Extremally Ricci-pinched G₂-structures

Jorge Lauret Universidad Nacional de Córdoba and CIEM, CONICET (Argentina) Joint work with Ines Kath and Marina Nicolini

Brest, June 2020

G₂-structures

 M^7 differentiable manifold.

G₂-structure: $\varphi \in \Omega^3 M$ definite (or positive), i.e., at any $p \in M$,

$$\varphi_p = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245},$$

w.r.t. some basis $\{e_1, \ldots, e_7\}$ of T_pM , or equivalently, when φ determines a Riemannian metric g on M and an orientation by

$$g(X,Y) \operatorname{vol} = rac{1}{6} \iota_X(arphi) \wedge \iota_Y(arphi) \wedge arphi, \qquad orall X, Y \in \mathfrak{X}(M).$$

Assume φ closed: $d\varphi = 0$, in which case,

$$\tau := - * d * \varphi \in \Omega^2_{14} M, \quad d * \varphi = \tau \wedge \varphi, \quad d\tau = \Delta \varphi.$$

 $\tau = 0$ (i.e., parallel or torsion-free) $\Rightarrow Hol(M,g) \subset G_2$.

ERP structures

Theorem ([Bryant 92])

If M^7 is compact and φ is closed, then

$$\int_{\mathcal{M}} \operatorname{Scal}_{g}^{2} * 1 \leq \operatorname{\mathbf{3}} \int_{\mathcal{M}} |\operatorname{Ric}_{g}|_{g}^{2} * 1,$$

where equality holds if and only if $d\tau = \frac{1}{6}|\tau|^2\varphi + \frac{1}{6}*(\tau \wedge \tau)$ (called Extremally Ricci Pinched (ERP)).

[Bryant 92]: For any ERP φ , M compact (or locally homogeneous),

- $|\tau|_g$ constant in M.
- $\tau \wedge \tau \wedge \tau = 0.$
- $d(\tau \wedge \tau) = 0.$
- $d * (\tau \wedge \tau) = 0.$
- Spec(Ric_g) = $\left\{-\frac{1}{6}|\tau|^2, -\frac{1}{6}|\tau|^2, -\frac{1}{6}|\tau|^2, 0, 0, 0, 0\right\}$.

ERP G₂-structures: $d\varphi = 0$ and $d\tau = \frac{1}{6}|\tau|^2\varphi + \frac{1}{6}*(\tau \wedge \tau)$.

- [Bryant 92] Example on M = G/K = SL₂(ℂ) × ℂ²/SU(2) ([Cleyton-lvanov 08] can also be presented on a (non-unimodular) solvable Lie group). Compact quotients.
- [L 16] Example on a (unimodular) solvable Lie group (different). [Kath-L 20] Compact quotients.
- [Fino-Raffero 18] The space of ERP G_2 -structures is invariant under the Laplacian flow $\frac{\partial}{\partial t}\varphi(t) = \Delta\varphi(t)$ and the solutions are always eternal (i.e., $t \in (-\infty, \infty)$). New examples. Only one unimodular Lie algebra allowed.
- [L-Nicolini 19] Classification on Lie groups (only five structures).
- [Ball 19, 20] Complete non-homogeneous examples. Partial classifications up to local equivalence (Cartan's method of exterior differential systems and the moving frame). Classification in the homogeneous case completed.

Theorem (Structure [L-Nicolini 19])

Every left-invariant ERP G_2 -structure on a Lie group is equivariantly equivalent to a (G, φ) with torsion $\tau = e^{12} - e^{56}$, where

$$\begin{split} \varphi = & e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245} \\ = & \omega_3 \wedge e^3 + \omega_4 \wedge e^4 + \omega_7 \wedge e^7 + e^{347}, \end{split}$$

 $\omega_7 := e^{12} + e^{56}$, $\omega_3 := e^{26} - e^{15}$ and $\omega_4 := e^{16} + e^{25}$, and if $\mathfrak{g} = Lie(G)$, then

