Smooth Loops and Loop Bundles

Sergey Grigorian

University of Texas Rio Grande Valley, Edinburg, TX, USA
Special Geometries and Gauge Theory Workshop June 29, 2020

Outline

(1) Motivation
(2) Loops
(3) Smooth loops
(4) Loop bundles
(5) Concluding remarks

Motivation

- A loop is an algebraic structure that has an identity element and division, but is not necessarily associative.

Motivation

- A loop is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.

Motivation

- A loop is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.
- It is known that some properties of G_{2}-structures on 7 -manifolds can be expressed in terms of an octonion bundle. Smooth loop bundles are therefore a generalization of this construction.

Motivation

- A loop is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.
- It is known that some properties of G_{2}-structures on 7 -manifolds can be expressed in terms of an octonion bundle. Smooth loop bundles are therefore a generalization of this construction.
- In G_{2}-geometry one of the interesting questions is regarding properties of G_{2}-structures that correspond to the same Riemannian metric.

Motivation

- A loop is an algebraic structure that has an identity element and division, but is not necessarily associative.
- Smooth loops are a direct generalization of Lie groups. A key example of a smooth loop that is not a Lie group is the loop of unit octonions.
- It is known that some properties of G_{2}-structures on 7 -manifolds can be expressed in terms of an octonion bundle. Smooth loop bundles are therefore a generalization of this construction.
- In G_{2}-geometry one of the interesting questions is regarding properties of G_{2}-structures that correspond to the same Riemannian metric.
- It turns out that some of the properties of G_{2}-structures and octonion bundles are in fact quite generic and appear in the general framework of smooth loops.

Definition

Definition

A quasigroup \mathbb{L} is a set together with the following operations $\mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{L}$
(1) Product $(p, q) \mapsto p q$
(2) Right quotient $(p, q) \mapsto p \backslash q$
(3) Left quotient $(p, q) \mapsto q \backslash p$,

Definition

Definition

A quasigroup \mathbb{L} is a set together with the following operations $\mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{L}$
(1) Product $(p, q) \mapsto p q$
(2) Right quotient $(p, q) \mapsto p \backslash q$
(3) Left quotient $(p, q) \mapsto q \backslash p$,
that satisfy the following properties

$$
(p \backslash q) q=p \quad q(q \backslash p)=p \quad(p q) \backslash q=p \quad p \backslash(p q)=q .
$$

Definition

Definition

A quasigroup \mathbb{L} is a set together with the following operations $\mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{L}$
(1) Product $(p, q) \mapsto p q$
(2) Right quotient $(p, q) \mapsto p \backslash q$
(3) Left quotient $(p, q) \mapsto q \backslash p$,
that satisfy the following properties

$$
(p \backslash q) q=p \quad q(q \backslash p)=p \quad(p q) \backslash q=p \quad p \backslash(p q)=q .
$$

A loop is a quasigroup with an identity element 1 . For any $q \in \mathbb{L}$, define left and right inverses

$$
q^{\rho}=q \backslash 1 \quad \text { and } q^{\lambda}=1 / q
$$

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.
(2) Right inverse property: for any $p, q \in \mathbb{L}, p q \cdot q^{\rho}=p$.

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.
(2) Right inverse property: for any $p, q \in \mathbb{L}, p q \cdot q^{\rho}=p$.
(3) Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L}.

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.
(2) Right inverse property: for any $p, q \in \mathbb{L}, p q \cdot q^{\rho}=p$.
(3) Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L}.
(9) (Left)-alternative: for any $p, q \in \mathbb{L}, p \cdot p q=p p \cdot q$.

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.
(2) Right inverse property: for any $p, q \in \mathbb{L}, p q \cdot q^{\rho}=p$.
(3) Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L}.
(9) (Left)-alternative: for any $p, q \in \mathbb{L}, p \cdot p q=p p \cdot q$.
(3) Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L}.

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.
(2) Right inverse property: for any $p, q \in \mathbb{L}, p q \cdot q^{\rho}=p$.
(3) Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L}.
(1) (Left)-alternative: for any $p, q \in \mathbb{L}, p \cdot p q=p p \cdot q$.
(3) Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L}.
(0) (Left) Bol loop: for any $p, q, r \in \mathbb{L}, p(q \cdot p r)=(p \cdot q p) r$.

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.
(2) Right inverse property: for any $p, q \in \mathbb{L}, p q \cdot q^{\rho}=p$.
(3) Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L}.
(9) (Left)-alternative: for any $p, q \in \mathbb{L}, p \cdot p q=p p \cdot q$.
(5) Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L}.
(0) (Left) Bol loop: for any $p, q, r \in \mathbb{L}, p(q \cdot p r)=(p \cdot q p) r$.
(1) Moufang loop: a loop is a Moufang loop if it satisfies both the left and right Bol identities. (Unit octonions form a Moufang loop.)

Additional properties

(1) Two-sided inverse: for any $p \in \mathbb{L}, p^{\rho}=p^{\lambda}$.
(2) Right inverse property: for any $p, q \in \mathbb{L}, p q \cdot q^{\rho}=p$.
(3) Monoassociativity: any element $p \in \mathbb{L}$ generates a subgroup of \mathbb{L}.
(9) (Left)-alternative: for any $p, q \in \mathbb{L}, p \cdot p q=p p \cdot q$.
(3) Diassociative: any two elements $p, q \in \mathbb{L}$ generate a subgroup of \mathbb{L}.
(0) (Left) Bol loop: for any $p, q, r \in \mathbb{L}, p(q \cdot p r)=(p \cdot q p) r$.
(1) Moufang loop: a loop is a Moufang loop if it satisfies both the left and right Bol identities. (Unit octonions form a Moufang loop.)
(8) Group: clearly any associative loop is a group.

Pseudoautomorphisms

Definition

An invertible map $\alpha: \mathbb{L} \longrightarrow \mathbb{L}$ is a right pseudoautomorphism of \mathbb{L} if there exists an element $A \in \mathbb{L}$ such that for any $p, q \in \mathbb{L}$

$$
\begin{equation*}
\alpha(p) \cdot \alpha(q) A=\alpha(p q) A \tag{1}
\end{equation*}
$$

Pseudoautomorphisms

Definition

An invertible map $\alpha: \mathbb{L} \longrightarrow \mathbb{L}$ is a right pseudoautomorphism of \mathbb{L} if there exists an element $A \in \mathbb{L}$ such that for any $p, q \in \mathbb{L}$

$$
\begin{equation*}
\alpha(p) \cdot \alpha(q) A=\alpha(p q) A \tag{1}
\end{equation*}
$$

Example

Any automorphism is a (right) pseudoautomorphism with $A=1$.

Pseudoautomorphisms

Definition

An invertible map $\alpha: \mathbb{L} \longrightarrow \mathbb{L}$ is a right pseudoautomorphism of \mathbb{L} if there exists an element $A \in \mathbb{L}$ such that for any $p, q \in \mathbb{L}$

$$
\begin{equation*}
\alpha(p) \cdot \alpha(q) A=\alpha(p q) A . \tag{1}
\end{equation*}
$$

Example

Any automorphism is a (right) pseudoautomorphism with $A=1$.

Example

In a Moufang loop, the map Ad_{q}, given by $p \longmapsto q p q^{-1}$ is a right pseudoautomorphism with companion q^{3}.

Definition

$\operatorname{PsAut}{ }^{R}(\mathbb{L})$ is the group of all right pseudoautomorphisms of \mathbb{L}. In particular PsAut ${ }^{R}(\mathbb{L})$ preserves 1.

Definition

PsAut ${ }^{R}(\mathbb{L})$ is the group of all right pseudoautomorphisms of \mathbb{L}. In particular PsAut ${ }^{R}(\mathbb{L})$ preserves 1.

Lemma

The set $\Psi^{R}(\mathbb{L})$ of all pairs (α, A), where $\alpha \in \operatorname{PsAut}^{R}(\mathbb{L})$ and $A \in \mathbb{L}$ is its companion, is a group with identity element (id,1) and the following group operations:
product: $\quad\left(\alpha_{1}, A_{1}\right)\left(\alpha_{2}, A_{2}\right)=\left(\alpha_{1} \circ \alpha_{2}, \alpha_{1}\left(A_{2}\right) A_{1}\right)$ inverse:

$$
\begin{equation*}
(\alpha, A)^{-1}=\left(\alpha^{-1}, \alpha^{-1}\left(A^{\lambda}\right)\right)=\left(\alpha^{-1},\left(\alpha^{-1}(A)\right)^{\rho}\right) \tag{2a}
\end{equation*}
$$

- $\Psi^{R}(\mathbb{L})$ has two actions on \mathbb{L}. Let $h=(\alpha, A) \in \Psi^{R}(\mathbb{L})$ and $p \in \mathbb{L}$, non-faithful $\begin{aligned} h^{\prime}(p) & =\alpha(p) \\ \text { faithful } h(p) & =\alpha(p) A .\end{aligned}$
- $\Psi^{R}(\mathbb{L})$ has two actions on \mathbb{L}. Let $h=(\alpha, A) \in \Psi^{R}(\mathbb{L})$ and $p \in \mathbb{L}$,

$$
\begin{aligned}
\text { non-faithful } h^{\prime}(p) & =\alpha(p) \\
\text { faithful } h(p) & =\alpha(p) A .
\end{aligned}
$$

- Denote by \mathbb{L} the set \mathbb{L} equipped with the faithful action of $\Psi^{R}(\mathbb{L})$. In this case, $\operatorname{Aut}(\mathbb{L}) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(1)$. The set of companions $\mathcal{C}^{R}(\mathbb{L})=\operatorname{Orb}_{\Psi^{R}(\mathbb{L})}(1)$. If $\Psi^{R}(\mathbb{L})$ acts transitively, \mathbb{L} is known as a G-loop.
- $\Psi^{R}(\mathbb{L})$ has two actions on \mathbb{L}. Let $h=(\alpha, A) \in \Psi^{R}(\mathbb{L})$ and $p \in \mathbb{L}$,

$$
\begin{aligned}
\text { non-faithful } h^{\prime}(p) & =\alpha(p) \\
\text { faithful } h(p) & =\alpha(p) A
\end{aligned}
$$

