Extremally Ricci-pinched G_{2}-structures

Jorge Lauret
Universidad Nacional de Córdoba
and CIEM, CONICET (Argentina)
Joint work with Ines Kath and Marina Nicolini

Brest, June 2020

G_{2}-structures

M^{7} differentiable manifold.
G_{2}-structure: $\varphi \in \Omega^{3} M$ definite (or positive), i.e., at any $p \in M$,

$$
\varphi_{p}=e^{127}+e^{347}+e^{567}+e^{135}-e^{146}-e^{236}-e^{245},
$$

w.r.t. some basis $\left\{e_{1}, \ldots, e_{7}\right\}$ of $T_{p} M$, or equivalently, when φ determines a Riemannian metric g on M and an orientation by

$$
g(X, Y) \mathrm{vol}=\frac{1}{6} \iota X(\varphi) \wedge \iota Y(\varphi) \wedge \varphi, \quad \forall X, Y \in \mathfrak{X}(M) .
$$

Assume φ closed: $d \varphi=0$, in which case,

$$
\tau:=-* d * \varphi \in \Omega_{14}^{2} M, \quad d * \varphi=\tau \wedge \varphi, \quad d \tau=\Delta \varphi .
$$

$\tau=0$ (i.e., parallel or torsion-free) $\Rightarrow \mathrm{Hol}(M, g) \subset G_{2}$.

ERP structures

Theorem ([Bryant 92])

If M^{7} is compact and φ is closed, then

$$
\int_{M} \mathrm{Scal}_{g}^{2} * 1 \leq 3 \int_{M}\left|\mathrm{Ric}_{g}\right|_{g}^{2} * 1
$$

where equality holds if and only if $d \tau=\frac{1}{6}|\tau|^{2} \varphi+\frac{1}{6} *(\tau \wedge \tau)$ (called Extremally Ricci Pinched (ERP)).
[Bryant 92]: For any ERP φ, M compact (or locally homogeneous),

- $|\tau|_{g}$ constant in M.
- $\tau \wedge \tau \wedge \tau=0$.
- $d(\tau \wedge \tau)=0$.
- $d *(\tau \wedge \tau)=0$.
- $\operatorname{Spec}\left(\operatorname{Ric}_{g}\right)=\left\{-\frac{1}{6}|\tau|^{2},-\frac{1}{6}|\tau|^{2},-\frac{1}{6}|\tau|^{2}, 0,0,0,0\right\}$.

ERP G_{2}-structures: $d \varphi=0$ and $d \tau=\frac{1}{6}|\tau|^{2} \varphi+\frac{1}{6} *(\tau \wedge \tau)$.

- [Bryant 92] Example on $M=G / K=\mathrm{SL}_{2}(\mathbb{C}) \ltimes \mathbb{C}^{2} / \mathrm{SU}(2)$ ([Cleyton-Ivanov 08] can also be presented on a (non-unimodular) solvable Lie group). Compact quotients.
- [L 16] Example on a (unimodular) solvable Lie group (different). [Kath-L 20] Compact quotients.
- [Fino-Raffero 18] The space of ERP G_{2}-structures is invariant under the Laplacian flow $\frac{\partial}{\partial t} \varphi(t)=\Delta \varphi(t)$ and the solutions are always eternal (i.e., $t \in(-\infty, \infty)$). New examples. Only one unimodular Lie algebra allowed.
- [L-Nicolini 19] Classification on Lie groups (only five structures).
- [Ball 19, 20] Complete non-homogeneous examples. Partial classifications up to local equivalence (Cartan's method of exterior differential systems and the moving frame). Classification in the homogeneous case completed.

