
ADVANCED PROBABILITYI.F. BAILLEULIntentionsIn a ausal vision of the world, it is not lear what should be alled a random Naturalphenomenon. Within this framework, and at an intuitive level, probability theory quan-ti�es our lak of knowledge on the auses of what we observe. In its relation with theempirial world, probability theory provides results of a subjetive nature, and a hange inour understanding of Nature may hange this relation. Whih mathematial (i.e. logial)model for random Natural phenomena should be adopted has been debated for long, andit was not before 1933 and Kolmogorov's work �Foundations of the Theory of Probabil-ity� that a model has been widely aepted. Building on the works of Lebesgue, Baire,Fréhet and others, Kolmogorov laid the foundations of probability theory on the groundof measure theory.One an distinguish two levels in his theory: the random phenomenon itself is modelledby a probability spae (Ω,F ,P), and the experimental observation proess is modelled bya random variable or a family of random variables (Xt)t∈T . The motion of a pollen grainin suspension at the surfae of a glass of water will for instane be represented by theolletion (Xt)t>0 of its positions as time goes.The aim of this ourse is to introdue some of the most fundamental tools used in thestudy of random phenomena whose desription involves in�nitely many parameters.Part I of the ourse takles the problem of de�ning models of a given phenomenon forwhih experimental observations provide some onstraints. The main question will thus beto de�ne a �proper� probability on a measurable spae (Ω,F) whih assigns to some events,orresponding to the experimental events, a given probability. Two ways of onstrutingsuh probabilities will be explored: by using the general mahinery of Caratheodory'sextension theorem, or by onstruting them as limits of other probabilities, de�ned inan elementary way. In this part, the (mathematial) observation proess (Xt)t∈T will beonsidered globally, without paying attention to any notion of dynamis.Part II of the ourse is devoted entirely to the dynamial desription of a phenome-non; no attention will thus be paid to the probability spae (Ω,F) itself. In most of themodels we shall onsider, (Xt)t∈T will be indexed by some sort of time; and time has anarrow. We shall explore in this seond part what natural notions ome out of this fatand some of their fundamental properties. Roughly speaking, as time passes, the obser-vation proess de�nes a dynamial system; like in deterministi dynamial systems, theknowledge of whih quantities are preserved, inrease or desrease, as time runs forwardprovides information on the dynamis. This role of �onstant of motion� is played in theprobabilisti setting by the notion of (sub/super-)martingale.These notes are intended for use by students of the Mathematial Tripos at the University of Cambridge.Copyright remains with the author. Please send orretions to i.bailleul�statslab.am.a.uk.1
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4 ADVANCED PROBABILITYPart I. Stati theory of stohasti proessesModern probability theory starts with the formalism of an experiment through theonept of abstrat algebra. This is in a sense the olletion Q of questions we an askabout an experiment we are interested in, and whih might be repeated; they are of theform: "Do you observe (that)?", shortly written "Observe (that)?" below. This olletionof questions is supposed to enjoy the following logial properties.
• If questions "Observe (A)?" and "Observe (B)?" are in Q then the question "Ob-serve (A and B)?" and "Observe (A or B)?" are meaningful and are in Q. Thefollowing questions always have the same answers:� "Observe (A or (B and C))?" and "Observe ((A or B) and (A or C))?"� "Observe (A and (B or C))?" and "Observe ((A and B) or (A and C))?"
• Q ontains a question "Observe (∅)" whose answer is always "no" and a question"Observe (all)?" whose answer is always "yes". The following questions alwayshave the same answers:� "Observe (A or ∅)?" and "Observe (A)?",� "Observe (A and ∅)?" and "Observe (∅)?",� "Observe (A or all)?" and "Observe (all)?",� "Observe (A and all)?" and "Observe (A)?",et.Stone showed that any abstrat logial struture as the above one an always be under-stood as a olletion of questions of the form "Does this element of Ω belongs to A?",for some set Ω and A belonging to a olletion A of parts of Ω stable by �nite union,�nite intersetion, omplementation, and ontaining the emptyset. The set A togetherwith these operations is alled a (onrete) algebra1. This theorem gives a 'set repre-sentation' of the logial struture with whih we omprehend Nature. As natural as itmay appear, quantum mehanis has taught us that this representation has limits... andthat Nature is subtler than that. Nonetheless, the bene�ts provided by suh a view onNatural phenomena are tremendous and we shall adopt it without restrition.We shall thus suppose given a set Ω, together with an algebra A of parts of Ω desribingthe elementary knowledge about some phenomenon we are questioning. Although nohuman being will ever be able to ask more than a �nite number of questions during hislife, it is a useful abstration to think that sine this number may be really large, we areatually able to ask ountably many questions. This diretly leads to the de�nition of a

σ-algebra F of parts of Ω, whih is the good setting in whih de�ning a probability.This formalism on whih probability theory rests is due to Kolmogorov in his 1933 book�Foundations of the Theory of Probability�. Although the advantages provided by this frameworkare numerous, you should keep in mind the following quotation from Kolmogorov's book on theinterpretation of probability theory.�Even if the sets (events) of A an be interpreted as atual and (perhaps only approximately)observable events, it does not, of ourse, follow from this that the sets of the extended �eld Freasonnably admit an interpretation.Thus there is the possibility that while a �eld of probability (A,P) may be regarded as theimage (idealized, however) of atual random events, the extended �eld of probability (F ,P) willstill remian merely a mathematial struture.1Stone's theorem is well presented in T. Tao's post: http://terrytao.wordpress.om/2009/01/12/245b-notes-1-the-stone-and-loomis-sikorski-representation-theorems-optional.



ADVANCED PROBABILITY 5Thus sets of F are generaly merely ideal events to whih nothing orresponds in the outsideworld. However, if reasonning whih utilizes the probabilities of suh ideal events leads us toadetermination of the probability of an atual event of A, then, from an empirial point of viewalso, this determination will automatially fail to be ontraditory.�1. Constrution of measures and random proesses1.1. Proesses and sample spae. Interesting random natural phenomena are oftendesribed in terms of events de�ned by means of an in�nite number of oordinates, as is thease for random sequenes or random funtions. They an be represented by a olletion
(Xt)t∈T of random variables2, de�ned on some (potentially di�erent) measurable spae(s),and indexed by some set; the integers for random sequenes, and [0, 1], say, for a randomfuntion from [0, 1] to any (measurable) spae. The trajetory of a Markov hain is animportant example of a proess indexed by the integers.Definition 1. A olletion (Xt)t∈T of random variables, de�ned on some (potentiallydi�erent) measurable spae(s) is alled a proess; T will be referred to as the set ofoordinates, or index set.In Kolmogorov's theory, a proess is the mathematial abstration of the experimentalobservation proess. How an we de�ne a random proess? In pratie, we generally faetwo kinds of situations, depending on whih objet is given as part of the model.(1) A probability measure spae (Ω,F ,P) is given and we have to de�ne a proess
X on it satisfying some probabilisti requirements. This is sometimes easy but, moreoften, it requires some work as you will see in the ourse on stohasti alulus: de�ningstohasti integrals, solving stohasti di�erential equations are tasks of that type. Weshall not enounter suh a situation here, exept in setion 1.3.(2) In other ases, when the measurable spae (Ω,F) we are working with is nieenough, the de�nition of the proess X is immediate but not the de�nition of a probability
P on (Ω,F) whih would give X the probabilisti properties we want it to have; this willbe the ase when we take as Ω the spae of outomes of the phenomenon under study.This dihotomy is analogous to the situation an experimentor an meet: Given anexperimental ontext, onstrut some measurement devies whih will enable him/herto measure some given quantities, or, given some measurement devies, onstrut anexperiment whih will enable him/her to observe what he/she wants with his/her tools.We shall mainly explore situation (2) in the �rst part of this ourse, where we shall takeas Ω the sample spae of the phenomenon under study. It will for example be the spae
RN for a Markov hain on R, the spae R[0,1] for a random funtion from [0, 1] to R, or
{0, 1}E for the on�guration spae of a spin system over a set E. We �rst desribe the
σ-algebra F of observable events of these unountable produt spaes.b) Produt σ-algebra, or �What an we measure?�. Suppose we model the experi-mental observation of a natural phenomenon by a olletion (Xt)t∈T of random variablesand denote by St the set of possible outomes of Xt. We model the set of possible out-omes3 of the phenomenon as a produt ∏t∈T St. This produt spae will be our Ω, witha generi element ω = (ωt)t∈T . If eah set St has a σ-algebra of observable events, the2That is, measurable funtions from (Ω,F) to some (Ω′,F ′).3More preisely, the set of experimentally aessible possible outomes.



6 ADVANCED PROBABILITY
σ-algebra of observable events in the produt spae is generated by4 the elementary events{
(ωt)t∈T ; ωt1 ∈ A1, . . . , , ωtn ∈ An

}, with n > 1 �nite and eah Ai ∈ Sti ; it is alled theprodut σ-algebra5. It will be the olletion of sets to whih we shall be able to assoiatea probability. Let us �rst desribe this σ-algebra in some more onrete way.
• The measurable spae (RN,B(RN)

). Let us onsider as an example the spae
RN of real-valued sequenes; T = N and St = R for all t ∈ T . Introdue the metri
ρ(x, y) = |x−y|

1+|x−y| on R; the open sets for ρ are ountable unions of open intervals, as forthe usual metri. De�ne on RN the metri
d(ω, ω′) =

∑

n>1

2−nρ(ωn, ω
′
n),where ω = (ωn)n>1 and ω′ = (ω′

n)n>1; the Borel σ-algebra of RN is the smallest σ-algebraof RN ontaining the open balls of the metri d.Lemma 2. The produt σ-algebra of RN and its Borel σ-algebra oinide.Proof � As both σ-algebras are de�ned by a olletion fo elementary sets it su�es to provethat any of these is an element of the other σ-algebra. To start with, let us onsider anelementary produt event B =
{
ω = (ωn)n>1 ∈ RN ; ωn(1) ∈ A1, . . . , , ωn(p) ∈ Ap

}, with p�nite and eah Ai a Borel set of R. By a monotone lass argument, it su�es to onsiderthe ase where the Ai's are open intervals (ai − εi, ai + εi). Prove that B an be written asa ountable union of open balls of (RN, d
), in that ase. To prove that open balls an bewritten as a union of elementary B's, mimi the 2-dimensional ase, �lling a irle with aunion of squares6. �

• The produt spae RT . The following theorem shows that the produt σ-algebraof any produt spae RT is not riher than the produt σ-algebra of RN.Lemma 3. Let T be an unountable set. To any event A of the produt σ-algebra of RTthere orresponds a ountable set of indies (tn)n>1 and a Borel set B in RN suh that(1.1) A =
{
ω = (ωt)t∈T ∈ RT ;

(
ωtn

)
n>0

∈ B
}
.Proof � Denote by E the olletion of subsets of RT of the form (1.1). Given a sequene

(An)n>1 of elements of E with orresponding indies T (n), set T (∞) =
⋃

n>1 T
(n); every Anan be written

An =
{
ω ∈ RT ; (ωτ1 , ωτ2 , . . . ) ∈ Bn

}
,where τi ∈ T (∞) and Bn is a Borel event of RN. It follows that the olletion E is a σ-algebra;as it ontains the elementary produt events, it ontains the produt σ-algebra. Conversely,given an event of the form (1.1), lemma 2 proves that it belongs to the produt σ-algebra of

RT ; this establishes the onlusion of the theorem. �4The σ-algebra generated by some family of parts of a set is the smallest σ-algebra ontaining the givenfamily. It always exists as the family of all parts is a σ-algebra and the intersetion of any olletion of
σ-algebras is a σ-algebra.5You an think of the elementary events as retangles in Rn; this olletion of sets is su�ient to desribeall open sets, altough not all open sets are retangles.6Note that as ρ is bounded above by 1, an elementary event {(ωn)n>1 ∈ RN ; ωn(1) ∈ A1, . . . , ωn(p) ∈ Ap

}and the (in�nite dimensional) ube {(ωn)n>1 ∈ RN ; ωn(1) ∈ A1, . . . , ωn(p) ∈ Ap, ωn(p+1) ∈ Ap+1, . . .
} arewithin distane ε of one another provided p is big enough. So, �ll the ball by ubes, and approximateubes by elementary events.



ADVANCED PROBABILITY 7
• The produt spae ∏t∈T St. In the general ase where the sample spae of theobserved phenomenon is the produt ∏t∈T St of possibly unountably many measurablespaes (St,St), the desription of its produt σ-algebra ⊗t∈T St is similar to the ase of

RT . Given a ountable subset S of T , denote by BS the σ-algebra on ∏s∈S Ss generatedby its elementary produt events. The proof of the following fat is idential to the proofof lemma 3.Theorem 4 (Produt σ-algebra). To any event A of the produt σ-algebra of ∏t∈T Stthere orresponds a ountable set S of indies and a measurable set B in ∏s∈S Ss suhthat(1.2) A =
{
ω = (ωt)t∈T ∈

∏

t∈T

St ; (ωs)s∈S ∈ B
}
.As the maps

Xt : ω = (ωs)s∈T ∈
∏

t∈T

St 7→ ωt, t ∈ T,are measurable, by de�nition of the produt σ-algebra, we de�ne a proess on the measur-able spae (∏t∈T St,
⊗

t∈T St

) setting X = (Xt)t∈T . It is alled the oordinate proess.Definition 5. Our empirial knowledge of the investigated phenomenon provides uswith an a priori set of values for the probability of the elementary events: P
(
Xt1 ∈

A1, . . . , Xtn ∈ An

). These quantities are alled the �nite-dimensional laws (or distri-butions) of the proess.Under proper onditions, Caratheodory's theorem below gives us a mean to de�ne theprobability of any event of the produt σ-algebra in an unambiguous way out of thesequantities only.1.2. Caratheodory's extension theorem. The main tool to onstrut abstratly prob-ability measures is Caratheodory's extension theorem, of whih we give a proof followingJ.L. Doob's exposition, in his book [Doo94℄. Starting with the a priori datum of the�probability� of elementary events7, it gives a su�ient ondition under whih this setfuntion an be extended to a bigger set of events. Reall that an additive set funtion
µ on an algebra is a real-valued funtion suh that µ(A∪B) = µ(A) + µ(B) whenever Aand B are disjoint elements of the algebra.Theorem 6 (Caratheodory's extension theorem). Let (Ω,F) be a measurable spae,
A ⊂ F be an algebra and µ : A → [0, 1] be an additive funtion suh thati) µ(∅) = 0, µ(Ω) = 1,ii) (ountable additivity on A) If A1, A2, . . . are disjoint sets of A with union in Athen µ(⋃n>1An

)
=
∑

n>1 µ(An).Then µ has a unique extension into a probability measure on σ(A).Note that ondition ii) is equivalent to onditionii)' For any sequene (An)n>0 of sets of A dereasing to ∅ we have µ(An) → 0.7Given by repeated measurements in a �xed experimental ontext.



8 ADVANCED PROBABILITYProof � Uniqueness. The olletion of elements of σ(A) on whih two possible extensionsoinide being a σ-algebra the two measures are equal on σ(A) if they oinide on A by themonotone lass theorem8.Existene. Denote by P(Ω) the family of subsets of Ω. The outer measure µ assoiated with
µ is a set funtion de�ned on P(Ω) by the formula

µ(B) = inf
{∑

n>0

µ(An) ; B ⊂
⋃

n>0

An, An ∈ A
}
.

µ is easily seen to be inreasing and ountably sub-additive: µ(⋃n>0Bn

)
6
∑

n>0 µ(Bn),for any sequene (Bn)n>0 of sets of Ω. Also, as µ is ountably additive on A we see9 that
µ(A) 6 µ(A) for A ∈ A; as the onverse inequality trivially holds, µ and µ oinide on A.Chek that we de�ne a pseudo-metri10 on P(Ω) setting11

d(B,C) = µ(B∆C);sine µ is sub-additive and B ⊂
(
B∆C

)
∪ C for any subsets B,C of Ω, we have

|µ(B) − µ(C)| 6 µ(B∆C) = d(B,C),so µ(B) = µ(C) if d(B,C) = 0. De�ne Aµ as the olletion of subsets B of Ω whih an beapproximated to any auray by elements of A, using d-(pseudo)-distane.Lemma 7. Aµ is a σ-algebra on whih µ is additive.Proof � • We start by proving the (�nite) additivity of µ on Aµ as we are going to usethat fat in the proof that Aµ is a σ-algebra. Take two disjoint sets B and C in Aµ, an
ǫ > 0, and let AB and AC be elements of A suh that d(B,AB

)
, d
(
C,AC

)
6 ǫ. As theysatisfy the inequality µ(AB ∩AC) 6 2ǫ, we have by sub-additivity of µ

max
(
d
(
B,AB\(AB ∩AC)

)
, d
(
C,AC\(AB ∩AC)

))
6 3ǫ.It follows that

µ(B) + µ(C) > µ(B ∪ C) > µ
(
A\(AB ∩AC) ∪ A\(AB ∩AC)

)
− 3ǫ

> µ(B) + µ(C) − 5ǫ,from whih we get the onlusion as ǫ > 0 is arbitrary.
• Aµ is learly stable by omplementation; we hek that Aµ is stable by ountabledisjoint union, this implies that Aµ is stable by ountable union or intersetion, and sois a σ-algebra. Given ǫ > 0 and a sequene (Bn)n>0 of disjoint elements of Aµ; assoiateto eah Bn an An ∈ A suh that d(An, Bn) 6 2−n−1ǫ. As µ is �nitely additive on Aµ wehave ∑N

n=0 µ(Bn) = µ
(⋃N

n=0Bn

)
6 1, for all N > 0, so the sum ∑

n>N+1 µ(Bn) is lessthan ǫ for N large enough. For suh a hoie of N
d
(⋃

n>0

Bn,
⋃

n=0..N

An

)
6 d
(⋃

n>0

Bn,
⋃

n=0..N

Bn

)
+ d
( ⋃

n=0..N

Bn,
⋃

n=0..N

An

)

6 µ
( ⋃

n>N+1

Bn

)
+ µ

({ ⋃

n=0..N

Bn

}
∆
{ ⋃

n=0..N

An

})

6 ǫ+ µ
( ⋃

n=0..N

(Bn∆An)
)

6 ǫ+

N∑

n=0

2−n−1ǫ 6 2ǫ.8Algebras are π-systems.9Replaing An by An\
⋃n

k=0 Ak if neessary, we an suppose that the An's are disjoint.10A metri for whih two elements at null distane are not neessarily equal.11B∆C := (B ∪ C)\(B ∩ C).



ADVANCED PROBABILITY 9As ǫ > 0 an be hosen arbitrarily small this proves that ⋃n>0Bn is an element of Aµ.
⊙

µ being inreasing, additive and sub-ountably-additive on Aµ
(
⊃ σ(A)

), it is ountably-additive on Aµ (an you see why?); its restrition to σ(A) provides the desired extension of
µ. �Despite its elegane, Caratheodory's theorem does not rule out all the di�ulties astheir remains to hek onditions i) and ii) (or ii)' ) if one wants to use it. The introdutionof the following framework will help greatly in that task; it also provides a framework inwhih the use of Caratheodory's theorem is not neessary in some onrete situations.1.3. A onvenient framework. Although Caratheodory's extension theorem is a fan-tasti tool to onstrut probability measures as models of random phenomena, most ofthe time, it is not neessary to resort to the full strength of this abstrat mahinery asadditional features an help us in our onstrution task. Indeed, problems an often be setin a topologial framework where Ω is a topologial spae and F the σ-algebra generatedby its open sets.Definition 8. We say that two measurable spaes are isomorphi ifdef there exists ameasurable bijetion from one to the other with a measurable inverse12.The interval [0, 1] will be equiped with its Borel σ-agebra B

(
[0, 1]

), generated by theopen sets.Definition 9. A measurable spae (Ω,F) is said to be a Borel spae ifdef it is isomorphito a measurable subset of [0, 1].Constrution problems in Borel spaes are nothing more than onstrutions problemsin the innoent framework ([0, 1],B
(
[0, 1]

)). But powerful tools are available on the spae
[0, 1] whih are not available in an abstrat measurable spae (basially ompatness!, i.e.existene of limits of subsequenes). We shall illustrate this fat in theorems 18 belowwhere it is used together with Caratheodory's mahinery to prove a general existeneresult. It will also be the framework of the approximation theory developped in setion2. Theorem 10 below should onvine you that the lass of Borel spaes should be su�ientfor your needs before long. It is proved in the Complement Separable Banah spaes.Theorem 10. Any measurable subset of a separable Banah spae is a Borel spae.a) A �rst appliation: existene of sequenes of independent random variables,onstrution of Markov hains. As a �rst example of how this property of a spaean be used, let us see how one an onstrut on [0, 1], with Lebesgue measure Leb, asequene of independently distributed random variables with values in some Borel spaes.As a �rst step let us onstrut a real-valued random variable with any given distribution.Given a probability measure µ in R denote by F : R → [0, 1] its distribution funtion
F (t) = µ

(
(−∞, t]

) and by G : [0, 1] → R its right inverse
G(u) = inf{t ∈ R ; F (t) > u}12In the same way as the inverse of a one-to-one ontinuous funtion may be non-ontinuous (an you�nd a ounter-example?), the inverse of a one-to-one measurable funtion may be non-measurable.



10 ADVANCED PROBABILITYwith the onvention that inf ∅ = +∞; this is a àdlàg funtion haraterized by theproperty13
u 6 F (t) i� G(u) 6 t.So if U is a uniform random variable in [0, 1]

P
(
G(U) 6 t

)
= P

(
F (t) > U

)
= F (t).Theorem 11 (Existene of independent sequenes). Given probability measures µn onsome Borel spaes (Sn,Sn), n > 1, we an onstrut on ([0, 1],B

(
[0, 1]

)
,Leb) a sequene

(Xn)n>0 of independent random variables with respetive distributions µn.Proof � It is given under the form of an exerise.(1) Given a uniform random variable U on [0, 1] prove that the sequene of its binaryexpension is a Bernoulli sequene with parameter 1
2 .(2) Dedue that there exists measurable funtions f1, f2, . . . from [0, 1] to itself suh thatthe fn(U) are iid uniform on [0, 1].(3) Let ϕi be an isomorphism between (Si,Si) and a Borel subset of [0, 1]; de�ne theprobability νi on [0, 1] setting νi(A) = µi

(
ϕ−1

i (A)
). Set, for t ∈ [0, 1]

fi(t) = sup
{
x ∈ [0, 1] ; νi

(
[0, x]

)
< t
}
.Why is this funtion measurable? Prove that if V is uniformly distributed in [0, 1] then

fi(V ) has law νi. Finish the proof.
�As a by-produt of the above result we are able to onstrut e�etively any Markovhain in a proper way. Suppose we are given for eah x ∈ R a probability measure p(x, .)on R.14Definition 12. A disrete time Markov hain with transition kernel {p(x, .)}x∈Rand initial distribution ν is a proess (Xn)n>0 de�ned on some probability spae (Ω,F ,P)suh that we have for any n > 0, and any (Borel) sets A0, ..., An of R

P
(
X0 ∈ A0, ..., Xn ∈ An

)
=

∫
· · ·
∫
ν(dx0) 1A1(x1)p(x0, dx1) · · ·1An(xn)p(xn−1, dxn).Proposition 13. Given any transition kernel {p(x, .)}

x∈R
and any initial distribution νtheir exist a Markov hain with the orresponding harateristis.Proof � Denote by g and fx the right inverses of the distribution funtions of ν and µxrespetively,

g(u) = inf
{
z ∈ R ; ν

(
(−∞, z]

)
> u

}
, fx(u) = inf

{
z ∈ R ; p

(
x, (−∞, z]

)
> u

}
, u ∈ [0, 1],and let (Un)n>0 be a sequene of iid uniform random variables on [0, 1], whose existene isguaranteed by theorem 11. I leave you to hek that the indution formula X0 = g(U0) and

Xn+1 = fXn(Un)de�nes a Markov hain with transition kernel {p(x, ·)}
x∈R

and initial distribution ν.15 �13The left inverse of F is de�ned by the formula H(u) = sup{t ∈ R ; F (t) < u}. Let D be the image by
F of the ountable olletion of intervals where f is onstant. The two inverses G and H oinide outside
D.14The onstrution below works equally well with any Borel spae as a state spae of the Markov hain.15To be really lean we should make the hypothesis that p(x, .) depends measurably on x, a detail whihwe shall leave aside.



ADVANCED PROBABILITY 11Theorem 11 provides us with a reservoir of iid random variables; they an be used notonly to onstrut disrete time random proesses, as Markov hains, but also ontinuoustime random proesses.b) A seond appliation: Wiener measure and Brownian motion. The spae
C
(
[0, 1],R

) an be seen from two point of views, either as a subset of the produt R[0,1],or as a metri spae (C([0, 1],R
)
, ‖.‖∞

). Eah piture has its own σ-algebra of observableevents: the trae on C
(
[0, 1],R

) of the produt σ-algebra, and the Borel σ-algebra of(
C
(
[0, 1],R

)
‖.‖∞

), generated by the open balls. We shall prove later, in proposition 32,that the two σ-algebras oinide, making it the natural objet to onsider; denote it by
W and write W for C([0, 1],R

). Refering to �a) of the introdution, we onstrut in thisparagraph a ontinuous time random proess using the point of view (2): the oordinateproess (Xt)t∈[0,1] is naturally de�ned on (W,W) setting Xt : ω ∈ W 7→ ωt for eah
t ∈ [0, 1]. So, turning X into a random proess amounts to onstruting a probabilitymeasure (W,W). We onstrut here what it probably the most fundamental of all suhmeasures: Wiener measure.Definition 14. A Wiener measure on (W,W) is a probability measure P suh that

• X0 = 0, P-almost-surely ,
• the proess X has independent inrements,
• Xt −Xs ∼ N (0, t− s) for all s < t.Theorem 15. There exists a unique Wiener measure on (W,W).The uniqueness statement omes from the fat that the above three onditions de�neuniquely the probability of the elementary events {Xt1 ∈ A1, · · · , Xtn ∈ An

}, for (Borel)subsets Ai of R (an you see why?). As these events generate the produt σ-algebra, whihoinides with W, the probability P, if it exists, is uniquely determined by its values onthese elementary events.Denote by D the set of dyadi rationals in [0, 1] and write Dn for {k2−n ; k = 0..2n}.The following existene proof of Wiener measure takes advantage of the following twofats.
• If one an onstrut on some probability spae (Ω,F ,Q) an almost-surely ontin-uous proess Y satisfying Q-almost-surely some requirements then, denoting by

P the image measure of Q by Y 16, the oordinate proess X on (W,W) satis�es
P-almost-surely the same requirements.

• It is easy to onstrut a �Wiener measure� on the spae of funtions from Dn to
R, for any n > 1.Proof � Use theorem 11 to onstrut on the probability spae ([0, 1],B([0, 1]),Leb) a ount-able olletion {Xn

i ; 1 6 i 6 2n−1, n > 1
} of entered Gaussian random variables withvariane 1. De�ne indutively a sequene B(n)
t of random ontinuous funtions speifyingtheir values on the points of Dn and interpolating linearly in between.

• B(0)(0) = 0 and B(0)(1) = X0;
• supposing B(n−1) has been onstruted and has independent Dn−1-inrements

{
B

(n−1)

(k+1)2−(n−1) −B
(n−1)

k2−(n−1) ; 0 6 k 6 2−(n−1) − 1
}
,16P is a probability on (W,W).



12 ADVANCED PROBABILITYset B(n)
t = B

(n−1)
t for all t ∈ Dn−1, and for s = k2−(n−1) + 2−n set

B(n)
s =

1

2

(
B

(n−1)

k2−(n−1) +B
(n−1)

(k+1)2−(n−1)

)
+ 2−

n+1
2 Xn

k , 1 6 k 6 2nThe inrements B(n)
s − B

(n)

k2−(n−1) and B
(n)

(k+1)2−(n−1) − B
(n)
s being Gaussian, we hek theirindependene showing they have null ovariane; they have variane 2−n. These two in-rements being onstruted from B

(n−1)

k2−(n−1) −B
(n−1)

(k+1)2−(n−1) and Xn
k they are independent ofinrements over intervals disjoint from (

k2−(n−1), (k+1)2−(n−1)
). An inrement B(n)

t −B(n)
swill thus have a entered Gaussian law with variane t− s, for t, s ∈ Dn.Now, by Borel-Cantelli's lemma, for any c >

√
2 log 2 there exists Leb-almost-surely aninteger n0 suh that for all n > n0 and all 0 6 k 6 2n we have |Xn

k | 6 c
√
n. For suh

n's we thus have ‖B(n) − B(n−1)‖∞ 6 c
√
n 2−

n
2 , from whih it follows that the sequeneof ontinuous funtions (B(n)

)
n>0

onverges almost-surely uniformly to some ontinuous(random) funtion (Bt)t∈[0,1]. It is de�ned on the probability spae ([0, 1],B([0, 1]),Leb).We hek that the proess B has independent Gaussian inrements; this proves the existeneof Wiener measure by the remarks preeding the beginning of the proof.Given times 0 6 t0 < t1 < · · · < tn, approximate eah ti by a sequene tki of dyadis.Write EL for the expetation under Lebesgue measure. Use bounded onvergene and theLeb-almost-sure ontinuity of B to write for any real-valued bounded ontinuous funtion
f on Rn

EL

[
f(Bt1 −Bt0 , . . . , Btn −Btn−1)

]
= lim

k+∞
EL

[
f(Btk1

−Btk0
, . . . , Btkn

−Btkn−1
)
]

= lim
k+∞

EL

[
f
(√

tk1 − tk0 N1, . . . ,
√
tkn − tkn−1Nn

)]

= EL

[
f
(√
t1 − t0N1, . . . ,

√
tn − tn−1Nn

)]
.where N1, . . . , Nn are iidN (0, 1) de�ned on ([0, 1],B([0, 1]),Leb). One reads on that formulathat B has independent Gaussian inrements. �Definition 16. A (W,W)-valued random variable de�ned on some probability spae issaid to be a Brownian motion if its law is Wiener measure.) Existene of random sequenes and random proesses. The preeding twoparagraphs make it lear that it is not always neessary to resort to Caratheodory'sextension theorem to de�ne interesting random proesses. Yet, it remains the best tool todeal with more general and abstrat situations. As emphasized at the end of setion 1.2,on eis left with heking the non-trivial ondition ii) or ii)' of Caratheodory's theorem ifone wants to apply it. Borel spaes provide a good framework in whih proving ii)', orrather its ontraposition. This is typially done as follows.Given a dereasing sequene (An)n>0 suh that µ(An) is bounded below by some positiveonstant ε, approximate eah An from inside by a ompat Kn. A areful hoie givesa dereasing sequene of �ompat� sets whose measure is bounded below by ε

2
. Theintersetion of �nitely many of them having positive (�pre-�)measure is thus non-emptyso, by ompatness, their intersetion is non-empty; hene ⋂n>0An ⊃ ⋂

n>0Kn 6= ∅,whih proves ii)'. These �ompat� sets are what the �Borel hypothesis� provides us with.We are going to illustrate this approah in the following framework, whih is well suitedto deal with (Markov hains and more) general random sequenes.



ADVANCED PROBABILITY 13Definition 17. Given measurable spaes (Si,Si), we say that a sequene of probabilitymeasures µn on ∏i=0..n Si (17) is projetive ifdef
µn+1(· × Sn+1) = µn(·), n ∈ N.Projetive families of probabilities are models of disrete time random proesses withmemory. If for instane all the Si's are idential, equal to S, and (µn)n>0 is determinedby a family of transition kernels18 {µx(.) ; x ∈ S

} via the formula
µn(A0 × · · · ×An) =

∫

A0

ν0(dx0)

∫

A1

µx0(dx1) . . .

∫

An

µxn−1(dxn),then µn is the law of the �rst n positions of a Markov hain on (S,S). In the abovegeneral model the law of the (n + 1)th-position of the proess may depend not only onthe nth position of the proess but also on all its history up to time n. Equip the in�niteprodut∏i>0 Si with its produt σ-algebra; denote by S0⊗· · ·⊗Sn the produt σ-algebraof ∏i=0..n Si.Theorem 18 (Existene of random sequenes � Daniell). Let ((Si,Si)
)

i>0
be a sequeneof Borel spaes. Given a projetive sequene of probability measures µn on∏i=0..n Si, thereexists a probability P on the produt σ-algebra of ∏i>0 Si suh that

P
(
E ×

∏

i>n+1

Si

)
= µn(E)for any E ∈ S0 ⊗ · · · ⊗ Sn, and n ∈ N.Proof � We use Caratheodory's extension theorem; point i) is lear. The algebra A =

{
E ×∏

i>n+1 Si ; E ∈ S0 ⊗ · · · ⊗ Sn

} generates the produt σ-algebra of ∏i>0 Si. Let (An)n>0be a dereasing sequene of elements of A; we an suppose without loss of generality that
An = En ×∏i>n+1 Si and En ∈ ⊗i=0..n Si. We prove the ontraposition of ondition ii)'of Caratheodory's theorem: if P(An) = µn(An) is bounded below by some positive δ then⋂
n>0

An annot be empty. Let ε > 0 be given.Denote by ϕn an isomorphism of ∏i=0..n Si to a Borel subset of [0, 1] and denote by νn theimage measure of µn by ϕn. As νn is inner regular (exerie 5), there exists a ompat subset
Kn of ϕn(En) suh that

νn

(
ϕ(En)\Kn

)
6 2−nǫ,i.e.

P
(
An\

{
ϕ−1

n (Kn) ×
∏

i>n+1

Si

})
6 2−nǫ.Writing Vn for ϕ−1

n (Kn) ×∏i>n+1 Si and setting Wn = V1 ∩ · · · ∩ Vn, it follows that
P
(
An\Wn

)
6 ǫ,so Wn annot be empty provided ε < δ (it has positive probability under that ondi-tion). Choose for eah n a point mn in Wn. As the sets Wn are dereasing, all the points

mn+1,mn+2, . . . belong to Wn, and the ϕn-projetion of their �rst n oordinates lie in theompat Kn, so have a onverging sub-sequene. A diagonal extration then provides a17Equiped with its produt σ-algebra S0 ⊗ · · · ⊗ Sn.18p(x, ·) is for every x ∈ S a probability on (S,S); the quantity p(x,A) represents the probability startingfrom x to jump in A. For a disrete spae S the matrix {p(x, y)}x,y∈S is the usual transition matrix of aMarkov hain.



14 ADVANCED PROBABILITYsubsequene of mn onverging to a point m belonging to all the Wn(⊂ An), proving that⋂
n>0An is not empty. �Kolmogorov's general existene theorem below gives a version of Daniell's theorem 18whih works on any produt spae ∏t∈T St. The oneptual improvement is almost-nullas a generi element of the produt σ-algebra of ∏t∈T St is de�ned by requirements onountably many oordinates, as theorem 4 makes it lear. Kolmogorov's theorem is thusan almost-straightforward onsequene of Daniell's theorem; details of its proof an befound in the proof of theorem 6.16, in Kallenberg's book [Kal02℄.Given �nite sets of indies I ⊂ J , denote by the same letter A an event of ∏t∈I St,onsidered also as an event of ∏t∈J St. Denote by T the set of �nite subsets of T . Afamily of measures µI on ∏t∈I St, I ∈ T, is said to be projetive ifdef µJ(A) = µI(A) forany event A as above, and any �nite sets of indies I ⊂ J .Theorem 19 (Existene of proesses � Kolmogorov). Let T be any index set and (St)t∈Tbe a family of Borel spaes. Given a projetive family of probability measures µI on∏t∈I Stthere exists a unique probability measure on ∏t∈T St with projetion µI on eah ∏t∈I St,

I ∈ T.d) Limits of the abstrat mahinery. However powerful suh general results may be,they remain unsu�ient to provide models of real-valued ontinuous random paths. Tryfor instane to de�ne suh a proess X = (Xt)t∈[0,1] as a random variable with values in
R[0,1] equiped with its produt σ-algebra.Proposition 20. The subset C([0, 1],R

) of R[0,1] is not measurable19.Proof � The main reason for this is that the onept of ontinuity involves a ontinuum ofonditions whereas any elements on the produt σ-algebra ontains only information on whathappens at ountably many times. Use theorem 4 to give a neat proof. �To overome this di�ulty in de�ning random ontinuous funtions as models of randomNatural phenomena we shall rely on the idea that ontinuous funtions are determined bytheir values on a ountable set of times. Our onstrution of Wiener measure and Brown-ian motion relied on this idea. The next setion gives a lear example of this philosophy;later, in setion 6 on martingales, we shall onstrut ontinuous time martingales fromtheir rational skeleton...1.4. Good modi�ations.Definition 21. • Two random proesses (Xt)t∈T and (X̃t)t∈T , indexed by the sameset T of indies, are said to be a modi�ation of one another if they have thesame �nite dimensional laws20: P(X̃t = Xt) = 1 for any t ∈ T .
• (Xt)t∈T and (X̃t)t∈T are said to be indinstiguishable if P( ∀ t ∈ T, X̃t = Xt) = 1.The previous de�nition assumes that the event {∀ t ∈ T, X̃t = Xt} is measurable, whihdoes not hold for any index set or any pair of proesses. This notion will only be used in aontext where this problem does not happen. To be indistinguishable is a muh strongerrequirement than to be modi�ations of one another; however, these two notions oinide19That is, it does not belong to the produt σ-algebra.20This ondition is su�ient to have P(∀i, X̃ti

= Xti
) = 1, for any �nite olletion of indies ti.



