{p} and $\mathfrak{l}.$

• Let \mathfrak{p} be the Lie algebra of $\Psi^{R}\left(\mathbb{L}\right).$ Then, we have the following map that relates \mathfrak{p} and $\mathfrak{l}.$

• Let \mathfrak{p} be the Lie algebra of $\Psi^{R}\left(\mathbb{L}\right).$ Then, we have the following map that relates \mathfrak{p} and $\mathfrak{l}.$

Definition

Define the map $\varphi: \mathring{\mathbb{L}} \longrightarrow \mathfrak{l} \otimes \mathfrak{p}^*$ such that for each $s \in \mathring{\mathbb{L}}$ and $\gamma \in \mathfrak{p}$,

$$\varphi_{s}(\gamma) = \frac{d}{dt} \left[\exp_{\mathfrak{p}}(t\gamma)(s) \right] / s \bigg|_{t=0} \in \mathfrak{l}.$$
(14)

• Let \mathfrak{p} be the Lie algebra of $\Psi^{R}\left(\mathbb{L}\right)$. Then, we have the following map that relates \mathfrak{p} and $\mathfrak{l}.$

Definition

Define the map $\varphi: \mathring{\mathbb{L}} \longrightarrow \mathfrak{l} \otimes \mathfrak{p}^*$ such that for each $s \in \mathring{\mathbb{L}}$ and $\gamma \in \mathfrak{p}$,

$$\varphi_{s}(\gamma) = \frac{d}{dt} \left[\exp_{\mathfrak{p}}(t\gamma)(s) \right] / s \bigg|_{t=0} \in \mathfrak{l}.$$
(14)

• Suppose \mathfrak{h}_s is the Lie algebra of $\operatorname{Aut}(\mathbb{L}, \circ_s)$ and $\mathfrak{q}^{(s)} = T_1 \mathcal{C}^R(\mathbb{L}, \circ_s)$. Since $\mathcal{C}^R(\mathbb{L}, \circ_s) \cong \Psi^R(\mathbb{L}) / \operatorname{Aut}(\mathbb{L}, \circ_s)$, we have $\mathfrak{q}^{(s)} \cong \mathfrak{p}/\mathfrak{h}^{(s)}$ as linear representations of $\operatorname{Aut}(\mathbb{L}, \circ_s)$. We can then see that $\ker \varphi_s = \mathfrak{h}^{(s)}$ and the image of φ_s is precisely $\mathfrak{q}^{(s)}$.

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$\xi \cdot \varphi_{s}(\eta) - \eta \cdot \varphi_{s}(\xi) = \varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right) + \left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)}, \qquad (15)$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l} .

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$\xi \cdot \varphi_{s}(\eta) - \eta \cdot \varphi_{s}(\xi) = \varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right) + \left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)}, \qquad (15)$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l} .

• We can also define the action of $\mathfrak p$ on b_s and φ_s and the corresponding annihilator subalgebras.

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$\xi \cdot \varphi_{s}(\eta) - \eta \cdot \varphi_{s}(\xi) = \varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right) + \left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)}, \qquad (15)$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l} .

- We can also define the action of $\mathfrak p$ on b_s and φ_s and the corresponding annihilator subalgebras.
- Let $\mathcal{N}^{R}\left(\mathfrak{l}^{(s)}\right) = \left\{\xi \in \mathfrak{l} : a_{s}\left(\eta, \gamma, \xi\right) = 0 \text{ for all } \eta, \gamma \in \mathfrak{l}\right\}.$

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$\xi \cdot \varphi_{s}(\eta) - \eta \cdot \varphi_{s}(\xi) = \varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right) + \left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)}, \qquad (15)$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l} .

- We can also define the action of $\mathfrak p$ on b_s and φ_s and the corresponding annihilator subalgebras.
- Let $\mathcal{N}^{R}\left(\mathfrak{l}^{(s)}\right) = \left\{\xi \in \mathfrak{l} : a_{s}\left(\eta, \gamma, \xi\right) = 0 \text{ for all } \eta, \gamma \in \mathfrak{l}\right\}.$

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$\xi \cdot \varphi_{s}(\eta) - \eta \cdot \varphi_{s}(\xi) = \varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right) + \left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)}, \qquad (15)$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l} .

- We can also define the action of $\mathfrak p$ on b_s and φ_s and the corresponding annihilator subalgebras.
- Let $\mathcal{N}^{R}\left(\mathfrak{l}^{(s)}\right) = \left\{\xi \in \mathfrak{l} : a_{s}\left(\eta, \gamma, \xi\right) = 0 \text{ for all } \eta, \gamma \in \mathfrak{l}\right\}.$

Theorem

If \mathbb{L} is a G-loop, we have the following inclusions of Lie algebras

$$\ker \varphi_s = \mathfrak{h}_s \underset{ideal}{\subset} \operatorname{Ann}_{\mathfrak{p}}(\varphi_s) \subset \operatorname{Ann}_{\mathfrak{p}}(b_s) \cong \mathfrak{h}^{(s)} \oplus \mathcal{N}^R\left(\mathfrak{l}^{(s)}\right) \subset \mathfrak{p}.$$
(16)

1

Example

If \mathbb{L} is the loop of unit octonions, then we know $\mathfrak{p} \cong \mathfrak{so}(7) \cong \Lambda^2 (\mathbb{R}^7)^*$ and $\mathfrak{l} \cong \mathbb{R}^7$, so φ_1 can be regarded as an element of $\mathbb{R}^7 \otimes \Lambda^2 \mathbb{R}^7$, and this is (up to a factor) a dualized version of the G_2 -invariant 3-form φ , as used to project from $\Lambda^2 (\mathbb{R}^7)^*$ to \mathbb{R}^7 . The kernel of this map is then the Lie algebra \mathfrak{g}_2 . In this case, both b_s and φ_s are determined by the same object, but in general they have different roles.