Theorem (Structure [L-Nicolini 19])

Every left-invariant ERP G_{2}-structure on a Lie group is equivariantly equivalent to a (G, φ) with torsion $\tau=e^{12}-e^{56}$, where

$$
\begin{aligned}
\varphi & =e^{127}+e^{347}+e^{567}+e^{135}-e^{146}-e^{236}-e^{245} \\
& =\omega_{3} \wedge e^{3}+\omega_{4} \wedge e^{4}+\omega_{7} \wedge e^{7}+e^{347},
\end{aligned}
$$

$\omega_{7}:=e^{12}+e^{56}, \omega_{3}:=e^{26}-e^{15}$ and $\omega_{4}:=e^{16}+e^{25}$, and if $\mathfrak{g}=\operatorname{Lie}(G)$, then
(i) $\mathfrak{h}:=\operatorname{sp}\left\{e_{1}, \ldots, e_{6}\right\}$ is a unimodular ideal of \mathfrak{g}.
(ii) $\mathfrak{g}_{0}:=\operatorname{sp}\left\{e_{7}, e_{3}, e_{4}\right\}$ is a Lie subalgebra of \mathfrak{g} and $\left[e_{3}, e_{4}\right]=0$.
(iii) $\mathfrak{g}_{1}:=\operatorname{sp}\left\{e_{1}, e_{2}, e_{5}, e_{6}\right\}$ is an abelian ideal of $\mathfrak{g} \quad$ (i.e., $\mathfrak{g}=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}$).
(iv) $\theta\left(\left.\operatorname{ad} e_{7}\right|_{\mathfrak{g}_{1}}\right) \tau=\frac{1}{3} \omega_{7}, \theta\left(\left.\operatorname{ad} e_{3}\right|_{\mathfrak{g}_{1}}\right) \tau=\frac{1}{3} \omega_{3}$ and $\theta\left(\left.\operatorname{ad} e_{4}\right|_{\mathfrak{g}_{1}}\right) \tau=\frac{1}{3} \omega_{4}$.
(v) $\theta\left(\operatorname{ad} e_{7} \mid \mathfrak{g}_{1}\right) \omega_{7}+\theta\left(\left.\operatorname{ad} e_{3}\right|_{\mathfrak{g}_{1}}\right) \omega_{3}+\theta\left(\operatorname{ad} e_{4} \mid \mathfrak{g}_{1}\right) \omega_{4}=\tau+\left(\operatorname{trad} e_{7} \mid \mathfrak{g}_{0}\right) \omega_{7}$.

Conversely, if \mathfrak{g} satisfies (i)-(v), then (G, φ) is an ERP G_{2}-structure.

Theorem (Structure [L-Nicolini 19])

Every left-invariant ERP G_{2}-structure on a Lie group is equivariantly equivalent to a (G, φ) with torsion $\tau=e^{12}-e^{56}$, and if $\mathfrak{g}=\operatorname{Lie}(G)$, then
(i) $\mathfrak{h}:=\operatorname{sp}\left\{e_{1}, \ldots, e_{6}\right\}$ is a unimodular ideal of \mathfrak{g}.
(ii) $\mathfrak{g}_{0}:=\operatorname{sp}\left\{e_{7}, e_{3}, e_{4}\right\}$ is a Lie subalgebra of \mathfrak{g} and $\left[e_{3}, e_{4}\right]=0$.
(iii) $\mathfrak{g}_{1}:=\operatorname{sp}\left\{e_{1}, e_{2}, e_{5}, e_{6}\right\}$ is an abelian ideal of $\mathfrak{g} \quad$ (i.e., $\mathfrak{g}=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{1}$).
(iv) $\theta\left(\left.\operatorname{ad} e_{7}\right|_{\mathfrak{g}_{1}}\right) \tau=\frac{1}{3} \omega_{7}, \theta\left(\left.\operatorname{ad} e_{3}\right|_{\mathfrak{g}_{1}}\right) \tau=\frac{1}{3} \omega_{3}$ and $\theta\left(\left.\operatorname{ad} e_{4}\right|_{\mathfrak{g}_{1}}\right) \tau=\frac{1}{3} \omega_{4}$.
(v) $\theta\left(\left.\operatorname{ad} e_{7}\right|_{\mathfrak{g}_{1}}\right) \omega_{7}+\theta\left(\left.\operatorname{ad} e_{3}\right|_{\mathfrak{g}_{1}}\right) \omega_{3}+\theta\left(\operatorname{ad} e_{4}| |_{\mathfrak{g}_{1}}\right) \omega_{4}=\tau+\left(\left.\operatorname{tr} \operatorname{ad} e_{7}\right|_{\mathfrak{g}_{0}}\right) \omega_{7}$.