ADVANCED PROBABILITY 15if the index set is ountable, or if the two proesses are right-ontinuous with value in aHausdor� topologial spae; prove that fat.Caratheodory's theorem typially provides us with proesses for whih natural require-ments, like ontinuity of the sample paths, have no meaning. Yet, if this proess anbe ontrolled in some way, it admits a modi�ation with good sample paths properties.From an experimental point of view, working with a given proess or a modi�ation of itdoes not make any di�erene as the only quantities we an measure are the elementaryprobabilities P
(
Xt0 ∈ A0, . . . , Xtn ∈ An

), whose values do not depend on whih modi-�ation of X we are working with. As you will see in exerise ??, two proesses whihare modi�ation of one another may have quite di�erent pathwise properties; this leavessome freedom to hoose the best version of a proess for our needs.This setion provides the basi example of a modi�ation proedure due to Kolmogorov.Reall we denote by D the set of dyadi rationals in [0, 1] and write Dn for {k2−n ; k =
0..2n}.Theorem 22 (Kolmogorov's riterion). Let p > 1 and β > 1/p. Suppose X = (Xt)t∈Dis a real-valued proess de�ned on some probability spae (Ω,F ,P) and suh that

E
[
|Xs −Xt|p

]
6 C |s− t|p β, for all s, t ∈ Dfor some �nite onstant C. Then, for all α ∈

[
0, β − 1

p

), there exists a random variable
Cα ∈ Lp suh that one has almost surely

|Xs −Xt| 6 Cα|s− t|α, for all s, t ∈ D.As a onsequene, and given any α ∈
[
0, β − 1

p

), the proess X has an α-Hölderianmodi�ation de�ned on [0, 1].Proof � For s, t ∈ D with s < t, let m > 0 be the only integer suh that 2−(m+1) < t−s ≤ 2−m.The interval [s, t) ontains at most one interval [rm+1, rm+1 + 2−(m+1)
) with rm+1 ∈ Dm+1.If so, eah of the intervals [s, rm+1) and [rm+1 + 2−(m+1), t

) ontains at most one interval[
rm+2, rm+2 + 2−(m+2)

) with rm+2 ∈ Dm+2. Repeating this remark up to exhaustion of thedyadi interval [s, t) by suh dyadi sub-intervals, we see that
|Xt −Xs| 6 2

∑

n≥m+1

Sn,where Sn = supt∈Dn
|Xt+2−n −Xt|. So we have

|Xt −Xs|
(t− s)α

6 2
∑

n>m+1

Sn 2(m+1)α
6 Cαwhere Cα = 2

∑
n>0 2nαSn. But as

E[Sp
n] 6 E

[∑

t∈Dn

|Xt+2−n −Xt|p
]

6 2nC(2−n)p β,it follows that
‖Cα‖p 6 2

∑

n>0

2nα‖Sn‖p 6 2C
∑

n>0

2

(
α−β+ 1

p

)
n
<∞,whih proves that Cα is almost-surely �nite. Use then the Hölder-ontinuity of X on D toextend it to [0, 1] in an unambiguous way, setting Yt = Xt for t ∈ D, and

Yt = lim
s→t, s∈D

Xs.



16 ADVANCED PROBABILITYfor t ∈ [0, 1]\D. This de�nes a measurable funtion of ω (as a limit of measurable funtions),so that (Yt)t∈[0,1] de�nes a random proess; it has by onstrution α-Hölder paths. �2. Construtive approah in separable Banah spaesWe have seen in setion 1 how one an onstrut in a more or less abstrat way proba-bility spaes and random proesses. A di�erent approah to the onstrution problem istaken in this setion. Starting with probabilities on some spae de�ned in an elementaryway, we onstrut new probabilities as limits of suh elementary probabilities; the aboveonstrution of Wiener measure as a limit of elementary probability measures orrespond-ing to random pieewise linear ontinuous funtions is an arhetype of suh a proedure.Our �rst task will be to explain what we mean by the limit of a sequene of probabilitymeasures. Before investigating further the general ase we shall see in setion 2.2 howthis onvergene notion works in R. The general ase is addressed in setion 2.3. Weshall see in setion 2.3 b) how to haraterize the ompat sets of the set of probabilitymeasures. As is the ase of the ompat segment [0, 1], general ompat sets have theproperty that any sequene of its points have a onverging subsequene. This setting isthus ideal to onstrut some objets as limits of other objets21. With a view to on-struting random ontinuous time funtions, we shall see in 2.3 ) how the theory worksin the spae C([0, 1],Rn
). We shall �nally illustrate the whole setion in 2.3 d) by provingDonsker's amazing invariane priniple: any nie random walk, properly resaled, �is� aBrownian motion.Those of you who are not familiar with metri spaes an think about Rd throughoutthe whole setion.2.1. Weak onvergene on the set of probability measures on a metri spae.Prior to the notion of limit is the notion of neigbourhood; it is the datum of the �neigh-bouring� relations amongst the elements of a given spae. We de�ne suh a notion belowon the spae of probability measures of a metri spae.22Notations. • Given a measurable spae (A,A) denote by P(A) the set of probabilitymeasures on (A,A).

• Given a metri spae (S, d), reall that the Borel σ-algebra of S is the σ-algebragenerated by the open balls of S; denote it by S.
• Write Cb(S) for the set of bounded real-valued ontinuous funtions on S, and (f, µ)for ∫ f(x)µ(dx), if µ is any �nite measure on (S,S).The following de�nition formalizes the fat that we want to delare two probabilitymeasures µ and ν on S lose if the integrals of su�iently many ontinuous boundedfuntions against µ and ν are lose.Definition 23. The Cb(S)∗-topology23 on P(S) is de�ned by the following basis ofneighbourhoods of a point µ ∈ P(S):

{
{ν ∈ P(S) ;

∣∣(fi, µ) − (fi, ν)
∣∣ < ai, 1 6 i 6 n} ; n > 1, fi ∈ Cb(S), ai > 0

}
.21The existene of a limit objet is usually a di�ult question, exept, preisely, when we are working ina ompat set!22De�nitions 23 and 24 below apply on any topologial spae, not neessarily metri.23Analysts all it the �weak∗ topology�.



ADVANCED PROBABILITY 17So24 a sequene (µn)n>0 of probability measures Cb(S)∗-onverges to µ i� (f, µn) → (f, µ)for all f ∈ Cb(S). We shall adopt the notation µn
Cb(S)∗−→ µ.Definition 24. An S-valued sequene of random variables (Xn)n>0, de�ned on someprobability spae (Ω,F ,P), is said to onverge weakly to X ifdef E

[
f(Xn)

] onverges to
E
[
f(X)

] as n goes to in�nity, for any f ∈ Cb(S). We write Xn
w→ X.As is lear from the de�nition, Xn onverges weakly to X i� its distribution Cb(S)∗-onverges to the distribution of X. For that reason the Cb(S)∗-topology25 is usually alsoalled the weak topology , and Cb(S)∗-onvergene alled weak onvergene.Proposition 25 (Charaterisation of Cb(S)∗-onvergene, Alexandrov). The followingpropositions are equivalent:(1) µn

Cb(S)∗−→ µ,(2) (f, µn) → (f, µ) for every bounded uniformly ontinuous funtion f ,(3) µ(O) 6 lim µn(O) for all open set O of S,(4) limµn(F ) 6 µ(F ) for all losed set F of S,(5) µn(B) → µ(B) for all Borel set B with µ(∂ B) = 0.Proof � We make a irular proof starting with the impliation (1) ⇒ (2) ⇒ (3). The �rstimpliation is obvious. Given an open set O de�ne the funtion fk(x) = 1 ∧ k d(x,Oc): it isbounded, k-Lipshitz (hene uniformly ontinuous), smaller than 10, and inreases pointwiseto 1O; so we have (fk, µn) 6 µn(O). Letting n go to ∞ and then taking the limit k → ∞gives (3). Propositions (3) and (4) are learly equivalent. Assume (4) and let B be anyelement of S.
µ
( ◦
B
)

6 limµn(B) 6 limµn(B) 6 µ
(
B
)As left and right members of theses inequalities oinide if µ(∂B) = 0, proposition (5)follows. Last, supposing (5), notie that it is su�ient to prove(2.1) lim (f, µn) 6 (f, µ)for any ontinuous funtion to get (1): apply it to f and −f to get (f, µn) → (f, µ). As theset E :=

{
t ∈ R ; µ

(
f−1({t})

)
6= 0
)} is at most ountable one an �nd a dereasing sequene

(fℓ)ℓ>0 of simple funtions26 fℓ =
∑
ti+11f∈[ti,ti+1) onverging µ-almost-surely to f and withno ti in E. We then have for every ℓ the inequality lim

n
(f, µn) 6 lim

n
(fℓ, µn) = (fℓ, µ), fromwhih (2.1) follows by sending ℓ to in�nity. �2.2. Spei� tools in �nite dimension. Before investigating further the general asewe investigate in this setion how the above de�nition speializes on R.24Those of you who are not familiar with general topology an skip the preeding de�nition and onlykeep in mind the following property.25That is the datum of all the above neighbourhoods.26This is atually a �nite sum.



18 ADVANCED PROBABILITYa) Distribution funtions. Reall the onstrution of a real-valued random variablewith any �xed distribution desribed in setion 1.2. Given a probability measure µ in Rdenote by F : R → [0, 1] its distribution funtion F (t) = µ
(
(−∞, t]

) and by G : [0, 1] → Rits right inverse
G(u) = inf{t ∈ R ; F (t) > u}with the onvention that inf ∅ = +∞; this is a àdlàg funtion haraterized by theproperty

u 6 F (t) i� G(u) 6 t.So if U is a uniform random variable in [0, 1]

P
(
G(U) 6 t

)
= P

(
F (t) > U

)
= F (t).This anonial way of onstruting a random variable with distribution µ leads to thefollowing useful representation, or oupling, theorem. Given a sequene (µn)n>0 of prob-ability measures on R, de�ne the random variables Xn = Gn(U), where Gn is the rightinverse of the distribution funtion Fn of µn.Theorem 26 (Representation theorem, Coupling). Suppose the sequene (µn)n>0 weaklyonverges to µ, then we an onstrut on [0, 1] some random variables Xn with distribution

µn and X with distribution µ, suh that Xn onverges almost-surely to X.Proof � De�ne the random variables U , Xn = Gn(U) and X = G(U) on the probability spae(
[0, 1],B

(
[0, 1]

)
,Leb). Denote by C the ountable (why?) union of intervals where F isonstant and by D its image by F (made up by at most ountably many points). We provethat for u ∈ [0, 1]\D the sequene Gn(u) onverges to G(u). Given suh a u let us takea (small) positive ε suh that G(u) + ε is a ontinuity point of F (27). As Fn

(
G(u) + ε

)onverges to F (G(u)+ ε
)
> u (by point (4) in Alexandrov's haraterization, with the Borelset (−∞, G(u) + ε]) we have Fn

(
G(u) + ε

)
> u for n large enough, i.e. Gn(u) 6 G(u) + ε.As ε an be taken arbitrarily small this shows that limGn(u) 6 G(u). In the same way,hoosing a small ε > 0 suh that G(u) − ε is a ontinuity point of F , on gets a sequene

Fn

(
G(u) − ε

) onverging to F (G(u) − ε
)
< u; so Fn

(
G(u) − ε

)
6 u for n large enough, i.e.

G(u) − ε 6 limGn(u). �Note that we have only used one fat in the above proof: Fn(x) → F (x) for all x ∈ Rat whih F is ontinuous28. We see that under this sole hypothesis the onlusion ofthe theorem implies that29 (f, µn) = EL

[
f(Xn)

] onverges to EL

[
f(X)

]
= (f, µ), for anybounded ontinuous funtion f .Corollary 27. A sequene (µn)n>0 of probability measures on R onverges to µ i�

Fn(x) onverges weakly to F (x) for all x ∈ R at whih F is ontinuous.Theorem 28 (Prohorov's ompatness theorem in dimension 1). Let (µn)n>0 be a se-quene of probability measures suh that
∀ ε ∃Mε > 0 ∀n > 0, Fn(−Mε) 6 ε and 1 − Fn(Mε) 6 ε.Then the sequene (µn)n>0 has a weakly onvergent subsequene.27F have only ountably many disontinuity points.28That is F (x−) = F (x), sine F is always ontinuous on the right � an you see why?29Reall EL denotes the expetation under Lebesgue measure on [0, 1].



ADVANCED PROBABILITY 19The ondition of the statement means that the probability measures µn have their massessentially onentrated on the ompat set [−M,M ], uniformly in n. Suh a sequene issaid to be tight.Proof � Use Cantor's diagonalisation proedure to extrat a subsequene suh that Fnk
(t)onverges for eah rational t to some F (t). This limit funtion F : Q → [0, 1] being inreasinghas a unique extension to R whih is ontinuous on the right, with left limits30. Chek thatthe onvergene Fn(k)(s) → F (s) holds if s is a ontinuity point of F . By the hypothesis wean assoiate to any ε > 0 a positive Mε suh that the inequalities

Fn(−Mε) 6 ε and 1 − Fn(Mε) 6 εhold for all n > 0. It follows that
F (s) −→

s→−∞
0 and F (s) −→

s→+∞
1,so F is the distribution funtion31 of a probability measure µ and, as a onsequene ofAlexandrov's haraterization, (µn(k)

)
k>0

onverges weakly to µ. �b) Weak onvergene and harateristi funtions. Corollary 28 an be used toprove the following useful result due to Paul Lévy. Reall the harateristi funtion of ameasure µ on R is its Fourier transform:
ψ(t) =

∫
eitxµ(dx).Theorem 29. Let (µn)n>0 be a sequene of probability measures on R, with harateristifuntions φn. If the φn onverge pointwise to some funtion φ, ontinuous at 0, the se-quene (µn)n>0 onverges weakly to some probability measure µ and φ is the haraterisitifuntion of µ.The proof is based on the following simple estimate of the tail of a random variable Yin terms of its harateristi funtion ψ.(2.2) P

(
|Y | >

1

h

)
6

C

2h

∫ h

−h

(
1 − ψ(t)

)
dtfor some onstant C and every positive h. Indeed, apply Fubini's theorem to see that32

1

2h

∫ h

−h

(
1 − ψ(t)

)
dt = E

[
1 − sin(hY )

hY

]
;beause 1 − sin(hY )

hY
is non-negative, and no less than 1 − sin 1 on the set {|Y | > 1

h

}, wehave
1

2h

∫ h

−h

(
1 − ψ(t)

)
dt > (1 − sin 1)P

(
|Y | >

1

h

)
.Proof � We prove that the sequene (µn)n>0 is tight; then any weakly onvergent subsequene(whose existene is guaranteed by orollary 28) will have φ as a harateristi funtion. Thiswill show that (µn)n>0 an have only one limit, so it onverges.30Set for s ∈ R\Q, F (s) = inf{F (t) ; t ∈ Q, t > s}. Like any other inreasing [0, 1]-valued funtion, Fhas at most ountably many disontinuities.31Use Caratheodory's extension theorem.32We use the onvention sin 0

0 = 1.



20 ADVANCED PROBABILITYBut applying inequality (2.2) to Xn we obtain by dominated onvergene
lim P

(
|Xn| >

1

h

)
6

(1 − sin 1)−1

2h

∫ h

−h

(
1 − φ(t)

)
dt.It now su�es to use the ontinuity of φ in 0 to see that the right hand side an be madearbitrarily small for h small enough. �The same result holds for Rn-valued random variables; the proof of this statement is aosmeti hange of the preeding one33.2.3. Weak onvergene in separable Banah spaes. We now ome bak to thegeneral ase and study in more details the notion of weak onvergene. This notionwas introdued to provide a framework in whih talking about limits of measures andonstruting probability measures (and thus random proesses) as limits of other measures(resp. proesses). Statements about the existene of a limit are preious statements asexistene statements are rarely easy to prove. There is yet one exeption to this empirialrule: one an always deide whether or not a sequene of probability measures on a �niteset onverges or not (at least omputers an do that for us!). As ompat sets of a metrispae are �nite up to any arbitrarily small auray, they appear as a good framework inwhih takling our onvergene problem.a) Compat sets of a metri spae. Let (S, d) be a metri spae. A subset K of Sis said to be ompat ifdef it is losed and for any ε > 0 it an be overed by �nitelymany balls of radius ε. Think of a losed interval of R. This image might be misleadingthough, as although ompat sets are losed and bounded, these two onditions alone aregenerally not su�ient to ensure ompatness of a set. Indeed, any in�nite dimensionalnormed vetor spae has a non-ompat unit losed ball34. It an be proved that a metrispae S is ompat i� any sequene of points of S has a onverging subsequene.Suppose now that (S, d) is a ompat metri spae and let us look at the spae P(S)of probability measures on (S,S).35 It is easily seen, using Stone-Weierstrass theorem,that C(S)

(
= Cb(S) here) has a dense sequene36, say (fp)p>0. Given any sequene (µn)n>0of probability measures on S, we an onstrut by a diagonal argument a subsequenesuh that eah integral (fp, µn(k)) onverges as k goes to in�nity. This implies that all theintegrals (f, µn(k)), f ∈ C(S), onverges as k goes to in�nity (an you see why?). In other33The Rn-version of Prohorov's ompatness theorem needed for the above proof to work is proved in amuh more general framework below.34Denote by B the unit ball and by B its losure. Suppose B is ompat and over it by �nitely manyballs of radius 1

2 . Denoting by F the �nite-dimensional vetor spae spanned by their enters, we have
B ⊂ F + B

2 , implying B
2 ⊂ F + B

4 , and so B ⊂ F + B
4 . An indution bootstraps this inlusion into

B ⊂ F + B
2n , for all n > 1, out of whih it follows that B ⊂ F , as F is losed; this proves that the ambiantvetor spae needs to be �nite dimensional. This theorem is due to F. Riesz.35Reall the notations introdued at the beginning of setion 2.1.36For the supremum norm. Consult theorem (81.3) of [RW00℄ for instane.



ADVANCED PROBABILITY 21terms37, any sequene of probability measures on a ompat metri spae has a weaklyonverging subsequene. Also, introduing the metri δ(µ, ν) =
∑

p>0

∣∣(fp, µ) − (fp, ν)
∣∣ ∧

2−p on P(S), one sees that its balls de�ne the same notion of neighbourhoods as theweak topology; so the spae P(S), with its weak topology, is a ompat metri spae.This onlusion holds in partiular when we take for (S, d) the ompat spae ([0, 1]N, d
),where d(x, x′) =

∑
n>0 2−n|xn − x′n|.b) What is speial about separable Banah spaes? First of all, this is a generalenough framework to enompass most of everyday' spaes we want to work with: the spaeof (real-valued) sequenes, ontinuous and àdlàg paths are separable Banah spaes.At the same time, a lot of things are known on separable Banah spaes! It is provedin the Comment setion Separable Banah spaes that any separable Banah spae (S, d)is homeomorphi to a measurable subset of the ompat metri spae [0, 1]N. This im-plies38 that the spae (P(S), Cb(S)∗

) of probability measures on S is homeomorphi to asubset of the nie ompat metrizable spae (P([0, 1]N
)
, C∗

b

(
[0, 1]N

)). So, any sequeneof probability measures on S, seen as probability measures on [0, 1]N, has a onvergingsubsequene in P
(
[0, 1]N

), whose limit may give some positive mass to the set [0, 1]N\S,39giving rise to a limit measure in S of mass less than 1. One introdues the followingnotion to prevent this phenomenon and obtain limit probability measures supported onthe original spae.Definition 30. A family A of measures on (S,S) is said to be tight if one an assoiateto any ε > 0 a ompat set Kε of S suh that
∀µ ∈ A, µ(Kc

ε) 6 ε.) Compatness in (P(S), Cb(S)∗
). The following theorem due to Prohorov harater-izes a large lass of ompat sets of (P(S), Cb(S)∗

) in terms of tightness. It is the generalounterpart of theorem 28.Theorem 31 (Compatness. Prohorov). Let (S, d) be a separable metri spae and
A ⊂ P(S).

• If the family A is tight then it is relatively ompat in (P(S), Cb(S)∗
).

• Suppose in addition that (S, d) is omplete. Then the two properties are equivalent.Proof � • Suppose the family A is tight and let (K 1
p

)
p>1

be an inreasing sequene of ompatsubsets of S for whih µ(Kc
1
p

)
6 1

p , for all µ ∈ A. Denote by ϕ the homeomorphism between
(S, d) and a subset40 of [0, 1]N onstruted in theorem 39 of the Comments setion. As eahompat set ϕ(K 1

p

) is measurable, ϕ(⋃p>1K 1
p

) is also measurable, as a union of measurable37We are skipping here a little argument. The subsequene an be hosen suh that the integrals of anylinear ombination of the fp's onverge. This implies that the map fp → limk (fp, µn(k)) is a positivelinear map, with unit norm. It an be extended to C(S) by a straightforward approximation argument,so the map L : f → limk (f, µn(k)) is a positive linear form on C(S) with unit norm. Riesz representationtheorem ensures us that there exists a probability measure µ on S suh that L(f) = (f, µ) for all f ∈ C(S).Riesz representation theorem is proved in Complement 4.38See theorem (83.7) in [RW00℄.39I am writing S here for its homeomorphi image in [0, 1]N.40This subset of [0, 1]N has no a priori reason to be measurable.



22 ADVANCED PROBABILITYsets. Now, sine all the measures µ ∈ A have support in ⋃p>1K 1
p
it is harmless to replae

S by ⋃p>1K 1
p
; we still denote it by S. The map ϕ is then a homeomorphism between (S, d)and a measurable subset of [0, 1]N; we use this funtion to transfer any statement about

(S, d) to a statement about a subset of [0, 1]N.We shall assoiate to any sequene (µn)n>0 of P(S) the sequene (νn)n>0 of its images by
ϕ in P

(
[0, 1]N

). Given ε > 0, eah ϕ(Kε) is a ompat subset of [0, 1]N with νn-measure noless than 1− ε for any n. But as (P([0, 1]N), Cb

(
[0, 1]N

)∗) is ompat there is a sub-sequene{
νn(k)

}
k>0

that Cb

(
[0, 1]N

)∗-onverges to some Borel probability measure ν on [0, 1]N. FromAlexandrov's haraterization the limit probability ν satis�es ν(ϕ(Kε)
)

> 1−ε, for all ε > 0,hene ν is onentrated on ϕ(S). De�ning µ as the image measure of ν by ϕ−1, the funtion
f ◦ ϕ−1 is ontinuous and bounded for any f ∈ Cb(S), so we have

(f, µn(k)) =
(
f ◦ ϕ−1, νn(k)

)
→
(
f ◦ ϕ−1, ν

)
= (f, µ),that is, µn(k)

Cb(S)∗−→ µ.
• Suppose now in addition that (S, d) is omplete and let A = {µℓ ; ℓ ∈ Λ} be a ompatsubset of (P(S), Cb(S)∗

). Let (xn)n>0 be a dense sequene of (S, d) and de�ne On(r) =⋃
k=1..nB(xk, r). Let us �rst prove that

(⋆) for any ε > 0, r > 0 there exists an integer N(ε, r) suh that µ(ON(ε,r)

)
> 1 − ε, forany µ ∈ A.Would assertion (⋆) be wrong, there would exist ε0, r0 and for eah n and index ℓn ∈ Λsuh that µℓn(On(r0)) 6 1 − ε0. Any limit µ of a onverging subsequene (µℓn(k)

)
k>0

(weare in a ompat!) would then verify for any p > 0

µ
(
On(p)(r0)

)
6 limµn(k)

(
On(k)(r0)

)
6 1 − ε0sine On(p) ⊂ On(k) for k > p, and by Alexandrov's proposition 25; this would forbid theonvergene µ(On(p)(r0)

)
→

p+∞
1, a ontradition.Fix now η > 0 and set

K :=
⋂

p>1




N
(
2−pη, 1

p

)
⋃

k=1

B
(
xk,

1

p

)

 .

K is a ompat set whih satis�es for any µ ∈ A the inequality
µ(K) > 1 −

∑

p>1

µ


S \

N
(
2−pη, 1

p

)
⋃

k=1

B
(
xk,

1

p

)

 > 1 −

∑

p>1

2−pη = 1 − η.This proves the tightness of the family A of measures. �d) Continuous random proesses. We speialize in this paragraph the above generaltheory to the ase of measures on the spae of ontinuous funtion from some interval
I of R+ to some Rd. We shall thus be working here on the separable Banah spae
(S, d) =

(
C
(
I,Rd

)
, ‖ · ‖∞

).We have notied in setion 1.3 b) that the spae C(I,Rd) an be seen from two naturalpoint of views: as a subset of the produt (Rd)I or as the metri spae (C(I,Rd
)
, ‖ · ‖∞

).Eah piture has its own notion of σ-algebra. The following proposition states that the



ADVANCED PROBABILITY 23two σ-algebras oinide, so there is no problem on whih point of view is adopted. Reallwe denote by Xt : ω ∈ C
(
I,Rd

)
7→ ωt, t ∈ I, the oordinate proess.Proposition 32. The σ-algebra on C

(
I,Rd

) generated by the oordinate proess oinideswith the Borel σ-algebra of (C(I,Rd
)
, ‖ · ‖∞

).Proof � The trae on C(I,Rd) of the produt σ-algebra is generated by the olletion A ofthe elementary events {Xt1 ∈ A1, ...,Xtn ∈ An}, where n > 1 and the Ai's are open balls of
Rd. The Borel σ-algebra of (C(I,Rd

)
, ‖ · ‖∞

) is generated by the olletion B of the openballs {ω ∈ C
(
I,Rd

)
; ‖ω − ω0‖∞ < ǫ

}, for ǫ > 0 and ω0 ∈ C(I,Rd). To prove that the two
σ-algebras oinide it su�es to prove that any element of A is in σ(B) and any element of
B is in σ(A).Let C :=

{
ω ∈ C

(
I,Rd

)
; Xt1(ω) ∈ A1, ...,Xtn (ω) ∈ An

} be an elementary event, and denoteby (ωp)p>1 a dense sequene of (C(I,Rd
)
, ‖ · ‖∞

); denote by (ωp(k))k>1 the subset of it madeup of those ωp's whih belong to C. Then, for eah ω ∈ C, you an �nd some kj for whih
‖ω − ωp(kj)‖∞ 6 1

j ; this proves the �rst point.To prove the seond point, denote by (tn)n>1 a dense sequene of I, and notie that {ω ; ‖ω−
ω0‖∞ < ǫ} =

⋂
n>1

{
ω ; ωt1 ∈ B(ω0(t1), ǫ), ..., ωtn ∈ B(ω0(tn), ǫ)

}. �Considering C(I,Rd) as a subset of (Rd)I leads to the following notion of onvergene.Definition 33 (Convergene of �nite-dimensional distributions). • Let µn, n > 0 and
µ be Borel probability measures on C(I,Rd). We say that the �nite-dimensional dis-tributions of µn onverge to those of µ ifdef for every �nite olletion {t1, . . . , tp} oftimes, and any bounded ontinuous funtion f :

(
Rd
)p → R, we have

∫
f
(
Xt1(ω), . . . , Xtp(ω)

)
µn(dω) →

∫
f
(
Xt1(ω), . . . , Xtp(ω)

)
µ(dω).We write µn

fd→ µ.
• Let (Y (n))n>0 and Y be C(I,Rd)-valued random variable de�ned on some probabilityspae (Ω,F ,P). We shall write Y (n) fd→ Y ifdef

E
[
f
(
Y

(n)
t1 , . . . , Y

(n)
tp

)]
→ E

[
f(Yt1, . . . , Ytp)

]for any bounded ontinuous funtion f :
(
Rd
)p → R, any p > 1 and any �nite olletion

{t1, . . . , tp} of times.Proposition 34. Some probability measures µn on C(I,Rd) onverge weakly to someprobability measure µ i� the following onditions hold:
• the �nite dimensional distributions of µn onverge to those of µ,
• the family (µn)n>0 is tight.Proof � ⇒ Sine the map ω ∈ C(I,Rd) 7→ F (ωt1 , . . . , ωtn) is ontinuous for any n > 1, t1, . . . , tnand ontinuous funtion F , the weak onvergene of µn to some µ implies the �nite dimen-sional onvergene of µn to µ. Also, any onvergent sequene is tight (prove it).
⇐ Suppose the sequene (µn)n>1 is tight; by the �rst part of Prohorov's ompatness theorem31, it is relatively ompat. Any limit ν of a onverging subsequene having the same �nitedimensional distribution as µ, we must have ν = µ. This shows that µ is the only lusterpoint of the sequene (µn)n>1, so (µn)n>0 onverges weakly to µ. �



24 ADVANCED PROBABILITYDo exerise 14 to see that one an have �nite dimensional onvergene without weakonvergene. Given a ompat interval [a, b] of the real line, Asoli-Arzela's ompatnessriterion gives a haraterization of ompat sets of (C([a, b],Rd
)
, ‖ · ‖∞

) in terms ofmodulus of ontinuity
Mω(h) = sup

{
|ωt − ωs| ; t, s ∈ [a, b], |t− s| 6 h

}
, h > 0.Theorem 35 (Asoli-Arzela's theorem). A subset A of C([a, b],Rd
) is relatively ompati� the following two onditions hold:

sup
{
|ω0| ; ω ∈ A

}
<∞,

lim
hց0

sup
ω∈A

Mω(h) = 0.Together with Prohorov's theorem it provides an easy to use haraterisation of ompatsubsets of the set of probability measures on C
(
[a, b],Rd

).Corollary 36 (Charaterization of weak onvergene). Let X,X1, X2, . . . be Rd-valuedontinuous random proesses. Then Xn
w→ X i� Xn

fd→ X and(2.3) lim
hց0

lim
n→+∞

E[MXn(h) ∧ 1] = 0.Proof � It su�es from orollary 34 to prove that ondition (2.3) is equivalent to tightness.That the former implies the latter omes from Asoli-Arzela's theorem and dominated on-vergene. Conversely, assume (2.3) and �x h > 0. Sine eah Xn is ontinuous, MXn(h) → 0almost-surely as hց 0 for eah n; as a onsequene of ondition (2.3) it is thus possible to�nd a sequene (hk)k>0 suh that
sup

n
P
(
MXn(hk) > 2−k

)
6 2−k−1hfor all k > 0. Also, as Xn

fd→ X, there exists ompat subsets K1,K2, . . . of Rd suh that
sup

n
P
(
Xn(a) /∈ Kk

)
6 2−k−1hfor all k > 0. So the set

B :=
{
x ∈ C

(
[a, b],Rd

)
; x(a) ∈ Kk, Mx(hk) 6 2−k, for all k > 0

}satis�es supn P(Xn /∈ B) 6 2h and has ompat losure from Asoli-Arzela's theorem; thisproves the tightness of the laws of Xn. �2.4. Appliation: Universality of Brownian motion. The entral limit theoremgives a universal status to the Gaussian law among the lass of (Borel) probability mea-sures on the line, with �nite �rst two moments. Brownian motion enjoys a similar universalproperty.Theorem 37 (Donsker's invariane theorem). Let (Xn)n>0 be a sequene of iid enteredreal-valued random variables with unit variane; set for n > 1 and t ∈ [0, 1]

B
(n)
t =

1√
n

( ∑

16k6nt

Xk+
(
nt− [nt]

)
X[nt]+1

)
.This is a spae and time resaled version of a linearly interpolated random walk; note thesaling n−1/2 in spae and n in time. Denote by P(n) the law of this ontinuous randompath. Then the sequene (P(n)

)
n>0

onverges weakly to Wiener measure.



ADVANCED PROBABILITY 25Proof � The strategy is simple and follows the pattern desribed in orollary 36: i) establishthe onvergene of �nite dimensional distributions and ii) prove the tightness of the sequene(
P(n)

)
n>0

using the equi-ontinuity riterion (2.3).i) We need to prove that for any p > 1, any hoie of times ti ∈ R+ and onstants ai, therandom variables ∑i=1..p aiB
(n)
ti

onverge in law to ∑i=1..p aiBti , where B is a Brownianmotion. Setting ∆B
(n)
j = B

(n)
tj

−B
(n)
tj−1

, with t0 = 0, write
∑

i=1..p

aiB
(n)
ti

=
∑

j=1..p

( ∑

i=1..p

ai

)
∆B

(n)
j ;as eah term ∆B

(n)
j onverges in law to Btj −Btj−1 by the entral limit theorem, the resultfollows from the independene of the random variables B(n)

tj
−B

(n)
tj−1

and Btj −Btj−1 .ii) We shall use the following simple estimate to verify tightness.Lemma 38 (Ottaviani). For n > 1, set Sn = X1+· · ·+Xn and S∗
n = max

{
|Sk| ; 1 6 k 6 n

}.Then for any r > 1 and n > 1

(
1 − r−2

)
P
(
S∗

n > 2r
√
n
)

6 P

( |Sn|√
n

> r

)
.Proof � De�ne the random time T as inf

{
n > 1 |Sn|√

n
> 2r

}. We shall justify later thatone an apply the strong Markov property41 to the random walk (Sn)n>0 at time T ; it isused in the third inequality below.
P
(
|Sn| > r

√
n
)

> P
(
S∗

n > 2r
√
n, |Sn| > r

√
n
)

> P
(
T 6 n, |Sn − ST | 6 r

√
n
)

> P
(
T 6 n

)
min

16k6n
P
(
|Sk| 6 r

√
n
)The inequality of the lemma follows from Chebyhev's inequality

min
16k6n

P
(
|Sk| > r

√
n
)

> min
16k6n

(
1 − k

nr2

)
> 1 − r−2.

⊙The following rough estimate omes out as a onsequene of Ottaviani's lemma42.(2.4) lim
r+∞

lim
n+∞

r2 P
( S∗

n√
n

> 2r
)

6 lim
r+∞

r2 P
(
N (0, 1) > r

)
= 0As we have for any h > 0, t ∈ [0, 1 − h], and ℓ > 0 (43)

P
(

sup
06r6h

∣∣B(n)
t+r −B

(n)
t

∣∣ > ℓ
)

= P


 sup

06r6h

∣∣∣
∑[n(t+r)]

k=[nt]+1Xk +
(
n(t+ r) − [n(t+ r)]

)
X[n(t+r)]

∣∣∣
√
n

> ℓ




6 P
(S∗

[nh]+1√
nh

>
ℓ√
h

)
,41Independene of what happen after and before time T , onditionnally on what happens at time T . Theproof given in setion 10.3 for Brownian motion works equally well for a random walk.42N (0, 1) stands here for a entered Gaussian random variable with unit variane.43The S∗ in the inequality below is assoiated with the X[nh]+i, i > 1; it has the same law as the S∗assoiated with the Xi, i > 1.



