Guide for this section

We have seen in part I of the course that a C^1 -approximate flow on a Banach space E defines a unique flow $\varphi = (\varphi_{ts})_{0 \le s \le t \le 1}$ on E such that the inequality

(4.1)
$$\left\|\varphi_{ts} - \mu_{ts}\right\|_{\infty} \leqslant c|t-s|^{a}$$

holds for some positive constants c and a > 1, for all $0 \leq s \leq t \leq T$ sufficiently close. The construction of φ is actually quite explicit, for if we denote by $\mu_{\pi_{ts}}$ the composition of the maps $\mu_{t_{i+1}t_i}$ along the times t_i of a partition π_{ts} of an interval [s, t], the map μ_{ts} satisfies the estimate

(4.2)
$$\|\varphi_{ts} - \mu_{\pi_{ts}}\|_{\infty} \leq \frac{2}{1 - 2^{1-a}} c_1^2 T |\pi_{ts}|^{a-1},$$

where c_1 is the constant that appears in the definition of a C^1 -approximate flow

(4.3)
$$\left\| \mu_{tu} \circ \mu_{us} - \mu_{ts} \right\|_{\mathcal{C}^1} \leqslant c_1 |t-s|^a.$$

It follows in particular from equation (4.1) that if μ depends continuously on some metric space-valued parameter λ , with respect to the C^0 -topology, and if identity (4.3) holds uniformly for λ moving in a bounded set say, then φ depends continuously on λ , as a uniform limit of continuous functions.

The point about the machinery of C^1 -approximate flows is that they actually pop up naturally in a number of situations, under the form of a local in time description of the dynamics under study; nothing else than a kind of Taylor expansion. This was quite clear in exercise 1 on the ordinary controlled differential equation

(4.4)
$$dx_t = V_i(x_t) dh_t^i,$$

with \mathcal{C}^1 real-valued controls h^1, \ldots, h^ℓ and \mathcal{C}^2_b vector fields V_1, \ldots, V_ℓ in \mathbb{R}^d . The 1-step Euler scheme

$$\mu_{ts}(x) = x + \left(h_t^i - h_s^i\right) V_i(x)$$

defines in that case a C^1 -approximate flow which has the awaited Taylor-type expansion, in the sense that one has

(4.5)
$$f(\mu_{ts}(x)) = f(x) + (h_t^i - h_s^i)(V_i f)(x) + O(|t - s|^{>1})$$

for any function f of class C_b^2 ; but μ fails to be a flow. Its associated flow is not only a flow, it also satisfies equation (4.5) as a consequence of identity (4.1).

We shall proceed in a very similar way to give some meaning and solve the rough differential equation on flows

(4.6)
$$d\varphi = Vdt + \mathbf{F}^{\otimes} \mathbf{X}(dt),$$

where V is a Lipschitz continuous vector field on E and $\mathbf{F} = (V_1, \ldots, V_\ell)$ is a collection of sufficiently regular vector fields on E, and **X** is a Hölder *p*-rough path over

 \mathbb{R}^{ℓ} . A solution flow to equation (4.6) will be defined as a flow on E with a uniform Taylor-Euler expansion of the form

(4.7)
$$f(\varphi_{ts}(x)) = f(x) + \sum_{|I| \le [p]} X_{ts}^{I}(V_{I}f)(x) + O(|t-s|^{>1}),$$

where $I = (i_1, \ldots, i_k) \in [\![1, \ell]\!]^k$ is a multi-index with size $k \leq [p]$, and X_{ts}^I stands for the coordinates of \mathbf{X}_{ts} in the canonical basis of $T_{\ell}^{[p],1}$. The vector field V_i is seen here as a 1st-order differential operator, and $V_I = V_{i_1} \cdots V_{i_k}$ as the k^{th} -order differential operator obtained by applying successively the operators V_{i_n} .

For V = 0 and **X** the (weak geometric) *p*-rough path canonically associated with an \mathbb{R}^{ℓ} -valued \mathcal{C}^1 control *h*, with $2 \leq p < 3$, equation (4.7) becomes (4.8)

$$f(\varphi_{ts}(x)) = f(x) + (h_t^i - h_s^i) (V_i f)(x) + \left(\int_s^t \int_s^r dh_u^j dh_r^k\right) (V_j V_k f)(x) + O(|t - s|^{>1}),$$

which is nothing else than Taylor formula at order 2 for the solution to the ordinary differential equation (4.4) started at x at time s. Condition (4.7) is a natural analogue of (4.8) and its higher order analogues.

There is actually a simple way of constructing a map μ_{ts} which satisfies the Euler expansion (4.7). It can be defined as the time 1 map associated with an ordinary differential equation constructed form the V_i and their brackets, and where \mathbf{X}_{ts} appears as a parameter under the form of its logarithm. That these maps μ_{ts} form a C^1 -approximate flow will eventually appear as a consequence of the fact that the time 1 map of a differential equation formally behaves as an exponential map, in some algebraic sense.

The notationally simpler case of flows driven by weak geometric Hölder *p*-rough paths, with $2 \leq p < 3$, is first studied in section 4.1 before studying the general case in section 4.2. The latter case does not present any additional conceptual difficulty, so a reader which who would like to get the core ideas can read section 4.1 only. The two sections have been written with almost similar words on purpose.

4.1. A warm up: working with weak geometric Hölder *p*-rough paths, with $2 \leq p < 3$. Let V be a C_b^2 vector field on E and V_1, \ldots, V_ℓ be C_b^3 vector fields on E. Let $\mathbf{X} = (X, \mathbb{X})$ be a Hölder weak geometric *p*-rough path over \mathbb{R}^ℓ , with $2 \leq p < 3$. Let μ_{ts} be the well-defined time 1 map associated with the ordinary differential equation

(4.9)
$$\dot{y}_u = (t-s)V(y_u) + \left(X_{ts}^i V_i + \frac{1}{2} \mathbb{X}_{ts}^{jk} [V_j, V_k]\right)(y_u), \quad 0 \le u \le 1;$$

it associates to any $x \in E$ the value at time 1 of the solution of the above equation started from x; it is well-defined since V and the V_i are in particular globally Lipschitz. It is a direct consequence of classical results on ordinary differential equations, and of the definition of the topology on the space of Hölder weak geometric p-rough paths, that the maps μ_{ts} depend continuously on $((s, t), \mathbf{X})$ in the uniform topology, and that

(4.10)
$$\|\mu_{ts} - \mathrm{Id}\|_{\mathcal{C}^2} = o_{t-s}(1).$$

Also, considering y_u as a function of x, it is elementary to see that one has the estimate

(4.11)
$$||y_u - \mathrm{Id}||_{\mathcal{C}^1} \leq c (1 + ||\mathbf{X}||^3) |t - s|^{1/p}, \quad 0 \leq u \leq 1,$$

for some constant depending only on V and the V_i .

