4. Flows driven By Rough Paths

Guide for this section

We have seen in part I of the course that a \mathcal{C}^{1}-approximate flow on a Banach space E defines a unique flow $\varphi=\left(\varphi_{t s}\right)_{0 \leqslant s \leqslant t \leqslant 1}$ on E such that the inequality

$$
\begin{equation*}
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leqslant c|t-s|^{a} \tag{4.1}
\end{equation*}
$$

holds for some positive constants c and $a>1$, for all $0 \leqslant s \leqslant t \leqslant T$ sufficiently close. The construction of φ is actually quite explicit, for if we denote by $\mu_{\pi_{t s}}$ the composition of the maps $\mu_{t_{i+1} t_{i}}$ along the times t_{i} of a partition $\pi_{t s}$ of an interval $[s, t]$, the map $\mu_{t s}$ satisfies the estimate

$$
\begin{equation*}
\left\|\varphi_{t s}-\mu_{\pi_{t s}}\right\|_{\infty} \leqslant \frac{2}{1-2^{1-a}} c_{1}^{2} T\left|\pi_{t s}\right|^{a-1} \tag{4.2}
\end{equation*}
$$

where c_{1} is the constant that appears in the definition of a \mathcal{C}^{1}-approximate flow

$$
\begin{equation*}
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{\mathcal{C}^{1}} \leqslant c_{1}|t-s|^{a} . \tag{4.3}
\end{equation*}
$$

It follows in particular from equation (4.1) that if μ depends continuously on some metric space-valued parameter λ, with respect to the \mathcal{C}^{0}-topology, and if identity (4.3) holds uniformly for λ moving in a bounded set say, then φ depends continuously on λ, as a uniform limit of continuous functions.

The point about the machinery of \mathcal{C}^{1}-approximate flows is that they actually pop up naturally in a number of situations, under the form of a local in time description of the dynamics under study; nothing else than a kind of Taylor expansion. This was quite clear in exercice 1 on the ordinary controlled differential equation

$$
\begin{equation*}
d x_{t}=V_{i}\left(x_{t}\right) d h_{t}^{i} \tag{4.4}
\end{equation*}
$$

with \mathcal{C}^{1} real-valued controls h^{1}, \ldots, h^{ℓ} and \mathcal{C}_{b}^{2} vector fields V_{1}, \ldots, V_{ℓ} in \mathbb{R}^{d}. The 1-step Euler scheme

$$
\mu_{t s}(x)=x+\left(h_{t}^{i}-h_{s}^{i}\right) V_{i}(x)
$$

defines in that case a \mathcal{C}^{1}-approximate flow which has the awaited Taylor-type expansion, in the sense that one has

$$
\begin{equation*}
f\left(\mu_{t s}(x)\right)=f(x)+\left(h_{t}^{i}-h_{s}^{i}\right)\left(V_{i} f\right)(x)+O\left(|t-s|^{>1}\right) \tag{4.5}
\end{equation*}
$$

for any function f of class \mathcal{C}_{b}^{2}; but μ fails to be a flow. Its associated flow is not only a flow, it also satisfies equation (4.5) as a consequence of identity (4.1).
We shall proceed in a very similar way to give some meaning and solve the rough differential equation on flows

$$
\begin{equation*}
d \varphi=V d t+\mathrm{F}^{\otimes} \mathbf{X}(d t) \tag{4.6}
\end{equation*}
$$

where V is a Lipschitz continuous vector field on E and $\mathrm{F}=\left(V_{1}, \ldots, V_{\ell}\right)$ is a collection of sufficiently regular vector fields on E , and \mathbf{X} is a Hölder p-rough path over
\mathbb{R}^{ℓ}. A solution flow to equation (4.6) will be defined as a flow on E with a uniform Taylor-Euler expansion of the form

$$
\begin{equation*}
f\left(\varphi_{t s}(x)\right)=f(x)+\sum_{|I| \leqslant[p]} X_{t s}^{I}\left(V_{I} f\right)(x)+O\left(|t-s|^{>1}\right), \tag{4.7}
\end{equation*}
$$

where $I=\left(i_{1}, \ldots, i_{k}\right) \in \llbracket 1, \ell \rrbracket^{k}$ is a multi-index with size $k \leqslant[p]$, and $X_{t s}^{I}$ stands for the coordinates of $\mathbf{X}_{t s}$ in the canonical basis of $T_{\ell}^{[p], 1}$. The vector field V_{i} is seen here as a $1^{\text {st }}$-order differential operator, and $V_{I}=V_{i_{1}} \cdots V_{i_{k}}$ as the $k^{\text {th }}$-order differential operator obtained by applying successively the operators $V_{i_{n}}$.

For $V=0$ and \mathbf{X} the (weak geometric) p-rough path canonically associated with an \mathbb{R}^{ℓ}-valued \mathcal{C}^{1} control h, with $2 \leqslant p<3$, equation (4.7) becomes
$f\left(\varphi_{t s}(x)\right)=f(x)+\left(h_{t}^{i}-h_{s}^{i}\right)\left(V_{i} f\right)(x)+\left(\int_{s}^{t} \int_{s}^{r} d h_{u}^{j} d h_{r}^{k}\right)\left(V_{j} V_{k} f\right)(x)+O\left(|t-s|^{>1}\right)$,
which is nothing else than Taylor formula at order 2 for the solution to the ordinary differential equation (4.4) started at x at time s. Condition (4.7) is a natural analogue of (4.8) and its higher order analogues.

There is actually a simple way of constructing a map $\mu_{t s}$ which satisfies the Euler expansion (4.7). It can be defined as the time 1 map associated with an ordinary differential equation constructed form the V_{i} and their brackets, and where $\mathbf{X}_{t s}$ appears as a parameter under the form of its logarithm. That these maps $\mu_{t s}$ form a \mathcal{C}^{1}-approximate flow will eventually appear as a consequence of the fact that the time 1 map of a differential equation formally behaves as an exponential map, in some algebraic sense.

The notationally simpler case of flows driven by weak geometric Hölder p-rough paths, with $2 \leqslant p<3$, is first studied in section 4.1 before studying the general case in section 4.2. The latter case does not present any additional conceptual difficulty, so a reader which who would like to get the core ideas can read section 4.1 only. The two sections have been written with almost similar words on purpose.
4.1. A warm up: working with weak geometric Hölder p-rough paths, with $2 \leqslant p<3$. Let V be a \mathcal{C}_{b}^{2} vector field on E and V_{1}, \ldots, V_{ℓ} be \mathcal{C}_{b}^{3} vector fields on E . Let $\mathbf{X}=(X, \mathbb{X})$ be a Hölder weak geometric p-rough path over \mathbb{R}^{ℓ}, with $2 \leqslant p<3$. Let $\mu_{t s}$ be the well-defined time 1 map associated with the ordinary differential equation

$$
\begin{equation*}
\dot{y}_{u}=(t-s) V\left(y_{u}\right)+\left(X_{t s}^{i} V_{i}+\frac{1}{2} \mathbb{X}_{t s}^{j k}\left[V_{j}, V_{k}\right]\right)\left(y_{u}\right), \quad 0 \leqslant u \leqslant 1 ; \tag{4.9}
\end{equation*}
$$

it associates to any $x \in E$ the value at time 1 of the solution of the above equation started from x; it is well-defined since V and the V_{i} are in particular globally Lipschitz. It is a direct consequence of classical results on ordinary differential equations, and of the definition of the topology on the space of Hölder weak geometric p-rough paths, that the maps $\mu_{t s}$ depend continuously on $((s, t), \mathbf{X})$ in the uniform topology,
and that

$$
\begin{equation*}
\left\|\mu_{t s}-\operatorname{Id}\right\|_{\mathcal{C}^{2}}=o_{t-s}(1) \tag{4.10}
\end{equation*}
$$

Also, considering y_{u} as a function of x, it is elementary to see that one has the estimate

$$
\begin{equation*}
\left\|y_{u}-\mathrm{Id}\right\|_{\mathcal{C}^{1}} \leqslant c\left(1+\|\mathbf{X}\|^{3}\right)|t-s|^{1 / p}, \quad 0 \leqslant u \leqslant 1, \tag{4.11}
\end{equation*}
$$

for some constant depending only on V and the V_{i}.
4.1.1. From Taylor expansions to flows driven by rough paths. The next proposition shows that $\mu_{t s}$ has precisely the kind of Taylor-Euler expansion property that we expect from a solution to a rough differential equation, as described in the introduction to that part of the course.

