
3. Rough paths

Guide for this section

Hölder p-rough paths, which control the rough differential equations

dxt = F(xt)X(dt), dϕt = F⊗X(dt),

and play the role of the control h in the model classical ordinary differential equation

dxt = Vi(xt) dh
i
t = F(xt) dht

are defined in section 3.1.2. As R�-valued paths, they are not regular enough for the
formula

µts(x) = x+X i
tsVi(x)

to define an approximate flow, as in the classical Euler scheme studied in exercice 1.
The missing bit of information needed to stabilize the situation is a substitute of the
non-existing iterated integrals

∫ t

s
Xj

rdX
k
r , and higher order iterated integrals, which

provide a partial description of what happens to X during any time interval (s, t).
A (Hölder) p-rough path is a multi-level object whose higher order parts provide
precisely that information. We saw in the introduction that iterated integrals appear
naturally in Taylor-Euler expansions of solutions to ordinary differential equations;
they provide higher order numerical schemes like Milstein’ second order scheme. It is
an important fact that p-rough paths take values in a very special kind of algebraic
structure, whose basic features are explained in section 3.1.1. A Hölder p-rough
path will then appear as a kind of 1

p
-Hölder path in that space. We shall then study

in section 3.2 the space of p-rough path for itself.

3.1. Definition of a p-rough path. Iterated integrals, as they appear for instance
in the form

∫ t

s

∫ y

s
dhj

r dh
k
u or

∫ t

s

∫ y

s

∫ r

s
(· · · ) are multi-indexed quantities. A useful

formalism to with such object is provided by the notion of tensor produc. We
first start our investigation by recalling some elementary facts about that notion.
Eventually, all what will be used for practical computations on rough differential
equations will be a product operation very similar to the product operation on
polynomials. This abstract setting however greatly clarifies the meaning of these
computations.

3.1.1. An algebraic prelude: tensor algebra over R� and free nilpotent Lie group. Let
first recall what the algebraic tensor product U ⊗ V of any two Banach spaces U
and V is. Denote by V’ the set of all continuous linear forms on V. Given u ∈ U
and v ∈ V, we define a continuous linear map on V’ setting

(u⊗ v)(v′) = (v′, v) u,

for any v′ ∈∈ V′. The algebraic tensor product U ⊗ V is the set of all finite linear
combinations of such maps. Elementary elements u ⊗ v) are 1-dimensional rank
maps. Note that an element of U ⊗ V can have several different decompositions as
a sum of elementary elements; this has no consequences as they all define the same
map from V’ to U.
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As an example, (R�)⊗ (R�)′ is the set of all linear maps from R
� to itself that is

L(R�). We keep that interpretation for (R�)⊗ (R�) as R
� and (R�)′ are canonically

identified. To see which element of L(R�) corresponds to u ⊗ v, it suffices to look
at the image of the jth vector εj of the canonical basis by the map; it gives the jth

column of the matrix of u⊗ v in the canonical basis. We have

(u⊗ v)
(
εj
)
= (v, εj) u.

For N ∈ N ∪ {∞}, write T
(N)
� for the direct sum

N⊕
r=0

(
R

�
)⊗r, with the convention

that
(
R

�
)⊗0 stands for R. Denote by a =

N⊕
r=0

ar and b =
N⊕
r=0

br two generic elements

of T (N)
� . The vector space T

(N)
� is an algebra for the operations

a+ b =
N⊕
r=0

(ar + br),

ab =
N⊕
r=0

cr, with cr =

r∑
k=0

ak ⊗ br−k ∈ (R�)⊗r
(3.1)

It is called the (truncated) tensor algebra of R
� (if N is finite). Note the

similarity between these rules and the analogue rules for addition and product of
polynomials.

