Some questions apropos of Kirchhoff's theorem

Lázaro O. Rodríguez
Federal University of Rio de Janeiro

Virtual Meeting 'Special geometries and gauge theory'
01/07/2020

Kirchhoff's theorem

Theorem (Kirchhoff 1947)
If the sphere S^{n} admits an almost complex structure, then S^{n+1} is parallelizable.

Obs: it is not an existence theorem, it is a constructive one.

Kirchhoff's theorem

Theorem (Kirchhoff 1947)
If the sphere S^{n} admits an almost complex structure, then S^{n+1} is parallelizable.

Obs: it is not an existence theorem, it is a constructive one.

Kirchhoff's theorem

Theorem (Kirchhoff 1947)
If the sphere S^{n} admits an almost complex structure, then S^{n+1} is parallelizable.

Obs: it is not an existence theorem, it is a constructive one.

A little of history.

1) $1947 S^{n}$ is almost complex $\Longrightarrow S^{n+1}$ is parallelizable. (Kirchhoff)
2) $1951 S^{n}$ is almost complex $\Longrightarrow n=0,2,6$ (Borel-Serre)
3) $1958 S^{n+1}$ is parallelizable $\Longrightarrow n=0,2,6$ (Kervaire, Bott-Milnor)

4) $1960 S^{n+1}$ is an H-space $\Longleftrightarrow n=0,2,6$ (Adams)

A little of history.

1) $1947 S^{n}$ is almost complex $\Longrightarrow S^{n+1}$ is parallelizable. (Kirchhoff)
2) $1951 S^{n}$ is almost complex $\Longrightarrow n=0,2,6$ (Borel-Serre)
3) $1958 S^{n+1}$ is parallelizable $\Longrightarrow n=0,2,6$ (Kervaire, Bott-Milnor)

4) $1960 S^{n+1}$ is an H-space $\Longleftrightarrow n=0,2,6$ (Adams)

Obs: 1) +3) $\Longrightarrow 2$)

1) $1947 S^{n}$ is almost complex $\Longrightarrow S^{n+1}$ is parallelizable. (Kirchhoff)
2) $1951 S^{n}$ is almost complex $\Longrightarrow n=0,2,6$ (Borel-Serre)
3) $1958 S^{n+1}$ is parallelizable $\Longrightarrow n=0,2,6$ (Kervaire, Bott-Milnor)
4) $1960 S^{n+1}$ is an H-space $\Longleftrightarrow n=0,2,6$ (Adams)

Obs: 1) +3) $\Longrightarrow 2$)

1) $1947 S^{n}$ is almost complex $\Longrightarrow S^{n+1}$ is parallelizable. (Kirchhoff)
2) $1951 S^{n}$ is almost complex $\Longrightarrow n=0,2,6$ (Borel-Serre)
3) $1958 S^{n+1}$ is parallelizable $\Longrightarrow n=0,2,6$ (Kervaire, Bott-Milnor)
4) $1960 S^{n+1}$ is an H-space $\Longleftrightarrow n=0,2,6$ (Adams)
5) $1947 S^{n}$ is almost complex $\Longrightarrow S^{n+1}$ is parallelizable. (Kirchhoff)
6) $1951 S^{n}$ is almost complex $\Longrightarrow n=0,2,6$ (Borel-Serre)
7) $1958 S^{n+1}$ is parallelizable $\Longrightarrow n=0,2,6$ (Kervaire, Bott-Milnor)
8) $1960 S^{n+1}$ is an H-space $\Longleftrightarrow n=0,2,6$ (Adams)

Obs: 1) +3$) \Longrightarrow 2$)

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Parallelizable: Lie groups:

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Complex manifolds:
Lie groups:

Geometric structures on spheres

Almost complex: S^{0}, S^{2}, S^{6}
Complex manifolds: S^{0}, S^{2}, S^{6} ?

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups:

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: $\quad S^{0}, S^{2}, S^{6}$?

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: $\quad S^{1}, S^{3}$

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: $\quad S^{0}, S^{2}, S^{6}$?

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: $\quad S^{1}, S^{3}$

Lie groups spheres are the integrable parallelizable spheres.

Complex spheres are the integrable almost complex spheres.

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: $\quad S^{0}, S^{2}, S^{6}$?
Parallelizable: $\quad S^{1}, S^{3}, S^{7}$ Lie groups: $\quad S^{1}, S^{3}$

Lie groups spheres are the integrable parallelizable spheres.

Complex spheres are the integrable almost complex spheres.

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: $\quad S^{0}, S^{2}, S^{6}$?
Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: $\quad S^{1}, S^{3}$

Lie groups spheres are the integrable parallelizable spheres.
Complex spheres are the integrable almost complex spheres.

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: S^{0}, S^{2}

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: S^{1}, S^{3}

In the hypothetical case that there is no integrable almost complex structure on S^{6} the following statement is true a fortiori:

\square
S^{n} is a complex manifold if and only if S^{n+1} is a Lie group
What is the bridge? Kirchhoff's theorem
S^{n} is an almost complex sphere $\Longleftrightarrow S^{n+1}$ is parallelizable.

Geometric structures on spheres

In the hypothetical case that there is no integrable almost complex structure on S^{6} the following statement is true a fortiori:
S^{n} is a complex manifold if and only if S^{n+1} is a Lie group
What is the bridge? Kirchhoff's theorem
S^{n} is an almost complex sphere $\Longleftrightarrow S^{n+1}$ is parallelizable.

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: S^{0}, S^{2}

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: $\quad S^{1}, S^{3}$

In the hypothetical case that there is no integrable almost complex structure on S^{6} the following statement is true a fortiori:
S^{n} is a complex manifold if and only if S^{n+1} is a Lie group
What is the bridge? Kirchhoff's theorem
S^{n} is an almost complex sphere $\Longleftrightarrow S^{n+1}$ is parallelizable.

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: $\quad S^{0}, S^{2}$

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: $\quad S^{1}, S^{3}$

In the hypothetical case that there is no integrable almost complex structure on S^{6} the following statement is true a fortiori:
S^{n} is a complex manifold if and only if S^{n+1} is a Lie group
What is the bridge? Kirchhoff's theorem

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: $\quad S^{0}, S^{2}$

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: $\quad S^{1}, S^{3}$

In the hypothetical case that there is no integrable almost complex structure on S^{6} the following statement is true a fortiori:
S^{n} is a complex manifold if and only if S^{n+1} is a Lie group
What is the bridge? Kirchhoff's theorem

Geometric structures on spheres

Almost complex: $\quad S^{0}, S^{2}, S^{6}$
Complex manifolds: S^{0}, S^{2}

Parallelizable: $\quad S^{1}, S^{3}, S^{7}$
Lie groups: $\quad S^{1}, S^{3}$

In the hypothetical case that there is no integrable almost complex structure on S^{6} the following statement is true a fortiori:
S^{n} is a complex manifold if and only if S^{n+1} is a Lie group
What is the bridge? Kirchhoff's theorem
S^{n} is an almost complex sphere $\Longleftrightarrow S^{n+1}$ is parallelizable.