Proposition 1. There exists a positive constant c, depending only on V and the V_{i}, such that the inequality
$\left\|f \circ \mu_{t s}-\left\{f+(t-s) V f+X_{t s}^{i}\left(V_{i} f\right)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)\right\}\right\|_{\infty} \leqslant c\left(1+\|\mathbf{X}\|^{3}\right)\|f\|_{\mathcal{C}^{3}}|t-s|^{\frac{3}{p}}$
holds for any $f \in \mathcal{C}_{b}^{3}$.
The proof of this proposition and the following one are based on the following elementary identity, obtained by applying twice the identity
$f\left(y_{r}\right)=f(x)+(t-s) \int_{0}^{r}(V f)\left(y_{u}\right) d u+X_{t s}^{i} \int_{0}^{r}\left(V_{i} f\right)\left(y_{u}\right) d u+\frac{1}{2} \mathbb{X}_{t s}^{j k} \int_{0}^{r}\left(\left[V_{j}, V_{k}\right] f\right)\left(y_{u}\right) d u$,
first to f, then to $V f, V_{i} f$ and $\left[V_{j}, V_{k}\right] f$ inside the integrals. One has

$$
\begin{aligned}
f\left(\mu_{t s}(x)\right)= & f(x)+(t-s) \int_{0}^{1}(V f)\left(y_{u}\right) d u+X_{t s}^{i} \int_{0}^{1}\left(V_{i} f\right)\left(y_{s_{1}}\right) d s_{1}+\frac{1}{2} \mathbb{X}_{t s}^{j k} \int_{0}^{1}\left(\left[V_{j}, V_{k}\right] f\right)\left(y_{u}\right) d u \\
= & f(x)+(t-s)(V f)(x)+(t-s) \int_{0}^{1}\left\{(V f)\left(y_{u}\right)-(V f)(x)\right\} d u \\
+ & X_{t s}^{i}\left(V_{i} f\right)(x)+(t-s) X_{t s}^{i} \int_{0}^{1} \int_{0}^{s_{1}}\left(V V_{i} f\right)\left(y_{s_{2}}\right) d s_{2} d s_{1} \\
& +\frac{1}{2} X_{t s}^{i^{\prime}} X_{t s}^{i}\left(V_{i^{\prime}} V_{i} f\right)(x)+X_{t s}^{i} X_{t s}^{i^{\prime}} \int_{0}^{1} \int_{0}^{s_{1}}\left\{\left(V_{i^{\prime}} V_{i} f\right)\left(y_{s_{2}}\right)-\left(V_{i^{\prime}} V_{i} f\right)(x)\right\} d s_{2} d s_{1} \\
& +\frac{1}{2} X_{t s}^{i} \mathbb{X}_{t s}^{j k} \int_{0}^{1} \int_{0}^{s_{1}}\left(\left[V_{j}, V_{k}\right] V_{i} f\right)\left(y_{s_{2}}\right) d s_{2} d s_{1} \\
+ & \frac{1}{2} \mathbb{X}_{t s}^{j k}\left(\left[V_{j}, V_{k}\right] f\right)(x)+\frac{1}{2} \mathbb{X}_{t s}^{j k} \int_{0}^{1}\left\{\left(\left[V_{j}, V_{k}\right] f\right)\left(y_{u}\right)-\left(\left[V_{j}, V_{k}\right] f\right)(x)\right\} d u .
\end{aligned}
$$

Note that since the Hölder p-rough path \mathbf{X} is assumed to be weak geometric, the symmetric part of $\mathbb{X}_{t s}$ is equal to $\frac{1}{2} X_{t s} \otimes X_{t s}$, so one has

$$
\begin{equation*}
f\left(\mu_{t s}(x)\right)=f(x)+(t-s)(V f)(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+\epsilon_{t s}^{f}(x), \tag{4.13}
\end{equation*}
$$

where the remainder $\epsilon_{t s}^{f}$ is defined by the formula

$$
\begin{aligned}
\epsilon_{t s}^{f}(x) & :=(t-s) \int_{0}^{1}\left\{(V f)\left(y_{u}\right)-(V f)(x)\right\} d u+(t-s) X_{t s}^{i} \int_{0}^{1} \int_{0}^{s_{1}}\left(V V_{i} f\right)\left(y_{s_{2}}\right) d s_{2} d s_{1} \\
& +X_{t s}^{i} X_{t s}^{i^{\prime}} \int_{0}^{1} \int_{0}^{s_{1}}\left\{\left(V_{i^{\prime}} V_{i} f\right)\left(y_{s_{2}}\right)-\left(V_{i^{\prime}} V_{i} f\right)(x)\right\} d s_{2} d s_{1} \\
& +\frac{1}{2} X_{t s}^{i} \mathbb{X}_{t s}^{j k} \int_{0}^{1} \int_{0}^{s_{1}}\left(\left[V_{j}, V_{k}\right] V_{i} f\right)\left(y_{s_{2}}\right) d s_{2} d s_{1} \\
& +\frac{1}{2} \mathbb{X}_{t s}^{j k} \int_{0}^{1}\left\{\left(\left[V_{j}, V_{k}\right] f\right)\left(y_{u}\right)-\left(\left[V_{j}, V_{k}\right] f\right)(x)\right\} d u .
\end{aligned}
$$

Proof of proposition 1 - It is elementary to use estimate (4.11) and the regularity assumptions on the vector fields V, V_{i} to see that the remainder $\epsilon_{t s}^{f}$ is bounded above by a quantity of the form $c\left(1+\|\mathbf{X}\|^{3}\right)\|f\|_{\mathcal{C}^{3}}|t-s|^{\frac{3}{p}}$, for some constant depending only on V and the V_{i}.

A further look at formula (4.29) and estimate (4.11) also make it clear that

$$
\begin{equation*}
\left\|\epsilon_{t s}^{f}\right\|_{\mathcal{C}^{1}} \leqslant c\left(1+\|\mathbf{X}\|^{3}\right)|t-s|^{\frac{3}{p}} \tag{4.14}
\end{equation*}
$$

for a constant c depending only on V and the V_{i}. This is the key remark for proving the next proposition.
Proposition 2. The family $\left(\mu_{t s}\right)_{0 \leqslant s \leqslant t \leqslant T}$ forms a \mathcal{C}^{1}-approximate flow.
It will be convenient in the following proof to slightly abuse notations and write $V_{I}(x)$ for $\left(V_{I} \mathrm{Id}\right)(x)$, for any multi-index I and point x.
Proof - We first use formula (4.13) to write
$\mu_{t u}\left(\mu_{u s}(x)\right)=\mu_{u s}(x)+(t-u) V\left(\mu_{u s}(x)\right)+X_{t u}^{i} V_{i}\left(\mu_{u s}(x)\right)+\mathbb{X}_{t u}^{j k}\left(V_{j} V_{k}\right)\left(\mu_{u s}(x)\right)+\epsilon_{t u}^{\mathrm{Id} ;[p]}\left(\mu_{u s}(x)\right)$.
We deal with the term $(t-u) V\left(\mu_{u s}(x)\right)$ using estimate (4.11) and the Lipschitz character of V :

$$
\left|(t-u) V\left(\mu_{u s}(x)\right)-(t-u) V(x)\right| \leqslant c\left(1+\|\mathbf{X}\|^{3}\right)|u-s|^{\frac{3}{p}}
$$