- Denote by \mathbb{L} the set \mathbb{L} equipped with the faithful action of $\Psi^{R}(\mathbb{L})$. In this case, Aut $(\mathbb{L}) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(1)$. The set of companions $\mathcal{C}^{R}(\mathbb{L})=\operatorname{Orb}_{\Psi^{R}(\mathbb{L})}(1)$. If $\Psi^{R}(\mathbb{L})$ acts transitively, \mathbb{L} is known as a G-loop.
- By (1), for $p, q \in \mathbb{L}$, we have

$$
h(p q)=h^{\prime}(p) \cdot h(q) .
$$

Example

Suppose $\mathbb{L}=S^{3}$ - the group of unit quaternions. We know that Aut $\left(S^{3}\right) \cong S O(3)$. Now however, $\Psi^{R}\left(S^{3}\right)$ consists of all pairs $(\alpha, A) \in S O(3) \times S^{3}$ with the group structure defined by (2a), which is the semi-direct product

$$
\Psi^{R}\left(S^{3}\right) \cong S O(3) \ltimes S^{3} \cong S p(1) S p(1) \cong S O(4)
$$

Example

Suppose $\mathbb{L}=S^{3}$ - the group of unit quaternions. We know that Aut $\left(S^{3}\right) \cong S O(3)$. Now however, $\Psi^{R}\left(S^{3}\right)$ consists of all pairs $(\alpha, A) \in S O(3) \times S^{3}$ with the group structure defined by (2a), which is the semi-direct product

$$
\Psi^{R}\left(S^{3}\right) \cong S O(3) \ltimes S^{3} \cong S p(1) S p(1) \cong S O(4)
$$

Example

Suppose $\mathbb{L}=S^{7}$ - the Moufang loop of unit octonions. In this case, $\Psi^{R}\left(S^{7}\right) \cong \operatorname{Spin}(7)$ and $\operatorname{PsAut}^{R}\left(S^{7}\right) \cong S O(7)$. The (right) nucleus is $\{ \pm 1\}$, so the projection of a pair $(\alpha, A) \in \Psi^{R}\left(S^{7}\right)$ to $\alpha \in \operatorname{PsAut}^{R}\left(S^{7}\right)$ corresponds to the double cover $\operatorname{Spin}(7) \longrightarrow S O(7)$.

Modified product

- Let $r \in \mathbb{L}$, and define the modified product \circ_{r} on \mathbb{L} via

$$
\begin{equation*}
p \circ_{r} q=(p \cdot q r) / r . \tag{3}
\end{equation*}
$$

Denote by $\left(\mathbb{L}, o_{r}\right)$ the loop with the new product.

Modified product

- Let $r \in \mathbb{L}$, and define the modified product \circ_{r} on \mathbb{L} via

$$
\begin{equation*}
p \circ_{r} q=(p \cdot q r) / r . \tag{3}
\end{equation*}
$$

Denote by $\left(\mathbb{L}, o_{r}\right)$ the loop with the new product.

Modified product

- Let $r \in \mathbb{L}$, and define the modified product \circ_{r} on \mathbb{L} via

$$
\begin{equation*}
p \circ_{r} q=(p \cdot q r) / r . \tag{3}
\end{equation*}
$$

Denote by $\left(\mathbb{L}, o_{r}\right)$ the loop with the new product.
Lemma
Let $h \in \Psi^{R}(\mathbb{L}, \cdot)$ and $p, q, r, x \in \mathbb{L}$, then

$$
\begin{equation*}
h^{\prime}\left(p \circ_{r} q\right)=h^{\prime}(p) \circ_{h(r)} h^{\prime}(q) . \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
p \circ_{r x} q=\left(p \circ_{x}\left(q \circ_{x} r\right)\right) /{ }_{x} r . \tag{5}
\end{equation*}
$$

Smooth loops

- Suppose the loop \mathbb{L} is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.

Smooth loops

- Suppose the loop \mathbb{L} is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.
- Assume that $\Psi^{R}(\mathbb{L})$ acts smoothly on \mathbb{L} (then $\Psi^{R}(\mathbb{L})$, $\operatorname{PsAut}^{R}(\mathbb{L})$, and $s \in \mathbb{L}$, Aut $\left(\mathbb{L}, \circ_{s}\right) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(s)$, are all Lie groups).

Smooth loops

- Suppose the loop \mathbb{L} is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.
- Assume that $\Psi^{R}(\mathbb{L})$ acts smoothly on $\mathbb{L}\left(\right.$ then $\Psi^{R}(\mathbb{L})$, $\operatorname{PsAut}^{R}(\mathbb{L})$, and $s \in \mathbb{L}$, Aut $\left(\mathbb{L}, \circ_{s}\right) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(s)$, are all Lie groups).
- For any $r \in \mathbb{L}$, define the diffeomorphisms

$$
\begin{array}{rlrl}
L_{r} & : \mathbb{L} \longrightarrow \mathbb{L} & R_{r} & : \mathbb{L} \longrightarrow \mathbb{L} \\
& q & \longmapsto r q & q
\end{array}
$$

Similarly, define $L_{r}^{(s)}$ and $R_{r}^{(s)}$ for products with respect to \circ_{s}.

Smooth loops

- Suppose the loop \mathbb{L} is a smooth finite-dimensional manifold such that the loop multiplication and division are smooth functions.
- Assume that $\Psi^{R}(\mathbb{L})$ acts smoothly on $\mathbb{L}\left(\right.$ then $\Psi^{R}(\mathbb{L}), \operatorname{PsAut}^{R}(\mathbb{L})$, and $s \in \mathbb{L}$, Aut $\left(\mathbb{L}, \mathrm{o}_{s}\right) \cong \operatorname{Stab}_{\Psi^{R}(\mathbb{L})}(s)$, are all Lie groups).
- For any $r \in \mathbb{L}$, define the diffeomorphisms

$$
\begin{array}{rlrl}
L_{r} & : \mathbb{L} \longrightarrow \mathbb{L} & R_{r} & : \mathbb{L} \longrightarrow \mathbb{L} \\
& q & \longmapsto r q & q
\end{array}
$$

Similarly, define $L_{r}^{(s)}$ and $R_{r}^{(s)}$ for products with respect to \circ_{s}.

- Given a tangent vector $\xi \in T_{1} \mathbb{L}$, define the vector field $\rho(\xi)$ given by

$$
\begin{equation*}
\rho(\xi)_{q}=\left(R_{q}\right)_{*} \xi \tag{6}
\end{equation*}
$$

at any $p \in \mathbb{L}$. If \mathbb{L} is a Lie group, this is equivalent to the standard definition of a right-invariant vector field X such that $\left(R_{q}\right)_{*} X_{p}=X_{p q}$, however in the non-associative case, $R_{q} \circ R_{p} \neq R_{p q}$, so in that case, $\rho(\xi)$ is not right-invariant.

Exponential map

- If the loop $\left(\mathbb{L}, o_{s}\right)$ is monoassociative, it was shown by Kuz'min in 1971 that one can define an $\operatorname{exponential~}^{\operatorname{map}} \exp _{s}: T_{1} \mathbb{L} \longrightarrow \mathbb{L}$ as the solution of the equation (7) for some $\xi \in T_{1} \mathbb{L}$:

$$
\left\{\begin{array}{c}
\frac{d p_{\xi}(t)}{d t}=\left(R_{p_{\xi}(t)}^{(s)}\right)_{*} \xi \tag{7}\\
p_{\xi}(0)=1
\end{array}\right.
$$

The solution to (7) with $s=1$ but $p_{\zeta}(0)=q$, is then $p_{\xi}(t)=\exp _{q}(t \xi) q$.

Exponential map

- If the loop $\left(\mathbb{L}, \circ_{s}\right)$ is monoassociative, it was shown by Kuz'min in 1971 that one can define an exponential map $\exp _{s}: T_{1} \mathbb{L} \longrightarrow \mathbb{L}$ as the solution of the equation (7) for some $\xi \in T_{1} \mathbb{L}$:

$$
\left\{\begin{array}{c}
\frac{d p_{\xi}(t)}{d t}=\left(R_{p_{\xi}(t)}^{(s)}\right)_{*} \xi \tag{7}\\
p_{\xi}(0)=1
\end{array}\right.
$$

The solution to (7) with $s=1$ but $p_{\zeta}(0)=q$, is then $p_{\xi}(t)=\exp _{q}(t \xi) q$.

- Suppose (\mathbb{L}, \cdot) is power-associative and moreover, power left-alternative, i.e. $x^{k}\left(x^{l} q\right)=x^{k+l} q$ for all $x, q \in \mathbb{L}$. Then, it can be shown that the exponential functions are equal for all $q \in \mathbb{L}$.

Exponential map

- If the loop $\left(\mathbb{L}, \circ_{s}\right)$ is monoassociative, it was shown by Kuz'min in 1971 that one can define an exponential map $\exp _{s}: T_{1} \mathbb{L} \longrightarrow \mathbb{L}$ as the solution of the equation (7) for some $\xi \in T_{1} \mathbb{L}$:

$$
\left\{\begin{array}{c}
\frac{d p_{\xi}(t)}{d t}=\left(R_{p_{\xi}(t)}^{(s)}\right)_{*} \xi \tag{7}\\
p_{\xi}(0)=1
\end{array}\right.
$$

The solution to (7) with $s=1$ but $p_{\zeta}(0)=q$, is then $p_{\xi}(t)=\exp _{q}(t \xi) q$.

- Suppose (\mathbb{L}, \cdot) is power-associative and moreover, power left-alternative, i.e. $x^{k}\left(x^{l} q\right)=x^{k+l} q$ for all $x, q \in \mathbb{L}$. Then, it can be shown that the exponential functions are equal for all $q \in \mathbb{L}$.
- In general they will be different functions, but with the same derivative at $t=0$.

Tangent algebra

- For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_{q}^{(p)}: \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto\left(q \circ_{p} r\right) / p q$.

Tangent algebra

- For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_{q}^{(p)}: \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto\left(q \circ_{p} r\right) / p q$.

Tangent algebra

- For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_{q}^{(p)}: \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto\left(q \circ_{p} r\right) / p q$.