(i)
$$\mathfrak{h} := \mathfrak{sp}\{e_1, \ldots, e_6\}$$
 is a unimodular ideal of \mathfrak{g} .
(ii) $\mathfrak{g}_0 := \mathfrak{sp}\{e_7, e_3, e_4\}$ is a Lie subalgebra of \mathfrak{g} and $[e_3, e_4] = 0$.
(iii) $\mathfrak{g}_1 := \mathfrak{sp}\{e_1, e_2, e_5, e_6\}$ is an abelian ideal of \mathfrak{g} (i.e., $\mathfrak{g} = \mathfrak{g}_0 \ltimes \mathfrak{g}_1$).
(iv) $\theta(\mathfrak{ad} e_7|_{\mathfrak{g}_1})\tau = \frac{1}{3}\omega_7$, $\theta(\mathfrak{ad} e_3|_{\mathfrak{g}_1})\tau = \frac{1}{3}\omega_3$ and $\theta(\mathfrak{ad} e_4|_{\mathfrak{g}_1})\tau = \frac{1}{3}\omega_4$.
(v) $\theta(\mathfrak{ad} e_7|_{\mathfrak{g}_1})\omega_7 + \theta(\mathfrak{ad} e_3|_{\mathfrak{g}_1})\omega_3 + \theta(\mathfrak{ad} e_4|_{\mathfrak{g}_1})\omega_4 = \tau + (\mathfrak{tr} \mathfrak{ad} e_7|_{\mathfrak{g}_0})\omega_7$.
Conversely, if \mathfrak{g} satisfies (i)-(v), then (G, φ) is an ERP G_2 -structure.

Theorem (Structure [L-Nicolini 19])

Every left-invariant ERP G₂-structure on a Lie group is equivariantly equivalent to a (G, φ) with torsion $\tau = e^{12} - e^{56}$, and if $\mathfrak{g} = Lie(G)$, then (i) $\mathfrak{h} := \mathfrak{sp}\{e_1, \ldots, e_6\}$ is a unimodular ideal of \mathfrak{g} . (ii) $\mathfrak{g}_0 := \mathfrak{sp}\{e_7, e_3, e_4\}$ is a Lie subalgebra of \mathfrak{g} and $[e_3, e_4] = 0$. (iii) $\mathfrak{g}_1 := \mathfrak{sp}\{e_1, e_2, e_5, e_6\}$ is an abelian ideal of \mathfrak{g} (i.e., $\mathfrak{g} = \mathfrak{g}_0 \ltimes \mathfrak{g}_1$). (iv) $\theta(\mathfrak{ad} e_7|_{\mathfrak{g}_1})\tau = \frac{1}{3}\omega_7$, $\theta(\mathfrak{ad} e_3|_{\mathfrak{g}_1})\tau = \frac{1}{3}\omega_3$ and $\theta(\mathfrak{ad} e_4|_{\mathfrak{g}_1})\tau = \frac{1}{3}\omega_4$. (v) $\theta(\mathfrak{ad} e_7|_{\mathfrak{g}_1})\omega_7 + \theta(\mathfrak{ad} e_3|_{\mathfrak{g}_1})\omega_3 + \theta(\mathfrak{ad} e_4|_{\mathfrak{g}_1})\omega_4 = \tau + (\mathfrak{tr} \mathfrak{ad} e_7|_{\mathfrak{g}_0})\omega_7$. Conversely, if \mathfrak{g} satisfies (i)-(v), then (G, φ) is an ERP G₂-structure.

Summarizing: $\mathfrak{g} = sp\{e_7, e_3, e_4\} \ltimes sp\{e_1, e_2, e_5, e_6\}$, solvable,

$$\textbf{\textit{A}}_1:= \mathsf{ad} \; e_7|_{\mathsf{sp}\{e_3,e_4\}}, \quad \textbf{\textit{A}}:= \mathsf{ad} \; e_7|_{\mathfrak{g}_1}, \quad \textbf{\textit{B}}:= \mathsf{ad} \; e_3|_{\mathfrak{g}_1}, \quad \textbf{\textit{C}}:= \mathsf{ad} \; e_4|_{\mathfrak{g}_1}.$$

JACOBI !! \mathfrak{n} : nilradical of \mathfrak{g} , dim $\mathfrak{n} = 4, 5, 6$.