The remainder $\epsilon_{t u}^{\mathrm{Id}}\left(\mu_{u s}(x)\right)$ has a \mathcal{C}^{1}-norm bounded above by $c\left(1+\|\mathbf{X}\|^{3}\right)^{2}|t-u|^{\frac{3}{p}}$, by the remark preceeding proposition 2 and the \mathcal{C}^{1}-estimate (4.11) on $\mu_{u s}$. We develop $V_{i}\left(\mu_{u s}(x)\right)$ to deal with the term $X_{t u}^{i} V_{i}\left(\mu_{u s}(x)\right)$. As

$$
V_{i}\left(\mu_{u s}(x)\right)=V_{i}(x)+(u-s)\left(V V_{i}\right)(x)+X_{u s}^{i^{\prime}}\left(V_{i^{\prime}} V_{i}\right)(x)+\mathbb{X}_{u s}^{j k}\left(V_{j} V_{k} V_{i}\right)(x)+\epsilon_{u s}^{V_{i}}(x)
$$

we have

$$
\begin{equation*}
X_{t u}^{i} V_{i}\left(\mu_{u s}(x)\right)=X_{t u}^{i} V_{i}(x)+X_{u s}^{i^{\prime}} X_{t u}^{i}\left(V_{i^{\prime}} V_{i}\right)(x)+\varepsilon_{t u, u s}^{V_{i}}(x), \tag{4.15}
\end{equation*}
$$

where the remainder $\varepsilon_{t u, u s}^{V_{i}}$ has \mathcal{C}^{1}-norm bounded above by

$$
\begin{equation*}
\left\|\varepsilon_{t u, u s}^{V_{i}}\right\|_{\mathcal{C}^{1}} \leqslant c\left(1+\|\mathbf{X}\|^{3}\right)|u-s|^{\frac{3}{p}}, \tag{4.16}
\end{equation*}
$$

for a constant c depending only on V and the V_{n}. Set

$$
\varepsilon_{t u, u s}(x)=\sum_{i=1}^{\ell} \varepsilon_{t u, u s}^{V_{i}}(x)
$$

The term $\mathbb{X}_{t u}^{j k}\left(V_{j} V_{k}\right)\left(\mu_{u s}(x)\right)$ is simply dealt with writing

$$
\begin{equation*}
\mathbb{X}_{t u}^{j k}\left(V_{j} V_{k}\right)\left(\mu_{u s}(x)\right)=\mathbb{X}_{t u}^{j k}\left(V_{j} V_{k}\right)(x)+\mathbb{X}_{t u}^{j k}\left\{\left(V_{j} V_{k}\right)\left(\mu_{u s}(x)\right)-\mathbb{X}_{t u}^{j k}\left(V_{j} V_{k}\right)(x)\right\} \tag{4.17}
\end{equation*}
$$

and using estimate (4.11) and the \mathcal{C}_{b}^{1} character of $V_{j} V_{k}$ to see that the last term on the right hand side has a \mathcal{C}^{1}-norm bounded above by $c\left(1+\|\mathbf{X}\|^{3}\right)|u-s|^{\frac{3}{p}}$. All together, this gives

$$
\begin{aligned}
\mu_{t u}\left(\mu_{u s}(x)\right) & =\mu_{u s}(x)+(t-u) V(x)+X_{t u}^{i} V_{i}(x)+X_{u s}^{i^{\prime}} X_{t u}^{i}\left(V_{i^{\prime}} V_{i}\right)(x)+\mathbb{X}_{t u}^{j k}\left(V_{j} V_{k}\right)(x)+\varepsilon_{t u, u s}(x) \\
& =x+(u-s) V(x)+X_{u s}^{i} V_{i}(x)+\mathbb{X}_{u s}^{j k}\left(V_{j} V_{k}\right)(x)+\epsilon_{u s}^{\mathrm{Id}}(x)+(\cdots) \\
& =x+(t-s) V(x)+X_{t s}^{i} V_{i}(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k}\right)(x)+\epsilon_{u s}^{\mathrm{Id}}(x)+\varepsilon_{t u, u s}(x) \\
& =\mu_{t s}(x)+\epsilon_{u s}^{\mathrm{Id}}(x)+\varepsilon_{t u, u s}(x),
\end{aligned}
$$

so it follows from estimates (4.14) and (4.16) that μ is indeed a \mathcal{C}^{1}-approximate flow.

The above proof makes it clear that one can take for constant c_{1} in the \mathcal{C}^{1} approximate flow property (??) for μ the constant $c\left(1+\|\mathbf{X}\|^{3}\right)$, for a constant c depending only on V and the V_{i}.

Recalling proposition 1 describing the maps $\mu_{t s}$ in terms of Euler expansion, the following definition of a solution flow to a rough differential equation is to be thought of as defining a notion of solution in terms of uniform Euler expansion

$$
\left\|f \circ \varphi_{t s}-\left\{f+X_{t s}^{i} V_{i} f+\mathbb{X}_{t s}^{j k} V_{j} V_{k} f\right\}\right\|_{\infty} \leqslant c|t-s|^{>1}
$$

Definition 3. A flow $\left(\varphi_{t s}\right)_{0 \leqslant s \leqslant t \leqslant T}$ is said to solve the rough differential equation

$$
\begin{equation*}
d \varphi=V d t+\mathrm{F}^{\otimes} \mathbf{X}(d t) \tag{4.18}
\end{equation*}
$$

if there exists a constant $a>1$ independent of \mathbf{X} and two possibly \mathbf{X}-dependent positive constants δ and c such that

$$
\begin{equation*}
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leqslant c|t-s|^{a} \tag{4.19}
\end{equation*}
$$

holds for all $0 \leqslant s \leqslant t \leqslant T$ with $t-s \leqslant \delta$.
If for instance \mathbf{X} is the weak geometric Hölder p-rough path canonically associated with an \mathbb{R}^{ℓ}-valued piecewise smooth path h, it follows from exercice 1 , and the fact that the iterated integral $\int_{s}^{t} \int_{s}^{r} d h_{u} \otimes d h_{r}$ has size $|t-s|^{2}$, that the solution flow to the rough differential equation

$$
d \varphi=V d t+\mathrm{F}^{\otimes} \mathbf{X}(d t)
$$

is the flow associated with the ordinary differential equation

$$
\dot{y}_{t}=V\left(y_{t}\right) d t+V_{i}\left(y_{t}\right) d h_{t}^{i} .
$$

The following well-posedness result follows directly from theorem ?? on \mathcal{C}^{1}-approximate flows and proposition 2.
Theorem 4. The rough differential equation on flows

$$
d \varphi=V d t+\mathrm{F}^{\otimes} \mathbf{X}(d t)
$$

has a unique solution flow; it takes values in the space of uniformly Lipschitz continuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and depends continuously on \mathbf{X}.

