Some questions apropos of Kirchhoff's theorem

Lázaro O. Rodríguez Federal University of Rio de Janeiro

Virtual Meeting 'Special geometries and gauge theory' 01/07/2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Kirchhoff's theorem

Theorem (Kirchhoff 1947)

If the sphere S^n admits an almost complex structure, then S^{n+1} is parallelizable.

Obs: it is not an existence theorem, it is a constructive one.

Theorem (Kirchhoff 1947)

If the sphere S^n admits an almost complex structure, then S^{n+1} is parallelizable.

Obs: it is not an existence theorem, it is a constructive one.

・ロト・西ト・山下・山下・ 日・ つんの

Theorem (Kirchhoff 1947)

If the sphere S^n admits an almost complex structure, then S^{n+1} is parallelizable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Obs: it is not an existence theorem, it is a constructive one.

1) 1947 S^n is almost complex $\implies S^{n+1}$ is parallelizable. (Kirchhoff)

2) 1951 S^n is almost complex $\implies n = 0, 2, 6$ (Borel-Serre)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3) 1958 S^{n+1} is parallelizable $\implies n = 0, 2, 6$ (Kervaire, Bott-Milnor)
- 4) 1960 S^{n+1} is an *H*-space $\iff n = 0, 2, 6$ (Adams)

- 1) 1947 S^n is almost complex $\implies S^{n+1}$ is parallelizable. (Kirchhoff)
- 2) 1951 S^n is almost complex $\implies n = 0, 2, 6$ (Borel-Serre)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3) 1958 S^{n+1} is parallelizable $\implies n = 0, 2, 6$ (Kervaire, Bott-Milnor)
- 4) 1960 S^{n+1} is an *H*-space $\iff n = 0, 2, 6$ (Adams)

- 1) 1947 S^n is almost complex $\implies S^{n+1}$ is parallelizable. (Kirchhoff)
- 2) 1951 S^n is almost complex $\implies n = 0, 2, 6$ (Borel-Serre)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3) 1958 S^{n+1} is parallelizable $\implies n = 0, 2, 6$ (Kervaire, Bott-Milnor)
- 4) 1960 S^{n+1} is an *H*-space $\iff n = 0, 2, 6$ (Adams)

- 1) 1947 S^n is almost complex $\implies S^{n+1}$ is parallelizable. (Kirchhoff)
- 2) 1951 S^n is almost complex $\implies n = 0, 2, 6$ (Borel-Serre)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3) 1958 S^{n+1} is parallelizable $\implies n = 0, 2, 6$ (Kervaire, Bott-Milnor)
- 4) 1960 S^{n+1} is an *H*-space $\iff n = 0, 2, 6$ (Adams)

- 1) 1947 S^n is almost complex $\implies S^{n+1}$ is parallelizable. (Kirchhoff)
- 2) 1951 S^n is almost complex $\implies n = 0, 2, 6$ (Borel-Serre)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3) 1958 S^{n+1} is parallelizable $\implies n = 0, 2, 6$ (Kervaire, Bott-Milnor)
- 4) 1960 S^{n+1} is an *H*-space $\iff n = 0, 2, 6$ (Adams)

Almost complex: S^0, S^2, S^6 omplex manifolds: S^0, S^2, S^6

Parallelizable: S^1, S^3, S^7 Lie groups: S^1, S^3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Almost complex: S^0, S^2, S^6 Parallelizecomplex manifolds: S^0, S^2, S^6 ?Lie group

Parallelizable: S^1, S^3, S^7 Lie groups: S^1, S^3

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2, S^6 ?Lie groups: S^1, S^3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2, S^6 ?Lie groups: S^1, S^3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2, S^6 ?Lie groups: S^1, S^3

Lie groups spheres are the integrable parallelizable spheres.

Complex spheres are the integrable almost complex spheres.

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2, S^6 ?Lie groups: S^1, S^3

Lie groups spheres are the integrable parallelizable spheres.

Complex spheres are the integrable almost complex spheres.

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2, S^6 ?Lie groups: S^1, S^3

Lie groups spheres are the integrable parallelizable spheres.

Complex spheres are the integrable almost complex spheres.

In the hypothetical case that there is no integrable almost complex structure on S^6 the following statement is true a fortiori:

 S^n is a complex manifold if and only if S^{n+1} is a Lie group

What is the bridge? Kirchhoff's theorem

 S^n is an almost complex sphere $\iff S^{n+1}$ is parallelizable.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In the hypothetical case that there is no integrable almost complex structure on S^6 the following statement is true a fortiori:

 S^n is a complex manifold if and only if S^{n+1} is a Lie group

What is the bridge? Kirchhoff's theorem

 S^n is an almost complex sphere $\iff S^{n+1}$ is parallelizable.

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2 Lie groups: S^1, S^3

In the hypothetical case that there is no integrable almost complex structure on S^6 the following statement is true a fortiori:

 S^n is a complex manifold if and only if S^{n+1} is a Lie group

What is the bridge? Kirchhoff's theorem

 S^n is an almost complex sphere $\iff S^{n+1}$ is parallelizable.

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2 Lie groups: S^1, S^3

In the hypothetical case that there is no integrable almost complex structure on S^6 the following statement is true a fortiori:

 S^n is a complex manifold if and only if S^{n+1} is a Lie group

What is the bridge? Kirchhoff's theorem

 S^n is an almost complex sphere $\iff S^{n+1}$ is parallelizable.

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2 Lie groups: S^1, S^3

In the hypothetical case that there is no integrable almost complex structure on S^6 the following statement is true a fortiori:

 S^n is a complex manifold if and only if S^{n+1} is a Lie group

What is the bridge? Kirchhoff's theorem

 S^n is an almost complex sphere $\iff S^{n+1}$ is parallelizable.