When a parallelism comes from a Lie group structure?

parallelism $=\{e\}$-structure

$\left\{X_{1}, \cdots, X_{n}\right\}$ smooth global frame on M, there is associated a flat connection ∇^{c} (the canonical connection)

$\nabla_{i}\left(\sum f_{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbb{X}(M)$
The structure equations of ∇^{c} are:

$$
d \theta^{i}=\frac{1}{2} T_{j k}^{i} \theta^{j} \wedge \theta^{k} \quad \text { and } \quad \Omega_{j}^{i}=0
$$

$\left\{\theta^{1}, \cdots, \theta^{n}\right\}$ is the coframe dual of $\left\{X_{1}, \cdots, X_{n}\right\}$.
Torsion tensor of ∇^{c} :

are the structure functions.

When a parallelism comes from a Lie group structure?
parallelism $=\{e\}$-structure
$\left\{X_{1}, \cdots, X_{n}\right\}$ smooth global frame on M, there is associated a flat connection ∇^{c} (the canonical connection)
$\nabla_{Y}^{c}\left(\sum f^{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbf{X}(M)$
The structure equations of ∇^{c} are:

$$
d \theta^{i}=\frac{1}{2} T_{j k}^{i} \theta^{j} \wedge \theta^{k} \quad \text { and } \quad \Omega_{j}^{i}=0,
$$

$\left\{\theta^{1}, \cdots, \theta^{n}\right\}$ is the coframe dual of $\left\{X_{1}, \cdots, X_{n}\right\}$.
Torsion tensor of ∇^{c};
\square are the structure functions.

When a parallelism comes from a Lie group structure?
parallelism $=\{e\}$-structure
$\left\{X_{1}, \cdots, X_{n}\right\}$ smooth global frame on M, there is associated a flat connection ∇^{c} (the canonical connection)
$\nabla_{Y}^{c}\left(\sum f^{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbf{X}(M)$
The structure equations of ∇^{c} are:

$$
d \theta^{i}=\frac{1}{2} T_{j k}^{i} \theta^{j} \wedge \theta^{k} \quad \text { and } \quad \Omega_{j}^{i}=0,
$$

$\left\{\theta^{1}, \cdots, \theta^{n}\right\}$ is the coframe dual of $\left\{X_{1}, \cdots, X_{n}\right\}$.
Torsion tensor of ∇^{c} :

When a parallelism comes from a Lie group structure?
parallelism $=\{e\}$-structure
$\left\{X_{1}, \cdots, X_{n}\right\}$ smooth global frame on M, there is associated a flat connection ∇^{c} (the canonical connection)
$\nabla_{Y}^{c}\left(\sum f^{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbf{X}(M)$
The structure equations of ∇^{c} are:

$$
d \theta^{i}=\frac{1}{2} T_{j k}^{i} \theta^{j} \wedge \theta^{k} \quad \text { and } \quad \Omega_{j}^{i}=0,
$$

$\left\{\theta^{1}, \cdots, \theta^{n}\right\}$ is the coframe dual of $\left\{X_{1}, \cdots, X_{n}\right\}$.
Torsion tensor of ∇^{c} :

$$
T^{c}\left(X_{j}, X_{k}\right)=\sum_{i=1}^{n} T_{j k}^{i} X_{i}=-\left[X_{j}, X_{k}\right] .
$$

$T_{j k}^{i}$ are the structure functions.

When a parallelism comes from a Lie group structure?

> $\nabla_{Y}^{c}\left(\sum f^{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbf{X}(M)$, Torsion tensor of $\nabla^{c}: \quad T^{c}\left(X_{j}, X_{k}\right)=\sum_{i=1}^{n} T^{i}{ }_{j k} X_{i}=-\left[X_{j}, X_{k}\right]$

> The torsion tensor T^{c} is parallel \Longleftrightarrow structure functions $T_{j k}^{i}$ are constant

> A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions $T_{j k}^{i}$ are constant, in which case M is a Lie group.

When a parallelism comes from a Lie group structure?

$\nabla_{Y}^{c}\left(\sum f^{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbf{X}(M)$,
Torsion tensor of $\nabla^{c}: \quad T^{c}\left(X_{j}, X_{k}\right)=\sum_{i=1}^{n} T_{j k}^{i} X_{i}=-\left[X_{j}, X_{k}\right]$
The torsion tensor T^{c} is parallel \Longleftrightarrow structure functions $T^{i}{ }_{j k}$ are constant

A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions $T_{j k}^{i}$ are constant, in which case M is a Lie group.

When a parallelism comes from a Lie group structure?
$\nabla_{Y}^{c}\left(\sum f^{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbf{X}(M)$,
Torsion tensor of $\nabla^{c}: \quad T^{c}\left(X_{j}, X_{k}\right)=\sum_{i=1}^{n} T_{j k}^{i} X_{i}=-\left[X_{j}, X_{k}\right]$
The torsion tensor T^{c} is parallel \Longleftrightarrow structure functions $T^{i}{ }_{j k}$ are constant

A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions $T_{j k}^{i}$ are constant, in which case M is a Lie group.

When a parallelism comes from a Lie group structure?
$\nabla_{Y}^{c}\left(\sum f^{i} X_{i}\right)=\sum Y\left(f^{i}\right) X_{i} \quad$ for $Y \in \mathbf{X}(M)$,
Torsion tensor of $\nabla^{c}: \quad T^{c}\left(X_{j}, X_{k}\right)=\sum_{i=1}^{n} T_{j k}^{i} X_{i}=-\left[X_{j}, X_{k}\right]$
The torsion tensor T^{c} is parallel \Longleftrightarrow structure functions $T^{i}{ }_{j k}$ are constant

A parallelism on M (compact and simply connected) is integrable if, and only if, its structure functions $T_{j k}^{i}$ are constant, in which case M is a Lie group.

Classical parallelism of the seven sphere

Fix the canonical basis of the octonions $\mathbb{O}: 1$ and $e_{i}, i=1, \cdots, 7$ with multiplication rule: $e_{i} e_{j}=-\delta_{i j}+a_{i j k} e_{k}$, the structure constants $a_{i j k}$ are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_{i} on the sphere $S^{7} \subset \mathbb{O}$ of octonions of norm one:
$X_{i}(x)=e_{i} x$ for $x \in S^{7}, i=1, \cdots, 7$.

Computing the structure functions of this global frame:

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left[e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x),
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in (0).