Proof - Applying theorem ?? on \mathcal{C}^{1}-approximate flows to μ we obtain the existence of a unique flow φ satisfying condition (4.34), for δ small enough; it further satisfies the inequality

$$
\begin{equation*}
\left\|\varphi_{t s}-\mu_{\pi_{t s}}\right\|_{\infty} \leqslant c\left(1+\|\mathbf{X}\|^{3}\right)^{2} T\left|\pi_{t s}\right|^{a-1}, \tag{4.20}
\end{equation*}
$$

for any partition $\pi_{t s}$ of $[s, t] \subset[0, T]$ of mesh $\left|\pi_{t s}\right| \leqslant \delta$, as a consequence of inequality (??). As this bound is uniform in (s, t), and for \mathbf{X} in a bounded set of the space of weak geometric Hölder p-rough paths, and since each map $\mu_{\pi_{t s}}$ is a continuous function of $((s, t), \mathbf{X})$, the flow φ depends continuously on $((s, t), \mathbf{X})$.
To prove that φ is a homeomorphism, note that, with the notations of section ??,

$$
\left(\mu_{t s}^{(n)}\right)^{-1}=\mu_{s_{1} s_{0}}^{-1} \circ \cdots \circ \mu_{s_{2} n s_{2} n-1}^{-1}, \quad s_{i}=s+i 2^{-n}(t-s),
$$

can actually be written $\left(\mu_{t s}^{(n)}\right)^{-1}=\bar{\mu}_{s_{2} s_{2^{n}-1}} \circ \cdots \circ \bar{\mu}_{s_{1} s_{0}}$, for the time 1 map $\bar{\mu}$ associated with the rough path $\mathbf{X}_{t-\boldsymbol{\bullet}}$. As $\bar{\mu}$ enjoys the same properties as μ, the maps $\left(\mu_{t s}^{(n)}\right)^{-1}$ converge uniformly to some continuous map $\varphi_{t s}^{-1}$ which satisfies by construction $\varphi_{t s} \circ \varphi_{t s}^{-1}=\mathrm{Id}$.
Recall that proposition ?? provides a uniform control of the Lipschitz norm of the maps $\varphi_{t s}$; the same holds for their inverses in view of the preceeding paragraph. We propagate this property from the set $\left\{(s, t) \in[0, T]^{2} ; s \leqslant t, t-s \leqslant \delta\right\}$ to the whole of the $\left\{(s, t) \in[0, T]^{2} ; s \leqslant t\right\}$ using the flow property of φ.

Remarks 5. (1) Friz-Victoir approach to rough differential equations. The continuity of the solution flow with respect to the driving rough path \mathbf{X} has the following consequence, which justifies the point of view adopted by Friz and Victoir in their works. Suppose the Hölder weak geometric p-rough path \mathbf{X} is the limit in the rough path metric of the canonical Hölder weak geometric p-rough paths \mathbf{X}^{n} associated with some piecwise smooth \mathbb{R}^{ℓ}-valued paths $\left(x_{t}^{n}\right)_{0 \leqslant t \leqslant T}$. We have noticed that the solution flow φ^{n} to the rough differential equation

$$
d \varphi^{n}=V d t+\mathrm{F}^{\otimes} \mathbf{X}^{n}(d t)
$$

is the flow associated with the ordinary differential equation

$$
\dot{y}_{u}=V\left(y_{u}\right) d u+V_{i}\left(y_{u}\right) d\left(x_{u}^{n}\right)^{i} .
$$

As $\left\|\varphi^{n}-\varphi\right\|_{\infty}=o_{n}(1)$, from the continuity of the solution flow with respect to the driving rough path, the flow φ appears in that case as a uniform limit of the elementary flows φ^{n}. A Hölder weak geometric p-rough path with the above property is called a Hölder geometric p-rough path; not all Hölder weak geometric p-rough path are Hölder geometric p-rough path [14], although there is little difference.
(2) Time-inhomogeneous dynamics. The above results have a straightforward generalization to dynamics driven by a time-dependent bounded drift $V(s ; \cdot)$ which is Lipschitz continuous with respect to the time variable and \mathcal{C}_{b}^{2} with respect to the space variable, uniformly with respect to time, and timedependent vector fields $V_{i}(s ; \cdot)$ which are Lipschitz continuous with respect to time, and \mathcal{C}_{b}^{3} with respect to the space variable, uniformly with respect to time. We define in that case a \mathcal{C}^{1}-approximate flow by defining $\mu_{t s}$ as the time 1 map associated with the ordinary differential equation

$$
\dot{y}_{u}=(t-s) V\left(s ; y_{u}\right)+X_{t s}^{i} V_{i}\left(s ; y_{u}\right)+\mathbb{X}_{t s}^{j k}\left[V_{j}, V_{k}\right]\left(y_{u}\right), \quad 0 \leqslant u \leqslant 1 .
$$

4.1.2. Classical rough differential equations. In the classical setting of rough differential equations, one is primarily interested in a notion of solution path, defined in terms of local Taylor-Euler expansion.
Definition 6. A path $\left(z_{s}\right)_{0 \leqslant s \leqslant T}$ is said to solve the rough differential equation

$$
\begin{equation*}
d z=V d t+\mathrm{F} \mathbf{X}(d t) \tag{4.21}
\end{equation*}
$$

with initial condition x, if $z_{0}=x$ and there exists a constant $a>1$ independent of \mathbf{X}, and two possibly \mathbf{X}-dependent positive constants δ and c, such that
$\left|f\left(z_{t}\right)-\left\{f\left(z_{s}\right)+(t-s)(V f)\left(z_{s}\right)+X_{t s}^{i}\left(V_{i} f\right)\left(z_{s}\right)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)\left(z_{s}\right)\right\}\right| \leqslant c\|f\|_{\mathcal{C}^{3}}|t-s|^{a}$
holds for all $0 \leqslant s \leqslant t \leqslant T$, with $t-s \leqslant \delta$, for all $f \in \mathcal{C}_{b}^{3}$.

Theorem 7 (Lyons' universal limit theorem). The rough differential equation (4.21) has a unique solution path; it is a continuous function of \mathbf{X} in the uniform norm topology.

Proof - a) Existence. It is clear that if $\left(\varphi_{t s}\right)_{0 \leqslant s \leqslant t \leqslant 1}$ stands for the solution flow to the equation

$$
d \varphi=V d t+\mathrm{F}^{\otimes} \mathbf{X}(d t)
$$

then the path $z_{t}:=\varphi_{t 0}(x)$ is a solution path to the rough differential equation (4.21) with initial condition x.
b) Uniqueness. Let agree to denote by $O_{c}(m)$ a quantity whose norm is bounded above by $c m$. Let α stand for the minimum of $\frac{3}{p}$ and the constant a
in definition 6 , and let y_{\bullet} be any other solution path. It satisfies by proposition 1 the estimate

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leqslant c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leqslant \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right)\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{c L}\left(\epsilon^{\alpha}\right)+O_{c}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

and see by induction that

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-n) \epsilon}\left(y_{(k-n) \epsilon}\right)+O_{c L}\left((n-1) \epsilon^{\alpha}\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon, 0}(x)+O_{c L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) \\
& =z_{k \epsilon}+O_{c L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) .
\end{aligned}
$$

Taking ϵ and k so that $k \epsilon$ converges to some $t \in[0, T]$, we see that $y_{t}=z_{t}$, since $\alpha>1$.

The continuous dependence of the solution path z_{\bullet} with respect to \mathbf{X} is transfered from φ to z_{\bullet}.
4.2. The general case. We have defined in the previous section a solution to the rough differential equation

$$
d \varphi=V d t+\mathrm{F}^{\otimes} \mathbf{X}(d t)
$$

driven by a weak geometric Hölder p-rough path, for $2 \leqslant p<3$, as a flow with ($s, t ; x)$-uniform Taylor-Euler expansion of the form
$f\left(\varphi_{t s}(x)\right)=f(x)+(t-s)(V f)(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O\left(|t-s|^{>1}\right)$.
The definition of a solution flow in the general case will require from φ that it satisfies a similar expansion, of the form

$$
\begin{equation*}
f\left(\varphi_{t s}(x)\right)=f(x)+(t-s)(V f)(x)+\sum_{|I| \leqslant[p]} X_{t s}^{I}\left(V_{I} f\right)(x)+O\left(|t-s|^{>1}\right) \tag{4.23}
\end{equation*}
$$

As in the previous section, we shall obtain φ as the unique flow associated with some \mathcal{C}^{1}-approximate flow $\left(\mu_{t s}\right)_{0 \leqslant s \leqslant t \leqslant 1}$, where $\mu_{t s}$ is the time 1 map associated with an ordinary differential equation constructed from the V_{i} and their brackets, and V and $\mathbf{X}_{t s}$. In order to avoid writing expressions with loads of indices (the $\mathbf{X}_{t s}^{I}$), I will first introduce in subsection 4.2.1 a coordinate-free way of working with rough paths and vector fields. A \mathcal{C}^{1}-approximate flow with the awaited Euler expansion will be constructed in subsection 4.2.2, leading to a general well-posedness result for rough differential equations on flows.