Definition

For any $\xi, \gamma \in T_{1} \mathbb{L}$, the p-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$
\begin{equation*}
[\xi, \gamma]^{(p)}=\left.\frac{d}{d t}\left(\left(\operatorname{Ad}_{\exp _{p}(t \xi)}^{(p)}\right)_{*} \gamma\right)\right|_{t=0}=-\left(R_{p}^{-1}\right)_{*}[\rho(\xi), \rho(\gamma)]_{p} \tag{8}
\end{equation*}
$$

Tangent algebra

- For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_{q}^{(p)}: \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto\left(q \circ_{p} r\right) / p q$.

Definition

For any $\xi, \gamma \in T_{1} \mathbb{L}$, the p-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$
\begin{equation*}
[\xi, \gamma]^{(p)}=\left.\frac{d}{d t}\left(\left(\operatorname{Ad}_{\exp _{p}(t \xi)}^{(p)}\right)_{*} \gamma\right)\right|_{t=0}=-\left(R_{p}^{-1}\right)_{*}[\rho(\xi), \rho(\gamma)]_{p} \tag{8}
\end{equation*}
$$

Definition

The vector space $T_{1} \mathbb{L}$ together with the bracket $[\cdot, \cdot]^{(p)}$ is the tangent algebra $\mathfrak{l}^{(p)}$ of $\left(\mathbb{L}, \circ_{p}\right)$.

Tangent algebra

- For $p, q \in \mathbb{L}$, define $\operatorname{Ad}_{q}^{(p)}: \mathbb{L} \longrightarrow \mathbb{L}$ by $r \mapsto\left(q \circ_{p} r\right) / p q$.

Definition

For any $\xi, \gamma \in T_{1} \mathbb{L}$, the p-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$
\begin{equation*}
[\xi, \gamma]^{(p)}=\left.\frac{d}{d t}\left(\left(\operatorname{Ad}_{\exp _{p}(t \xi)}^{(p)}\right)_{*} \gamma\right)\right|_{t=0}=-\left(R_{p}^{-1}\right)_{*}[\rho(\xi), \rho(\gamma)]_{p} \tag{8}
\end{equation*}
$$

Definition

The vector space $T_{1} \mathbb{L}$ together with the bracket $[\cdot, \cdot]^{(p)}$ is the tangent algebra $\mathfrak{l}^{(p)}$ of $\left(\mathbb{L}, \circ_{p}\right)$.

- The key difference with Lie algebras is that every $p \in \mathbb{L}$ defines a bracket. If p and q are in different orbits of $\Psi^{R}(\mathbb{L})$, then these algebras do not need to be isomorphic.

Maurer-Cartan form

- Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define θ_{p} to be

$$
\begin{equation*}
\theta_{p}\left(\rho(\xi)_{p}\right)=\left(R_{p}^{-1}\right)_{*} \rho(\xi)_{p}=\xi \tag{9}
\end{equation*}
$$

Maurer-Cartan form

- Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define θ_{p} to be

$$
\begin{equation*}
\theta_{p}\left(\rho(\xi)_{p}\right)=\left(R_{p}^{-1}\right)_{*} \rho(\xi)_{p}=\xi \tag{9}
\end{equation*}
$$

- This is an \mathfrak{l}-valued 1 -form. The right-fundamental vector fields still form a global frame for $T \mathbb{L}$, so this is sufficient to define the 1 -form.

Maurer-Cartan form

- Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define θ_{p} to be

$$
\begin{equation*}
\theta_{p}\left(\rho(\xi)_{p}\right)=\left(R_{p}^{-1}\right)_{*} \rho(\xi)_{p}=\xi \tag{9}
\end{equation*}
$$

- This is an \mathfrak{l}-valued 1 -form. The right-fundamental vector fields still form a global frame for $T \mathbb{L}$, so this is sufficient to define the 1 -form.

Maurer-Cartan form

- Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define θ_{p} to be

$$
\begin{equation*}
\theta_{p}\left(\rho(\xi)_{p}\right)=\left(R_{p}^{-1}\right)_{*} \rho(\xi)_{p}=\xi \tag{9}
\end{equation*}
$$

- This is an \mathfrak{l}-valued 1-form. The right-fundamental vector fields still form a global frame for $T \mathbb{L}$, so this is sufficient to define the 1 -form.

Theorem

Let $p \in \mathbb{L}$ and let $[\cdot, \cdot]^{(p)}$ be bracket on $\mathfrak{l}^{(p)}$. Then θ satisfies the following equation at p :

$$
\begin{equation*}
(d \theta)_{p}-\frac{1}{2}[\theta, \theta]^{(p)}=0 \tag{10}
\end{equation*}
$$

where $[\theta, \theta]^{(p)}$ is the bracket of \mathbb{L}-algebra-valued 1 -forms such that for any $X, Y \in T_{p} \mathbb{L}, \frac{1}{2}[\theta, \theta]^{(p)}(X, Y)=[\theta(X), \theta(Y)]^{(p)}$.

- Define $b: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \Lambda^{2} \mathfrak{l}^{*}$ given by $p \mapsto[\cdot, \cdot]^{(p)}$. Then,

$$
\begin{equation*}
\left.d b\right|_{p}(\eta, \gamma)=\left[\eta, \gamma, \theta_{p}\right]^{(p)}-\left[\gamma, \eta, \theta_{p}\right]^{(p)}, \tag{11}
\end{equation*}
$$

- Define $b: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \Lambda^{2} \mathfrak{l}^{*}$ given by $p \mapsto[\cdot, \cdot]^{(p)}$. Then,

$$
\begin{equation*}
\left.d b\right|_{p}(\eta, \gamma)=\left[\eta, \gamma, \theta_{p}\right]^{(p)}-\left[\gamma, \eta, \theta_{p}\right]^{(p)}, \tag{11}
\end{equation*}
$$

- Define $b: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \Lambda^{2} \mathfrak{l}^{*}$ given by $p \mapsto[\cdot, \cdot]^{(p)}$. Then,

$$
\begin{equation*}
\left.d b\right|_{p}(\eta, \gamma)=\left[\eta, \gamma, \theta_{p}\right]^{(p)}-\left[\gamma, \eta, \theta_{p}\right]^{(p)}, \tag{11}
\end{equation*}
$$

where $[\cdot, \cdot, \cdot]^{(p)}$ is the \mathbb{L}-algebra associator on $\mathfrak{l}^{(p)}$ given by

$$
\begin{aligned}
{[\eta, \gamma, \xi]^{(p)}=} & \left.\frac{d^{3}}{d t d \tau d \tau^{\prime}} \exp (\tau \eta) \circ_{p}\left(\exp \left(\tau^{\prime} \gamma\right) \circ_{p} \exp (t \xi)\right)\right|_{t, \tau, \tau^{\prime}=0} \\
& -\left.\frac{d^{3}}{d t d \tau d \tau^{\prime}}\left(\exp (\tau \eta) \circ_{p} \exp \left(\tau^{\prime} \gamma\right)\right) \circ_{p} \exp (t \xi)\right|_{t, \tau, \tau^{\prime}=0}
\end{aligned}
$$

- In a left-alternative loop, the associator is skew in first two entries, but not in general so. Define $a_{p}(\eta, \gamma, \xi)=[\eta, \gamma, \xi]^{(p)}-[\gamma, \eta, \xi]^{(p)}$.
- Define $b: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \Lambda^{2} \mathfrak{l}^{*}$ given by $p \mapsto[\cdot, \cdot]^{(p)}$. Then,

$$
\begin{equation*}
\left.d b\right|_{p}(\eta, \gamma)=\left[\eta, \gamma, \theta_{p}\right]^{(p)}-\left[\gamma, \eta, \theta_{p}\right]^{(p)} \tag{11}
\end{equation*}
$$

where $[\cdot, \cdot, \cdot]^{(p)}$ is the \mathbb{L}-algebra associator on $\mathfrak{l}^{(p)}$ given by

$$
\begin{aligned}
{[\eta, \gamma, \xi]^{(p)}=} & \left.\frac{d^{3}}{d t d \tau d \tau^{\prime}} \exp (\tau \eta) \circ_{p}\left(\exp \left(\tau^{\prime} \gamma\right) \circ_{p} \exp (t \xi)\right)\right|_{t, \tau, \tau^{\prime}=0} \\
& -\left.\frac{d^{3}}{d t d \tau d \tau^{\prime}}\left(\exp (\tau \eta) \circ_{p} \exp \left(\tau^{\prime} \gamma\right)\right) \circ_{p} \exp (t \xi)\right|_{t, \tau, \tau^{\prime}=0}
\end{aligned}
$$

- In a left-alternative loop, the associator is skew in first two entries, but not in general so. Define $a_{p}(\eta, \gamma, \xi)=[\eta, \gamma, \xi]^{(p)}-[\gamma, \eta, \xi]^{(p)}$.
- In a Lie group, the exterior derivative of the Maurer-Cartan equation gives the Jacobi identity. In general, from (11) we obtain a generalization (known as the Akivis identity)

$$
\begin{equation*}
\operatorname{Jac}^{(p)}(\xi, \eta, \gamma)=a_{p}(\xi, \eta, \gamma)+a_{p}(\eta, \gamma, \xi)+a_{p}(\gamma, \xi, \eta) \tag{13}
\end{equation*}
$$

Relationship with the Lie algebra

- Let \mathfrak{p} be the Lie algebra of $\Psi^{R}(\mathbb{L})$. Then, we have the following map that relates \mathfrak{p} and \mathfrak{l}.

Relationship with the Lie algebra

- Let \mathfrak{p} be the Lie algebra of $\Psi^{R}(\mathbb{L})$. Then, we have the following map that relates \mathfrak{p} and \mathfrak{l}.

Relationship with the Lie algebra

- Let \mathfrak{p} be the Lie algebra of $\Psi^{R}(\mathbb{L})$. Then, we have the following map that relates \mathfrak{p} and \mathfrak{l}.

Definition
Define the map $\varphi: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \mathfrak{p}^{*}$ such that for each $s \in \mathbb{L}$ and $\gamma \in \mathfrak{p}$,

$$
\begin{equation*}
\varphi_{s}(\gamma)=\frac{d}{d t}\left[\exp _{\mathfrak{p}}(t \gamma)(s)\right] /\left.s\right|_{t=0} \in \mathfrak{l} \tag{14}
\end{equation*}
$$

Relationship with the Lie algebra

- Let \mathfrak{p} be the Lie algebra of $\Psi^{R}(\mathbb{L})$. Then, we have the following map that relates \mathfrak{p} and \mathfrak{l}.