26 ADVANCED PROBABILITYidentity (2.4) implies that P
(

sup
06r6h

∣∣B(n)
t+r − B

(n)
t

∣∣ > ℓ
)

= o(h), for eah ℓ > 0, uniformly in
t ∈ [0, 1] and n > 0. Cutting the interval [0, 1] into sub-intervals [kh, (k + 1)h

] and notingthat MB(n)(h) 6 2max
k

{
sup

06r6h

∣∣B(n)
kh+r −B

(n)
kh

∣∣
}, it follows that we have uniformly in n > 0

E
[
MB(n)(h) ∧ 1

]
=

∫ ∞

0
P
(
MB(n)(h) ∧ 1 > ℓ

)
dℓ 6

∫ 1

0
P
(
MB(n)(h) > ℓ

)
dℓ

6

∫ 1

0
P
(
2max

k

{
sup

06r6h

∣∣B(n)
kh+r −B

(n)
kh

∣∣
}

> ℓ
)
dℓ 6

∫ 1

0
h−1 o(h) dℓ = oh,0+(1);we have used dominated onvergene in the last equality, where h−1 o(h) is a funtion of

ℓ whih is o(1) as h dereases to 0. The above inequality proves that the equi-ontinuityondition (2.3) holds. �3. Comments and exerises3.1. Referenes and omments. Introdution. Don't hesitate to read Kolmogorov's(small) treatise Mathematial foundations of probability theory, as it is amazing of moder-nity and larity. Chapter 2 of Shiryaev's book [Shi96℄ is nie reading, as well as theintrodution hapter of Gikhman and Skorokhod's book [GS04℄.Setion 1. • Kallenberg's book [Kal02℄, (Chap. 2, 6) ontains all the material exposedin this setion, with muh more details. Chapters 2 and 3 of Doob's book [Doo94℄ are wellworth being read. Chapter 3 of Rogers and Williams' book [RW00℄ is also an exellentsoure.
• Read Chapter 1 of [RW00℄ for an exiting and fasinating desription of Brownianmotion.Setion 2.1 • I an't see any better referene than the �rst hapter of Ikeda & Watan-abe's book [IW89℄. Doob's book [Doo94℄, Chap. 8, is also a valuable soure for thissetion (and all measure theory). Dudley's book [Dud02℄, hap. 11, is also quite nie.Setion 2.2 • You will �nd the lassial proof of Donsker's theorem using Skorokhodembedding in Chapter 1, setion 8, of [RW00℄.The following omments on measure theory might help you understand some subtleand potentially unnotied points44.1. σ-additivity of a probability is not obvious. Set Ω = Q ∩ [0, 1] and de�ne on

Ω the algebra A as the olletion of disjoint (traes on Q of) intervals with rational ends(open or not at both ends). I leave you to hek that we de�ne an additive set funtionsetting P
(
{a, b}

)
= b − a and P

(⋃n
i=1{ai, bi}

)
=
∑n

i=1(bi − ai), for ⋃n
i=1{ai, bi} ∈ A. Asany singleton {r} ∈ A has null P-measure and Ω is ountable P annot be σ-additive.2. The oinidene of two probability measures on a given lass does notalways imply their oinidene on the σ-algebra generated by this lass. Let Ωbe any set and C be a olletion of subsets of Ω. It is well-known that if C is stable byintersetion then any two probabilities de�ned on (Ω, σ(C)

) oiniding on C are atually44Most of these remarks are borrowed from [Sto87℄.



ADVANCED PROBABILITY 27equal (on σ(C)!). This is no longer the ase if C is non stable by intersetion as thefollowing ounter-example shows.On a four point set Ω = {a, b, c, d} de�ne
P(a) = P(d) = Q(b) = Q(c) =

1

6
,

P(b) = P(c) = Q(a) = Q(d) =
1

3
.Set C =

{
{a, b}, {c, d}, {a, c}, {b, d}

} and hek that σ(C) is the σ-algebra of all parts of
Ω. Clearly, P and Q oinide on C, yet they do not take the same values on the singletons
{a}, {b}, {c}, {d}.3. Is Daniell's theorem obvious? Let us restate it with a slightly di�erent pointof view and in a speial ase su�ient for our needs. Identify eah Rn as a subset of
RN sending x ∈ Rn to (x, 0, · · · ) ∈ RN; this identi�es the Borel σ-algebra of Rn to a
σ-algebra Fn of RN, inreasing with n. Let us then onsider a projetive sequene (µn)n>1of probability measures on Rn as a set funtion P on ⋃n>1 Fn equal on eah Fn to µn.Daniell's theorem states that P an be extended to σ(⋃n>1 Fn

).Given a spae Ω, an inreasing sequene of σ-algebras Fn in Ω and a set funtion P on⋃
n>1 Fn suh that P is a onsistently de�ned probability measure on eah (Ω,Fn), the setfuntion P need not extend to a probability on σ(⋃n>1 Fn

).Consider the (non-omplete) spae Ω = (0, 1] and set hn(ω) = 1(0, 1
n

)(ω) for eah n > 1and ω ∈ Ω. Write Cn =
{
∅, (0, 1

n
),
[

1
n
, 1
]
, (0, 1]

} for the σ-algebra generated by hn andde�ne Fn = σ(h1, · · · , hn) =
{
∅; (0, 1

n
),
[

1
k
, 1

k−1

]
, k = n..2, and their unions; (0, 1]

}. Set
P
(
(0, 1]

)
= 1, and for A ∈ Fn, with A 6= (0, 1] and 1A = an1(0, 1

n
) +
∑2

k=n bk1[ 1
k
, 1
k−1

], with
an, bk ∈ {0, 1}, set

P(A) = an;this probability has support in (0, 1
n
). Chek that the (Pn)n>1 are a onsistent familyof probabilities: Pn+1(A) = Pn(A) for A ∈ Fn. Would there exists a probability on

σ
(⋃

n>1 Fn

) with restrition Pn to eah Fn, it should give unit mass to any interval (0, 1
n
)and satisfy at the same time the ontinuity property45 limn P

(
(0, 1

n
)
)

= 0, a ontradition.4. Measurable events. Let (Ω,F) be a measurable spae whose σ-algebra is generatedby some algebra A. The de�nition of F as the smallest σ-algebra ontaining A is non-onstrutive, and it is quite tempting to believe that one an onstrut any element of
F by repeated �nite and ountable set-theoreti operations starting from A. Preisely,set A0 = A and de�ne indutively An+1 as the lass of sets of Ω that onsists of thesets of An, their omplements, and the �nite and ountable union of those. Surprisingly,this proedure does not exhaust all the elements of F , and ⋃n>1 An is generally stritlyinluded in F ! Consult hapter 2 of Dudley's book [Dud02℄ for a proof in [0, 1]. What istrue, yet, is that if we are working in a probability spae (Ω,F ,P) then any measurableset is equal to a set of ⋃n>1 An up to a set of null P-measure; this is a onsequene ofCaratheodory's extension theorem.45Whih is equivalent to σ-additivity.



28 ADVANCED PROBABILITYTo be written: omments on weak onvergene in spaes of àdlàg paths3.2. Exerises. 1. Give a formal onstrution of a proess whose dynamis orresponds to thefollowing heuristi desription. This is a variant of the symmetri random walk on Z3 whih annever ome bak to any position where it has already been. Exept from that requirement, ithooses eah time its future loation uniformly amongst the set of available nearest neighbours.If it has visited all its neighbours at some point, it stops and stays forever where it is.2. Give a formal onstrution of a proess whose dynamis orresponds to the following heuristidesription. This time we are looking at a variant of the simple random walk in Z3 where the sitesalready visited gain attrativeness. If the proess is at time n in x, it hooses its next loationamongst the nearest neighbours {xi}i=1..6 of x, it jumps on xi at time n + 1 with probabilityproportional to Nn(i) + 1, where Nn(i) is the number of times that the proess has visited site
xi by time n.3. Let λ > 0. Can you onstrut on some probability spae a sequene (Xi)i>1 of Rd-valuedrandom variables suh that, if one writes N(A) for ♯{i ; Xi ∈ A} for eah measurable set A of
Rd, then

• eah random variable N(A) is a Poisson random variable with parameter λ,
• for any n-uple of distint sets Ai the random variables N(Ai) are independent?4. Gaussian proesses. Let T be any index set. A real-valued random proess (Xt)t∈T issaid to be Gaussian ifdef for any n > 1, t1, . . . , tn ∈ T, c1, . . . , cn ∈ R, the random variables

c1Xt1 + · · · + cnXtn are Gaussian. It is said to be entered ifdef any Xt has null mean.a) Prove that, if it exists, the distribution of a Gaussian proess (Xt)t∈T is determined by themean and ovariane funtions.b) Let (H, (·, ·)) be a Hilbert spae. A entered Gaussian proess (Xh)h∈H with ovariane
E[XhXh′ ] = (h, h′) (for all h, h′ ∈ H) is alled an isonormal Gaussian proess. Suppose H isseparable, and let (en)n>0 be a basis of H. Let (Gn)n>0 be a sequene of iid N (0, 1). Prove thatwe de�ne an isonormal Gaussian proess assoiating to any h =

∑
n>0 h

nen ∈ H the randomvariable Xh =
∑

n>0 h
nGn.) (i) Taking for Hilbert spae the spae L2(R+) and onstruting (Xh)h∈L2 as above, provethat the proess Bt = X1[0,t]

, t > 0, has independent stationary Gaussian inrements.(ii) Prove that B has a modi�ation whih is ontinuous; this modi�ation is thus a Brow-nian motion.(iii) As a onsequene, haraterize Brownian motion as the unique entered Gaussianproess with ovariane E[XsXt] = min(s, t).(iv) Saling. Given a Brownian motion B, prove that the proess Xt = tB 1
t
, X0 = 0, isalso a Brownian motion.5. Let P be a probability measure on [0, 1], equipped with its Borel σ-algebra Bor.a) Use a monotone lass argument to prove that the olletion C of measurable subsets B suhthat

P(B) = inf
{
P(O) ; O open set ontaining B} = sup

{
P(C) ; C losed subset of B}is a σ-algebra.b) Dedue that for any ε > 0 and any measurable set A ∈Bor there exists a ompat subset

K of A suh that P(A\K) 6 ε. (P is said to be inner regular.)



ADVANCED PROBABILITY 296. Let (S, d) be a metri spae. An S-valued sequene (Xn)n>0 of random variables onvergesin probability to X ifdef P
(
d(Xn,X) > ε

)
−→
n+∞

0 for any ε > 0, or, equivalently (why?), if
E[d(Xn,X) ∧ 1] −→

n+∞
0.a) Prove that if (Xn)n>0 onverges almost-surely or in probability to X then it onvergesweakly to X.b) Find a weakly onverging sequene whih does not onverge in probability.7. Denote by Bb(R) the set of real-valued bounded measurable funtions on R and de�ne the

Bb(R)∗-topology as in de�nition 16, with Bb(R) in plae of Cb(R). What di�erene is therebetween the notions of Cb(R)∗ and Bb(R)∗ onvergene?8. Let (µn)n>0 be a sequene of probability measures on R. Prove that it onverges weakly tosome probability µ i� (f, µn) → (f, µ) for any ontinuous funtion with ompat support.9. Suppose µn
d→ µ. Prove that the harateristi funtion of µn onverges uniformly on boundedsets of R to the harateristi funtion of µ.10. Equiontinuity and tightness. Let (µn)n>0 be a sequene of probability measures on R and

{φn}n>0 be the sequene of their harateristi funtions. Prove that the sequene (µn)n>0 istight i� the family {φn}n>0 is equiontinuous at 0.11. Glivenki-Cantelli lemma. Use the representation Xn = Gn(U) of a random variable given in�2.3 to prove the following statement, due to Glivenko and Cantelli. Given a sequene (Xk)k>0of iid random variables with distribution F , denote by F̂n the empirial distribution of the n-uple
(X1, . . . ,Xn):

F̂n(t) =
1

n

n∑

k=1

1Xk6t.Prove that
sup
t∈R

∣∣F̂n(t) − F (t)
∣∣→ 0as n goes to ∞.12. Use the almost-surely representation of weakly onverging random variables (theorem 26)to answer part or all of the following questions.a) Find a sequene (Xn)n>0 of real-valued random variables onverging weakly but not inprobability. Prove yet that if the weak limit is a onstant random variable then the onvergeneholds in probability.b) Use this result to prove the following fat, due to Slutski (and useful in statistis). Suppose

(Xn)n>0 has values in an interval I and that there exists some onstant m suh that √n(Xn −
m) onverges in law to a entered Gaussian random variable with variane σ2. Let f be adi�erentiable funtion de�ned on I. Prove that √n(f(Xn)−f(m)) onverges in law to a enteredGaussian arv with variane σ2

(
f ′(m)

)2.13. Find a modi�ation X of the onstant proess Y ≡ 0 whih is not indistinguishable of Y .14. The purpose of this exerie is to give an example in whih we have onvergene of �nite-dimensional distributions without onvergene in law.a) Let (S, d), (S′, d′) be metri spaes and f : S → S′ be a ontinuous map. Let (µn)n>0 bea weakly onvergent sequene of probability measures on (S,S), with limit µ. Prove that theimage measure of µn by f onverge weakly to the image measure of µ by f .



30 ADVANCED PROBABILITYb) Set f(t) = 1− |t| for |t| 6 1 and 0 elsewhere. Let U be a random variable arried by someprobability spae (Ω,F ,P) and uniformly distributed on [1
3 ,

2
3

]. For ω ∈ Ω and t ∈ [0, 1], de�nefor n ∈ N,
Xn(t, ω) := f

(
3n(t− Uω)

)
, and X(t, ω) := 0.Make a piture of Xn(·, ω) for a �xed ω. Consider Xn and X as C

(
[0, 1],R

)-valued randomvariables. Prove that Xn does not onverge in law to X despite the almost-surely onvergene
Xn(t) → X(t) for every t. What is missing?15. Brownian motion onditionned to be equal to 0 at time 1. Let P be Wiener measure on
C
(
[0, 1]

) and X the anonial oordinate proess (a Brownian motion under P). Given ε > 0,de�ne the law Pε of X onditionned to have value in [0, ε] at its �nal time: Pε(A) = P
(
A |X1 ∈

[0, ε]
), for any Borel set A of C

(
[0, 1]

). De�ne also X0
t = Xt − tX1, for any t ∈ [0, 1], anddenote by P0 the distribution of X0. The aim of this problem is to prove that Pε onverges indistribution to P0. In this sense, X0 represents a Brownian motion onditionned to have value 0at time 1; it is alled a Brownian bridge. Reall why it is su�ient to prove that(3.1) lim

εց0
Pε(F ) 6 P0(F ),for any losed set F of C([0, 1]).a) Given any times ti ∈ [0, 1] and real (measurable) sets B, (Bi)i=1..n, n > 1, prove that wehave

P
(
X0

t1 ∈ B1, . . . ,X
0
tn ∈ Bn,X1 ∈ B

)
= P

(
X0

t1 ∈ B1, . . . ,X
0
tn ∈ Bn

)
P(X1 ∈ B).Why does this imply that P

(
X0 ∈ A | 0 6 X1 6 ε

)
= P

(
X0 ∈ A

), for any Borel set A of C([0, 1])?b) Show how to get (3.1) from that point.4. Complements to part I4.1. Complement: Separable Banah spaes. Reall that a Banah spae is a om-plete metri spae. The spae [0, 1]N, equipped with the distane d(x, x′) =
∑

n>0 2−n|xn−
x′n| is for example a separable Banah spae. Its universal role is emphasized by the fol-lowing theorem46.Theorem 39. Any separable Banah spae is homeomorphi to a measurable subset of
[0, 1]N.Proof � Given a separable metri spae (E, d), denote by (zp)p>0 a dense sequene of pointsof E and de�ne for eah p > 0

fp(x) =
d(x, zp)

1 + d(x, zp)
, x ∈ E;this is a ontinuous (and hene measurable) [0, 1]-valued funtion on E. Therefore, theformula

f(x) =
(
fp(x)

)
p>0de�nes a ontinuous injetive funtion from E into [0, 1]N (hek it). Supposing that f(xn)onverges to f(x), we must have d(xn, zp) → d(x, zp) for eah p > 0, from whih we easilydedue that xn onverges to x. This proves that f−1 is ontinuous on f(E), that is, f is ahomeomorphism from E to f(E).46The next two theorems and their proofs are essentially taken from Appendix 1 from Dynkin andYushkevih's book [DY79℄.



ADVANCED PROBABILITY 31Suppose in addition that the spae is omplete, so that it is a separable Banah spae. Tosee that f(E) is a measurable subset of [0, 1]N, reall that we have seen in the proof ofProhorov's theorem that E an be written as an inreasing union of ompat sets47 Kn.As eah f(Kn) is a ompat set of [0, 1]N, by ontinuity, it is measurable. This shows that
f(E) =

⋃
n>1 f(Kn) is measurable48. �Theorem 40. The spae [0, 1]N, equipped with its Borel σ-algebra, is isomorphi to ameasurable subset of [0, 1]. As a onsequene, any measurable subset of a separable Banahspae49 is a Borel spae.Proof � Equip {0, 1}N with its produt σ-algebra. It is easily seen that if ϕ is an isomorphismfrom a measurable spae X into Y then the formula

(xn)n>0 7→
(
ϕ(xn)

)
n>0de�nes an isomorphism from XN into Y N. Theorem 40 will thus be established if we ana) onstrut an isomorphism ϕ from [0, 1] into {0, 1}N,b) prove that the spaes {{0, 1}N

}N and {0, 1}N are isomorphi,) prove that the spae {0, 1}N is isomorphi to a measurable subset of [0, 1].a) Denote by D the ountable subset of {0, 1}N made up of sequenes with only �nitelymany zeros. The fomula ψ : ǫ 7→ ∑
n>1 ǫn2−n de�nes an injetive measurable map from

{0, 1}N\D onto [0, 1]. To show that its inverse map ϕ : [0, 1] 7→ {0, 1}N\D is also measurableit su�es to show that the preimages ϕ−1(Γk) = ψ(Γk) of Γk = {ǫ ∈ {0, 1}N\D ; ǫk = 0} aremeasurable; this is learly the ase as ψ(Γk) =
⋃

p=0..2k−1−1

[ 2p
2k ,

2p+1
2k

].b) Given a sequene (ǫ(p)
)
p>0

of elements of {0, 1}N, write ǫ(p) =
(
ǫ
(p)
n

)
n>0

and set
ǫ = ǫ

(0)
0 ǫ

(0)
1 ǫ

(1)
0 ǫ

(0)
2 ǫ

(1)
1 ǫ

(2)
0 . . . ,identifying N2 to N. This de�nes a bijetive map F from {

{0, 1}N
}N onto {0, 1}N. Denoteby B(n)

k the subsets of {{0, 1}N
}N de�ned by the ondition ǫ(n)

k = 0; these sets generate theprodut σ-algebra of {{0, 1}N
}N and the sets F (B(n)

k

) the produt σ-algebra of {0, 1}N. Thisproves that the maps F and F−1 are measurable, so F is an isomorphism.) We show that {0, 1}N an be mapped ontinuously and injetively into a measurablesubset of [0, 1]. To see that this map G is an isomorphism from {0, 1}N onto its image50 itsu�es to see that the elementary produt events {ǫ ∈ {0, 1}N ; ǫn = 0
} are mapped ontomeasurable sets; this is the ase as these events being ompat sets, their image by theontinuous map G are ompat, hene measurable, subsets of [0, 1].The map G is simply de�ned by the formula

G(ǫ) =
∑

n>0

2ǫn3−n−1;its ontinuity and injetive harater are easily heked. �47The ompat set K onstruted in the proof of theorem 31 is a typial element of this union, obtainedby letting η derease to 0. The ompleteness hypothesis on the spae is needed to prove that the set Konstruted in that proof is ompat.48With a little bit of extra work, it also shows that f(E) is a ountable intersetion of open sets of [0, 1]N.49Equipped with the trae σ-algebra of the ambient spae.50To see in partiular that G({0, 1}N) is a measurable subset of [0, 1].



32 ADVANCED PROBABILITY4.2. Complement: Lebesgue measure on [0, 1]. Let (S,S) be a Borel spae. We haveseen in the proof of theorem 10 that any (S,S) is isomorphi (�rst to a measurable sub-set of [0, 1], by de�nition, and then) to a measurable subset of {0, 1}N; so, onstrutinga probability measure on (S,S) amounts to onstrut a (Borel) probability measure on
{0, 1}N. The enormous advantage of this spae is that is has an extremelly simple gen-erating algebra: the ountable olletion A of ylindrial sets51. As these sets are at thesame time open and losed, and so ompat, a �nitely additive set funtion on A willautomatially satisfy ondition ii)' of Caratheodory's extension theorem.Theorem 41. Borel probability measures on {0, 1}N orrespond bijetively to additiveset funtions on A, equal to 0 on ∅ and 1 on Ω.Setting µ({0}) = 1

2
and µ({1}) = 1

2
, it follows that the produt probability measure

µ⊗N is well de�ned on the produt σ-algebra of {0, 1}N. The image measure of µ⊗N bythe map (εn)n>0 →
∑

εn2−n−1 ∈ [0, 1] is Lebsegue measure.4.3. Complement: Isomorphism of Borel probability spaes. A Borel spae (S,S)is by de�nition isomorphi to a measurable subset of [0, 1]. Theorem 43 below essentiallystates that any probability measure on (S,S) an be onstruted as the image measureof Lebesgue measure on [0, 1] by some "isomorphism". This means that all the theorydeveloped in this ourse has atually a unique framework: [0, 1] with Lebesgue measure; inpartiular no abstrat measure theory is needed. The statement of theorem 43 requiresthe following de�nition.Definition 42. Two probability sape (Ω,F ,P) and (Ω′,F ′,P′) are said to be isomorphimodulo zero ifdef there exists Ω0 ∈ F , Ω′
0 ∈ F ′ with P(Ω0) = P′(Ω′

0) = 1 and anisomorphism f between Ω0 and Ω′
0 suh that P′ is the image measure of P by f(52).We shall write λ for Lebesgue measure on [0, 1] and D for the λ-ompletion of its Borel

σ-algebra.Theorem 43. Any Borel probability spae (S,S,P), without atoms, is isomorphi modulozero to ([0, 1),D, λ
).Proof � The proof is simple and starts by identifying (S,S) to a measurable subset of [0, 1]and then to a measurable subset of {0, 1}N (as in the proof of theorem 40). We shall nowonsider P as a probability on the produt σ-algebra F of {0, 1}N. Adopt the notations

Cp for {0, 1}J0,pK and Xp : {0, 1}N → {0, 1} for the pth projetion, p > 0. We are goingto onstrut by indution for any z = (z0, . . . , zp) ∈ Cp an interval I(z) =
[
α(z), β(z)

) ofLebesgue measure β(z) − α(z) = P(X0 = z0, . . . ,Xp = zp).Set I(0) =
[
0,P(X0 = 0)

) and I(1) =
[
P(X0 = 0), 1

). Suppose I(z) was onstruted for any
z ∈ Ck, k 6 p and let z = (z0, . . . , zp, zp+1) ∈ Cp+1; set z̃ = (z0, . . . , zp).

• If zp+1 = 0, set α(z) = α(z̃) and β(z) = α(z̃) + P(X0 = z0, . . . ,Xp = zp,Xp+1 = zp+1).
• If zp+1 = 1, set α(z) = α(z̃) + P

(
X0 = z0, . . . ,Xp = zp,Xp+1 = zp+1

) and β(z) = β(z̃).Set then for any n > 1

Bn =
⋃

ez∈Cn−1

I
(
(z̃, 1)

)
;51Where only a �nite number of oordinates are spei�ed.52P′ and P have to be understood as de�ned on the σ-algebras {Ω′

0 ∩A′ ; A′ ∈ F ′} and {Ω0 ∩A ; A ∈ F}respetively.



ADVANCED PROBABILITY 33it is easily heked that I(z) = I
(
(z0, . . . , zn)

)
= Bz0

0 ∩ · · · ∩ Bzn
n , where we write B0 for

[0, 1)\B and B1 for B. One has sup
z∈Cn

λ
(
I(z)

)
−→
n+∞

0. Indeed, would the onverse happen weould onstrut by indution an element z ∈ {0, 1}N suh that λ(I(z0, . . . , zn)
)

> ε for all
n > 0 and a positive onstant ε. We would then have on the one hand P

(
{z}
)

= 0, sine Phas no atoms, and on the other hand
P
(
{z}
)

= lim
n+∞

ց P(X0 = z0, . . . ,Xn = zn) = lim
n+∞

ց λ
(
I(z0, . . . zn)

)
> ε,leading to a ontradition. It follows that the family B = (Bn)n>0 is a basis of the topologyof [0, 1). De�ne

φB : x ∈ [0, 1) 7→
(
1Bn(x)

)
n>0∈{0,1}Nand hek that P is the image measure of λ by φB: this map is an isomorphism modulo zerobetween ([0, 1),D, λ) and ({0, 1}N,F ,P

). �You will �nd in appendix 1 of Dynkin and Yushkevih's book [DY79℄, or hapter 13 ofDudley's book [Dud02℄, a lear and de�nitive aount on Borel spaes. Up to isomorphism(and not only isomorphism modulo 0) there exists only three types of Borel spaes: the�nite spaes, N and the interval [0, 1].4.4. Complement: Riesz representation theorem. We show in this omplement howthe proof of Caratheodory's extension theorem given in setion 1.2 quikly leads to F.Riesz representation theorem. Given a topologial spae (X,X), denote by Cc(X) theset of ontinuous real-valued funtions on X with ompat support, equipped with thesupremum norm.Theorem 44. Let (X,X) be a loally ompat topologial spae and E : Cc(X) → R bea positive linear form of norm 1. Then there exists a probability measure P on the Borel
σ-algebra of X suh that E(f) =

∫
f(x)P (dx), for all f ∈ Cc(X).Proof � We �rst hek that the suitable analogues of the onditions of Caratheodory'stheorem hold here. Condition i) states that µ(∅) = 0 and µ(Ω) = 1. Its analogue here,

E(0) = 0 and E(1) = 1, is guaranteed by the linearity and the positivity and unitnorm of the operator E. Countable additivity of E on Cc(X) is automati! Indeed, anydereasing sequene of elements of Cc(X) onverging to 0 pointwise atually onvergesuniformly to 0. As E has unit norm, it follows that E(fn) dereases to 0 if fn ∈ Cc(X)dereases pointwise to 0 ∈ Cc(X).We an now opy word by word our proof of Caratheodory's extension theorem, butwith C+
c (X) in the role of the algebra A, the set of non-negative real-valued funtionson X in the role of P(Ω), and the operation f∆g := f + g − 2f ∧ g in the role of

A∆B. The σ-algebra generated by a family B0 of funtions is the smallest lass offuntions B ontaining B0 and losed by pointwise passage to the limit.As a result, E has a unique extension into a linear funtional of norm 1 on the set ofbounded53 funtions belonging to the σ-algebra generated by Cc(X). This σ-algebrais also generated by the indiators of sets of the form f−1
(
(a, b)

), a < b reals. As thespae is loally ompat, it oinides with the σ-algebra of Borel-measurable boundedfuntions.53Use the monotone lass theorem for funtions for the uniqueness part of the statement; it deals withbounded funtions only.



34 ADVANCED PROBABILITYDenote by P the restrition of E to the indiators of Borel sets. It remains to provethat E(f) =
∫
f(x)P (dx). As f is a uniform limit of elementary funtions ∑ ai1Ai

,with ai ∈ R and Borel sets Ai, the results follows from the de�nition of the integralwith respet to P and the fat that the extension of E has unit norm. �



ADVANCED PROBABILITY 35Part II. Dynami theory of stohasti proessesReall that Kolmogorov's view on Natural random phenomena is a two levels theory:the random phenomenon itself is modelled by a probability spae (Ω,F ,P), where Ω isthe set of possible outomes and F is the set of observable events, while our experimen-tal observations are modelled by a proess (Xt)t∈T , whose index set orresponds to thedi�erent types of measures of the phenomenon one an make. A random surfae will forinstane be desribed by a random proess with index set a subset of R2 (or S2 as we liveon Earth).The �rst part of the ourse was devoted to onstruting model probability spaes andproesses. This task being done, we are now going to study random proesses for them-selves without paying attention to the bakground (Ω,F) anymore. More spei�ally, weare going to study random proesses indexed by some sort of time: {1, . . . , n},N or aninterval of [0,+∞]. In this framework, it is natural to enrih our desription of Natureby adding to (Ω,F ,P) the information on everything whih has happened up to time t.This information is enoded under the form of an inreasing family (Ft)t∈T of σ-algebras.Being non-ubiquitous, our knowlegge of the history of the world up to time t is onlypartial (we annot observe everything, but information also needs some time to travel,may be damaged during that travel, we may only be able to understand part of it...), sowill be represented by an inreasing family of σ-algebras Gt ⊂ Ft. (Note the optimistiharater of this model: we do not forget our past.)How an we then understand some events on whih we have only a partial information?The introdution of the onept of onditional expetation will provide a mathematialanswer; it will also provide a oneptual framework in whih talking about �onstantsof motion�, inreasing/dereasing preditions, under the form of martingales, sub/super-martingales. Our main task in this part will be to understand the asymptoti behaviourof these �onstants of motion�, �rst in a disrete time setting, and then in a ontinuoustime setting.No topologial hypotheses are made on the measurable spaes (Ω,F) used in this part.Given a probability P on a measurable spae (Ω,F) and a sub-σ-algebra G of F , we write
L1(G) for the lass of integrable funtions whih are G-measurables. We simply write L1for L1(F). 5. Dynamis and filtrations5.1. Conditional expetation. Let us ome bak a moment to the onsiderations ofthe introdution. We saw there that the mathematial abstration of the logial proessof experimental researh is the onept of algebra. Imagine we study a phenomenon X,with assoiated algebra A. We assoiate to the known information about X a sub-σ-algebra B of A. It is everyday's task of sientists to ask what an be infered on the'law' of the phenomenon from the knowledge of B. What preditions an we make? Canwe quantify their quality? et. These questions are easier to handle mathematiallyin the idealised framework of measurable spaes, where algebras have been replaed by
σ-algebras. Roughly speaking, we may ask: Given a probability spae (Ω,F ,P) and asub-σ-algebra G of F , how well an we approximate an F -measurable random variable bya G-measurable random variable?



36 ADVANCED PROBABILITY
L2 spaes, with their Hilbert struture, provide a good framework in whih talkingabout approximation; a disrete framework also provides a playground where intuitionis easy to formalise; we shall start with it. The onstrution of onditional expetationgiven below will make it lear that both views oinide.5.1.1. Disrete ase. The disrete ase onsists of the datum of a ountable partition of aprobability spae (Ω,F ,P) into events An of non-null probability. Set G = σ(An ; n > 0).Let X ∈ L1(F). As G-measurable funtions are onstant on eah atom An of G, any

G-measurable approximation of X is of the form ∑
αn1An. It is natural54 to hoose αnas the mean of X on An: the onditional expetation of X given G is the randomvariable

Y :=
∑

n>0

E[X1An ]

P(An)
1An.It is haraterized by the properties

• Y is G-measurable,
• Y is integrable and E[X1A] = E[Y 1A] for all A ∈ G.For G generated by an inreasing sequene of disrete σ-algebras Gn we ould try to de�ne

E[X|G] as the limit of the E[X|Gn] if it exists. Although this onstrutive approah works(see theorem 65 below), the above haraterization suggests a simpler and more generalde�nition/onstrution proedure in aordane with the L2 idea of best approximationas a projetion.5.1.2. General ase: Existene and uniqueness.Definition/Proposition 45. Let (Ω,F ,P) be a probability spae and G be a sub-σ-algebra of F . Let X ∈ L1(F). Then there exists a random variable Y suh that(1) Y is G-measurable,(2) Y is integrable and E[X1A] = E[Y 1A] for all A ∈ G;two suh random variables are equal P-almost-surely.Proof � Uniqueness. If Y ′ also satis�es onditions (1) and (2) the event A = {Y > Y ′}belongs to G, so
E[(Y − Y ′)1A] = E[Y 1A] − E[Y ′

1A] = E[X1A] − E[X1A] = 0by property (2). This equality prevents A from having a positive probability. We prove inthe same way the P(Y < Y ′) = 0.Existene. Assume to begin that X ∈ L2(F). Sine V := L2(G) is a losed subspae of
L2(F), we have X = Y +W for some Y ∈ V and W ∈ V ⊥. Then, for any A ∈ G, we have
1A ∈ V , so

E[X1A] − E[Y 1A] = E[W1A] = 0.Hene Y satis�es (1) and (2).Assume now that X is any non-negative random variable. Then Xn = X ∧ n ∈ L2(F) and
0 6 Xn ↑ X as n→ ∞. We have shown, for eah n, that there exists Yn ∈ L2(G) suh that,for all A ∈ G,

E[Xn1A] = E[Yn1A]54We may be guided in this hoie by the fat that for a random variable U with a seond moment, E[U ]is the onstant whih minimizes the quantity E
[
|U − c|2

], seen as a funtion of c.



ADVANCED PROBABILITY 37and moreover that 0 6 Yn 6 Yn+1 a.s.. Set Y = limn→∞ Yn, then Y is G-measurable and,by monotone onvergene, for all A ∈ G,
E[X1A] = E[Y 1A].In partiular, if E[X] is �nite then so is E[Y ]. Finally, for a general integrable randomvariable X, we an apply the preeding onstrution to X− and X+ to obtain Y − and Y +.Then Y = Y + − Y − satis�es (1) and (2). �5.1.3. Properties of onditional expetation.Proposition 46 (Simple properties). 1. Let π be a π-system generating G. If Y ∈

L1(G) satis�es E[Y 1A] = E[X1A] for any A ∈ π, then Y = E[X|G].2. • For any Z ∈ L∞(G) we have E
[
Z E[X|G]

]
= E[ZX].

• E[X|G] > 0 if X > 0.
• If G and σ(X) are independent then Y is onstant equal to EX.
• We have E[αX + βX ′|G] = αE[X|G] + β E[X ′|G], for any α, β ∈ R, X ′ ∈ L1,3. (Conditional Jensen's inequality) For any onvex funtion f suh that f(X) ∈

L1(F) we have
f
(
E[X|G]

)
6 E[f(X)|G].In partiular, if X ∈ Lp for some p ∈ [1,+∞) then ∥∥E[X|G]

∥∥
p

6 ‖X‖p.4. (We an take out what is known) If Z is bounded and G-measurable, then E[ZX|G] =
Z E[X|G] almost-surely.Proof � 1. Use the monotone lass theorem for funtions.2. Use the monotone onvergene theorem to prove the �rst statement. For the seondnote that we an have E

[
1E[X|G]<0E[X|G]

]
= E[1E[X|G]<0X] > 0 only if P

(
E[X|G] < 0

)
=

0. The two other properties are heked verifying that the asserted quantities satisfy theharaterization of onditional expetation.3. As f is onvex it is the supremum of a ountable family of a�ne funtions:
f(x) = sup

i
(aix+ bi), x ∈ R.Hene, almost-surely , for all i,

ai E[X|G] + bi 6 E[f(X)|G],that is f(E[X|G]
)

6 E[f(X)|G].4. Chek that Z E[X|G] satis�es the properties (1) and (2). �Proposition 47 (Conditional versions of onvergene theorems). 5. (Monotone on-vergene) If one has almost-surely 0 ≤ Xn 6 X then one has almost-surely
E[Xn|G] 6 E[X|G].6. (Fatou lemma) If Xn > 0 for all n, then one has almost-surely E[lim inf Xn|G] 6

lim E[Xn|G].7. (Dominated onvergene) If Xn onverges almost-surely to X and |Xn| is domi-nated by an integrable random variable for all n, then E[Xn|G] onverges alomst-surely to E[X|G].Proof � 5. If 0 6 Xn inreases almost-surely to some random variable X, then E[Xn|G]inreases almost-surely to some G-measurable random variable U ; so, by monotoneonvergene, for all A ∈ G,
E[X1A] = lim E[Xn1A] = lim E

[
E[Xn|G]1A

]
= E[U1A]



38 ADVANCED PROBABILITYFatou lemma (6) and dominated onvergene (7) follow by essentially the same argu-ments as in the original results. �To state the fundamental property 10, reall that a family (Xt)t∈T of real-valued randomvariables is uniformly integrable ifdef
sup
t∈T

E
[
|Xt|1|Xt|>m

]
→ 0 as m→ +∞.Proposition 48 (E(X|G) as a funtion of G). 8. (Tower property) If H ⊂ G, then

E
[
E[X|G]

∣∣H
]

= E[X|H].9. If σ(X,G) is independent of H, then E
[
X
∣∣σ(G,H)

]
= E[X|G].10. (Uniform integrability) Let X ∈ L1. Then the set of random variables Y of theform Y = E[X|G], where G ⊂ F is a σ-algebra, is uniformly integrable.Proof � 8. Just hek onditions (1) and (2).9. Using property 1 it is su�ient to hek that we have

E
[
E[X|σ(G,H)]1A∩B

]
= E

[
E[X|G]1A∩B

]for any A ∈ G and B ∈ H, as the set of suh A ∩ B is a π-system generating σ(G,H). Butthe left hand side equals
E[X1A∩B ]

hyp.
= E

[
E[X|G]1A

]
P(B) = E

[
E[X|G]1A∩B

]
.10. We an �nd δ > 0 so that E

[
|X|1A

]
6 ε whenever P(A) 6 δ. Then hoose λ < ∞ sothat E[|X|] 6 λδ. Suppose Y = E[X|G], then |Y | 6 E

[
|X|
∣∣G
]. In partiular, E[|Y |] 6 E[|X|]so

P(|Y | > λ) 6 λ−1E[|Y |] 6 δ.Then
E
[
|Y |1|Y |>λ

]
6 E

[
|X|1|Y |>λ

]
6 ε.Sine λ was hosen independently of G, we are done. �5.2. Filtrations. Dynamis beomes real through the aumulation of knowledge as timepasses55; �ltrations are the probabilisti ounterpart of this aumulation proess.5.2.1. Generalities. Let I be a time index, it may be �nite {1, · · · , n}, ountable N, oran interval of R+ ∪ {∞}.Definition 49. Let (Ω,F) be a measurable spae. A �ltration on (Ω,F) is a monotonifamily (Ft)t∈I of sub-σ-algebras of F . We shall talk of the �ltered spae (Ω,F , (Ft)t∈I

).Filtrations are the mathematial ounterpart of the aumulation/loss of knowledgeabout a phenomenon as time passes; we shall give in theorem 65 and 67 a quantitativeversion of this fat. Note that we do not require F0 to be trivial or F∞ to be equal to F(if ∞ ∈ I).Definition 50. Let X = (Xt)t∈I be a random proess de�ned on a measurable spae
(Ω,F). The �ltration generated by X is de�ned by the formula

FX
t = σ(Xs ; s ∈ I, s 6 t).55There is no dynamis without memory, whih enables one to ompare what happens at di�erent times.