4.1.1. From Taylor expansions to flows driven by rough paths. The next proposition shows that μ_{ts} has precisely the kind of Taylor-Euler expansion property that we expect from a solution to a rough differential equation, as described in the introduction to that part of the course.

PROPOSITION 1. There exists a positive constant c, depending only on V and the V_i , such that the inequality (4.12)

$$\left\| f \circ \mu_{ts} - \left\{ f + (t-s)Vf + X_{ts}^{i}\left(V_{i}f\right) + \mathbb{X}_{ts}^{jk}\left(V_{j}V_{k}f\right) \right\} \right\|_{\infty} \leq c \left(1 + \|\mathbf{X}\|^{3}\right) \|f\|_{\mathcal{C}^{3}} |t-s|^{\frac{3}{p}}$$

holds for any $f \in \mathcal{C}_b^3$.

The proof of this proposition and the following one are based on the following elementary identity, obtained by applying twice the identity

$$f(y_r) = f(x) + (t-s) \int_0^r (Vf)(y_u) \, du + X_{ts}^i \int_0^r \left(V_i f \right)(y_u) \, du + \frac{1}{2} \, \mathbb{X}_{ts}^{jk} \int_0^r \left(\left[V_j, V_k \right] f \right)(y_u) \, du,$$

first to f, then to $Vf, V_i f$ and $[V_j, V_k]f$ inside the integrals. One has

$$\begin{split} f(\mu_{ts}(x)) &= f(x) + (t-s) \int_{0}^{1} (Vf)(y_{u}) du + X_{ts}^{i} \int_{0}^{1} (V_{i}f)(y_{s_{1}}) ds_{1} + \frac{1}{2} \mathbb{X}_{ts}^{jk} \int_{0}^{1} \left([V_{j}, V_{k}] f \right)(y_{u}) du \\ &= f(x) + (t-s) (Vf)(x) + (t-s) \int_{0}^{1} \left\{ (Vf)(y_{u}) - (Vf)(x) \right\} du \\ &+ X_{ts}^{i} (V_{i}f)(x) + (t-s) X_{ts}^{i} \int_{0}^{1} \int_{0}^{s_{1}} (VV_{i}f)(y_{s_{2}}) ds_{2} ds_{1} \\ &+ \frac{1}{2} X_{ts}^{i'} X_{ts}^{i} (V_{i'}V_{i}f)(x) + X_{ts}^{i} X_{ts}^{i'} \int_{0}^{1} \int_{0}^{s_{1}} \left\{ (V_{i'}V_{i}f)(y_{s_{2}}) - (V_{i'}V_{i}f)(x) \right\} ds_{2} ds_{1} \\ &+ \frac{1}{2} X_{ts}^{i} \mathbb{X}_{ts}^{jk} \int_{0}^{1} \int_{0}^{s_{1}} \left([V_{j}, V_{k}] V_{i}f \right)(y_{s_{2}}) ds_{2} ds_{1} \\ &+ \frac{1}{2} \mathbb{X}_{ts}^{i} \left([V_{j}, V_{k}] f \right)(x) + \frac{1}{2} \mathbb{X}_{ts}^{jk} \int_{0}^{1} \left\{ \left([V_{j}, V_{k}] f \right)(y_{u}) - \left([V_{j}, V_{k}] f \right)(x) \right\} du. \end{split}$$

Note that since the Hölder *p*-rough path **X** is assumed to be weak geometric, the symmetric part of X_{ts} is equal to $\frac{1}{2}X_{ts} \otimes X_{ts}$, so one has

$$(4.13) \ f(\mu_{ts}(x)) = f(x) + (t-s)(Vf)(x) + X^{i}_{ts}(V_{i}f)(x) + \mathbb{X}^{jk}_{ts}(V_{j}V_{k}f)(x) + \epsilon^{f}_{ts}(x),$$

where the remainder ϵ^f_{ts} is defined by the formula

$$\begin{aligned} \epsilon_{ts}^{f}(x) &:= (t-s) \int_{0}^{1} \left\{ (Vf) \left(y_{u} \right) - (Vf)(x) \right\} du + (t-s) X_{ts}^{i} \int_{0}^{1} \int_{0}^{s_{1}} \left(VV_{i}f \right) \left(y_{s_{2}} \right) ds_{2} ds_{1} \\ &+ X_{ts}^{i} X_{ts}^{i'} \int_{0}^{1} \int_{0}^{s_{1}} \left\{ \left(V_{i'} V_{i}f \right) \left(y_{s_{2}} \right) - \left(V_{i'} V_{i}f \right) (x) \right\} ds_{2} ds_{1} \\ &+ \frac{1}{2} X_{ts}^{i} \mathbb{X}_{ts}^{jk} \int_{0}^{1} \int_{0}^{s_{1}} \left(\left[V_{j}, V_{k} \right] V_{i}f \right) \left(y_{s_{2}} \right) ds_{2} ds_{1} \\ &+ \frac{1}{2} \mathbb{X}_{ts}^{jk} \int_{0}^{1} \left\{ \left(\left[V_{j}, V_{k} \right] f \right) \left(y_{u} \right) - \left(\left[V_{j}, V_{k} \right] f \right) (x) \right\} du. \end{aligned}$$

PROOF OF PROPOSITION 1 – It is elementary to use estimate (4.11) and the regularity assumptions on the vector fields V, V_i to see that the remainder ϵ_{ts}^f is bounded above by a quantity of the form $c(1 + ||\mathbf{X}||^3) ||f||_{\mathcal{C}^3} |t - s|^{\frac{3}{p}}$, for some constant depending only on V and the V_i . \triangleright

A further look at formula (4.29) and estimate (4.11) also make it clear that

(4.14)
$$\left\|\epsilon_{ts}^{f}\right\|_{\mathcal{C}^{1}} \leqslant c\left(1 + \|\mathbf{X}\|^{3}\right)|t-s|^{\frac{3}{p}},$$

for a constant c depending only on V and the V_i . This is the key remark for proving the next proposition.

PROPOSITION 2. The family $(\mu_{ts})_{0 \le s \le t \le T}$ forms a C^1 -approximate flow.

It will be convenient in the following proof to slightly abuse notations and write $V_I(x)$ for $(V_I Id)(x)$, for any multi-index I and point x.