Almost complex: S^0, S^2, S^6 Parallelizable: S^1, S^3, S^7 Complex manifolds: S^0, S^2 Lie groups: S^1, S^3

In the hypothetical case that there is no integrable almost complex structure on S^6 the following statement is true a fortiori:

 S^n is a complex manifold if and only if S^{n+1} is a Lie group

What is the bridge? Kirchhoff's theorem

 S^n is an almost complex sphere $\iff S^{n+1}$ is parallelizable.

parallelism = $\{e\}$ -structure

 $\{X_1, \dots, X_n\}$ smooth global frame on M, there is associated a flat connection ∇^c (the canonical connection)

 $\nabla_Y^c \left(\sum f^i X_i \right) = \sum Y(f^i) X_i \quad \text{for } Y \in \mathbf{X}(M)$

The structure equations of ∇^c are:

$$d heta^i = rac{1}{2} T^i_{\ jk} \, heta^j \wedge heta^k$$
 and $\Omega^i_j = 0,$

 $\{\theta^1, \cdots, \theta^n\}$ is the coframe dual of $\{X_1, \cdots, X_n\}$. Torsion tensor of ∇^c :

$$T^{c}(X_{j}, X_{k}) = \sum_{i=1}^{n} T^{i}_{jk} X_{i} = -[X_{j}, X_{k}].$$

 $T^{i}_{\ jk}$ are the structure functions.

parallelism = $\{e\}$ -structure

 $\{X_1, \dots, X_n\}$ smooth global frame on M, there is associated a flat connection ∇^c (the canonical connection)

 $\nabla_Y^c \left(\sum f^i X_i \right) = \sum Y(f^i) X_i \quad \text{for } Y \in \mathbf{X}(M)$

The structure equations of ∇^c are:

$$d heta^i = rac{1}{2} T^i_{\ jk} \, heta^j \wedge heta^k$$
 and $\Omega^i_j = 0,$

 $\{\theta^1, \cdots, \theta^n\}$ is the coframe dual of $\{X_1, \cdots, X_n\}$. Torsion tensor of ∇^c :

$$T^{c}(X_{j}, X_{k}) = \sum_{i=1}^{n} T^{i}_{jk} X_{i} = -[X_{j}, X_{k}].$$

(日) (日) (日) (日) (日) (日) (日)

 $T^{i}_{\ jk}$ are the structure functions.

parallelism = $\{e\}$ -structure

 $\{X_1, \dots, X_n\}$ smooth global frame on M, there is associated a flat connection ∇^c (the canonical connection)

 $\nabla_Y^c \left(\sum f^i X_i \right) = \sum Y(f^i) X_i \quad \text{for } Y \in \mathbf{X}(M)$

The structure equations of ∇^c are:

$$d heta^i = rac{1}{2}T^i_{\ jk}\, heta^j\wedge heta^k$$
 and $\Omega^i_j = 0,$

 $\{\theta^1, \cdots, \theta^n\}$ is the coframe dual of $\{X_1, \cdots, X_n\}$.

Torsion tensor of ∇^c :

$$T^{c}(X_{j}, X_{k}) = \sum_{i=1}^{n} T^{i}_{jk} X_{i} = -[X_{j}, X_{k}].$$

 $T^i_{\ jk}$ are the structure functions.

parallelism = $\{e\}$ -structure

 $\{X_1, \dots, X_n\}$ smooth global frame on M, there is associated a flat connection ∇^c (the canonical connection)

 $\nabla_Y^c \left(\sum f^i X_i \right) = \sum Y(f^i) X_i \quad \text{ for } Y \in \mathbf{X}(M)$

The structure equations of ∇^c are:

$$d heta^i = rac{1}{2}T^i_{\ jk}\, heta^j\wedge heta^k$$
 and $\Omega^i_j = 0,$

 $\{\theta^1, \cdots, \theta^n\}$ is the coframe dual of $\{X_1, \cdots, X_n\}$. Torsion tensor of ∇^c :

$$T^{c}(X_{j}, X_{k}) = \sum_{i=1}^{n} T^{i}_{jk} X_{i} = -[X_{j}, X_{k}].$$

 $T^i_{\ jk}$ are the structure functions.

$\begin{aligned} \nabla_Y^c \left(\sum f^i X_i \right) &= \sum Y(f^i) X_i \quad \text{for } Y \in \mathbf{X}(M), \\ \text{Torsion tensor of } \nabla^c \colon \quad T^c(X_j, X_k) = \sum_{i=1}^n T^i_{\ jk} \, X_i = -[X_j, X_k] \end{aligned}$

The torsion tensor T^c is parallel \iff structure functions $T^i_{\ jk}$ are constant

A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions $T^i_{\ jk}$ are constant, in which case M is a Lie group.

 $\begin{aligned} \nabla_Y^c \left(\sum f^i X_i \right) &= \sum Y(f^i) X_i \quad \text{for } Y \in \mathbf{X}(M), \\ \text{Torsion tensor of } \nabla^c \colon \quad T^c(X_j, X_k) = \sum_{i=1}^n T^i_{\ ik} X_i = -[X_j, X_k] \end{aligned}$

The torsion tensor T^c is parallel \iff structure functions $T^i_{\ jk}$ are constant

A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions T^i_{jk} are constant, in which case M is a Lie group.

$$\nabla_Y^c \left(\sum f^i X_i \right) = \sum Y(f^i) X_i \quad \text{for } Y \in \mathbf{X}(M),$$

Torsion tensor of ∇^c : $T^c(X_j, X_k) = \sum_{i=1}^n T^i_{\ ik} X_i = -[X_j, X_k]$

The torsion tensor T^c is parallel \iff structure functions $T^i_{\ jk}$ are constant

A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions T^i_{jk} are constant, in which case M is a Lie group.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\nabla_Y^c \left(\sum f^i X_i \right) = \sum Y(f^i) X_i \quad \text{for } Y \in \mathbf{X}(M),$$

Torsion tensor of ∇^c : $T^c(X_j, X_k) = \sum_{i=1}^n T^i_{\ ik} X_i = -[X_j, X_k]$

The torsion tensor T^c is parallel \iff structure functions $T^i_{\ jk}$ are constant

A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions $T^i_{\ jk}$ are constant, in which case M is a Lie group.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fix the canonical basis of the octonions \mathbb{O} : 1 and e_i , $i = 1, \dots, 7$ with multiplication rule: $e_i e_j = -\delta_{ij} + a_{ijk}e_k$, the structure constants a_{ijk} are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_i on the sphere $S^7 \subset \mathbb{O}$ of octonions of norm one:

$$X_i(x) = e_i x$$
 for $x \in S^7$, $i = 1, \dots, 7$.