To make the crucial formula (4.29) somewhat shorter we assume in this section that $V=0$. The reader is urged to workout by herself/himself the infinitesimal
changes that have to be done in what follows in order to work with a non-null drift V. From hereon, the vector fields V_{i} are assumed to be of class $\mathcal{C}_{b}^{[p]+1}$. We denote by $\mathcal{C}_{b}^{[p]+1}(\mathrm{E}, \mathrm{E})$ the set of $\mathcal{C}_{b}^{[p]+1}$ vector fields on E . We denote for by $\pi_{k}: T_{\ell}^{\infty} \rightarrow\left(\mathbb{R}^{\ell}\right)^{k}$ the natural projection operator and set $\pi_{\leqslant k}=\sum_{j \leqslant k} \pi_{j}$.
4.2.1. Differential operators. Let F be a continuous linear map from \mathbb{R}^{ℓ} to $\mathcal{C}_{b}^{[p]+1}(\mathrm{E}, \mathrm{E})$ - one usually calls such a map a vector field valued 1 -form on \mathbb{R}^{ℓ}. For any $v \in \mathbb{R}^{\ell}$, we identify the $\mathcal{C}^{[p]+1}$ vector field $\mathrm{F}(v)$ on E with the first order differential operator

$$
\mathrm{F}^{\otimes}(v): g \in \mathcal{C}^{1}(\mathrm{E}) \mapsto(D . g)(\mathrm{F}(v)(\cdot)) \in \mathcal{C}^{0}(\mathrm{E})
$$

in those terms, we recover the vector field $\mathrm{F}(v)$ as $\mathrm{F}^{\otimes}(v) \mathrm{Id}$. The map F^{\otimes} is extended to $T_{\ell}^{[p]+1}$ by setting

$$
\mathrm{F}^{\otimes}(1):=\mathrm{Id}: \mathcal{C}^{0}(\mathrm{E}) \mapsto \mathcal{C}^{0}(\mathrm{E})
$$

and defining $\mathrm{F}^{\otimes}\left(v_{1} \otimes \cdots \otimes v_{k}\right)$, for all $1 \leqslant k \leqslant[p]+1$ and $v_{1} \otimes \cdots \otimes v_{k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$, as the $k^{\text {th }}$-order differential operator from $\mathcal{C}^{k}(\mathrm{E})$ to $\mathcal{C}^{0}(\mathrm{E})$, defined by the formula

$$
\mathrm{F}^{\otimes}\left(v_{1} \otimes \cdots \otimes v_{k}\right):=\mathrm{F}^{\otimes}\left(v_{1}\right) \cdots \mathrm{F}^{\otimes}\left(v_{k}\right),
$$

and by requiring linearity. So, we have the morphism property

$$
\begin{equation*}
\mathrm{F}^{\otimes}(\mathbf{e}) \mathrm{F}^{\otimes}\left(\mathbf{e}^{\prime}\right)=\mathrm{F}^{\otimes}\left(\mathbf{e e}^{\prime}\right) \tag{4.24}
\end{equation*}
$$

for any $\mathbf{e}, \mathbf{e}^{\prime} \in T_{\ell}^{[p]+1}$ with $\mathbf{e e}^{\prime} \in T_{\ell}^{[p]+1}$. This condition on $\mathbf{e}, \mathbf{e}^{\prime}$ is required for if $\mathbf{e}^{\prime}=v_{1} \otimes \cdots \otimes v_{k}$ with $v_{i} \in \mathbb{R}^{\ell}$, the map $\mathrm{F}^{\otimes}\left(\mathbf{e}^{\prime}\right)$ Id from E to itself is $\mathcal{C}_{b}^{[p]+1-k}$, so $\mathrm{F}^{\otimes}(\mathbf{e}) \mathrm{F}^{\otimes}\left(\mathbf{e}^{\prime}\right)$ only makes sense if $\mathbf{e e}^{\prime} \in T_{\ell}^{[p]+1}$. We also have

$$
\left[\mathrm{F}^{\otimes}(\mathbf{e}), \mathrm{F}^{\otimes}\left(\mathbf{e}^{\prime}\right)\right]=\mathrm{F}^{\otimes}\left(\left[\mathbf{e}, \mathbf{e}^{\prime}\right]\right)
$$

for any $\mathbf{e}, \mathbf{e}^{\prime} \in T_{\ell}^{[p]+1}$ with $\mathbf{e e}^{\prime}$ and $\mathbf{e}^{\prime} \mathbf{e}$ in $T_{\ell}^{[p]+1}$. This implies in particular that $\mathrm{F}^{\otimes}(\Lambda)$ is actually a first order differential operator for any $\Lambda \in \mathfrak{g}_{\ell}^{[p]+1}$, that is a vector field. Note that for any $\Lambda \in \mathfrak{g}_{\ell}^{[p]+1}$ and $1 \leqslant k \leqslant[p]+1$, then $\Lambda^{k}:=\pi_{k}(\Lambda)$ is an element of $\mathfrak{g}_{\ell}^{[p]}$, and the vector field $\mathrm{F}^{\otimes}\left(\Lambda^{k}\right) \mathrm{Id}$ is $\mathcal{C}_{b}^{[p]+1-k}$.

We extend F^{\otimes} to the unrestricted tensor space T_{ℓ}^{∞} setting

$$
\begin{equation*}
\mathrm{F}^{\otimes}(\mathbf{e})=\mathrm{F}^{\otimes}\left(\pi_{\leqslant[p]+1} \mathbf{e}\right) \tag{4.25}
\end{equation*}
$$

for any $\mathbf{e} \in T_{\ell}^{\infty}$.
Consider as a particular case the map F defined for $u \in \mathbb{R}^{\ell}$ by the formula

$$
\mathrm{F}(u)=u^{i} V_{i}(\cdot)
$$

Using the formalism of this paragraph, an Euler expansion of the form

$$
f\left(\varphi_{t s}(x)\right)=f(x)+\sum_{|I| \leqslant[p]} X_{t s}^{I}\left(V_{I} f\right)(x)+O\left(|t-s|^{>1}\right),
$$

as in equation (4.23), becomes

$$
f\left(\varphi_{t s}(x)\right)=\left(\mathrm{F}^{\otimes}\left(\mathbf{X}_{t s}\right) f\right)(x)+O\left(|t-s|^{>1}\right)
$$

4.2.2. From Taylor expansions to flows driven by rough paths: bis. Let $2 \leqslant p$ be given, together with a $\mathfrak{G}_{\ell}^{[p]}$-valued weak-geometric Hölder p-rough path \mathbf{X}, defined on some time interval $[0, T]$, and some continuous linear map F from \mathbb{R}^{ℓ} to the set $\mathcal{C}_{b}^{[p]+1}(\mathrm{E}, \mathrm{E})$ of vector fields on E . For any $0 \leqslant s \leqslant t \leqslant T$, denote by $\boldsymbol{\Lambda}_{t s}$ the logarithm of $\mathbf{X}_{t s}$, and let $\mu_{t s}$ stand for the well-defined time 1 map associated with the ordinary differential equation

$$
\begin{equation*}
\dot{y}_{u}=\mathrm{F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}\right)\left(y_{u}\right), \quad 0 \leqslant u \leqslant 1 . \tag{4.26}
\end{equation*}
$$