• Let M be a smooth manifold and suppose $s: M \longrightarrow \mathbb{L}$ is a smooth map. Using s we define a product on \mathbb{L} -valued maps from M and a corresponding bracket on \mathfrak{l} -valued maps.

- Let M be a smooth manifold and suppose s : M → L is a smooth map. Using s we define a product on L-valued maps from M and a corresponding bracket on I-valued maps.
- Let $A, B: M \longrightarrow \mathbb{L}$ and $\xi, \eta: M \longrightarrow \mathfrak{l}$, then at each $x \in M$, define

$$A \circ_s B|_x = A_x \circ_{s_x} B_x \in \mathbb{L}$$
(17a)

$$A/_{s}B|_{x} = A_{x}/_{s_{x}}B_{x} \quad A\backslash_{s}B|_{x} = A_{x}\backslash_{s}B_{x}$$
(17b)

$$[\xi,\eta]^{(s)}\Big|_{x} = [\xi_{x},\eta_{x}]^{(s_{x})} \in \mathfrak{l}.$$
 (17c)

- Let M be a smooth manifold and suppose s : M → L is a smooth map. Using s we define a product on L-valued maps from M and a corresponding bracket on I-valued maps.
- Let $A, B: M \longrightarrow \mathbb{L}$ and $\xi, \eta: M \longrightarrow \mathfrak{l}$, then at each $x \in M$, define

$$A \circ_s B|_x = A_x \circ_{s_x} B_x \in \mathbb{L}$$
(17a)

$$A/_{s}B|_{x} = A_{x}/_{s_{x}}B_{x} \quad A\backslash_{s}B|_{x} = A_{x}\backslash_{s}B_{x}$$
(17b)

$$[\xi, \eta]^{(s)}\Big|_{x} = [\xi_{x}, \eta_{x}]^{(s_{x})} \in \mathfrak{l}.$$
 (17c)

• The bracket $[\cdot, \cdot]^{(s)}$ defines the map $b_s : M \longrightarrow \Lambda^2 \mathfrak{l}^* \otimes \mathfrak{l}$. We also have the associator $[\cdot, \cdot, \cdot]^{(s)}$ and the left-alternative map $a_s : M \longrightarrow \Lambda^2 \mathfrak{l}^* \otimes \mathfrak{l}^* \otimes \mathfrak{l}$. Similarly, define the map $\varphi_s : M \longrightarrow \mathfrak{p}^* \otimes \mathfrak{l}$.

- Let M be a smooth manifold and suppose $s: M \longrightarrow \mathbb{L}$ is a smooth map. Using s we define a product on \mathbb{L} -valued maps from M and a corresponding bracket on \mathfrak{l} -valued maps.
- Let $A, B: M \longrightarrow \mathbb{L}$ and $\xi, \eta: M \longrightarrow \mathfrak{l}$, then at each $x \in M$, define

$$A \circ_s B|_x = A_x \circ_{s_x} B_x \in \mathbb{L}$$
(17a)

$$A/_{s}B|_{x} = A_{x}/_{s_{x}}B_{x} \quad A\backslash_{s}B|_{x} = A_{x}\backslash_{s}B_{x}$$
(17b)

$$|\xi,\eta|^{(s)}\Big|_{x} = [\xi_{x},\eta_{x}]^{(s_{x})} \in \mathfrak{l}.$$
 (17c)

- The bracket $[\cdot, \cdot]^{(s)}$ defines the map $b_s : M \longrightarrow \Lambda^2 \mathfrak{l}^* \otimes \mathfrak{l}$. We also have the associator $[\cdot, \cdot, \cdot]^{(s)}$ and the left-alternative map $a_s : M \longrightarrow \Lambda^2 \mathfrak{l}^* \otimes \mathfrak{l}^* \otimes \mathfrak{l}$. Similarly, define the map $\varphi_s : M \longrightarrow \mathfrak{p}^* \otimes \mathfrak{l}$.
- As for Lie groups, define the (right) Darboux derivative $\theta_s = s^* \theta \in \Omega^1(M, \mathfrak{l})$. At every $x \in M$,

$$(\theta_s)|_x = \left(R_{s(x)}^{-1}\right)_* ds|_x.$$
(18)

Let M be a smooth manifold and let $x \in M$. Suppose $A, B, s \in C^{\infty}(M, \mathbb{L})$, then

$$d(A \circ_{s} B) = (dA) \circ_{s} B + A \circ_{s} (dB) + [A, B, \theta_{s}]^{(s)}$$
(19)

Let M be a smooth manifold and let $x\in M.$ Suppose $A,B,s\in C^{\infty}\left(M,\mathbb{L}\right),$ then

$$d(A \circ_{s} B) = (dA) \circ_{s} B + A \circ_{s} (dB) + [A, B, \theta_{s}]^{(s)}$$
(19)

and

$$d(A/_{s}B) = dA/_{s}B - (A/_{s}B \circ_{s} dB)/_{s}B - [A/_{s}B, B, \theta_{s}]^{(s)}/_{s}B$$

$$d(B\backslash_{s}A) = B\backslash_{s}dA - B\backslash_{s}(dB \circ_{s} (B\backslash_{s}A)) - B\backslash_{s}[B, B\backslash_{s}A, \theta_{s}]^{(s)}$$

.