Definition

Define the map $\varphi: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \mathfrak{p}^{*}$ such that for each $s \in \mathbb{L}$ and $\gamma \in \mathfrak{p}$,

$$
\begin{equation*}
\varphi_{s}(\gamma)=\frac{d}{d t}\left[\exp _{\mathfrak{p}}(t \gamma)(s)\right] /\left.s\right|_{t=0} \in \mathfrak{l} \tag{14}
\end{equation*}
$$

- Suppose \mathfrak{h}_{s} is the Lie algebra of $\operatorname{Aut}\left(\mathbb{L}, \circ_{s}\right)$ and $\mathfrak{q}^{(s)}=T_{1} \mathcal{C}^{R}\left(\mathbb{L}, \circ_{s}\right)$. Since $\mathcal{C}^{R}\left(\mathbb{L}, \circ_{s}\right) \cong \Psi^{R}(\mathbb{L}) / \operatorname{Aut}\left(\mathbb{L}, \circ_{s}\right)$, we have $\mathfrak{q}^{(s)} \cong \mathfrak{p} / \mathfrak{h}^{(s)}$ as linear representations of $\operatorname{Aut}\left(\mathbb{L}, \circ_{s}\right)$. We can then see that $\operatorname{ker} \varphi_{s}=\mathfrak{h}^{(s)}$ and the image of φ_{s} is precisely $\mathfrak{q}^{(s)}$.
- The action of \mathfrak{p} on \mathfrak{l} is given by $\gamma \cdot \xi=\left.\frac{d^{2}}{d t d \tau} \exp _{\mathfrak{p}}(t \gamma)^{\prime}\left(\exp _{s} \tau \xi\right)\right|_{t, \tau=0}$.
- The action of \mathfrak{p} on \mathfrak{l} is given by $\gamma \cdot \xi=\left.\frac{d^{2}}{d t d \tau} \exp _{\mathfrak{p}}(t \gamma)^{\prime}\left(\exp _{s} \tau \xi\right)\right|_{t, \tau=0}$.
- The action of \mathfrak{p} on \mathfrak{l} is given by $\gamma \cdot \xi=\left.\frac{d^{2}}{d t d \tau} \exp _{\mathfrak{p}}(t \gamma)^{\prime}\left(\exp _{s} \tau \xi\right)\right|_{t, \tau=0}$.

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$
\begin{equation*}
\xi \cdot \varphi_{s}(\eta)-\eta \cdot \varphi_{s}(\xi)=\varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right)+\left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)} \tag{15}
\end{equation*}
$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l}.

- The action of \mathfrak{p} on \mathfrak{l} is given by $\gamma \cdot \xi=\left.\frac{d^{2}}{d t d \tau} \exp _{\mathfrak{p}}(t \gamma)^{\prime}\left(\exp _{s} \tau \xi\right)\right|_{t, \tau=0}$.

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$
\begin{equation*}
\xi \cdot \varphi_{s}(\eta)-\eta \cdot \varphi_{s}(\xi)=\varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right)+\left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)}, \tag{15}
\end{equation*}
$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l}.

- We can also define the action of \mathfrak{p} on b_{s} and φ_{s} and the corresponding annihilator subalgebras.
- The action of \mathfrak{p} on \mathfrak{l} is given by $\gamma \cdot \xi=\left.\frac{d^{2}}{d t d \tau} \exp _{\mathfrak{p}}(t \gamma)^{\prime}\left(\exp _{s} \tau \xi\right)\right|_{t, \tau=0}$.

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$
\begin{equation*}
\xi \cdot \varphi_{s}(\eta)-\eta \cdot \varphi_{s}(\xi)=\varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right)+\left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)} \tag{15}
\end{equation*}
$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l}.

- We can also define the action of \mathfrak{p} on b_{s} and φ_{s} and the corresponding annihilator subalgebras.
- Let $\mathcal{N}^{R}\left(\mathfrak{l}^{(s)}\right)=\left\{\xi \in \mathfrak{l}: a_{s}(\eta, \gamma, \xi)=0\right.$ for all $\left.\eta, \gamma \in \mathfrak{l}\right\}$.
- The action of \mathfrak{p} on \mathfrak{l} is given by $\gamma \cdot \xi=\left.\frac{d^{2}}{d t d \tau} \exp _{\mathfrak{p}}(t \gamma)^{\prime}\left(\exp _{s} \tau \xi\right)\right|_{t, \tau=0}$.

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$
\begin{equation*}
\xi \cdot \varphi_{s}(\eta)-\eta \cdot \varphi_{s}(\xi)=\varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right)+\left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)} \tag{15}
\end{equation*}
$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l}.

- We can also define the action of \mathfrak{p} on b_{s} and φ_{s} and the corresponding annihilator subalgebras.
- Let $\mathcal{N}^{R}\left(\mathfrak{l}^{(s)}\right)=\left\{\xi \in \mathfrak{l}: a_{s}(\eta, \gamma, \xi)=0\right.$ for all $\left.\eta, \gamma \in \mathfrak{l}\right\}$.
- The action of \mathfrak{p} on \mathfrak{l} is given by $\gamma \cdot \xi=\left.\frac{d^{2}}{d t d \tau} \exp _{\mathfrak{p}}(t \gamma)^{\prime}\left(\exp _{s} \tau \xi\right)\right|_{t, \tau=0}$.

Lemma

Suppose $\xi, \eta \in \mathfrak{p}$, then for any $s \in \mathbb{L}$, we have

$$
\begin{equation*}
\xi \cdot \varphi_{s}(\eta)-\eta \cdot \varphi_{s}(\xi)=\varphi_{s}\left([\xi, \eta]_{\mathfrak{p}}\right)+\left[\varphi_{s}(\xi), \varphi_{s}(\eta)\right]^{(s)} \tag{15}
\end{equation*}
$$

where \cdot means the action of \mathfrak{p} on \mathfrak{l}.

- We can also define the action of \mathfrak{p} on b_{s} and φ_{s} and the corresponding annihilator subalgebras.
- Let $\mathcal{N}^{R}\left(\mathfrak{l}^{(s)}\right)=\left\{\xi \in \mathfrak{l}: a_{s}(\eta, \gamma, \xi)=0\right.$ for all $\left.\eta, \gamma \in \mathfrak{l}\right\}$.

Theorem

If \mathbb{L} is a G-loop, we have the following inclusions of Lie algebras

$$
\begin{equation*}
\operatorname{ker} \varphi_{s}=\mathfrak{h}_{s} \underset{\text { ideal }}{\subset} \operatorname{Ann}_{\mathfrak{p}}\left(\varphi_{s}\right) \subset \operatorname{Ann}_{\mathfrak{p}}\left(b_{s}\right) \cong \mathfrak{h}^{(s)} \oplus \mathcal{N}^{R}\left(\mathfrak{l}^{(s)}\right) \subset \mathfrak{p} \tag{16}
\end{equation*}
$$

Example

If \mathbb{L} is the loop of unit octonions, then we know $\mathfrak{p} \cong \mathfrak{s o}(7) \cong \Lambda^{2}\left(\mathbb{R}^{7}\right)^{*}$ and $\mathfrak{l} \cong \mathbb{R}^{7}$, so φ_{1} can be regarded as an element of $\mathbb{R}^{7} \otimes \Lambda^{2} \mathbb{R}^{7}$, and this is (up to a factor) a dualized version of the G_{2}-invariant 3-form φ, as used to project from $\Lambda^{2}\left(\mathbb{R}^{7}\right)^{*}$ to \mathbb{R}^{7}. The kernel of this map is then the Lie algebra \mathfrak{g}_{2}. In this case, both b_{s} and φ_{s} are determined by the same object, but in general they have different roles.

Darboux derivative

- Let M be a smooth manifold and suppose $s: M \longrightarrow \mathbb{L}$ is a smooth map. Using s we define a product on \mathbb{L}-valued maps from M and a corresponding bracket on \mathfrak{l}-valued maps.

Darboux derivative

- Let M be a smooth manifold and suppose $s: M \longrightarrow \mathbb{L}$ is a smooth map. Using s we define a product on \mathbb{L}-valued maps from M and a corresponding bracket on \mathfrak{l}-valued maps.
- Let $A, B: M \longrightarrow \mathbb{L}$ and $\xi, \eta: M \longrightarrow \mathfrak{l}$, then at each $x \in M$, define

$$
\begin{align*}
\left.A \circ_{s} B\right|_{x} & =A_{x} \circ_{s_{x}} B_{x} \in \mathbb{L} \tag{17a}\\
A /\left.{ }_{s} B\right|_{x} & =A_{x} /\left.{ }_{s_{x}} B_{x} \quad A \backslash_{s} B\right|_{x}=A_{x} \backslash{ }_{s} B_{x} \tag{17b}\\
{\left.[\xi, \eta]^{(s)}\right|_{x} } & =\left[\xi_{x}, \eta_{x}\right]^{\left(s_{x}\right)} \in \mathfrak{l} . \tag{17c}
\end{align*}
$$

Darboux derivative

- Let M be a smooth manifold and suppose $s: M \longrightarrow \mathbb{L}$ is a smooth map. Using s we define a product on \mathbb{L}-valued maps from M and a corresponding bracket on \mathfrak{l}-valued maps.
- Let $A, B: M \longrightarrow \mathbb{L}$ and $\xi, \eta: M \longrightarrow \mathfrak{l}$, then at each $x \in M$, define

$$
\begin{align*}
\left.A \circ_{s} B\right|_{x} & =A_{x} \circ_{s_{x}} B_{x} \in \mathbb{L} \tag{17a}\\
A /\left.{ }_{s} B\right|_{x} & =A_{x} /\left.s_{x} B_{x} \quad A \backslash_{s} B\right|_{x}=A_{x} \backslash{ }_{s} B_{x} \tag{17b}\\
{\left.[\xi, \eta]^{(s)}\right|_{x} } & =\left[\xi_{x}, \eta_{x}\right]^{\left(s_{x}\right)} \in \mathfrak{l} . \tag{17c}
\end{align*}
$$

- The bracket $[\cdot, \cdot]^{(s)}$ defines the map $b_{s}: M \longrightarrow \Lambda^{2} \mathfrak{l}^{*} \otimes \mathfrak{l}$. We also have the associator $[\cdot, \cdot, \cdot]^{(s)}$ and the left-alternative map $a_{s}: M \longrightarrow \Lambda^{2} \mathfrak{l}^{*} \otimes \mathfrak{l}^{*} \otimes \mathfrak{l}$. Similarly, define the map $\varphi_{s}: M \longrightarrow \mathfrak{p}^{*} \otimes \mathfrak{l}$.