Conversely, if \mathfrak{g} satisfies (i)-(v), then (G, φ) is an ERP G_{2}-structure.
Summarizing: $\mathfrak{g}=\operatorname{sp}\left\{e_{7}, e_{3}, e_{4}\right\} \ltimes \operatorname{sp}\left\{e_{1}, e_{2}, e_{5}, e_{6}\right\}$, solvable,

$$
A_{1}:=\left.\operatorname{ad} e_{7}\right|_{\operatorname{sp}\left\{e_{3}, e_{4}\right\}}, \quad A:=\left.\operatorname{ad} e_{7}\right|_{\mathfrak{g}_{1}}, \quad B:=\left.\operatorname{ad} e_{3}\right|_{\mathfrak{g}_{1}}, \quad C:=\left.\operatorname{ad} e_{4}\right|_{\mathfrak{g}_{1}} .
$$

JACOBI !!
\mathfrak{n} : nilradical of $\mathfrak{g}, \operatorname{dim} \mathfrak{n}=4,5,6$.

Corollary

Every left-invariant ERP G_{2}-structure on a Lie group is a steady Laplacian soliton, i.e.,

$$
\Delta \varphi=\mathcal{L}_{X_{D}} \varphi, \quad D \in \operatorname{Der}(\mathfrak{g})
$$

and an expanding Ricci soliton, i.e.,

$$
\operatorname{Ric}_{g}=c g+\mathcal{L}_{X_{D}} g, \quad D \in \operatorname{Der}(\mathfrak{g}), \quad c<0
$$

Corollary

Every left-invariant ERP G_{2}-structure on a non-unimodular Lie group is exact; indeed,

$$
\varphi=d\left(3 \tau-\left(\operatorname{tr} A_{1}\right)^{-1} e^{34}\right) .
$$

Theorem (Classification [L-Nicolini 19])

Any left-invariant ERP G_{2}-structure on a Lie group is equivalent to $\left(G_{\mu}, \varphi\right)$, where μ is exactly one of the following Lie algebras:

$$
\mu_{B}, \quad \mu_{M 1}, \quad \mu_{M 2}, \quad \mu_{M 3}, \quad \mu_{J}
$$

Moreover, any left-invariant ERP G_{2}-structure on a Lie group is equivariant equivalent to exactly on of the following:

$$
\mu_{B}, \quad \mu_{M 1}, \quad \mu_{M 2}, \quad \mu_{M 3}, \quad \mu_{J}, \quad \mu_{r t}, \quad(r, t) \neq(0,0) .
$$

The structures $\left(G_{\mu_{r t}}, \varphi\right)$ ([Fino-Raffero 18]) are all equivalent to $\left(G_{\mu_{B}}, \varphi\right)$ and the family of Lie algebras $\mu_{r t}, r, t \in \mathbb{R}$ is pairwise non-isomorphic.

Key ingredients of the proof: Structure theorem; $\theta: \mathfrak{s l}_{4}(\mathbb{R}) \xrightarrow{\simeq} \mathfrak{s o}(3,3)$; $U_{\mathfrak{h}, \tau}:=\left\{h \in G_{2}: h(\mathfrak{h}) \subset \mathfrak{h}, h \cdot \tau=\tau\right\} \simeq \mathrm{S}^{1} \times \mathrm{S}^{1}$, $\cup_{\mathfrak{g}_{1}, \tau}:=\left\{h \in G_{2}: h\left(\mathfrak{g}_{1}\right) \subset \mathfrak{g}_{1}, h \cdot \tau=\tau\right\} \simeq \mathrm{U}(2)$.