Let M be a smooth manifold and let $x\in M.$ Suppose $A,B,s\in C^{\infty}\left(M,\mathbb{L}\right),$ then

$$d(A \circ_{s} B) = (dA) \circ_{s} B + A \circ_{s} (dB) + [A, B, \theta_{s}]^{(s)}$$
(19)

and

$$d(A/_{s}B) = dA/_{s}B - (A/_{s}B \circ_{s} dB)/_{s}B - [A/_{s}B, B, \theta_{s}]^{(s)}/_{s}B$$

$$d(B\backslash_{s}A) = B\backslash_{s}dA - B\backslash_{s}(dB \circ_{s} (B\backslash_{s}A)) - B\backslash_{s}[B, B\backslash_{s}A, \theta_{s}]^{(s)}$$

Suppose now $\xi, \eta \in C^{\infty}(M, \mathfrak{l})$, then

$$d[\xi,\eta]^{(s)} = [d\xi,\eta]^{(s)} + [\xi,d\eta]^{(s)} + a_s(\xi,\eta,\theta_s).$$
(20)

Let M be a smooth manifold and let $x \in M$. Suppose $A, B, s \in C^{\infty}(M, \mathbb{L})$, then

$$d(A \circ_{s} B) = (dA) \circ_{s} B + A \circ_{s} (dB) + [A, B, \theta_{s}]^{(s)}$$
(19)

and

$$d(A/_{s}B) = dA/_{s}B - (A/_{s}B \circ_{s} dB)/_{s}B - [A/_{s}B, B, \theta_{s}]^{(s)}/_{s}B$$

$$d(B\backslash_{s}A) = B\backslash_{s}dA - B\backslash_{s}(dB \circ_{s} (B\backslash_{s}A)) - B\backslash_{s}[B, B\backslash_{s}A, \theta_{s}]^{(s)}$$

Suppose now $\xi, \eta \in C^{\infty}(M, \mathfrak{l})$, then

$$d[\xi,\eta]^{(s)} = [d\xi,\eta]^{(s)} + [\xi,d\eta]^{(s)} + a_s(\xi,\eta,\theta_s).$$
(20)

The $\mathfrak{l}\otimes\mathfrak{p}^*\text{-valued}$ map $\varphi_s:M\longrightarrow\mathfrak{l}\otimes\mathfrak{p}^*$ satisfies

$$d\varphi_s = \mathrm{id}_{\mathfrak{p}} \cdot \theta_s - [\varphi_s, \theta_s]^{(s)} \,. \tag{21}$$

Loop bundles

• Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L}) = \Psi$, Aut $(\mathbb{L}) = H$, and $\operatorname{PsAut}^{R}(\mathbb{L}) = G \supset H$, and $\mathcal{N}^{R}(\mathbb{L}) = \mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.

- Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L}) = \Psi$, Aut $(\mathbb{L}) = H$, and $\operatorname{PsAut}^{R}(\mathbb{L}) = G \supset H$, and $\mathcal{N}^{R}(\mathbb{L}) = \mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.
- Let M be a smooth manifold with a Ψ-principal bundle P. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle P×_Ψ S, with sections being in an 1-1 correspondence with equivariant maps P → S. Define the following bundles:

- Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L}) = \Psi$, Aut $(\mathbb{L}) = H$, and $\operatorname{PsAut}^{R}(\mathbb{L}) = G \supset H$, and $\mathcal{N}^{R}(\mathbb{L}) = \mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.
- Let M be a smooth manifold with a Ψ-principal bundle P. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle P×_Ψ S, with sections being in an 1-1 correspondence with equivariant maps P → S. Define the following bundles:

- Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L}) = \Psi$, Aut $(\mathbb{L}) = H$, and $\operatorname{PsAut}^{R}(\mathbb{L}) = G \supset H$, and $\mathcal{N}^{R}(\mathbb{L}) = \mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.
- Let M be a smooth manifold with a Ψ-principal bundle P. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle P×_Ψ S, with sections being in an 1-1 correspondence with equivariant maps P → S. Define the following bundles: (h ∈ Ψ).

• In general, if $A, B \in C^{\infty}(\mathcal{P}, \mathbb{L})$ are equivariant, then the product AB is not. Two ways to define an equivariant product:

- In general, if A, B ∈ C[∞] (P, L) are equivariant, then the product AB is not. Two ways to define an equivariant product:
 - Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathring{\mathbb{L}})$, then if both A and s are equivariant, so is As (c.f. Clifford product.)

- In general, if A, B ∈ C[∞] (P, L) are equivariant, then the product AB is not. Two ways to define an equivariant product:
 - Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathring{\mathbb{L}})$, then if both A and s are equivariant, so is As (c.f. Clifford product.)
 - 3 Taking $s \in C^{\infty}\left(\mathcal{P}, \mathring{\mathbb{L}}\right)$, $A \circ_s B$ is then equivariant as a map to \mathbb{L} .