PROOF - We first use formula (4.13) to write

$$\mu_{tu}(\mu_{us}(x)) = \mu_{us}(x) + (t-u)V(\mu_{us}(x)) + X^{i}_{tu}V_{i}(\mu_{us}(x)) + X^{jk}_{tu}(V_{j}V_{k})(\mu_{us}(x)) + \epsilon^{\mathrm{Id}\,;\,[p]}_{tu}(\mu_{us}(x)).$$

We deal with the term $(t-u)V(\mu_{us}(x))$ using estimate (4.11) and the Lipschitz character of V:

$$|(t-u)V(\mu_{us}(x)) - (t-u)V(x)| \leq c(1+||\mathbf{X}||^3) |u-s|^{\frac{3}{p}}$$

The remainder $\epsilon_{tu}^{\mathrm{Id}}(\mu_{us}(x))$ has a \mathcal{C}^1 -norm bounded above by $c(1+||\mathbf{X}||^3)^2|t-u|^{\frac{3}{p}}$, by the remark preceeding proposition 2 and the \mathcal{C}^1 -estimate (4.11) on μ_{us} . We develop $V_i(\mu_{us}(x))$ to deal with the term $X_{tu}^i V_i(\mu_{us}(x))$. As

$$V_i(\mu_{us}(x)) = V_i(x) + (u - s)(VV_i)(x) + X_{us}^{i'}(V_{i'}V_i)(x) + \mathbb{X}_{us}^{jk}(V_jV_kV_i)(x) + \epsilon_{us}^{V_i}(x)$$

we have

(4.15)
$$X_{tu}^{i}V_{i}(\mu_{us}(x)) = X_{tu}^{i}V_{i}(x) + X_{us}^{i'}X_{tu}^{i}(V_{i'}V_{i})(x) + \varepsilon_{tu,us}^{V_{i}}(x)$$

where the remainder $\varepsilon_{tu,us}^{V_i}$ has \mathcal{C}^1 -norm bounded above by

(4.16)
$$\left\|\varepsilon_{tu,us}^{V_i}\right\|_{\mathcal{C}^1} \leq c\left(1 + \|\mathbf{X}\|^3\right) |u - s|^{\frac{3}{p}},$$

for a constant c depending only on V and the V_n . Set

$$\varepsilon_{tu,us}(x) = \sum_{i=1}^{\ell} \varepsilon_{tu,us}^{V_i}(x).$$

The term $\mathbb{X}_{tu}^{jk}(V_j V_k)(\mu_{us}(x))$ is simply dealt with writing

$$(4.17) \quad \mathbb{X}_{tu}^{jk} \big(V_j V_k \big) \big(\mu_{us}(x) \big) = \mathbb{X}_{tu}^{jk} \big(V_j V_k \big)(x) + \mathbb{X}_{tu}^{jk} \Big\{ \big(V_j V_k \big) \big(\mu_{us}(x) \big) - \mathbb{X}_{tu}^{jk} \big(V_j V_k \big)(x) \Big\},$$

and using estimate (4.11) and the C_b^1 character of $V_j V_k$ to see that the last term on the right hand side has a C^1 -norm bounded above by $c(1 + ||\mathbf{X}||^3) |u - s|^{\frac{3}{p}}$. All together, this gives

$$\mu_{tu}(\mu_{us}(x)) = \mu_{us}(x) + (t-u)V(x) + X_{tu}^{i}V_{i}(x) + X_{us}^{i'}X_{tu}^{i}(V_{i'}V_{i})(x) + \mathbb{X}_{tu}^{jk}(V_{j}V_{k})(x) + \varepsilon_{tu,us}(x)$$

$$= x + (u-s)V(x) + X_{us}^{i}V_{i}(x) + \mathbb{X}_{us}^{jk}(V_{j}V_{k})(x) + \epsilon_{us}^{\mathrm{Id}}(x) + (\cdots)$$

$$= x + (t-s)V(x) + X_{ts}^{i}V_{i}(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k})(x) + \epsilon_{us}^{\mathrm{Id}}(x) + \varepsilon_{tu,us}(x)$$

$$= \mu_{ts}(x) + \epsilon_{us}^{\mathrm{Id}}(x) + \varepsilon_{tu,us}(x),$$

so it follows from estimates (4.14) and (4.16) that μ is indeed a C^1 -approximate flow.

The above proof makes it clear that one can take for constant c_1 in the C^1 -approximate flow property (??) for μ the constant $c(1 + ||\mathbf{X}||^3)$, for a constant c depending only on V and the V_i .

Recalling proposition 1 describing the maps μ_{ts} in terms of Euler expansion, the following definition of a solution flow to a rough differential equation is to be thought of as defining a notion of solution in terms of uniform Euler expansion

$$\left\| f \circ \varphi_{ts} - \left\{ f + X_{ts}^{i} V_i f + \mathbb{X}_{ts}^{jk} V_j V_k f \right\} \right\|_{\infty} \leq c \, |t-s|^{>1}.$$

DEFINITION 3. A flow $(\varphi_{ts})_{0 \leq s \leq t \leq T}$ is said to solve the rough differential equation

(4.18)
$$d\varphi = Vdt + \mathbf{F}^{\otimes} \mathbf{X}(dt)$$

if there exists a constant a > 1 independent of X and two possibly X-dependent positive constants δ and c such that

(4.19)
$$\left\|\varphi_{ts} - \mu_{ts}\right\|_{\infty} \leqslant c \, |t - s|^a$$

holds for all $0 \leq s \leq t \leq T$ with $t - s \leq \delta$.

If for instance **X** is the weak geometric Hölder *p*-rough path canonically associated with an \mathbb{R}^{ℓ} -valued piecewise smooth path *h*, it follows from exercice 1, and the fact that the iterated integral $\int_s^t \int_s^r dh_u \otimes dh_r$ has size $|t - s|^2$, that the solution flow to the rough differential equation

$$d\varphi = Vdt + \mathbf{F}^{\otimes}\mathbf{X}(dt)$$

is the flow associated with the ordinary differential equation

$$\dot{y}_t = V(y_t)dt + V_i(y_t) dh_t^i.$$

The following well-posedness result follows directly from theorem ?? on C^1 -approximate flows and proposition 2.

THEOREM 4. The rough differential equation on flows

$$d\varphi = Vdt + \mathbf{F}^{\otimes} \mathbf{X}(dt)$$

has a unique solution flow; it takes values in the space of uniformly Lipschitz continuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and depends continuously on \mathbf{X} .

PROOF – Applying theorem ?? on C^1 -approximate flows to μ we obtain the existence of a unique flow φ satisfying condition (4.34), for δ small enough; it further satisfies the inequality

(4.20)
$$\|\varphi_{ts} - \mu_{\pi_{ts}}\|_{\infty} \leq c \left(1 + \|\mathbf{X}\|^3\right)^2 T \left|\pi_{ts}\right|^{a-1},$$

for any partition π_{ts} of $[s,t] \subset [0,T]$ of mesh $|\pi_{ts}| \leq \delta$, as a consequence of inequality (??). As this bound is uniform in (s,t), and for **X** in a bounded set of the space of weak geometric Hölder *p*-rough paths, and since each map $\mu_{\pi_{ts}}$ is a continuous function of $((s,t), \mathbf{X})$, the flow φ depends continuously on $((s,t), \mathbf{X})$.

