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Abstract
We prove a convergence result for a large class of random models that encompasses the
case of the BPHZ models used in the study of singular stochastic PDEs. We introduce for
that purpose a useful variation on the notion of regularity structure called a regularity-
integrability structure. It allows to deal in a single elementary setting with models on
a usual regularity structure and their first order Malliavin derivative.

1 – Introduction

The introduction by M. Hairer of the theory of regularity structures opened a new era in the domain
of stochastic partial differential equations (PDEs). It provided in particular a robust solution theory
for a number of equations, called ‘singular’, whose study is beyond the range of the methods based on
stochastic calculus. The singular feature of these equations is related to the fact that their formulations
involve some ill-defined products. The development of this theory was done in several steps. The analytic
core was developed in Hairer’ seminal work [17]. Its algebraic backbone was deepened in Bruned, Hairer &
Zambotti’s work [8]. The specific task of dealing with the ill-defined products of a singular stochastic PDE
is called the renormalisation problem. This problem has a dynamics side and a probabilistic side. The
dynamic meaning of the BPHZ renormalisation procedure of [8] was studied by Bruned, Chandra, Chevyrev
& Hairer in [7], and lead to the identification of a solution to a singular stochastic PDE as the limit of
solutions to renormalised versions of the initial equations, that is equations driven by a regularized noise
with additional counterterms that typically diverge as the regularization parameter vanishes. The analytic
machinery needs as an input an equation-dependent finite family of quantities built from a regularized
noise. A systematic proof of probabilistic convergence of these quantities using the BPHZ renormalisation
rule was given by Chandra & Hairer in [12]; this is the probabilistic side of the renormalisation problem.

Altogether the four works [17, 8, 7, 12] form an automated blackbox for the study of a well identified
large class of equations, with prominent examples coming as scaling limits of some microscopic discrete
systems of statistical mechanics. This is the case of the (KPZ) equation from continuous interface growth
models, of the parabolic Anderson model equation giving the scale limit of branching particle systems,
or of the Φ4

3 equation from Euclidean quantum field theory. While the works [17, 8, 7] are now well
understood by a growing community this is not the case of the work [12]. The latter uses ideas from the
multiscale expansion method developed by Feldman, Magnen, Rivasseau & Sénéor in [15], for the study of
divergent Feynman integrals, to analyse the convergence problem of an equation-dependent finite collection
of iterated integrals. The sophistication of their analysis and the very general assumptions on the law of
the noise adopted in [12] make their work very challenging.

Meanwhile, Otto developped with a number of co-authors a variant of the theory of regularity structures
tailor made for the study of a certain class of singular quasilinear stochastic PDEs. Its analytic machinery
was constructed in the works [28, 26] with Weber, and Sauer & Smith. The algebraic machinery was
described in the work [22] with Linares & Tempelmayr. Importantly, they were able to identify in [26] a
renormalisation procedure with a similar dynamic meaning as the BPHZ renormalisation process. Linares,
Otto, Tempelmayr & Tsatsoulis proved in [23] the convergence result corresponding in their setting to
the convergence result of [12]. Most interestingly, the authors of [23] used a set of assumptions and tools
different from [12], trading assumptions on cumulants and questions on iterated integrals for a spectral
gap assumption on the law of the random noise and an iterative control of the stochastic objects. Their
approach bypasses in particular the intricate algebraic content of the BPHZ strategy. We note that
the idea of differentiation with respect to the noise that is involved in the spectral gap assumption was
used in a different form in the early 80s by Caswell & Kennedy [11] in their approach to perturbative
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renormalisation of quantum field theories. The results [26, 22, 23] are not directly applicable to the study
of semilinear subcritical singular stochastic PDEs. Hairer & Steele [20] gave very recently an improved
and simplified version of the convergence result of [23], in the original regularity structure setting. Their
general convergence result for the BPHZ renormalisation procedure provides an alternative to the result
of [12] of similar scope for practical purposes. We provide in the present work an alternative proof of
their convergence result that holds for a larger class of renormalisation procedures containing the BPHZ
procedure of [20] as a particular example.