ADVANCED PROBABILITY 39Given t ∈ I we denote by ∨s<t Fs the σ-algebra generated by56 ⋃s<t Fs. Be areful,�ltrations have no reason to be a priori ontinuous on the left: we may have ∨s<t Fs ( Ft.Think of a proess whih is onstant on [0, t) and has a random (non-null) jump at time
t. We may as well have ⋂s>t Fs 6= Ft. These fat motivate the following de�nition. Givena �ltration (Ft

)
t∈I

on some probability spae (Ω,F ,P), set for any t > 0

Ft+ :=
⋂

s>t

Fs.This de�nes a new (and bigger) �ltration where we allow ourselves to look slightly aheadin time; it is ontinuous on the right.Definition 51. • Let (Ω,F , (Ft

)
t>0

) be a �ltered spae. A random proess X =

(Xt)t∈I on (Ω,F) is said to be adapted to (Ft)t>0 ifdef FX
t ⊂ Ft for all t ∈ I.

• Let (Ω,F , (Fn

)
n>0

) be a �ltered spae. A random proess X = (Xn)n>0 on (Ω,F)is said to be (Fn

)
n>0

-previsible ifdef FX
n ⊂ Fn−1 for all n > 1 and FX

0 ⊂ F0.We shall just say previsible when the ontext is lear.5.2.2. Stopping times. Reall �rst that a random time is an I-valued random variable; itindiates the moment at whih some event of interest happens; the σ-algebra Ft orre-sponds to our knowledge of the world at time t. Although an event may happen at time
t we may not be aware of it immediately; events of whih we have immediate knowledgeare alled stopping times.Definition 52. A stopping time is a random time T suh that {T 6 t} ∈ Ft for any
t ∈ I. It is equivalent to say that the proess (1T6t

)
t∈I

is adapted.Fundamental example of previsible proess. Given a �ltered spae (Ω,F , (Fn

)
n>0

) and astopping time T , the proess (1n6T

)
n>0

is previsible.As above, denote by (S, d) a metri spae.Definition 53 (First entrane and hitting times). Let (Xt)t>0 be an S-valued proess and
Γ be a Borel subset of S. The �rst entrane of X in Γ is the random time DΓ = inf{t >

0 ; Xt ∈ Γ}; the hitting time of Γ by X is the random time HΓ = inf{t > 0 ; Xt ∈ Γ}.These two lasses of random times will be our main examples of stopping times.Proposition 54. Suppose (Xt)t>0 is an S-valued ontinuous random proess, and let Fand O be some subsets of S, respetively losed and open. Then,
• DF is an (Ft)t>0-stopping time;
• DO and HF are (Ft+)t>0-stopping times.Proof � DF : Sine the map x ∈ S 7→ d(x, F ) is ontinuous (it is Lipshitz), the funtions
ω → d(Xq(ω), F ) are measurable, for all q ∈ Q+. For t > 0, we have by ontinuity,

{DF 6 t} =
{
inf{d(Xq , F ) ; q ∈ Q ∩ [0, t)} = 0

}
,from whih the (Ft)t>0-stopping time property follows.56Reall that the union of two σ-algebra may not be a σ-algebra; �nd a ounter-example.
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DO: {DO < t} =

⋃
q∈Q∩[0,t]{Xq ∈ O} ∈ Ft. Note that we may fail to have {DO 6 t} ∈ Ft:if for some ω, Xt(ω) 6 1, for t ∈ [0, 1), and X1(ω) = 1, we annot tell wether D(1,+∞) = 1or not without looking slightly ahead in time.

HF : I leave you this ase as an exerise. The fat that we just have an (Ft+)t>0-stoppingtime omes from the fat that we annot tell at time 0 if HF is 0 or not... �Given a stopping time T set
FT =

{
A ∈ F ; A ∩ {T 6 t} ∈ Ft for all t ∈ I

}
.Chek that if T is onstant equal to t then FT = Ft. Given a proess X we shall set

XT (ω) = XT (ω)(ω) whenever T (ω) < ∞. We also de�ne the stopped proess XT by
XT

t = Xt∧T . The following fats are easily proved from the de�nitions.Proposition 55. Let T and T ′ be stopping times on a �ltered spae (Ω,F , (Ft)t∈I

), andlet X = (Xt)t∈I be an adapted proess. Then
• T ∧ T ′ is a stopping time,
• if T 6 T ′ then FT ⊂ FT ′,
• XT is adapted, when I = N.It is also easy to prove that XT1T<∞ is FT -measurable if T is ountable; this is nolonger automati if the time index is unountable. We shall state and prove a su�ient(and useful) ondition to have the onlusion later in proposition 83; this ondition willessentially mean that the proess is determined by its restrition to a ountable set ofindies.5.3. Martingales, supermartingales and submartingales. Constants of motion playa dominant role in the theory of di�erential equations (and so in lassial mehanis):knowledge of a onstant of motion redues the dimension of a problem, so if su�ientlymany independent onstants of motion are known then the system is integrable (at leasttheoretially). Liapounov funtions57 usually also provide preious informations on thedynamis; they are for instane used to prove the stability of hyperboli zeros of vetor�elds under perturbation. The probabilisti ounterpart of these notions are martingalesand sub/supermartingales. In our framework the dynamis is not provided by the da-tum of a di�erential equation but by the datum of a �ltration representing our evolvingknowledge of a system as time passes.Definition 56. • Let (Ω,F , (Ft)t∈I

) be a �ltered probability spae. A martingaleis an adapted integrable proess (Mt)t∈I suh that E[Mt|Fs] = Ms for any s 6 t.
• A submartingale is an adapted proess (Mt)t∈I suh that E[Mt|Fs] > Ms for any
s 6 t.

• A supermartingale is an adapted proess (Mt)t∈I suh that E[Mt|Fs] 6 Ms forany s 6 t.So, roughly speaking, submartingales play the role of inreasing funtions and super-martingales the role of dereasing funtions. Do martingales play well their role of on-stant of motion? Yes: We shall see later for instane that if Ω = C(R+,R), F is theBorel σ-algebra, Xt(ω) = ωt is the oordinate proess and Ft = FX
t then a probability57A Liapounov funtion for a di�erential equation ẏt = f(yt) is a funtion g suh that g(yt) is monotonealong any solution.



ADVANCED PROBABILITY 41on (Ω,F) is the Wiener measure i� the omplex-valued proess (eiλXt+
λ2t
2

)
t>0

is a mar-tingale. Similarly, a Markov hain is ompletely determined by the datum of a ertainfamily of martingales. These fats should warn you of the importane of this onept.As a onsequene of the onditional version of Jensen's inequality the onvex image of amartingale (resp. onave) is a submartingale (resp. supermartingale).6. Disrete time martingale theoryLet us �x a �ltration (Fn

)
n>0

on a given probability spae (Ω,F ,P). Adaptedness,previsibility, martingales... are de�ned with respet to this set up in this setion.6.1. Charaterisation of supermartingales. Martingales (resp. sub/super-martingales)are de�ned above by the �projetion identities� at deterministi times. The possibility touse similar identities with random times is the very reason why this lass of proesses willhappen to be so powerful.Theorem 57 (Optional stopping theorem (1)). An adapted proess X is a supermartin-gale i� one of the following onditions hold.1. For all bounded stopping time T and any stopping time S
E[XT |FS] 6 XS∧T .2. For all bounded stopping times S, T , with S 6 T

E[XT ] 6 E[XS].Proof � We make a irular argument proving statement 1 �rst. Suppose the stopping times
S and T bounded above by a onstant n; we an write

XT = XS∧T +
∑

k=0..n

(Xk+1 −Xk)1S6k<T .To prove 1 amounts to prove that we have for any A ∈ FS

E[XT1A] 6 E[XS∧T1A].But as A ∩ {S 6 k < T} ∈ Fk we have
E
[
(Xk+1 −Xk)1S6k<T

]
6 0;the result follows. Statement 2 is a onsequene of 1. Last, to prove that X is a supermartin-gale if it enjoys property 2, take integers p < q, an event A ∈ Fp, and set T = p1A + q1Ac .This formula de�nes a stopping time bounded by q, so

E[Xq] ≤ E[XT ],i.e. E[Xq] 6 E[Xp1A +Xq1Ac ], or E[Xq1A] 6 E[Xp1A]. �We have a similar statement for martingales, with equalities instead of inequalities.Corollary 58. Given a martingale (Mn)n>0 and a stopping time T , the stopped proess
MT is a martingale.



42 ADVANCED PROBABILITY6.2. Almost-sure and L1-onvergene results.6.2.1. Non-negative martingales. Given a non-negative martingale (Mn)n>0 and two pos-itive real numbers a < b de�ne the stopping time σ1 = inf
{
p > 0 ; Mp 6 a

} and de�neindutively the stopping times58
τk = inf

{
p > σk ; Mp > b

}
, σk+1 = inf

{
p > τk ; Mp 6 a

}
.The number of uprossings from a to b by the martingale (Mn)n>0 is equal to

Ua,b = sup{k ; τk <∞} ∈ N ∪ {∞}.Proposition 59 (Dubins). We have P(Ua,b > k) 6
(

a
b

)k, for any k > 0. In partiular
Ua,b is almost-surely �nite.Proof � As we have {σk < ∞} ⊂ {τk−1 < ∞} it is su�ient to prove that P(τk < ∞) 6

a
b P(σk <∞). We know from the optional stopping theorem 57 that we have for any n > 0

E[Mτk∧n] = E[Mσk∧n],i.e.
E[Mτk

1τk6n] + E[Mn1τk>n] = E[Mσk
1σk6n] + E[Mn1σk>n].Sine the �rst term on the left is > bP(τk 6 n) and the �rst on the right is 6 aP(σk 6 n),we have

bP(τk 6 n) 6 bP(τk 6 n) + E
[
Mn1σk6n<τk

]
6 aP(σk 6 n)as M is non-negative; the inequality of the proposition follows sending n to +∞. �As a onsequene of Dubins' result, almost-surely Ua,b is �nite for all rationals a < b.Corollary 60 (Almost-sure onvergene). A non-negative martingale onverges almost-surely to an integrable random variable.Proof � If not there would exists positive rational numbers a < b suh that Ua,b = ∞ on anevent of positive probability, ontraditing Dubins' proposition. Denote by M∞ the almost-sure limit of Mn. We prove the integrability of M∞ applying Fatou lemma in the equality

E[Mn] = E[M0]. �Let Sn denote the simple symmetri random walk on Z, stopped at the random time Twhen it hits −1. The proess Mn = Sn + 1 is a non-negative martingale whih onvergesalmost surely to 0; yet Mn does not onverge to 0 in L1, as E[Mn] = 1.Definition 61. A martingale (Mn)n>0 is said to be losed ifdef it onverges almost-surely to an integrable random variableM∞ for whih we an write the martingale identity
Mn = E[M∞|Fn], for all n > 0.6.2.2. Almost-sure onvergene of supermartingales. The proof of Dubins' proposition 59makes a ruial use of the non-negativeness of the martingale. The prie to pay to get ridof this hypothesis is to impose to the martingale to be bounded in L1. This atually worksfor supermartingales as is implied by the following result due to Doob59. Let (Xn)n>0 bea supermartingale. Given two real numbers a < b, denote by, Ua,b(n) the number ofuprossings of X from a to b made by time n; almost surely Ua,b(n) inreases to Ua,b as
n→ +∞. The stopping times τk, σk are de�ned as above.58Chek that they are indeed stopping times. We adopt the onvention inf ∅ = +∞.59A result prior to Dubins' result.



ADVANCED PROBABILITY 43Theorem 62 (Doob's uprossing inequality). For any supermartingale X we have forany n > 1

E
[
Ua,b(n)

]
6

E
[
(Xn − a)−

]

b− a
.Proof � Given n > 1, set

S =
∑

k>1

(
Xτk∧n −Xσk∧n

)
.As τk and σk are no less than k, only the �rst Ua,b(n) + 1(6 n+ 1) terms may be non-null;so S =

∑n+1
k=1

(
Xτk∧n −Xσk∧n

). Eah of the �rst Ua,b(n) terms are no smaller than b− a asthey orrespond to uprossings. The last (potentially non-null) term, Xn −XσUa,b(n)+1∧n isgreater than or equal to −(Xn − a)−. So we have(6.1) n+1∑

k>1

(
Xτk∧n −Xσk∧n

)
> Ua,b(n) (b− a) − (Xn − a)−.But as X is a supermartingale and τk∧n, σk∧n bounded stopping times, we have E[Xτk∧n] 6

E[Xσk∧n], by the optional stopping theorem 57; the result follows. �The same reasonning as in orollary 60 proves the following extension of orollary 60.Theorem 63 (Almost-sure onvergene theorem for supermartingales). A supermartin-gale bounded in L1 onverges almost-surely to an integrable random variable.6.2.3. Closed martingales. a) Main theorem. To state the following neessary and suf-�ient ondition of losedness of a martingale reall that a sequene (Xn)n>0 of integrablerandom variables onverges in L1 to some X(∈ L1) i� it onverges in probability to Xand is uniformly integrable. This fat is a well known appliation of Egorov's theorem60.You are asked to prove that result in the example sheet.Theorem 64 (L1-onvergene theorem for martingales). A martingale is losed i� it isuniformly integrable.Proof � ⇒ has been proved in proposition 48. To establish the onverse it su�es to note thata uniformly integrable martingale (Mn)n>0 is bounded in L1, so it onverges almost-surely(hene in probability) to some M∞ ∈ L1, by theorem 63. As a onsequene of the abovementionned result it onverges in L1 to M∞. Passing to the limit in the martingale identityyields Mn = E[M∞|Fn]. �As a diret appliation of this riterion we obtain Lévy's famous onvergene theorem.Theorem 65 (Lévy's 'upward' theorem and 0−1 law). For every X ∈ L1 the martingale
E[X|Fn] onverges almost-surely and in L1 to E[X|F∞]. In partiular, P(A|Fn) onvergesalmost-surely to 1A, for every A ∈ F∞.b) Appliations. We present here two important appliations of the above two results.
• We �rst show that the optional stopping time theorem an be applied with any stoppingtime when working with a losed martingale.Corollary 66 (Optional stopping theorem (2)). For any uniformly integrable martin-gale M and any stopping times S, T , we have

E[MT |FS] = MS∧T .60Egorov's theorem states that almost-sure limits are uniform outside sets of arbitrarily small measure.



44 ADVANCED PROBABILITYProof � We have already proved the result when T is bounded (theorem 57). For an un-bounded stopping time, approah it by T ∧ n and use theorem 57 to write(6.2) E[MT∧n|FS ] = MS∧T∧n.By Lévy's upward theorem 65, the right hand side MS∧T∧n = E
[
M∞

∣∣FS∧T∧n

] onverges(almost-surely and) in L1 to E
[
M∞

∣∣FS∧T

]
= MS∧T . As we bhave MT∧n = E[Mn|FT ], bythe optional stopping theorem proved so far, we dedue from the uniform integrability of themartingale (hene its L1 onvergene) that61 MT = E[M∞|FT ]. Also, sine

∥∥E[MT∧n −MT |FS ]
∥∥

1
6 E

[
E
[
|MT∧n −MT |

∣∣FS

]]

6 E
[
E
[
|MT∧n −MT |

∣∣FS

]]
6 E

[
E
[
E
[
|Mn −M∞|

∣∣FT

]∣∣∣FS

]]

6 E
[
|Mn −M∞|

]the result follows on passing to the limit in (6.2). �

• Martingales with respet to dereasing �ltrations (bakward martingales). Let · · · ⊂
Fn+1 ⊂ Fn · · · ⊂ F0 ⊂ F be a dereasing �ltration and set F∞ =

⋂
n>0 Fn. A bakwardmartingale is a sequene (Mn)n>0 of L1-random variables suh that

Mn is Fn-measurable and E[Mn−1|Fn] = Mn.The great di�erene with (usual) martingales is that bakward martingales satisfy theidentity
Mn = E[M0|Fn]for every n > 0. The sequene (Mn)n>0 is thus uniformly integrable and the L1-onvergenetheorem implies the following result62.Theorem 67 (Lévy's 'downward' theorem). For all X ∈ L1 the bakward martingale

E[X | Fn] onverges almost-surely and in L1 to E[X | F∞]. In partiular, if (Yn)n>0 is asequene of independent random variables and Fn = σ(Yp ; p > n), we have E[X | Fn] →
E[X] for any integrable random variable X.Corollary 68 (Strong law of large numbers). Let (Xn)n>0 be a sequene of independentand identially distributed random variables in L1. Then X1+···+Xn

n
onverges almost-surelyand in L1 to the onstant random variable E[X1].Proof � Set S0 = 0 and Sn = X1 + · · · +Xn for n > 1; de�ne also the dereasing �ltration

Fn = σ(Sp ; p > n) = σ(Sn,Xp ; p > n+ 1).Sine X1 is independent of σ(Xp ; p > n+1), we have E[X1|Fn] = E[X1|Sn] for all n. Now, bysymmetry, E[Xk|Sn] = E[X1|Sn] for all 1 6 k 6 n, so we have almost-surely E[X1|Fn] = Sn
n .The sequene (Sn

n

)
n>0

if thus a bakward martingale, so it onverges almost-surely and in
L1 to E[X1|F∞]. As this random variable is also, for eah k > 0, the limit of Xk+···+Xn

n , itis measurable with respet to ⋂k>0 σ(Xp ; p > k). Sine this σ-algebra is trivial under P, byKolmogorov's 0 − 1 law, E[X1|F∞] is onstant, equal to E[X1]. �61The stopped martingale (MT∧n)n>0 is uniformly integrable if M is uniformly integrable.62We have not used the fat that the �ltration onsidered in setion 6.2 is inreasing to prove the resultsof that setion. They also hold for dereasing �ltrations.



ADVANCED PROBABILITY 456.3. Lp-onvergene results. Given a proess (Xn)n>0, set X∗ = supn>0 |Xn|. The keyto the Lp-onvergene results is Doob's Lp inequality (6.4) below. It provides a ontrolof the behaviour of the whole trajetory in terms of its behaviour at �xed times. Doob'suprossing inequality plaid the same role above, in the almost-surely onvergene results.Theorem 69 (Doob's maximal inequality). Let X be a martingale or a non-negativesubmartingale. Then, for all λ > 0,
λP(X∗ > λ) 6 sup

n>0
E
[
|Xn|

]
.Proof � As X∗ is the inreasing limit of X∗

ℓ := supn6ℓ |Xn| it su�es to prove that theinequality λP(X∗
ℓ > λ) 6 supn6ℓ E

[
|Xn|

] holds for all ℓ > 1. Also, as |X| is a non-negativesubmartingale, it su�es to onsider the ase where X is a non-negative submartingale, forwhih we prove that λP(X∗
ℓ > λ) 6 E[Xℓ].Set T = inf{n > 0 : Xn > λ}∧ℓ. Then T 6 ℓ is a bounded stopping time so, by the optionalstopping theorem,

E[Xℓ] > E[XT ] = E
[
XT1X∗

ℓ >λ

]
+ E

[
XT1X∗

ℓ <λ

]
> λP(X∗

ℓ > λ) + E
[
Xℓ1X∗

ℓ <λ

]
.As X is non-negative it follows that we have(6.3) λP(X∗

ℓ > λ) 6 E
[
Xℓ1X∗

ℓ >λ

]
6 E[Xℓ].

�Theorem 70 (Doob's Lp-inequality). Let X be a martingale or non-negative submartin-gale. Then, for all p > 1 and q = p/(p− 1),(6.4) ‖X∗‖p ≤ q sup
n>0

‖Xn‖p.Proof � As above it su�es to onsider the ase of a non-negative submartingale indexed bythe �nite set {1, . . . , ℓ}. We adopt the same notations. Fix C < ∞. By Fubini's theorem,equation (6.3) and Hölder's inequality,
E[(X∗

ℓ ∧ C)p] = E

∫ C

0
pλp−1

1X∗
ℓ >λ dλ =

∫ C

0
pλp−1P(X∗

ℓ > λ) dλ

6

∫ C

0
pλp−2E

[
Xℓ1X∗

ℓ >λ

]
dλ = q E

[
Xℓ(X

∗
ℓ ∧C)p−1

]
6 q ‖Xℓ‖p ‖X∗

ℓ ∧ C‖p−1
p .Hene ‖X∗

ℓ ∧ C‖p 6 q ‖Xℓ‖p and the result follows by monotone onvergene on letting
ℓ→ ∞. �Theorem 71 (Lp-martingale onvergene theorem for p > 1). (1) Let M be a mar-tingale bounded in Lp. ThenMt onverges almost-surely and in Lp to some randomvariable M∞ ∈ Lp. Moreover, Mn = E[M∞|Fn] a.s. for all n.(2) Suppose Y ∈ Lp(F∞) and set Mn = E[Y |Fn]. Then M = (Mn)n>0 is a martingalebounded in Lp whih onverges almost-surely and in Lp to Y .Proof � (1) As an Lp-bounded martingale is also bounded in L1 the martingale Mn onvergesalmost-surely to some M∞, by the almost-sure martingale onvergene theorem 63. ByDoob's Lp-inequality,

‖M∗‖p 6 q sup
n>0

‖Mn‖p <∞.Sine |Mn −M∞|p 6 (2M∗)p for all n, we an use dominated onvergene to dedue that
Mn onverges to M∞ in Lp. It follows that Mn = E[M∞|Fn] almost-surely.



46 ADVANCED PROBABILITY(2) Suppose now that Y ∈ Lp(F∞) and set Mn = E[Y |Fn]. Then M is a martingale by thetower property and
‖Mn‖p =

∥∥E[Y |Fn]
∥∥

p
6 ‖Y ‖pfor all n, so M is bounded in Lp. Hene Mn onverges almost-surely and in Lp, with limit

M∞ ∈ Lp(F∞), say, and we an show that M∞ = Y a.s., as in the proof of Lévy's upwardtheorem 65. �It is worth noting that one does not need Doob's results to analyse L2-martingales andthat basi tools are su�ient in that ase. This fat entirely omes from the elementaryidentity obtained by onditioning on Fp(6.5) E
[
(Mq −Mp)

2
]

= E
[
M2

q

]
− E

[
M2

p

]
, p < q.As a onsequene we see that the sequene (E[M2

n]
)

n>0
inreases with n.Theorem 72. Let (Mn)n>0 be an L2-martingale. The following propositions are equiva-lent.(1) (Mn)n>0 is bounded in L2,(2) (Mn)n>0 onverges almost-surely and in L2 to some M∞ ∈ L2,(3) Mn = E[M∞ | Fn] for some M∞ ∈ L2.Proof � (2) ⇒ (1) ⇒ L2-onvergene: The �rst impliation is obvious. For the seond one,note that if (E[M2

n]
)
n>0

is bounded, it onverges as it is inreasing; it follows from identity(6.5) that (Mn)n>0 is a Cauhy sequene in (the omplete spae) L2, so it onverges.
L2-onvergene ⇒ (3): L2-onvergene implies L1-onvergene...
(3) ⇒ (2): The almost-sure onvergene was established above in orollary 60 or theorem63, the L2-onvergene is a basi result of Hilbert spae theory. �6.4. Appliations.6.4.1. Martingale haraterization of Markov hains. Let (S,S) be a Borel probabilityspae (i.e. nothing worst than a measurable subset of [0, 1]) and let {p(x, ·) ; x ∈ S} bea transition kernel in S: p(x, ·) is a probability measure on (S,S) for every x ∈ S, andfor any A ∈ S the funtion p(·, A) is measurable. The quantity p(x,A) represents theprobability starting from x to jump into A. We have seen an expliit onstrution ofMarkov hains in proposition 13. Daniell's theorem 18 provides another onstrution: itonstruts a probability measure P on (SN,S⊗N

) with the presribed �nite dimensionallaws, under whih the oordinate proess is a Markov hain with the given transitionkernel. This probability P is the distribution of the Markov hain; it an be haraterizedin terms of martingales. Denote by (Xn)n>0 the oordinate proess on SN and by (Fn

)
n>0the indued �ltration.Proposition 73. (Xn)n>0 is a Markov hain with transition kernel {p(x, ·) ; x ∈ S} i�for all bounded measurable funtion f : S → R the proess

Mf
n = f(Xn) − f(X0) −

n−1∑

k=0

∫

S

(
f(y) − f(Xk)

)
p(Xk, dy)is an (Fn

)
n>0

-martingale.



ADVANCED PROBABILITY 47This statement should be understood in the light of the following heuristi: martingalesare the �onstants of motion� of the dynamis; the above olletion of martingales is bigenough to haraterize ompletely the dynamis. This is in aordane with what happensin deterministi dynamial systems.Proof � ⇒: Note that ∫S(f(y) − f(Xk)
)
p(Xk, dy) = E

[
f(Xk+1) − f(Xk)

∣∣Fk

] is the meanjump of f between times k and k + 1, knowing Fk. Simply write
E
[
Mf

n+1

∣∣Fn

]
= E

[
f(Xn+1)

∣∣Fn

]
− f(X0) −

n−1∑

k=0

E
[
f(Xk+1) − f(Xk)

∣∣Fk

]

= E
[
f(Xn+1) − f(Xn)

∣∣Fn

]
+ f(Xn) − f(X0) −

n−1∑

k=0

E
[
f(Xk+1) − f(Xk)

∣∣Fk

]
= Mf

n .

⇐: We only need to hek that we have for any n > 0 and any A ∈ S
P(Xn+1 ∈ A|Fn) = p(Xn, A).This diretly omes from the martingale property of Mf

n for the funtion f = 1A(·). �6.4.2. Radon-Nikodym theorem. Let P and P̃ be two probability measures on a measurablespae (Ω,F). Reall that P̃ is said to be absolutely ontinuous with respet to P ifdef
P(A) = 0 implies P̃(A) = 0. It is a well known fat that this ondition is equivalent tothe following: For any ε > 0 there exists η > 0 suh that for all A ∈ F , the ondition
P(A) 6 η implies P̃(A) 6 ε; prove it.Theorem 74 (Radon�Nikodym theorem). Let (Ω,F) be a measurable spae suh thatthe σ-algebra F is generated by an inreasing sequene (Fn

)
n>0

of �nite σ-algebras. Let Pand P̃ be two probability measures on (Ω,F). Then P̃ is absolutely ontinuous with respetto P i� there exists a non-negative random variable X suh that P̃(A) = E[X1A] for all
A ∈ F .The random variable X, whih is unique P̃-a.s., is alled (a version of) the Radon-Nikodym derivative of P̃ with respet to P. We write X = dP̃/dP. The theoremextends immediately to �nite measures by saling, then to σ-�nite measures by breaking
Ω into piees where the measures are �nite. The assumption that F is ountably generatedan also be removed but we do not give the details here.Without loss of generality, we shall write Fn = σ(An

1 , . . . , A
n
pn

), for disjoint sets An
i ofpositive P̃-probability.Proof � Reall the disussion on the onstrution of onditional expetation in the disretease. In the same spirit, de�ne the non-negative random variable

Mn =

pn∑

k=1

P̃(An
k)

P(An
k)

1An
k
;it satis�es the identity P̃(A) = E[Mn1A] for all A ∈ Fn. As Fn is inreasing63, it followsthat the proess (Mn)n>0 is an ((Fn)n>0,P

)-martingale. We are going to show that it isuniforlmy integrable with respet to P. By the L1-martingale onvergene theorem, therewill exist a random variable X > 0 suh that E[X1A] = E[Mn1A] for all A ∈ Fn. De�ne63So that eah An
k an be written as a union of An+1

j .



48 ADVANCED PROBABILITY
Q(A) = E[X1A] for A ∈ F . Then Q is a probability measure and Q = P̃ on ⋃n Fn, whihis a π-system generating F . Hene Q = P̃ on F .To prove the uniform integrability of (Mn)n>0 with respet to P we use the above hara-terization of absolute ontinuity: as P(Mn > m) 6

E[Mn]
m = 1

m 6 η for m large enough, wehave for suh m's P̃(Mn > m) 6 ε, independently of n. So E[Mn1Mn>m] = P̃(Mn > m) 6 εfor all n. �6.4.3. Cameron-Martin theorem. You are asked to prove the following statement in exer-ise.Proposition 75. Let (Ω,F ,
(
Fn

)
n>0

,P) be a �ltered probability spae on whih a non-negative martingale (Mn)n>0 is de�ned. Suppose a probability P̃ is de�ned on (Ω,F) suhthat P̃(A) = E[Mn1A] for all A ∈ Fn and all n > 0. Then P̃ is absolutely ontinuous withrespet to P i� the martingale M is uniformly integrable.As an appliation we are going to prove a result due to Cameron and Martin whoseimportane for stohasti analysis is di�ult to overstate. We shall denote by γ theGaussian measure on R (with density (2π)−
1
2 exp

(
−x2

2

) with respet to Lebesgue measure)and by γ⊗N the produt measure on RN. Given h ∈ RN denote by τh the translation on
RN: (xk)k>0 → (xk + hk)k>0, and by τ ∗hγ⊗N the image measure of γ⊗N by τh; it is anothermeasure on RN. Last reall that two measures P and Q on a measurable spae (Ω,F)are said to be equivalent ifdef they are absolutely ontinuous with respet to eah other.Theorem 76 (Cameron-Martin). The measures γ⊗N and τ ∗hγ⊗N are equivalent i� h ∈
ℓ2(N) :

∑
n>0

h2
k <∞.Denote by Xn : (xk)k>0 → xn the nth oordinate map and write Fn for σ(Xp ; p 6 n);denote by X the identity map from RN to itself.We shall denote by E the expetation operator with respet to γ⊗N and by Ẽ the expe-tation operator with respet to τ ∗hγ⊗N, meaning nothing else than Ẽ

[
f(X)

]
= E

[
f(X+h)

].The proof will rely on the elementary identity below. Set
Mn = exp

( n∑

k=0

hkXk −
1

2

n∑

k=0

h2
k

)
.The random proess (Mn)n>0 is a martingale as all the Xk are Gaussian independentrandom variables. Given a bounded funtion f : RN → R depending only on the �rst noordinates, an elementary hange of variable leads to the equality

Ẽ
[
f(X)

]
= E

[
f(X + h)

]
= (2π)−

n
2

∫
f(x1 + h1, . . . , xn + hn) e−

x2
1+···+x2

n
2 dx1 . . . dxn

= (2π)−
n
2

∫
f(y1, . . . , yn) e

Pn
k=0 hkyk− 1

2

P
k=0..n h2

k e−
y2
1+···+y2

n
2 dy1 . . . dyn

= E
[
Mnf(X)

]Proof � By proposition 75, the probabilities γ⊗N and τ∗hγ⊗N are equivalent i� the martingale
(Mn)n>0 is uniformly integrable.
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⇐: Let p > 0. Supposing h ∈ ℓ2(N) and replaing h by ph, we see immediately that

E
[
exp
(
p

n∑

k=0

hkXk − p2

2

n∑

k=0

h2
k

)]
= 1,so E[Mp

n] 6 exp
(p2−p

2

∑n
k=0 h

2
k

)
6 exp

(p2

2 ‖h‖2
2

) and the martingale is bounded in Lp for any
p > 1; the result then follow from the Lp-onvergene theorem 71.
⇒: Suppose (Mn)n>0 uniformly integrable, then it onverges almost-surely and in L1 tosome non-negative random variable M∞ ∈ L1, with E[M∞] = 1. Would we have ‖h‖2 = ∞,then we would have E[Mp

n] 6 exp
(p2−p

2

∑n
k=0 h

2
k

)
→

n+∞
0, for any p ∈ (0, 1); Fatou's lemmawould imply E[Mp

∞] = 0, a ontradition. �Girsanov's theorem whih you will enounter in any stohasti alulus ourse is nothingelse than a variation of this theorem, despite its elaborated appearane. In this ontinuoustime setting, the ounterpart of theorem 76 will read as follows. Denote by P Wienermeasure on C
(
[0, 1]

) and by (Xt)t∈[0,1] the oordinate proess.Theorem 77. Let H : [0, 1] → R be a ontinuous funtion. The law under P of the�drifted� proess (Xt +Ht)t∈[0,1] is abolutely ontinuous with respet to P i� there exists afuntion h ∈ L2
(
[0, 1]

) suh that Ht = H0 +
∫ t

0
hs ds, for all t ∈ [0, 1].The omputation of the Radon-Nikodym derivative of the law of the drifted pro-ess with respet to Wiener measure involves a stohasti integral and is analogous to

exp
(∑∞

k=0 hkXk − 1
2

∑∞
k=0 h

2
k

).6.4.4. A glimpse at the onentration of measure phenomenon. Conentration of measureis the following phenomenon. Given a (Borel) probability P on a metri spae, anyLipshitz funtion64 X is lose to its mean m on a set of (surprisingly) big probability:
P(|X − m| > r) 6 exp(−cr) or exp(−cr2) for some positive onstant c. This kindof inequality have a wide range of appliations ranging from ombinatoris, statistialphysis to funtional analysis and probability in Banah spaes. Although big progresseshave been made reently, numerous open questions remain in this extremely lively areaof researh65. A breadth of di�erent views and tools an lead to onentration results; inthis setion we give an example of how martingales an sometimes lead to them.Let (Ω,F ,P) be a probability spae and {∅,Ω} ⊂ F1 ⊂ · · · ⊂ Fn = F be a �ltration.Let Y be any real-valued integrable random variable and set for every i ∈ J1, nK(6.6) Di = E[Y |Fi] − E[Y |Fi−1].Note that Y − E[Y ] =

∑n
i=1Di.Theorem 78. Suppose there exists some onstants ci suh that one has almost-surely

|Di| 6 ci for all i = 1..n; set C2 =
∑

i=1..n c
2
i . Then for r > 0

P
(∣∣Y − E[Y ]

∣∣ > r
)

6 2e−
r2

2C2 .64That is, any one dimensional piture of the metri spae in whih geometry is not too muh expanded.65The heart of the phenomenon itself remains somewhat unlear.