Corollary

Every left-invariant ERP G_2 -structure on a Lie group is a steady Laplacian soliton, i.e.,

$$\Delta \varphi = \mathcal{L}_{X_D} \varphi, \quad D \in Der(\mathfrak{g}),$$

and an expanding Ricci soliton, i.e.,

$$\operatorname{Ric}_g = cg + \mathcal{L}_{X_D}g, \quad D \in \operatorname{Der}(\mathfrak{g}), \quad c < 0.$$

Corollary

Every left-invariant ERP G_2 -structure on a non-unimodular Lie group is exact; indeed,

$$arphi = d\left(3 au - (\operatorname{\mathsf{tr}} \mathsf{A}_1)^{-1} e^{34}
ight).$$

Theorem (Classification [L-Nicolini 19])

Any left-invariant ERP G_2 -structure on a Lie group is equivalent to (G_{μ}, φ) , where μ is exactly one of the following Lie algebras:

 μ_B , μ_{M1} , μ_{M2} , μ_{M3} , μ_J .

Moreover, any left-invariant ERP G_2 -structure on a Lie group is equivariant equivalent to exactly on of the following:

 $\mu_B, \quad \mu_{M1}, \quad \mu_{M2}, \quad \mu_{M3}, \quad \mu_J, \quad \mu_{rt}, \quad (r,t) \neq (0,0).$

The structures $(G_{\mu_{rt}}, \varphi)$ ([Fino-Raffero 18]) are all equivalent to (G_{μ_B}, φ) and the family of Lie algebras μ_{rt} , $r, t \in \mathbb{R}$ is pairwise non-isomorphic.

Key ingredients of the proof: Structure theorem; $\theta : \mathfrak{sl}_4(\mathbb{R}) \xrightarrow{\simeq} \mathfrak{so}(3,3)$; $U_{\mathfrak{h},\tau} := \{h \in G_2 : h(\mathfrak{h}) \subset \mathfrak{h}, \ h \cdot \tau = \tau\} \simeq S^1 \times S^1$, $U_{\mathfrak{g}_1,\tau} := \{h \in G_2 : h(\mathfrak{g}_1) \subset \mathfrak{g}_1, \ h \cdot \tau = \tau\} \simeq U(2)$. Example (μ_B , dim n = 6, n 2-step [Bryant 92], [Cleyton-Ivanov 08])

$$(A_1)_B = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A_B = \frac{1}{6} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix},$$
$$B_B = \frac{1}{3} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_B = \frac{1}{3} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Example (μ_{M1} , dim n = 6, n 4-step [L-Nicolini 19])

$$(A_1)_{M1} = \frac{1}{30} \begin{bmatrix} \sqrt{30} & 0 \\ 0 & 2\sqrt{30} \end{bmatrix}, \quad A_{M1} = \frac{1}{60} \begin{bmatrix} -10 - \sqrt{30} & 0 & -2\sqrt{5} & 0 \\ 0 & -10 + \sqrt{30} & 0 & -2\sqrt{5} \\ -2\sqrt{5} & 0 & 10 - \sqrt{30} & 0 \\ 0 & -2\sqrt{5} & 0 & 10 + \sqrt{30} \end{bmatrix},$$
$$B_{M1} = \frac{1}{30} \begin{bmatrix} 0 & -\sqrt{5} & 0 & 5 - \sqrt{30} \\ 5\sqrt{5} & 0 & 5 & 0 \\ 0 & 5 + \sqrt{30} & 0 & \sqrt{5} \\ 5 & 0 & -5\sqrt{5} & 0 \end{bmatrix}, \quad C_{M1} = \frac{1}{30} \begin{bmatrix} -\sqrt{5} & 0 & 5 - \sqrt{30} & 0 \\ 0 & \sqrt{5} & 0 & -5 + \sqrt{30} \\ 0 & -5 - \sqrt{30} & 0 & -\sqrt{5} \\ 0 & -5 - \sqrt{30} & 0 & -\sqrt{5} \end{bmatrix}.$$