This equation is indeed an ordinary differential equation since $\boldsymbol{\Lambda}_{t s}$ is an element of $\mathfrak{g}_{\ell}^{[p]}$. For $2 \leqslant p<3$, it reads

$$
\dot{y}_{u}=X_{t s}^{i} V_{i}\left(y_{u}\right)+\frac{1}{2}\left(\mathbb{X}_{t s}^{j k}+\frac{1}{2} X_{t s}^{j} X_{t s}^{k}\right)\left[V_{j}, V_{k}\right]\left(y_{u}\right), \quad 0 \leqslant u \leqslant 1 .
$$

As the tensor $X_{t s} \otimes X_{t s}$ is symmetric and the map $(j, k) \mapsto\left[V_{j}, V_{k}\right]$ is antisymmetric, this equation actually reads

$$
\dot{y}_{u}=X_{t s}^{i} V_{i}\left(y_{u}\right)+\frac{1}{2} \mathbb{X}_{t s}^{j k}\left[V_{j}, V_{k}\right]\left(y_{u}\right),
$$

which is nothing else than equation (4.9), whose time 1 map defined the \mathcal{C}^{1}-approximate flow we studied in section 4.1.1.

It is a consequence of classical results from ordinary differential equations, and the definition of the norm on the space of weak-geometric Hölder p-rough paths, that the solution map $(r, x) \mapsto y_{r}$, with $y_{0}=x$, depends continuously on $((s, t), \mathbf{X})$ in \mathcal{C}^{0}-norm, and satisfies the following basic estimate. The next proposition shows that $\mu_{t s}$ has precisely the kind of Taylor-Euler expansion property that we expect from a solution to a rough differential equation.

$$
\begin{equation*}
\left\|y_{r}-\mathrm{Id}\right\|_{\mathcal{C}^{1}} \leqslant c\left(1+\|\mathbf{X}\|^{[p]}\right)|t-s|^{\frac{1}{p}}, \quad 0 \leqslant r \leqslant 1 \tag{4.27}
\end{equation*}
$$

Proposition 8. There exists a positive constant c, depending only on the V_{i}, such that the inequality

$$
\begin{equation*}
\left\|f \circ \mu_{t s}-\mathrm{F}^{\otimes}\left(\mathbf{X}_{t s}\right) f\right\|_{\infty} \leqslant c\left(1+\|\mathbf{X}\|^{[p]}\right)\|f\|_{\mathcal{C}^{[p]+1}}|t-s|^{\left[\frac{[p]+1}{p}\right.} \tag{4.28}
\end{equation*}
$$

holds for any $f \in \mathcal{C}_{b}^{[p]+1}(E)$.
Recall $\mathrm{F}^{\otimes}(0)$ is the null map from $\mathcal{C}^{0}(E)$ to itself and $\pi_{0} \Lambda=0$ for any $\Lambda \in \mathfrak{g}_{\ell}^{[p]}$. The proof of this proposition and the following one are based on the elementary identity (4.29) below, obtained by applying repeatedly the identity

$$
\begin{aligned}
f\left(y_{r}\right) & =f(x)+\int_{0}^{r}\left(\mathrm{~F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}\right) f\right)\left(y_{u}\right) d u \\
& =f(x)+\sum_{k_{1}=0}^{[p]+1} \int_{0}^{r}\left(\mathrm{~F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}^{k_{1}}\right) f\right)\left(y_{u}\right) d u, \quad 0 \leqslant r \leqslant 1
\end{aligned}
$$

together with the morphism property (4.24). The above sum over k_{1} is needed to take care of the different regularity properties of the maps $\mathrm{F}^{\otimes}\left(\Lambda_{t s}^{k_{1}}\right) f$.

$$
\begin{aligned}
f\left(\mu_{t s}(x)\right) & =f(x)+\left(\mathrm{F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}\right) f\right)(x)+\sum_{k_{1}+k_{2} \leqslant[p]+1} \int_{0}^{1} \int_{0}^{s_{1}}\left(\mathrm{~F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}^{k_{2}}\right) \mathrm{F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}^{k_{1}}\right) f\right)\left(y_{s_{2}}\right) d s_{2} d s_{1} \\
& =f(x)+\left(\mathrm{F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}\right) f\right)(x)+\int_{0}^{1} \int_{0}^{s_{1}}\left(\mathrm{~F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}^{\bullet 2}\right) f\right)\left(y_{s_{2}}\right) d s_{2} d s_{1}
\end{aligned}
$$

We use here the notation $\bullet 2$ to denote the multiplication $\Lambda_{t s}^{\bullet 2}=\Lambda_{t s} \Lambda_{t s}$, not to be confused with the second level $\boldsymbol{\Lambda}_{t s}^{2}$ of $\boldsymbol{\Lambda}_{t s}$; the product is done here in T_{ℓ}^{∞}, and definition (4.25) used to make sense of $\mathrm{F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}^{\bullet 2}\right) f$. Set

$$
\Delta_{n}:=\left\{\left(s_{1}, \ldots, s_{n}\right) \in[0, T]^{n} ; s_{1} \leqslant \cdots \leqslant s_{n}\right\},
$$

for $2 \leqslant n \leqslant[p]$, and write $d s$ for $d s_{n} \ldots d s_{1}$. Repeating $(n-1)$ times the above procedure in an iterative way, we see that

$$
\begin{aligned}
f\left(\mu_{t s}(x)\right) & =f(x)+\sum_{k=1}^{n-1} \frac{1}{k!}\left(\mathrm{F}^{\otimes}\left(\Lambda_{t s}^{\bullet k}\right) f\right)(x)+\int_{\Delta_{n}}\left(\mathrm{~F}^{\otimes}\left(\Lambda_{t s}^{\bullet n}\right) f\right)\left(y_{s_{n}}\right) d s \\
& =f(x)+\sum_{k=1}^{n} \frac{1}{k!}\left(\mathrm{F}^{\otimes}\left(\Lambda_{t s}^{\bullet k}\right) f\right)(x)+\int_{\Delta_{n}}\left\{\left(\mathrm{~F}^{\otimes}\left(\Lambda_{t s}^{\bullet n}\right) f\right)\left(y_{s_{n}}\right)-\left(\mathrm{F}^{\otimes}\left(\boldsymbol{\Lambda}_{t s}^{\bullet n}\right) f\right)(x)\right\} d s .
\end{aligned}
$$

Note that $\pi_{j} \boldsymbol{\Lambda}_{t s}^{\bullet n}=0$, for all $j \leqslant n-1$, and

$$
\pi_{\leqslant[p]}\left(\sum_{k=1}^{[p]} \frac{1}{k!} \Lambda_{t s}^{\bullet k}\right)=\mathbf{X}_{t s}
$$