Like [23], the convergence proof of [20] is done by induction. The objects to control are renormalized
models on a regularity structure. They are built from a regularized noise and come under the form of a
family of distributions Πn

xτ indexed by the points x of the state space and a finite, equation-dependent,
family of symbols τ . The integer n accounts here for the regularization parameter. The stochastic conver-
gence of these models as the regularization is removed is mainly controlled by the Lp(Ω) convergence of
real-valued quantities of the form

λ−|τ |(Πn
xτ)(φ

λ
x) (1.1)

where the smooth test functions φλ
x behave like Dirac masses at x as λ goes to 0 and |τ | is some real

number. The spectral gap assumption on the law of the random noise allows to control the Lp(Ω) norm
of (1.1) by its expectation and the quantity

E
[

sup
∥h∥H≤1

∣∣(dω(Πn
xτ)(h)

)
(φλ

x)
∣∣p], (1.2)

where dω(·)(h) stands for the Gâteaux derivative in the direction h, for h ∈ H in some space H. It turns out
that a good control on the expectation of (1.1) for λ = 1 can be propagated by induction to any 0 < λ ≤ 1
and all symbols. Building on the insight of [23] Hairer & Steele show that dω(Π

n
xτ)(h) can be represented

as the reconstruction of a modelled distribution defined on an extended regularity structure that contains
an extra noise symbol – a placeholder for a generic h. This representation comes with estimates that play
a crucial role in the inductive procedure. To apply this strategy Hairer & Steele introduced a concept of
pointed modelled distribution that allows to harvest the benefits associated with the improved regularity
of the functions h involved in the spectral gap assumption, compared to the regularity of the noise, and
get as a consequence a good scaling bound for (1.2). One then needs to extend the analytic core of
the theory of regularity structures to the setting of pointed modelled distributions; a non-trivial task.
Further, the construction of a pointed modelled distribution associated with the derivative dω(Π

n
xτ)(h) of

the renormalized model is only done in [20] for BPHZ-like renormalisation procedures. We use a different
strategy to prove the convergence of a larger family of renormalized models. These models are built from
a class of maps that act on the linear space spanned by the symbols τ , called preparation maps. They
were introduced by Bruned in [6] as a fundamental brick in the inductive construction of a large class of
admissible models. BPHZ-like renormalisation procedures correspond to particular examples of preparation
maps. The dynamic meaning of the renormalisation procedure associated with (strong) preparation maps
was studied by Bailleul & Bruned in [1]. As in the BPHZ setting it involves renormalized equations that
include additional counterterms.

In our setting we trade the testing operation (1.1) against a scaled centered function for a testing oper-
ation against some kernel Qt(x, ·) and we aim at getting some (probabilistic) bounds on quantities of the
form t−|τ |/ℓQt(x,Π

n
xτ), where Πn

xτ is associated with a regularized noise and an n-dependent preparation
map. At the informal level of this introduction, our main result, Theorem 6, reads as follows. See the
latter half part of this section for the definitions of related notations.

1 – Theorem. Assume the noise symbol is the only element of the regularity structure with degree less
than or equal to −|s|/2. Assume that the law of the random noise has a spectral gap. Last, suppose that
we have some preparation maps Rn for which the quantities E[Q1(0,Π

n
0 τ)] converge for all the symbols τ

with non-positive degree. Then the renormalized models associated with these preparation maps converge
in Lq(P) for any 1 ≤ q < ∞.

The spectral gap inequality is introduced in Section 2.1. We give in this work our convergence result
in a situation where there is only one noise and one integration operator. The modifications needed to
accommodate a situation with different noises and different integration operators, as in [20], are standard
and left to the reader. To deal with models on a usual regularity structure and their first order Malliavin
derivative in a single setting we introduce a useful variant of the notion of regularity structure that we call
a regularity-integrability structure. Its symbol space is in particular graded by a subset of R × [1,∞], with
the first component accounting for a regularity exponent and the second component accounting for an
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integrability exponent. An associated notion of modelled distribution, their reconstruction and Schauder
estimates for some integration operator, can be developed in the regularity-integrability setting as in the
classical setting. This is done in the companion work [21]. We only need to work with two integrability
exponents ∞, p ∈ [1,∞] at a time in this work. The regularity degree for a symbols τ depends on the
choice of p. The algebraic structure that defines the regularity-integrability structure then turns out to be
p-dependent. On a technical level, in addition to the spectral gap assumption on the law of the random
noise, our proof of Theorem 1 rests on the versions of the reconstruction theorem and Schauder estimates
that hold in a regularity-integrability structure, and a useful comparison formula (Lemma 4) describing
what happens to a renormalized model when we vary p, that is when we vary the regularity-integrability
structure itself. The mechanics of the proof is detailed in Section 3.