- In general, if A, B ∈ C[∞] (P, L) are equivariant, then the product AB is not. Two ways to define an equivariant product:
 - **3** Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathring{\mathbb{L}})$, then if both A and s are equivariant, so is As (c.f. Clifford product.)
 - **2** Taking $s \in C^{\infty}\left(\mathcal{P}, \mathring{\mathbb{L}}\right)$, $A \circ_s B$ is then equivariant as a map to \mathbb{L} .
- Overall, need a defining equivariant map $s \in C^{\infty}\left(\mathcal{P}, \mathring{\mathbb{L}}\right)$. Equivalently, this is a section of \mathring{Q} .

- In general, if A, B ∈ C[∞] (P, L) are equivariant, then the product AB is not. Two ways to define an equivariant product:
 - Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathring{\mathbb{L}})$, then if both A and s are equivariant, so is As (c.f. Clifford product.)
 - 3 Taking $s \in C^{\infty}\left(\mathcal{P}, \mathring{\mathbb{L}}\right)$, $A \circ_s B$ is then equivariant as a map to \mathbb{L} .
- Overall, need a defining equivariant map $s \in C^{\infty}(\mathcal{P}, \mathring{\mathbb{L}})$. Equivalently, this is a section of \mathring{Q} .
- \bullet Given s, easy to show that corresponding maps $b_s, a_s,$ and φ_s are also equivariant.

 \bullet Suppose the principal $\Psi\text{-bundle}\ \mathcal{P}$ has a principal connection given by

 $T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$

and let $\omega: T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

 ${\, \bullet \, }$ Suppose the principal $\Psi {-} {\rm bundle} \ {\mathcal P}$ has a principal connection given by

$$T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$$

and let $\omega: T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

• Recall that given an equivariant map $f:\mathcal{P}\longrightarrow S,$ the covariant derivative is defined as

$$d^{\mathcal{H}}f := f_* \circ \operatorname{proj}_{\mathcal{H}} : T\mathcal{P} \longrightarrow \mathcal{HP} \longrightarrow TS.$$
(22)

 $\bullet\,$ Suppose the principal $\Psi\mbox{-bundle}\,\,{\mathcal P}\,$ has a principal connection given by

$$T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$$

and let $\omega: T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

• Recall that given an equivariant map $f:\mathcal{P}\longrightarrow S,$ the covariant derivative is defined as

$$d^{\mathcal{H}}f := f_* \circ \operatorname{proj}_{\mathcal{H}} : T\mathcal{P} \longrightarrow \mathcal{HP} \longrightarrow TS.$$
(22)

• Equivalently,

$$d^{\mathcal{H}}f = df + \omega \cdot f$$

where \cdot denotes the infinitesimal action of \mathfrak{p} on S.

 $\bullet\,$ Suppose the principal $\Psi\text{-bundle}\,\,\mathcal{P}$ has a principal connection given by

$$T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$$

and let $\omega: T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

• Recall that given an equivariant map $f:\mathcal{P}\longrightarrow S,$ the covariant derivative is defined as

$$d^{\mathcal{H}}f := f_* \circ \operatorname{proj}_{\mathcal{H}} : T\mathcal{P} \longrightarrow \mathcal{HP} \longrightarrow TS.$$
(22)

Equivalently,

$$d^{\mathcal{H}}f = df + \omega \cdot f$$

where \cdot denotes the infinitesimal action of \mathfrak{p} on S.

• $d^{\mathcal{H}}f$ is an equivariant horizontal map and, given the section \tilde{f} of $\mathcal{P} \times_{\Psi} S$ that corresponds to f, $d^{\mathcal{H}}f$ defines a unique map $d^{\mathcal{H}}\tilde{f}: TM \longrightarrow \mathcal{P} \times_{\Psi} TS$.

 \bullet Suppose the principal $\Psi\mbox{-bundle}\ \mathcal{P}$ has a principal connection given by

$$T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$$

and let $\omega: T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

• Recall that given an equivariant map $f:\mathcal{P}\longrightarrow S,$ the covariant derivative is defined as

$$d^{\mathcal{H}}f := f_* \circ \operatorname{proj}_{\mathcal{H}} : T\mathcal{P} \longrightarrow \mathcal{HP} \longrightarrow TS.$$
(22)

Equivalently,

$$d^{\mathcal{H}}f = df + \omega \cdot f$$

where \cdot denotes the infinitesimal action of \mathfrak{p} on S.

- $d^{\mathcal{H}}f$ is an equivariant horizontal map and, given the section \tilde{f} of $\mathcal{P} \times_{\Psi} S$ that corresponds to f, $d^{\mathcal{H}}f$ defines a unique map $d^{\mathcal{H}}\tilde{f}: TM \longrightarrow \mathcal{P} \times_{\Psi} TS$.
- Denote by D the covariant derivative on $\mathbb{L}\text{-valued}$ maps and by \check{D} the derivative on $\mathring{\mathbb{L}}\text{-valued}$ maps

• Let $s \in C^{\infty}\left(\mathcal{P}, \mathring{\mathbb{L}}\right)$ be equivariant and let ω be a connection on \mathcal{P} .

• Let $s \in C^{\infty}\left(\mathcal{P}, \mathring{\mathbb{L}}\right)$ be equivariant and let ω be a connection on \mathcal{P} .

• Let $s \in C^{\infty}\left(\mathcal{P}, \mathbb{L}\right)$ be equivariant and let ω be a connection on \mathcal{P} .