also $\pi_{\leqslant[p]}\left(\Lambda_{t s}^{\bullet[p]}\right)=\left(X_{t s}^{1}\right)^{\otimes[p]}$ is of size $|t-s|^{[p]}$. We separate the different terms in the above identity according to their size in $|t-s|$; this leads to the following expression for $f\left(\mu_{t s}(x)\right)$.
$f(x)+\left(\mathrm{F}^{\otimes}\left(\pi_{\leqslant[p]}\left\{\sum_{k=1}^{n} \frac{1}{k!} \Lambda_{t s}^{\bullet k}\right\}\right) f\right)(x)+\int_{\Delta_{n}}\left\{\left(\mathrm{~F}^{\otimes}\left(\pi_{\leqslant[p]} \boldsymbol{\Lambda}_{t s}^{\bullet n}\right) f\right)\left(y_{s_{n}}\right)-\left(\mathrm{F}^{\otimes}\left(\pi_{\leqslant[p]} \boldsymbol{\Lambda}_{t s}^{\bullet n}\right) f\right)(x)\right\} d s$
$+\left(\mathrm{F}^{\otimes}\left(\pi_{[p]+1}\left\{\sum_{k=1}^{n} \frac{1}{k!} \boldsymbol{\Lambda}_{t s}^{\circ k}\right\}\right) f\right)(x)+\int_{\Delta_{n}}\left\{\left(\mathrm{~F}^{\otimes}\left(\pi_{[p]+1} \boldsymbol{\Lambda}_{t s}^{\circ n}\right) f\right)\left(y_{s_{n}}\right)-\left(\mathrm{F}^{\otimes}\left(\pi_{[p]+1} \boldsymbol{\Lambda}_{t s}^{\circ n}\right) f\right)(x)\right\} d s$
We denote by $\epsilon_{t s}^{f ; n}(x)$ the sum of the two terms involving $\pi_{[p]+1}$ in the above line, made up of terms of size at least $|t-s|^{\frac{[p]+1}{p}}$. Note that for $n=[p]$, the integral term in the first line involves $\pi_{\leqslant[p]}\left(\Lambda_{t s}^{[p]}\right)=\left(X_{t s}^{1}\right)^{\otimes[p]}$ and the increment $y_{s_{n}}-x$, of size $|t-s|^{\frac{1}{p}}$, by estimate (4.27), so this term is of size $|t-s|^{\frac{[p]+1}{p}}$; we include it in $\epsilon_{t s}^{f ;[p]}(x)$.

Proof of proposition 8 - Applying the above formula with $n=[p]$, we get the identity

$$
f\left(\mu_{t s}(x)\right)=\left(\mathrm{F}^{\otimes}\left(\mathbf{X}_{t s}\right) f\right)(x)+\epsilon_{t s}^{f ;[p]}(x) .
$$

It is clear on the formula for $\epsilon_{t s}^{f ;[p]}(x)$ that its absolute value is bounded above by a constant multiple of $\left(1+\|\mathbf{X}\|^{[p]}\right)|t-s|^{\frac{[p]+1}{p}}$, for a constant depending only on the data of the problem and f as in (4.28).
A further look at formula (4.29) makes it clear that if $2 \leqslant n \leqslant[p]$, and f is \mathcal{C}_{b}^{n+1}, the estimate

$$
\begin{equation*}
\left\|\epsilon_{t s}^{f ; n}\right\|_{\mathcal{C}^{1}} \leqslant c\left(1+\|\mathbf{X}\|^{[p]}\right)\|f\|_{\mathcal{C}^{n+1}}|t-s|^{\frac{[p]+1}{p}} \tag{4.30}
\end{equation*}
$$

holds as a consequence of formula (4.27), for a constant c depending only on the V_{i}.
Proposition 9. The family of maps $\left(\mu_{t s}\right)_{0 \leqslant s \leqslant t \leqslant T}$ is a \mathcal{C}^{1}-approximate flow.
Proof - As the vector fields V_{i} are of class $\mathcal{C}_{b}^{[p]+1}$, with $[p]+1 \geqslant 3$, the identity

$$
\left\|\mu_{t s}-\operatorname{Id}\right\|_{\mathcal{C}^{2}}=o_{t-s}(1)
$$

holds as a consequence of classical results on ordinary differential equations; we turn to proving the \mathcal{C}^{1}-approximate flow property (??). Recall $X_{t s}^{m}$ stans for $\pi_{m} \mathbf{X}_{t s}$. We first use for that purpose formula (4.29) to write

$$
\begin{align*}
\mu_{t u}\left(\mu_{u s}(x)\right) & =\left(\mathrm{F}^{\otimes}\left(\mathbf{X}_{t u}\right) \mathrm{Id}\right)\left(\mu_{u s}(x)\right)+\epsilon_{t u}^{\mathrm{Id} ;[p]}\left(\mu_{u s}(x)\right) \\
& =\mu_{u s}(x)+\sum_{m=1}^{[p]}\left(\mathrm{F}^{\otimes}\left(X_{t u}^{m}\right) \operatorname{Id}\right)\left(\mu_{u s}(x)\right)+\epsilon_{t u}^{\mathrm{Id} ;[p]}\left(\mu_{u s}(x)\right) . \tag{4.31}
\end{align*}
$$

We splitted the function $\mathrm{F}^{\otimes}\left(\mathbf{X}_{t u}\right)$ Id into a sum of functions $\mathrm{F}^{\otimes}\left(X_{t u}^{m}\right)$ Id with different regularity properties, so one needs to use different Taylor expansions for each of them. One uses (4.30) and inequality (4.27) to deal with the remainder

$$
\left\|\epsilon_{t u}^{\mathrm{Id} ;[p]}\left(\mu_{u s}(x)\right)\right\|_{\mathcal{C}^{1}} \leqslant c\left(1+\|\mathbf{X}\|^{[p]}\right)^{2}|t-u|^{\frac{[p]+1}{p}}
$$

To deal with the term $\left(\mathrm{F}^{\otimes}\left(X_{t u}^{m}\right) \mathrm{Id}\right)\left(\mu_{u s}(x)\right)$, we use formula (4.29) with $n=$ $[p]-m$ and $f=\mathrm{F}^{\otimes}\left(X_{t u}^{m}\right) \mathrm{Id}$. Writing $d s$ for $d s_{[p]-m} \ldots d s_{1}$, we have

$$
\begin{equation*}
\left(\mathrm{F}^{\otimes}\left(X_{t u}^{m}\right) \mathrm{Id}\right)\left(\mu_{u s}(x)\right)=\left(\mathrm{F}^{\otimes}\left(X_{t u}^{m}\right) \mathrm{Id}\right)(x)+\left(\mathrm{F}^{\otimes}\left(\left\{\pi_{\leqslant[p]}^{[p]-m} \sum_{k=1}^{[p!} \frac{1}{k!} \Lambda_{u s}^{\bullet k}\right\} X_{t u}^{m}\right) \mathrm{Id}\right)(x)+\epsilon_{u s}^{\star ; p-m}(x) . \tag{4.32}
\end{equation*}
$$

The notation \star in the above identity stands for the $\mathcal{C}_{b}^{[p]+2-m}$ function $\mathrm{F}^{\otimes}\left(X_{t u}^{m}\right) \mathrm{Id}$; it has \mathcal{C}^{1}-norm controlled by (4.30). The result follows directly from (4.31) and (4.32) writing

$$
\mu_{u s}(x)=\left(\mathrm{F}^{\otimes}\left(\mathbf{X}_{u s}\right) \operatorname{Id}\right)(x)+\epsilon_{u s}^{\mathrm{Id} ;[p]}(x)
$$

and using the identities $\exp \left(\boldsymbol{\Lambda}_{u s}\right)=\mathbf{X}_{u s}$ and $\mathbf{X}_{t s}=\mathbf{X}_{u s} \mathbf{X}_{t u}$ in $T_{\ell}^{[p]}$.

Definition 10. A flow $\left(\varphi_{t s} ; 0 \leqslant s \leqslant t \leqslant T\right)$ is said to solve the rough differential equation

$$
\begin{equation*}
d \varphi=\mathrm{F}^{\otimes} \mathbf{X}(d t) \tag{4.33}
\end{equation*}
$$

if there exists a constant $a>1$ independent of \mathbf{X} and two possibly \mathbf{X}-dependent positive constants δ and c such that

$$
\begin{equation*}
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leqslant c|t-s|^{a} \tag{4.34}
\end{equation*}
$$

holds for all $0 \leqslant s \leqslant t \leqslant T$ with $t-s \leqslant \delta$.
This definition can be equivalently reformulated in terms of uniform Taylor-Euler expansion of the form

$$
f\left(\varphi_{t s}(x)\right)=f(x)+\sum_{|I| \leqslant[p]} X_{t s}^{I}\left(V_{I} f\right)(x)+O\left(|t-s|^{>1}\right) .
$$

The following well-posedness result follows directly from theorem ?? and proposition 9 ; its proof is identical to the proof of theorem 7 , without a single word to be changed, except for the power of $\|\mathbf{X}\|$ in estimate (4.20), which needs to be taken as $[p]+1$ instead of 3 .