Classical parallelism of the seven sphere

Fix the canonical basis of the octonions $\mathbb{O}: 1$ and $e_{i}, i=1, \cdots, 7$ with multiplication rule: $e_{i} e_{j}=-\delta_{i j}+a_{i j k} e_{k}$, the structure constants $a_{i j k}$ are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_{i} on the sphere $S^{7} \subset \mathbb{O}$ of octonions of norm one:

Computing the structure functions of this global frame:

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left\langle e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x),
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in

Classical parallelism of the seven sphere

Fix the canonical basis of the octonions $\mathbb{O}: 1$ and $e_{i}, i=1, \cdots, 7$ with multiplication rule: $e_{i} e_{j}=-\delta_{i j}+a_{i j k} e_{k}$, the structure constants $a_{i j k}$ are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_{i} on the sphere $S^{7} \subset \mathbb{O}$ of octonions of norm one:
$X_{i}(x)=e_{i} x$ for $x \in S^{7}, i=1, \cdots, 7$.

Computing the structure functions of this global frame:

Classical parallelism of the seven sphere

Fix the canonical basis of the octonions $\mathbb{O}: 1$ and $e_{i}, i=1, \cdots, 7$ with multiplication rule: $e_{i} e_{j}=-\delta_{i j}+a_{i j k} e_{k}$, the structure constants $a_{i j k}$ are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_{i} on the sphere $S^{7} \subset \mathbb{O}$ of octonions of norm one:
$X_{i}(x)=e_{i} x$ for $x \in S^{7}, i=1, \cdots, 7$.

Computing the structure functions of this global frame:

$$
\left[X_{i}, X_{j}\right](x)=e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right)
$$

Classical parallelism of the seven sphere

Fix the canonical basis of the octonions $\mathbb{O}: 1$ and $e_{i}, i=1, \cdots, 7$ with multiplication rule: $e_{i} e_{j}=-\delta_{i j}+a_{i j k} e_{k}$, the structure constants $a_{i j k}$ are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_{i} on the sphere $S^{7} \subset \mathbb{O}$ of octonions of norm one:
$X_{i}(x)=e_{i} x$ for $x \in S^{7}, i=1, \cdots, 7$.
Computing the structure functions of this global frame:

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left[e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x)
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in

Classical parallelism of the seven sphere

Fix the canonical basis of the octonions $\mathbb{O}: 1$ and $e_{i}, i=1, \cdots, 7$ with multiplication rule: $e_{i} e_{j}=-\delta_{i j}+a_{i j k} e_{k}$, the structure constants $a_{i j k}$ are totally antisymmetric in the three indices.

We construct seven linearly independent vector fields X_{i} on the sphere $S^{7} \subset \mathbb{O}$ of octonions of norm one:
$X_{i}(x)=e_{i} x$ for $x \in S^{7}, i=1, \cdots, 7$.
Computing the structure functions of this global frame:

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left[e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x)
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in © .

Classical parallelism of the seven sphere

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left[e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x),
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in (0).

- The non-associativity of the octonions $([a, b, c] \neq 0)$ causes the non-constancy of the structure functions of the parallelism on S^{7} The non-commutativity of the algebra causes the non-vanishing of the torsion.
- Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and -1 .
- We used the alternativity of the octonionic product to prove the second equality.

Classical parallelism of the seven sphere

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left[e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x),
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in © .

- The non-associativity of the octonions $([a, b, c] \neq 0)$ causes the non-constancy of the structure functions of the parallelism on S^{7}. The non-commutativity of the algebra causes the non-vanishing of the torsion.
$>$ Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and -1 .
- W/e used the alternativity of the octonionic product to prove the second equality.

Classical parallelism of the seven sphere

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left[e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x),
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in © .

- The non-associativity of the octonions $([a, b, c] \neq 0)$ causes the non-constancy of the structure functions of the parallelism on S^{7}. The non-commutativity of the algebra causes the non-vanishing of the torsion.
- Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and -1 .
- We used the alternativity of the octonionic product to prove the second equality.

Classical parallelism of the seven sphere

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right](x) } & =e_{i}\left(e_{j} x\right)-e_{j}\left(e_{i} x\right) \\
& =2 a_{i j k} e_{k} x-2\left[e_{i}, e_{j}, x\right] \\
& =2\left(a_{i j k}-\left\langle\left[e_{i}, e_{j}, x\right], e_{k} x\right\rangle\right) X_{k}(x),
\end{aligned}
$$

$[a, b, c]:=(a b) c-a(b c)$ is the associator, $\langle a, b\rangle$ is the scalar product in © .

- The non-associativity of the octonions $([a, b, c] \neq 0)$ causes the non-constancy of the structure functions of the parallelism on S^{7}. The non-commutativity of the algebra causes the non-vanishing of the torsion.
- Note the structure functions coincide with the structure constants of the algebra at the north and south pole, i.e., at 1 and -1 .
- We used the alternativity of the octonionic product to prove the second equality.

How the multiplication in the octonions induces an almost complex structure on S^{6}

```
Im}\mathbb{O}\subset\mathbb{O}\mathrm{ hyperplane of imaginary octonions orthogonal to 1 }\in\mathbb{O}\mathrm{ .
S6}\subsetIm(0) sphere of imaginary octonions of norm one
Right multiplication by y \in S }\mp@subsup{}{}{6}\mathrm{ induces an orthogonal linear
transformation:
```

$$
R_{y}: \mathbb{O} \rightarrow \mathbb{O} \text { such that }\left(R_{y}\right)^{2}=-\mathrm{Id} .
$$

R_{y} preserves the plane spanned by 1 and $y, \quad(1 \rightarrow y, y \rightarrow-1)$.
R_{y} preserves its orthogonal six dimensional plane $\langle 1, y\rangle^{\perp}$, which can
be identified with $T_{y} S^{6} \subset \mathbb{O}$.
Then R_{y} induces an almost complex structure on S^{6}.

How the multiplication in the octonions induces an almost complex structure on S^{6}
$\operatorname{Im} \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.
$S^{6} \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.
Right multiplication by $y \in S^{6}$ induces an orthogonal linear transformation:

$$
R_{y}: \mathbb{O} \rightarrow \mathbb{O} \text { such that }\left(R_{y}\right)^{2}=-\mathrm{Id}
$$

R_{y} preserves the plane spanned by 1 and $y, \quad(1 \rightarrow y, y \rightarrow-1)$.
R_{y} preserves its orthogonal six dimensional plane $\langle 1, y)^{\perp}$, which can be identified with $T_{y} S^{6} \subset \mathbb{O}$.

Then R_{y} induces an almost complex structure on S^{6}.

How the multiplication in the octonions induces an almost complex structure on S^{6}
$\operatorname{Im} \mathbb{(} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$. $S^{6} \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.

Right multiplication by $y \in S^{6}$ induces an orthogonal linear transformation:

$$
R_{y}: \mathbb{O} \rightarrow \mathbb{O} \text { such that }\left(R_{y}\right)^{2}=-\mathrm{Id} .
$$

\square
R_{y} preserves its orthogonal six dimensional plane $\langle 1, y)^{\perp}$, which can be identified with $T_{y} S^{6} \subset \mathbb{O}$.

Then R_{y} induces an almost complex structure on S^{6}.