Darboux derivative

- Let M be a smooth manifold and suppose $s: M \longrightarrow \mathbb{L}$ is a smooth map. Using s we define a product on \mathbb{L}-valued maps from M and a corresponding bracket on \mathfrak{l}-valued maps.
- Let $A, B: M \longrightarrow \mathbb{L}$ and $\xi, \eta: M \longrightarrow \mathfrak{l}$, then at each $x \in M$, define

$$
\begin{align*}
\left.A \circ_{s} B\right|_{x} & =A_{x} \circ_{s_{x}} B_{x} \in \mathbb{L} \tag{17a}\\
A /\left.{ }_{s} B\right|_{x} & =A_{x} /\left.s_{x} B_{x} \quad A \backslash_{s} B\right|_{x}=A_{x} \backslash{ }_{s} B_{x} \tag{17b}\\
{\left.[\xi, \eta]^{(s)}\right|_{x} } & =\left[\xi_{x}, \eta_{x}\right]^{\left(s_{x}\right)} \in \mathfrak{l} . \tag{17c}
\end{align*}
$$

- The bracket $[,, \cdot]^{(s)}$ defines the map $b_{s}: M \longrightarrow \Lambda^{2} \mathfrak{l}^{*} \otimes \mathfrak{l}$. We also have the associator $[\cdot, \cdot, \cdot]^{(s)}$ and the left-alternative map $a_{s}: M \longrightarrow \Lambda^{2} \mathfrak{l}^{*} \otimes \mathfrak{l}^{*} \otimes \mathfrak{l}$. Similarly, define the map $\varphi_{s}: M \longrightarrow \mathfrak{p}^{*} \otimes \mathfrak{l}$.
- As for Lie groups, define the (right) Darboux derivative $\theta_{s}=s^{*} \theta \in \Omega^{1}(M, \mathfrak{l})$. At every $x \in M$,

$$
\begin{equation*}
\left.\left(\theta_{s}\right)\right|_{x}=\left.\left(R_{s(x)}^{-1}\right)_{*} d s\right|_{x} . \tag{18}
\end{equation*}
$$

Theorem

Let M be a smooth manifold and let $x \in M$. Suppose $A, B, s \in C^{\infty}(M, \mathbb{L})$, then

$$
\begin{equation*}
d\left(A \circ_{s} B\right)=(d A) \circ_{s} B+A \circ_{s}(d B)+\left[A, B, \theta_{s}\right]^{(s)} \tag{19}
\end{equation*}
$$

Theorem

Let M be a smooth manifold and let $x \in M$. Suppose $A, B, s \in C^{\infty}(M, \mathbb{L})$, then

$$
\begin{equation*}
d\left(A \circ_{s} B\right)=(d A) \circ_{s} B+A \circ_{s}(d B)+\left[A, B, \theta_{s}\right]^{(s)} \tag{19}
\end{equation*}
$$

and

$$
\begin{aligned}
d\left(A /{ }_{s} B\right) & =d A /{ }_{s} B-\left(A /{ }_{s} B \circ_{s} d B\right) /{ }_{s} B-\left[A /{ }_{s} B, B, \theta_{s}\right]^{(s)} /{ }_{s} B \\
d\left(B \backslash \backslash_{s} A\right) & =B \backslash_{s} d A-B \backslash_{s}\left(d B \circ_{s}\left(B \backslash_{s} A\right)\right)-B \backslash_{s}\left[B, B \backslash{ }_{s} A, \theta_{s}\right]^{(s)} .
\end{aligned}
$$

Theorem

Let M be a smooth manifold and let $x \in M$. Suppose $A, B, s \in C^{\infty}(M, \mathbb{L})$, then

$$
\begin{equation*}
d\left(A \circ_{s} B\right)=(d A) \circ_{s} B+A \circ_{s}(d B)+\left[A, B, \theta_{s}\right]^{(s)} \tag{19}
\end{equation*}
$$

and

$$
\begin{aligned}
d\left(A /{ }_{s} B\right) & =d A /{ }_{s} B-\left(A /{ }_{s} B \circ_{s} d B\right) /{ }_{s} B-\left[A /{ }_{s} B, B, \theta_{s}\right]^{(s)} /{ }_{s} B \\
d\left(B \backslash_{s} A\right) & =B \backslash_{s} d A-B \backslash_{s}\left(d B \circ_{s}\left(B \backslash_{s} A\right)\right)-B \backslash_{s}\left[B, B \backslash{ }_{s} A, \theta_{s}\right]^{(s)} .
\end{aligned}
$$

Suppose now $\xi, \eta \in C^{\infty}(M, \mathfrak{l})$, then

$$
\begin{equation*}
d[\xi, \eta]^{(s)}=[d \xi, \eta]^{(s)}+[\xi, d \eta]^{(s)}+a_{s}\left(\xi, \eta, \theta_{s}\right) . \tag{20}
\end{equation*}
$$

Theorem

Let M be a smooth manifold and let $x \in M$. Suppose $A, B, s \in C^{\infty}(M, \mathbb{L})$, then

$$
\begin{equation*}
d\left(A \circ_{s} B\right)=(d A) \circ_{s} B+A \circ_{s}(d B)+\left[A, B, \theta_{s}\right]^{(s)} \tag{19}
\end{equation*}
$$

and

$$
\begin{aligned}
d\left(A /{ }_{s} B\right) & =d A /{ }_{s} B-\left(A /{ }_{s} B \circ_{s} d B\right) /{ }_{s} B-\left[A /{ }_{s} B, B, \theta_{s}\right]^{(s)} /{ }_{s} B \\
d\left(B \backslash \backslash_{s} A\right) & =B \backslash_{s} d A-B \backslash_{s}\left(d B \circ_{s}\left(B \backslash_{s} A\right)\right)-B \backslash_{s}\left[B, B \backslash{ }_{s} A, \theta_{s}\right]^{(s)} .
\end{aligned}
$$

Suppose now $\xi, \eta \in C^{\infty}(M, \mathfrak{l})$, then

$$
\begin{equation*}
d[\xi, \eta]^{(s)}=[d \xi, \eta]^{(s)}+[\xi, d \eta]^{(s)}+a_{s}\left(\xi, \eta, \theta_{s}\right) . \tag{20}
\end{equation*}
$$

The $\mathfrak{l} \otimes \mathfrak{p}^{*}$-valued map $\varphi_{s}: M \longrightarrow \mathfrak{l} \otimes \mathfrak{p}^{*}$ satisfies

$$
\begin{equation*}
d \varphi_{s}=\operatorname{id}_{\mathfrak{p}} \cdot \theta_{s}-\left[\varphi_{s}, \theta_{s}\right]^{(s)} \tag{21}
\end{equation*}
$$

Loop bundles

- Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L})=\Psi$, Aut $(\mathbb{L})=H$, and $\operatorname{PsAut}^{R}(\mathbb{L})=G \supset H$, and $\mathcal{N}^{R}(\mathbb{L})=\mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.

Loop bundles

- Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L})=\Psi$, Aut $(\mathbb{L})=H$, and $\operatorname{PsAut}^{R}(\mathbb{L})=G \supset H$, and $\mathcal{N}^{R}(\mathbb{L})=\mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.
- Let M be a smooth manifold with a Ψ-principal bundle \mathcal{P}. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle $\mathcal{P} \times_{\Psi} S$, with sections being in an 1-1 correspondence with equivariant maps $\mathcal{P} \longrightarrow S$. Define the following bundles:

Loop bundles

- Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L})=\Psi$, Aut $(\mathbb{L})=H$, and $\operatorname{PsAut}^{R}(\mathbb{L})=G \supset H$, and $\mathcal{N}^{R}(\mathbb{L})=\mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.
- Let M be a smooth manifold with a Ψ-principal bundle \mathcal{P}. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle $\mathcal{P} \times_{\Psi} S$, with sections being in an 1-1 correspondence with equivariant maps $\mathcal{P} \longrightarrow S$. Define the following bundles:

Loop bundles

- Let \mathbb{L} be a smooth loop, and let us define for brevity $\Psi^{R}(\mathbb{L})=\Psi$, Aut $(\mathbb{L})=H$, and $\operatorname{PsAut}^{R}(\mathbb{L})=G \supset H$, and $\mathcal{N}^{R}(\mathbb{L})=\mathcal{N}$. As before, suppose Ψ, H, G, \mathcal{N} are Lie groups.
- Let M be a smooth manifold with a Ψ-principal bundle \mathcal{P}. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle $\mathcal{P} \times_{\Psi} S$, with sections being in an 1-1 correspondence with equivariant maps $\mathcal{P} \longrightarrow S$. Define the following bundles: $(h \in \Psi)$.