Example ($\mu_{B}, \operatorname{dim} \mathfrak{n}=6, \mathfrak{n} 2$-step [Bryant 92], [Cleyton-Ivanov 08])

$$
\left.\begin{array}{ll}
\left(A_{1}\right)_{B}=\frac{1}{3}\left[\begin{array}{ll}
1 & 1
\end{array}\right], & A_{B}=\frac{1}{6}\left[\begin{array}{lll}
-1 & & 1
\end{array}\right. \\
& -1 \\
& \\
& \\
& 1
\end{array}\right], .
$$

Example $\left(\mu_{M 1}, \operatorname{dim} \mathfrak{n}=6, \mathfrak{n}\right.$ 4-step [L-Nicolini 19])

$$
\begin{array}{r}
\left(A_{1}\right)_{M 1}=\frac{1}{30}\left[\begin{array}{cc}
\sqrt{30} & 0 \\
0 & 2 \sqrt{30}
\end{array}\right], \quad A_{M 1}=\frac{1}{60}\left[\begin{array}{ccc}
-10-\sqrt{30} & 0 & -2 \sqrt{5} \\
0 & 0 \\
-2 \sqrt{5} & -10+\sqrt{30} & 0 \\
0 & 10-\sqrt{30} & 0 \\
0 & -2 \sqrt{5} & 0 \\
10+\sqrt{30}
\end{array}\right] \\
B_{M 1}=\frac{1}{30}\left[\begin{array}{cccc}
0 & -\sqrt{5} & 0 & 5-\sqrt{30} \\
5 \sqrt{5} & 0 & 5 & 0 \\
0 & 5+\sqrt{30} & 0 & \sqrt{5} \\
5 & 0 & -5 \sqrt{5} & 0
\end{array}\right], \quad C_{M 1}=\frac{1}{30}\left[\begin{array}{cccc}
-\sqrt{5} & 0 & 5-\sqrt{30} & 0 \\
0 & \sqrt{5} & 0 & -5+\sqrt{30} \\
5+\sqrt{30} & 0 & \sqrt{5} & 0 \\
0 & -5-\sqrt{30} & 0 & -\sqrt{5}
\end{array}\right]
\end{array}
$$

Example $\left(\mu_{M 2}, \operatorname{dim} \mathfrak{n}=5, \mathfrak{n}\right.$ 3-step [L-Nicolini 19])

$$
\begin{gathered}
\left(A_{1}\right)_{M 2}=\frac{1}{3}\left[\begin{array}{ll}
0 & 1
\end{array}\right], \quad A_{M 2}=\frac{1}{3}\left[\begin{array}{ccc}
-1 & & \\
& & 0 \\
& & 0 \\
& & \\
& & 1
\end{array}\right] \\
B_{M 2}=\frac{1}{6}\left[\begin{array}{ccc}
-1 & & \\
& 1 & 2 \\
& 2 & 1 \\
& & \\
& & \\
& & \\
M 2
\end{array}\right], \frac{1}{3}\left[\begin{array}{cccc}
0 & & \\
-1 & 0 & \\
1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{array}\right] .
\end{gathered}
$$

Example $\left(\mu_{M 3}, \operatorname{dim} \mathfrak{n}=5, \mathfrak{n}\right.$ 2-step [L-Nicolini 19])