To prove that φ is a homeomorphism, note that, with the notations of section ??,

$$\left(\mu_{ts}^{(n)}\right)^{-1} = \mu_{s_1s_0}^{-1} \circ \cdots \circ \mu_{s_{2^n}s_{2^{n-1}}}^{-1}, \quad s_i = s + i2^{-n}(t-s),$$

can actually be written $(\mu_{ts}^{(n)})^{-1} = \overline{\mu}_{s_{2^n s_{2^n-1}}} \circ \cdots \circ \overline{\mu}_{s_1 s_0}$, for the time 1 map $\overline{\mu}$ associated with the rough path $\mathbf{X}_{t-\bullet}$. As $\overline{\mu}$ enjoys the same properties as μ , the maps $(\mu_{ts}^{(n)})^{-1}$ converge uniformly to some continuous map φ_{ts}^{-1} which satisfies by construction $\varphi_{ts} \circ \varphi_{ts}^{-1} = \mathrm{Id}$.

Recall that proposition ?? provides a uniform control of the Lipschitz norm of the maps φ_{ts} ; the same holds for their inverses in view of the preceeding paragraph. We propagate this property from the set $\{(s,t) \in [0,T]^2 ; s \leq t, t-s \leq \delta\}$ to the whole of the $\{(s,t) \in [0,T]^2 ; s \leq t\}$ using the flow property of φ . \triangleright

REMARKS 5. (1) Friz-Victoir approach to rough differential equations.

The continuity of the solution flow with respect to the driving rough path \mathbf{X} has the following consequence, which justifies the point of view adopted by Friz and Victoir in their works. Suppose the Hölder weak geometric p-rough path \mathbf{X} is the limit in the rough path metric of the canonical Hölder weak geometric p-rough paths \mathbf{X}^n associated with some piecwise smooth \mathbb{R}^{ℓ} -valued paths $(x_t^n)_{0 \leq t \leq T}$. We have noticed that the solution flow φ^n to the rough differential equation

$$d\varphi^n = Vdt + \mathbf{F}^{\otimes} \mathbf{X}^n(dt)$$

is the flow associated with the ordinary differential equation

$$\dot{y}_u = V(y_u)du + V_i(y_u) \, d(x_u^n)^i.$$

As $\|\varphi^n - \varphi\|_{\infty} = o_n(1)$, from the continuity of the solution flow with respect to the driving rough path, the flow φ appears in that case as a uniform limit of the elementary flows φ^n . A Hölder weak geometric p-rough path with the above property is called a Hölder geometric p-rough path; not all Hölder weak geometric p-rough path are Hölder geometric p-rough path [14], although there is little difference.

(2) Time-inhomogeneous dynamics. The above results have a straightforward generalization to dynamics driven by a time-dependent bounded drift V(s; ·) which is Lipschitz continuous with respect to the time variable and C²_b with respect to the space variable, uniformly with respect to time, and time-dependent vector fields V_i(s; ·) which are Lipschitz continuous with respect to time, and C³_b with respect to the space variable, uniformly with respect to time. We define in that case a C¹-approximate flow by defining μ_{ts} as the time 1 map associated with the ordinary differential equation

$$\dot{y}_u = (t-s)V(s;y_u) + X^i_{ts}V_i(s;y_u) + \mathbb{X}^{jk}_{ts}[V_j,V_k](y_u), \quad 0 \le u \le 1.$$

4.1.2. *Classical rough differential equations*. In the classical setting of rough differential equations, one is primarily interested in a notion of *solution path*, defined in terms of local Taylor-Euler expansion.

DEFINITION 6. A path $(z_s)_{0 \le s \le T}$ is said to solve the rough differential equation

(4.21)
$$dz = Vdt + \mathbf{F} \mathbf{X}(dt)$$

with initial condition x, if $z_0 = x$ and there exists a constant a > 1 independent of X, and two possibly X-dependent positive constants δ and c, such that (4.22)

$$\left| f(z_t) - \left\{ f(z_s) + (t-s)(Vf)(z_s) + X^i_{ts}(V_i f)(z_s) + \mathbb{X}^{jk}_{ts}(V_j V_k f)(z_s) \right\} \right| \leq c \|f\|_{\mathcal{C}^3} |t-s|^a$$

holds for all $0 \leq s \leq t \leq T$, with $t-s \leq \delta$, for all $f \in \mathcal{C}^3_b$.

THEOREM 7 (Lyons' universal limit theorem). The rough differential equation (4.21) has a unique solution path; it is a continuous function of X in the uniform norm topology.

PROOF – a) Existence. It is clear that if $(\varphi_{ts})_{0 \leq s \leq t \leq 1}$ stands for the solution flow to the equation

$$d\varphi = Vdt + \mathbf{F}^{\otimes}\mathbf{X}(dt),$$

then the path $z_t := \varphi_{t0}(x)$ is a solution path to the rough differential equation (4.21) with initial condition x.

b) Uniqueness. Let agree to denote by $O_c(m)$ a quantity whose norm is bounded above by cm. Let α stand for the minimum of $\frac{3}{p}$ and the constant a

in definition 6, and let y_{\bullet} be any other solution path. It satisfies by proposition 1 the estimate

$$|y_t - \varphi_{ts}(y_s)| \leq c|t - s|^{\alpha}.$$

Using the fact that the maps φ_{ts} are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon > 0$ and any integer $k \leq \frac{T}{\epsilon}$

$$y_{k\epsilon} = \varphi_{k\epsilon,(k-1)\epsilon} (y_{(k-1)\epsilon}) + O_c(\epsilon^{\alpha})$$

= $\varphi_{k\epsilon,(k-1)\epsilon} (\varphi_{(k-1)\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_c(\epsilon^{\alpha})) + O_c(\epsilon^{\alpha})$
= $\varphi_{k\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_{cL}(\epsilon^{\alpha}) + O_c(\epsilon^{\alpha}),$

and see by induction that

$$y_{k\epsilon} = \varphi_{k\epsilon,(k-n)\epsilon} (y_{(k-n)\epsilon}) + O_{cL} ((n-1)\epsilon^{\alpha}) + O_{c} (\epsilon^{\alpha})$$

= $\varphi_{k\epsilon,0}(x) + O_{cL} (k\epsilon^{\alpha}) + o_{\epsilon}(1)$
= $z_{k\epsilon} + O_{cL} (k\epsilon^{\alpha}) + o_{\epsilon}(1).$

Taking ϵ and k so that $k\epsilon$ converges to some $t \in [0, T]$, we see that $y_t = z_t$, since $\alpha > 1$.

The continuous dependence of the solution path z_{\bullet} with respect to **X** is transfered from φ to z_{\bullet} .