How the multiplication in the octonions induces an almost complex structure on S^{6}
$\operatorname{Im} \mathbb{(} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.
$S^{6} \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.
Right multiplication by $y \in S^{6}$ induces an orthogonal linear transformation:

$$
R_{y}: \mathbb{O} \rightarrow \mathbb{O} \text { such that }\left(R_{y}\right)^{2}=-\mathrm{Id}
$$

R_{y} preserves the plane spanned by 1 and $y, \quad(1 \rightarrow y, y \rightarrow-1)$.
R_{y} preserves its orthogonal six dimensional plane $\langle 1, y\rangle^{\perp}$, which can be identified with $T_{y} S^{6} \subset \mathbb{O}$.

Then R_{y} induces an almost complex structure on S^{6}.

How the multiplication in the octonions induces an almost complex structure on S^{6}
$\operatorname{Im} \mathbb{(} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.
$S^{6} \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.
Right multiplication by $y \in S^{6}$ induces an orthogonal linear transformation:

$$
R_{y}: \mathbb{O} \rightarrow \mathbb{O} \text { such that }\left(R_{y}\right)^{2}=-\mathrm{Id}
$$

R_{y} preserves the plane spanned by 1 and $y, \quad(1 \rightarrow y, y \rightarrow-1)$.
R_{y} preserves its orthogonal six dimensional plane $\langle 1, y\rangle^{\perp}$, which can
be identified with $T_{y} S^{6} \subset \mathbb{O}$.
Then R_{y} induces an almost complex structure on S^{6}.

How the multiplication in the octonions induces an almost complex structure on S^{6}
$\operatorname{Im} \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.
$S^{6} \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.
Right multiplication by $y \in S^{6}$ induces an orthogonal linear transformation:

$$
R_{y}: \mathbb{O} \rightarrow \mathbb{O} \text { such that }\left(R_{y}\right)^{2}=-\mathrm{Id} .
$$

R_{y} preserves the plane spanned by 1 and $y, \quad(1 \rightarrow y, y \rightarrow-1)$.
R_{y} preserves its orthogonal six dimensional plane $\langle 1, y\rangle^{\perp}$, which can be identified with $T_{y} S^{6} \subset \mathbb{O}$.

Then R_{y} induces an almost complex structure on S^{6}.

How the multiplication in the octonions induces an almost complex structure on S^{6}
$\operatorname{Im} \mathbb{O} \subset \mathbb{O}$ hyperplane of imaginary octonions orthogonal to $1 \in \mathbb{O}$.
$S^{6} \subset \operatorname{Im} \mathbb{O}$ sphere of imaginary octonions of norm one.
Right multiplication by $y \in S^{6}$ induces an orthogonal linear transformation:

$$
R_{y}: \mathbb{O} \rightarrow \mathbb{O} \text { such that }\left(R_{y}\right)^{2}=-\mathrm{Id} .
$$

R_{y} preserves the plane spanned by 1 and $y, \quad(1 \rightarrow y, y \rightarrow-1)$.
R_{y} preserves its orthogonal six dimensional plane $\langle 1, y\rangle^{\perp}$, which can be identified with $T_{y} S^{6} \subset \mathbb{O}$.
\Downarrow
Then R_{y} induces an almost complex structure on S^{6}.

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^{6} \rightarrow \mathbb{R}^{7}, Y: S^{6} \rightarrow \mathbb{R}^{7}$ by $[\mathrm{X}, \mathrm{Y}]=d Y^{-}(\mathrm{X})-d \mathrm{X}\left(\mathrm{T}^{-}\right)$, where $d \mathrm{X}$ and $d Y$ denote the differential of X and Y respectively as maps

$$
\begin{aligned}
N(X, Y) & =d(J Y)(J X)-d(J X)(J Y)-d Y(X)+d X(Y) \\
& -J(d(J Y)(X)-d X(J Y))-J(d Y(J X)-d(J X)(Y)) .
\end{aligned}
$$

By definition $J_{a} Y_{a}=Y_{a} \cdot a$ where $a \in S^{6}$ and Y is a vector field on S^{6}, differentiating we get:

$$
\begin{aligned}
d(J Y)(J X) & =J(d Y(J X))+Y \cdot J X, \\
J(d(J Y)(X)) & =(-1) d Y(X)+J(Y \cdot X),
\end{aligned}
$$

then

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^{6} \rightarrow \mathbb{R}^{7}, Y: S^{6} \rightarrow \mathbb{R}^{7}$ by
$[X, Y]=d Y(X)-d X(Y)$, where $d X$ and $d Y$ denote the differential of
X and Y respectively as maps

$$
\begin{aligned}
N(X, Y) & =d(J Y)(J X)-d(J X)(J Y)-d Y(X)+d X(Y) \\
& -J(d(J Y)(X)-d X(J Y))-J(d Y(J X)-d(J X)(Y)) .
\end{aligned}
$$

By definition $J_{a} Y_{a}=Y_{a} \cdot a$ where $a \in S^{6}$ and Y is a vector field on S^{6}, differentiating we get:

$$
\begin{aligned}
d(J Y)(J X) & =J(d Y(J X))+Y \cdot J X, \\
J(d(J Y)(X)) & =(-1) d Y(X)+J(Y \cdot X),
\end{aligned}
$$

then

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^{6} \rightarrow \mathbb{R}^{7}, Y: S^{6} \rightarrow \mathbb{R}^{7}$ by $[X, Y]=d Y(X)-d X(Y)$, where $d X$ and $d Y$ denote the differential of X and Y respectively as maps

By definition $J_{a} Y_{a}=Y_{a} \cdot a$ where $a \in S^{6}$ and Y is a vector field on S^{6}, differentiating we get:

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^{6} \rightarrow \mathbb{R}^{7}, Y: S^{6} \rightarrow \mathbb{R}^{7}$ by
$[X, Y]=d Y(X)-d X(Y)$, where $d X$ and $d Y$ denote the differential of X and Y respectively as maps

$$
\begin{aligned}
N(X, Y) & =d(J Y)(J X)-d(J X)(J Y)-d Y(X)+d X(Y) \\
& -J(d(J Y)(X)-d X(J Y))-J(d Y(J X)-d(J X)(Y))
\end{aligned}
$$

By definition $J_{a} Y_{a}=Y_{a} \cdot a$ where $a \in S^{6}$ and Y is a vector field on S^{6}, differentiating we get:

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^{6} \rightarrow \mathbb{R}^{7}, Y: S^{6} \rightarrow \mathbb{R}^{7}$ by $[X, Y]=d Y(X)-d X(Y)$, where $d X$ and $d Y$ denote the differential of X and Y respectively as maps

$$
\begin{aligned}
N(X, Y) & =d(J Y)(J X)-d(J X)(J Y)-d Y(X)+d X(Y) \\
& -J(d(J Y)(X)-d X(J Y))-J(d Y(J X)-d(J X)(Y)) .
\end{aligned}
$$