The exponential map exp : T
(∞)
� → T

(∞)
� and the logarithm map log : T

(∞)
� →

T
(∞)
� are defined by the usual series

(3.2) exp(a) =
∑
n�0

an

n!
, log(b) =

∑
n�1

(−1)n

n
(1− b)n,

with the convention bfa0 = 1 ∈ R ⊂ T
(∞)
� . Denote by πN : T

(∞)
� → T

(N)
� the natural

projection. We also denote by exp and log the restrictions to T
(N)
� of the maps

πN ◦ exp and πN ◦ log respectively. Denote by T
(N),1
� , resp. T

(N),0
� , the elements

a0 ⊕ · · · ⊕ cN of T (N)
� such that a0 = 0, resp. a0 = 1. All the elements of T (N),1

� are
invertible, and exp : T

(N),0
� → T

(N),1
� and log : T

(N),1
� → T

(N),0
� are smooth reciprocal

bijections.
The set T

(N),1
� is naturally equipped with a norm defined by the formula

‖a‖ :=

�∑
i=1

∥∥ai∥∥ 1
i

Eucl,

where
∥∥ai∥∥Eucl stands for the Euclidean norm of ai ∈ (R�)⊗i identified with an

element of R
�i by looking at its coordinates in the canonical basis. The choice

of power 1
i

comes from the fact that T
(N),1
� is naturally equipped with a dilation

operation
δλ(a) =

(
1, λa1, . . . , λNaN

)
,
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so the norm ‖ · ‖ is homogeneous with respect to this dilation, in the sense that one
has ∥∥δλ(a)∥∥ = |λ|‖a‖

for all λ ∈ R, and all a ∈ T
(N),1
� .

The formula [a,b] = ab − ba, defines a Lie bracket on T
(N)
� . Define inductively

F = F 1 = R
�, considered as a subset of T (∞)

� , and F n+1 = [F, F n] ⊂ T
(∞)
� .

Definition 1. • The Lie algebra gN� generated by the F 1, . . . , FN in T
(N)
� is

called the N-step free nilpotent Lie algebra.
• As a consequence of Baker-Campbell-Hausdorf-Dynkin formula, the subset
exp

(
gN�

)
of T (N),1

� is a group for the multiplication operation. It is called the
N-step nilpotent Lie group on R

� and denoted by G
(N)
� .

As all finite dimensional Lie groups, the N -step nilpotent Lie group is equipped
with a natural (sub-Riemannian) distance inherited from its manifold structure. Its
definition rests on the fact that the element au of T

(N)
� is for any a ∈ G

(N)
� and

u ∈ R
� ⊂ T

(N)
� a tangent vector to G

(N)
� at point a (as u is tangent to G

(N)
� at the

identity and tnagent vectors are transported by left translation in the group). So
the ordinary differential equation

dat = at ḣt

makes sense for any R
�-valued smooth control h, and defines a path in G

(N)
� started

from the identity. We define the size |a| of a by the formula

|a| = inf

∫ 1

0

∣∣ḣt

∣∣ dt,
where the infimum is over the set of all smooth controls h such that a1 = a. This
set is non-empty as a ∈ exp

(
gN

)
can be written as a1 for some piecewise C1 control,

as a consequence of a theorem of sub-Riemannian geometry due to Chow; see for
instance the textbook [11] for a nice account of that theorem. The distance between
any two points a and b of G(N)

� is then defined as
∣∣a−1b

∣∣. It is homogeneous in the
sense that if a = exp(u), with u ∈ R

� ⊂ T
(N)
� , then

∣∣ exp(λu)∣∣ = |λ||a|, for all λ ∈ R

and all u ∈ R
� ⊂ T

(N)
� .

This way of defining a distance is intrinsic to G
(N)
� and classical in geometry. From

an extrinsic point of view, one can also consider G
(N)
� as a subset of T (N)

� and use
the ambiant metric to define the distance between any two points a and b of G(N)

�

as
∥∥a−1b

∥∥. It can be proved (this is elementary, see e.g. proposition 10 in Appendix
A of [12], pp. 76-77) that the two norms | · | and ‖ · ‖ on G

(N)
� are equivalent, so one

can equivalently work with one or the other, depending on the context. This will be
useful in defining the Brownian rough path for example.
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3.1.2. Definition of a p-rough path. The relevance of the algebraic framework pro-
vided by the N -step nilpotent Lie group for the study of smooth paths was first
noted by Chen in his seminal work [13]. Indeed, for any R