4.2. The general case. We have defined in the previous section a solution to the rough differential equation

$$d\varphi = Vdt + \mathbf{F}^{\otimes}\mathbf{X}(dt)$$

driven by a weak geometric Hölder *p*-rough path, for $2 \le p < 3$, as a flow with (s,t;x)-uniform Taylor-Euler expansion of the form

$$f(\varphi_{ts}(x)) = f(x) + (t-s)(Vf)(x) + X^i_{ts}(V_if)(x) + X^{jk}_{ts}(V_jV_kf)(x) + O(|t-s|^{>1}).$$

The definition of a solution flow in the general case will require from φ that it

The definition of a solution flow in the general case will require from φ that it satisfies a similar expansion, of the form

(4.23)
$$f(\varphi_{ts}(x)) = f(x) + (t-s)(Vf)(x) + \sum_{|I| \le [p]} X_{ts}^{I}(V_{I}f)(x) + O(|t-s|^{>1}).$$

As in the previous section, we shall obtain φ as the unique flow associated with some \mathcal{C}^1 -approximate flow $(\mu_{ts})_{0 \leq s \leq t \leq 1}$, where μ_{ts} is the time 1 map associated with an ordinary differential equation constructed from the V_i and their brackets, and Vand \mathbf{X}_{ts} . In order to avoid writing expressions with loads of indices (the \mathbf{X}_{ts}^I), I will first introduce in subsection 4.2.1 a coordinate-free way of working with rough paths and vector fields. A \mathcal{C}^1 -approximate flow with the awaited Euler expansion will be constructed in subsection 4.2.2, leading to a general well-posedness result for rough differential equations on flows.

To make the crucial formula (4.29) somewhat shorter we assume in this section that V = 0. The reader is urged to workout by herself/himself the infinitesimal changes that have to be done in what follows in order to work with a non-null drift V. From hereon, the vector fields V_i are assumed to be of class $\mathcal{C}_b^{[p]+1}$. We denote by $\mathcal{C}_b^{[p]+1}(\mathbf{E},\mathbf{E})$ the set of $\mathcal{C}_b^{[p]+1}$ vector fields on \mathbf{E} . We denote for by $\pi_k: T_\ell^\infty \to (\mathbb{R}^\ell)^k$ the natural projection operator and set $\pi_{\leq k} = \sum_{j \leq k} \pi_j$.

4.2.1. Differential operators. Let F be a continuous linear map from \mathbb{R}^{ℓ} to $\mathcal{C}_{b}^{[p]+1}(\mathbf{E}, \mathbf{E})$ – one usually calls such a map a vector field valued 1-form on \mathbb{R}^{ℓ} . For any $v \in \mathbb{R}^{\ell}$, we identify the $\mathcal{C}^{[p]+1}$ vector field $\mathbf{F}(v)$ on \mathbf{E} with the first order differential operator

$$\mathbf{F}^{\otimes}(v) : g \in \mathcal{C}^{1}(\mathbf{E}) \mapsto (D.g) \big(\mathbf{F}(v)(\cdot) \big) \in \mathcal{C}^{0}(\mathbf{E});$$

in those terms, we recover the vector field F(v) as $F^{\otimes}(v)$ Id. The map F^{\otimes} is extended to $T_{\ell}^{[p]+1}$ by setting

$$F^{\otimes}(1) := Id : \mathcal{C}^{0}(E) \mapsto \mathcal{C}^{0}(E),$$

and defining $F^{\otimes}(v_1 \otimes \cdots \otimes v_k)$, for all $1 \leq k \leq [p] + 1$ and $v_1 \otimes \cdots \otimes v_k \in (\mathbb{R}^{\ell})^{\otimes k}$, as the kth-order differential operator from $\mathcal{C}^k(E)$ to $\mathcal{C}^0(E)$, defined by the formula

$$\mathbf{F}^{\otimes}(v_1 \otimes \cdots \otimes v_k) := \mathbf{F}^{\otimes}(v_1) \cdots \mathbf{F}^{\otimes}(v_k),$$

and by requiring linearity. So, we have the morphism property

(4.24)
$$F^{\otimes}(\mathbf{e}) F^{\otimes}(\mathbf{e}') = F^{\otimes}(\mathbf{e}\mathbf{e}')$$

for any $\mathbf{e}, \mathbf{e}' \in T_{\ell}^{[p]+1}$ with $\mathbf{e}\mathbf{e}' \in T_{\ell}^{[p]+1}$. This condition on \mathbf{e}, \mathbf{e}' is required for if $\mathbf{e}' = v_1 \otimes \cdots \otimes v_k$ with $v_i \in \mathbb{R}^{\ell}$, the map $\mathbf{F}^{\otimes}(\mathbf{e}')$ Id from E to itself is $\mathcal{C}_b^{[p]+1-k}$, so $\mathbf{F}^{\otimes}(\mathbf{e}) \mathbf{F}^{\otimes}(\mathbf{e}')$ only makes sense if $\mathbf{e}\mathbf{e}' \in T_{\ell}^{[p]+1}$. We also have

$$\left[F^{\otimes}(\mathbf{e}), F^{\otimes}(\mathbf{e}')\right] = F^{\otimes}\left([\mathbf{e}, \mathbf{e}']\right)$$

for any $\mathbf{e}, \mathbf{e}' \in T_{\ell}^{[p]+1}$ with $\mathbf{ee'}$ and $\mathbf{e'e}$ in $T_{\ell}^{[p]+1}$. This implies in particular that $\mathbf{F}^{\otimes}(\Lambda)$ is actually a first order differential operator for any $\Lambda \in \mathfrak{g}_{\ell}^{[p]+1}$, that is a vector field. Note that for any $\Lambda \in \mathfrak{g}_{\ell}^{[p]+1}$ and $1 \leq k \leq [p] + 1$, then $\Lambda^k := \pi_k(\Lambda)$ is an element of $\mathfrak{g}_{\ell}^{[p]}$, and the vector field $\mathbf{F}^{\otimes}(\Lambda^k)$ Id is $\mathcal{C}_b^{[p]+1-k}$.

We extend \mathbf{F}^{\otimes} to the unrestricted tensor space T_{ℓ}^{∞} setting

(4.25)
$$\mathbf{F}^{\otimes}(\mathbf{e}) = \mathbf{F}^{\otimes}\left(\pi_{\leqslant [p]+1}\mathbf{e}\right)$$

for any $\mathbf{e} \in T^{\infty}_{\ell}$.