Equivariant map Equivariance

$k: \mathcal{P} \longrightarrow \Psi$
$u: \mathcal{P} \longrightarrow \Psi$
$r: \mathcal{P} \longrightarrow \mathbb{L}$
$q: \mathcal{P} \longrightarrow \mathbb{L}$
$\eta: \mathcal{P} \longrightarrow \mathfrak{l}$

$$
\begin{aligned}
& k(p h)=h^{-1} k(p) \\
& u(p h)=h^{-1} u(p) h \\
& r(p h)=h^{-1}(r(p)) \\
& q(p h)=\left(h^{-1}\right)^{\prime}(q(p)) \\
& \eta(p h)=\left(h^{-1}\right)_{*}^{\prime} \eta
\end{aligned}
$$

- In general, if $A, B \in C^{\infty}(\mathcal{P}, \mathbb{L})$ are equivariant, then the product $A B$ is not. Two ways to define an equivariant product:
- In general, if $A, B \in C^{\infty}(\mathcal{P}, \mathbb{L})$ are equivariant, then the product $A B$ is not. Two ways to define an equivariant product:
(1) Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is As (c.f. Clifford product.)
- In general, if $A, B \in C^{\infty}(\mathcal{P}, \mathbb{L})$ are equivariant, then the product $A B$ is not. Two ways to define an equivariant product:
(1) Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is $A s$ (c.f. Clifford product.)
(2) Taking $s \in C^{\infty}(\mathcal{P}, \mathbb{L}), A \circ_{s} B$ is then equivariant as a map to \mathbb{L}.
- In general, if $A, B \in C^{\infty}(\mathcal{P}, \mathbb{L})$ are equivariant, then the product $A B$ is not. Two ways to define an equivariant product:
(1) Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is As (c.f. Clifford product.)
(2) Taking $s \in C^{\infty}\left(\mathcal{P}, \mathbb{L}^{\mathrm{L}}\right), A \circ_{s} B$ is then equivariant as a map to \mathbb{L}.
- Overall, need a defining equivariant map $s \in C^{\infty}\left(\mathcal{P}, \mathbb{L}^{\circ}\right)$. Equivalently, this is a section of \grave{Q}.
- In general, if $A, B \in C^{\infty}(\mathcal{P}, \mathbb{L})$ are equivariant, then the product $A B$ is not. Two ways to define an equivariant product:
(1) Take $A \in C^{\infty}(\mathcal{P}, \mathbb{L})$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is As (c.f. Clifford product.)
(2) Taking $s \in C^{\infty}\left(\mathcal{P}, \mathbb{L}^{\mathrm{L}}\right), A \circ_{s} B$ is then equivariant as a map to \mathbb{L}.
- Overall, need a defining equivariant map $s \in C^{\infty}\left(\mathcal{P}, \mathbb{L}^{\circ}\right)$. Equivalently, this is a section of \grave{Q}.
- Given s, easy to show that corresponding maps b_{s}, a_{s}, and φ_{s} are also equivariant.

Connections and Torsion

- Suppose the principal Ψ-bundle \mathcal{P} has a principal connection given by

$$
T \mathcal{P}=\mathcal{H P} \oplus \mathcal{V} \mathcal{P}
$$

and let $\omega: T \mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

Connections and Torsion

- Suppose the principal Ψ-bundle \mathcal{P} has a principal connection given by

$$
T \mathcal{P}=\mathcal{H P} \oplus \mathcal{V} \mathcal{P}
$$

and let $\omega: T \mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

- Recall that given an equivariant map $f: \mathcal{P} \longrightarrow S$, the covariant derivative is defined as

$$
\begin{equation*}
d^{\mathcal{H}} f:=f_{*} \circ \operatorname{proj}_{\mathcal{H}}: T \mathcal{P} \longrightarrow \mathcal{H P} \longrightarrow T S \tag{22}
\end{equation*}
$$

Connections and Torsion

- Suppose the principal Ψ-bundle \mathcal{P} has a principal connection given by

$$
T \mathcal{P}=\mathcal{H P} \oplus \mathcal{V} \mathcal{P}
$$

and let $\omega: T \mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

- Recall that given an equivariant map $f: \mathcal{P} \longrightarrow S$, the covariant derivative is defined as

$$
\begin{equation*}
d^{\mathcal{H}} f:=f_{*} \circ \operatorname{proj}_{\mathcal{H}}: T \mathcal{P} \longrightarrow \mathcal{H P} \longrightarrow T S \tag{22}
\end{equation*}
$$

- Equivalently,

$$
d^{\mathcal{H}} f=d f+\omega \cdot f
$$

where denotes the infinitesimal action of \mathfrak{p} on S.

Connections and Torsion

- Suppose the principal Ψ-bundle \mathcal{P} has a principal connection given by

$$
T \mathcal{P}=\mathcal{H P} \oplus \mathcal{V} \mathcal{P}
$$

and let $\omega: T \mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

- Recall that given an equivariant map $f: \mathcal{P} \longrightarrow S$, the covariant derivative is defined as

$$
\begin{equation*}
d^{\mathcal{H}} f:=f_{*} \circ \operatorname{proj}_{\mathcal{H}}: T \mathcal{P} \longrightarrow \mathcal{H P} \longrightarrow T S \tag{22}
\end{equation*}
$$

- Equivalently,

$$
d^{\mathcal{H}} f=d f+\omega \cdot f
$$

where • denotes the infinitesimal action of \mathfrak{p} on S.

- $d^{\mathcal{H}} f$ is an equivariant horizontal map and, given the section \tilde{f} of $\mathcal{P} \times_{\Psi} S$ that corresponds to $f, d^{\mathcal{H}} f$ defines a unique map $d^{\mathcal{H}} \tilde{f}: T M \longrightarrow \mathcal{P} \times{ }_{\Psi} T S$.

Connections and Torsion

- Suppose the principal Ψ-bundle \mathcal{P} has a principal connection given by

$$
T \mathcal{P}=\mathcal{H P} \oplus \mathcal{V} \mathcal{P}
$$

and let $\omega: T \mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form.

- Recall that given an equivariant map $f: \mathcal{P} \longrightarrow S$, the covariant derivative is defined as

$$
\begin{equation*}
d^{\mathcal{H}} f:=f_{*} \circ \operatorname{proj}_{\mathcal{H}}: T \mathcal{P} \longrightarrow \mathcal{H P} \longrightarrow T S \tag{22}
\end{equation*}
$$

- Equivalently,

$$
d^{\mathcal{H}} f=d f+\omega \cdot f
$$

where • denotes the infinitesimal action of \mathfrak{p} on S.

- $d^{\mathcal{H}} f$ is an equivariant horizontal map and, given the section \tilde{f} of $\mathcal{P} \times_{\Psi} S$ that corresponds to $f, d^{\mathcal{H}} f$ defines a unique map $d^{\mathcal{H}} \tilde{f}: T M \longrightarrow \mathcal{P} \times_{\Psi} T S$.
- Denote by D the covariant derivative on \mathbb{L}-valued maps and by D the derivative on \mathbb{L}-valued maps
- Let $s \in C^{\infty}(\mathcal{P}, \stackrel{\circ}{\mathbb{L}})$ be equivariant and let ω be a connection on \mathcal{P}.
- Let $s \in C^{\infty}(\mathcal{P}, \stackrel{\circ}{\mathbb{L}})$ be equivariant and let ω be a connection on \mathcal{P}.
- Let $s \in C^{\infty}(\mathcal{P}, \stackrel{i}{\mathbb{L}})$ be equivariant and let ω be a connection on \mathcal{P}.

Definition

The torsion $T^{(s, \omega)}$ of s and ω is a horizontal \mathfrak{l}-valued 1-form on \mathcal{P} given by

$$
\begin{equation*}
T^{(s, \omega)}=\theta_{s} \circ \operatorname{proj}_{\mathcal{H}} \tag{23}
\end{equation*}
$$

where θ_{s} is the Darboux derivative of s. Equivalently, at $p \in \mathcal{P}$, we have

$$
\begin{equation*}
\left.T^{(s, \omega)}\right|_{p}=\left.\left(R_{s_{p}}^{-1}\right)_{*} \stackrel{\circ}{D} s\right|_{p} \tag{24}
\end{equation*}
$$

- Let $s \in C^{\infty}(\mathcal{P}, \stackrel{i}{\mathbb{L}})$ be equivariant and let ω be a connection on \mathcal{P}.

Definition

The torsion $T^{(s, \omega)}$ of s and ω is a horizontal \mathfrak{l}-valued 1-form on \mathcal{P} given by

$$
\begin{equation*}
T^{(s, \omega)}=\theta_{s} \circ \operatorname{proj}_{\mathcal{H}} \tag{23}
\end{equation*}
$$

where θ_{s} is the Darboux derivative of s. Equivalently, at $p \in \mathcal{P}$, we have

$$
\begin{equation*}
\left.T^{(s, \omega)}\right|_{p}=\left.\left(R_{s_{p}}^{-1}\right)_{*} \stackrel{\circ}{D} s\right|_{p} \tag{24}
\end{equation*}
$$

Theorem

$$
\begin{align*}
& \text { Let } \hat{\omega}^{(s)}=\varphi_{s}(\omega) \in \Omega^{1}(\mathcal{P}, \mathfrak{l}) . \text { Then, } \\
& \qquad \theta_{s}=T^{(s, \omega)}-\hat{\omega}^{(s)} . \tag{25}
\end{align*}
$$