�-valued smooth path
(xs)s�0, the family of iterated integrals

XN
ts :=

(
1, xt − xs,

∫ t

s

∫ s1

s

dxs2 ⊗ dxs1, . . . ,

∫
s�s1�···�sN�t

dxs1 ⊗ · · · ⊗ dxsN

)

defines for all 0 � s � t an element of T (N),1
� with the property that if x• is scaled

into λx• then XN becomes δλX
N . We actually have XN

ts ∈ G
(N)
� . To see that, notice

that, as a function of t, the function XN
ts satisfies the differential equation

dXN
ts = XN

ts dxt,

in T
(N)
� driven by the R

�-valued smooth contro x, so it defines a G
(N)
� -valued path

as an integral curve of a field of tangent vectors. The above differential equation
also makes it clear the we have the following Chen relations

XN
ts = XN

usX
N
tu,

for all 0 � s � u � t; they imply in particular the identity

XN
ts =

(
XN

s0

)−1

XN
t0,

which is here nothing but the "flow" property for ordinary differential equation
solutions. Rough paths and weak geometric rough paths are somehow an abstract
version of this family of iterated integrals.

Definition 2. Let 2 � p. A Hölder p-rough path on [0, T ] is a T
([p]),1
� -valued

path X : t ∈ [0, T ] 
→ 1⊕X1
t ⊕X2

t ⊕ · · · ⊕X
[p]
t such that

(3.3)
∥∥X i

∥∥
i
p

:= sup
0�s<t�T

|X i
ts|

|t− s| ip
< ∞,

for all i = 1 . . . [p], where we set Xts = X−1
s Xt. We define the norm of X to be

(3.4) ‖X‖ := max
i=1...[p]

∥∥X i
∥∥

i
p

,

and a distance d(X,Y) = ‖X −Y‖ on the set of Hölder p-rough path. A Hölder
weak geometric p-rough path on [0, T ] is a G

([p])
� -valued p-rough path.

So a (weak geometric) Hölder p-rough path is in a way nothing but a T
(N),1
� (or

G
(N)
� )-valued 1

p
-Hölder continuous path, for the ‖ · ‖-norm introduced above and the

use of X−1
s Xt in place of the usual Xt −Xs. Note that the Chen relation

Xts = XusXtu

is granted by the definition of Xts = X−1
s Xt.

For 2 � p < 3, Chen’s relation is equivalent to

(i) X1
ts = X1

tu +X1
us,

(ii) X2
ts = X2

tu +X1
us ⊗X1

tu +X2
us.
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Condition (i) means that X1
ts = X1

t0−X1
s0 represents the increment of the Rd-valued

path
(
X1

r0

)
0�r�T

. Condition (ii) is nothing but the analogue of the elementary
property

∫ t

s

∫ r

s
=

∫ u

s

∫ r

s
+
∫ t

u

∫ u

s
+
∫ t

u

∫ r

u
, satisfied by any reasonable notion of integral

on R that satisfies the Chasles relation∫ t

s

=

∫ u

s

+

∫ t

u

This remark justifies thinking of the
(
R

� ⊗ R
�
)
-part of a rough path as a kind

of iterated integral of X1 against itself, although this hypothetical iterated integral
does not make sense in itself for lack of an integration operation for a general Hölder
path in R

�. In that setting, a p-rough path X is a weak geometric p-rough path iff
the symmetric part of X2

ts is 1
2
X1

ts ⊗X1
ts, for all 0 � s � t � T .

Note that the space of Hölder p-rough paths is not a vector space; this prevents
the use of the classical Banach space calculus.

It is clear that considering the iterated integrals of any given smooth path defines
a p-rough path above it, for any p � 2. This lift is not unique, as if we are given
a p-rough path X =

(
X1, X2

)
, with 2 � p < 3 say, and any 2

p
-Hölder continuous

(R�)⊗2-valued path
(
Mt

)
0�t�1

, we define a new rough path setting Mts = Mt −Ms,
and

X′
ts =

(
X1

ts, X
2
ts +Mts

)
for all 0 � s � t � 1. Relations (i) and (ii) above are indeed easily checked.

Last, note that a Hölder p-rough path is also a Hölder q-rough path for any
p < q < [p] + 1.