50 ADVANCED PROBABILITYProof � Let r > 0. As −Y satis�es the same hypothesis as Y it su�es to prove that P
(
Y −

E[Y ] > r
)

6 e−
r2

2C2 . Use for that Chebyhev's exponential inequality
P
(
Y − E[Y ] > r

)
6 e−λrE

[
eλ

Pn
i=1 Di

]
,introduing a non-negative parameter λ whih will be optimize at the end. If we an boundabove eah E

[
eλDi

∣∣Fi−1

] by some onstant, by a repeated use of the tower property weshall be able give an upper bound for E
[
eλ

Pn
i=1 Di

]
= E

[
eλ

Pn−1
i=1 Di E

[
eλDn

∣∣Fn−1

]], et. Butnoting that λDi = 1+Di/ci

2 λci + 1−Di/ci

2 (−λci) and using the onvexity of the exponentialmap, we get for any λ > 0

eλDi 6
1 +Di/ci

2
eλci +

1 −Di/ci
2

e−λci ,and so, as E[Di|Fi−1] = 0,
E
[
eλDi

∣∣Fi−1

]
6 cosh(λci) 6 e

λ2c2i
2 .This leads to the estimate E

[
eλ

Pn
i=1 Di

]
6 e−λr+ λ2

2
C2 ; it remains to optimize over λ > 0 toget the result. �In the following orollary the disrete spae {0, 1}n is endowed with the ℓ1 metri

d(x, y) =
∑n

i=1 |xi − yi| = #{i ∈ J1, nK ; xi 6= yi} and the uniform probability P.Corollary 79. Let Y : {0, 1}n → R be a ontration: |Y (x) − Y (y)| 6 d(x, y) for all
x, y ∈ {0, 1}n. Then for any r > 0

P(Y > E[Y ] + r) 6 2e−
2r2

n .Proof � Using the oordinate maps Xk : (xi)i=1..n → xk on {0, 1}n we de�ne the �ltration
(Fk)k=1..n setting F0 =

{
∅, {0, 1}n

} and Fk = σ(Xp ; 1 6 p 6 k) for 1 6 k 6 n. Set foronveniene Yk = E[Y |Fk] and de�ne the martingale di�erene Dk = Yk − Yk−1 as above.Let us estimate D1 = Y1 − E[Y ]. Observe that Y1 takes only two values: the average of
Y on the faes {π1 = 0} and {π1 = 1}. These averages annot di�er too muh as we gofrom a point of one fae to a point of the other hanging only one oordinate, so that Yannot hange by more than 1 sine it is a ontration. So we see that |D1| 6 1

2 . The sameargument holds for estimating the other Dk; apply theorem 78 to onlude. �The preeding proof also justi�es the following statement. Let (Ωi,Fi,Pi)i=1..n be prob-ability spaes and de�ne (Ω,F ,P) as the produt probability spae.Corollary 80. Let Y be an integrable funtion on (Ω,F) suh that there exist onstants
ci with |Y (x) − Y (y)| 6 ci if x and y di�er only by their ith oordinate. Then for any
r > 0

P
(∣∣Y − E[Y ]

∣∣ > r
)

6 2 exp
(
− r2

2
∑n

i=1 c
2
i

)
.



ADVANCED PROBABILITY 517. Continuous time martingale theoryAlthough setion 6 was written in the setting of a �ltered probability spae with a�ltration (Fn

)
n>0

, all the de�nitions given above are meaningful for a �ltration indexedby any other ountable subset I of R+, with ∞ to be understood as sup I. Write Q+ for
Q∩R+. Our basi setting to onstrut ontinuous time martingales will be a probability�ltered spae (Ω,F , (Ft

)
t∈Q+

,P
) on whih a martingale (Mt)t∈Q+ is de�ned; this is theskeleton of the oming extension. It is a remarkable result due to Doob that nothing elsethan the martingale property is needed to extend (Mt)t∈Q+ to R+. Demanding ontinuityfor (Mt)t>0 will be too muh, we shall get àdlàg paths; àdlàg = ontinue à droite, limiteà gauhe = ontinuous on the right with left limit. We shall suppose that F0 ontains allthe P-null sets.Theorem 81 (Regularization of martingales. Doob). Let (Ω,F , (Ft

)
t∈Q+

,P
) be aprobability �ltered spae and let (Mt)t∈Q+ be an (Ft

)
t∈Q+

-martingale. For t ∈ R+ set
Ft+ :=

⋂
s>t, s∈Q+

Fs. Then one an onstrut on (Ω,F ,P) an (Ft+)t>0-martingale (M̃t)t>0with àdlàg paths suh that one has P-almost-surely for all t ∈ Q+

E[M̃t|Ft] = Mt.Proof � Given real numbers a < b denote by Ua,b

(
[0,N ]

) the number of uprossings of
(Mt)t∈Q+ from a to b in [0, N ], and set M∗

N = supt∈Q+∩[0,N ] |Mt|. By Doob's uprossinginequality the Ua,b

(
[0, N ]

) are almost-surely �nite66 for all rational a < b and N > 0; also,all the M∗
N are �nite67, for all N > 0, by Doob's maximal inequality. Denote by Ω0 thisevent of probability 1 where all these quantities are �nite; the following limits exists on Ω0

Mt+ = lim
s↓t, s∈Q+

Ms, t > 0

Mt− = lim
s↑t, s∈Q+

Ms, t > 0.De�ne, for t > 0,
M̃t =

{
Mt+ , on Ω0,
0, otherwise.Then M̃ is àdlàg and (Ft+

)
t>0

-adapted. To prove that it is an (Ft+
)
t>0

-martingale, given
s < t hoose rationals sn < tn dereasing to s and t respetively. By the onvergene theoremfor bakward martingales, Msn (resp. Mtn) onverges almost-surely and in L1 to Ms+ (resp.
Mt+), so we have for any event A ∈ Fs+

E[Ms+1A] = lim E[Msn1A] = lim E[Mtn1A] = E[Mt+1A],i.e. E[Mt+ |Fs+ ] = Ms+ , or E[M̃t|Fs+ ] = M̃s. The projetion property E[M̃t|Ft] = Mt, for
t ∈ Q+, is also a diret onsequene of the onvergene theorem for bakward martingales.
�Definition 82. Filtrations whih are ontinuous on the right (Ft+ = Ft) and for whih

F0 ontains the P-null sets are said to satisfy the usual onditions.66Work �rst with a �nite index set D, for whih Doob's uprossing lemma says us that (Mt)t∈D willalmost-surely have only a �nite number of uprossings between any two rational times; let then inrease
D to Q+: a ountable intersetion of events of probability 1 being of probability 1 the result follows.67Play the same game here as above.



52 ADVANCED PROBABILITYDoob's regularization theorem shows that we do not lose muh in restriting our atten-tion to àdlàg martingales and �ltrations satisfying the usual onditions. A omment isneeded here, however: all martingales are not ontinuous on the right, and quite venerable�ltrations do not satisfy the usual onditions(!). Let for example Y be a binomial randomvariable with parameter 1
2
. De�ne

Xt =

{
1
2

for 0 6 t 6 1
2
,

Y for 1
2
< t 6 1.Set also

Ft =

{
{∅,Ω} for 0 6 t 6 1

2
,

σ(Y ) for 1
2
< t 6 1.Then X is an (Ft)t∈[0,1]-martingale who is not ontinuous on the right at time 1

2
. The�ltration (Ft)t∈[0,1] also fails to be ontinuous on the right at time 1

2
.Doob's regularization proedure transforms in a non-trivial way a proess: working onthe anonial spae of ontinuous funtions from R+ to R, with the oordinate proess

(Xt)t>0 and its �ltration (Ft)t>0, under Wiener measure, the proess Mt = 1Xt=1 is an
(Ft)t>0-martingale whih is almost-surely equal to 0 for eah �xed t > 0 and does notonverge to 0 as time goes to in�nity. The àdlàg regularization proedure �smoothes�these irregularities and gives as a regularized proess the onstant 0.The àdlàg property of regularized martingales implies that their pathwise propertiesare entirely determined by their Q+-skeleton. It follows that all theorems of setion6 (Doob's inequalities, onvergene, optional stopping theorems...) hold foràdlàg martingales, for a �ltration satisfying the usual onditions. As an ex-ample we give the details of the proof of the optional stopping theorem.Theorem 83 (Optional stopping theorem). Let us work on a �ltered probability spaewith a �ltration satisfying the usual onditions, and let M be a àdlàg adapted proess.Then the following are equivalent:1. M is a martingale,2. for all bounded stopping times T and all stopping times S, MT is integrable and(7.1) E[MT |FS] = MS∧T ,3. for all stopping times T , the stopped proess MT is a martingale,4. for all bounded stopping times T , the random variable MT is integrable and

E[MT ] = E[M0].Moreover, if M is uniformly integrable, then 2 and 4 hold for all stopping times T .Proof � Suppose M is a martingale. Let S and T be stopping times, with T bounded, T 6 tsay. For n > 0, set
Sn = 2−n⌈2nS⌉, Tn = 2−n⌈2nT ⌉.The random times Sn and Tn are stopping times dereasing to S and T respetively. Sine

(Mt)t>0 is right ontinuous, MTn onverges almost-surely to MT . By the disrete-timeoptional stopping theorem, MTn = E[Mt+1|FTn ] so (MTn)n>0 is uniformly integrable and so
MTn onverges to MT in L1; in partiular, MT is integrable. Similarly, MSn∧Tn onvergesalmost-surely and in L1 to MS∧T . So, by the disrete-time optional stopping theorem again,we have for any A ∈ FS ⊂ FSn

E[MTn1A] = E[MSn∧Tn1A].



ADVANCED PROBABILITY 53On letting n → ∞, we dedue that identity (7.1) holds. For the rest of the proof we argueas in the disrete-time ase. �

8. Comments and exerisesReferenes. Williams' book [Wil91℄ is ertainly a good referene for this setion part ofthe ourse; so is Rogers and Williams' book [RW00℄. The book [BMP02℄ on martingalesand Markov hains is an exellent soure of worked out examples, under the form of solvedexerises; spending some time with it will undoubtedly bring you some aquaintane withthe subjet.Filtrations indexed by R+ are subtle and sometime mysterious objets. The followingomments are here to guide your �rst steps in this sujet.1. Filtrations generated by a proess. LetX be a proess de�ned on some probabilityspae (Ω,F ,P) and FX the �ltration it generates. The following two exmples larify therelationship between the regularity of X and the regularity of FX .a) A ontinuous proess an generate a disontinuous �ltration. Suppose Ω has at leasttwo points, so we an de�ne on it a non-onstant real-valued random variable ξ. Set
Xt(ω) = tξ(ω). One easily heks that FX

0 is trivial while FX
t = σ(ξ) is non-trivial for

t > 0; so FX is not right ontinuous despite the ontinuity of X.b) A disontinuous proess an generate a ontinuous �ltration. Given any disontin-uous funtion h : R+ → R set Xt(ω) = h(t) for all ω ∈ Ω and t > 0. The σ-algebra FX
tis then trivial for all t > 0, so the �ltration is ontinuous.2. Usual assumptions.8.1. Exerises. 1. a) Suppose (U, V ) is an R2-valued random variable with a density funtion

fU,V (u, v) with respet to Lebesgue measure on R2. Then (why?) U has a density funtion fUwith respet to Lebesgue measure on R, given by
fU(u) =

∫

R

fU,V (u, v) dv.The onditional density funtion of V given U is de�ned by the formula
fV |U (v|u) =

fU,V (u, v)

fU (u)where 0/0 = 0, by onvention. Given a bounded measurable funtion h : R → R, set
g(u) =

∫

R

h(v)fV |U(v|u) dv.Prove that g(U) = E
[
h(V )|σ(U)

].b) Let (U, V ) be an R2-valued Gaussian random variable with null mean and ovariane matrix
Λ. Find E[V |σ(U ].



54 ADVANCED PROBABILITY) More generally, let (Ω,F ,P) be a probability spae and U, V be two integrable real-valuedrandom variables de�ned on it. Prove that there exists a measurable funtion g : R → R suhthat E
[
V |σ(U)

]
= g(U).2. Let (Ω,F ,

(
Fn

)
n>0

,P) be a �ltered probability spae. Suppose T is a stopping time suh thatfor some N ∈ N and some ǫ > 0 we have almost-surely for every n > 0

P(T 6 n+N |Fn) > ǫ.Prove by indution that
P(T > kN) 6 (1 − ǫ)k, k ∈ N,and dedue that E[T ] is �nite.3. a) Find an example of a measurable spae (Ω,F), with two �ltrations (Ft)t>0 and (Gt)t>0on it, on whih there exists a random time T whih is an (Ft)t>0-stopping time but not a

(Gt)t>0-stopping time. Note that we do not need a probability measure to talk about stoppingtimes.b) Let us work on the anonial spae C([0, 1],R), with its oordinate proess and the indued�ltration (Ft)t∈[0,1]. Given any a ∈ [0, 1] and ω ∈ C
(
[0, 1],R

), de�ne the last zero of ω beforetime a as
γa(ω) = max{s ∈ [0, a] ; ωs = 0}.Show that the random variable γa is Fa-measurable, while the event {γa < t} is not in Ft forany t < a.4. Let (Ω,F , (Ft)t>0

) be a �ltered spae, and T be a stopping time. a) Reall the de�nitionof the σ-algebra FT : it onsists of those events whose ourene or no-ourene an be deidedfrom what we know up and inluding time T . It seems tempting then to re-de�ne it as ⋂s6T Fs.What goes wrong with that �de�nition�?b) Let S be another stopping time. Prove that FS∧T = σ(FS ,FT ).5. Prove that a sequene of integrable random variables Xn onverges in L1 to some X ∈ L1 i�
Xn onverges in probability to X and the family (Xn)n>0 is uniformly integrable.6. Let P and Q be two probability measures on a measurable spae (Ω,F). Prove that P isabsolutely ontinuous with respet to Q i� for any ǫ > 0 there exists an η > 0 suh that for all
A ∈ F , Q(A) 6 η implies P(A) 6 ǫ.7.. Let (Ω,F ,

(
Fn

)
n>0

,P) be a �ltered probability spae on whih a non-negative martingale
(Mn)n>0 is de�ned. Suppose a probability Q is de�ned on (Ω,F) suh that Q(A) = E[Mn1A]for all A ∈ Fn and all n > 0. Prove that Q is absolutely ontinuous with respet to P i� themartingale M is uniformly integrable.8. Kolmogoro'v 0−1 law. The following result was used in the proof of the strong law of largenumbers given in the notes and does not use martingale theory. Let (Fn)n>0 be the �ltrationgenerated by some proess (Xn)n>0 de�ned on some probability spae (Ω,F ,P). De�ne the tail
σ-algebra of the proess as the sub-σ-algebra T =

⋂
n>0 σ

(
Xk ; k > n

) of F on Ω. Suppose allthe Xn are independent under P. Prove that any event of T has P-probability 0 or 1. Does theresult remains true if we do not suppose the Xn are independent?9. We give here the details of the proof of Lévy's upward onvergene theorem, 65, seen as aorollary of the L1-onvergene theorem, 64.a) Prove that any F∞-measurable bounded random variable is an L1-limit of elements of
L1
(
Fn

).b) Using then an approximation argument, prove that ⋃n>0 L1
(
Fn

) is dense in L1
(
F∞
).) Give a neat proof of Lévy's upward onvergene theorem and 0-1 law.



ADVANCED PROBABILITY 55d) Remark that this theorem provides a onstrutive approah of E[X|F∞] when the �ltration(
Fn

)
n>0

is made up of �nite σ-algebras (why?). We say in this ase that the measurable spae
(Ω,F∞) is separable.(i) Prove that a measurable spae (Ω,F∞) is separable i� L1(F∞) is separable (i.e. has adense sequene).(ii) Prove that Borel spaes are always separable.10. Simple random walks. Let (Xn)n>0 be a sequene of iid random variables with law
pδ1 + qδ−1, and Sn = X1 + · · · +Xn. Denote by Fn the �ltration generated by X1, . . . ,Xn. Allnotions are relative to this �ltration. Given a < 0, b > 0 and x ∈ R, de�ne the stopping times
Tab = inf{n > 1 ; Sn = a or b} and Tx = inf{n > 1 ; Sn = x}.a) Case p > q. Prove �rst that the random times Tb and Tab are almost-surely �nite.(i) Prove that the proess ( q

p

)n is a martingale, and dedue the law of STab
.(ii) Using the martingale Sn − n(p− q) (prove it), �nd E[Tab],E[Tb] and E[Ta].b) Case p = q = 1

2 : Symmetri random walk. Prove �rst that Tab is almost-surely �nite, andusing the martingale Sn �nd the law of STab
. Using then the martingale S2

n − n (prove it), �nd
E[Tab],E[Tb] and E[Ta].) Case p > q For λ ∈ R set φ(λ) = peλ + qe−λ. Prove that Yn := eλSnφ(λ)−n is a martingale.Dedue from that the generating funtion of Tb and �nd bak E[Tb].11. Branhing proesses. a) In this question we onsider a Galton-Watson branhing proessin whih the number of hildren of eah individual is 0 or 2, equally probably. Denote by Znthe size of the nth generation, starting zith Z0 = 1. Prove that (Zn)n>0 is a martingale (withrespet to its own �ltration), and that it onverges almost-surely to 0.b) Consider now a general ase in hiwh the distribution of the number of hildren takes valuesin N and is integrable. Denote by µ its mean. We hall write Zn+1 = X

(n+1)
1 + · · · + X

(n+1)
Zn

,where the X(n+1)
i are iid, onditionally on Zn.(i) Prove that Mn = Zn

µn is a martingale.(ii) Prove that (Zn)n>0 onverges almost-surely to 0 if µ 6 1.(iii) Suppose µ > 1. Prove that (Mn)n>0 onverges almost-surely to a �nite limit M∞.Setting p = P(M∞ = 0), prove that pZn onverges almost-surely to 1M∞=0 and desribe thebehaviour of (Zn)n>0 in terms of M∞.) Suppose in this question that the o�spring distribution is not only integrable but also hasa �nite variane σ2. Prove that (Mn)n>0 is a martingale bounded in L2 and that it annotonverge to 0 almost-surely. What is the variane of M∞?12. Find an example of a martingale whih onverges almost-surely but not in L1.13. Let M be a martingale bounded in L1 and T be a stopping time. Prove that MT is in L1.Give an example where E[MT ] 6= E[M0].14. Let f : [0, 1] → R be a Lipshitz funtion, and denote by fn the simplest pieewise linearfuntion agreeing with f on Dn =
{
k2−n ; k = 0..2n

}. Set Mn = f ′n outside Dn. Introdu-ing a proper �ltered probability spae, prove that Mn onverges Lebesgue-almost-surely and in
L1(Leb) to some bounded f ′∞ whih satis�es f(t) =

∫ t
0 f

′
∞(s) ds for any t ∈ [0, 1].15. Reall the onstrution of the isonormal Gaussian proess X indexed by a separable Hilbert

H given in exerise 4 in example sheet 1. Take h ∈ H. Prove that the series de�ning Xhonverges almost-surely and in L2(P).16. Let a be a real onstant. Let P denote Wiener measure on C
(
[0, 1],R

), X the oodinateproess and P1 the law of the proess {Xt + at}t∈[0,1]. Prove that P1 is absolutely ontinuouswith respet to P and �nd dP1

dP
.



56 ADVANCED PROBABILITY17. Equip the symmetri group Sn with the Hamming distane: d(σ, τ) = #{i ∈ J1, nK ; σi 6= τi}and the uniform probability. Prove that for any funtion f : Sn → R, and any r > 0, we have
P
(∣∣f(σ) − E[X]

∣∣ > r
)

6 2e−
r2

2n .18. Let (Ft)t>0 be the �ltration generated by the oordinate proess on C
(
[0, 1],R

). Prove thatthis �ltration is not ontinuous on the right.19. a) Let (Ω,F ,P) be a probability spae, and let G1,G2, . . . and G be some sub-σ-algebrasindependent under P. Prove that any event of ⋂n>1 σ(Gn,Gn+1, . . . ;G) oinides almost-surelywith an event of G.b) Denote now by Ft the �ltration generated by a Brownian motion de�ned on some prob-ability spae (Ω,F ,P). As we have seen in the preeding exerise, the P-null sets may auseunexpeted and unpleasant things. Denote by N the σ-algebra of P-null sets, and replae eah
Ft by Gt := σ(N ,Ft). Set as usual Gt+ =

⋂
s>t Gs, for all t > 0. Using a) and the independeneof the inrements of Brownian motion, prove that the σ-algebras Gt and Gt+ oinide up to P-nullsets. 9. Complements to Part IIWe show in the �rst omplement how ideas from martingale theory an be used to givesome meaning and solve stohasti di�erential equations, without using the mahinery ofstohasti integrals.The seond omplement is dediated to eluidate the question: Is the onditional ex-petation operator an integral with respet to a random measure?9.1. Complement: Solving stohasti di�erential equations. Let (Bt)06t61 be aBrownian motion de�ned on some probability spae (Ω,F ,P). Given two funtions b, σ 6=

0, and a starting point x0 ∈ R, de�ne for every integer n > 1 a proess (Y n(t)
)
06t61setting Y n(0) = x0, and for k−1

n
< t 6 k

n
, k ∈ {1, . . . , n},(9.1) Y n

t = Y n
k−1

n

+ b
(
Y n

k−1
n

) (
t− k − 1

n

)
+ σ
(
Y n

k−1
n

) (
Bt −Bk−1

n

)
.When σ = 0 this dynamis is nothing else than the Euler approximation of the di�eren-tial equation ẋt = b(xt). A well-known orollary of Asoli-Arzela's ompatness theoremstates that the Euler approximations has a onverging subsequene whose limit is a solu-tion of the di�erential equation. The following theorem says the same in our stohastiontext. Reall we denote by (W,W) the spae C

(
[0, 1],R

) with its Borel σ-algebra andwrite X for the oordinate proess. We suppose σ non-identially null.Theorem 84. Suppose the funtions b and σ are bounded. Then the laws Pn of Y n forma tight sequene of probability measures on (W,W).This statement and Prohorov's ompatness theorem ensure us that the sequene of
Pn's has at least one weak limit Q, say. It seems reasonnable to say that under Q theoordinate proess on (W,W) solves the stohasti di�erential equation(9.2) dxt = b(xt) dt+ σ(xs) dBt,where dBs is a Brownian inrement over a time interval ds, with variane equal to ds.Let En be the expetation operator assoiated with the probability Pn. The followingproposition is the heart of the proof of theorem 84.



ADVANCED PROBABILITY 57Proposition 85. Suppose there exists a positive onstant C suh that we have(9.3) En
[
|Xt −Xs|4

]
6 C|t− s|2for all s, t in [0, 1] and n > 1. Then the sequene (Pn

)
n>1

is tight.Proof � Kolmogorov's regularity riterion states that if En
[
|Xt −Xs|4

]
6 C|t− s|2 for someonstant C and all s, t ∈ [0, 1] then there exists a random variable C(ω) in L4

(
Pn
) suh thatwe have Pn-almost-surely |Xt − Xs| 6 C(ω)|t − s|α, for all s, t ∈ [0, 1] and any α ∈

[
0, 1

4

).This implies in partiular that the modulus of ontinuity MX(δ) of X is Pn-almost-surelybounded above by C(ω)δα, so we have En
[
MX(δ)4

]
6 En[C(ω)] δα for all n > 0. As the proofof Kolmogorov's riterion provides an upper bound for En

[ ∣∣C(ω)
∣∣4
] depending only on theonstant C of (9.3) we atually have En

[
MX(δ)4

]
6 C ′δ4 for some onstant C ′. This inequal-ity implies the equi-ontinuity ondition (2.3) of orollary 36: lim

δ↓0
lim
n

En
[
MX(δ) ∧ 1

]
= 0.As X0 is Pn-almost-surely equal to 0, it follows from the Asoli-Arzela theorem that theprobabilities Pn have support in a ompat set of W . �We are now going to see that ondition (9.3) an be obtained as a simple appliationof martingale ideas.Lemma 86. There exists a positive onstant C ′ suh that we have(9.4) E

[
|Y n

t − Y n
s |4
]

6 C ′ |t− s|2for all s, t ∈ [0, 1] and all n > 1.Proof � Denote by (Ft)t∈[0,1] the �ltration on (Ω,F) generated by B. The proess Mt on-taining all the expliit Brownian terms in the de�nition of Y n and de�ned for t ∈ (k−1
n , k

n

]by
Mt :=

k−2∑

j=0

σ
(
Y n

j
n

) (
B j+1

n
−B j

n

)
+ σ

(
Y n

k−1
n

) (
Bt −B k−1

n

)is an (Ft)t∈[0,1]-martingale. This is easily heked by indution. Also, onditioning sues-sively on Fk−1
n
,Fk−2

n
, . . . we see that

E
[
|Mt|2

]
6 A2t,where A denotes an upper bound for σ. Clearly, the same proof gives E

[
|Mt − Ms|2

]
6

A2|t − s|. It is not harder to prove that E
[ ∣∣Y n

t − Y n
s

∣∣4 ] 6 9A4 |t − s|2; it su�es to do itfor s = 0. Write σj for σ(Y n
j
n

). Expanding the sum de�ning Mt and keeping only the termswith non-vanishing expetation we get
E
[
|Mt|4

]
= E




k−1∑

j=0

σ4
j

(
Bt∧ j+1

n
−Bt∧ j

n

)4

+ 6 E


 ∑

06j<ℓ6k−1

σ2
jσ

2
ℓ

(
Bt∧ j+1

n
−Bt∧ j

n

)2(
Bt∧ ℓ+1

n
−Bt∧ ℓ

n

)2



+ 12 E


 ∑

06j<ℓ<m6k−1

σjσℓσ
2
m

(
Bt∧ j+1

n
−Bt∧ j

n

)(
Bt∧ ℓ+1

n
−Bt∧ ℓ

n

)(
Bt∧m+1

n
−Bt∧m

n

)2

The �rst term is bounded above by 3A4t2 and the sum of the two other terms is equal to

6

k−1∑

ℓ=0

E
[
M2

ℓ−1
n

σ2
ℓ

(
Bt∧ ℓ+1

n
−Bt∧ ℓ

n

)2]
.



58 ADVANCED PROBABILITYBy onditioning with respet to F ℓ
n
in eah expetation we get the upper bound

6A2
k−1∑

ℓ=0

(
t ∧ ℓ+ 1

n
− t ∧ ℓ

n

)
E
[ ∣∣M ℓ−1

n

∣∣2
]

6 6A2 tE
[ ∣∣M ℓ−1

n

∣∣2
]

6 6A4 t2.Fix s < t in [0, 1] and let k and k′ be the integer parts of n t and n s respetively. Using theelementary inequality (a+ b)4 6 8 (a4 + b4) and Jensen's inequality we get
E
[
|Y n

t − Y n
s |4
]

6 8 E
[ ∣∣∣ 1
n

k−2∑

j=k′

b
(
Y n

j−1
n

)
+ b
(
Y n

k−1
n

)(
t− k − 1

n

)∣∣∣
4 ]

+ 8 E
[
|Mt −Ms|4

]
.The seond upper bound is bounded above by 9A4 |t − s|2, while the term inside | · |4 isbounded above by A |t − s|, where A is hosen big enough to be an upper bound for b; theupper bound (9.4) follows.

�9.2. Complement: Regular onditional probability . Let (Ω,F ,P) be a probabilityspae and G be a sub-σ-algebra of F . As one has almost-surely
• E[1∅|G] = 0 and E[1Ω|G] = 1,
• E[

∑
n>0 1An |G] =

∑
n>0 E[1An |G], for any sequene of disjoint An ∈ F ,the map A ∈ F 7→ P(A|G) := E[1A|G] has the properties of a probability, exept that

P(A|G) is a random variable (i.e. an equivalene lass of funtions, and so the aboveidentities hold only almost-surely). It is thus natural to ask whether the random variables
P(·|G) an be written as Pω(·) for some random probability measure ω → Pω (but wemust be areful with measurability issues). Although suh a Pω an be de�ned for agiven sequene of sets An ∈ F , the problem is that, exept in trivial ases, there areunountably many sequenes of disjoint sets (hene meaurability problems); it is thereforenot at all lear how to hoose Pω. And indeed, there is no suh family of probabilities if nohypothesis on (Ω,F) is made: you an �nd the lassial ounter-example of J. Dieudonnéin �43 of the book [RW00℄. Yet one an onstrut suh probabilities Pω when we areworking on a Borel probability spae. To stik to the previous notations I will denote aBorel spae by (S,S). Let (Ω,F ,P) be any probability spae and G be a sub-σ-algebra of
F(68).Definition 87. A regular onditional probability of P given G is a family (Pω)ω∈Ωof probability measures on (Ω,F) suh that the funtion ω 7→ Pω(A) is measurable andbelongs to the equivalent lass of P(A|G), for every A ∈ F .Theorem 88 (Existene and uniqueness of regular onditional probability in Borelspaes). Let (S,S,P) be a Borel probability spae and G be a sub-σ-algebra of S. Thenthere exists a regular onditional probability of P given G, unique up to equivalene.Proof � Existene. We have seen in part a) of the proof of theorem 40 that [0, 1] is isomorphito a measurable subset of {0, 1}N; we an thus suppose without loss of generality that S is ameasurable subset of {0, 1}N, that S is the restrition to S of the produt (or Borel) σ-algebraof {0, 1}N, and that P is a probability on {0, 1}N, with support on S. Our main ingredientto prove the existene of regular onditional probabilities will be theorem 41, stated in the68The end of this setion follows losely B. Tsirelson's leture notes Probability for mathematiians,available at the webpage http://tau.a.il/ tsirel/Courses/ProbMath/main.html. This proof is essentiallythe same as that of Ikeda-Watanabe, in [IW89℄.



ADVANCED PROBABILITY 59Complement Lebesgue measure on [0, 1], in part I of the ourse: Borel probability measureson {0, 1}N orrespond bijetively to additive set funtions on A, equal to 0 on ∅ and 1 on Ω.The generating algebra A being ountable we an de�ne Pω(A) = P(A|G)(ω) for all A ∈ Ahoosing a funtion in eah equivalent lass. As P(·|G) is almost-surely �nitely additive (on
S), Pω(·) an be turned into a �nitely additive set funtion on the ountable olletion Afor all ω, by hanging it adequately on a set of null probability. By theorem 41 eah Pω(·)has an extension to a probability measure on (S,S); we still denote it by Pω(·). Given any
B ∈ S, write P•(B) for the measurable69 funtion ω 7→ Pω(B).
B ∈ S and ε > 0 being given, we shall see below that there exists C,D ∈ S suh that

• C ⊂ B ⊂ D, P(D\C) 6 ε,
• C is a dereasing limit of elements of A and D an inreasing limit of elements of A.As P•(An) = P(An|G) almost-surely, we have almost-surely P•(C) = P(C|G) and P•(D) =

P(D|G) by monotone onvergene (for P•(·) and P(·|G)). As a onsequene,
{

P(C|G) = P•(C) 6 P•(B) 6 P•(D) = P(D|G),
P(C|G) 6 P(D|G) 6 P(D|G),and so ∣∣P•(B) − P(D|G)
∣∣ 6 P(D|G) − P(C|G). Also, E

[
P(D|G) − P(C|G)

]
= P(D\C) 6 ε.Taking a sequene (εn)n>0 dereasing fastly enough to 0 we get

∣∣P•(B) − P(B|G)
∣∣ 6 inf

n
P(Dn|G) − P(Cn|G) = 0 almost-surely.Uniqueness. As two possible regular onditional probabilities oinide almost-surely on A(whih is ountable) they must be equal on S by the monotone lass theorem. �It remains to justify the approximation result used in the existene proof; we do it for

C, the argument for D being similar. Let B ∈ S be given. It omes out from the proofof Caratheodory's theorem given in setion 1.2 that for any ε > 0 there exists an element
A of A with the property that P(B∆A) 6 ε. Apply this result indutively �rst to B and
ε = η (we get A1), then to B ∩ A1 and ε = 2−1η (we get A2), then to B ∩ (A1 ∩A2) and
ε = 2−2η (we get A3)...The set C =

⋂
n>0An is the dereasing limit ot the ⋂k6pAk and

P(B∆C) 6 2η. I let you onlude.

69Prove that it is indeed measurable.



60 ADVANCED PROBABILITYPart III. Brownian motion, Lévy proesses andmartingalesLet us onsider a physial system subjet to an impreditable evolution. We model itsrandom evolution by a �ltered probability spae (Ω,F , (Ft)t>0,P
), where we an thinkof Ω as the set of all physially possible histories of the system through time, of F asthe set of all observations one an make and of Ft as our information at time t of thehistory of the system up to that time. In that setting, (sub/super)-martingales representquantitative informations about the system whih (�inrease�/�derease�) remain �on-stant�70. Sub/super-martingales have thus a universal status in the desription Naturalphenomena evolving randomly. In that landsape, Brownian motion plays a prominentrole as we shall see that any ontinuous time ontinuous martingale an be understood asa Brownian motion run at a random speed. Being also a Markov proess and a Gaussianproess71, we an say without hesitation that it is a ornerstone of modern probabilitytheory. Setion 10 is devoted to the study of some of its elementary features. Setion 11presents Lévy proesses, with the help of whih we shall desribe the most general àdlàgontinuous time martingale.Reall that the martingale property is not an absolute property: it is related to a �ltra-tion. When unspei�ed, it will be impliit that we are working with the �ltration generatedby the proess under study. Also, all �ltrations will be supposed to be omplete.10. Brownian motion10.1. Di�erent point of views on Brownian motion.a) Lévy's onstution of Brownian motion as a series.b) Markov proess. By its very de�nition, Brownian motion is a Markov proesswith Gaussian transition kernels.) Gaussian proess. In exerie 4 of example sheet 1, Brownian motion is har-aterized as the unique entered Gaussian proess with ovariane s ∧ t.d) Saling limit. Donsker's invariane priniple provides a onstrution based on asaling limit of random walks,a) Sine Brownian motion has Gaussian inrements, we know from Kolmogorov's reg-ularity riterion that, for all α < 1

2
, it has almost-surely α-Hölder-ontinuous paths; soits paths does not seem to be too bad. Yet, we shall prove in proposition 93 that it isalmost-surely not di�erentiable anywhere and that it is almost-surely nowhere α-Hölder-ontinuous for α > 1

2
. From this piture, it omes as a good news that Lévy's onstrutionprovides almost for free the following preise desription of the loal behaviour of Brow-nian motion.Proposition 89 (Modulus of ontinuity for Brownian motion). There exists a onstant

C and a positive random variable δ suh that one has P-almost surely
|Xt −Xs| 6 C

√
|t− s| ln 1

|t− s|for all t, s ∈ [0, 1], with |t− s| 6 δ.70In the sense that the predition E[Mt|Fs] of their future value equals their present value Ms.71Two fundamental lasses of random proesses for modelization purposes.