Consider as a particular case the map F defined for $u \in \mathbb{R}^{\ell}$ by the formula

$$\mathbf{F}(u) = u^i V_i(\cdot).$$

Using the formalism of this paragraph, an Euler expansion of the form

$$f(\varphi_{ts}(x)) = f(x) + \sum_{|I| \leq [p]} X_{ts}^{I}(V_{I}f)(x) + O(|t-s|^{>1}),$$

as in equation (4.23), becomes

$$f(\varphi_{ts}(x)) = (\mathbf{F}^{\otimes}(\mathbf{X}_{ts})f)(x) + O(|t-s|^{>1}).$$

4.2.2. From Taylor expansions to flows driven by rough paths: bis. Let $2 \leq p$ be given, together with a $\mathfrak{G}_{\ell}^{[p]}$ -valued weak-geometric Hölder *p*-rough path **X**, defined on some time interval [0, T], and some continuous linear map F from \mathbb{R}^{ℓ} to the set $\mathcal{C}_{b}^{[p]+1}(\mathbf{E}, \mathbf{E})$ of vector fields on E. For any $0 \leq s \leq t \leq T$, denote by Λ_{ts} the logarithm of \mathbf{X}_{ts} , and let μ_{ts} stand for the well-defined time 1 map associated with the ordinary differential equation

(4.26)
$$\dot{y}_u = \mathbf{F}^{\otimes} (\mathbf{\Lambda}_{ts})(y_u), \quad 0 \leq u \leq 1.$$

This equation is indeed an ordinary differential equation since Λ_{ts} is an element of $\mathfrak{g}_{\ell}^{[p]}$. For $2 \leq p < 3$, it reads

$$\dot{y}_u = X_{ts}^i V_i(y_u) + \frac{1}{2} \left(\mathbb{X}_{ts}^{jk} + \frac{1}{2} X_{ts}^j X_{ts}^k \right) \left[V_j, V_k \right](y_u), \quad 0 \le u \le 1.$$

As the tensor $X_{ts} \otimes X_{ts}$ is symmetric and the map $(j, k) \mapsto [V_j, V_k]$ is antisymmetric, this equation actually reads

$$\dot{y}_u = X_{ts}^i V_i(y_u) + \frac{1}{2} \mathbb{X}_{ts}^{jk} \left[V_j, V_k \right](y_u),$$

which is nothing else than equation (4.9), whose time 1 map defined the C^1 -approximate flow we studied in section 4.1.1.

It is a consequence of classical results from ordinary differential equations, and the definition of the norm on the space of weak-geometric Hölder *p*-rough paths, that the solution map $(r, x) \mapsto y_r$, with $y_0 = x$, depends continuously on $((s, t), \mathbf{X})$ in \mathcal{C}^0 -norm, and satisfies the following basic estimate. The next proposition shows that μ_{ts} has precisely the kind of Taylor-Euler expansion property that we expect from a solution to a rough differential equation.

(4.27)
$$||y_r - \mathrm{Id}||_{\mathcal{C}^1} \leqslant c \left(1 + ||\mathbf{X}||^{[p]}\right) |t - s|^{\frac{1}{p}}, \quad 0 \leqslant r \leqslant 1$$

PROPOSITION 8. There exists a positive constant c, depending only on the V_i , such that the inequality

(4.28)
$$\left\| f \circ \mu_{ts} - F^{\otimes}(\mathbf{X}_{ts}) f \right\|_{\infty} \leq c \left(1 + \|\mathbf{X}\|^{[p]} \right) \|f\|_{\mathcal{C}^{[p]+1}} |t-s|^{\frac{[p]+1}{p}}$$

holds for any $f \in \mathcal{C}_b^{[p]+1}(E)$.

Recall $F^{\otimes}(0)$ is the null map from $\mathcal{C}^{0}(E)$ to itself and $\pi_{0}\Lambda = 0$ for any $\Lambda \in \mathfrak{g}_{\ell}^{[p]}$. The proof of this proposition and the following one are based on the elementary identity (4.29) below, obtained by applying repeatedly the identity

$$f(y_r) = f(x) + \int_0^r \left(\mathbf{F}^{\otimes} \left(\mathbf{\Lambda}_{ts} \right) f \right)(y_u) \, du$$
$$= f(x) + \sum_{k_1=0}^{[p]+1} \int_0^r \left(\mathbf{F}^{\otimes} \left(\mathbf{\Lambda}_{ts}^{k_1} \right) f \right)(y_u) \, du, \quad 0 \leqslant r \leqslant 1$$

together with the morphism property (4.24). The above sum over k_1 is needed to take care of the different regularity properties of the maps $F^{\otimes}(\Lambda_{ts}^{k_1})f$.

$$f(\mu_{ts}(x)) = f(x) + \left(\mathbf{F}^{\otimes}(\mathbf{\Lambda}_{ts})f\right)(x) + \sum_{k_1+k_2 \leq [p]+1} \int_0^1 \int_0^{s_1} \left(\mathbf{F}^{\otimes}(\mathbf{\Lambda}_{ts}^{k_2})\mathbf{F}^{\otimes}(\mathbf{\Lambda}_{ts}^{k_1})f\right)(y_{s_2}) ds_2 ds_1$$
$$= f(x) + \left(\mathbf{F}^{\otimes}(\mathbf{\Lambda}_{ts})f\right)(x) + \int_0^1 \int_0^{s_1} \left(\mathbf{F}^{\otimes}(\mathbf{\Lambda}_{ts}^{\bullet 2})f\right)(y_{s_2}) ds_2 ds_1$$

We use here the notation •2 to denote the multiplication $\Lambda_{ts}^{\bullet 2} = \Lambda_{ts}\Lambda_{ts}$, not to be confused with the second level Λ_{ts}^2 of Λ_{ts} ; the product is done here in T_{ℓ}^{∞} , and definition (4.25) used to make sense of $F^{\otimes}(\Lambda_{ts}^{\bullet 2})f$. Set

$$\Delta_n := \{(s_1, \ldots, s_n) \in [0, T]^n; s_1 \leqslant \cdots \leqslant s_n\},\$$

for $2 \leq n \leq [p]$, and write ds for $ds_n \dots ds_1$. Repeating (n-1) times the above procedure in an iterative way, we see that

$$f(\mu_{ts}(x)) = f(x) + \sum_{k=1}^{n-1} \frac{1}{k!} \left(F^{\otimes} (\Lambda_{ts}^{\bullet k}) f \right)(x) + \int_{\Delta_n} \left(F^{\otimes} (\Lambda_{ts}^{\bullet n}) f \right)(y_{s_n}) ds$$
$$= f(x) + \sum_{k=1}^n \frac{1}{k!} \left(F^{\otimes} (\Lambda_{ts}^{\bullet k}) f \right)(x) + \int_{\Delta_n} \left\{ \left(F^{\otimes} (\Lambda_{ts}^{\bullet n}) f \right)(y_{s_n}) - \left(F^{\otimes} (\Lambda_{ts}^{\bullet n}) f \right)(x) \right\} ds.$$

Note that $\pi_j \Lambda_{ts}^{\bullet n} = 0$, for all $j \leq n-1$, and

$$\pi_{\leq [p]}\left(\sum_{k=1}^{[p]}\frac{1}{k!}\Lambda_{ts}^{\bullet k}\right) = \mathbf{X}_{ts};$$

also $\pi_{\leq [p]}\left(\Lambda_{ts}^{\bullet[p]}\right) = \left(X_{ts}^{1}\right)^{\otimes [p]}$ is of size $|t-s|^{\frac{[p]}{p}}$. We separate the different terms in the above identity according to their size in |t-s|; this leads to the following expression for $f(\mu_{ts}(x))$.