$$
\begin{aligned}
\left(A_{1}\right)_{M 3}=\frac{1}{6}\left[\begin{array}{cc}
0 & 0 \\
0 & \sqrt{6}
\end{array}\right], & A_{M 3}=\frac{1}{12}\left[\begin{array}{cccc}
-2 & 0 & -\sqrt{2} & 0 \\
0 & -2 & 0 & -\sqrt{2} \\
-\sqrt{2} & 0 & 2 & 0 \\
0 & -\sqrt{2} & 0 & 2
\end{array}\right], \\
B_{M 3}=\frac{1}{6}\left[\begin{array}{cccc}
0 & \sqrt{2} & 0 & 1 \\
\sqrt{2} & 0 & 1 & 0 \\
0 & 1 & 0 & -\sqrt{2} \\
1 & 0 & -\sqrt{2} & 0
\end{array}\right], & C_{M 3}=\frac{1}{12}\left[\begin{array}{cccc}
-\sqrt{2} & 0 & 2-\sqrt{6} & 0 \\
0 & \sqrt{2} & 0 & -2+\sqrt{6} \\
2+\sqrt{6} & 0 & \sqrt{2} & 0 \\
0 & -2-\sqrt{6} & 0 & -\sqrt{2}
\end{array}\right] .
\end{aligned}
$$

Example $\left(\mu_{\mathrm{J}}, \operatorname{dim} \mathfrak{n}=4, \mathfrak{n}\right.$ abelian [L 17])

$$
A_{J}=\frac{1}{6}\left[\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & & \\
& & -1
\end{array}\right], B_{J}=\frac{1}{6}\left[\begin{array}{ccc}
0 & -\sqrt{2} & 0 \\
-\sqrt{2} & 0 & 0 \\
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), C_{J}=\frac{1}{6}\left[\begin{array}{cccc}
\sqrt{2} & 0 & 0 & 0 \\
0 & -\sqrt{2} & 0 & -2 \\
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right] .
$$

Example ($\mu_{r t}, \operatorname{dim} \mathfrak{n}=6, \mathfrak{n} 2$-step [Fino-Raffero 18])

$$
\begin{gathered}
\left(A_{1}\right)_{r t}=\frac{1}{3}\left[\begin{array}{cc}
1 & -r \\
r & 1
\end{array}\right], \quad A_{r t}=\frac{1}{6}\left[\begin{array}{ccc}
-1 & -2 t & \\
2 t & -1 & 1 \\
& 2(r+t) \\
-2(r+t) & 1
\end{array}\right], \\
B_{r t}=\frac{1}{3}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 &
\end{array}\right], \quad C_{r t}=\frac{1}{3}\left[\begin{array}{ccc}
0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

$\left(\mu_{B}=\mu_{00}\right)$

Automorphism group of homogeneous ERP G_{2}-structures

 $M^{7}, \operatorname{ERP} G_{2}$-structure: $d \varphi=0$ and $d \tau=\frac{1}{6}|\tau|^{2} \varphi+\frac{1}{6} *(\tau \wedge \tau)$.$\operatorname{Aut}(M, \varphi):=\left\{f \in \operatorname{Diff}(M): f^{*} \varphi=\varphi\right\} \subset \operatorname{Isom}(M, g)$, Lie group.
$(M, \varphi)=(G, \varphi)$ simply connected Lie group endowed with a left-invariant G_{2}-structure,

$$
\left(\operatorname{Aut}(\mathfrak{g}) \cap G_{2}\right) \ltimes G \subset \operatorname{Aut}(G, \varphi), \quad(\operatorname{Aut}(\mathfrak{g}) \cap O(7)) \ltimes G \subset \operatorname{Isom}(G, g),
$$

and they coincide if G unimodular and completely solvable. [Alekseevskii 71], [Gordon-Wilson 88].

- [L-Nicolini 19] Compute $\operatorname{Aut}(\mathfrak{g}) \cap G_{2}$ and $\operatorname{Aut}(\mathfrak{g}) \cap O(7)$ for each of the five structures in the classification.
- [Ball 20] Completes the classification in the homogeneous case: same list of five. Computes the connected component $\operatorname{Aut}(G, \varphi)_{0}$ for each of them.
[L-Nicolini 19] first and second column; [Ball 20] third column.