The class of renormalized models from [8] is built from a subclass of preparation maps. Within that
subclass there is a unique choice of preparation maps such that E[(Πnτ)(x)] = 0 for all τ with negative
degree, x ∈ Rd, and n. The model M(P) associated to this preparation map is called BPHZ model. The
next statement expresses a continuity property of the law of M(P) in the class of probability measures that
have the same spectral gap. Tempelmayr [29] obtained recently a similar result in a different setting.

2 – Theorem. Let (Pj)j∈N be a sequence of probability measures on Ω that converges weakly to a limit
probability measure P. If all the Pj satisfy a spectral gap inequality with the same constant then the law of
M(Pj) converges weakly to the law of M(P).

We refer the reader to the reviews [13, 14] of Chandra & Weber and Corwin & Shen for some non-
technical introductions to the domain of semilinear singular stochastic PDEs. One can refer to the books
[16, 5] of Friz & Hairer and Berglund for mildly technical introductions to regularity structures, and to
Bailleul & Hoshino’s Tourist’s Guide [3] for a thorough tour of the analytic and algebraic sides of the theory.
Hairer’s lecture notes [18, 19] are centered on the problems of renormalisation in the setting of Feynmann
graphs and in the setting of singular stochastic PDEs, respectively. The lecture notes [27, 25] of Otto &
co. give a gentle introduction to the tree-free approach [23] to the renormalisation of the random models
that are involved in the analytic and algebraic settings of [28, 26, 22]. The present work is independent of
any of these works.

Organisation of the work. Section 2 sets the scene for our main convergence result for random models.
We specify the spectral gap assumption on the law of the random noise in Section 2.1. We introduce
algebraic structures of decorated trees that depend on a parameter p ∈ [2,∞] in Section 2.2. A notion of
differentiable sector is introduced in Section 2.3. It specifies a setting where one can talk of a sector that
is stable by a natural noise-derivative operator. Section 2.4 introduces regularity-integrability structures.
Since the degree of a tree depends on p so does a regularity-integrability structure, that is, the algebraic
rules for making local expansions depend on p. Models on regularity-integrability structures are described
in Section 2.5: The main point to get is that we use different Lebesgue spaces to measure some quantities
indexed by trees depending on whether or not there is a derivative noise symbol in that tree. The funda-
mental results about modelled distributions in the setting of regularity-integrability structures are proved
in the companion work [21] and stated in Appendix A. Preparation maps and their renormalized models
are introduced in Section 2.6. Lemma 4, in this section, is important: It provides an explicit comparison
for a fundamental quantity for two different values of p, that is, when the local expansion rules are possibly
different. We state our main result, Theorem 6, in Section 2.7. The remaining two sections are dedicated
to the proof of Theorem 6. We present the inductive core of the proof in Section 3 and defer to Section
4 the proof of a number of lemmas used in the induction. In a nutshell, we first introduce an order to
construct inductively a limit model on an increasing finite sequence of spaces Vi,Wi. The trees of Vi have
no derivative noise while the trees of Wi may have one derivative noise. The induction proceeds in three
steps after proving the convergence result for the base case. In Step 1 we prove that the probabilistic
convergence of the renormalized models on Wi implies its probabilistic convergence on Vi. We use for that
purpose the reconstruction theorem and the spectral gap inequality. In Steps 2 and 3 we prove that the
convergence on Wi and Vi implies the convergence on Wi+1. In Step 2 we use the multilevel Schauder
estimate to control the g-part of the renormalized model on the elements of Wi+1. In Step 3 we use the
comparison lemma, Lemma 4, to control the Π-part of the model. Indeed one gets for free some analytic
estimates when p = 2. The comparison lemma then allows to compare the Π-part for an arbitrary p to
its counterpart for p = 2. It turns out that the difference between the two quantities involves only some
terms whose control is provided by the induction mechanics. We provide a sketch of the proof of Theorem
2 in Section 5.
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Notations – For a normed vector space X we will denote by Lq(Ω,P;X) the space of q-integrable X-valued
random variables. Throughout this paper, we fix an integer d ≥ 1, the scaling s = (s1, . . . , sd) ∈ [1,∞)d,
and an exponent

ℓ > max
1≤j≤d

sj .

Set
|s| ··= s1 + · · ·+ sd.