3.2. The metric space of p-rough paths. The distance d defined in definition 2
is actually not a distance since only the increments Xts−Yts are taken into account.
We define a proper metric on the set of all Hölder p-rough paths setting

d(X,Y) =
∣∣X1

0 − Y 1
0

∣∣+ d(X,Y).

Proposition 3. The metric d turns the set of all Hölder p-rough paths into a
(non-separable) complete metric space.

Proof – Given a Cauchy sequence of Hölder p-rough paths (n)X, there is no loss
of generality in supposing that their first level starts from the same point in
R

�. It follows from the uniform Hölder bounds for
∥∥∥(n)X

i

ts − (m)X
i

ts

∥∥∥
i
p

, and (an

easily proved version of) Ascoli-Arzela theorem (for 2-parameter maps) that (n)X
converges uniformly to some Hölder p-rough path X. To prove the convergence
of (n)X to X in d-distance, it suffices to send m to infinity in the inequality∣∣∣(n)X i

ts − (m)X
i

ts

∣∣∣ � ε |t− s| ip ,
which holds for all n,m bigger than some Nε, uniformly with respect to 0 � s �
t � 1.
An uncountable family of R�-valued 1

p
-Hölder continuous functions at pairwise 1

p
-

Hölder distance bounded below by a positive constant is constructed in example
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5.28 of [3]. As the set of all first levels of the set of Hölder p-rough paths is a
subset of the set of R�-valued 1

p
-Hölder paths, this examples implies the non-

separability of set of all Hölder p-rough paths. �
The following interpolation result will be useful in several places to prove rough

paths convergence results at a cheap price.

Proposition 4. Assume (n)X is a sequence of Hölder p-rough paths with uniform
bounds

(3.5) sup
n

∥∥(n)X
∥∥ � C < ∞,

which converge pointwise, in the sense that (n)Xts converges to some Xts for each
0 � s � t � 1. Then the limit object X is a Hölder p-rough path, and (n)X converges
to X as a Hölder q-rough path, for any p < q � [p] + 1.

Proof – (Following the solution of exercice 2.9 in [5]) The fact that X is a Hölder
p-rough path is a direct consequence of the uniform bounds (3.5) and pointwise
convergence: ∣∣X i

ts

∣∣ = lim
n

∣∣∣(n)X i

ts

∣∣∣ � C|t− s| ip .

Would the convergence of (n)X to X be uniform, we could find a sequence εn
decreasing to 0, such that, uniformly in s, t,∣∣∣X i

ts − (n)X
i

ts

∣∣∣ � εn,
∣∣∣X i

ts − (n)X
i

ts

∣∣∣ � 2C|t− s| ip .

Using the geometric interpolation a∧b � a1−θbθ, with θ = p
q
< 1, we would have

∣∣∣X i
ts − (n)X

i

ts

∣∣∣ � ε
1− p

q
n |t− s| ip ,

which entails the convergence result as a Hölder q-rough path.
We proceed as follow to see that pointwise convergence suffices to get the result.
Given a partition π of [0, 1] and any 0 � s � t � 1, denote by s, t the nearest
points in π to s and t respectively. Writing

(3.6) d
(
Xts,

(n)Xts

)
� d

(
Xts,Xts

)
+ d

(
Xts,

(n)Xts

)
+ d

(
(n)Xts,

(n)Xts

)

and the fact that

Xts = XssXtsXtt,
(n)Xts =

(n)Xss
(n)Xts

(n)Xtt

and the uniform estimate (3.5) to see that the first and third terms in the
above upper bound can be made arbitrarily small by choosing a partition with
a small enough mesh, uniformly in s, t and n. The second term is dealt with the
pointwise convergence assumption as it involves only finitely many points once
the partition π has been chosen as above. �
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3.3. Exercices. 7. Lyons’ extension theorem [10]. Let n be a positive integer. An
n-truncated multiplicative functional over R