- We this see that the torsion is the horizontal part of the loop Darboux derivative θ_{s}, and hence it defines a 1-form with values in the bundle $\mathcal{A}=\mathcal{P} \times{ }_{\Psi_{*}^{\prime}} \mathfrak{l}$ over M. The vertical part of θ_{s} is $\hat{\omega}^{(s)}=\varphi_{s}(\omega)$.
- We this see that the torsion is the horizontal part of the loop Darboux derivative θ_{s}, and hence it defines a 1-form with values in the bundle $\mathcal{A}=\mathcal{P} \times{ }_{\Psi_{*}^{\prime}} \mathfrak{l}$ over M. The vertical part of θ_{s} is $\hat{\omega}^{(s)}=\varphi_{s}(\omega)$.
- This object is completely analogous to the torsion of a G_{2}-structure. If we take \mathcal{P} to be the spin bundle over a 7 -manifold M and ω the Levi-Civita connection of some metric on M, then it is easy to see that $T^{(s, \omega)}$ is precisely the torsion of the G_{2}-structure defined by the map s. Indeed, $S^{7} \cong \operatorname{Spin}(7) / G_{2}$, so an equivariant map $s: \mathcal{P} \longrightarrow \operatorname{Spin}(7) / G_{2}$ defines a reduction of \mathcal{P} to a G_{2}-subbundle (and hence a G_{2}-structure).
- We this see that the torsion is the horizontal part of the loop Darboux derivative θ_{s}, and hence it defines a 1-form with values in the bundle $\mathcal{A}=\mathcal{P} \times{ }_{\Psi_{*}^{\prime}} \mathfrak{l}$ over M. The vertical part of θ_{s} is $\hat{\omega}^{(s)}=\varphi_{s}(\omega)$.
- This object is completely analogous to the torsion of a G_{2}-structure. If we take \mathcal{P} to be the spin bundle over a 7 -manifold M and ω the Levi-Civita connection of some metric on M, then it is easy to see that $T^{(s, \omega)}$ is precisely the torsion of the G_{2}-structure defined by the map s. Indeed, $S^{7} \cong \operatorname{Spin}(7) / G_{2}$, so an equivariant map $s: \mathcal{P} \longrightarrow \operatorname{Spin}(7) / G_{2}$ defines a reduction of \mathcal{P} to a G_{2}-subbundle (and hence a G_{2}-structure).
- In general, if $\stackrel{\circ}{D} s=0$, then the holonomy $\operatorname{Hol}_{p}(\omega)$ of ω at $p \in \mathcal{P}$ is contained in Aut $\left(\mathbb{L}, \circ_{s_{p}}\right)$.
- We this see that the torsion is the horizontal part of the loop Darboux derivative θ_{s}, and hence it defines a 1-form with values in the bundle $\mathcal{A}=\mathcal{P} \times{ }_{\Psi_{*}^{\prime}} \mathfrak{l}$ over M. The vertical part of θ_{s} is $\hat{\omega}^{(s)}=\varphi_{s}(\omega)$.
- This object is completely analogous to the torsion of a G_{2}-structure. If we take \mathcal{P} to be the spin bundle over a 7 -manifold M and ω the Levi-Civita connection of some metric on M, then it is easy to see that $T^{(s, \omega)}$ is precisely the torsion of the G_{2}-structure defined by the map s. Indeed, $S^{7} \cong \operatorname{Spin}(7) / G_{2}$, so an equivariant map $s: \mathcal{P} \longrightarrow \operatorname{Spin}(7) / G_{2}$ defines a reduction of \mathcal{P} to a G_{2}-subbundle (and hence a G_{2}-structure).
- In general, if $D \circ=0$, then the holonomy $\operatorname{Hol}_{p}(\omega)$ of ω at $p \in \mathcal{P}$ is contained in Aut $\left(\mathbb{L}, \circ_{s_{p}}\right)$.
- $T^{(s, \omega)}=0$ if and only if $\theta_{s}=-\hat{\omega}^{(s)}$. For Lie groups, a Lie-algebra-valued 1-form is a Darboux derivative of some function if and only if it satisfies the Maurer-Cartan equation. For loops, such a characterization is in general more complicated and less clear.

By taking the horizontal components of derivatives in Theorem 17, we get the following.

By taking the horizontal components of derivatives in Theorem 17, we get the following.

Theorem

Suppose $A, B: \mathcal{P} \longrightarrow \mathbb{L}$, and $s: \mathcal{P} \longrightarrow \mathbb{\mathbb { L }}$ are equivariant, and let $p \in \mathcal{P}$. Then,
$\left.D\left(A \circ_{s} B\right)\right|_{p}=\left.\left(R_{B_{p}}^{\left(s_{p}\right)}\right)_{*} D A\right|_{p}+\left.\left(L_{A_{p}}^{\left(s_{p}\right)}\right)_{*} D B\right|_{p}+\left[A_{p}, B_{p},\left.T^{(s, \omega)}\right|_{p}\right]^{\left(s_{p}\right)}$

By taking the horizontal components of derivatives in Theorem 17, we get the following.

Theorem

Suppose $A, B: \mathcal{P} \longrightarrow \mathbb{L}$, and $s: \mathcal{P} \longrightarrow \mathbb{\mathbb { L }}$ are equivariant, and let $p \in \mathcal{P}$. Then,

$$
\left.D\left(A \circ_{s} B\right)\right|_{p}=\left.\left(R_{B_{p}}^{\left(s_{p}\right)}\right)_{*} D A\right|_{p}+\left.\left(L_{A_{p}}^{\left(s_{p}\right)}\right)_{*} D B\right|_{p}+\left[A_{p}, B_{p},\left.T^{(s, \omega)}\right|_{p}\right]^{\left(s_{p}\right)}
$$

If $\xi, \eta: \mathcal{P} \longrightarrow \mathfrak{l}$ are equivariant, then

$$
\begin{equation*}
d^{\mathcal{H}}[\xi, \eta]^{(s)}=\left[d^{\mathcal{H}} \xi, \eta\right]^{(s)}+\left[\xi, d^{\mathcal{H}} \eta\right]^{(s)}+a_{s}\left(\xi, \eta, T^{(s, \omega)}\right) \tag{26}
\end{equation*}
$$

By taking the horizontal components of derivatives in Theorem 17, we get the following.

Theorem

Suppose $A, B: \mathcal{P} \longrightarrow \mathbb{L}$, and $s: \mathcal{P} \longrightarrow \mathbb{\mathbb { L }}$ are equivariant, and let $p \in \mathcal{P}$. Then,

$$
\left.D\left(A \circ_{s} B\right)\right|_{p}=\left.\left(R_{B_{p}}^{\left(s_{p}\right)}\right)_{*} D A\right|_{p}+\left.\left(L_{A_{p}}^{\left(s_{p}\right)}\right)_{*} D B\right|_{p}+\left[A_{p}, B_{p},\left.T^{(s, \omega)}\right|_{p}\right]^{\left(s_{p}\right)}
$$

If $\xi, \eta: \mathcal{P} \longrightarrow \mathfrak{l}$ are equivariant, then

$$
\begin{equation*}
d^{\mathcal{H}}[\xi, \eta]^{(s)}=\left[d^{\mathcal{H}} \xi, \eta\right]^{(s)}+\left[\xi, d^{\mathcal{H}} \eta\right]^{(s)}+a_{s}\left(\xi, \eta, T^{(s, \omega)}\right) . \tag{26}
\end{equation*}
$$

The $\mathfrak{l} \otimes \mathfrak{p}^{*}$-valued map $\varphi_{s}: \mathcal{P} \longrightarrow \mathfrak{l} \otimes \mathfrak{p}^{*}$ satisfies

$$
\begin{equation*}
d^{\mathcal{H}} \varphi_{s}=\operatorname{id}_{\mathfrak{p}} \cdot T^{(s, \omega)}-\left[\varphi_{s}, T^{(s, \omega)}\right]^{(s)} \tag{27}
\end{equation*}
$$

Curvature

- Curvature $F^{(\omega)} \in \Omega^{2}(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by

$$
\begin{equation*}
F^{(\omega)}=d^{\mathcal{H}} \omega=d \omega \circ \operatorname{proj}_{\mathcal{H}}, \tag{28}
\end{equation*}
$$

Curvature

- Curvature $F^{(\omega)} \in \Omega^{2}(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by

$$
\begin{equation*}
F^{(\omega)}=d^{\mathcal{H}} \omega=d \omega \circ \operatorname{proj}_{\mathcal{H}}, \tag{28}
\end{equation*}
$$

- Define $\hat{F}^{(s, \omega)}=\varphi_{s}\left(F^{(\omega)}\right) \in \Omega^{2}(\mathcal{P}, \mathfrak{l})$. This is a basic (i.e. horizontal and equivariant) 2 -form on \mathcal{P} with values in \mathfrak{l}, and thus also defines a 2 -form on M with values in the bundle \mathcal{A}. It is easy to see that $\hat{F}^{(s, \omega)}=d^{\mathcal{H}} \hat{\omega}^{(s)}$.

Curvature

- Curvature $F^{(\omega)} \in \Omega^{2}(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by

$$
\begin{equation*}
F^{(\omega)}=d^{\mathcal{H}} \omega=d \omega \circ \operatorname{proj}_{\mathcal{H}}, \tag{28}
\end{equation*}
$$

- Define $\hat{F}^{(s, \omega)}=\varphi_{s}\left(F^{(\omega)}\right) \in \Omega^{2}(\mathcal{P}, \mathfrak{l})$. This is a basic (i.e. horizontal and equivariant) 2 -form on \mathcal{P} with values in \mathfrak{l}, and thus also defines a 2 -form on M with values in the bundle \mathcal{A}. It is easy to see that $\hat{F}^{(s, \omega)}=d^{\mathcal{H}} \hat{\omega}^{(s)}$.

Curvature

- Curvature $F^{(\omega)} \in \Omega^{2}(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by

$$
\begin{equation*}
F^{(\omega)}=d^{\mathcal{H}} \omega=d \omega \circ \operatorname{proj}_{\mathcal{H}}, \tag{28}
\end{equation*}
$$

- Define $\hat{F}^{(s, \omega)}=\varphi_{s}\left(F^{(\omega)}\right) \in \Omega^{2}(\mathcal{P}, \mathfrak{l})$. This is a basic (i.e. horizontal and equivariant) 2 -form on \mathcal{P} with values in \mathfrak{l}, and thus also defines a 2 -form on M with values in the bundle \mathcal{A}. It is easy to see that $\hat{F}^{(s, \omega)}=d^{\mathcal{H}} \hat{\omega}^{(s)}$.

Theorem

$\hat{F}^{(s, \omega)}$ and $T^{(s, \omega)}$ satisfy the following structure equation

$$
\begin{equation*}
\hat{F}^{(s, \omega)}=d^{\mathcal{H}} T^{(s, \omega)}-\frac{1}{2}\left[T^{(s, \omega)}, T^{(s, \omega)}\right]^{(s)} \tag{29}
\end{equation*}
$$

where wedge product between the 1-forms $T^{(s, \omega)}$ is implied.

Curvature

- Curvature $F^{(\omega)} \in \Omega^{2}(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by

$$
\begin{equation*}
F^{(\omega)}=d^{\mathcal{H}} \omega=d \omega \circ \operatorname{proj}_{\mathcal{H}}, \tag{28}
\end{equation*}
$$

- Define $\hat{F}^{(s, \omega)}=\varphi_{s}\left(F^{(\omega)}\right) \in \Omega^{2}(\mathcal{P}, \mathfrak{l})$. This is a basic (i.e. horizontal and equivariant) 2 -form on \mathcal{P} with values in \mathfrak{l}, and thus also defines a 2 -form on M with values in the bundle \mathcal{A}. It is easy to see that $\hat{F}^{(s, \omega)}=d^{\mathcal{H}} \hat{\omega}^{(s)}$.