Definition

The $torsion \; T^{(s,\omega)}$ of s and ω is a horizontal 1-valued 1-form on $\mathcal P$ given by

$$T^{(s,\omega)} = \theta_s \circ \operatorname{proj}_{\mathcal{H}}$$
(23)

where θ_s is the Darboux derivative of s. Equivalently, at $p \in \mathcal{P}$, we have

$$T^{(s,\omega)}\Big|_p = \left(R_{s_p}^{-1}\right)_* \mathring{D}s\Big|_p.$$
⁽²⁴⁾

• Let $s \in C^{\infty}\left(\mathcal{P}, \mathbb{L}\right)$ be equivariant and let ω be a connection on \mathcal{P} .

Definition

The $torsion \; T^{(s,\omega)}$ of s and ω is a horizontal L-valued 1-form on $\mathcal P$ given by

$$T^{(s,\omega)} = \theta_s \circ \operatorname{proj}_{\mathcal{H}}$$
(23)

where θ_s is the Darboux derivative of s. Equivalently, at $p \in \mathcal{P}$, we have

$$T^{(s,\omega)}\Big|_p = \left(R_{s_p}^{-1}\right)_* \mathring{D}s\Big|_p.$$
(24)

Theorem

Let
$$\hat{\omega}^{(s)} = \varphi_s(\omega) \in \Omega^1(\mathcal{P}, \mathfrak{l})$$
. Then,
 $\theta_s = T^{(s,\omega)} - \hat{\omega}^{(s)}$. (29)

• We this see that the torsion is the horizontal part of the loop Darboux derivative θ_s , and hence it defines a 1-form with values in the bundle $\mathcal{A} = \mathcal{P} \times \Psi'_{4} \mathfrak{l}$ over M. The vertical part of θ_s is $\hat{\omega}^{(s)} = \varphi_s(\omega)$.

- We this see that the torsion is the horizontal part of the loop Darboux derivative θ_s , and hence it defines a 1-form with values in the bundle $\mathcal{A} = \mathcal{P} \times_{\Psi'_*} \mathfrak{l}$ over M. The vertical part of θ_s is $\hat{\omega}^{(s)} = \varphi_s(\omega)$.
- This object is completely analogous to the torsion of a G_2 -structure. If we take \mathcal{P} to be the spin bundle over a 7-manifold M and ω the Levi-Civita connection of some metric on M, then it is easy to see that $T^{(s,\omega)}$ is precisely the torsion of the G_2 -structure defined by the map s. Indeed, $S^7 \cong Spin(7)/G_2$, so an equivariant map $s : \mathcal{P} \longrightarrow Spin(7)/G_2$ defines a reduction of \mathcal{P} to a G_2 -subbundle (and hence a G_2 -structure).

- We this see that the torsion is the horizontal part of the loop Darboux derivative θ_s , and hence it defines a 1-form with values in the bundle $\mathcal{A} = \mathcal{P} \times_{\Psi'_*} \mathfrak{l}$ over M. The vertical part of θ_s is $\hat{\omega}^{(s)} = \varphi_s(\omega)$.
- This object is completely analogous to the torsion of a G_2 -structure. If we take \mathcal{P} to be the spin bundle over a 7-manifold M and ω the Levi-Civita connection of some metric on M, then it is easy to see that $T^{(s,\omega)}$ is precisely the torsion of the G_2 -structure defined by the map s. Indeed, $S^7 \cong Spin(7)/G_2$, so an equivariant map $s: \mathcal{P} \longrightarrow Spin(7)/G_2$ defines a reduction of \mathcal{P} to a G_2 -subbundle (and hence a G_2 -structure).
- In general, if $\mathring{D}s = 0$, then the holonomy $\operatorname{Hol}_p(\omega)$ of ω at $p \in \mathcal{P}$ is contained in $\operatorname{Aut}(\mathbb{L}, \circ_{s_p})$.

- We this see that the torsion is the horizontal part of the loop Darboux derivative θ_s , and hence it defines a 1-form with values in the bundle $\mathcal{A} = \mathcal{P} \times_{\Psi'_*} \mathfrak{l}$ over M. The vertical part of θ_s is $\hat{\omega}^{(s)} = \varphi_s(\omega)$.
- This object is completely analogous to the torsion of a G_2 -structure. If we take \mathcal{P} to be the spin bundle over a 7-manifold M and ω the Levi-Civita connection of some metric on M, then it is easy to see that $T^{(s,\omega)}$ is precisely the torsion of the G_2 -structure defined by the map s. Indeed, $S^7 \cong Spin(7)/G_2$, so an equivariant map $s: \mathcal{P} \longrightarrow Spin(7)/G_2$ defines a reduction of \mathcal{P} to a G_2 -subbundle (and hence a G_2 -structure).
- In general, if $\mathring{D}s = 0$, then the holonomy $\operatorname{Hol}_p(\omega)$ of ω at $p \in \mathcal{P}$ is contained in $\operatorname{Aut}(\mathbb{L}, \circ_{s_p})$.
- $T^{(s,\omega)} = 0$ if and only if $\theta_s = -\hat{\omega}^{(s)}$. For Lie groups, a Lie-algebra-valued 1-form is a Darboux derivative of some function if and only if it satisfies the Maurer-Cartan equation. For loops, such a characterization is in general more complicated and less clear.