By definition $J_{a} Y_{a}=Y_{a} \cdot a$ where $a \in S^{6}$ and Y is a vector field on S^{6}, differentiating we get:

$$
\begin{aligned}
d(J Y)(J X) & =J(d Y(J X))+Y \cdot J X \\
J(d(J Y)(X)) & =(-1) d Y(X)+J(Y \cdot X)
\end{aligned}
$$

then

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

We are in euclidean space, then we can compute the Lie brackets of two vector fields $X: S^{6} \rightarrow \mathbb{R}^{7}, Y: S^{6} \rightarrow \mathbb{R}^{7}$ by
$[X, Y]=d Y(X)-d X(Y)$, where $d X$ and $d Y$ denote the differential of X and Y respectively as maps

$$
\begin{aligned}
N(X, Y) & =d(J Y)(J X)-d(J X)(J Y)-d Y(X)+d X(Y) \\
& -J(d(J Y)(X)-d X(J Y))-J(d Y(J X)-d(J X)(Y)) .
\end{aligned}
$$

By definition $J_{a} Y_{a}=Y_{a} \cdot a$ where $a \in S^{6}$ and Y is a vector field on S^{6}, differentiating we get:

$$
\begin{aligned}
d(J Y)(J X) & =J(d Y(J X))+Y \cdot J X \\
J(d(J Y)(X)) & =(-1) d Y(X)+J(Y \cdot X)
\end{aligned}
$$

then

$$
N(X, Y)=Y \cdot J X-X \cdot J Y-J(Y \cdot X)+J(X \cdot Y)
$$

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=Y \cdot J X-X \cdot J Y-J(Y \cdot X)+J(X \cdot Y)
$$

For $b, c \in T_{a} S^{6}$ we get:

$$
\begin{aligned}
N_{a}(b, c) & =c \cdot(b \cdot a)-b \cdot(c \cdot a)-(c \cdot b) \cdot a+(b \cdot c) \cdot a \\
& =2[a, b, c] .
\end{aligned}
$$

- The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.
- To establish the last equality we used that the algebra of octonions is alternative.

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=Y \cdot J X-X \cdot J Y-J(Y \cdot X)+J(X \cdot Y)
$$

For $b, c \in T_{a} S^{6}$ we get:

$$
\begin{aligned}
N_{a}(b, c) & =c \cdot(b \cdot a)-b \cdot(c \cdot a)-(c \cdot b) \cdot a+(b \cdot c) \cdot a \\
& =2[a, b, c] .
\end{aligned}
$$

- The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.
- To establish the last equality we used that the algebra of octonions is alternative.

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=Y \cdot J X-X \cdot J Y-J(Y \cdot X)+J(X \cdot Y)
$$

For $b, c \in T_{a} S^{6}$ we get:

$$
\begin{aligned}
N_{a}(b, c) & =c \cdot(b \cdot a)-b \cdot(c \cdot a)-(c \cdot b) \cdot a+(b \cdot c) \cdot a \\
& =2[a, b, c] .
\end{aligned}
$$

- The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.
- To establish the last equality we used that the algebra of octonions is alternative.

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=Y \cdot J X-X \cdot J Y-J(Y \cdot X)+J(X \cdot Y)
$$

For $b, c \in T_{a} S^{6}$ we get:

$$
\begin{aligned}
N_{a}(b, c) & =c \cdot(b \cdot a)-b \cdot(c \cdot a)-(c \cdot b) \cdot a+(b \cdot c) \cdot a \\
& =2[a, b, c] .
\end{aligned}
$$

- The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.
- To establish the last equality we used that the algebra of octonions is alternative.

Nijenhuis tensor corresponding to this almost complex structure on S^{6}

$$
N(X, Y)=Y \cdot J X-X \cdot J Y-J(Y \cdot X)+J(X \cdot Y)
$$

For $b, c \in T_{a} S^{6}$ we get:

$$
\begin{aligned}
N_{a}(b, c) & =c \cdot(b \cdot a)-b \cdot(c \cdot a)-(c \cdot b) \cdot a+(b \cdot c) \cdot a \\
& =2[a, b, c] .
\end{aligned}
$$

- The non-associativity of the octonions is responsible for the non-integrability of this almost complex structure.
- To establish the last equality we used that the algebra of octonions is alternative.

Kirchhoff's theorem

Kirchhoff's construction is modeled on the previous example, in fact its proof reverses this process, he reconstructs the 'multiplication' of \mathbb{R}^{8} from the almost complex structure on S^{6}.

The Kirchhoff's construction can be divided in two parts:

1) To extend the almost complex structure J_{y} on $y \in S^{6}$ to an almost complex structure \hat{J}_{y} on \mathbb{R}^{8}.
2) To construct a global frame σ on S^{7} from \hat{J}.

Notation:

$S^{6} \subset \mathbb{R}^{7}$ the equator of S^{7} with respect to the north pole $e_{8} \in S^{7}$.

Kirchhoff's theorem

Kirchhoff's construction is modeled on the previous example, in fact its proof reverses this process, he reconstructs the 'multiplication' of \mathbb{R}^{8} from the almost complex structure on S^{6}.

The Kirchhoff's construction can be divided in two parts:

1) To extend the almost complex structure J_{y} on $y \in S^{6}$ to an almost complex structure \hat{J}_{y} on \mathbb{R}^{8}.
2) To construct a global frame σ on S^{7} from \hat{J}.

Notation:
$\mathbb{R}^{8}=\left\langle e_{8}\right\rangle \oplus \mathbb{R}^{7}, S^{7} \subset \mathbb{R}^{8}$,
$S^{6} \subset \mathbb{R}^{7}$ the equator of S^{7} with respect to the north pole $e_{8} \in S^{7}$.

To extend the almost complex structure J_{y} on $y \in S^{6}$ to an almost complex structure \hat{J}_{y} on \mathbb{R}^{8}.
$S^{7} \subset \mathbb{R}^{8}=\left\langle e_{8}\right\rangle \oplus \mathbb{R}^{7}$, $S^{6} \subset \mathbb{R}^{7}$ the equator of S^{7} with respect to $e_{8} \in S^{7}$.

Given $y \in S^{6}$ denote by V_{y} the 6 -dimensional vector subspace of \mathbb{R}^{8} parallel to the tangent space $T_{y}\left(S^{6}\right)$ in \mathbb{R}^{8}.

Define a linear transformation $\hat{J}_{y}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}$ by:

$$
\hat{J}_{y}\left(e_{8}\right):=y, \quad \hat{J}_{y}(y):=-e_{8} \quad \hat{J}_{y}(z):=J_{y}(z) \text { for } z \in V_{y} \text {. }
$$

Note that $\hat{J}_{y}^{2}=-I d$.

To extend the almost complex structure J_{y} on $y \in S^{6}$ to an almost complex structure \hat{J}_{y} on \mathbb{R}^{8}.
$S^{7} \subset \mathbb{R}^{8}=\left\langle e_{8}\right\rangle \oplus \mathbb{R}^{7}$, $S^{6} \subset \mathbb{R}^{7}$ the equator of S^{7} with respect to $e_{8} \in S^{7}$.