Theorem 11. The rough differential equation

$$
d \varphi=\mathrm{F}^{\otimes} \mathbf{X}(d t)
$$

has a unique solution flow; it takes values in the space of uniformly Lipschitz continuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and depends continuously on \mathbf{X}.

Remarks 5 on Friz-Victoir's approach to rough differential equations and timeinhomogeneous dynamics also hold in the general setting of this section.
4.3. Exercice on flows driven by rough paths. 12. Local Lipschitz continuiuty of φ with respect to \mathbf{X}. Use the result proved in exercice 5 to prove that the solution flow to a rough differential equation driven by \mathbf{X} is a locally Lipschitz continuous function of \mathbf{X}, in the uniform norm topology.
13. Taylor expansion of solution flows. Let V_{1}, \ldots, V_{ℓ} be $\mathcal{C}_{b}^{[p]+1}$ vector fields on a Banach space E , and \mathbf{X} be a weak geometric Hölder p-rough path over \mathbb{R}^{ℓ}, with $2 \leqslant p$. Set $\mathrm{F}=\left(V_{1}, \ldots, V_{\ell}\right)$. The solution flow to the rough differential equation

$$
d \varphi=\mathrm{F}^{\otimes} \mathbf{X}(d t)
$$

enjoys, by definition, a uniform Taylor-Euler expansion property, expressed either by writing

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leqslant c|t-s|^{a}
$$

for the \mathcal{C}^{1}-approximate flow $\left(\mu_{t s}\right)_{0 \leqslant s \leqslant t \leqslant 1}$ contructed in section 4.2.2, or by writing

$$
\left\|f \circ \varphi_{t s}-\sum_{|I| \leqslant[p]} X_{t s}^{I} V_{I} f\right\|_{\infty} \leqslant c|t-s|^{a}
$$

What can we say if the vector fields V_{i} are actually more regular than $\mathcal{C}_{b}^{[p]+1}$?
Assume $N \geqslant[p]+2$ is given and the V_{i} are \mathcal{C}_{b}^{N}. Let \mathbf{Y} be the canonical lift of \mathbf{X} to a \mathfrak{G}_{ℓ}^{N}-valued weak geometric Hölder N-rough path, given by Lyons' extension theorem proved in exercice 7. Let $\Theta_{t s} \in \mathfrak{g}_{\ell}^{N}$ stand for $\log \mathbf{Y}_{t s}$. For any $0 \leqslant s \leqslant t \leqslant 1$, let $\nu_{t s}$ be the time 1 map associated with the ordinary differential equation

$$
\dot{z}_{u}=\mathrm{F}^{\otimes}\left(\Theta_{t s}\right)\left(z_{u}\right), \quad 0 \leqslant u \leqslant 1 .
$$

a) Prove that $\nu_{t s}$ enjoys the following Euler expansion property. For any $f \in \mathcal{C}_{b}^{N+1}$ we have

$$
\begin{equation*}
\left\|f \circ \nu_{t s}-\mathrm{F}^{\otimes}\left(\mathbf{Y}_{t s}\right) f\right\|_{\infty} \leqslant c|t-s|^{\frac{N+1}{p}} \tag{4.35}
\end{equation*}
$$

where the contant c depends only on the V_{i} and \mathbf{X}.
b) Prove that $\left(\nu_{t s}\right)_{0 \leqslant s \leqslant t \leqslant 1}$ is a \mathcal{C}^{1}-approximate flow.
c) Prove that $\varphi_{t s}$ satisfies the high order Euler expansion formula (4.35).
14. Perturbing the signal or the dynamics? Let $2 \leqslant p$ be given and V_{1}, \ldots, V_{ℓ} be $\mathcal{C}_{b}^{[p]+1}$ vector fields on E . Let \mathbf{X} be a weak geometric Hölder p-rough path over \mathbb{R}^{ℓ}, and $\mathbf{a} \in \mathfrak{g}_{\ell}^{[p]}$ be such that $\pi_{j} \mathbf{a}=0$ for all $j \leqslant[p]-1$. Write it

$$
\mathbf{a}=\sum_{|I|=[p]} a^{I} \mathbf{e}_{[I]},
$$

where $\left(e_{1}, \ldots, e_{\ell}\right)$ stand for the canonical basis of \mathbb{R}^{ℓ}, and for $I=\left(i_{1}, \ldots, i_{k}\right)$,

$$
\mathbf{e}_{[I]}=\left[e_{i_{1}},\left[\ldots,\left[e_{i_{k-1}}, e_{i_{k}}\right] \ldots\right]\right.
$$

in $T_{\ell}^{[p]}$. The $\mathbf{e}_{[I]}$'s form a basis of $\mathfrak{g}_{\ell}^{[p]}$ with $\pi_{n} \mathbf{e}_{[I]}=0$ if $n \neq|I|$. Recall the definition of $\exp : T_{\ell}^{[p], 0} \rightarrow T_{\ell}^{[p], 1}$ and its reciprocal log.
a) Show that one defines a weak geometric Hölder p-rough path $\overline{\mathbf{X}}$ over \mathbb{R}^{ℓ} setting

$$
\overline{\mathbf{X}}_{t s}=\exp \left(\log \mathbf{X}_{t s}+(t-s) \mathbf{a}\right)
$$

b) Show that the solution flow to the rough differential equation

$$
d \psi=\mathrm{F}^{\otimes} \overline{\mathbf{X}}(d t)
$$

coincides with the solution flow to the rough differential equation

$$
d \varphi=V d t+\mathrm{F}^{\otimes} \mathbf{X}(d t)
$$

where the vector field V is defined by the formula

$$
V=a^{I} V_{[I]} .
$$

References

[1] Lyons, T.J. and Caruana, M. and Lévy, Th. Differential equations driven by rough paths. Lecture Notes in Mathematics, 1908, Springer 2007.
[2] Lyons, T. and Qian, Z. System control and rough paths. Oxford Mathematical Monographs, Oxford University Press 2002.
[3] Friz, P. and Victoir, N. Multidimensional stochastic processes as rough paths. CUP, Cambridge Studies in Advanced Mathematics, 120, 2010.
[4] Baudoin, F., Rough paths theory. Lecture notes, http://fabricebaudoin.wordpress.com/category/rough-paths-theory/, 2013.
[5] Friz, P. and Hairer, M., A short course on rough paths. Lect. Notes Math., www.hairer.org/notes/RoughPaths.pdf, 2014.
[6] Bailleul, I., Flows driven by rough paths. arXiv:1203.0888, 2013.
[7] Feyel, D. and de La Pradelle, A. Curvilinear integrals along enriched paths. Electron. J. Probab., 11:860-892, 2006.
[8] Feyel, D. and de La Pradelle, A. and Mokobodzki, G. A non-commutative sewing lemma. Electron. Commun. Probab., 13:24-34, 2008.
[9] Gubinelli, M., Controlling rough paths. J. Funct. Anal., 216:86-140, 2004.
[10] Lyons, T.. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14 (2):215-310, 1998.
[11] Montgomery, R., A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91, 2002.
[12] Lejay, A., Yet another introduction to rough paths. Séminaire de Probabilités, LNM 1979:1101, 2009.
[13] Chen, K.T. Iterated path integrals. Bull. Amer. Math. Soc., 83(5):831-879, 1977.
[14] Friz, P. and Victoir, N. A note on the notion of geometric rough paths. Probab. Theory Related Fields, 136 (3):395-416, 2006.

IRMAR, 263 Avenue du General Leclerc, 35042 RENnES, France
E-mail address: ismael.bailleul@univ-rennes1.fr