We denote by $\epsilon_{ts}^{f;n}(x)$ the sum of the two terms involving $\pi_{[p]+1}$ in the above line, made up of terms of size at least $|t - s|^{\frac{[p]+1}{p}}$. Note that for n = [p], the integral term in the first line involves $\pi_{\leq [p]} \left(\Lambda_{ts}^{[p]} \right) = \left(X_{ts}^1 \right)^{\otimes [p]}$ and the increment $y_{s_n} - x$, of size $|t - s|^{\frac{1}{p}}$, by estimate (4.27), so this term is of size $|t - s|^{\frac{[p]+1}{p}}$; we include it in $\epsilon_{ts}^{f;[p]}(x)$. PROOF OF PROPOSITION 8 – Applying the above formula with n = [p], we get the identity

$$f(\mu_{ts}(x)) = \left(\mathbf{F}^{\otimes}(\mathbf{X}_{ts})f\right)(x) + \epsilon_{ts}^{f;[p]}(x).$$

It is clear on the formula for $\epsilon_{ts}^{f;[p]}(x)$ that its absolute value is bounded above by a constant multiple of $\left(1 + \|\mathbf{X}\|^{[p]}\right)|t-s|^{\frac{[p]+1}{p}}$, for a constant depending only on the data of the problem and f as in (4.28). \triangleright

A further look at formula (4.29) makes it clear that if $2 \leq n \leq [p]$, and f is \mathcal{C}_b^{n+1} , the estimate

(4.30)
$$\left\|\epsilon_{ts}^{f\,;\,n}\right\|_{\mathcal{C}^{1}} \leqslant c\left(1 + \|\mathbf{X}\|^{[p]}\right) \|f\|_{\mathcal{C}^{n+1}} |t-s|^{\frac{[p]+1}{p}},$$

holds as a consequence of formula (4.27), for a constant c depending only on the V_i .

PROPOSITION 9. The family of maps $(\mu_{ts})_{0 \le s \le t \le T}$ is a \mathcal{C}^1 -approximate flow.

PROOF – As the vector fields V_i are of class $C_b^{[p]+1}$, with $[p] + 1 \ge 3$, the identity $\|\mu_{ts} - \operatorname{Id}\|_{\mathcal{C}^2} = o_{t-s}(1)$

holds as a consequence of classical results on ordinary differential equations; we turn to proving the C^1 -approximate flow property (??). Recall X_{ts}^m stans for $\pi_m \mathbf{X}_{ts}$. We first use for that purpose formula (4.29) to write

(4.31)
$$\mu_{tu}(\mu_{us}(x)) = \left(\mathbf{F}^{\otimes}(\mathbf{X}_{tu}) \mathrm{Id} \right) \left(\mu_{us}(x) \right) + \epsilon_{tu}^{\mathrm{Id}; [p]}(\mu_{us}(x))$$
$$= \mu_{us}(x) + \sum_{m=1}^{[p]} \left(\mathbf{F}^{\otimes}(X_{tu}^m) \mathrm{Id} \right) \left(\mu_{us}(x) \right) + \epsilon_{tu}^{\mathrm{Id}; [p]}(\mu_{us}(x)).$$

We splitted the function $F^{\otimes}(\mathbf{X}_{tu})$ Id into a sum of functions $F^{\otimes}(X_{tu}^m)$ Id with different regularity properties, so one needs to use different Taylor expansions for each of them. One uses (4.30) and inequality (4.27) to deal with the remainder

$$\left\| \epsilon_{tu}^{\mathrm{Id}\,;\,[p]}(\mu_{us}(x)) \right\|_{\mathcal{C}^{1}} \leqslant c \left(1 + \|\mathbf{X}\|^{[p]} \right)^{2} |t - u|^{\frac{[p]+1}{p}}$$

To deal with the term $(F^{\otimes}(X_{tu}^m)Id)(\mu_{us}(x))$, we use formula (4.29) with n = [p] - m and $f = F^{\otimes}(X_{tu}^m)Id$. Writing ds for $ds_{[p]-m} \dots ds_1$, we have (4.32)

$$\left(\mathbf{F}^{\otimes}(X_{tu}^{m})\mathrm{Id}\right)(\mu_{us}(x)) = \left(\mathbf{F}^{\otimes}(X_{tu}^{m})\mathrm{Id}\right)(x) + \left(\mathbf{F}^{\otimes}\left(\left\{\pi_{\leqslant[p]}\sum_{k=1}^{[p]-m}\frac{1}{k!}\mathbf{\Lambda}_{us}^{\bullet k}\right\}X_{tu}^{m}\right)\mathrm{Id}\right)(x) + \epsilon_{us}^{\star;\,p-m}(x)$$

The notation \star in the above identity stands for the $C_b^{[p]+2-m}$ function $F^{\otimes}(X_{tu}^m)$ Id; it has C^1 -norm controlled by (4.30). The result follows directly from (4.31) and (4.32) writing

$$\mu_{us}(x) = \left(\mathbf{F}^{\otimes} (\mathbf{X}_{us}) \mathrm{Id} \right)(x) + \epsilon_{us}^{\mathrm{Id}\,;\,[p]}(x),$$

 \triangleright

and using the identities $\exp(\Lambda_{us}) = \mathbf{X}_{us}$ and $\mathbf{X}_{ts} = \mathbf{X}_{us}\mathbf{X}_{tu}$ in $T_{\ell}^{[p]}$.

(4.33) $d\varphi = \mathbf{F}^{\otimes} \mathbf{X}(dt)$

if there exists a constant a > 1 independent of X and two possibly X-dependent positive constants δ and c such that

$$(4.34) \|\varphi_{ts} - \mu_{ts}\|_{\infty} \leqslant c \, |t - s|^a$$

holds for all $0 \leq s \leq t \leq T$ with $t - s \leq \delta$.

This definition can be equivalently reformulated in terms of uniform Taylor-Euler expansion of the form

$$f(\varphi_{ts}(x)) = f(x) + \sum_{|I| \le [p]} X_{ts}^{I}(V_{I}f)(x) + O(|t-s|^{>1}).$$

The following well-posedness result follows directly from theorem ?? and proposition 9; its proof is identical to the proof of theorem 7, without a single word to be changed, except for the power of $||\mathbf{X}||$ in estimate (4.20), which needs to be taken as [p] + 1 instead of 3.

THEOREM 11. The rough differential equation

$$d\varphi = \mathbf{F}^{\otimes} \mathbf{X}(dt)$$

has a unique solution flow; it takes values in the space of uniformly Lipschitz continuous homeomorphisms of E with uniformly Lipschitz continuous inverses, and depends continuously on \mathbf{X} .