Given $y \in S^{6}$ denote by V_{y} the 6 -dimensional vector subspace of \mathbb{R}^{8} parallel to the tangent space $T_{y}\left(S^{6}\right)$ in \mathbb{R}^{8}.

Define a linear transformation $\hat{J}_{y}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}$ by:

Note that $\hat{J}_{y}^{2}=-I d$.

To extend the almost complex structure J_{y} on $y \in S^{6}$ to an almost complex structure \hat{J}_{y} on \mathbb{R}^{8}.
$S^{7} \subset \mathbb{R}^{8}=\left\langle e_{8}\right\rangle \oplus \mathbb{R}^{7}$, $S^{6} \subset \mathbb{R}^{7}$ the equator of S^{7} with respect to $e_{8} \in S^{7}$.

Given $y \in S^{6}$ denote by V_{y} the 6 -dimensional vector subspace of \mathbb{R}^{8} parallel to the tangent space $T_{y}\left(S^{6}\right)$ in \mathbb{R}^{8}.

Define a linear transformation $\hat{J}_{y}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}$ by:

$$
\hat{J}_{y}\left(e_{8}\right):=y, \quad \hat{J}_{y}(y):=-e_{8} \quad \hat{J}_{y}(z):=J_{y}(z) \text { for } z \in V_{y} .
$$

Note that $\hat{J}_{y}^{2}=-I d$.

To construct a global frame σ on S^{7} from \hat{J}

Let $x \in \mathbb{R}^{8}$, then it can be written uniquely as follows:

$$
x=\alpha e_{8}+\beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \geq 0, \quad \text { and } \quad y \in S^{6} .
$$

Define the linear transformation:

$$
\sigma_{x}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}, \quad \sigma_{x}:=\alpha I d+\beta \hat{J}_{y}
$$

$\hat{J}_{y}^{2}=-I d \Longrightarrow \sigma_{x}$ is an isomorphism. Note also that $\sigma_{x}\left(e_{8}\right)=x$.

we get the desire linear frame.
In fact, $\mathbb{R}^{7}=\left\langle y, V_{y}\right\rangle, \sigma_{x}(y) \perp x$ and $\sigma_{x}(z) \perp x, z \in V_{y}, x \in \mathbb{R}^{8}$, then can be considered as elements of $T_{x}\left(S^{7}\right)$.

To construct a global frame σ on S^{7} from \hat{J}

Let $x \in \mathbb{R}^{8}$, then it can be written uniquely as follows:

$$
x=\alpha e_{8}+\beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \geq 0, \quad \text { and } \quad y \in S^{6} .
$$

Define the linear transformation:

$$
\sigma_{x}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}, \quad \sigma_{x}:=\alpha I d+\beta \hat{J}_{y}
$$

$\hat{J}_{y}^{2}=-I d \Longrightarrow \sigma_{x}$ is an isomorphism. Note also that $\sigma_{x}\left(e_{8}\right)=x$.
we get the desire linear frame.
In fact, $\mathbb{R}^{7}=\left\langle y, V_{y}\right\rangle, \sigma_{x}(y) \perp x$ and $\sigma_{x}(z) \perp x, z \in V_{y}, x \in \mathbb{R}^{8}$, then can be considered as elements of $T_{x}\left(S^{7}\right)$.

To construct a global frame σ on S^{7} from \hat{J}

Let $x \in \mathbb{R}^{8}$, then it can be written uniquely as follows:

$$
x=\alpha e_{8}+\beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \geq 0, \quad \text { and } \quad y \in S^{6} .
$$

Define the linear transformation:

$$
\sigma_{x}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}, \quad \sigma_{x}:=\alpha I d+\beta \hat{J}_{y}
$$

$\hat{J}_{y}^{2}=-I d \Longrightarrow \sigma_{x}$ is an isomorphism. Note also that $\sigma_{x}\left(e_{8}\right)=x$.

we get the desire linear frame.

In fact, $\mathbb{R}^{7}=\left\langle y, V_{y}\right\rangle, \sigma_{x}(y) \perp x$ and $\sigma_{x}(z) \perp x, z \in V_{y}, x \in \mathbb{R}^{8}$, then
can be considered as elements of $T_{x}\left(S^{7}\right)$.

To construct a global frame σ on S^{7} from \hat{J}

Let $x \in \mathbb{R}^{8}$, then it can be written uniquely as follows:

$$
x=\alpha e_{8}+\beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \geq 0, \quad \text { and } \quad y \in S^{6} .
$$

Define the linear transformation:

$$
\sigma_{x}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}, \quad \sigma_{x}:=\alpha I d+\beta \hat{J}_{y}
$$

$\hat{J}_{y}^{2}=-I d \Longrightarrow \sigma_{x}$ is an isomorphism. Note also that $\sigma_{x}\left(e_{8}\right)=x$.

$$
\left.\sigma_{x}\right|_{\mathbb{R}^{7}}: \quad \mathbb{R}^{7} \rightarrow T_{x}\left(S^{7}\right) \quad x \in S^{7}
$$

we get the desire linear frame.
In fact, $\mathbb{R}^{7}=\left\langle y, V_{y}\right\rangle, \sigma_{x}(y) \perp x$ and $\sigma_{x}(z) \perp x, z \in V_{y}, x \in \mathbb{R}^{8}$, then
can be considered as elements of $T_{x}\left(S^{7}\right)$.

To construct a global frame σ on S^{7} from \hat{J}

Let $x \in \mathbb{R}^{8}$, then it can be written uniquely as follows:

$$
x=\alpha e_{8}+\beta y, \quad \alpha, \beta \in \mathbb{R}, \quad \beta \geq 0, \quad \text { and } \quad y \in S^{6} .
$$

Define the linear transformation:

$$
\sigma_{x}: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}, \quad \sigma_{x}:=\alpha I d+\beta \hat{J}_{y}
$$

$\hat{J}_{y}^{2}=-I d \Longrightarrow \sigma_{x}$ is an isomorphism. Note also that $\sigma_{x}\left(e_{8}\right)=x$.

$$
\left.\sigma_{x}\right|_{\mathbb{R}^{7}}: \quad \mathbb{R}^{7} \rightarrow T_{x}\left(S^{7}\right) \quad x \in S^{7},
$$

we get the desire linear frame.
In fact, $\mathbb{R}^{7}=\left\langle y, V_{y}\right\rangle, \sigma_{x}(y) \perp x$ and $\sigma_{x}(z) \perp x, z \in V_{y}, x \in \mathbb{R}^{8}$, then can be considered as elements of $T_{x}\left(S^{7}\right)$.