Computing the structure functions of this global frame:

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x) = 2a_{ijk}e_k x - 2[e_i, e_j, x] = 2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x),$$

[a,b,c] := (ab)c - a(bc) is the associator, $\langle a,b \rangle$ is the scalar product in $\mathbb{O}.$

Fix the canonical basis of the octonions \mathbb{O} : 1 and e_i , $i = 1, \dots, 7$ with multiplication rule: $e_i e_j = -\delta_{ij} + a_{ijk}e_k$, the structure constants a_{ijk} are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_i on the sphere $S^7 \subset \mathbb{O}$ of octonions of norm one:

$$X_i(x) = e_i x$$
 for $x \in S^7$, $i = 1, \dots, 7$.

Computing the structure functions of this global frame:

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x) = 2a_{ijk}e_k x - 2[e_i, e_j, x] = 2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x),$$

[a,b,c] := (ab)c - a(bc) is the associator, $\langle a,b \rangle$ is the scalar product in $\mathbb{O}.$

Fix the canonical basis of the octonions \mathbb{O} : 1 and e_i , $i = 1, \dots, 7$ with multiplication rule: $e_i e_j = -\delta_{ij} + a_{ijk}e_k$, the structure constants a_{ijk} are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_i on the sphere $S^7 \subset \mathbb{O}$ of octonions of norm one:

$$X_i(x) = e_i x$$
 for $x \in S^7$, $i = 1, \dots, 7$.

Computing the structure functions of this global frame:

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x) = 2a_{ijk}e_k x - 2[e_i, e_j, x] = 2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x),$$

[a,b,c] := (ab)c - a(bc) is the associator, $\langle a,b \rangle$ is the scalar product in $\mathbb{O}.$

Fix the canonical basis of the octonions \mathbb{O} : 1 and e_i , $i = 1, \dots, 7$ with multiplication rule: $e_i e_j = -\delta_{ij} + a_{ijk}e_k$, the structure constants a_{ijk} are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_i on the sphere $S^7 \subset \mathbb{O}$ of octonions of norm one:

$$X_i(x) = e_i x$$
 for $x \in S^7$, $i = 1, \dots, 7$.

Computing the structure functions of this global frame:

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x)$$

= $2a_{ijk}e_k x - 2[e_i, e_j, x]$
= $2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x)$.

[a,b,c]:=(ab)c-a(bc) is the associator, $\langle a,b \rangle$ is the scalar product in $\mathbb O.$

Fix the canonical basis of the octonions \mathbb{O} : 1 and e_i , $i = 1, \dots, 7$ with multiplication rule: $e_i e_j = -\delta_{ij} + a_{ijk}e_k$, the structure constants a_{ijk} are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_i on the sphere $S^7 \subset \mathbb{O}$ of octonions of norm one:

$$X_i(x) = e_i x$$
 for $x \in S^7$, $i = 1, \dots, 7$.

Computing the structure functions of this global frame:

$$\begin{split} [X_i, X_j](x) &= e_i(e_j x) - e_j(e_i x) \\ &= 2a_{ijk}e_k x - 2[e_i, e_j, x] \\ &= 2\left(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle\right) X_k(x), \end{split}$$

[a,b,c]:=(ab)c-a(bc) is the associator, $\langle a,b \rangle$ is the scalar product in $\mathbb O.$

Fix the canonical basis of the octonions \mathbb{O} : 1 and e_i , $i = 1, \dots, 7$ with multiplication rule: $e_i e_j = -\delta_{ij} + a_{ijk}e_k$, the structure constants a_{ijk} are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_i on the sphere $S^7 \subset \mathbb{O}$ of octonions of norm one:

$$X_i(x) = e_i x$$
 for $x \in S^7$, $i = 1, \dots, 7$.

Computing the structure functions of this global frame:

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x)$$

= $2a_{ijk}e_k x - 2[e_i, e_j, x]$
= $2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x)$

[a,b,c]:=(ab)c-a(bc) is the associator, $\langle a,b \rangle$ is the scalar product in $\mathbb O.$
$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x)$$

= $2a_{ijk}e_k x - 2[e_i, e_j, x]$
= $2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x),$

[a,b,c]:=(ab)c-a(bc) is the associator, $\langle a,b\rangle$ is the scalar product in $\mathbb O.$

- The non-associativity of the octonions ([a, b, c] ≠ 0) causes the non-constancy of the structure functions of the parallelism on S⁷. The non-commutativity of the algebra causes the non-vanishing of the torsion.
- ▶ Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and −1.
- We used the alternativity of the octonionic product to prove the second equality.

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x)$$

= $2a_{ijk}e_k x - 2[e_i, e_j, x]$
= $2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x),$

[a,b,c] := (ab)c - a(bc) is the associator, $\langle a,b \rangle$ is the scalar product in \mathbb{O} .

- The non-associativity of the octonions ([a, b, c] ≠ 0) causes the non-constancy of the structure functions of the parallelism on S⁷. The non-commutativity of the algebra causes the non-vanishing of the torsion.
- ► Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and -1.
- We used the alternativity of the octonionic product to prove the second equality.

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x)$$

= $2a_{ijk}e_k x - 2[e_i, e_j, x]$
= $2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x),$

[a,b,c]:=(ab)c-a(bc) is the associator, $\langle a,b\rangle$ is the scalar product in $\mathbb O.$

- ► The non-associativity of the octonions ([a, b, c] ≠ 0) causes the non-constancy of the structure functions of the parallelism on S⁷. The non-commutativity of the algebra causes the non-vanishing of the torsion.
- ► Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and -1.
- We used the alternativity of the octonionic product to prove the second equality.

$$[X_i, X_j](x) = e_i(e_j x) - e_j(e_i x)$$

= $2a_{ijk}e_k x - 2[e_i, e_j, x]$
= $2(a_{ijk} - \langle [e_i, e_j, x], e_k x \rangle) X_k(x),$

[a,b,c]:=(ab)c-a(bc) is the associator, $\langle a,b\rangle$ is the scalar product in $\mathbb O.$

- ► The non-associativity of the octonions ([a, b, c] ≠ 0) causes the non-constancy of the structure functions of the parallelism on S⁷. The non-commutativity of the algebra causes the non-vanishing of the torsion.
- ► Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and -1.
- We used the alternativity of the octonionic product to prove the second equality.