Example (μ_{M2} , dim n = 5, n 3-step [L-Nicolini 19])

$$(A_1)_{M2} = \frac{1}{3} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad A_{M2} = \frac{1}{3} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix},$$
$$B_{M2} = \frac{1}{6} \begin{bmatrix} -1 \\ \frac{1}{2} \\ 1 \\ 1 \end{bmatrix}, \quad C_{M2} = \frac{1}{3} \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix},$$

Example (μ_{M3} , dim n = 5, n 2-step [L-Nicolini 19])

$$(A_1)_{M3} = \frac{1}{6} \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{6} \end{bmatrix}, \quad A_{M3} = \frac{1}{12} \begin{bmatrix} -2 & 0 & -\sqrt{2} & 0 \\ 0 & -2 & 0 & -\sqrt{2} \\ -\sqrt{2} & 0 & 2 & 0 \\ 0 & -\sqrt{2} & 0 & 2 \end{bmatrix},$$
$$B_{M3} = \frac{1}{6} \begin{bmatrix} 0 & \sqrt{2} & 0 & 1 \\ \sqrt{2} & 0 & 1 & 0 \\ 0 & 1 & 0 & -\sqrt{2} \\ 1 & 0 & -\sqrt{2} & 0 \end{bmatrix}, \quad C_{M3} = \frac{1}{12} \begin{bmatrix} -\sqrt{2} & 0 & 2-\sqrt{6} & 0 \\ 0 & \sqrt{2} & 0 & -2+\sqrt{6} \\ 2+\sqrt{6} & 0 & \sqrt{2} & 0 \\ 0 & -2-\sqrt{6} & 0 & -\sqrt{2} \end{bmatrix}.$$

Example (μ_J , dim n = 4, n abelian [L 17])

$$A_{J} = \frac{1}{6} \begin{bmatrix} -1 & & \\ & -1 & \\ & & -1 \end{bmatrix}, B_{J} = \frac{1}{6} \begin{bmatrix} 0 & -\sqrt{2} & 0 & 2 \\ -\sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}, C_{J} = \frac{1}{6} \begin{bmatrix} \sqrt{2} & 0 & 0 & 0 \\ 0 & -\sqrt{2} & 0 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{bmatrix}.$$

Example (μ_{rt} , dim n = 6, n 2-step [Fino-Raffero 18])

$$(A_{1})_{rt} = \frac{1}{3} \begin{bmatrix} 1 & -r \\ r & 1 \end{bmatrix}, \quad A_{rt} = \frac{1}{6} \begin{bmatrix} -1 & -2t \\ 2t & -1 \\ & -2(r+t) & 1 \end{bmatrix},$$
$$B_{rt} = \frac{1}{3} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad C_{rt} = \frac{1}{3} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & -1 \end{bmatrix}.$$
$$(\mu_{B} = \mu_{00})$$

Automorphism group of homogeneous ERP G_2 -structures

 M^7 , ERP G_2 -structure: $d\varphi = 0$ and $d\tau = \frac{1}{6}|\tau|^2\varphi + \frac{1}{6}*(\tau \wedge \tau)$.

 $\operatorname{Aut}(M, \varphi) := \{ f \in \operatorname{Diff}(M) : f^* \varphi = \varphi \} \subset \operatorname{Isom}(M, g), \text{ Lie group.}$

 $(M, \varphi) = (G, \varphi)$ simply connected Lie group endowed with a left-invariant G_2 -structure,

 $(\operatorname{Aut}(\mathfrak{g})\cap G_2)\ltimes G\subset \operatorname{Aut}(G,\varphi), \quad (\operatorname{Aut}(\mathfrak{g})\cap \operatorname{O}(7))\ltimes G\subset \operatorname{Isom}(G,g),$

and they coincide if G unimodular and completely solvable. [Alekseevskii 71], [Gordon-Wilson 88].

- [L-Nicolini 19] Compute Aut(g) ∩ G₂ and Aut(g) ∩ O(7) for each of the five structures in the classification.
- [Ball 20] Completes the classification in the homogeneous case: same list of five. Computes the connected component $Aut(G, \varphi)_0$ for each of them.