Theorem

$\hat{F}^{(s, \omega)}$ and $T^{(s, \omega)}$ satisfy the following structure equation

$$
\begin{equation*}
\hat{F}^{(s, \omega)}=d^{\mathcal{H}} T^{(s, \omega)}-\frac{1}{2}\left[T^{(s, \omega)}, T^{(s, \omega)}\right]^{(s)} \tag{29}
\end{equation*}
$$

where wedge product between the 1-forms $T^{(s, \omega)}$ is implied. Equivalently,

$$
\begin{equation*}
d \hat{\omega}^{(s)}+\frac{1}{2}\left[\hat{\omega}^{(s)}, \hat{\omega}^{(s)}\right]^{(s)}=\hat{F}^{(s, \omega)}-d^{\mathcal{H}} \varphi_{s} \wedge \omega \tag{30}
\end{equation*}
$$

- Equation (29) is precisely the analog of the well-known " G_{2} Bianchi identity" for the torsion of a G_{2}-structure:

$$
\begin{equation*}
\nabla_{i} T_{j}^{\alpha}-\nabla_{i} T_{j}^{\alpha}+2 T_{i}^{\beta} T_{j}^{\gamma} \varphi_{\beta \gamma}^{\alpha}=\frac{1}{4} \operatorname{Riem}_{i j}^{\beta \gamma} \varphi_{\beta \gamma}^{\alpha} . \tag{31}
\end{equation*}
$$

- Equation (29) is precisely the analog of the well-known " G_{2} Bianchi identity" for the torsion of a G_{2}-structure:

$$
\begin{equation*}
\nabla_{i} T_{j}^{\alpha}-\nabla_{i} T_{j}^{\alpha}+2 T_{i}^{\beta} T_{j}^{\gamma} \varphi_{\beta \gamma}^{\alpha}=\frac{1}{4} \operatorname{Riem}_{i j}^{\beta \gamma} \varphi^{\alpha}{ }_{\beta \gamma} . \tag{31}
\end{equation*}
$$

- In (29), the torsion differs by a sign, and we take $\left(\varphi_{s}\right)^{a}{ }_{b c}=-\frac{1}{4} \varphi^{a}{ }_{b c}$ and $\left(b_{s}\right)^{a}{ }_{b c}=2 \varphi^{a}{ }_{b c}$. Note that (27) and (26) then agree to give the standard expression for $\nabla \varphi$.
- Equation (29) is precisely the analog of the well-known " G_{2} Bianchi identity" for the torsion of a G_{2}-structure:

$$
\begin{equation*}
\nabla_{i} T_{j}^{\alpha}-\nabla_{i} T_{j}^{\alpha}+2 T_{i}^{\beta} T_{j}^{\gamma} \varphi_{\beta \gamma}^{\alpha}=\frac{1}{4} \operatorname{Riem}_{i j}^{\beta \gamma} \varphi_{\beta \gamma}^{\alpha} . \tag{31}
\end{equation*}
$$

- In (29), the torsion differs by a sign, and we take $\left(\varphi_{s}\right)^{a}{ }_{b c}=-\frac{1}{4} \varphi^{a}{ }_{b c}$ and $\left(b_{s}\right)^{a}{ }_{b c}=2 \varphi^{a}{ }_{b c}$. Note that (27) and (26) then agree to give the standard expression for $\nabla \varphi$.
- Equation (30) then shows that $-\hat{\omega}^{(s)}$ satisfies the Maurer-Cartan equation if and only if both $\hat{F}^{(s, \omega)}$ and $d^{\mathcal{H}} \varphi_{s}$ vanish. In the G_{2} case, the latter implies the former and is actually equivalent to $T^{(s, \omega)}=0$.
- Equation (29) is precisely the analog of the well-known " G_{2} Bianchi identity" for the torsion of a G_{2}-structure:

$$
\begin{equation*}
\nabla_{i} T_{j}^{\alpha}-\nabla_{i} T_{j}^{\alpha}+2 T_{i}^{\beta} T_{j}^{\gamma} \varphi_{\beta \gamma}^{\alpha}=\frac{1}{4} \operatorname{Riem}_{i j}^{\beta \gamma} \varphi_{\beta \gamma}^{\alpha} . \tag{31}
\end{equation*}
$$

- In (29), the torsion differs by a sign, and we take $\left(\varphi_{s}\right)^{a}{ }_{b c}=-\frac{1}{4} \varphi^{a}{ }_{b c}$ and $\left(b_{s}\right)^{a}{ }_{b c}=2 \varphi^{a}{ }_{b c}$. Note that (27) and (26) then agree to give the standard expression for $\nabla \varphi$.
- Equation (30) then shows that $-\hat{\omega}^{(s)}$ satisfies the Maurer-Cartan equation if and only if both $\hat{F}^{(s, \omega)}$ and $d^{\mathcal{H}} \varphi_{s}$ vanish. In the G_{2} case, the latter implies the former and is actually equivalent to $T^{(s, \omega)}=0$.
- Equation (29) is precisely the analog of the well-known " G_{2} Bianchi identity" for the torsion of a G_{2}-structure:

$$
\begin{equation*}
\nabla_{i} T_{j}^{\alpha}-\nabla_{i} T_{j}^{\alpha}+2 T_{i}^{\beta} T_{j}^{\gamma} \varphi_{\beta \gamma}^{\alpha}=\frac{1}{4} \operatorname{Riem}_{i j}^{\beta \gamma} \varphi^{\alpha}{ }_{\beta \gamma} . \tag{31}
\end{equation*}
$$

- In (29), the torsion differs by a sign, and we take $\left(\varphi_{s}\right)^{a}{ }_{b c}=-\frac{1}{4} \varphi^{a}{ }_{b c}$ and $\left(b_{s}\right)^{a}{ }_{b c}=2 \varphi^{a}{ }_{b c}$. Note that (27) and (26) then agree to give the standard expression for $\nabla \varphi$.
- Equation (30) then shows that $-\hat{\omega}^{(s)}$ satisfies the Maurer-Cartan equation if and only if both $\hat{F}^{(s, \omega)}$ and $d^{\mathcal{H}} \varphi_{s}$ vanish. In the G_{2} case, the latter implies the former and is actually equivalent to $T^{(s, \omega)}=0$.

Theorem

The quantity $\hat{F}^{(s, \omega)}$ satisfies the equation

$$
\begin{equation*}
d^{\mathcal{H}} \hat{F}^{(s, \omega)}=d^{\mathcal{H}} \varphi_{s} \wedge F=F \dot{\wedge} T^{(s, \omega)}-\left[\hat{F}^{(s, \omega)}, T^{(s, \omega)}\right]^{(s)} \tag{32}
\end{equation*}
$$

Deformations

Theorem
Suppose $s: \mathcal{P} \longrightarrow \mathbb{L}$ and $u: \mathcal{P} \longrightarrow \Psi$ are equivariant. Then,

$$
\begin{align*}
& T^{\left(s, u^{*} \omega\right)}=T^{(s, \omega)}+\varphi_{s}\left(\left(u^{*} \theta_{\Psi}\right)^{\mathcal{H}}\right)=\left(u^{-1}\right)_{*}^{\prime} T^{(u(s), \omega)} \tag{33a}\\
& \hat{F}^{\left(s, u^{*} \omega\right)}=\left(u^{-1}\right)_{*}^{\prime} \hat{F}^{(u(s), \omega)} . \tag{33b}
\end{align*}
$$

Deformations

Theorem
Suppose $s: \mathcal{P} \longrightarrow \mathbb{\mathbb { L }}$ and $u: \mathcal{P} \longrightarrow \Psi$ are equivariant. Then,

$$
\begin{align*}
& T^{\left(s, u^{*} \omega\right)}=T^{(s, \omega)}+\varphi_{s}\left(\left(u^{*} \theta_{\Psi}\right)^{\mathcal{H}}\right)=\left(u^{-1}\right)_{*}^{\prime} T^{(u(s), \omega)} \tag{33a}\\
& \hat{F}^{\left(s, u^{*} \omega\right)}=\left(u^{-1}\right)_{*}^{\prime} \hat{F}^{(u(s), \omega)} . \tag{33b}
\end{align*}
$$

Suppose $A: \mathcal{P} \longrightarrow \mathbb{L}$ is equivariant. Then,

$$
\begin{align*}
& T^{(A s, \omega)}=\left(R_{A}^{(s)}\right)_{*}^{-1} D A+\left(\operatorname{Ad}_{A}^{(s)}\right)_{*} T^{(s, \omega)} \tag{34a}\\
& \hat{F}^{(A s, \omega)}=\left(R_{A}^{(s)}\right)_{*}^{-1}\left(F^{\prime} \cdot A\right)+\left(\operatorname{Ad}_{A}^{(s)}\right)_{*} \hat{F}^{(s, \omega)} \tag{34b}
\end{align*}
$$

where $F^{\prime} \cdot A$ denotes the infinitesimal action of \mathfrak{p} on \mathbb{L}.

Concluding remarks

- This is a work in progress, however we see a number of features of G_{2}-structures appearing in a general setting, suggesting that they are not that special.

Concluding remarks

- This is a work in progress, however we see a number of features of G_{2}-structures appearing in a general setting, suggesting that they are not that special.
- The case of G_{2}-structures has very special properties: the properties of Moufang loops and also the fact the \mathcal{P} corresponds to the spin structure.

Concluding remarks

- This is a work in progress, however we see a number of features of G_{2}-structures appearing in a general setting, suggesting that they are not that special.
- The case of G_{2}-structures has very special properties: the properties of Moufang loops and also the fact the \mathcal{P} corresponds to the spin structure.
- Even in the general setting we obtain a rich structure with a key role being played by the loop Maurer-Cartan equation.

Concluding remarks

- This is a work in progress, however we see a number of features of G_{2}-structures appearing in a general setting, suggesting that they are not that special.
- The case of G_{2}-structures has very special properties: the properties of Moufang loops and also the fact the \mathcal{P} corresponds to the spin structure.
- Even in the general setting we obtain a rich structure with a key role being played by the loop Maurer-Cartan equation.
- The lack of a suitable Bianchi identity for $\hat{F}^{(s, \omega)}$ precludes the possibility of defining characteristic classes in the usual sense, however there could be some weakened analogs.