 $Im \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.

 $S^6 \subset Im \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^6$ induces an orthogonal linear transformation:

$$R_y: \mathbb{O} \to \mathbb{O}$$
 such that $(R_y)^2 = -\operatorname{Id}$.

 R_y preserves the plane spanned by 1 and y, $(1 \rightarrow y, y \rightarrow -1)$. \Downarrow R_y preserves its orthogonal six dimensional plane $\langle 1, y \rangle^{\perp}$, which can be identified with $T_y S^6 \subset \mathbb{O}$.

$Im \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.

 $S^6 \subset Im \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^6$ induces an orthogonal linear transformation:

$$R_y: \mathbb{O} \to \mathbb{O}$$
 such that $(R_y)^2 = -\operatorname{Id}$.

 R_y preserves the plane spanned by 1 and y, $(1 \rightarrow y, y \rightarrow -1)$. \Downarrow R_y preserves its orthogonal six dimensional plane $\langle 1, y \rangle^{\perp}$, which can be identified with $T_y S^6 \subset \mathbb{O}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$Im \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$. $S^6 \subset Im \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^6$ induces an orthogonal linear transformation:

$$R_y: \mathbb{O} \to \mathbb{O}$$
 such that $(R_y)^2 = -\operatorname{Id}$.

 R_y preserves the plane spanned by 1 and y, $(1 \rightarrow y, y \rightarrow -1)$. \Downarrow R_y preserves its orthogonal six dimensional plane $\langle 1, y \rangle^{\perp}$, which can be identified with $T_y S^6 \subset \mathbb{O}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 $Im \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.

 $S^6 \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^6$ induces an orthogonal linear transformation:

 $R_y: \mathbb{O} \to \mathbb{O}$ such that $(R_y)^2 = -\operatorname{Id}$.

 R_y preserves the plane spanned by 1 and y, $(1 \rightarrow y, y \rightarrow -1)$. \downarrow R_y preserves its orthogonal six dimensional plane $\langle 1, y \rangle^{\perp}$, which can be identified with $T_y S^6 \subset \mathbb{O}$.

 $Im \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.

 $S^6 \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^6$ induces an orthogonal linear transformation:

 $R_y: \mathbb{O} \to \mathbb{O}$ such that $(R_y)^2 = -\operatorname{Id}$.

 R_y preserves the plane spanned by 1 and y, $(1 \rightarrow y, y \rightarrow -1)$.

 R_y preserves its orthogonal six dimensional plane $\langle 1, y \rangle^{\perp}$, which can be identified with $T_y S^6 \subset \mathbb{O}$.

 $Im \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.

 $S^6 \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^6$ induces an orthogonal linear transformation:

$$R_y: \mathbb{O} \to \mathbb{O}$$
 such that $(R_y)^2 = -\operatorname{Id}$.

 R_y preserves the plane spanned by 1 and y, $(1 \rightarrow y, y \rightarrow -1)$. \Downarrow R_y preserves its orthogonal six dimensional plane $\langle 1, y \rangle^{\perp}$, which can be identified with $T_y S^6 \subset \mathbb{O}$.

 $Im \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.

 $S^6 \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^6$ induces an orthogonal linear transformation:

$$R_y: \mathbb{O} \to \mathbb{O}$$
 such that $(R_y)^2 = -\operatorname{Id}$.

 R_y preserves the plane spanned by 1 and y, $(1 \rightarrow y, y \rightarrow -1)$. \Downarrow R_y preserves its orthogonal six dimensional plane $\langle 1, y \rangle^{\perp}$, which can be identified with $T_y S^6 \subset \mathbb{O}$.

$$N(X,Y) = [JX, JY] - [X,Y] - J[X,JY] - J[JX,Y]$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X : S^6 \to \mathbb{R}^7$, $Y : S^6 \to \mathbb{R}^7$ by [X,Y] = dY(X) - dX(Y), where dX and dY denote the differential of X and Y respectively as maps

$$N(X,Y) = d(JY)(JX) - d(JX)(JY) - dY(X) + dX(Y) - J(d(JY)(X) - dX(JY)) - J(dY(JX) - d(JX)(Y)).$$

By definition $J_a Y_a = Y_a \cdot a$ where $a \in S^6$ and Y is a vector field on S^6 , differentiating we get:

$$d(JY)(JX) = J(dY(JX)) + Y \cdot JX,$$

$$J(d(JY)(X)) = (-1)dY(X) + J(Y \cdot X),$$

then

$$N(X,Y) = [JX, JY] - [X, Y] - J[X, JY] - J[JX, Y]$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X : S^6 \to \mathbb{R}^7$, $Y : S^6 \to \mathbb{R}^7$ by [X,Y] = dY(X) - dX(Y), where dX and dY denote the differential of X and Y respectively as maps

$$N(X,Y) = d(JY)(JX) - d(JX)(JY) - dY(X) + dX(Y) - J(d(JY)(X) - dX(JY)) - J(dY(JX) - d(JX)(Y)).$$

By definition $J_a Y_a = Y_a \cdot a$ where $a \in S^6$ and Y is a vector field on S^6 , differentiating we get:

$$d(JY)(JX) = J(dY(JX)) + Y \cdot JX,$$

$$J(d(JY)(X)) = (-1)dY(X) + J(Y \cdot X),$$

then

$$N(X,Y) = [JX,JY] - [X,Y] - J[X,JY] - J[JX,Y]$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^6 \to \mathbb{R}^7$, $Y: S^6 \to \mathbb{R}^7$ by [X, Y] = dY(X) - dX(Y), where dX and dY denote the differential of X and Y respectively as maps

$$N(X,Y) = d(JY)(JX) - d(JX)(JY) - dY(X) + dX(Y) - J(d(JY)(X) - dX(JY)) - J(dY(JX) - d(JX)(Y)).$$

By definition $J_a Y_a = Y_a \cdot a$ where $a \in S^6$ and Y is a vector field on S^6 , differentiating we get:

$$d(JY)(JX) = J(dY(JX)) + Y \cdot JX,$$

$$J(d(JY)(X)) = (-1)dY(X) + J(Y \cdot X),$$

then

$$N(X,Y) = [JX,JY] - [X,Y] - J[X,JY] - J[JX,Y]$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^6 \to \mathbb{R}^7$, $Y: S^6 \to \mathbb{R}^7$ by [X, Y] = dY(X) - dX(Y), where dX and dY denote the differential of X and Y respectively as maps

$$N(X,Y) = d(JY)(JX) - d(JX)(JY) - dY(X) + dX(Y) - J (d(JY)(X) - dX(JY)) - J (dY(JX) - d(JX)(Y)).$$