[L-Nicolini 19] first and second column; [Ball 20] third column.

	$Aut(\mu)\cap \mathcal{G}_2$	$Aut(\mu) \cap \mathrm{O}(7)$	$\operatorname{Aut}(\mathit{G}_\mu, arphi)_0$	dim
μ_B	$S^1 imes S^1$	$\mathbb{Z}_2\ltimes (S^1 imes S^1)$	$(\mathrm{S}^1 imes \mathrm{SL}_2(\mathbb{C})) \ltimes \mathbb{C}^2$	11
μ_{M1}	\mathbb{Z}_2	$\mathbb{Z}_2\times\mathbb{Z}_2$	G _{M1}	7
μ_{M2}	\mathbb{Z}_2	$\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2$	$(\mathbb{R} imes \mathrm{SO}(2,1)) \ltimes \mathbb{R}^4$	8
μ_{M3}	\mathbb{Z}_4	$D_4 imes \mathbb{Z}_2$	$(\mathbb{R} imes \mathrm{SL}_2(\mathbb{R})) \ltimes \mathbb{R}^4$	8
μJ	$\mathrm{SL}_2(\mathbb{Z}_3)$	$S_4\ltimes \mathbb{Z}_2^4$	Gj	7

Table: Symmetries.

Compact ERP G₂-structures

 M^7 compact, ERP G_2 -structure: $d\varphi = 0$ and $d\tau = \frac{1}{6}|\tau|^2\varphi + \frac{1}{6}*(\tau \wedge \tau)$. Only two examples known:

- [Bryant 92] $M = (SL_2(\mathbb{C}) \ltimes \mathbb{C}^2/SU(2)) / \Gamma$, $\Gamma \subset SL_2(\mathbb{C}) \ltimes \mathbb{C}^2$ lattice.
- [Kath-L 20] G_J/Γ , where Γ is a lattice of the unimodular solvable G_J . This is a counterexample to a conjecture made in [Cleyton-Ivanov 08] (they proved that Bryant's example is the only ERP G_2 -structure whose intrinsic torsion is parallel with respect to the canonical G_2 connection).

[Kath-L 20] $\mathfrak{g}_J = \mathfrak{a} \ltimes \mathbb{R}^4$, where $\mathfrak{a} \subset \mathfrak{sl}_4(\mathbb{R})$ is the subspace of all diagonal matrices, i.e., $G_J = \exp(\mathfrak{a}) \ltimes \mathbb{R}^4$. Consider the matrices in $SL_4(\mathbb{Z})$,

$$A_1 := \begin{bmatrix} 0 & 0 & -1 & -1 \\ 0 & 0 & -4 & -5 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 1 & 5 \end{bmatrix}, \quad A_2 := \begin{bmatrix} 3 & -1 & -1 & -1 \\ -4 & -1 & -5 & -5 \\ 0 & 0 & 3 & -1 \\ 1 & 1 & 1 & 4 \end{bmatrix}, \quad A_3 := \begin{bmatrix} 4 & 1 & 2 & 3 \\ 3 & 8 & 9 & 14 \\ -1 & -1 & 0 & -3 \\ -1 & -2 & -3 & -3 \end{bmatrix}.$$

There exists $\phi \in SL_4(\mathbb{R})$ such that $\phi A_j \phi^{-1}$, j = 1, 2, 3 are all diagonal, positive and generate a lattice Λ of exp(\mathfrak{a}).

Since they leave invariant the subset $\phi(\mathbb{Z}^4) \subset \mathbb{R}^4$, the set

$$\Gamma := \Lambda \ltimes \phi(\mathbb{Z}^4)$$

is a subgroup of G_J . Moreover, Γ is a lattice in G_J since $\Lambda \subset \exp(\mathfrak{a})$ and $\phi(\mathbb{Z}^4) \subset \mathbb{R}^4$ are both discrete and cocompact.

Remark. The three matrices correspond to the action by multiplication of three multiplicatively independent units in a totally real quartic number field K on the ring \mathcal{O}_K of integers.

Many thanks for your attention !!