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When a parallelism comes from a Lie group structure?

parallelism = {e}-structure

{X1, · · · , Xn} smooth global frame on M , there is associated a flat
connection ∇c (the canonical connection)

∇c
Y

(∑
f iXi

)
=
∑
Y (f i)Xi for Y ∈ X(M)

The structure equations of ∇c are:

dθi = 1
2T

i
jk θ

j ∧ θk and Ωi
j = 0,

{θ1, · · · , θn} is the coframe dual of {X1, · · · , Xn}.

Torsion tensor of ∇c:

T c(Xj , Xk) =

n∑
i=1

T i
jkXi = −[Xj , Xk].

T i
jk are the structure functions.
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Classical parallelism of the seven sphere

Fix the canonical basis of the octonions O: 1 and ei, i = 1, · · · , 7 with
multiplication rule: eiej = −δij + aijkek, the structure constants aijk
are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields Xi on the
sphere S7 ⊂ O of octonions of norm one:

Xi(x) = eix for x ∈ S7, i = 1, · · · , 7.

Computing the structure functions of this global frame:

[Xi, Xj ](x) = ei(ejx)− ej(eix)

= 2aijkekx− 2[ei, ej , x]

= 2 (aijk − 〈[ei, ej , x], ekx〉)Xk(x),

[a, b, c] := (ab)c− a(bc) is the associator, 〈a, b〉 is the scalar product in
O.
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I The non-associativity of the octonions ([a, b, c] 6= 0) causes the
non-constancy of the structure functions of the parallelism on S7.
The non-commutativity of the algebra causes the non-vanishing
of the torsion.

I Note the structure functions coincide with the structure constants
of the algebra at the north and south pole, i.e., at 1 and −1.

I We used the alternativity of the octonionic product to prove the
second equality.
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How the multiplication in the octonions induces an almost complex structure

on S6

ImO ⊂ O hyperplane of imaginary octonions orthogonal to 1 ∈ O.

S6 ⊂ ImO sphere of imaginary octonions of norm one.

Right multiplication by y ∈ S6 induces an orthogonal linear
transformation:

Ry : O→ O such that (Ry)
2

= − Id .

Ry preserves the plane spanned by 1 and y, (1→ y, y → −1).
⇓

Ry preserves its orthogonal six dimensional plane 〈1, y〉⊥, which can
be identified with TyS6 ⊂ O.

⇓
Then Ry induces an almost complex structure on S6.
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Nijenhuis tensor corresponding to this almost complex structure on S6

N(X,Y ) = [JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ]

We are in euclidean space, then we can compute the Lie brackets of
two vector fields X : S6 → R7, Y : S6 → R7 by
[X,Y ] = dY (X)− dX(Y ), where dX and dY denote the differential of
X and Y respectively as maps

N(X,Y ) = d(JY )(JX)− d(JX)(JY )− dY (X) + dX(Y )

− J (d(JY )(X)− dX(JY ))− J (dY (JX)− d(JX)(Y )) .

By definition JaYa = Ya · a where a ∈ S6 and Y is a vector field on S6,
differentiating we get:

d(JY )(JX) =J (dY (JX)) + Y · JX,
J (d(JY )(X)) =(−1)dY (X) + J(Y ·X),

then

N(X,Y ) = Y · JX −X · JY − J(Y ·X) + J(X · Y ).
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= 2[a, b, c].

I The non-associativity of the octonions is responsible for the
non-integrability of this almost complex structure.

I To establish the last equality we used that the algebra of
octonions is alternative.
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Kirchhoff’s theorem

Kirchhoff’s construction is modeled on the previous example, in fact
its proof reverses this process, he reconstructs the ‘multiplication’ of
R8 from the almost complex structure on S6.

The Kirchhoff’s construction can be divided in two parts:

1) To extend the almost complex structure Jy on y ∈ S6 to an
almost complex structure Ĵy on R8.

2) To construct a global frame σ on S7 from Ĵ .

Notation:

R8 = 〈e8〉 ⊕ R7, S7 ⊂ R8,

S6 ⊂ R7 the equator of S7 with respect to the north pole e8 ∈ S7.
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structure Ĵy on R8.

S7 ⊂ R8 = 〈e8〉 ⊕ R7,
S6 ⊂ R7 the equator of S7 with respect to e8 ∈ S7.

Given y ∈ S6 denote by Vy the 6-dimensional vector subspace of R8

parallel to the tangent space Ty(S6) in R8.

Define a linear transformation Ĵy : R8 → R8 by:

Ĵy(e8) := y, Ĵy(y) := −e8 Ĵy(z) := Jy(z) for z ∈ Vy.

Note that Ĵ2
y = −Id.
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To construct a global frame σ on S7 from Ĵ

Let x ∈ R8, then it can be written uniquely as follows:

x = αe8 + βy, α, β ∈ R, β ≥ 0, and y ∈ S6.