By definition $J_a Y_a = Y_a \cdot a$ where $a \in S^6$ and Y is a vector field on S^6 , differentiating we get:

$$d(JY)(JX) = J(dY(JX)) + Y \cdot JX,$$

$$J(d(JY)(X)) = (-1)dY(X) + J(Y \cdot X),$$

then

 $N(X,Y) = Y \cdot JX - X \cdot JY - J(Y \cdot X) + J(X \cdot Y).$

(ロ) (同) (三) (三) (三) (○) (○)

$$N(X,Y) = [JX,JY] - [X,Y] - J[X,JY] - J[JX,Y]$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^6 \to \mathbb{R}^7$, $Y: S^6 \to \mathbb{R}^7$ by [X, Y] = dY(X) - dX(Y), where dX and dY denote the differential of X and Y respectively as maps

$$N(X,Y) = d(JY)(JX) - d(JX)(JY) - dY(X) + dX(Y) - J (d(JY)(X) - dX(JY)) - J (dY(JX) - d(JX)(Y)).$$

By definition $J_a Y_a = Y_a \cdot a$ where $a \in S^6$ and Y is a vector field on S^6 , differentiating we get:

$$d(JY)(JX) = J(dY(JX)) + Y \cdot JX,$$

$$J(d(JY)(X)) = (-1)dY(X) + J(Y \cdot X),$$

then

 $N(X,Y) = Y \cdot JX - X \cdot JY - J(Y \cdot X) + J(X \cdot Y).$

(ロ) (同) (三) (三) (三) (○) (○)

$$N(X,Y) = [JX,JY] - [X,Y] - J[X,JY] - J[JX,Y]$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^6 \to \mathbb{R}^7$, $Y: S^6 \to \mathbb{R}^7$ by [X, Y] = dY(X) - dX(Y), where dX and dY denote the differential of X and Y respectively as maps

$$N(X,Y) = d(JY)(JX) - d(JX)(JY) - dY(X) + dX(Y) - J (d(JY)(X) - dX(JY)) - J (dY(JX) - d(JX)(Y)).$$

By definition $J_a Y_a = Y_a \cdot a$ where $a \in S^6$ and Y is a vector field on S^6 , differentiating we get:

$$d(JY)(JX) = J(dY(JX)) + Y \cdot JX,$$

$$J(d(JY)(X)) = (-1)dY(X) + J(Y \cdot X),$$

then

$$N(X,Y) = Y \cdot JX - X \cdot JY - J(Y \cdot X) + J(X \cdot Y).$$

For $b, c \in T_a S^6$ we get:

$$N_a(b,c) = c \cdot (b \cdot a) - b \cdot (c \cdot a) - (c \cdot b) \cdot a + (b \cdot c) \cdot a$$
$$= 2[a,b,c].$$

The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$N(X,Y) = Y \cdot JX - X \cdot JY - J(Y \cdot X) + J(X \cdot Y).$$

For $b, c \in T_a S^6$ we get:

$$N_a(b,c) = c \cdot (b \cdot a) - b \cdot (c \cdot a) - (c \cdot b) \cdot a + (b \cdot c) \cdot a$$
$$= 2[a,b,c].$$

The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$N(X,Y) = Y \cdot JX - X \cdot JY - J(Y \cdot X) + J(X \cdot Y).$$

For $b, c \in T_a S^6$ we get:

$$N_a(b,c) = c \cdot (b \cdot a) - b \cdot (c \cdot a) - (c \cdot b) \cdot a + (b \cdot c) \cdot a$$
$$= 2[a,b,c].$$

The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$N(X,Y) = Y \cdot JX - X \cdot JY - J(Y \cdot X) + J(X \cdot Y).$$

For $b, c \in T_a S^6$ we get:

$$N_a(b,c) = c \cdot (b \cdot a) - b \cdot (c \cdot a) - (c \cdot b) \cdot a + (b \cdot c) \cdot a$$
$$= 2[a,b,c].$$

The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$N(X,Y) = Y \cdot JX - X \cdot JY - J(Y \cdot X) + J(X \cdot Y).$$

For $b, c \in T_a S^6$ we get:

$$N_a(b,c) = c \cdot (b \cdot a) - b \cdot (c \cdot a) - (c \cdot b) \cdot a + (b \cdot c) \cdot a$$
$$= 2[a,b,c].$$

The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kirchhoff's construction is modeled on the previous example, in fact its proof reverses this process, he reconstructs the 'multiplication' of \mathbb{R}^8 from the almost complex structure on S^6 .

The Kirchhoff's construction can be divided in two parts:

- 1) To extend the almost complex structure J_y on $y \in S^6$ to an almost complex structure \hat{J}_y on \mathbb{R}^8 .
- 2) To construct a global frame σ on S^7 from \hat{J} .

Notation:

 $\mathbb{R}^8 = \langle e_8 \rangle \oplus \mathbb{R}^7, \, S^7 \subset \mathbb{R}^8,$

 $S^6 \subset \mathbb{R}^7$ the equator of S^7 with respect to the north pole $e_8 \in S^7$.

Kirchhoff's construction is modeled on the previous example, in fact its proof reverses this process, he reconstructs the 'multiplication' of \mathbb{R}^8 from the almost complex structure on S^6 .

The Kirchhoff's construction can be divided in two parts:

- 1) To extend the almost complex structure J_y on $y \in S^6$ to an almost complex structure \hat{J}_y on \mathbb{R}^8 .
- 2) To construct a global frame σ on S^7 from \hat{J} .

Notation:

 $\mathbb{R}^8=\langle e_8
angle\oplus\mathbb{R}^7$, $S^7\subset\mathbb{R}^8$,

 $S^6 \subset \mathbb{R}^7$ the equator of S^7 with respect to the north pole $e_8 \in S^7$.