	$\operatorname{Aut}(\mu) \cap G_{2}$	$\operatorname{Aut}(\mu) \cap \mathrm{O}(7)$	$\operatorname{Aut}\left(G_{\mu}, \varphi\right)_{0}$	dim
μ_{B}	$S^{1} \times S^{1}$	$\mathbb{Z}_{2} \ltimes\left(S^{1} \times S^{1}\right)$	$\left(\mathrm{S}^{1} \times \mathrm{SL}_{2}(\mathbb{C})\right) \ltimes \mathbb{C}^{2}$	11
$\mu_{M 1}$	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$G_{M 1}$	7
$\mu_{M 2}$	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$(\mathbb{R} \times \operatorname{SO}(2,1)) \ltimes \mathbb{R}^{4}$	8
$\mu_{M 3}$	\mathbb{Z}_{4}	$D_{4} \times \mathbb{Z}_{2}$	$\left(\mathbb{R} \times \mathrm{SL}_{2}(\mathbb{R})\right) \ltimes \mathbb{R}^{4}$	8
μ_{J}	$\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$	$S_{4} \ltimes \mathbb{Z}_{2}^{4}$	$G J$	7

Table: Symmetries.

Compact ERP G_{2}-structures

M^{7} compact, ERP G_{2}-structure: $d \varphi=0$ and $d \tau=\frac{1}{6}|\tau|^{2} \varphi+\frac{1}{6} *(\tau \wedge \tau)$.
Only two examples known:

- [Bryant 92] $M=\left(\mathrm{SL}_{2}(\mathbb{C}) \ltimes \mathbb{C}^{2} / \mathrm{SU}(2)\right) / \Gamma, \Gamma \subset \mathrm{SL}_{2}(\mathbb{C}) \ltimes \mathbb{C}^{2}$ lattice.
- [Kath-L 20] G_{J} / Γ, where Γ is a lattice of the unimodular solvable G_{J}. This is a counterexample to a conjecture made in [Cleyton-Ivanov 08] (they proved that Bryant's example is the only ERP G_{2}-structure whose intrinsic torsion is parallel with respect to the canonical G_{2} connection).
[Kath-L 20] $\mathfrak{g}_{J}=\mathfrak{a} \ltimes \mathbb{R}^{4}$, where $\mathfrak{a} \subset \mathfrak{s l}_{4}(\mathbb{R})$ is the subspace of all diagonal matrices, i.e., $G_{J}=\exp (\mathfrak{a}) \ltimes \mathbb{R}^{4}$. Consider the matrices in $\mathrm{SL}_{4}(\mathbb{Z})$,

$$
A_{1}:=\left[\begin{array}{cccc}
0 & 0 & -1 & -1 \\
0 & 0 & -4 & -5 \\
1 & 0 & 4 & 0 \\
0 & 1 & 1 & 5
\end{array}\right], \quad A_{2}:=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-4 & -1 & -5 & -5 \\
0 & 0 & 3 & -1 \\
1 & 1 & 1 & 4
\end{array}\right], \quad A_{3}:=\left[\begin{array}{cccc}
4 & 1 & 2 & 3 \\
3 & 8 & 9 & 14 \\
-1 & -1 & 0 & -3 \\
-1 & -2 & -3 & -3
\end{array}\right] .
$$

There exists $\phi \in \mathrm{SL}_{4}(\mathbb{R})$ such that $\phi A_{j} \phi^{-1}, j=1,2,3$ are all diagonal, positive and generate a lattice Λ of $\exp (\mathfrak{a})$.

Since they leave invariant the subset $\phi\left(\mathbb{Z}^{4}\right) \subset \mathbb{R}^{4}$, the set

$$
\Gamma:=\Lambda \ltimes \phi\left(\mathbb{Z}^{4}\right)
$$

is a subgroup of G_{J}. Moreover, Γ is a lattice in G_{J} since $\Lambda \subset \exp (\mathfrak{a})$ and $\phi\left(\mathbb{Z}^{4}\right) \subset \mathbb{R}^{4}$ are both discrete and cocompact.

Remark. The three matrices correspond to the action by multiplication of three multiplicatively independent units in a totally real quartic number field K on the ring \mathcal{O}_{K} of integers.

Many thanks for your attention !!