Define the linear transformation:

σx : R8 → R8, σx := α Id+βĴy

Ĵ2
y = −Id =⇒ σx is an isomorphism. Note also that σx(e8) = x.

σx|R7 : R7 → Tx(S7) x ∈ S7,

we get the desire linear frame.

In fact, R7 = 〈y, Vy〉, σx(y) ⊥ x and σx(z) ⊥ x, z ∈ Vy, x ∈ R8, then
can be considered as elements of Tx(S7).
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Ĵ2
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Some remarks about Kirchhoff’s theorem

I Note the linear frame σ is smooth at all points of S7 except at e8
and −e8, where it is only continuous.

I Kirchhoff’s theorem does not assume any additional condition on
the almost complex structure J .

I If we start with an almost hermitian structure (g, J) on S6, we
obtain a Kirchhoff’s global frame σ ∈ SO(8, ĝ), where ĝ is a
metric extension of g to R8 being compatible with the extended
almost complex structure Ĵ .

I The vector fields {Xi(x) := σx(ei)}i=1,··· ,7 defining the
parallelism in Kirchhoff’s theorem can be written explicitly as:

Xi(x) = x8ei − xie8 + β(x)Jy (ei − 〈y, ei〉y) ,

where {ei}i=1,··· ,8 is the canonical basis of R8.
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Main Question

To what extent does the integrability of an almost complex
structure J on S6 imply the integrability of the associated
parallelism on S7?



A framework to approach the Main Question

Recently Loubeau and Sá-Earp in ‘Harmonic flow of geometric
structures’ arXiv:1907.06072 propose a twistorial interpretation of
geometric structures on Riemannian manifolds.

They interpreted a geometric G-structure on (M, g) as a section of
the homogeneous fibre bundle π : N := P/G→M , which admits a
natural notion of torsion.

They formulated a general theory of harmonicity for geometric
structures on a Riemannian manifold (using a Dirichlet energy of
sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

dVσ = 0 =⇒ super-flat =⇒ totally geodesic =⇒
=⇒ harmonic map =⇒ harmonic section.
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A framework to approach the Main Question

dVσ = 0 =⇒ super-flat =⇒ totally geodesic =⇒ (1)
=⇒ harmonic map =⇒ harmonic section.

In particular, for parallelisms on a sphere σ : (Sn, g)→ SO(n+ 1, g), it
is not hard to check that eg. the Hopf frame on round S3 is harmonic
as a section and integrable, but dVσ 6= 0, since it is non-Abelian.

Question: For a parallelism on a sphere (Sn, g), what are the explicit
conditions of (1) for σ ?

Question: How to express the integrability condition ∇cT = 0 in terms
of the vertical torsion dVσ ? Eg. for almost-complex structures, the
vanishing of the Nijenhuis tensor is equivalent to JV ◦ dVσ = dVσ ◦ J .
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Homotopy approach

Definition: an H-space is a topological space M which admits a
continuous multiplication m : M ×M −→M with a two-sided identity
element.

By a celebrated theorem of Adams(1960) the only spheres that admit
an H-space structure are S1, S3 and S7.

We can rephrase Kirchhoff’s theorem as follows:

If Sn admits an almost complex structure J then Sn+1 is a an
H-space

This follows from Kirchhoff’s theorem and the well known fact that a
parallelizable sphere is an H-space.

The point is that the induced multiplication on Sn+1 is written explicitly
in terms of J .

m : S7 × S7 −→ S7, m(x, y) := σx (y) /‖σx (y) ‖
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H-space structures induced by almost complex structures

Definition:
A multiplication m : Sn × Sn −→ Sn is homotopy-associative if
m(m× id) ∼= m(id×m)

Theorem (James 1957) There exists no homotopy-associative
multiplication on Sn unless n = 1 or 3.

As we have already seen the non-associativity of the octonions
causes the non-integrability of the almost complex structure induced
on S6 by the octonions.

We would like to relate the probable non-existence of complex
structure on S6 with the lack homotopy associative multiplications on
S7.

Question: Does the integrability condition of an almost complex
structure J on S6 implies homotopy associativity of the induced
multiplication m on S7?
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Definition:
A multiplication m : Sn × Sn −→ Sn is homotopy-associative if
m(m× id) ∼= m(id×m)

Theorem (James 1957) There exists no homotopy-associative
multiplication on Sn unless n = 1 or 3.

As we have already seen the non-associativity of the octonions
causes the non-integrability of the almost complex structure induced
on S6 by the octonions.

We would like to relate the probable non-existence of complex
structure on S6 with the lack homotopy associative multiplications on
S7.

Question: Does the integrability condition of an almost complex
structure J on S6 implies homotopy associativity of the induced
multiplication m on S7?



Thank you