Theorem

Suppose $A, B : \mathcal{P} \longrightarrow \mathbb{L}$, and $s : \mathcal{P} \longrightarrow \mathring{\mathbb{L}}$ are equivariant, and let $p \in \mathcal{P}$. Then,

$$D(A \circ_{s} B)|_{p} = \left(R_{B_{p}}^{(s_{p})}\right)_{*} DA|_{p} + \left(L_{A_{p}}^{(s_{p})}\right)_{*} DB|_{p} + \left[A_{p}, B_{p}, T^{(s,\omega)}\Big|_{p}\right]^{(s_{p})}$$

Theorem

Suppose $A, B : \mathcal{P} \longrightarrow \mathbb{L}$, and $s : \mathcal{P} \longrightarrow \mathring{\mathbb{L}}$ are equivariant, and let $p \in \mathcal{P}$. Then,

$$D(A \circ_{s} B)|_{p} = \left(R_{B_{p}}^{(s_{p})}\right)_{*} DA|_{p} + \left(L_{A_{p}}^{(s_{p})}\right)_{*} DB|_{p} + \left[A_{p}, B_{p}, T^{(s,\omega)}\Big|_{p}\right]^{(s_{p})}$$

If $\xi, \eta: \mathcal{P} \longrightarrow \mathfrak{l}$ are equivariant, then

$$d^{\mathcal{H}}[\xi,\eta]^{(s)} = \left[d^{\mathcal{H}}\xi,\eta\right]^{(s)} + \left[\xi,d^{\mathcal{H}}\eta\right]^{(s)} + a_s\left(\xi,\eta,T^{(s,\omega)}\right).$$
 (26)

Theorem

Suppose $A, B : \mathcal{P} \longrightarrow \mathbb{L}$, and $s : \mathcal{P} \longrightarrow \mathring{\mathbb{L}}$ are equivariant, and let $p \in \mathcal{P}$. Then,

$$D(A \circ_{s} B)|_{p} = \left(R_{B_{p}}^{(s_{p})}\right)_{*} DA|_{p} + \left(L_{A_{p}}^{(s_{p})}\right)_{*} DB|_{p} + \left[A_{p}, B_{p}, T^{(s,\omega)}\Big|_{p}\right]^{(s_{p})}$$

If $\xi, \eta: \mathcal{P} \longrightarrow \mathfrak{l}$ are equivariant, then

$$d^{\mathcal{H}}[\xi,\eta]^{(s)} = \left[d^{\mathcal{H}}\xi,\eta\right]^{(s)} + \left[\xi,d^{\mathcal{H}}\eta\right]^{(s)} + a_s\left(\xi,\eta,T^{(s,\omega)}\right).$$
 (26)

The $\mathfrak{l}\otimes\mathfrak{p}^*\text{-valued}$ map $\varphi_s:\mathcal{P}\longrightarrow\mathfrak{l}\otimes\mathfrak{p}^*$ satisfies

$$d^{\mathcal{H}}\varphi_s = \mathrm{id}_{\mathfrak{p}} \cdot T^{(s,\omega)} - \left[\varphi_s, T^{(s,\omega)}\right]^{(s)}.$$
 (27)

• Curvature $F^{(\omega)} \in \Omega^2(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by $F^{(\omega)} = d^{\mathcal{H}}\omega = d\omega \circ \operatorname{proj}_{\mathcal{H}},$ (28)

- Curvature $F^{(\omega)} \in \Omega^2(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by $F^{(\omega)} = d^{\mathcal{H}}\omega = d\omega \circ \operatorname{proj}_{\mathcal{H}},$ (28)
- Define $\hat{F}^{(s,\omega)} = \varphi_s\left(F^{(\omega)}\right) \in \Omega^2\left(\mathcal{P},\mathfrak{l}\right)$. This is a basic (i.e. horizontal and equivariant) 2-form on \mathcal{P} with values in \mathfrak{l} , and thus also defines a 2-form on M with values in the bundle \mathcal{A} . It is easy to see that $\hat{F}^{(s,\omega)} = d^{\mathcal{H}}\hat{\omega}^{(s)}$.

- Curvature $F^{(\omega)} \in \Omega^2(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by $F^{(\omega)} = d^{\mathcal{H}}\omega = d\omega \circ \operatorname{proj}_{\mathcal{H}},$ (28)
- Define $\hat{F}^{(s,\omega)} = \varphi_s\left(F^{(\omega)}\right) \in \Omega^2\left(\mathcal{P},\mathfrak{l}\right)$. This is a basic (i.e. horizontal and equivariant) 2-form on \mathcal{P} with values in \mathfrak{l} , and thus also defines a 2-form on M with values in the bundle \mathcal{A} . It is easy to see that $\hat{F}^{(s,\omega)} = d^{\mathcal{H}}\hat{\omega}^{(s)}$.

- Curvature $F^{(\omega)} \in \Omega^2(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by $F^{(\omega)} = d^{\mathcal{H}}\omega = d\omega \circ \operatorname{proj}_{\mathcal{H}},$ (28)
- Define $\hat{F}^{(s,\omega)} = \varphi_s\left(F^{(\omega)}\right) \in \Omega^2\left(\mathcal{P},\mathfrak{l}\right)$. This is a basic (i.e. horizontal and equivariant) 2-form on \mathcal{P} with values in \mathfrak{l} , and thus also defines a 2-form on M with values in the bundle \mathcal{A} . It is easy to see that $\hat{F}^{(s,\omega)} = d^{\mathcal{H}}\hat{\omega}^{(s)}$.