For any multiindex k = (kj)
d
j=1 ∈ Nd we define

|k|s ··=
d∑

j=1

sjkj , k! ··=
d∏

j=1

kj !.

Also for every x ∈ Rd and k = (kj)
d
j=1 ∈ Nd we define

xk ··=
d∏

j=1

x
kj

j , ∥x∥s ··=
d∑

j=1

|xj |
1
sj .

The functional setting within which we set our study is associated with a heat semigroup (Qt)t>0 of an
(anisotropic) elliptic operator. Let

P (λ1, . . . , λd) =
∑

|k|s≤ℓ

akλ
k

be a polynomial with real constant coefficients which satisfies
P (iλ1, . . . , iλd) ≤ −δ∥λ∥ℓs

for some δ > 0 and for any λ ∈ Rd. We denote by
Qt(x) = etP (∂1,...,∂d)(x) (t > 0, x ∈ Rd)

the heat kernel of the differential operator P (∂1, . . . , ∂d). In Appendix A of [4], it was proved that (Qt)t>0

satisfies the upper ‘Gaussian’ estimate

|Qt(x)| ≲ Gt(x) ··=
1

t|s|/ℓ
exp

{
− c1

d∑
j=1

Å |xj |
tsj/ℓ

ã ℓ
ℓ−sj

}
for any t > 0 and x ∈ Rd, where c1 > 0 is a fixed constant. We also define the family of weight functions
(wc)c≥0 on Rd by

wc(x) ··= e−c∥x∥s .

It is elementary to show that for any c ≥ 0 and a ≥ 0, the inequality∥∥Gt(x)wc(x)
−1∥x∥as

∥∥
Lp

x(Rd)
≲ t−

|s|
ℓ (1− 1

p )+
a
ℓ (1.3)

holds uniformly over p ∈ [1,∞] and t ∈ (0, 1]. This estimate will be used in Section 4. For c ≥ 0 and
p ∈ [1,∞] we define the weighted Lp norm by

∥f∥Lp(wc)
··= ∥fwc∥Lp(Rd).

We define for each t > 0 the operator Qt on C(Rd) ∩ Lp(wc) by

Qt(x, f) ··=
∫

Rd

Qt(x− y)f(y)dy.

For every α ≤ 0 and p, q ∈ [1,∞] we define the Besov space Bα,Q
p,q (wc) as the completion of C(Rd)∩Lp(wc)

under the norm
∥f∥Bα,Q

p,q (wc)
··= ∥Q1f∥Lp(wc) +

∥∥t−α/ℓ∥Qtf∥Lp(wc)

∥∥
Lq((0,1]; dtt )

. (1.4)
See Section 2 of [21] for detailed properties of Besov spaces associated with (Qt)t>0. Especially, the con-
tinuous embedding result

Bα,Q
p,q (wc) ↪→ B

α−|s|( 1
p−

1
r ),Q

r,q (wc) (1.5)
for any α ≤ 0, p, q, r ∈ [1,∞] with r ≥ p, and c ≥ 0, is important. Write

Hα,Q(wc) ··= Bα,Q
2,2 (wc), Cα,Q(wc) ··= Bα,Q

∞,∞(wc).
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Pick 0 < ℓ1 < ℓ and some real constants (bl)|l|s<ℓ1 and set

Kt(z) ··=
∑

|l|s≤ℓ1

bl ∂
l
zQt(z).

Then {Kt}t>0 is an (ℓ − ℓ1)-regularizing kernel in the terminology of Section 5 of [21]. For any f ∈
C(Rd) ∩ Lp(wc) and k ∈ Nd define

∂kK(x, f) ··=
∫ 1

0

∫
Rd

∂k
xKt(x− y)f(y)dydt. (1.6)

As an example consider a two-dimensional situation and the elliptic polynomial P (λ1, λ2) = λ2
1 − λ4

2. The
factorization

λ2
1 − λ4

2 = −(λ1 − λ2
2)(λ1 + λ2

2)

then gives a representation of the heat kernel

(∂1 − ∂2
2)

−1f = −
∫ ∞

0

(∂1 + ∂2
2)Qt(·, f)dt ≃ K(·, f),

up to a smoothing operator, for the ad hoc choice of constants bl. The operators ∂kK has a continuous
extension from Cα,Q(wc) into Cα+ℓ−ℓ1−|k|s,Q(wc) when α+ ℓ− ℓ1 < 0. We fix throughout this work a fixed
number β0 ∈ (0, ℓ− ℓ1).