To extend the almost complex structure J_y on $y \in S^6$ to an almost complex structure \hat{J}_y on \mathbb{R}^8 .

$$S^7 \subset \mathbb{R}^8 = \langle e_8 \rangle \oplus \mathbb{R}^7,$$

 $S^6 \subset \mathbb{R}^7$ the equator of S^7 with respect to $e_8 \in S^7$.

Given $y \in S^6$ denote by V_y the 6-dimensional vector subspace of \mathbb{R}^8 parallel to the tangent space $T_y(S^6)$ in \mathbb{R}^8 .

Define a linear transformation $\hat{J}_y : \mathbb{R}^8 \to \mathbb{R}^8$ by:

$$\hat{J}_y(e_8) := y, \quad \hat{J}_y(y) := -e_8 \quad \hat{J}_y(z) := J_y(z) \text{ for } z \in V_y.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Note that $\hat{J}_y^2 = -Id$.

To extend the almost complex structure J_y on $y \in S^6$ to an almost complex structure \hat{J}_y on \mathbb{R}^8 .

$$S^7 \subset \mathbb{R}^8 = \langle e_8 \rangle \oplus \mathbb{R}^7,$$

 $S^6 \subset \mathbb{R}^7$ the equator of S^7 with respect to $e_8 \in S^7$.

Given $y \in S^6$ denote by V_y the 6-dimensional vector subspace of \mathbb{R}^8 parallel to the tangent space $T_y(S^6)$ in \mathbb{R}^8 .

Define a linear transformation $\hat{J}_y : \mathbb{R}^8 \to \mathbb{R}^8$ by:

$$\hat{J}_y(e_8) := y, \quad \hat{J}_y(y) := -e_8 \quad \hat{J}_y(z) := J_y(z) \text{ for } z \in V_y.$$

Note that $\hat{J}_{y}^{2} = -Id$.

To extend the almost complex structure J_y on $y \in S^6$ to an almost complex structure \hat{J}_y on \mathbb{R}^8 .

$$S^7 \subset \mathbb{R}^8 = \langle e_8 \rangle \oplus \mathbb{R}^7$$
,
 $S^6 \subset \mathbb{R}^7$ the equator of S^7 with respect to $e_8 \in S^7$.

Given $y \in S^6$ denote by V_y the 6-dimensional vector subspace of \mathbb{R}^8 parallel to the tangent space $T_y(S^6)$ in \mathbb{R}^8 .

Define a linear transformation $\hat{J}_y: \mathbb{R}^8 \to \mathbb{R}^8$ by:

$$\hat{J}_y(e_8) := y, \quad \hat{J}_y(y) := -e_8 \quad \hat{J}_y(z) := J_y(z) \text{ for } z \in V_y.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Note that $\hat{J}_y^2 = -Id$.

Let $x \in \mathbb{R}^8$, then it can be written uniquely as follows:

$$x = \alpha e_8 + \beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \ge 0, \quad \text{and} \quad y \in S^6.$$

Define the linear transformation:

$$\sigma_x : \mathbb{R}^8 \to \mathbb{R}^8, \quad \sigma_x := \alpha \, Id + \beta \hat{J}_y$$

 $\hat{J}_y^2 = -Id \implies \sigma_x$ is an isomorphism. Note also that $\sigma_x(e_8) = x$. $\sigma_x|_{\mathbb{R}^7}: \mathbb{R}^7 \to T_x(S^7) \quad x \in S^7,$

we get the desire linear frame.

In fact, $\mathbb{R}^7 = \langle y, V_y \rangle$, $\sigma_x(y) \perp x$ and $\sigma_x(z) \perp x$, $z \in V_y$, $x \in \mathbb{R}^8$, then can be considered as elements of $T_x(S^7)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let $x \in \mathbb{R}^8$, then it can be written uniquely as follows:

 $x = \alpha e_8 + \beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \ge 0, \quad \text{and} \quad y \in S^6.$

Define the linear transformation:

$$\sigma_x : \mathbb{R}^8 \to \mathbb{R}^8, \quad \sigma_x := \alpha \, Id + \beta \hat{J}_y$$

 $\hat{J}_y^2 = -Id \implies \sigma_x$ is an isomorphism. Note also that $\sigma_x(e_8) = x$. $\sigma_x|_{\mathbb{R}^7}: \mathbb{R}^7 \to T_x(S^7) \quad x \in S^7,$

we get the desire linear frame.

In fact, $\mathbb{R}^7 = \langle y, V_y \rangle$, $\sigma_x(y) \perp x$ and $\sigma_x(z) \perp x$, $z \in V_y$, $x \in \mathbb{R}^8$, then can be considered as elements of $T_x(S^7)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let $x \in \mathbb{R}^8$, then it can be written uniquely as follows:

 $x = \alpha e_8 + \beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \ge 0, \quad \text{and} \quad y \in S^6.$

Define the linear transformation:

$$\sigma_x : \mathbb{R}^8 \to \mathbb{R}^8, \quad \sigma_x := \alpha \, Id + \beta \hat{J}_y$$

 $\hat{J}_y^2 = -Id \implies \sigma_x$ is an isomorphism. Note also that $\sigma_x(e_8) = x$. $\sigma_x|_{\mathbb{R}^7}: \mathbb{R}^7 \to T_x(S^7) \quad x \in S^7,$

we get the desire linear frame.

In fact, $\mathbb{R}^7 = \langle y, V_y \rangle$, $\sigma_x(y) \perp x$ and $\sigma_x(z) \perp x$, $z \in V_y$, $x \in \mathbb{R}^8$, then can be considered as elements of $T_x(S^7)$.

Let $x \in \mathbb{R}^8$, then it can be written uniquely as follows:

 $x = \alpha e_8 + \beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \ge 0, \quad \text{and} \quad y \in S^6.$

Define the linear transformation:

$$\sigma_x : \mathbb{R}^8 \to \mathbb{R}^8, \quad \sigma_x := \alpha \, Id + \beta \hat{J}_y$$

 $\hat{J}_y^2 = -Id \implies \sigma_x$ is an isomorphism. Note also that $\sigma_x(e_8) = x$. $\sigma_x|_{\mathbb{R}^7}: \mathbb{R}^7 \to T_x(S^7) \quad x \in S^7,$

we get the desire linear frame.