ADVANCED PROBABILITY 61Proof � Reall Lévy's onstrution of Brownian motion as a series ∑n>1

(
B(n) − B(n−1)

) ofontinuous pieewise linear funtions. Given c > √
2 log 2, there exists a random integer n0suh that ∥∥B(n) −B(n−1)

∥∥
∞ 6 c

√
n 2−

n
2 for n > n0. As we have by onstrution

∥∥(B(n) −B(n−1)
)′∥∥

∞ 6 2
‖B(n) −B(n−1)‖∞

2−n
6 2c

√
n e

n
2 ,the mean-value theorem gives us, for t, t+ h in [0, 1], and any p > n0,

|Bt+h −Bt| 6
∑

n>1

∣∣(B(n)
t+h −B

(n−1)
t+h

)
−
(
B

(n)
t −B

(n−1)
t

)∣∣

6

p∑

n=1

h
∥∥(B(n) −B(n−1)

)′∥∥
∞ + 2

∞∑

n=p+1

∥∥B(n) −B(n−1)
∥∥
∞

6

n0∑

n=1

h
∥∥(B(n) −B(n−1)

)′∥∥
∞ + 2ch

p∑

n=n0+1

√
n 2

n
2 + 2c

∞∑

n=p+1

√
n 2−

n
2As the seond sum is dominated by a onstant multiple of its biggest element, bound abovethe sum of the last two terms by c′(h√p2p

2 +
√
p2−

p
2

), for some positive onstant c′. Onean take p = ⌊log2
1
h⌋ for h small enough. A simple alulus gives us a onstant C satis-fying the inequality 2c
(
hp

√
pe

p
2 +

√
p2−

p
2

)
6 C

√
h ln 1

h . As C√h ln 1
h is also bigger than

∑n0
n=1 h

∥∥(B(n) −B(n−1)
)′∥∥

∞, for h small enough, this proves the statement. �b) The Markovian approah to Brownian motion is extremely fruitful. Let X be aBrownian motion de�ned on some probability spae (Ω,F ,P); we write (Ft

)
t>0

for itsnatural (ompleted) �ltration. Denote by Px the law of the Brownian motion x + Xstarting from x ∈ Rd and set for any non-negative funtion f
Ttf(x) = Ex

[
f(Xt)

]
= (2πt)−

1
2

∫
f(y)e−

|y−x|2

2t dy.Last, reall that Ft+ :=
⋂

s>t Fs, for any t > 0.Theorem 90 (Simple Markov property). Let t > 0 be given.(1) Given any x ∈ Rd, the Brownian motion (Xt+s − Xt)s>0 is independent of Ft+under Px.(2) Given any x ∈ Rd and A ∈ σ(Xt+s ; s > 0), we have Px-almost-surely72(10.1) Px(A|Ft+) = PXt(A).(3) For any C2 bounded funtion f
Ttf − f =

1

2

∫ t

0

Ts(△f) ds =
1

2

∫ t

0

△(Tsf) ds.Proof � (1) First, it omes diretly from the independene of the inrements of Brownianmotion that the Brownian motion (Xt+s −Xt)s>0 is independent of Ft under P. It follows inpartiular that the proess (Xt+ε+s−Xt+ε)s>0 is independent of Ft+ε, so of Ft+ , for any ε >
0. The vetors (Xt+s1 −Xt, . . . ,Xt+sn −Xt

)
= limε→0

(
Xt+ε+s1−Xt+ε, . . . ,Xt+ε+sn −Xt+ε

),are thus independent of Ft+ for any s1, . . . , sn > 0; we are done as this is a Gaussian vetorwith the awaited ovariane matrix. This means that, onditionally on Ft+ , the proess72Note that the measurability of the map x 7→ Px(A) is trivial for elementary events A; it follows thatthe map is measurable for any event A ∈ F .
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(
Xt+s

)
s>0

is a Brownian motion starting from Xt; all it (X ′
s)s>0. This implies in partiularthat we have for any bounded funtion f and any s, t > 0

Ts+tf(x) = Ex

[
f(Xs+t)

]
= Ex

[
Ex

[
f(Xs+t)

∣∣Ft+
]]

= Ex

[
EXt

[
f(X ′

s)
]]

= Tt

(
Tsf

)
(x)(2) By the monotone lass theorem, it su�es to prove that we have

Ex[1A1B ] = Ex

[
PXt(A)1B

]for any A ∈ σ(Xt+s ; s > 0) of the elementary form {
Xt+s1 ∈ A1, . . . ,Xt+sn ∈ An

}, with
si > 0, and B ∈ Ft of a similar form. But for suh A and B we have by the �rst point

Ex[1A1B ] = Ex

[
Ex[1A1B | Ft+ ]

]
= Ex

[
1BEx[1A | Ft+ ]

]
= Ex[PXt(A)1B ].(3) This point expresses the fat that for any C2 bounded funtion, and any x, the map t 7→

Ttf(x) is di�erentiable, with derivative 1
2Tt(△f)(x)

(
= 1

2△(Ttf)(x)
). This an be hekedby a trivial integration by parts using the fat that the heat kernel ϕ : (t, y) 7→ exp

(
− |y−x|2

2t

)solves the heat equation ∂tϕ = 1
2△ϕ. �Corollary 91 (Blumenthal's 0 − 1 law). Events of F0+ are trivial under any Px: wehave Px(A) ∈ {0, 1}, for any A ∈ F0+ , x ∈ Rd.Proof � Indeed, for A ∈ F0+ we have Px-almost-surely 1A = Ex[1A | F0+ ] = PX0(A) = Px(A).

�This 0 − 1 law has deep and far-reahing onsequenes, of whih the exerises providea few examples.Proposition 92. Given a one-dimensional Brownian motion X de�ne τ = inf{t >
0 ; Xt > 0} and τ ′ = inf{t > 0 ; Xt < 0}. Then almost-surely τ = τ ′ = 0.Proof � One easily hek that the events {τ = 0} and {τ ′ = 0} belong to F0+ . As −X hasthe same law as X we have P(τ = 0) = P(τ ′ = 0). To prove that τ is almost-surely equal to

0 it su�es, by Blumenthal's law, to see that P(τ = 0) > 0. But as we have for any t > 0,
P(τ 6 t) > P(Xt > 0) = 1

2 , this is straightforward. �Here is another pathwise property of Brownian motion easily obtained from the Mar-kovian point of view.Proposition 93. Let α > 1
2
. Brownian motion is almost-surely nowhere α-Hölder on-tinuous. In partiular, it is almost-surely nowhere di�erentiable.Proof � Let p > 2 be an integer to be hosen later. Fixing some K > 0, de�ne an inreasingsequene of events

An =
{for some s ∈ [0, 1], |Xt −Xs| 6 K|t− s|α, whenever |t− s| 6

p

n

}
, n > 2,and name the inrements ∆k,n =

∣∣X k
n
−Xk−1

n

∣∣, k = 1..n. Then
An ⊂

n⋃

k=2

{
∆j,n 6 2K

pα

nα
for eah j ∈ {k − 1, . . . , k + p− 1}

}
,and so

P(An) 6 (n− 2) P
(
∆1,n 6 2K

pα

nα

)p
6 nP

(∣∣N (0, 1)
∣∣ 6 2K

pα

nα− 1
2

)p
6 c n

p+2
2

−pα



ADVANCED PROBABILITY 63for some positive onstant c. The upper bound onverges to 0 as n goes to in�nity if wehoose p suh that α > p+2
2p . As the events An inrease, P(An) = 0 for all n. �) The Gaussian haraterization provides deep insight, starting with a straightforwardjusti�ation of the following fats.Proposition 94. Let X be an Rd-valued Brownian motion starting from 0(73). Thefollowing proesses are also Brownian motions.(1) Invariane by isometries: AX, for any linear isometry A.(2) (Xt+s −Xt)s>0, for any t > 0,(3) (cXc−2t

)
t>0

, for any c > 0,(4) Time inversion: (tX1/t

)
t>0

, with value 0 in t = 0,The time inversion property implies in partiular that Xt

t
onverges almost-surely to 0as t→ +∞.Proof � The only non-trivial point is the ontinuity at 0 of the proess Bt := tX1/t. Sine

B is almost-surely ontinuous on (0,∞) one an desribe the event {B →
t↓0

0} in terms ofonditions on the values of B at ountably many points of (0,∞). But B and X beingGaussian, with the same ovariane and the same value at time 1, they have the same lawon (0,∞); so P
(
Bt →

t↓0
0
)

= P
(
Xt →

t↓0
0
)

= 1. �Proposition 95 (Quadrati variation of Brownian motion ). • Let t > 0 be given. For
n > 0 and k > 0, set tnk = t∧k2−n. The quadrati variation of X over the dyadi partition
〈X〉nt :=

∑
k>0

(
Xtnk

−Xtnk−1

)2 onverges almost-surely and in L2 to t.Proof � As Xs+h −Xs ∼ N (0, h) we have E
[
(Xs+h −Xs)

2
]

= h and Var((Xs+h −Xs)
2
)

=Var(N)h2, where N is the square of a normal random variable. Hene, for �xed t, therandom variable 〈X〉nt has mean t and variane Var(N) 2−n. The result follows. �d) The saling limit approah provides an immediate proof of the following fat.Proposition 96. We have almost-surely lim
t→+∞

Xt = − lim
t→+∞

Xt = +∞,Muh deeper insights an be gained from that piture, like the fat that some Galton-Watson branhing proesses and some ontinuous random trees are hidden in Browniantrajetories... But this is another story.10.2. Construting martingales. The use of martingales onstruted from Brownianmotion an provide muh information about it. The following theorem provides a anoni-al way of onstruting martingales assoiated with an Rn-valued Brownian motion. Youshould ompare it with proposition 73 haraterizing the law of a Markov hain in termsof martingales.Theorem 97. Let B be a Brownian motion de�ned on some �ltered probability spae(
Ω,F , (Ft)t>0,P

), and let f ∈ C1,2
(
R+ × Rd

) be suh that
∣∣f(t, x)

∣∣ +
∣∣∂tf

∣∣(t, x) +
∑

i=1..d

∣∣∂xi
f
∣∣(t, x) +

∑

i=1..d

∣∣∂2
xi,xj

f
∣∣(t, x) 6 KeK(t+|x|)73The preise probability spae on whih it is de�ned is irrelevant.



64 ADVANCED PROBABILITYfor some positive onstant K. Then the proess
Mt = f(t, Bt) − f(0, B0) −

∫ t

0

( ∂
∂r

+
1

2
△
)
f(r, Br) dris a martingale with respet to the Brownian �ltration.Proof � The hypotheses are designed so as to ensure the integrability of any Mt. We haveto show that we have almost-surely E

[
Ms+t −Ms

∣∣Fs

]
= 0, for all 0 6 s, t. Write F̃t for

Fs+t and B̃t = Bt+s − Bs; it is an F̃t-Brownian motion independent of Fs onditionally on
Bs = B̃0. Noting that

Ms+t −Ms = f(s+ t, Bs+t) − f(s,Bs) −
∫ s+t

s

( ∂
∂r

+
1

2
△
)
f(r,Br) dr

= f̃
(
t, B̃t + B̃0

)
− f̃

(
0, B̃0

)
−
∫ t

0

( ∂
∂r

+
1

2
△
)
f̃
(
r, B̃r + B̃0

)
dr,where f̃(t, x) = f(s+ t, x), we see that it su�es to prove that

E
[
f̃
(
t, B̃t + B̃0

)
− f̃

(
0, B̃0

)
−
∫ t

0

( ∂
∂r

+
1

2
△
)
f̃
(
r, B̃r + B̃0

)
dr
∣∣∣F̃0

]
= 0,or, equivalently, that Ex[Mt] = 0 for any starting point x ∈ Rd. Write pr(x, y) = (2π r)−

d
2 exp

(
− |y−x|2

2

)for the Gaussian kernel. Noting that we have for 0 < s < t

Ex[Mt −Ms] =

∫

Rd

f(t, y)
(
pt(x, y) − ps(x, y)

)
dy −

∫ t

s

(∫

Rd

pr(x, y)
( ∂
∂r

+
1

2
△
)
f(r, y) dy

)
dr,and that pr(x, y) satis�es the heat equation ( ∂

∂r − 1
2△y

)
pr(x, y) = 0, for r > 0, an integrationby parts (twie with respet to y and one with respet to r) gives

∫ t

s

(∫

Rd

pr(x, y)
( ∂
∂r

+
1

2
△
)
f(r, y) dy

)
dr =

∫ t

s

∂

∂r

(
pr(x, y) f(r, y)

)
dydr

=

∫

Rd

f(t, y)pt(x, y) dy −
∫

Rd

f(s, y)ps(x, y) dy,from whih the identity Ex[Mt −Ms] = 0 follows. It remains to notie that Ex[Ms] goes to
0 as s goes to 0 to onlude. �Corollary 98 (Reurrene and transiene of Brownian motion). (1) Given any start-ing point di�erent from 0, the 2-dimensional Brownian motion has probability 0of ever hitting {0}, but it hits almost-surely any neighbourhood of 0 at arbitrarilylarge times.(2) In dimension bigger than 3, we have almost-surely |Bt| → +∞ as t→ +∞.Proof � (1) i) Let 0 < a < |x| < b. The funtion log |x| satis�es the identity △f = 0 on
R2\{0}. Let f : R2 → R be a smooth funtion de�ned on R2 and oiniding with x 7→ log |x|outside the ball of radius a. As f has a sub-exponential growth, we an use it to onstrutthe martingale Mt used in theorem 97. Let T be the hitting time inf

{
t > 0 ; |Xt| ∈ {a, b}

};as f and log |x| oinide outside the ball of radius a we haveMt∧T = log |Xt∧T |, for all times;also this stopped martingale is bounded, from the de�nition of T . Applying the optionalstopping theorem, we then have
Ex

[
log |BT |

]
= Ex

[
log |B0|

]
= log |x|;so Px

(
|BT | = a

)
=

log
|x|
b

log a
b
. Sending a to 0 gives the �rst result.



ADVANCED PROBABILITY 65ii) To deal with the ase B0 = 0, use the Markov property to write
P0

(
Bt = 0 at some time t > ǫ

)
= E0

[
PBǫ

(
Bt = 0 at some time t > 0

)]
= 0;as this holds for any ǫ > 0 we onlude that P0

(
Bt = 0 at some time t > 0

)
= 0.iii) Fixing now a and sending b to in�nity we see that B hits Px-almost-surely the ball ofradius a if |x| = 1. Proeeding as in ii) this fat is seen to be true for all every startingpoint. The result now follows from Markov property as the Px-probability that B hits theball of radius a after time n equals Ex

[
PBn

(
Bt = a at some time t > 0

)]
= 1.(2) Use the funtion |x|2−d to prove as above that we have Px(Ha < Hb) = |x|2−d−b2−d

a2−d−b2−d when
a < |x| < b. Conlude as above. �10.3. Strong Markov property. In this setion we take as a framework a probabilityspae (Ω,F ,P) on whih a Brownian motion X is de�ned, and denote by (Ft

)
t>0

the(ompleted) �ltration generated by X.Theorem 99 (Strong Markov property). Let T be a stopping time suh that P(T <
∞) > 0. De�ne the XT by XT

t = XT+t − XT on the event {T < ∞}, and by XT
t ≡ 0on the event {T = ∞}. Then, onditionally on {T < ∞}, the proess XT is a Brownianmotion independent of FT . This means that for any A ∈ FT , any times 0 < t1 < · · · < tn,and any bounded measurable funtion F : Rn → R, we have(10.2) E

[
1A∩{T<∞} F

(
XT

t1 , . . . , X
T
tn

)]
= P

(
A ∩ {T <∞}

)
E
[
F (Xt1 , . . . , Xtn)

]
.Proof � By a monotone lass argument, it su�es to prove (10.2) for bounded ontinuousfuntions F . Take suh a funtion and note that due to the ontinuity (from the right!) of

X and F the quantity E
[
1A∩{T<∞}F

(
XT

t1 , . . . ,X
T
tn

)] is, by dominated onvergene, equal to
lim

p→+∞

∑

k>0

E
[
1A∩{(k−1)2−p<T6k2−p}F

(
Xk2−p+t1 −Xk2−p , . . . ,Xk2−p+tn −Xk2−p

)]
.Note that we have approximated XT+ti by Xk2−p+ti . As the event A belongs to FT the event

A ∩ {(k − 1)2−p < T 6 k2−p} belongs to Fk2−p ; so the simple Markov property enables usto write the generi term of the above sum as
P
(
A ∩ {(k − 1)2−p < T 6 k2−p}

)
E
[
F (Xt1 , . . . ,Xtn)

]
.Summing over k > 0 and taking the limit p→ +∞ gives (10.2). �This fundamental property of Brownian motion has tremendously many appliations,of whih the following ones are remarkable.Corollary 100 (Re�etion priniple). Let X be a Brownian motion starting from 0and T be a �nite stopping time. Set Yt = Xt for t 6 T , and Yt = 2XT − Xt for t > T .Then Y is also a Brownian motion.Proof � We need to prove that we have for any times 0 < t1 < · · · < tn and any ontinuousbounded funtion F : Rn → R(10.3) E

[
F (Yt1 , . . . , Ytn)

]
= E

[
F (Xt1 , . . . ,Xtn)

]
.Setting t0 = 0 and tn+1 = ∞, we have

E
[
F (Yt1 , . . . , Ytn)

]
=

∑

i=1..n+1

E
[
F (Yt1 , . . . , Ytn)1ti−16T<ti

]

=
∑

i=1..n+1

E
[
F
(
Xt1 , . . . ,Xti−1 ,XT + (XT −Xti), · · · ,XT + (XT −Xtn)

)
1ti−16T<ti

]
.



66 ADVANCED PROBABILITYBut the generi term of the above sum equals
E
[
E
[
F
(
Xt1 , . . . ,Xti−1 ,XT + (XT −Xti), · · · ,XT + (XT −Xtn)

)
1ti−16T<ti

∣∣FT

]]
=

E
[
E
[
F
(
Xt1 , . . . ,Xti−1 ,Xti , · · · ,Xtn

)
1ti−16T<ti

∣∣FT

]]by the strong Markov property and beause the opposite of a Brownian motion is a Brownianmotion; summing these terms gives identity (10.3). �Corollary 101 (Maximum proess � Bahelier). Given a real-valued Brownian motion
X, and t > 0, de�ne MX

t := max
s6t

Xs, for t > 0. Then
MX

t
d
= MX

t −Xt
d
= |Xt|.Proof � Denote again by Y the proess de�ned in orollary 100. Let a > 0 and b be two realnumbers suh that a > max{b, 0}. Let T = inf{s > 0 ; Xs = a}, this is an almost-surely�nite stopping time (why?). The re�etion priniple justi�es the �rst identity below; drawa piture to understand the third identity.

P
(
MX

t > a,Xt 6 b
)

= P
(
MY

t > a, Yt 6 b
)

= P
(
MX

t > a, Yt 6 b
)

= P(Xt > 2a− b).This identity gives the law of the pair (MX
t ,Xt

), from whih the result follows. �10.4. Brownian motion and the Dirihlet problem. Let B be a bounded open setof some Rd, with non-empty boundary ∂B, and f be a measurable real-valued funtionde�ned on ∂B. To solve the Dirihlet problem in B with boundary ondition f isto �nd a funtion g de�ned on the losure B of B whih is
• of lass C2 in B, with △g = 0 in B,
• ontinuous on B, with restrition to ∂B equal to f.(10.4)Funtions g of lass C2 satisfying the ondition △g = 0 in B are said to be harmoni in

B. You are asked to prove in exerise the following haraterization of harmoni funtionsin terms of spheri means. For an open ball B(x, r) ⊂ B we write σx,r(dy) for the uniformprobability on the sphere {y ∈ B ; |y − x| = r
}.Proposition 102 (Gauss). A non-negative funtion g suh that g(x) =

∫
g(y)σx,r(dy)for any ball B(x, r) ⊂ B is either ≡ ∞ or harmoni in B.Proof � You an also �nd the proof in Kallenberg's book [Kal02℄, lemma 24.3, p. 473. �Denote by (Xt)t>0 the oordinate proess on C(R+,R

d) and by P Wiener measure. Givenany starting point x ∈ B and any set U ⊂ B, denote by Sx
U = inf{t > 0 ; x + Xt /∈ U}the exit time from U by the Brownian motion starting from x. These random times arealmost-surely �nite for bounded sets U (why?); note that the distribution of XSx

B(x,r)
isuniform distribution over the sphere.Suppose the boundary ondition f is non-negative and set74

HBf(x) = E
[
f(x+XSx

B
)
]
.74Justify that this funtion is measurable with respet to x.



ADVANCED PROBABILITY 67Then by the strong Markov property, we have for any ball B(x, r) ⊂ B

HBf(x) = E
[
E
[
f(x+XSx

B
)
∣∣XSx

B(x,r)

]]

=

∫
E
[
f(y +XSx

B
)
]
σx,r(dy) =

∫
HBf(y) σx,r(dy),

(10.5)soHBf is harmoni on B if, for instane, f is bounded. This simple remark gives us a goodandidate for a solution to Dirihlet problem; yet something remains to be lari�ed as thefollowing shows. The only harmoni funtions on B(0, 1)\{0} are of the form α log |x|+βfor some onstant α, β (prove this): they either explode to ∞ near 0 or are onstant. Thisfat is a hint that not only the boundary ondition is important in Dirihlet problem, butalso the shape of ∂B in�uenes the issue. We give here a ondition around eah point
z ∈ ∂B whih prevents explosion and ensures that HBf is ontinuous at z.75Definition 103. A boundary point z ∈ ∂B is said to be regular ifdef the Brownianmotion starting from z almost-surely exits B immediately:

E[Sz
B] = 0.It is said to be irregular otherwise.In the above example the point 0 is irregular. By Blumenthal's 0− 1 law, z is irregulari� P(Sz

B > 0) = 1. Also, from exerise 31, the point z is regular if it belongs to theboundary of a one ontained in the omplementary of B.Theorem 104. Let B ⊂ Rd be a bounded open set and f : ∂B → R be a boundedBorel funtion. Suppose z ∈ ∂B is regular and f is ontinuous at point z, then HBf isontinuous at point z:
lim

x→z, x∈B
HBf(x) = f(z).Corollary 105. HBf solves the Dirihlet problem if B is bounded, any point of ∂B isregular and the boundary ondition f ontinuous.You will prove in exerise that HBf is the unique solution to Dirihlet problem underthese onditions. The proof of theorem 104 essentially rests on the following fat.Lemma 106. The map x ∈ Rd 7→ E[Sx

B] is upper semi-ontinuous.Proof � Let us reall that these funtions are dereasing pointwise limits of ontinuous fun-tions and that they are haraterized by the inequalities
∀x ∈ Rd, lim

y→x
f(y) 6 f(x).Chek �rst the integrability of Sx

B . Choosing R > 0 being enough for B to be inluded in
B(0, R), the exit time Sx

B is no greater than the hitting time of the levels ±R by the �rsto-ordinate of X (a real-valued Brownian motion), so is integrable. For the same reason,
Sx,ε

B := inf{t ; ε < t, x + Xt /∈ B} is integrable. These dereasing approximations of Sx
Bonverge almost-surely to Sx

B as ε dereases to 0, so we have by monotone onvergene
E[Sx

B] = lim
ε↓0

↓ E[Sx,ε
B ].75The remainder of this setion is essentially taken from K.L. Chung's exellent little book [Chu02℄ onBrownian motion.



68 ADVANCED PROBABILITYBut as the strong Markov property enables us to write E[Sx,ε
B ] = E

[
g(x+Xε)

], where g(y) :=
E[Sy

B ] is bounded (an you see why?), E[Sx,ε
B ] appears as a (smooth and so) ontinuousfuntion of x. So

lim
y→x

E[Sy
B] 6 lim

y→x
E[Sy,ε

B ] = lim
y→x

E[Sy,ε
B ] = E[Sx,ε

B ].It remains to send ε to 0 to onlude. �The proof of theorem 104 is now easy.Proof � Let z ∈ ∂B be a regular point. From lemma 106 we have
E[Sx

B ] −→
x→z, x∈B

0,i.e. Sx
B onverges in L1(P) to 0. So one an extrat from any sequene {xn}n>0 onvergingto z a subsequene {xn(p)}p>0 suh that the exit times Sxn(p)

B onverge almost-surely to 0.The ontinuity of Brownian motion ensures us that the exit points xn(p) +X
S

xn(p)
B

onvergealmost-surely to z +X0 = z. As a onsequene, if f is bounded on ∂B and ontinuous at z,dominated onvergene justi�es the onvergene
E
[
f
(
xn(p) +X

S
xn(p)
B

)]
−→

p→+∞
f(z),that is

HBf(xn(p)) −→
p→+∞

f(z).As the limit value does not depend upon the subsequene, HBf(x) onverges to f(z) as xtends to z. �11. Lévy proessesWe study in this setion models of random phenomena whose properties are insensitiveto time shifts. As will beome lear in setion 12, they are the basi objets out of whihall reasonnable martingales an be desribed.The de�nition of Lévy proesses is given setion 11.1, whose main result is a kindof stati desription of suh proesses through the analyti desription of their Fouriertransform at a �xed time. We address the onstrution problem of suh proesses insetion 11.2, where we onstrut a general Lévy proess as a limit of the sum of a Brownianmotion with a drift and of (ompensated) Poisson jump proesses.11.1. Basis.Definition 107. By a (real-valued) Lévy proess we shall understand a real-valuedàdlàg proess starting from 0 and with stationary independent inrements.Given time 0 < t1 < · · · < tn the inrements Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 areindependent and the law of Xti −Xti−1
depends on the time inrement ti − ti−1.A Brownian motion with onstant drift is a Lévy proess, so are Poisson proesses; wereall their de�nition. These are ontinuous time Markov proesses whose dynamis isharaterized by two parameters: a �nite positive onstant λ and a probability measure

J(·) on R. Denote by (Sn)n>0 an iid sequene of exponential random variables with pa-rameter λ, and by (Jn)n>1 an iid sequene of random variables with ommon distribution
J . The proess X starts almost-surely from 0 and is onstant on the interval [0, S1); it hasa jump J1 at time S1 : XS1 = J1. Then it remains onstant on the interval [S1, S1 + S2)and has a jump J2 at time S1 +S2 : XS1+S2 = J1 +J2; and so on. It is not di�ult, using



ADVANCED PROBABILITY 69the memoryless property of the exponentials, to prove that this proess is a Lévy proess� you are asked to prove that fat in exerise. Surprisingly, Brownian motion and Poissonproesses are all we need to desribe the most general Lévy proess, as theorem 113 willmake it lear. Note that Poisson proesses have that name as the number of jumps theymake in a time interval of lenght t is a Poisson random variable with parameter λt. Canyou prove this fat?We start our study of Lévy proesses looking at their �xed time distributions.Lemma 108. Denote by ϕt(λ) the harateristi funtion of Xt : ϕt(λ) = E
[
eiλXt

]
, λ ∈

R, t > 0. There exists a ontinuous omplex-valued funtion g(λ) suh that ϕt(λ) = etg(λ).This funtion is alled the harateristi exponent of the Lévy proess.The funtion g haraterizes ompletely the �nite dimensional laws of X. Given 0 =
t0 < t1 < · · · < tn, lemma 108 and the independene of inrements of X imply
E
[
exp
(
iλ1Xt1 + · · ·+ iλnXtn

)]
= E

[
ei
(Pn

ℓ=1 λℓ

)
Xt1+i

(Pn
ℓ=2 λℓ

)
(Xt2−Xt1)+···+iλn(Xtn−Xtn−1 )

]

=
n∏

k=1

E
[
ei
(Pn

ℓ=k λℓ

)
(Xtk

−Xtk−1
)
]

= exp

(
n∑

k=1

(tk − tk−1) g
( n∑

ℓ=k

λℓ

))Proof � Note �rst that sine X is àdlàg and has stationary independent inrements we have
P
(
|Xt −Xs| > ǫ

)
= P(X|t−s| > ǫ) −→

s→t
0for all ǫ > 0. As

∣∣ϕt(λ) − ϕs(λ
′)
∣∣ 6 E

[∣∣eiλ(Xt−Xs) − 1
∣∣
]

+ E
[∣∣ei(λ−λ′)Xs − 1

∣∣
]

6 sup
|x|6ǫ

∣∣eiλx − 1
∣∣+ 2 P

(
|Xt −Xs| > ǫ

)
+ E

[∣∣ei(λ−λ′)Xs − 1
∣∣
]it follows (by dominated onvergene) that ϕ is a ontinuous funtion of (t, λ). As a on-sequene, ϕt(λ) 6= 0 for t small enough, sine ϕ0(λ) = 0. Using the independene andstationarity of the inrements, it follows that we have for all t > 0, λ ∈ R

ϕt(λ) = E
[
eiλXt

]
=

N∏

j=1

E
[
e
iλ
(
X j

N
t
−X j−1

N
t

)]
=
{
ϕ t

N
(λ)
}N 6= 0,provided N is big enough. We an thus write ϕt(λ) = eat(λ)+ibt(λ), where a and b areontinuous funtions of (t, λ) and a0(λ) = b0(λ) = bt(0) = 0. Using again the stationarityand independene of the inrements, we see that ϕs+t(λ) = ϕs(λ)ϕt(λ); as a and b areontinuous, this implies that they are both linear funtions of t. �The general form of g was found by Lévy and Khinhin.Theorem 109 (Lévy-Khinhin). Given λ ∈ R and x ∈ R, set

f(λ, x) =
(
eiλx − 1 − iλ sin x

)1 + x2

x2



70 ADVANCED PROBABILITYfor x 6= 0 and f(λ, 0) = −λ2

2
; this formula de�nes a ontinuous funtion. There exists a�nite non-negative Borel measure µ on R and a onstant b ∈ R suh that(11.1) g(λ) =

∫
f(λ, x)µ(dx) + ibλ.Proof � We start76 with the identity −g(λ) = lim

tց0

1−ϕt(λ)
t , g(0) = 0, where the limit isuniform for λ in a ompat set. Denoting by νt the law of Xt and taking t = 1

n above, weget(11.2) −g(λ) = lim
n→+∞

∫ (
1 − eiλx

)
nν 1

n
(dx),and for h > 0 (77)(11.3) − 1

2h

∫ h

−h
g(λ) dλ = lim

n→+∞

∫ (
1 − sinhx

hx

)
nν 1

n
(dx).As the funtion (1−eiλx

) is ontinuous and bounded it is fair to try and use some ompatnessargument in the set of measures to write equation (11.2) under the form ∫ (
1 − eiλx

)
µ(dx),where µ is a weak limit of the sequene nν 1

n
. But as this measure has mass inreasing nwe need to be areful. Would its mass be bounded away from 0 and ∞, we ould write itas anρn, with an > 0 and ρn a probability measure. The tightness of the sequene of �nitemeasures (anρn)n>0 would then equivalent to the tightness of the sequene of probabilitymeasures (ρn)n>0. Choosing a subsequene along whih both (an)n>0 and (ρn)n>0 onvergewould provides a luster point for the sequene of measures (anρn)n>0 for the weak topology.Noting that there exists a positive onstant C suh that y2

1+y2 6 C(1 − sin y
y ) for all y,equation (11.3), with h = 1, tells us that the sequene of measures ( x2

1+x2 nν 1
n
(dx)

)
n>1

hasmass uniformly bounded above. If the orresponding an onverge to 0 the measures onvergeweakly to 0. Elsewhere, we see the tightness of this family of measures noting that sine
1− sin hx

hx > 0 is no less than 1
2 for |hx| > 2, all the integrals ∫|x|>2

h
nν 1

n
(dx) are uniformly smallprovided h is small enough; this is a fortiori the ase for the integrals ∫|x|>2

h

x2

1+x2 nν 1
n
(dx).Choose a subsequene for whih the measures x2

1+x2 n(p)ν 1
n(p)

(dx) onverge weakly, say to µ.Our intuition about how to turn the limit (11.2) into a proper integral thus takes the followingform.
−g(λ) = lim

n+∞

∫ (
1 − eiλx

)
nν 1

n
(dx)

= lim
p+∞

(∫ (
1 − eiλx + iλ sinx

)
n(p)ν 1

n(p)
(dx) + iλ

∫
(sinx)n(p)ν 1

n(p)
(dx)

)

= lim
p+∞

(
−
∫
f(λ, x)

x2

1 + x2
n(p)ν 1

n(p)
(dx) + iλ

∫
(sinx)n(p)ν 1

n(p)
(dx)

)
(11.4)As f(λ, x), is a bounded ontinuous funtion of x, the �rst term onverges to− ∫ f(λ, x)µ(dx);it follows that the integrals ∫ (sinx)n(p)ν 1

n(p)
(dx) have a limit as p goes to in�nity, whihde�nes the onstant −b. �76This proof of Lévy-Khinhin's representation theorem is essentially taken from N.V. Krylov's book[Kry02℄.77You an interhange the integral with respet to λ and the limit as the terms ∫ (1 − eiλx

)
nν 1

n

(dx) areuniformly bounded with respet to n > 1 and λ in a bounded set.



ADVANCED PROBABILITY 71Isolating a possible Dira mass at 0 in µ, we an write(11.5) g(λ) =

∫ (
eiλx − 1 − λ sin x

)
Λ(dx) − λ2σ2

2
+ ibλ,with µ′(dx) = 1+x2

x2 µ(dx), σ2 = µ′(0) and Λ = µ′ − µ′(0) δ0 has no mass on {0}. The ase
Λ = 0 orresponds to a Brownian motion with drift b and variane σ2(78).Theorem 110 (Uniqueness). Lévy-Khinhin's deomposition for g is unique.Proof � It su�es to note that sine we have for any λ ∈ R and h > 0

g(λ) − g(λ+ h) + g(λ− h)

2
=

∫
eiλx 1 − cos(hx)

x2
(1 + x2)µ(dx),the measures µh := 1−cos(hx)

x2 (1 + x2)µ(dx) are uniquely determined by g, as their Fouriertransforms are given by the above formula. But we have for any bounded Borel set A ⊂[
− 1

h ,
1
h

],
µ(A) =

∫
1A

x2

1 − cos(hx)
(1 + x2)−1µh(dx);the result follows. �A triple (b, σ2 ; Λ), where Λ is a non-negative measure on R∗ suh that

∫
(1 ∧ x2)Λ(dx) <∞is alled a Lévy triple. Lévy-Khinhin formula gives a stati desription of a Lévy proessin terms of a Lévy triple; it is not lear at all whether or not there orresponds a Lévyproess to eah suh triple. This is indeed the ase, and the proof given below will revealthe dynamial ontent of the Lévy-Khinhin formula. Theorem 113 below proves thatany Lévy proess has a modi�ation whih is the limit of a sum of independent proesses

bt+ σBt + P
(0)
t +

n∑

k=1

P̃
(k)
t ,where bt+σBt is a Brownian motion with drift b and variane σ2, the proess P (0) is a Pois-son proess with intensity Λ

(
{|x| > 1}

) and jump measure J (0) = Λ
(
{|x| > 1}

)−1
1|x|>1Λ,and the proesses P̃ (k) Poisson proesses with intensity Λ

(
{ 1

k+1
6 |x| < 1

k
}
), jump mea-sure J (k) = Λ

({
1

k+1
6 |x| < 1

k

})−1
1 1

k+1
6|x|< 1

k
}Λ, and a drift −

∫
x1 1

k+1
6|x|< 1

k
}Λ(dx). Wedenote by P (k) the Poisson proess without drift.It will larify the onstrution below to rewrite the harateristi exponent g of a Lévyproess under the form

g(λ) = −σ
2λ2

2
+ ib′λ+

∫ (
eiλx − 1 − iλx1|x|<1

)
Λ(dx),replaing the former b by79 b′ = b +

∫ (
x1|x|<1 − sin x

)
Λ(dx). We shall write b instead of

b′ below. Note that we have78Note that the sin funtion appearing in the above formula for the exponent g(λ) has nothing anonial;it ould equally well be replaed by any bounded ontinuous funtion whih is equivalent to x near 0.This would hange b aordingly.79This integral onverges as ∫ (x2 ∧ 1)Λ(dx) <∞.



72 ADVANCED PROBABILITY
∫ (

eiλx − 1− iλx1|x|<1

)
Λ(dx) =

∫ (
eiλx − 1

)
1|x|>1 Λ(dx)+

∫ (
eiλx − 1− iλx

)
1|x|<1 Λ(dx).11.2. Constrution of Lévy proesses. Denote by (Ft

)
t>0

the �ltration generated by
B,P (0) and all the P̃ (k).Lemma 111. (1) The Lévy proess P (0) has harateristi exponent ∫ (eiλx−1

)
1|x|>1Λ(dx).(2) Eah Lévy proess P̃ (k) is a àdlàg (Ft

)
t>0

-martingale with harateristi exponent
∫ (

eiλx − 1 − iλx
)
1 1

k+1
6|x|< 1

k
Λ(dx).(3) The proess (P̃ (k)

t

)2 − t
∫
x2

1 1
k+1

6|x|< 1
k
Λ(dx) is a àdlàg (Ft

)
t>0

-martingale.It follows from this lemma that the harateristi exponent of our approximating Lévyproess σBt + bt+ P
(0)
t +

∑n
k=1 P̃

(k)
t is

−σ
2λ2

2
+ ibλ +

∫ (
eiλx − 1

)
1|x|>1Λ(dx) +

n∑

k=1

∫ (
eiλx − 1 − iλx

)
1 1

k+1
6|x|< 1

k
Λ(dx),that is(11.6) −σ

2λ2

2
+ ibλ +

∫ (
eiλx − 1 − iλx1 1

n+1
6|x|<1

)
Λ(dx).Proof � (1) The omputations of the harateristi funtions of P (0)
t and P̃ (k)

t are done in thesame way and use the following elementary fat. The distribution of the number Nt of jumpsby time t of a Poisson proess of intensity ρ is a Poisson random variable with parameter ρt.Writing ρ for Λ
(
{|x| > 1}

) we thus have
E
[
eiλP

(0)
t
]

=
∑

n>0

E
[
eiλP

(0)
t
∣∣σ(Nt)

]
P(Nt = n) =

∑

n>0

(1

ρ

∫
eiλx

1|x|>1Λ(dx)
)n
e−ρρ

n

n!