Some remarks about Kirchhoff's theorem

- Note the linear frame σ is smooth at all points of S^{7} except at e_{8} and $-e_{8}$, where it is only continuous.

```
> Kirchhoff's theorem does not assume any additional condition on
    the almost complex structure }J\mathrm{ .
- If we start with an almost hermitian structure (g,J) on S S we
    obtain a Kirchhoff's global frame \sigma \inSO(8,\hat{g}), where \hat{g}\mathrm{ is a}
    metric extension of g}\mathrm{ to }\mp@subsup{\mathbb{R}}{}{8}\mathrm{ being compatible with the extended
    almost complex structure }\hat{J}\mathrm{ .
> The vector fields {\mp@subsup{X}{i}{}(x):=\mp@subsup{\sigma}{x}{}(\mp@subsup{e}{i}{})\mp@subsup{}}{i=1,\cdots,7}{}\mathrm{ defining the}
    parallelism in Kirchhoff's theorem can be written explicitly as:
```

 where \(\left\{e_{i}\right\}_{i=1, \cdots, 8}\) is the canonical basis of \(\mathbb{R}^{8}\).

Some remarks about Kirchhoff's theorem

- Note the linear frame σ is smooth at all points of S^{7} except at e_{8} and $-e_{8}$, where it is only continuous.
- Kirchhoff's theorem does not assume any additional condition on the almost complex structure J.

```
- If we start with an almost hermitian structure \((g, J)\) on \(S^{6}\), we
obtain a Kirchhoff's global frame \(\sigma \in S O(8, \hat{g})\), where \(\hat{g}\) is a
metric extension of \(g\) to \(\mathbb{R}^{8}\) being compatible with the extendec
almost complex structure \(\hat{J}\).
- The vector fields \(\left\{X_{i}(x):=\sigma_{x}\left(e_{i}\right)\right\}_{i=1, \cdots, 7}\) defining the
parallelism in Kirchhoff's theorem can be written explicitly as:
```

where $\left\{e_{i}\right\}_{i=1, \ldots, 8}$ is the canonical basis of \mathbb{R}^{8}.

Some remarks about Kirchhoff's theorem

- Note the linear frame σ is smooth at all points of S^{7} except at e_{8} and $-e_{8}$, where it is only continuous.
- Kirchhoff's theorem does not assume any additional condition on the almost complex structure J.
- If we start with an almost hermitian structure (g, J) on S^{6}, we obtain a Kirchhoff's global frame $\sigma \in S O(8, \hat{g})$, where \hat{g} is a metric extension of g to \mathbb{R}^{8} being compatible with the extended almost complex structure \hat{J}.
- The vector fields $\left\{X_{i}(x):=\sigma_{x}\left(e_{i}\right)\right\}_{i=1, \cdots, 7}$ defining the parallelism in Kirchhoff's theorem can be written explicitly as:
where $\left\{e_{i}\right\}_{i=1, \ldots, 8}$ is the canonical basis of \mathbb{R}^{8}.

Some remarks about Kirchhoff's theorem

- Note the linear frame σ is smooth at all points of S^{7} except at e_{8} and $-e_{8}$, where it is only continuous.
- Kirchhoff's theorem does not assume any additional condition on the almost complex structure J.
- If we start with an almost hermitian structure (g, J) on S^{6}, we obtain a Kirchhoff's global frame $\sigma \in S O(8, \hat{g})$, where \hat{g} is a metric extension of g to \mathbb{R}^{8} being compatible with the extended almost complex structure \hat{J}.
- The vector fields $\left\{X_{i}(x):=\sigma_{x}\left(e_{i}\right)\right\}_{i=1, \cdots, 7}$ defining the parallelism in Kirchhoff's theorem can be written explicitly as:

$$
X_{i}(x)=x_{8} e_{i}-x_{i} e_{8}+\beta(x) J_{y}\left(e_{i}-\left\langle y, e_{i}\right\rangle y\right)
$$

where $\left\{e_{i}\right\}_{i=1, \ldots, 8}$ is the canonical basis of \mathbb{R}^{8}.

Main Question

To what extent does the integrability of an almost complex structure J on S^{6} imply the integrability of the associated parallelism on S^{7} ?

A framework to approach the Main Question

Recently Loubeau and Sá-Earp in 'Harmonic flow of geometric structures' arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric G-structure on (M, g) as a section of
the homogeneous fibre bundle $\pi: N:=P / G \rightarrow M$, which admits a
natural notion of torsion.
They formulated a general theory of harmonicity for geometric
structures on a Riemannian manifold (using a Dirichlet energy of
sections of π)
Various torsion regimes for a geometric section fit in a logical chain:

Recently Loubeau and Sá-Earp in 'Harmonic flow of geometric structures' arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric G-structure on (M, g) as a section of the homogeneous fibre bundle $\pi: N:=P / G \rightarrow M$, which admits a natural notion of torsion.

They formulated a general theory of harmonicity for geometric structures on a Riemannian manifold (using a Dirichlet energy of sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

A framework to approach the Main Question

Recently Loubeau and Sá-Earp in 'Harmonic flow of geometric structures' arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric G-structure on (M, g) as a section of the homogeneous fibre bundle $\pi: N:=P / G \rightarrow M$, which admits a natural notion of torsion.

They formulated a general theory of harmonicity for geometric structures on a Riemannian manifold (using a Dirichlet energy of sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

A framework to approach the Main Question

Recently Loubeau and Sá-Earp in 'Harmonic flow of geometric structures' arXiv:1907.06072 propose a twistorial interpretation of geometric structures on Riemannian manifolds.

They interpreted a geometric G-structure on (M, g) as a section of the homogeneous fibre bundle $\pi: N:=P / G \rightarrow M$, which admits a natural notion of torsion.

They formulated a general theory of harmonicity for geometric structures on a Riemannian manifold (using a Dirichlet energy of sections of π)

Various torsion regimes for a geometric section fit in a logical chain:

$$
d^{\mathcal{V}} \sigma=0 \Longrightarrow \text { super-flat } \Longrightarrow \text { totally geodesic } \Longrightarrow
$$

\Longrightarrow harmonic map \Longrightarrow harmonic section.

A framework to approach the Main Question

$$
\begin{align*}
d^{v} \sigma=0 & \Longrightarrow \text { super-flat } \Longrightarrow \text { totally geodesic } \Longrightarrow \tag{1}\\
& \Longrightarrow \text { harmonic map } \Longrightarrow \text { harmonic section. }
\end{align*}
$$

In particular, for parallelisms on a sphere $\sigma:\left(S^{n}, g\right) \rightarrow S O(n+1, g)$, it
is not hard to check that eg. the Hopf frame on round S^{3} is harmonic as a section and integrable, but $d^{\nu} \sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere $\left(S^{n}, g\right)$, what are the explicit conditions of (1) for σ ?