In fact, $\mathbb{R}^7 = \langle y, V_y \rangle$, $\sigma_x(y) \perp x$ and $\sigma_x(z) \perp x$, $z \in V_y$, $x \in \mathbb{R}^8$, then can be considered as elements of $T_x(S^7)$.

Let $x \in \mathbb{R}^8$, then it can be written uniquely as follows:

 $x = \alpha e_8 + \beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \ge 0, \quad \text{and} \quad y \in S^6.$

Define the linear transformation:

$$\sigma_x : \mathbb{R}^8 \to \mathbb{R}^8, \quad \sigma_x := \alpha \, Id + \beta \hat{J}_y$$

 $\hat{J}_y^2 = -Id \implies \sigma_x$ is an isomorphism. Note also that $\sigma_x(e_8) = x$. $\sigma_x|_{\mathbb{R}^7}: \ \mathbb{R}^7 \to T_x(S^7) \quad x \in S^7,$

we get the desire linear frame.

In fact, $\mathbb{R}^7 = \langle y, V_y \rangle$, $\sigma_x(y) \perp x$ and $\sigma_x(z) \perp x$, $z \in V_y$, $x \in \mathbb{R}^8$, then can be considered as elements of $T_x(S^7)$.

Note the linear frame σ is smooth at all points of S⁷ except at e₈ and -e₈, where it is only continuous.

- Kirchhoff's theorem does not assume any additional condition on the almost complex structure J.
- ▶ If we start with an almost hermitian structure (g, J) on S^6 , we obtain a Kirchhoff's global frame $\sigma \in SO(8, \hat{g})$, where \hat{g} is a metric extension of g to \mathbb{R}^8 being compatible with the extended almost complex structure \hat{J} .
- The vector fields {X_i(x) := σ_x(e_i)}_{i=1,...,7} defining the parallelism in Kirchhoff's theorem can be written explicitly as:

$$X_i(x) = x_8 e_i - x_i e_8 + \beta(x) J_y \left(e_i - \langle y, e_i \rangle y \right),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Note the linear frame σ is smooth at all points of S⁷ except at e₈ and -e₈, where it is only continuous.
- Kirchhoff's theorem does not assume any additional condition on the almost complex structure J.
- ▶ If we start with an almost hermitian structure (g, J) on S^6 , we obtain a Kirchhoff's global frame $\sigma \in SO(8, \hat{g})$, where \hat{g} is a metric extension of g to \mathbb{R}^8 being compatible with the extended almost complex structure \hat{J} .
- ► The vector fields {X_i(x) := σ_x(e_i)}_{i=1,...,7} defining the parallelism in Kirchhoff's theorem can be written explicitly as:

$$X_i(x) = x_8 e_i - x_i e_8 + \beta(x) J_y \left(e_i - \langle y, e_i \rangle y \right),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Note the linear frame σ is smooth at all points of S^7 except at e_8 and $-e_8$, where it is only continuous.
- Kirchhoff's theorem does not assume any additional condition on the almost complex structure J.
- ▶ If we start with an almost hermitian structure (g, J) on S^6 , we obtain a Kirchhoff's global frame $\sigma \in SO(8, \hat{g})$, where \hat{g} is a metric extension of g to \mathbb{R}^8 being compatible with the extended almost complex structure \hat{J} .
- The vector fields {X_i(x) := σ_x(e_i)}_{i=1,...,7} defining the parallelism in Kirchhoff's theorem can be written explicitly as:

$$X_i(x) = x_8 e_i - x_i e_8 + \beta(x) J_y \left(e_i - \langle y, e_i \rangle y \right),$$

- Note the linear frame σ is smooth at all points of S⁷ except at e₈ and -e₈, where it is only continuous.
- Kirchhoff's theorem does not assume any additional condition on the almost complex structure J.
- ▶ If we start with an almost hermitian structure (g, J) on S^6 , we obtain a Kirchhoff's global frame $\sigma \in SO(8, \hat{g})$, where \hat{g} is a metric extension of g to \mathbb{R}^8 being compatible with the extended almost complex structure \hat{J} .
- The vector fields {X_i(x) := σ_x(e_i)}_{i=1,...,7} defining the parallelism in Kirchhoff's theorem can be written explicitly as:

$$X_i(x) = x_8 e_i - x_i e_8 + \beta(x) J_y \left(e_i - \langle y, e_i \rangle y \right),$$
Main Question

To what extent does the integrability of an almost complex structure J on S^6 imply the integrability of the associated parallelism on S^7 ?

(ロ) (同) (三) (三) (三) (○) (○)

Recently Loubeau and Sá-Earp in *'Harmonic flow of geometric structures'* arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric *G*-structure on (M,g) as a section of the homogeneous fibre bundle $\pi : N := P/G \rightarrow M$, which admits a natural notion of torsion.

They formulated a general theory of harmonicity for geometric structures on a Riemannian manifold (using a Dirichlet energy of sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

 $d^{\mathcal{V}}\sigma = 0 \implies$ super-flat \implies totally geodesic \implies \implies harmonic map \implies harmonic section.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Recently Loubeau and Sá-Earp in *'Harmonic flow of geometric structures'* arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric *G*-structure on (M, g) as a section of the homogeneous fibre bundle $\pi : N := P/G \rightarrow M$, which admits a natural notion of torsion.

They formulated a general theory of harmonicity for geometric structures on a Riemannian manifold (using a Dirichlet energy of sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

 $d^{\mathcal{V}}\sigma = 0 \implies$ super-flat \implies totally geodesic \implies \implies harmonic map \implies harmonic section.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Recently Loubeau and Sá-Earp in *'Harmonic flow of geometric structures'* arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric *G*-structure on (M, g) as a section of the homogeneous fibre bundle $\pi : N := P/G \to M$, which admits a natural notion of torsion.

They formulated a general theory of harmonicity for geometric structures on a Riemannian manifold (using a Dirichlet energy of sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

 $d^{\mathcal{V}}\sigma = 0 \implies$ super-flat \implies totally geodesic \implies \implies harmonic map \implies harmonic section.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Recently Loubeau and Sá-Earp in *'Harmonic flow of geometric structures'* arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric *G*-structure on (M, g) as a section of the homogeneous fibre bundle $\pi : N := P/G \rightarrow M$, which admits a natural notion of torsion.