Theorem

 $\hat{F}^{(s,\omega)}$ and $T^{(s,\omega)}$ satisfy the following structure equation

$$\hat{F}^{(s,\omega)} = d^{\mathcal{H}}T^{(s,\omega)} - \frac{1}{2} \left[T^{(s,\omega)}, T^{(s,\omega)} \right]^{(s)},$$

where wedge product between the 1-forms $T^{(s,\omega)}$ is implied.

(29)

- Curvature $F^{(\omega)} \in \Omega^2(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by $F^{(\omega)} = d^{\mathcal{H}}\omega = d\omega \circ \operatorname{proj}_{\mathcal{H}},$ (28)
- Define $\hat{F}^{(s,\omega)} = \varphi_s\left(F^{(\omega)}\right) \in \Omega^2\left(\mathcal{P},\mathfrak{l}\right)$. This is a basic (i.e. horizontal and equivariant) 2-form on \mathcal{P} with values in \mathfrak{l} , and thus also defines a 2-form on M with values in the bundle \mathcal{A} . It is easy to see that $\hat{F}^{(s,\omega)} = d^{\mathcal{H}}\hat{\omega}^{(s)}$.

Theorem

 $\hat{F}^{(s,\omega)}$ and $T^{(s,\omega)}$ satisfy the following structure equation

$$\hat{F}^{(s,\omega)} = d^{\mathcal{H}} T^{(s,\omega)} - \frac{1}{2} \left[T^{(s,\omega)}, T^{(s,\omega)} \right]^{(s)},$$
(29)

where wedge product between the 1-forms $T^{(s,\omega)}$ is implied. Equivalently,

$$d\hat{\omega}^{(s)} + \frac{1}{2} \left[\hat{\omega}^{(s)}, \hat{\omega}^{(s)} \right]^{(s)} = \hat{F}^{(s,\omega)} - d^{\mathcal{H}} \varphi_s \wedge \omega.$$
(30)

Sergey Grigorian

Smooth Loops and Loop Bundles

27 / 30

• Equation (29) is precisely the analog of the well-known " G_2 Bianchi identity" for the torsion of a G_2 -structure:

$$\nabla_i T_j^{\ \alpha} - \nabla_i T_j^{\ \alpha} + 2T_i^{\ \beta} T_j^{\ \gamma} \varphi^{\alpha}_{\ \beta\gamma} = \frac{1}{4} \operatorname{Riem}_{ij}^{\ \beta\gamma} \varphi^{\alpha}_{\ \beta\gamma}.$$
(31)

• Equation (29) is precisely the analog of the well-known "G₂ Bianchi identity" for the torsion of a G₂-structure:

$$\nabla_i T_j^{\ \alpha} - \nabla_i T_j^{\ \alpha} + 2T_i^{\ \beta} T_j^{\ \gamma} \varphi^{\alpha}_{\ \beta\gamma} = \frac{1}{4} \operatorname{Riem}_{ij}^{\ \beta\gamma} \varphi^{\alpha}_{\ \beta\gamma}.$$
(31)

• In (29), the torsion differs by a sign, and we take $(\varphi_s)^a_{\ bc} = -\frac{1}{4}\varphi^a_{\ bc}$ and $(b_s)^a_{\ bc} = 2\varphi^a_{\ bc}$. Note that (27) and (26) then agree to give the standard expression for $\nabla\varphi$.

• Equation (29) is precisely the analog of the well-known "G₂ Bianchi identity" for the torsion of a G₂-structure:

$$\nabla_i T_j^{\ \alpha} - \nabla_i T_j^{\ \alpha} + 2T_i^{\ \beta} T_j^{\ \gamma} \varphi^{\alpha}_{\ \beta\gamma} = \frac{1}{4} \operatorname{Riem}_{ij}^{\ \beta\gamma} \varphi^{\alpha}_{\ \beta\gamma}.$$
(31)

- In (29), the torsion differs by a sign, and we take $(\varphi_s)^a_{\ bc} = -\frac{1}{4}\varphi^a_{\ bc}$ and $(b_s)^a_{\ bc} = 2\varphi^a_{\ bc}$. Note that (27) and (26) then agree to give the standard expression for $\nabla \varphi$.
- Equation (30) then shows that $-\hat{\omega}^{(s)}$ satisfies the Maurer-Cartan equation if and only if both $\hat{F}^{(s,\omega)}$ and $d^{\mathcal{H}}\varphi_s$ vanish. In the G_2 case, the latter implies the former and is actually equivalent to $T^{(s,\omega)} = 0$.

• Equation (29) is precisely the analog of the well-known "G₂ Bianchi identity" for the torsion of a G₂-structure:

$$\nabla_i T_j^{\ \alpha} - \nabla_i T_j^{\ \alpha} + 2T_i^{\ \beta} T_j^{\ \gamma} \varphi^{\alpha}_{\ \beta\gamma} = \frac{1}{4} \operatorname{Riem}_{ij}^{\ \beta\gamma} \varphi^{\alpha}_{\ \beta\gamma}.$$
(31)

- In (29), the torsion differs by a sign, and we take $(\varphi_s)^a_{\ bc} = -\frac{1}{4}\varphi^a_{\ bc}$ and $(b_s)^a_{\ bc} = 2\varphi^a_{\ bc}$. Note that (27) and (26) then agree to give the standard expression for $\nabla \varphi$.
- Equation (30) then shows that $-\hat{\omega}^{(s)}$ satisfies the Maurer-Cartan equation if and only if both $\hat{F}^{(s,\omega)}$ and $d^{\mathcal{H}}\varphi_s$ vanish. In the G_2 case, the latter implies the former and is actually equivalent to $T^{(s,\omega)} = 0$.