= exp
(∫ (

eiλx − 1
)
1|x|>1Λ(dx)

)
.(2) As the non-drifted proess P (k) is a Poisson proess (hene a Lévy proess) it has inde-pendent inrements. It follows that

E
[
P

(k)
t − P (k)

s

∣∣Fs

]
= E

[
P

(k)
t − P (k)

s

]
= (t− s)

∫
x1 1

k+1
6|x|< 1

k
Λ(dx),whih proves that P̃ (k) is an (Ft

)
t>0

-martingale.(3) I leave you to justify the fat that P̃ (k)
t ∈ L2. As the proess P̃ (k) has independententered inrements it su�es to see that E

[(
P̃

(k)
t

)2]
= t

∫
x2

1 1
k+1

6|x|< 1
k
Λ(dx) for eah

t > 0. Writing P̃
(k)
t = P

(k)
t − bt, with b =

∫
x1 1

k+1
6|x|< 1

k
Λ(dx), it amounts to provingthat E

[(
P

(k)
t

)2]
= b2t2 + t

∫
x2

1 1
k+1

6|x|< 1
k
Λ(dx). This is done by a diret omputation,onditionning on the number of jumps of P (k) by time t, whih is a Poisson random variablewith parameter tΛ({ 1

k+1 6 |x| < 1
k

}). �The next proposition provides a good funtional framework where to take the limit ofour approximations.



ADVANCED PROBABILITY 73Proposition 112. Denote by H the spae of (Ft

)
t>0

-martingales bounded in L2 andde�ne on H the metri d(X, Y ) =
(
E
[
sup06s61

∣∣Xs − Ys

∣∣2]
) 1

2 . Then the metri spae
(H, d) is omplete.Proof � Let (Y n)n>0 be a Cauhy sequene of elements of H. Eah (Y n

t )n>0 is then a Cauhysequene in L2, so onverges to some random variable Yt ∈ L2. We get the martingaleproperty of Y by passing to the limit in the orresponding identity for Y n. It su�es thento apply Doob's L2-inequality to get
E
[

sup
06s61

|Y n
s − Ys|2

]
6 2 sup

06s61
E
[
|Y n

s − Ys|2
]

6 2 E
[
|Y n

1 − Y1|
]
→ 0,whih proves that Y n onverges to Y in (H, d). �Theorem 113 (Constrution of Lévy proesses). To any Lévy triple there orrespondsa Lévy proess with harateristi exponent given by formula (11.5).Proof � Set Y (n)

t =
∑n

k=1 P̃
(k)
t , for t ∈ [0, 1]. Using the fat that E

[
P

(k)
1 P

(ℓ)
1

]
= 0 for k 6= ℓ,and Doob's L2-inequality we have, for m > n,

E
[

sup
06s61

∣∣Y m
s − Y n

s

∣∣2
]

= E

[
sup

06s61

∣∣∣
m∑

k=n+1

P̃ (k)
s

∣∣∣
2
]

6 4 E

[∣∣∣
m∑

k=n+1

P̃
(k)
1

∣∣∣
2
]

= 4

m∑

k=n+1

E
[∣∣P̃ (k)

1

∣∣2
]

6 4

∫
x2

1 1
m+1

6|x|< 1
n+1

Λ(dx).The last inequality omes from point (3) of lemma 111. Sine the integral ∫ x2
1|x|61Λ(dx)onverges, the above quantity is arbitrarily small provided m and n are big enough. Thisproves that Y (n) is a Cauhy sequene in the omplete spae (H, d); denote by Y its limit.I leave you to hek that Y has independent stationary inrements, simply by passing tothe limit in the orresponding identities. Also, as sup06s61

∣∣Ys − Y
(n)
s

∣∣ onverges in L2 to 0,a subsequene onverges almost-surely to 0; this makes the proess Y appear as a uniformlimit of àdlàg paths, so Y is itself àdlàg, and hene is a Lévy proess.Reall the expression of the harateristi exponent of X(n)
t = bt+ σBt + P

(0)
t + Y

(n)
t givenin equation (11.6); set Xt = bt + σBt + P

(0)
t + Yt. Using the almost-sure onvergene of asubsequene of Y (n)

t , the estimate ∣∣(eiλx − 1 − λx
)
1|x|<1

∣∣ 6 Cx2
1|x|<1 (for some onstant

C > 0) and dominated onvergene80, we obtain
E
[
eiλXt

]
= exp

(
−σ

2λ2

2
t+ iλbt+ t

∫ (
eiλt − 1 − λy1|x|<1

)
Λ(dx)

)
,this proves that the Lévy proess X has Lévy triple (b, σ ; Λ). �12. (...) and martingales12.1. Representation of ontinuous martingales. We prove in this setion that anyontinuous martingale an be seen as a time hange of a Brownian motion. This willhappen to be a beautiful appliation of the strong Markov property. To set notations,write (Ω0,F0) for C(R+,R), equipped with its Borel σ-algebra, X for the oordinate80We have ∫ x2

1|x|61Λ(dx) <∞.



74 ADVANCED PROBABILITYproess and P0 for Wiener measure on (Ω0,F0). Write also R for the Borel σ-algebra of
R+.Theorem 114 (Brownian motion as the father of all ontinuous martingales). Let (Mt)t>0be a ontinuous martingale de�ned on some probability spae (Ω,F ,P) and starting from
0. Then one an de�ne on (Ω0×Ω,F0⊗F ,P0⊗P

) a Brownian motion B and a measurabletime hange φ : (t, ω0, ω) 7→ φt(ω0, ω) ∈ R+ on (R+ × Ω0 × Ω,R⊗F ′ ⊗ F
) suh that foreah t > 0 we have P0 ⊗ P-almost-surely

Mt(ω) = Bφt(ω0, ω)(ω0, ω).In this sense, M appears as a random time-hange of a Brownian motion.It will be useful to introdue the following notations where ǫ is any positive onstant,and where we use the onvention inf ∅ = +∞. Given a ontinuous funtion x = (xt)t∈[0,T ]de�ned on some interval [0, T ] and starting from 0, de�ne by indution
Sx

1 (ǫ) = inf{t ∈ [0, T ] ; xt = ǫ}, Sx
n+1(ǫ) = inf{t ∈

[
Sx

n(ǫ), T
]
;
∣∣xt − xSx

n(ǫ)

∣∣ = ǫ}.Denote by Nx(ǫ) the biggest n > 1 for whih Sx
n(ǫ) < ∞ and set T x(ǫ) =

{
Sx

n(ǫ) ; n =

1..Nx(ǫ)
}. Note the inlusions(12.1) T x

( ǫ
2

)
⊂ T x(ǫ).Proof � 1) The proof rests on the following simple observation. Let x = (xt)t>0 be a on-tinuous real-valued path for whih all the Sn(ǫ) are �nite, whatever n > 1 and ǫ > 0. Let

y = (yt)t∈[0,T ] be a non-onstant ontinuous funtion de�ned on some interval [0, T ]; provided
ǫ0 > 0 is small enough, the olletion of times T y(ǫ) is non-empty for 0 < ǫ 6 ǫ0.Lemma 115. One an onstrut a funtion xy and a ontinuous non-dereasing time hange
φ from [0, T ] to [0, φ(T )

] suh that
xy(s) = yt, if s = φ(t),and φ(Sy

n(ǫ)
)

= Sx
n(ǫ), for ǫ small enough and n ∈

{
1, ..,Ny(ǫ)

}.Proof � Taking ǫ of the form 2−p, there exists a unique ontinuous pieewise linear map
φp for [0, T ] to R+ suh that

• φp(0) = 0, φp

(
Sy

n(2−p)
)

= Sx
n(2−p), and

• φp(t) = c+ t, for some onstant c and t > Sy
Ny(2−p)

(2−p).We de�ne a ontinuous funtion xp on [0, φp(T )
] setting

xp(s) = yt, if s = φp(t).Note that due to the inlusion (12.1), for eah p0 and n ∈ {1, ..,Ny(2−p0)}, the sequeneof times {φp

(
Sy

n(2−p0)
)}

p>0
is onstant for p > p0. Using the ontinuity of x and y,it is then a simple thing to prove that the sequene of time hanges (φp)p>0 onvergesuniformly to some non-dereasing time hange φ : [0, T ] →

[
0, φ(T )

]. Chek that thefuntion xy de�ned on [0, φ(T )
] by the formula

xy(s) = yt, if s = φ(t)has the desired properties. ⊙



ADVANCED PROBABILITY 752) Reall we denote by X the oordinate proess on Ω0 and that it is a Brownian motionunder Wiener measure P0. So almost-all paths X(ω0) have all their Sn(ǫ) �nite. Applyinglemma 115 to x = X(ω0) and y =
(
Mt(ω)

)
t∈[0,T ]

, we get a time hange φ : [0, T ] →[
0, φ(T )

] and a path (XM
s

)
s∈[0,φ(T )]

; this random path is de�ned on the probability spae(
Ω0 × Ω,F0 ⊗F ,P0 ⊗ P

).Lemma 116. The proess (XM
s

)
s∈[0,φ(T )]

is a Brownian motion (de�ned on a randominterval).Proof � Notie �rst that, for 2−p small enough and n ∈
{
0, ..,NM (2−p)

}, we have by themartingale property of M
P
(
MSM

n+1(2−p) = MSM
n (2−p) ± ǫ

∣∣FSM
n (2−p)

)
=

1

2
.Denote the above {±1}-valued random variable by ǫpn and de�ne a new ontinuous path

X̂p requiring that
X̂p

. − X̂p
SX

n (2−p)
= ǫpn

(
X. −Xp

SX
n (2−p)

)on the interval [SX
n (2−p), SX

n+1(2
−p)
]. The proess X̂p is by the strong Markov propertya Brownian motion. Note that X̂p

s = XM
s at all times s of the form SX

n (2−p). It followsfrom this fat that P0 ⊗ P-almost-surely the funtions X̂p onverge uniformly to XM onthe interval [0, φ(T )
]. As eah of them is a Brownian motion, the proess XM is also aBrownian motion. ⊙Lemmas 115 and 116 together prove the representation theorem, up to the measurabilitystatements. These an be proved examining the above onstrution, and are not reallyimportant for us. �You will see an improved (and more sophistiated) version of that result in the ourseon stohasti alulus: there exists an (FM

t )t>0-adapted random time hange 〈M〉t and aBrownian motion B (with respet to some other �ltration) suh that Mt = B〈M〉t for all
t > 0.12.2. Representation of general martingales. Although getting a proper desriptionof the struture of the most general martingales would require the introdution of newonepts, we have all the tools needed to understand this struture perfetly. In the sameway as a C1 funtion from R to R is in�nitesimally well-approximated by its tangentline (so well that we an reover the funtion from the family of its tangents: f(t) =

f(0)+
∫ t

0
f ′(s) ds), any àdlàg martingaleM is in�nitesimally well-approximated by a Lévyproess. Roughly speaking, at eah time t there exists a random Lévy triple (0, σ2

t ; Λt),measurable with respet to Ft, suh that the martingaleM is δt-lose to the orrespondingLévy proess over the time interval [t, t+δt]. To get the martingale property at time t+δtwe ask the measure Λt to be symmetri.As we have seen, Lévy proesses with Lévy triples (b, σ2 ; Λ) are haraterized by theidentity E[eiλXt ] = egt(λ), where
gt(λ) = iλbt− λ2σ2t

2
+

∫ (
eiλx − 1 − ix1|x|61

)
tΛ(dx);by the independene of the inrements, this holds i� exp(iλXt)/ exp
(
gt(λ)

) is a martingale.The above �in�nitesimal� euristis gets a proper rephrasing in the following statement.



76 ADVANCED PROBABILITYTheorem 117 (f. [JS03℄, Chap. II, �2). Given any àdlàg martingale (Mt)t>0 thereexists an adapted proess (σ2
t )t>0 and an adapted random measure-valued proess (Λt)t>0suh that (0, σ2

t ; Λt) is a Lévy triple for all t > 0, the measures Λt are symmetri, andthe proess
exp(iλMt)/ exp

(
ψt(λ)

)is a martingale, where ψt(λ) = −λ2σ2
t

2
+
∫ (
eiλx − 1 − ix1|x|61

)
Λt(dx). There is only onesuh proess (0, σ2

t ; Λt), t > 0, whih is previsible.In short, a ontinuous time proess (t, ω) ∈ R+ × Ω 7→ Yt(ω) is said to be previsibleifdef it is measurable with respet to the σ-algebra on R+ × Ω generated by the adaptedontinuous proesses. Allowing general (previsible) Lévy triples (bt, σ
2
t ; Λt) in the abovedesription leads to the lass of semi-martingales, whih is the good lass of proessesto onsider when onstruting the theory of stohasti integration. You will ertainlyenounter it under a di�erent ostume: (Yt)t>0 is a semi-martingale ifdef one an �nd anadapted proess A with �nite variation, an inreasing sequene of �nite stopping times

T n, and a sequene (Mn)06t6T n of losed martingales suh that
∀n > 0, ∀ t 6 T n, Yt = Mn

t + At.But this is the beginning of another story...



ADVANCED PROBABILITY 7713. Comments and exerisesReferenes. The book [Chu02℄ of Kai Lai Chung will give you a nie view on Brownianmotion. Rogers and Williams' book, [RW00℄, as always, is reommended.You will �nd interesting material on Lévy proesses in Krylov's book [Kry02℄. You willalso �nd in the �rst hapter of Sato's book [Sat99℄ useful and basi informations on Lévyproesses.To be written: Comments on the �Poisson random measure� approah to Lévy pro-esses.13.1. Exerises. B denotes a real-valued or Rd-valued Brownian motion onstruted on someprobability spae (Ω,F ,P); the distribution of x+X is denoted by Px.1. Kolmogorov's 0−1 law. This exerise is the ompanion to exerise 8 of example sheet 2. Let uswork in Rd. De�ne the tail σ-algebra : T =
⋂

t>0 σ(Bs+t ; s > 0). Using the inversion propertyof Brownian motion and Blumenthal's 0− 1 law, prove that all the events of T are trivial under
P.2. Let A be an open subset of the (d − 1)-dimensional sphere and U the one {ta ; a ∈ A, 0 6

t 6 ε} of vertex 0 (for some ε > 0). Prove that the hitting time τU = inf{t > 0 ; Bt ∈ U} of Ufor a Brownian motion starting from 0 is almost-surely equal to 0. This result is useful to solveDirihlet problem by the probabilisti method in onrete ases as it ensures that all points of theboundary of an open set O are regular if any point of ∂O is the vertex of a one ontained in Oc.3. Using the martingale property of Brownian motion, prove that we have for any positive a, b
P(H−a < Hb) =

b

b+ a
and E[H−a ∧Hb] = ab.4. Let B be a real-valued Brownian motion and σ ∈ R.a) Show that the proess (eσBt−σ2

2
t
)
t>0

is a martingale with respet to the �ltation of B.b) Dedue, by di�erentiating with respet to σ, that the following proesses are also martin-gales: (B2
t − t

)
t>0

,
(
B3

t − 3tBt

)
t>0

,
(
B4

t − 6tB2
t + 3t2

)
t>0

.5. Given c ∈ R, the proess Bc
t = Bt + ct, is alled the Brownian motion with drift c. For �xed

x > 0 and −a < 0 < b, set Hc
x = inf{t > 0 ; Bc

t = a}.a) Fix λ > 0. Under whih onditions on θ ∈ R is the proess exp
(
θBc

t − λt
) a martingale?b) Supposing θ hosen appropriately, dedue from a) that

E
[
e−λHc

x
]

= exp
(
−x
√
c2 + 2λ− c

)
,and so, that the distribution of Hc

x has density x√
2πt3

exp
(
− (x−ct)2

2t

). Is it surprising?) Conlude that
P(Hc

x <∞) = 1 if c > 0, and e−2|c|x if c < 0.6. a) Given a > 0, set Ha = inf{s > 0 ; Bs = a}. Prove that the distribution of Ha has adensity with respet to Lebesgue measure on R+, equal to a
(2πt3)1/2 exp

(
−a2

2t

).b) Prove that the proess of hitting times (Ta)a>0 has stationnary independent inrements.Is it a Lévy proess?7. Given any a > 0, set Sa = inf{t > 0 ; Bt > a} and Ta = inf{t > 0 ; Bt > a}.a) Prove that Sb and Tb are almost-surely equal.



78 ADVANCED PROBABILITYb) Let L be a non-negative random time independent of the �ltration generated by B. Provethat the event {TL 6= SL} is measurable and P(TL 6= SL) = 0.) Find a random time L for whih P(TL = SL) = 0.8. Oupation time. Let D be an open ball of Rd and x be any starting point for Brownianmotion.a) Prove that Px

(∫∞
0 1D(Bt) dt = ∞

)
= 1, if d = 1 or 2.b) Prove that Ex

[∫∞
0 1D(Bt) dt

]
<∞, for d > 3.9. Let B = (B1, B2) be a 2-dimensional Brownian motion starting from the point with oordi-nates (1, 0). Setting T = inf{t > 0 ; B2

t = 0}, what is the law of B1
T ?10. Let B be here an Rd-valued Brownian motion, r > 0 and x ∈ Rd with ‖x‖ < r. Set

H = inf{s > 0 ; ‖Bs‖ = r}. Prove that Ex[T ] = r2−‖x‖2

d .11. Uniqueness in Dirihlet problem. Let O be a bounded open set and g be a solution to Dirihletproblem, with ontinuous boundary ondition f . Prove that
max
x∈O

g(x) = max
y∈∂O

g(y)
(
= max

y∈∂O
f(y)

)
.Conlude that the Dirihlet problem has at most one solution.12. Let N be a Poisson proess of intensity λ. Prove that the number of jumps of N by time

t > 0 is a Poisson random variable with parameter λt.13. Prove that a Poisson proess is a Lévy proess.14. A Poisson proess of rate λ is observed by someone who believes that the �rst holding timeif longer than all the other holding times. How long on average will it take before the observeris proved wrong?15. Let N be a Poisson proess of intensity λ. Given any time t > 0, denote by Tt = inf{s >

t ; Ns 6= Nt} the next jump time after time t.a) Prove that we have almost-surely Tt > t.b) Prove that Tt − t is exponentially distributed, with parameter λ. This is surprising as theinterval [t, Tt−t] is ontained in one of the intervals between jumps, all of whih are exponentiallydistributed, with parameter λ(!). Can you explain that paradox?16. Is the sum of two Lévy proesses always a Lévy proess?17. Can a proess with stationnary and independent inrements not be a Lévy proess?18. Given a Lévy proess X, set ∆Xt := Xt −Xt− . Prove that we have almost-surely ∆Xt = 0for any �xed t > 0, so Lévy proesses do not have jumps at �xed times. This result generalizesthe orresonding result for Poisson proesses proved in question a) in the exerise 15.19. Let X be a Lévy proess with jump measure ΛX of �nite mass.a) Prove that X has almost-surely �nitely many jumps in any bounded interval of time.b) Denote by (∆X)n the nth jump of X, and let (ǫn)n>1 a olletion of independent Bernoullirandom variables , with parameter p ∈ (0, 1), independent of X. Let Y be the proess obtainedfrom X by removing from X all the jumps of X for whih ǫn = 0, at the time when they our:If X has made nt jumps by time t we have Yt = Xt −
∑nt

j=1(1 − ǫj)(∆X)j . The proess Y isàdlàg . Prove that Y is a Lévy proess and �nd its jump measure ΛY .20. Using the same method as was used for Brownian motion in the ourse, state and prove thestrong Markov property for a Lévy proess.



ADVANCED PROBABILITY 7921. Using the same method as in exerise 19 in example sheet 2, prove that the �ltrationgenerated by a Lévy proess, ompleted with null sets, is ontinuous on the right.22. a) Prove that a Lévy proess an always be written as the sum of two independent Lévyproesses.b) Dedue from a) and exerise 17 that a Lévy proess is almost-surely ontinuous i� it is aBrownian motion with drift. 14. Complement to Part III14.1. Complement: In�nite sums of in�nitesimal independent random vari-ables. As is lear from the de�nition of a Lévy proess X, the random variable X1 anbe deomposed for all n > 1 as a sum of n iid random variables: X1 =
∑n

k=1

(
X k

n
−X k−1

n

).Random variables whih have this property are alled in�nitely divisible. The proof ofLévy-Khinhin's formula an be opied word by word to prove that any in�nitely divis-ible random variable has a harateristi funtion of the form eg(λ) for a Lévy-Khinhinfuntion g. Rather than using the measure Λ with support in R∗ we shall use the measure
µ and the �drift� b obtained initially in formula (11.1), out of whih Λ was derived byisolating the mass at 0. With this formalism, Lévy triples beome Lévy pairs (b ;µ). Thefollowing stability property is worth being noted.Lemma 118. If a sequene of in�nitely divisible random variables onverges weakly thenits weak limit is in�nitely divisible.Proof � Let ϕ be the harateristi funtion of the weak limit of a sequene of in�nitelydivisible random variables, with harateristi funtions ϕ(k). As eah ϕ(k) =

{
ϕ

(k)
n

}n, forsome harateristi funtion ϕ(k)
n , the funtions ∣∣ϕ(k)

∣∣ 2
n are harateristi funtions81. Sinethey onverge to the ontinuous funtion |ϕ| 2

n as k → ∞, the latter is a harateristifuntion, by Lévy's ontinuity theorem; so |ϕ|2 is in�nitely divisible, as n is arbitrary. Assuh, it annot vanish, and ϕ annot either. All the funtions ϕ 1
n = lim

k→∞

{
ϕ

(k)
n

} 1
n are thuswell-de�ned harateristi funtions (as they are ontinuous at 0), whih proves the laim.

�Definition 119. By a triangular array we mean a sequene of �nite olletions{
Xnk ; 1 6 k 6 k(n)

} of independent random variables.Set Sn = Xn1 + · · · + Xnk(n). We are going to prove that Sn onverges to an in�nitedivisible random variable under quite general onditions.Assumptions. • All the random variables Xnk are in L2,
• sup

16k6k(n)

Var(Xnk) −→
n→∞

0,
• ∑k(n)

k=1 Var(Xnk) is bounded above by a onstant independent of n, say C.It will be onvenient to denote by µnk the law ofXnk and by µnk the law of the reenteredrandom variable Xnk − E[Xnk].81Denote by X(k)
n a random variable whose distribution has harateristi funtion ϕ(k)

n , and let X̂(k)
n bean independent opy of −X(k)

n . Then ∣∣ϕ(k)
∣∣ 2

n is the harateristi funtion of X(k)
n + X̂

(k)
n .



80 ADVANCED PROBABILITYProposition 120. The random variables Sn onverge weakly i� the sequene of in�nitedivisible laws with exponent
ψn(λ) =

k(n)∑

k=1

(
iλE[Xnk] +

∫
(eiλx − 1)µnk(dx)

)onverges, in whih ase the two limits are equal.Proof � Write ϕnk(λ) for the harateristi funtion of Xnk − E[Xnk], and set ank(λ) =
ϕnk(λ) − 1 =

∫
(eiλx − 1)µnk(dx). We have

ϕSn(λ) = eiλ
Pk(n)

k=1 E[Xnk]

k(n)∏

k=1

ϕnk(λ) = eiλ
Pk(n)

k=1 E[Xnk ]

k(n)∏

k=1

(
1 + ank(λ)

)
.Note that sine ∫ xµnk(dx) = 0, one an write ank(λ) =

∫ (
eiλx − 1 − iλx

)
µnk(dx). Asthe absolute value of the integrand is bounded above by λ2x2

2 , the estimate ∣∣ank(λ)
∣∣ 6

λ2

2 Var(Xnk) follows and shows that ank(λ) onverges to 0, uniformly for λ in a ompat.The statement is then obtained diretly from the following inequalities and our assumptions.
∣∣∣logϕSn(λ) −

k(n)∑

k=1

(
iλE[Xnk] + ank(λ)

)∣∣∣ =
∣∣∣
k(n)∑

k=1

(
logϕnk(λ) − ank(λ)

)∣∣∣

6

k(n)∑

k=1

∑

k>2

∣∣ank(λ)
∣∣p

p
6

1

2

k(n)∑

k=1

∣∣ank(λ)
∣∣2

1 −
∣∣ank(λ)

∣∣

6 max
k=1..k(n)

∣∣ank(λ)
∣∣

k(n)∑

k=1

∣∣ank(λ)
∣∣ 6

λ2

2
C max

k=1..k(n)

∣∣ank(λ)
∣∣.

�This statement brings bak the study of the behaviour of Sn to the study of a sequene ofin�nite divisible random laws. Denote by (bn ; νn) the Lévy pair assoiated to the exponent
ψn onstruted in proposition 120. We shall write ID(b ; ν) for a generi in�nitely divisiblerandom variable with Lévy pair (b ; ν).Theorem 121. The random variables Sn onverge weakly to some in�nite divisiblerandom variable with Lévy pair (b ; ν) i�(1) the measures νn onverge weakly to ν,(2) bn onverges to b.Before proving this statement let us single out the following two important pratial ases.Corollary 122 (Convergene to normal and Poisson laws). • The random variables
Sn onverge weakly to a normal random variable i� b = 0 and for all ǫ > 0 we have∑k(n)

k=1

∫
|x|>ǫ

x2 µnk(dx) −→
n→∞

0 and ∑k(n)
k=1

∫
|x|<ǫ

x2 µnk(dx) −→
n→∞

1,
• Suppose ∑k(n)

k=1 E[Xnk] −→
n→∞

λ and ∑k(n)
k=1 Var(Xnk) −→

n→∞
λ. Then Sn onverge weaklyto a Poisson random variable i� for all ǫ > 0 we have ∑k(n)

k=1

∫
|x−1|>ǫ

x2 µnk(dx) −→
n→∞

0.Proof � Aording to proposition 120, everything amounts to prove that ID(bn ; νn) onvergesweakly to ID(b ; ν) i� νn onverges weakly to ν and bn onverges to b. Denote by ψ(λ) theharateristi exponent of ID(b ; ν). The impliation ⇐ is obvious sine the harateristi



ADVANCED PROBABILITY 81funtion of ID(bn ; νn) onverges to the harateristi funtion of ID(b ; ν) in that ase82, soLévy theorem on harateristi funtions applies.To prove the onverse impliation, note that sine the weak onvergene of ID(bn ; νn) toID(b ; ν) implies the onvergene of their harateristi funtions, uniformly on boundedintervals, ψn onverges to ψ in that sense. We now play the same game as in the proof ofthe uniqueness of Lévy-Khinhin's representation. Namely, de�ne
ρ(λ) =

∫ 1

−1

(
ψ(λ) − ψ(λ+ s)

)
ds = 2

∫
eiλx

(
1 − sinx

x

)1 + x2

x2
ν(dx),and ρn by a similar formula. As ρn onverges uniformly on ompats to ρ the measures (1−

sin x
x

)
1+x2

x2 νn(dx) onverge weakly to the measure (1 − sin x
x

)
1+x2

x2 ν(dx), by Lévy's theorem.Sine the integrand is ontinuous and bounded away from 0 the measures νn themselvesonverge weakly to ν. The onvergene of bn to b follows. �15. Solutions to the exerises15.1. Exerises on part I. 4. a) Suppose there exists a probability spae (Ω,F ,P) anda olletion of real-valued random variables X = (Xt)t∈T de�ned on (Ω,F) whih form aGaussian proess. Their distribution Q is a probability measure on the produt spae RT ,equipped with its produt σ-algebra. As the lass of elementary events {x ∈ RT ; xt1 ∈
A1, . . . , xtn ∈ An}, for some 1 6 n < ∞, t1, . . . , tn ∈ T and A1, . . . , An Borel sets of R,is a π-system generating the produt σ-algebra, Q is entirely determined by its values onthese elementary sets. Fixing n and t1, . . . , tn,

Q(x ∈ RT ; xt1 ∈ A1, . . . , xtn ∈ An) = P(ω ∈ Ω ; Xt1(ω) ∈ A1, . . . , Xtn(ω) ∈ An).Now, the distribution of the Rn-valued random variable (Xt1 , . . . , Xtn) is haraterizedby its Fourier transform, so if we know E
[
ei

P
k=1..n ckXtk

] for all ci ∈ R, we (formally)know P(Xt1 ∈ A1, . . . , Xtn ∈ An) for all A1, . . . , An. This is preisely the ase as
E
[
ei

P
k=1..n ckXtk

]
= eim(c1,...,cn)−σ2(c1,...,cn)

2 is determined by the mean and ovariane fun-tions m(·) and σ2(·) respetively. As n > 1 and t1, . . . , tn are arbitrary we are done.b) Let denote by (Ω,F ,P) the produt spae RN with the produt probabilityN (0, 1)⊗N.Note �rst that as the random variables Gn are independent we have for any 1 6 p <
q <∞

∥∥∥
q∑

n=p

hnGn

∥∥∥
2

=

q∑

n=p

(hn)2,the sequene (∑q
n=0 h

nGn

)
q>0

onverges in L2(P), so the random variableXh =
∑

n>0 h
nGnis well-de�ned in L2(P) and almost-surely, and has null mean. From the independene ofthe Gn: E[XhXh′] =

∑
n>0 h

n(h′)n = (h, h′).) (i) Pik 0 6 s1 < s2 < · · · < sn. As the random vetor (Bs1 , Bs2 − Bs1, · · · , Bsn −
Bsn−1) =

(
X1[0,s1]

, X1(s1,s2]
, · · · , X1(sn−1,sn]

) is a Gaussian vetor, its omponents are inde-pendent i� it has diagonal ovariane matrix, i.e. i�
E
[
X1(si−1,si]

X1(sj−1,sj ]

]
= 0for i 6= j, whih holds sine the expetation equals ∫ 1(si−1,si](x)1(sj−1,sj ](x) dx = 0.82Reall the funtion f(λ, x) appearing in Lévy-Khinhin's formula is ontinuous and bounded.



82 ADVANCED PROBABILITY(ii) As E
[
|Bt − Bs|4

]
= |t− s|2, Kolmogorov's regularity riterion applies.(iii) This modi�ation retains the �nite dimensional properties of the original proess,so it has ovariane E[BsBt] = min(s, t). Question a) shows that this property harater-izes Brownian motion amongst the Gaussian proesses.(iv) Chek that X is entered, Gaussian, with the above ovariane funtion. The onlynon-trivial point is the ontinuity at 0 of the proess Bt := tX1/t. Sine B is almost-surelyontinuous on (0,∞) one an desribe the event {B →

t↓0
0} in terms of onditions on thevalues of B at ountably many points of (0,∞). But B and X being Gaussian, withthe same ovariane and the same value at time 1, they have the same law on (0,∞); so

P
(
Bt →

t↓0
0
)

= P
(
Xt →

t↓0
0
)

= 1.5. a) As the omplementary set of an open set if a losed set, the olletion C is stableby omplementation; it ontains [0, 1]. Let ǫ > 0 be given, (Bn)n>0 be a sequene ofdisjoint elements of C and, for eah n > 0, let On (resp. Cn) be an open (resp. losed) setontaining (resp. ontained in) Bn, with P(On\Bn) 6 ǫ 2−n and P(Bn\Cn) 6 ǫ 2−n. Pik
N large enough to have P

(⋃
n>0Bn\

⋃N
n=0Bn

)
= P

(⋃
n>N+1Bn

)
6 ǫ. The set ⋃N

n=0Cn islosed and
P
(⋃

n>0

Bn\
N⋃

n=0

Cn

)
6 P

( ⋃

n>N+1

Bn

)
+ P

( N⋃

n=0

Bn\
N⋃

n=0

Cn

)
6 ǫ+ P

( N⋃

n=0

(Bn\Cn)
)

6 ǫ+
N∑

n=0

ǫ 2−n 6 3 ǫ.Also, the set ⋃n>0On is open and
P
(⋃

n>0

On\
⋃

n>0

Bn

)
6 P

(⋃

n>0

(On\Bn)
)

6
∑

n>0

P(On\Bn) 6 2 ǫ.As ǫ > 0 is arbitrary, this proves that ⋃n>0Bn ∈ C, from whih it follows that C is a
σ-algebra.b) Trivially, intervals are in C, so the σ-algebra they genearate is inluded in C. This
σ-algebra is Bor, whih proves the inner and outer regularity of P.6. a) Reall that (Xn)n>0 onverges weakly to X i� E

[
f(Xn)

]
→ E

[
f(X)

] for anybounded uniformly ontinuous funtion f (2nd statement of Alexandrov's harateriza-tion). For suh an f we have for eah ǫ > 0
∣∣E
[
f(Xn) − f(X)

]∣∣ 6 E
[
2‖f‖∞1|Xn−X|>ǫ

]
+ E

[∣∣f(Xn) − f(X)
∣∣1|Xn−X|<ǫ

]

6 2‖f‖∞ P
(
|Xn −X| > ǫ

)
+ oǫ(1),by the uniform ontinuity of f . The upper bound onverges to oǫ(1) as n goes to in�nity,whih an be made arbitrarily small by hoosing small ǫ.b) Let X be equal to 0 or 1 with equal probability, and Xn = X for all n > 1. Then

Xn has the same distribution as 1 −X but does not onverge to 1 −X in probability.



ADVANCED PROBABILITY 837. A sequene (µn)n>0 onverging to µ in Bb(R)∗ also onverges to µ in Cb(R)∗. Theonverse does not hold: δ 1
n
onverges to δ0 in Cb(R)∗ but not in Bb(R)∗ sine we have

0 =
(
1[−1,0], δ[

1
n
]
)
6=
(
1[−1,0], δ0

)
= 1, for all n > 0.8. Again, we use here as in exerise 6 the fat that (µn)n>0 onverges weakly to µ i� theintegrals (f, µn) onverge to (f, µ) for all bounded uniformly ontinuous funtions f .Suppose this onvergene holds a priori only for all ontinuous funtions with ompatsupport, and let f be a bounded uniformly ontinuous funtions. Pik ǫ > 0 and let

0 6 φ 6 1 be a funtion with ompat support, equal to 1 in an interval [−M,M ], bigenough so that we have (φ, µ) > 1 − ǫ, and so ((1 − φ), µ
)

6 ǫ. Then
∣∣(f, µn) − (f, µ)

∣∣ 6
∣∣(fφ, µn) − (fφ, µ)

∣∣+
∣∣((1 − φ)f, µn

)
−
(
(1 − φ)f, µ

)∣∣The �rst term on the rhs onverges to 0 sine fφ has ompat support. The seond termis bounded above by
‖f‖∞

(
(1 − φ, µn) + (1 − φ, µ)

)
6 ‖f‖∞

(
1 + ǫ− (φ, µn)

)
.As (φ, µn) → (φ, µ) > 1 − ǫ, the upper bound is smaller than 2ǫ ‖f‖∞ for n big enough.9. Using the almost-sure representation of weak onvergene, one an write φn(λ) =

E
[
eiλXn

] and φ(λ) = E
[
eiλX

], for some random variables Xn with law µn and X with law
µ, de�ned on some probability spae ([0, 1], atually!), with Xn onverging almost-surelyto X. Given M > 0 and ǫ > 0, η > 0, we have |Xn − X| 6 ǫ

M
on a set of probabilitybigger than 1 − η, for n > N(ǫ, η). So

sup
λ∈[−M,M ]

|φn(λ) − φ(λ)| = sup
λ∈[−M,M ]

∣∣E
[
eiλXn − eiλX

]∣∣

6 sup
λ∈[−M,M ]

E
[∣∣eiλXn − eiλX

∣∣1|λXn−λX|6ǫ

]
+ 2η

6 2 sin
ǫ

2
+ 2η,for n > N(ǫ, η). The result follows as ǫ > 0 and η > 0 are arbitrary.10. Suppose the family (µn)n>0 tight and assoiate to any ǫ > 0 an Mǫ > 0 suh that

µn

([
−Mǫ,Mǫ

])
> 1 − ǫ, for all n > 0. Then

∣∣φn(λ) − 1
∣∣ 6

∣∣∣E
[(
eiλXn − 1

)
1[−Mǫ,Mǫ

]
]∣∣∣+ 2ǫ.For λ 6

η
Mǫ

, we have (eiλXn − 1
)
1[−Mǫ,Mǫ

] 6 2 sin η
2
, from whih the result follows.Reiproally, if the φn's are equiontinuous at 0, use formula just before the proof oftheorem 29 to onlude that the family (µn)n>0 of probabilities is tight.11. We proeed in steps, proving �rst the statement for an iid sequene (Un)n>0 ofuniformly distributed random variables. Given t ∈ [0, 1], the random variables 1Xn6t areiid. The SLLN gives in that ase the almost-sure onvergene F̂n(t) → E

[
1U06t

]
= t. Asa �nite intersetion of events of probability 1 has probability 1, we have almost-surely

sup
t∈F

∣∣F̂n(t) − t
∣∣→ 0



84 ADVANCED PROBABILITYfor any �nite family F of elements of [0, 1]. Now, by monotonoity of F̂n, and given sometimes 0 = t0 < t1 < · · · < tp = 1,
sup

t∈[0,1]

∣∣F̂n(t) − t
∣∣ 6 max

k∈{0,··· ,p}

∣∣F̂n(tk) − tk
∣∣+ max

k∈{0,··· ,p−1}

∣∣tk+1−tk

∣∣.Sending n to in�nity and re�ning the partition, we get the result in that ase.To deal with the general ase, we use the representation of a random variable as theimage of a uniformly distributed random variable. Let G denote the distribution funtionof the ommon law of the Xn's. Set g(t) = sup {y ; G(y) < t}, so that g(Un) 6 x i�
Un 6 G(x), that is, the sequene (g(Un)

)
n>0

has the same law as (Xn)n>0. We are thusbrought bak to prove that we have almost-surely
sup
x∈R

∣∣∣ 1

n + 1

∑

k=0..n

1g(Un)6x −G(x)
∣∣∣→ 0As the lhs equals

sup
t∈[0,1]

∣∣F̂n(t) − t
∣∣by a hange of variable, this is lear.12. b) Using the almost-sure representation theorem for weakly onvergent sequenes,one an write almost-surely by Taylor's theorem for C1 funtions

√
n
(
f(Xn)−f(m)

)
= f ′(m)

√
n(Xn−m)+

√
n o
(
|Xn−m|

)
= f ′(m)

√
n(Xn−m)+o

(√
n|Xn−m|

)
.As √

n(Xn − m) is almost-surely onverging to some random variable Y the rhs aboveonverges almost-surely to f ′(m) Y , hene the statement.14. b) The appliation φ : x ∈ C
(
[0, 1],R

)
→ max

t∈[0,1]
xt is ontinuous. Denote by µn thelaw of Xn under P. All the µn's have support in the set {x ∈ C

(
[0, 1],R

)
; max

t∈[0,1]
xt = 1

},so the image measure of µn by φ is the Dira mass at 1. The image measure of the law of
X by φ is the Dira mass at 0, so (Xn)n>0 annot onverge wakly to X by a).15. a) The vetor (X0

t1
, . . . , X0

tn , X1

) is Gaussian under P, with X1 ∼ N (0, 1). We hekby a diret omputation that its ovariane matrix has the form (
A (0)
(0) 1

), for somesymmetri n × n matrix A. It follows that X1 is independent under P of the Rn-valuedGaussian random vetor (X0
t1 , . . . , X

0
tn

); in partiular
P
(
X0

t1
∈ A1, . . . , X

0
tn ∈ An

∣∣0 6 X1 6 ε
)

= P
(
X0

t1
∈ A1, . . . , X

0
tn ∈ An

)
,so X0 has under Pε the same �nite dimensional laws as X0 under P, that is P0. As the�nite dimensional distributions haraterize uniquely the distribution it follows that thedistribution of X0 under Pε is independent of ε and equal to P0.b) Let now F be a losed set of (C([0, 1],R

)
, ‖·‖∞

), and F ǫ =
{
x ∈ C

(
[0, 1],R

)
; d(x, F ) 6

ǫ
} be the ǫ-beighbourhood of F ; this is a losed set, and ⋂ǫ>0 F

ǫ = F . As we have almost-surely |X0 −X| 6 ǫ under Pǫ, the random path X0(ω) is Pǫ-almost-surely in F ǫ if X(ω)is in F . So, �xing η and taking 0 < ǫ < η, we have
Pǫ(X ∈ F ) 6 Pǫ(X

0 ∈ F ǫ) 6 Pǫ(X
0 ∈ F η) = P(X0 ∈ F η).