Remarks 5 on Friz-Victoir's approach to rough differential equations and timeinhomogeneous dynamics also hold in the general setting of this section.

4.3. Exercice on flows driven by rough paths. 12. Local Lipschitz continuity of φ with respect to X. Use the result proved in exercice 5 to prove that the solution flow to a rough differential equation driven by X is a locally Lipschitz continuous function of X, in the uniform norm topology.

13. Taylor expansion of solution flows. Let V_1, \ldots, V_ℓ be $\mathcal{C}_b^{[p]+1}$ vector fields on a Banach space E, and **X** be a weak geometric Hölder *p*-rough path over \mathbb{R}^ℓ , with $2 \leq p$. Set $\mathbf{F} = (V_1, \ldots, V_\ell)$. The solution flow to the rough differential equation

$$d\varphi = \mathbf{F}^{\otimes} \mathbf{X}(dt)$$

enjoys, by definition, a uniform Taylor-Euler expansion property, expressed either by writing

$$\left\|\varphi_{ts} - \mu_{ts}\right\|_{\infty} \leqslant c|t - s|^a$$

for the C^1 -approximate flow $(\mu_{ts})_{0 \leq s \leq t \leq 1}$ contructed in section 4.2.2, or by writing

$$\left\| f \circ \varphi_{ts} - \sum_{|I| \leq [p]} X_{ts}^{I} V_{I} f \right\|_{\infty} \leq c |t - s|^{a}.$$

What can we say if the vector fields V_i are actually more regular than $\mathcal{C}_b^{[p]+1}$?

Assume $N \ge [p] + 2$ is given and the V_i are \mathcal{C}_b^N . Let \mathbf{Y} be the canonical lift of \mathbf{X} to a \mathfrak{G}_ℓ^N -valued weak geometric Hölder N-rough path, given by Lyons' extension theorem proved in exercise 7. Let $\Theta_{ts} \in \mathfrak{g}_\ell^N$ stand for $\log \mathbf{Y}_{ts}$. For any $0 \le s \le t \le 1$, let ν_{ts} be the time 1 map associated with the ordinary differential equation

$$\dot{z}_u = \mathbf{F}^{\otimes} (\Theta_{ts})(z_u), \quad 0 \leqslant u \leqslant 1$$

a) Prove that ν_{ts} enjoys the following Euler expansion property. For any $f \in \mathcal{C}_b^{N+1}$ we have

(4.35)
$$\|f \circ \nu_{ts} - \mathbf{F}^{\otimes} (\mathbf{Y}_{ts}) f\|_{\infty} \leq c |t-s|^{\frac{N+1}{p}},$$

where the contant c depends only on the V_i and \mathbf{X} .

b) Prove that $(\nu_{ts})_{0 \leq s \leq t \leq 1}$ is a \mathcal{C}^1 -approximate flow.

c) Prove that φ_{ts} satisfies the high order Euler expansion formula (4.35).

14. Perturbing the signal or the dynamics? Let $2 \leq p$ be given and V_1, \ldots, V_{ℓ} be $\mathcal{C}_b^{[p]+1}$ vector fields on E. Let **X** be a weak geometric Hölder *p*-rough path over \mathbb{R}^{ℓ} , and $\mathbf{a} \in \mathfrak{g}_{\ell}^{[p]}$ be such that $\pi_j \mathbf{a} = 0$ for all $j \leq [p] - 1$. Write it

$$\mathbf{a} = \sum_{|I|=[p]} a^I \mathbf{e}_{[I]}$$

where (e_1, \ldots, e_ℓ) stand for the canonical basis of \mathbb{R}^ℓ , and for $I = (i_1, \ldots, i_k)$,

$$\mathbf{e}_{[I]} = \left[e_{i_1}, \left[\dots, \left[e_{i_{k-1}}, e_{i_k} \right] \dots \right] \right]$$

in $T_{\ell}^{[p]}$. The $\mathbf{e}_{[I]}$'s form a basis of $\mathfrak{g}_{\ell}^{[p]}$ with $\pi_n \mathbf{e}_{[I]} = 0$ if $n \neq |I|$. Recall the definition of exp : $T_{\ell}^{[p],0} \to T_{\ell}^{[p],1}$ and its reciprocal log.

a) Show that one defines a weak geometric Hölder *p*-rough path $\overline{\mathbf{X}}$ over \mathbb{R}^{ℓ} setting

$$\overline{\mathbf{X}}_{ts} = \exp\left(\log \mathbf{X}_{ts} + (t-s)\mathbf{a}\right)$$

b) Show that the solution flow to the rough differential equation

$$d\psi = \mathbf{F}^{\otimes} \overline{\mathbf{X}}(dt)$$

coincides with the solution flow to the rough differential equation

$$d\varphi = Vdt + \mathbf{F}^{\otimes}\mathbf{X}(dt),$$

where the vector field V is defined by the formula

$$V = a^I V_{[I]}.$$

References

- Lyons, T.J. and Caruana, M. and Lévy, Th. Differential equations driven by rough paths. Lecture Notes in Mathematics, 1908, Springer 2007.
- [2] Lyons, T. and Qian, Z. System control and rough paths. Oxford Mathematical Monographs, Oxford University Press 2002.
- [3] Friz, P. and Victoir, N. Multidimensional stochastic processes as rough paths. CUP, Cambridge Studies in Advanced Mathematics, 120, 2010.
- [4] Baudoin, F., Rough paths theory. Lecture notes, http://fabricebaudoin.wordpress.com/category/roughpaths-theory/, 2013.
- [5] Friz, P. and Hairer, M., A short course on rough paths. Lect. Notes Math., www.hairer.org/notes/RoughPaths.pdf, 2014.
- [6] Bailleul, I., Flows driven by rough paths. arXiv:1203.0888, 2013.
- [7] Feyel, D. and de La Pradelle, A. Curvilinear integrals along enriched paths. *Electron. J. Probab.*, 11:860–892, 2006.
- [8] Feyel, D. and de La Pradelle, A. and Mokobodzki, G. A non-commutative sewing lemma. Electron. Commun. Probab., 13:24–34, 2008.
- [9] Gubinelli, M., Controlling rough paths. J. Funct. Anal., 216:86–140, 2004.
- [10] Lyons, T.. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14 (2):215–310, 1998.
- [11] Montgomery, R., A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91, 2002.
- [12] Lejay, A., Yet another introduction to rough paths. Séminaire de Probabilités, LNM 1979:1– 101, 2009.
- [13] Chen, K.T. Iterated path integrals. Bull. Amer. Math. Soc., 83(5):831-879, 1977.
- [14] Friz, P. and Victoir, N. A note on the notion of geometric rough paths. Probab. Theory Related Fields, 136 (3):395–416, 2006.