� in the sense of Chen-Lyons is a T
(n),1
� -valued

map X =
(
Xst

)
0�s�t�1

, with components Xk
st, such that we have

Xst = XsuXut

for all 0 � s � u � t � 1, that is

Xi
ts =

i∑
k=0

Xk
suX

i−k
ut

for all 0 � i � n. A T
(n),1
� -valued map X is an n-almost-multiplicative functional if for

every we have ∣∣∣Xk
ts −

(
XusXtu

)k| � c |t− s|a
for all 0 � s � t � 1 and 0 � k � n, for some control ω and some constant a > 1. Prove
that if X is an n-truncated multiplicative functional and Y n+1

ts is a continuous (Rd)⊗n+1-
valued map defined for 0 � s � t � 1, such that

Y =
(
1,X1, . . . ,Xn, Y n+1

)
is an (n + 1)-truncated almost-multiplicative functional, then there exists a unique Xn+1

ts

such that ∣∣∣Xn+1
ts − Y n+1

ts

∣∣∣ � c1 |t− s|a
holds for some positive constant c1, and

Z =
(
1,X1, . . . ,Xn,Xn+1

)

is an (n+ 1)-multiplicative functional.

8. Pure area rough path. Let xn be the R
2-valued path defined in complex notations

by the formula

xnt =
1

n
exp

(
2iπn2t

)
,

for 0 � t � 1. Let 2 < p < 3 be given.
a) Show that the natural lift Xn =

(
xn,Xn

)
of xn to a Hölder p-rough path converges

pointwise to the Hölder p-rough path X = (X,X) with X = 0 and

Xts = π (t− s)

(
0 1
−1 0

)
.

b) Prove the uniform bounds supn
∥∥xn∥∥ 1

2
< ∞ and supn

∥∥Xn
∥∥

1
2
< ∞.

c) Conclude by interpolation that the convergence of Xn to X takes place in the
space of Hölder p-rough paths.

9. Wide oscillations. Find a widely oscillating piecewise smooth path converging to
(0, 0, tI) in the space of Hölder p-rough paths, for 3 < p < 4. The letter I stands here for
the element of (R�)⊗3 given in the canonical basis by Iijk = δijδjk.

10. Lifting α-Hölder paths to rough paths, for α > 1
2 . Show that using the Young

integral defined in exercice 5 one can lift any α-Hölder paths, with α > 1
2 , into a Hölder

p-rough path, for any p � 2.
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11. Gubinelli’s controlled paths. Let 2 < p < 3 be given together with a Hölder
p-rough path X =

(
X,X

)
over R�. A controlled path is somehow a path whose increments

look like the increments of the first level of X, in a quantitative way. More precisely, an
R
d-valued path z• is said to be a path controlled by X if its increments Zts = zt − zs,

satisfy
Zts = Z ′

sXts +Rts,

for all 0 � s � t � 1, for some L
(
R
�,Rd

)
-valued 1

p -Lipschitz map Z ′•, and some R
d-valued

2
p -Lipschitz map R.

a) Prove that one defines a complete metric on the set of Rd-valued paths controlled
by X setting

‖z‖ := ‖Z ′‖ 1
p
+ ‖R‖ 2

p
+

∣∣z0∣∣,
where ‖ · ‖α stands for the α-Lipscthiz norm.

b) The crucial property of controlled path is that they admit a notural lift into a
Hölder p-rough path.

(i) Show that we define an (Rd)⊗2-valued almost-additive functional (see exercice
2) setting

µts = zs ⊗
(
zt − zs

)
+ Z ′

s ⊗ Z ′
sXts,

where (
Z ′
s ⊗ Z ′

s

)
(a⊗ b) =

(
Z ′
s(a)

)⊗ (
Z ′
s(b)

)
for any two elements a, b of Rd.

(ii) Let ϕ stand for the associated additive functional. Show that (z, ϕ) is a Hölder
p-rough path.

The Banach space structure of the set of Rd-paths controlled by X is the main motivation
for its introduction, in contrast with the non-linear space of Hölder p-rough paths itself,
whose study requires non-conventional tools. The use of controlled paths also seems well-
motivated from a dynamical point of view, as we expect any solution to a rough differential
equation

dxt = F(xt)X(dt)

to be locally described by a first order Taylor expansion, in the sense that

xt = xs + F(xs)Xts + o(·);
we even expect a second order Taylor expansion in that setting... We warmly recommand
the forthcoming lecture notes [5] for an account of the theory of rough differential equations
from Gubinelli’s point of view.
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