ADVANCED PROBABILITY 85Send �rst ǫ to 0 to get
lim
ǫց0

Pǫ(X ∈ F ) 6 P(X0 ∈ F η),then send η to 0 (using monotone onvergene)
lim
ǫց0

Pǫ(X ∈ F ) 6 P
(
X0 ∈

⋂

ηց0

F η
)

= P(X0 ∈ F ).15.2. Exerises on part II. This setion was ontributed by Bati Sengul; thanks to himfor his work.1. a) We need to prove that we have E
[
h(V )1A

]
= E[g(U)1A], for eah A ∈ σ(U); anysuh event is by de�nition of the form 1B(U), for some measurable subset B of R. UsingFubini's theorem, we have

E
[
h(V )1B(U)

]
=

∫

R

∫

R

fU,V (u, v)h(v)1B(u) dudv =

∫

R

1B(u)

∫

R

fU,V (u, v)h(v) dvdu

=

∫

R

1B(u)g(u)fU(u) du = E
[
g(U)1B(u)

]
.b) Consider

X := V − Cov(U, V )

V ar(U)
Uthen X is a entred Gaussian random variable, moreover

E[XU ] = E[UV ] − Cov(U, V )

V ar(U)
E
[
U2
]

= E[UV ] − Cov(U, V ) = 0hene X is independent of U , so E[X|σ(U)] = 0. Now
E
[
V |σ(U)

]
= E

[Cov(U, V )

V ar(U)
U +X

∣∣∣σ(U)
]

=
Cov(U, V )

V ar(U)
U.) Let us prove more generally that any σ(U)-measurable almost-surely �nite randomvariable X is of the form f(U) for some measurable funtion f : R → R.Suppose �rst that X takes only �nitely many values x1, . . . , xn. As eah set Ai =

X−1
(
{xi}

) belongs to σ(U), it is of the form U−1(Bi) for some measurable Bi ⊂ R; the
Bi's are disjoint. Set f(x) = xi if x ∈ Bi for some i, and f(x) = 0 elsewhere. We hekdiretly that f(U) = X.For X > 0, we de�ne a σ(U)-measurable random variable setting

Xn =

n2n∑

j=0

j

2n
1X∈(j2−n,(j+1)2−n].As it takes only �nitely many values, it is of the form fn(U). Note that Xn ↑ X almost-surely. Set f = lim fn and f = f1f<∞ and hek that f(U) = X as X is almost-surely�nite.2. The trivial ase k = 1 is obvious. So suppose that the statement holds for k, i.e.

P(T > kN) 6 (1 − ǫ)k.



86 ADVANCED PROBABILITYThen by using P(T > n+N |Fn) 6 1 − ǫ and the fat {T > (k + 1)N} ⊂ {T > kN} wehave that83
E[1T>(k+1)N ] = E[E[1T>(k+1)N |FkN ]]

= E[E[1T>(k+1)N1T>kN |FkN ]]

= E[1T>kNE[1T>(k+1)N |FkN ]]

6 E[1T>kN(1 − ǫ)] 6 (1 − ǫ)k(1 − ǫ).3. a) Work with Ω = C
(
R+,R

), the oordinate proess and its �ltration (Ft)t>0, and set
Gt = {∅,Ω} for t 6 1, and Gt = Ft−1 for t > 1. Look at the hitting time of some level.b) For any b 6 a we have by the ontinuity of ω

{γa 6 b} = {ω ∈ Ω ; ωt > 0 for all t ∈ (b, a]} =
⋂

t∈(b,a]∩Q

{ω ∈ Ω ; ωt > 0} ∈ Fa.Next we show that {γa < t} /∈ Ft for t < a. Intuitively this fails ultimately beauseat time t < a we annot dedue if γa has happened or not, given the path up to time t.More rigorously
{γa < t} = {ωs 6= 0 ∀s ∈ [t, a]} = {ωs 6= 0 ∀s ∈ [t, a] ∩ Q} =

⋂

s∈[t,a]∩Q

{ωs 6= 0}where we have used the ontinuity in the seond equality. Now the last part is not in Ftand hene {γa < t} /∈ Ft.4. b) Obviously we have that FS∧T ⊂ σ(FS,FT ). For the onverse notie �rst that
σ(FS, FT ) is generated by events in FS and FT , hene by the monotone lass theorem, itsu�es to hek that FS and FT are inluded in FS∧T . Let A ∈ FS, then it su�es toshow that A ∩ {S ∧ T > t} ∈ Ft for eah t > 0. Notie that

A ∩ {S ∧ T > t} = A ∩ {S > t} ∩ {T > t}.Now B := A ∩ {S > t} ∈ Ft, by de�nition of FS, and as T is a stopping time B ∩ {T >
t} ∈ Ft and hene A ∈ FS∧T . Similarly for A ∈ FT .5. Suppose that Xn → X in L1. Then by Markov's inequality Xn → X in probability:

P
(
|Xn −X| > ǫ

)
6 ǫ−1E

[
|Xn −X|

]
→ 0 as n→ ∞.Fix ǫ > 0, then there exists an N ∈ N suh that E
[
|Xn − X|

]
< ǫ for n > N . Thesequene X,X1, ..., XN is �nite and hene uniformly integrable, so there exists a K > 0suh that E

[
|Xn|1|Xn|>K

]
< ǫ for all n 6 N and E

[
|X|1[X|>K

]
< ǫ. For n > N we have

E
[
|Xn|1|Xn|>K

]
6 E

[
|Xn −X|1|Xn|>K

]
+ E

[
|X|1|Xn|>K

]
< ǫ+ E

[
|X|1|Xn|>K

]
.Then the seond term is small if P

(
|Xn| > K

) is small, uniformly in n. But then byMarkov's inequality and the fat that E[|Xn|] 6 E[|X|] + ǫ we have
P
(
|Xn| > K

)
6 K−1E

[
|Xn|

]
6 K−1(E

[
|X|
]
+ ǫ)whih an be made small by hoosing K large.83Here I will use the fat that 1T>(k+1)N1T>kN = 1T>(k+1)N .



ADVANCED PROBABILITY 87For the onverse suppose that Xn is UI and Xn → X in probability. Consider thefollowing approximation
E
[
|Xn−X|

]
6 E

[
|Xn−X|1|Xn−X|6K

]
+E
[
|Xn−X|1|Xn−X|>K

]
6 K+E

[
|Xn−X|1|Xn−X|>K

]
.Now by the uniform integrability the term on the RHS an be made small given that

P
(
|Xn − X| > K

) is small. Pik K = ǫ small and let n > N be su�iently large suhthat E
[
|Xn −X|1|Xn−X|>K

]
< ǫ.6. Suppose that P << Q then by the Radon-Nikodym theorem we have that P(A) =

EQ[X1A] where X ∈ L1(Q) and 0 6 X 6 1, so in partiular P(A) 6 Q(A).Conversely let Q(A) = 0, then for eah epsilon P(A) < ǫ, i.e. P(A) = 0.7. Suppose �rst that Q << P, then by the Radon-Nikodym theorem Q(A) = EP[X1A]for all A ∈ F with X ∈ L1(P) and 0 6 X 6 1. In partiular we have that Mn = E[X|Fn]and hene Mn is uniformly integrable.Suppose on the other hand that Mn is uniformly integrable (with respet to P), then
Mn onverges in L1(P) and a.s. to some M∞, so that Mn = E[M∞|Fn].8. The idea is to prove that T is independent of itself. To that end de�ne Fn :=
σ(Xk : k 6 n), then Fn is independent of σ(Xk : k > n) (as the random variables areindependent), and in partiular independent from T . This holds for all n ∈ N and hene
T is independent of F∞ :=

∨
n>1 Fn. However T ⊂ F∞ and hene T is independent ofitself. Now for any A ∈ T , we have that P(A) = P(A ∩ A) = P(A)P(A) so P(A) is either

0 or 1.The trivial ounterexample to when Xi are not independent is by onsidering Xi = Xfor some non-trivial random variable, then T = σ(X) whih is non-trivial.9. a) Let X ∈ F∞ be bounded, then Xn := E[X|Fn] makes sense and is bounded by thesame bound. Then by the martingale onvergene Xn → X in L1 and hene the result.b) By part a), the bounded elements of L1(F∞) are limit points of E[·|Fn] ∈
⋃

k>0 Fk.Now if X ∈ L1(F∞) is not bounded, then it an be approximated by bounded funtions.) Kolmogorov's 0-1 Law: We have that for any A ∈ T
E[1A|Fn] → 1Aso as before A is independent of Fn, hene E[1A|Fn] = P(A).d) In the ase Fn is �nite, then

E[X|Fn] =
∑ E[X1An]

P(An)
1Anwhih is omputable. So then the limits also may be omputed expliitly.(i) Suppose that the measure spae is separable. First note that L1(Fn) has ountablymany simple funtions with rational oe�ients and they are dense. Now ⋃L1(Fn) has aountable dense subset. By using double approximation, this set is also dense in L1(F∞).10. a) Notie that Sn is a submartingale and STab

n is bounded and hene by the optionalstopping theorem
E[S0] = 0 6 E[STab

] = aP(Ta 6 Tb) + bP(Tb < Ta).



88 ADVANCED PROBABILITYThe equation above gives a lower bound
P(Tb < Ta) >

−a
b− a

.Now as a → −∞, Ta → ∞ and the right hand side onverges to 1, whih gives that
P(Tb <∞) > 1. From this it follows that both Tb and Tab are �nite.(i) Diret omputation shows that
E

[(
q

p

)Sn

−
(
q

p

)Sn−1

|Fn−1

]
= E

[(
q

p

)Sn−1
((

q

p

)Xn

− 1

)
|Fn−1

]
=

(
q

p

)Sn−1
(

E

(
q

p

)Xn

− 1

)
.It su�es to hek that E[(q/p)Xn] = 1:

E[(q/p)Xn] = p
q

p
+ q

p

q
= p + q = 1.The martingaleXn := (q/p)Sn is bounded by 1, hene we may apply the optional stoppingtheorem to obtain

E[X0] = 1 = E[XTab
] = (q/p)aP(Ta < Tb) + (q/p)bP(Tb < Ta).Rearranging the above gives that

P(STab
= a) = P(Ta < Tb) =

1 − (q/p)b

(q/p)a − (q/p)b
.(ii) Let Xn : Sn − n(p − q), then Xn is a martingale. Notie that XTab is bounded by

−a ∨ b, so by the optional stopping theorem
E[X0] = 0 = E[XTab

] = E[STab
] − (p− q)E[Tab].11. a) Let Xn

i be i.i.d Bernoulli {0, 2} with equal probability and Fn := σ(Xk
i : i >

1, k 6 n) then Zn :=
∑Zn−1

i=1 Xn
i . Then E[Zn|Fn−1] = Zn−1E[Xn

1 ] = Zn−1 so Zn is amartingale. The martingale Zn is positive so by the martingale onvergene theorem itonverges to some Z∞ a.s. Now we show that the limit must be 0. For any k > 0 we havethat P(Zn+1 = k|Zn = k) = 1/2 and so
P(Zn = k; ...;Zn+N = k) 6 2−N .But now P(limZn = k) 6 2−N for eah N ∈ N.(ii) The onvergene again follows from non-negative martingale onvergene. Firstonsider the ase µ < 1. Then we have that E[Zn] = µn and so

P(Zn > 0) =
∑

k>1

P(Zn = k) 6
∑

k>1

kP(Zn = k) = µn.By taking n→ ∞ we see that Zn = 0 a.s.Now for the ase µ = 1 we ignore the ase P(Z1 = 1) = 1 otherwise the result doesnot hold, nor do we have any interesting ativities. So then p := P(Z1 = 0) > 0 as theexpetation is 1. Following the idea as above, let k > 0, then we have instead
P(Zn = k; ...;Zn+N = k) 6 (1 − p)Nand hene P(limZn = k) whih is the union of events of the form {∀n > N,Zn = k} iszero.



ADVANCED PROBABILITY 89(iii) Let p = P(M∞ = 0). There are a possible number of ases to onsider. If p = 0or 1, then the result follows easily. If 0 < p < 1 then on the set {M∞ = 0}, Zn → 0and hene pZn → 1. On the set {M∞ > 0} we have that as µ > 1, Zn → ∞, now as
p < 1 this implies that pZn → 0. Thus pZn → 1M∞=0. Zn roughly behaves like M∞µnasymptotially.) First by the tower law

V ar[Zn] = E
[
V ar[Z2

n|Zn−1]
]

= E[Zn−1σ
2] = µn−1σ2so then V ar(Mn) = µ−n−1σ2 whih shows the bound in L2. An appliation of Cauhy-Shwartz gives that E[Zn1Zn>0]

2 6 P(Zn > 0)E[Z2
n] so that

P(Zn > 0) >
E[Zn]2

E[Z2
n]

=
µ2n

µn−1σ2 + µ2n
>

1

1 + σ2
> 0.Thus the probability of survival is stritly positive.12. Take {Xi}i>1 to be i.i.d. Bernoulli {0, 2}, i.e. P(Xi = 0) = P(Xi = 2) = 1/2.Consider Mn :=

∏n
i=1Xi, then we have that

E[Mn −Mn−1|Fn−1] = E
[
(Xn − 1)Mn−1|Fn

]
=
(
E[Xn] − 1

)
Mn−1 = 0so Mn is a martingale. Next notie that E[Mn] = 1 by the independene of the Xi, sothat Mn annot onverge in L1 to 0. On the other hand observe that

P(Mn 6= 0) =
n∏

i=1

P(Xi 6= 0) =
1

2nand hene by Borel-Cantelli Mn → 0 a.s.13. First as M is bounded in L1, it onverges in L1 to M∞. On the event {T = ∞},
MT = M∞ ∈ L1, and on the event {T < ∞}, by dominated onvergene E

[
|MT |

]
=

limt→∞ E
[
|MT∧t|

] and as |M | is a submartingale E
[
|MT∧t|

]
6 E

[
|Mt|

]
6 E

[
|M∞|

].For the ounterexample take Mt = Bt a standard Brownian motion and T := inf{t >

0 : Bt = 1}, then E[BT ] = 1 6= 0 = E[B0].14. Let Fn := σ([a, b) : a, b ∈ Dn), then Fn inreases to F∞ whih is the Borelsigma-algebra. With this set up Mn is nothing but the projetion of f ′ on to Fn, i.e.
Mn = E[f ′|Fn]. Indeed for any [a, b) being a basi set in Fn, we have that ∫ b

a
f ′

n(x)dx =∫ b

a
f ′(x)dx. So now by Lévy's upward theorem Mn → E[f ′|F∞] = f ′ a.s and in L1 as f ′is ontinuous and hene Borel measurable.15. Let en be an orthonormal basis of H , we wish to show that ∑n

k=1 hkGk → Xh in L2and a.s., where Gk are i.i.d. normal and h =
∑
hnen. We have seen before that Xh ∈ L2.Let Fn := σ(G1, ..., Gn), then onsider the martingale Mn := E[Xh|Fn] =

∑n
k=1 hkGk.Now by theorem 72, the onvergene is a.s. as well.16. The Borel σ-algebra of C

(
[0, 1],R

) is generated by the oordinate proess, withelementary events {Xt1 ∈ B1, . . . , Xtn ∈ Bn}, for 0 6 t1 < · · · < tn 6 1 and Bi mea-surable subsets of R. It is also generated by the events of the form A = {Xt1 − X0 ∈
C1Xt2 − Xt1 ∈ C2, . . . , Xtn − Xtn−1 ∈ Cn}, for Ci measurable subsets of R. Can youprove it? To prove that P1 is absolutely ontinuous with respet to P and �nd its Radon-Nikodym derivative, it su�es then to ompare P1(A) and P(A). Using the indepen-dene of the inrements and their Gaussian nature, you an easily see that P1(A) =
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E
[
e−aXtn− a2t2n

2 1A

]
= E

[
e−aX1− a2

2 1A

], sine the proess (e−aXt− a2t2

2

)
06t61

is a martingale.It follows that dP1

dP
= e−aX1− a2

2 .17. This is pretty muh the same argument as Corollary 79. Let P be the uniformmeasure on Gn, X be the oordinate map and Fk := σ(X1, ..., Xk). Then we are doneif we an estimate ∣∣E[f |Fk+1] − E[f |Fk]
∣∣. Notie that E[f |Fk] is the average of f on

{σ : σi = xi, i 6 k} so that moving between the two averages, the funtion f ould thenat most di�er by one hange of oordinate, and hene ∣∣E[f |Fk+1] − E[f |Fk]
∣∣ 6 1 as f isa ontration. Hene by the Theorem 78, the result follows.18. The idea is to onstrut a set whih an be determined by f(t) for any t > 0. So take

{f : inf{t > 0 : f(t) 6= f(0)} = 0}. Notie that
{f : inf

{
t > 0 : f(t) 6= f(0)

}
= 0} =

⋂

t>0

{
f : f(t) 6= f(0)

}
∈ Ftfor any t > 0. However this set annot be in F0 as this annot be determined by sets ofthe form {

f : f(0) ∈ A
}.19. a) Take A ∈ ∩n>1σ(G,Gn, ...) and onsider X := 1A − E[1A|G]. Now as E[X|G] = 0,

X is independent of G. By de�nition X ∈ σ(G,Gn, ...) for eah n > 1 and hene X ∈
σ(Gn, ...), therefore X ∈ ∩n>1σ(Gn, ...).84Then Kolmogorov's 0-1 law gives that X is onstant, but E[X] = 0, so X = 0 a.s. Inother words 1A = E[1A|G], i.e. there exists a set B ∈ G suh that 1A = 1B a.s.b) By the independene of the inrements Tn := σ

(
Bt+1/n − Bt+ 1

n+1

) are independentfrom eah other and from Gt. Then as Gt+ = ∩n>1σ
(
Gt, Tn, ...

) from the previous partwe have that Gt and Gt+ oinide up to null events. The result now follows as they bothontain all the null events.15.3. Exerises on part III. 1. Set B̃t = tB1/t for t > 0 and B̃0 = 0. We know fromproposition 94 that B̃ is a Brownian motion. Also, as F eB0+ = T , Blumenthal's 0-1 lawapplied to B̃ shows that T is made up of trivial events for P. (They might be non-trivialfor a di�erent probability!)2. We proeed as in the proof of proposition 92, denoting by C the one. As the event
{τU = 0} ∈ F0+ , it su�es to prove that P(τU = 0) > c for some positive onstant cto prove that it has probability 1, by Blumenthal's 0-1 law. Let ǫ > 0 be given. As
P(τU 6 ǫ) > P(Bǫ ∈ C) and the law of B is invariant by rotations, we have P(Bǫ ∈ C) =

|A|
(∫

e−r2/2ǫ

(2πǫ)d/2 1r6a r
d−1dr

)
= |A|

(∫
1u6aǫ−1/2

2−u2/2

(2π)d/2 u
d−1du

)
> c, where |A| is the surfaeof A ⊂ Sd−1. Sending ǫ to 0 gives the onlusion.3. We make the same reasonning as in exerise 10 in example sheet 2. Set T =

min{H−a, Hb} and write p for P(H−a < Hb). As the stopped proesses (Bt)t>T is abounded martingale, the optionnal stopping theorem gives us: 0 = p(−a) + (1 − p)b,hene the value of p. Use the martingale B2
t − t to ompute E[T ].4. b) Given 0 6 s < t and A ∈ Fs, we have E

[
eσBt−σ2

2
t
1A

]
= E

[
eσBs−σ2

2
s
1A

] forall σ. Expanding the exponential on both sides in power series of σ, use the fat that84This is true as the L2 is the sum of orthogonal omponents.
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E[B2k] =

∏k−1
p=0(2k−2p−1) (indution) to justify the interhange of E and∑k. The term

E
[
(B2

t − t)1A

] appears as the oe�ient of σ on the lhs and the term E
[
(B2

s − s)1A

] asthe oe�ient of σ on the rhs. Their identi�ation gives the martingale property of the�rst proess as we an take any 0 6 s < t and A ∈ Fs. Look at the oe�ients of σ2 and
σ3 to obtain the martingale property of the two other proesses.855. a) We need θ to satisfy λ− θc = θ2

2
, that is θ =

√
c2 + 2λ− c, sine it is positive.b) As the stopped martingale (eθBc

t−λt
)

06t6T
is bounded, the optionnal stopping the-orem implies: 1 = E

[
eθx−λHc

x
], hene the formula. We hek that this funtion of λ > 0oinides with the Laplae transform of the given density. As the Laplae transformharaterizes the distribution Hc

x has the mentionned density/) It su�es to let λ derease to 0.6. b) Reall the strong Markov property: Given any �nite stopping time T , the proess
(BT+t −BT )t>0 is a Brownian motion independent of FT . Apply it to Ta for some a > 0.The fat that it is a Brownian motion says that if b > a then Tb − Ta is distributed as
Tb−a, giving the stationnarity of the proess (Ta)a>0. The independene of the inrementsomes from the seond piee of information provided by the strong Markov property:the independene of (BT+t − BT )t>0 with respet to FT . Given a1 < a2 < · · · < an, astraightforward indution enables to prove that the inrements Ta2 − Ta1 , . . . , Tan − Tan−1are independent. It is not a Lévy proess though, as it is not àdlàg but ontinuous onthe left with right limits. Prove it!7. a) We have Ta 6 Sa and Sa = Ta + inf{t > 0 ; Bt+Ta − BTa > 0}. The strong Markovproperty gives Sa = Ta, almost-surely.) Take for L the time in [0, 1] where Bt is maximum. Prove that it is almost-surely
< 1. It follows that we have almost-surely SL > 1 and SL 6= TL.8. a) Set T0 = 0 and de�ne indutively Sn = inf{t > Tn−1 ; Bt ∈ D} and Tn = inf{t >

Sn ; Bt /∈ B(0, 2r)}. By the strong Markov property and the invariane of the law of Brow-nian motion by rotations, the random variables ∫ Tk

Sk
1D(Bs) ds are iid. As they have pos-itive mean, the strong law of large numbers gives ∫∞

0
1D(Bs) ds >

∑∞
n=0

∫ Tk

Sk
1D(Bs) ds =

∞, almost-surely.b) Denote by pt(x, y) the transition kernel of Brownian motion. By Fubini's theorem,we have Ex

[∫∞
0
f(Bt) dt

]
=
∫ (∫∞

0
pt(x, y)

)
f(y) dy, for any non-negative funtion f . Thetime integral equals |y − x|2−d up to a multipliative onstant C. (Do the omputation!We see why we need d > 3.) This funtion of y is loally integrable with respet to y.869. We know from exerise 7 the distribution of T . As it is independent of B1, we have

E
[
f(B1

T )
]

=

∫ ∞

0

2−
1
2t√

2πt3
f(B1

t ) dt =

∫
f(x)

(∫ ∞

0

2−
1
2t√

2πt3
2−

x2

2t√
2πt

dt
)
dx =

∫
f(x)

dx

π(1 + x2)
,85Note that I have not tried to work diretly with the onditionnal expetation identity E

[
eσBt−

σ
2

2
t
∣∣Fs

]
=

eσBs−
σ
2

2
s as this identity involves random variables de�ned only almost-surely, so it is not obvious howto di�erentiate with respet to σ in a mathematially neat way.86If x is not in the domain of integration, no problem; otherwise, use polar oordinates near x.



92 ADVANCED PROBABILITYfor any bounded measurable funtion f : R → R. We read the distribution of B1
T above:it is a Cauhy random variable.10. The proess Mt = |Bt|2 − t d

(
=
∑d

i=1 |Bi
t|2 − t, sum of independent martingales)is a martingale. We would like to use the optionnal stopping theorem to the stoppedmartingale (Mt)t6T ; yet this proess is not bounded, so it is onvenient ot replae �rst T by

T ∧n (rather than proving for instane that (Mt)t6T is uniformly integrable, whih an bedone). The new stopped martingale is bounded. So we have |x|2 = E
[
|BT∧n|2−d(T ∧n)

],that is E
[
T ∧ n

]
=

E

[
|BT∧n|2

]
−|x|2

d
. Use monotone onvergene on the lhs, and dominatedonvergene on the rhs, to onlude by sending n to in�nity.11. Suppose g has a maximum M at a point x0 inside O. As it has the mean valueproperty, g needs to be equal toM near x0; this shows that the losed set where g attainsits maximum is also open. As O is onneted, g is onstant, equal to its maximum, onthe whole of O.Would a given Dirihlet problem have two solutions, their di�erene would be a solutionto the Dirihlet problem with null boundary ondition, so would have a null maximum.As the opposite of this di�erene is also a solution, it would also have a null maximum,leading to the equality of the two funtions.13. Let denote by (Nt)t>0 a Poisson proess of intensity λ and jump measure J . Can yousee why it su�es to onsider the ase where J(·) = δ1(·)? In that ase, we need to provethat given any n > 1, any times t1 < · · · < t− n and any integers i1, . . . , in, we have

P
(
Nt2 −Nt1 = i1, . . . , Ntn −Ntn−1 = in−1

)
=

n−1∏

k=1

(
λ(tk − tk−1)

)ik

ik!
e−λ(tk−tk−1).We proeed by indution on n > 1. The ase n = 1 is treated in exerise 12. To makethe indution step, it su�es to prove that(15.1)

P
(
Ntn+1 −Ntn = in

∣∣Ntk −Ntk−1
= ik−1, for k = 1..n

)
=

(
λ(tn − tn−1)

)in

i!
e−λ(tn+1−tn)Set i = i1 + · · ·+ in−1 and denote by Hi the hitting time of {i} by the proess N . Then,onditionally on the event {Hi < tn−1 < Hi + Si}, time Hi + Si − tn−1 to wait after tn−1before the next jump is exponentially distributed, with parameter λ, by the memorylessproperty of Si. Identity (15.1) follows as P

(
Ntn+1 −Ntn = in

∣∣Ntk −Ntk−1
= ik−1, for k =

1..n
)

= P
(
Ntn+1 − Ntn = in

∣∣Hi < tn−1 < Hi + Si

), by the strong Markov property of theMarkov hain (Nt)t>0.14. Denote by S1 the �rst holding time. The obvserver is proved wrong if at some time
t he observes that {Nt = Nt−S1}. Given s > 0, let de�ne the stopping time Ts = inf{t >

s ; Nt = Nt−s} � with respet to whih �ltration? Then, onditionning on the �rst jump,the strong Markov property gives
E
[
Ts

]
= se−λs +

∫ s

0

(
a+ E[Ts]

)
λe−λa da,



ADVANCED PROBABILITY 93so E
[
Ts

]
= eλS1−1

λ
. The mean time until one sees a holding time bigger than S1 is thus

∫ ∞

0

(
s+ E[Ts]

)
λe−λs ds = ∞.15. a) It su�es to prove, for all n > 1, that S1 + · · ·+Sn is almost-surely di�erent from

t. (Can you see why?) This follows from the fat that the random variable S1 + · · ·+ Snhas a density with respet to Lebesgue measure on R+.b) Note that
P(Tt > t+ s) =

∞∑

k=1

P(Nt = k,Nt+s = k) =

∞∑

k=1

P(Nt = k,Nt+s −Nt = 0)

=
∞∑

k=1

P(Nt = k) P(, Nt+s −Nt = 0) =
∞∑

k=1

P(Nt = k) e−λs = e−λs.

(15.2)So Tt − t is exponentially distributed, with parameter λ.16. It's even worse! The sum of two Brownian motions an be non-Brownian! To see that,let us work on the subset Ω of C(R+,R
2) made up of paths starting from 0, equipped withits Borel σ-algebra. Let X be the oordinate proess Xt(ω) = ω(t) = (ω1(t), ω2(t)) ∈ R2,for ω ∈ Ω, and let P be Wiener measure. Let P′ be the measure on (Ω,F) under whih Xis a Wiener measure with orrelation −1. Let Q = P+P′

2
. I let you prove that the proesses

ω1 and ω2 are Wiener proesses under Q. Can you prove by a simple alulation that theproess ω + ω2 is not Gaussian? As Brownian motion with dift (a Gaussian proess!) isthe only ontinuous Lévy proess (see exerise 21), this proves the laim.17. Let87 Ω be an arbitrary spae and F be the trivial σ-algebra over it. (We workwith deterministi proesses!). Let also (xα)α be a Hamel basis of Haar over the rationalnumbers. For every t > 0, let Xt be the sum of the oordinates of t in the Hamel basis. As
Xt+s = Xt +Xs, the proess X has stationnary independent inrements. As X is highlydisontinuous (it takes values in Q!), it does not have a modi�ation whih is àdlàg .18. For s < t, we have E

[
eiλ(Xt−Xs)

]
= e(t−s)g(λ). Senging s ↑ t we onlude that

E
[
eiλ(∆Xt)

]
= 1, so ∆Xt has the same �stribution as the onstant 0, that is ∆Xt isalmost-surely null.19. a) We know, from the general onstrution of Lévy proesses given in the ourse,that X has the same law as the sum of a difted Brownian motion, an independent Poissonproess with �nite intensity, and a in�nite sum of independent ompensated Poissonproesses. (This sum takes are of the fat that the jump measure an have an in�nitemass.) In the ase of a �nite jump measure, only the �rst two termsare needed; as Poissonproesses have almost-surely �nitely many jumps in any �nite time interval, we are done.b)We an forget the ontinuous part (drifted Brownian motion) and work only with thePoisson proess. Let Si, Ji be the suessive holding and jump times of the proess; theyare all independent. By onstrution, the proess Y is onstruted out of the sequeneof jump times ((S1 + · · · + Si)1ǫi=1

)
i>1

and the orresponding jumps. The time betweentwo jumps will have the same law as S1 + · · · + SN , where N is a geometrial randomvariable with parameter p. A straightforward omputation shows that this random sum87This solution is taken from the exellent book [Med07℄ by P. Medvegyev.



94 ADVANCED PROBABILITYwith exponentially distributed, with parameter pλ. So Y is a Lévy proess with jumpmeasure pΛX .20 - 21. Copy word by word what has been done previously elsewhere.22. See for instane theorem (28.12), p. 76, in [RW00℄Referenes[BMP02℄ P. Baldi, L. Mazliak, and P. Priouret. Martingales and Markov hains. Chapman & Hall/CRC,Boa Raton, FL, 2002. Solved exerises and elements of theory, Translated from the 1998 Frenhoriginal.[Chu02℄ Kai Lai Chung. Green, Brown, and probability & Brownian motion on the line. World Sienti�Publishing Co. In., River Edge, NJ, 2002.[Doo94℄ J. L. Doob. Measure theory, volume 143 of Graduate Texts in Mathematis. Springer-Verlag,New York, 1994.[Dud02℄ R. M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advaned Math-ematis. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original.[DY79℄ E. B. Dynkin and A. A. Yushkevih. Controlled Markov proesses, volume 235 of Grundlehrender Mathematishen Wissenshaften [Fundamental Priniples of Mathematial Sienes℄.Springer-Verlag, Berlin, 1979. Translated from the Russian original by J. M. Danskin andC. Holland.[GS04℄ I. I. Gikhman and A. V. Skorokhod. The theory of stohasti proesses. I. Classis in Mathe-matis. Springer-Verlag, Berlin, 2004. Translated from the Russian by S. Kotz, Reprint of the1974 edition.[IW89℄ N. Ikeda and S. Watanabe. Stohasti di�erential equations and di�usion proesses, volume 24of North-Holland Mathematial Library. North-Holland Publishing Co., Amsterdam, seondedition, 1989.[JS03℄ J. Jaod and A. N. Shiryaev. Limit theorems for stohasti proesses, volume 288 ofGrundlehren der Mathematishen Wissenshaften [Fundamental Priniples of MathematialSienes℄. Springer-Verlag, Berlin, seond edition, 2003.[Kal02℄ O. Kallenberg. Foundations of modern probability. Probability and its Appliations (New York).Springer-Verlag, New York, seond edition, 2002.[Kry02℄ N. V. Krylov. Introdution to the theory of random proesses, volume 43 of Graduate Studiesin Mathematis. Amerian Mathematial Soiety, Providene, RI, 2002.[Med07℄ P. Medvegyev. Stohasti integration theory, volume 14 of Oxford Graduate Texts in Mathe-matis. Oxford University Press, Oxford, 2007.[RW00℄ L. C. G. Rogers and D. Williams. Di�usions, Markov proesses, and martingales. Vol. 1.Cambridge Mathematial Library. Cambridge University Press, Cambridge, 2000. Foundations,Reprint of the seond (1994) edition.[Sat99℄ K. Sato. Lévy proesses and in�nitely divisible distributions, volume 68 of Cambridge Studiesin Advaned Mathematis. Cambridge University Press, Cambridge, 1999. Translated from the1990 Japanese original, Revised by the author.[Shi96℄ A. N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathematis. Springer-Verlag, NewYork, seond edition, 1996. Translated from the �rst (1980) Russian edition by R. P. Boas.[Sto87℄ J. M. Stoyanov. Counterexamples in probability. Wiley Series in Probability and MathematialStatistis: Probability and Mathematial Statistis. John Wiley & Sons Ltd., Chihester, 1987.[Wil91℄ D. Williams. Probability with martingales. Cambridge Mathematial Textbooks. CambridgeUniversity Press, Cambridge, 1991.
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