They formulated a general theory of harmonicity for geometric structures on a Riemannian manifold (using a Dirichlet energy of sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

$$d^{\mathcal{V}}\sigma = 0 \implies$$
 super-flat \implies totally geodesic \implies
 \implies harmonic map \implies harmonic section.

$d^{\mathcal{V}}\sigma = 0 \implies$ super-flat \implies totally geodesic \implies (1) \implies harmonic map \implies harmonic section.

In particular, for parallelisms on a sphere $\sigma : (S^n, g) \to SO(n+1, g)$, it is not hard to check that eg. the Hopf frame on round S^3 is harmonic as a section and integrable, but $d^{\mathcal{V}}\sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere (S^n, g) , what are the explicit conditions of (1) for σ ?

$$d^{\mathcal{V}}\sigma = 0 \implies$$
 super-flat \implies totally geodesic \implies (1)
 \implies harmonic map \implies harmonic section.

In particular, for parallelisms on a sphere $\sigma : (S^n, g) \to SO(n+1, g)$, it is not hard to check that eg. the Hopf frame on round S^3 is harmonic as a section and integrable, but $d^{\mathcal{V}}\sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere (S^n, g) , what are the explicit conditions of (1) for σ ?

$$d^{\mathcal{V}}\sigma = 0 \implies$$
 super-flat \implies totally geodesic \implies (1)
 \implies harmonic map \implies harmonic section.

In particular, for parallelisms on a sphere $\sigma : (S^n, g) \to SO(n+1, g)$, it is not hard to check that eg. the Hopf frame on round S^3 is harmonic as a section and integrable, but $d^{\mathcal{V}}\sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere (S^n, g) , what are the explicit conditions of (1) for σ ?

$$d^{\mathcal{V}}\sigma = 0 \implies$$
 super-flat \implies totally geodesic \implies (1)
 \implies harmonic map \implies harmonic section.

In particular, for parallelisms on a sphere $\sigma : (S^n, g) \to SO(n+1, g)$, it is not hard to check that eg. the Hopf frame on round S^3 is harmonic as a section and integrable, but $d^{\mathcal{V}}\sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere (S^n, g) , what are the explicit conditions of (1) for σ ?

Definition: an *H*-space is a topological space *M* which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an *H*-space structure are S^1 , S^3 and S^7 .

We can rephrase Kirchhoff's theorem as follows:

If S^n admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The point is that the induced multiplication on S^{n+1} is written explicitly in terms of J.

 $m: S^7 \times S^7 \longrightarrow S^7, \quad m(x,y) := \sigma_x(y) / \|\sigma_x(y)\|$

Definition: an *H*-space is a topological space *M* which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an $H\mbox{-}space$ structure are $S^1,\,S^3$ and $S^7.$

We can rephrase Kirchhoff's theorem as follows:

If S^n admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The point is that the induced multiplication on S^{n+1} is written explicitly in terms of J.

 $m: S^7 \times S^7 \longrightarrow S^7, \quad m(x,y) := \sigma_x(y) / \|\sigma_x(y)\|$

Definition: an *H*-space is a topological space *M* which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an H-space structure are S^1 , S^3 and S^7 .

We can rephrase Kirchhoff's theorem as follows:

If S^n admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The point is that the induced multiplication on S^{n+1} is written explicitly in terms of J.

 $m: S^7 \times S^7 \longrightarrow S^7, \quad m(x,y) := \sigma_x(y) / \|\sigma_x(y)\|$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition: an *H*-space is a topological space *M* which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an *H*-space structure are S^1 , S^3 and S^7 .

We can rephrase Kirchhoff's theorem as follows:

If S^n admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The point is that the induced multiplication on S^{n+1} is written explicitly in terms of J.

 $m: S^7 \times S^7 \longrightarrow S^7, \quad m(x,y) := \sigma_x(y) / \|\sigma_x(y)\|$

Definition: an *H*-space is a topological space *M* which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an *H*-space structure are S^1 , S^3 and S^7 .

We can rephrase Kirchhoff's theorem as follows:

If S^n admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The point is that the induced multiplication on S^{n+1} is written explicitly in terms of J.

$$m: S^7 \times S^7 \longrightarrow S^7, \quad m(x,y) := \sigma_x(y) / \|\sigma_x(y)\|$$

H-space structures induced by almost complex structures

Definition: A multiplication $m: S^n \times S^n \longrightarrow S^n$ is homotopy-associative if $m(m \times id) \cong m(id \times m)$

Theorem (James 1957) There exists no homotopy-associative multiplication on S^n unless n = 1 or 3.

As we have already seen the non-associativity of the octonions causes the non-integrability of the almost complex structure induced on S^6 by the octonions.

We would like to relate the probable non-existence of complex structure on S^6 with the lack homotopy associative multiplications on S^7 .

Question: Does the integrability condition of an almost complex structure J on S^6 implies homotopy associativity of the induced multiplication m on S^7 ?

H-space structures induced by almost complex structures

Definition: A multiplication $m: S^n \times S^n \longrightarrow S^n$ is homotopy-associative if $m(m \times id) \cong m(id \times m)$

Theorem (James 1957) There exists no homotopy-associative multiplication on S^n unless n = 1 or 3.

As we have already seen the non-associativity of the octonions causes the non-integrability of the almost complex structure induced on S^6 by the octonions.

We would like to relate the probable non-existence of complex structure on S^6 with the lack homotopy associative multiplications on S^7 .

Question: Does the integrability condition of an almost complex structure J on S^6 implies homotopy associativity of the induced multiplication m on S^7 ?

H-space structures induced by almost complex structures

Definition: A multiplication $m: S^n \times S^n \longrightarrow S^n$ is homotopy-associative if $m(m \times id) \cong m(id \times m)$

Theorem (James 1957) There exists no homotopy-associative multiplication on S^n unless n = 1 or 3.

As we have already seen the non-associativity of the octonions causes the non-integrability of the almost complex structure induced on S^6 by the octonions.

We would like to relate the probable non-existence of complex structure on S^6 with the lack homotopy associative multiplications on S^7 .

Question: Does the integrability condition of an almost complex structure J on S^6 implies homotopy associativity of the induced multiplication m on S^7 ?

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●