• Equation (29) is precisely the analog of the well-known "G₂ Bianchi identity" for the torsion of a G₂-structure:

$$\nabla_i T_j^{\ \alpha} - \nabla_i T_j^{\ \alpha} + 2T_i^{\ \beta} T_j^{\ \gamma} \varphi^{\alpha}_{\ \beta\gamma} = \frac{1}{4} \operatorname{Riem}_{ij}^{\ \beta\gamma} \varphi^{\alpha}_{\ \beta\gamma}.$$
(31)

- In (29), the torsion differs by a sign, and we take $(\varphi_s)^a_{\ bc} = -\frac{1}{4}\varphi^a_{\ bc}$ and $(b_s)^a_{\ bc} = 2\varphi^a_{\ bc}$. Note that (27) and (26) then agree to give the standard expression for $\nabla \varphi$.
- Equation (30) then shows that $-\hat{\omega}^{(s)}$ satisfies the Maurer-Cartan equation if and only if both $\hat{F}^{(s,\omega)}$ and $d^{\mathcal{H}}\varphi_s$ vanish. In the G_2 case, the latter implies the former and is actually equivalent to $T^{(s,\omega)} = 0$.

Theorem

The quantity $\hat{F}^{(s,\omega)}$ satisfies the equation

$$d^{\mathcal{H}}\hat{F}^{(s,\omega)} = d^{\mathcal{H}}\varphi_s \wedge F = F\dot{\wedge}T^{(s,\omega)} - \left[\hat{F}^{(s,\omega)}, T^{(s,\omega)}\right]^{(s)}$$
(32)

Deformations

Theorem

Suppose $s: \mathcal{P} \longrightarrow \mathring{\mathbb{L}}$ and $u: \mathcal{P} \longrightarrow \Psi$ are equivariant. Then,

$$T^{(s,u^*\omega)} = T^{(s,\omega)} + \varphi_s \left((u^* \theta_{\Psi})^{\mathcal{H}} \right) = \left(u^{-1} \right)'_* T^{(u(s),\omega)}$$
(33a)
$$\hat{\tau}^{(s,u^*\omega)} = \left(u^{-1} \right)'_* \hat{\tau}^{(u(s),\omega)}$$
(33a)

$$\hat{F}^{(s,u^*\omega)} = (u^{-1})'_* \hat{F}^{(u(s),\omega)}.$$
 (33b)

Deformations

Theorem

Suppose $s: \mathcal{P} \longrightarrow \mathring{\mathbb{L}}$ and $u: \mathcal{P} \longrightarrow \Psi$ are equivariant. Then,

$$T^{(s,u^*\omega)} = T^{(s,\omega)} + \varphi_s \left((u^* \theta_{\Psi})^{\mathcal{H}} \right) = \left(u^{-1} \right)'_* T^{(u(s),\omega)}$$
(33a)
$$\hat{F}^{(s,u^*\omega)} = \left(u^{-1} \right)'_* \hat{F}^{(u(s),\omega)}.$$
(33b)

Suppose $A : \mathcal{P} \longrightarrow \mathbb{L}$ is equivariant. Then,

$$T^{(As,\omega)} = \left(R_A^{(s)}\right)_*^{-1} DA + \left(\operatorname{Ad}_A^{(s)}\right)_* T^{(s,\omega)}$$
(34a)

$$\hat{F}^{(As,\omega)} = \left(R_A^{(s)}\right)_*^{-1} \left(F' \cdot A\right) + \left(\operatorname{Ad}_A^{(s)}\right)_* \hat{F}^{(s,\omega)}, \quad (34b)$$

where $F' \cdot A$ denotes the infinitesimal action of \mathfrak{p} on \mathbb{L} .

Sergey Grigorian

• This is a work in progress, however we see a number of features of *G*₂-structures appearing in a general setting, suggesting that they are not that special.

- This is a work in progress, however we see a number of features of *G*₂-structures appearing in a general setting, suggesting that they are not that special.
- The case of G_2 -structures has very special properties: the properties of Moufang loops and also the fact the \mathcal{P} corresponds to the spin structure.

- This is a work in progress, however we see a number of features of *G*₂-structures appearing in a general setting, suggesting that they are not that special.
- The case of G_2 -structures has very special properties: the properties of Moufang loops and also the fact the \mathcal{P} corresponds to the spin structure.
- Even in the general setting we obtain a rich structure with a key role being played by the loop Maurer-Cartan equation.

- This is a work in progress, however we see a number of features of *G*₂-structures appearing in a general setting, suggesting that they are not that special.
- The case of G_2 -structures has very special properties: the properties of Moufang loops and also the fact the \mathcal{P} corresponds to the spin structure.
- Even in the general setting we obtain a rich structure with a key role being played by the loop Maurer-Cartan equation.
- The lack of a suitable Bianchi identity for $\hat{F}^{(s,\omega)}$ precludes the possibility of defining characteristic classes in the usual sense, however there could be some weakened analogs.