Question: How to express the integrability condition $\nabla^{C} T=0$ in terms of the vertical torsion $d^{\nu} \sigma$? Eg. for almost-complex structures, the vanishing of the Nijenhuis tensor is equivalent to $J^{\nu} \circ d^{\nu} \sigma=d^{\nu} \sigma \circ J$.

$$
\begin{align*}
d^{\nu} \sigma=0 & \Longrightarrow \text { super-flat } \Longrightarrow \text { totally geodesic } \Longrightarrow \tag{1}\\
& \Longrightarrow \text { harmonic map } \Longrightarrow \text { harmonic section. }
\end{align*}
$$

In particular, for parallelisms on a sphere $\sigma:\left(S^{n}, g\right) \rightarrow S O(n+1, g)$, it is not hard to check that eg. the Hopf frame on round S^{3} is harmonic as a section and integrable, but $d^{\nu} \sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere $\left(S^{n}, g\right)$, what are the explicit conditions of (1) for σ ?

Question: How to express the integrability condition $\nabla^{c} T=0$ in terms of the vertical torsion $d^{\nu} \sigma$? Eg. for almost-complex structures, the vanishing of the Nijenhuis tensor is equivalent to $J^{\mathcal{V}} \circ d^{\mathcal{V}} \sigma=d^{\mathcal{V}} \sigma \circ J$.

$$
\begin{align*}
d^{\nu} \sigma=0 & \Longrightarrow \text { super-flat } \Longrightarrow \text { totally geodesic } \Longrightarrow \tag{1}\\
& \Longrightarrow \text { harmonic map } \Longrightarrow \text { harmonic section. }
\end{align*}
$$

In particular, for parallelisms on a sphere $\sigma:\left(S^{n}, g\right) \rightarrow S O(n+1, g)$, it is not hard to check that eg. the Hopf frame on round S^{3} is harmonic as a section and integrable, but $d^{\nu} \sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere $\left(S^{n}, g\right)$, what are the explicit conditions of (1) for σ ?

Question: How to express the integrability condition $\nabla^{c} T=0$ in terms of the vertical torsion $d^{\nu} \sigma$? Eg. for almost-complex structures, the vanishing of the Nijenhuis tensor is equivalent to $J^{\mathcal{V}} \circ d^{\mathcal{V}} \sigma=d^{\mathcal{V}} \sigma \circ J$.

A framework to approach the Main Question

$$
\begin{align*}
d^{\nu} \sigma=0 & \Longrightarrow \text { super-flat } \Longrightarrow \text { totally geodesic } \Longrightarrow \tag{1}\\
& \Longrightarrow \text { harmonic map } \Longrightarrow \text { harmonic section. }
\end{align*}
$$

In particular, for parallelisms on a sphere $\sigma:\left(S^{n}, g\right) \rightarrow S O(n+1, g)$, it is not hard to check that eg. the Hopf frame on round S^{3} is harmonic as a section and integrable, but $d^{\nu} \sigma \neq 0$, since it is non-Abelian.

Question: For a parallelism on a sphere $\left(S^{n}, g\right)$, what are the explicit conditions of (1) for σ ?

Question: How to express the integrability condition $\nabla^{c} T=0$ in terms of the vertical torsion $d^{\nu} \sigma$? Eg. for almost-complex structures, the vanishing of the Nijenhuis tensor is equivalent to $J^{\mathcal{V}} \circ d^{\mathcal{V}} \sigma=d^{\mathcal{V}} \sigma \circ J$.

Homotopy approach
Definition: an H-space is a topological space M which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an H-space structure are S^{1}, S^{3} and S^{7}.

We can rephrase Kirchhoff's theorem as follows:
If S^{n} admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The point is that the induced multiplication on S^{n+1} is written explicitly in terms of J

Homotopy approach

Definition: an H-space is a topological space M which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an H-space structure are S^{1}, S^{3} and S^{7}.

We can rephrase Kirchhoff's theorem as follows:
If S^{n} admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The noint is that the induced multiplication on S^{n+1} is written explicitly in terms of J.

Homotopy approach

Definition: an H-space is a topological space M which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an H-space structure are S^{1}, S^{3} and S^{7}.

We can rephrase Kirchhoff's theorem as follows:
If S^{n} admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

Homotopy approach

Definition: an H-space is a topological space M which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an H-space structure are S^{1}, S^{3} and S^{7}.

We can rephrase Kirchhoff's theorem as follows:
If S^{n} admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

Homotopy approach

Definition: an H-space is a topological space M which admits a continuous multiplication $m: M \times M \longrightarrow M$ with a two-sided identity element.

By a celebrated theorem of Adams(1960) the only spheres that admit an H-space structure are S^{1}, S^{3} and S^{7}.

We can rephrase Kirchhoff's theorem as follows:
If S^{n} admits an almost complex structure J then S^{n+1} is a an H-space

This follows from Kirchhoff's theorem and the well known fact that a parallelizable sphere is an H-space.

The point is that the induced multiplication on S^{n+1} is written explicitly in terms of J.

$$
m: S^{7} \times S^{7} \longrightarrow S^{7}, \quad m(x, y):=\sigma_{x}(y) /\left\|\sigma_{x}(y)\right\|
$$

H -space structures induced by almost complex structures

Definition:
A multiplication $m: S^{n} \times S^{n} \longrightarrow S^{n}$ is homotopy-associative if $m(m \times \mathrm{id}) \cong m(\mathrm{id} \times m)$

Theorem (James 1957) There exists no homotopy-associative multiplication on S^{n} unless $n=1$ or 3 .

As we have already seen the non-associativity of the octonions causes the non-integrability of the almost complex structure induced on S^{6} by the octonions.

We would like to relate the probable non-existence of complex structure on S^{6} with the lack homotopy associative multiplications on S^{7}

Question: Does the integrability condition of an almost complex structure J on S^{6} implies homotopy associativity of the induced multiplication m on S^{7} ?

H-space structures induced by almost complex structures

Definition:
A multiplication $m: S^{n} \times S^{n} \longrightarrow S^{n}$ is homotopy-associative if $m(m \times \mathrm{id}) \cong m(\mathrm{id} \times m)$

Theorem (James 1957) There exists no homotopy-associative multiplication on S^{n} unless $n=1$ or 3 .

As we have already seen the non-associativity of the octonions causes the non-integrability of the almost complex structure induced on S^{6} by the octonions.

We would like to relate the probable non-existence of complex structure on S^{6} with the lack homotopy associative multiplications on S^{7}.

Question: Does the integrability condition of an almost complex
structure J on S^{6} implies homotopy associativity of the induced multiplication m on S^{7} ?

H -space structures induced by almost complex structures

Definition:
A multiplication $m: S^{n} \times S^{n} \longrightarrow S^{n}$ is homotopy-associative if $m(m \times \mathrm{id}) \cong m(\mathrm{id} \times m)$

Theorem (James 1957) There exists no homotopy-associative multiplication on S^{n} unless $n=1$ or 3 .

As we have already seen the non-associativity of the octonions causes the non-integrability of the almost complex structure induced on S^{6} by the octonions.

We would like to relate the probable non-existence of complex structure on S^{6} with the lack homotopy associative multiplications on S^{7}.

Question: Does the integrability condition of an almost complex structure J on S^{6} implies homotopy associativity of the induced multiplication m on S^{7} ?

Thank you