2 – A convergence result

2.1 Spectral gap. Let Ω be a separable Banach space and let H be a separable Hilbert space embedded
continuously and densely into Ω. A function F : Ω → R is said to be (continuously) H-differentiable
if there is a function dF : ω ∈ Ω 7→ dωF ∈ H∗ such that

d

dt
F (ω + th)

∣∣
t=0

= (dωF )(h).

Denote by ∥h∗∥H∗ = sup∥h∥H≤1 |h∗(h)| the operator norm on H∗. A Borel probability measure P on Ω is
said to satisfy the H-spectral gap inequality if there exists a constant C > 0 such that

E
[
(F − E[F ])2

]
≤ C E

[
∥dF∥2H∗

]
= C E

ï
sup

∥h∥H≤1

|dF (h)|2
ò

(2.1)

for any H-differentiable F ∈ L2(Ω) such that dF ∈ L2(Ω;H∗). Note that the supremum over h is indeed
a random variable since (dωF )(h) is continuous in h ∈ H and the supremum over h can be replaced by a
countable supremum. By replacing F by F 2 and iterating, one further has

E
[
F 2r

]
≲r |E[F ]|2

r

+ E
[
∥dF∥2

r

H∗
]

(2.2)
for all r ∈ N (see Remark 2.21 of Hairer & Steele’s work [20]). The H-spectral gap inequality holds if
(Ω, H,P) is an abstract Wiener space (see e.g., Exercise 2.11.1 of [24]).

A typical example is the white noise measure on Rd, which satisfies the H-spectral inequality with
H = L2(w0). (The weight w0 is the constant function equation to 1.) In this paper, we consider an
arbitrary κ ≥ 0 and a wider Hilbert space

H ··= H−κ,Q(w0).

The L2(w0)-spectral gap inequality implies H−κ,Q(w0)-spectral gap inequality. By the Besov embedding
(1.5) the space H is continuously embedded into the Banach space

Ω ··= Cα0,Q(wc)

for any c > 0 and α0 < −|s|/2− κ. We fix such exponents κ and α0 in what follows.

2.2 Decorated trees. We introduce three node symbols 1,#,⊙, which will play in the sequel the role
of the constant function 1, an element of Ω, and an element of H. Let T be the set of all rooted decorated
trees τ , with vertex set Nτ and edge set Eτ , and equipped with two node decorations t : Nτ → {1,#,⊙},
n : Nτ → Nd, and one edge decoration e : Eτ → Nd. For any parameters ε ≥ 0 and p ∈ [2,∞], we define
the degree map | · |ε,p : T → R by

|1|ε,p ··= 0, |#|ε,p ··= α0 − ε, |⊙|ε,p ··= α0 − ε+
|s|
p
,
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|τne |ε,p ··=
∑
v∈Nτ

(
|t(v)|ε,p + |n(v)|s

)
+
∑
e∈Eτ

(
β0 − |e(e)|s

)
.

The parameter ε will express an infinitesimal loss of regularity at each induction step (described in Section
3). The parameter p has more important role in this paper. We can see that the definition of | ⊙ |ε,p
naturally comes from the embeddings

H = H−κ,Q(w0) ↪→ B
α0+

|s|
2 ,Q

2,∞ (wc) ↪→ B
α0+

|s|
p ,Q

p,∞ (wc) ↪→ Cα0,Q(wc) = Ω

between H and Ω. We denote by T(n) be the set of all τ ∈ T that have exactly n vertices v for which
t(v) = ⊙. As usual, we denote by τσ the tree product of τ, σ ∈ T, and we write Ik(τ) for the tree obtained
from τ ∈ T by grafting it to a new root with t-decoration 1 and n-decoration 0 ∈ Nd, along an edge with
e-decoration k ∈ Nd. For technical reasons as in [17], we do not consider the trees of the form Ik(X l). We
denote by T the linear space spanned by T and define the linear map ∆ from T to T “⊗ T , analytic tensor
product, by

∆(#) = #⊗ 1, ∆(⊙) = ⊙⊗ 1, ∆(Xk) =
∑

l+m=k

k!

l!m!
X l ⊗Xm,

∆(τσ) = (∆τ)(∆σ), ∆(Ik(τ)) = (Ik ⊗ id)∆τ +
∑
l∈Nd

X l

l!
⊗ Ik+l(τ),

where we identify the single node decorated tree with node type 1 and node decoration k with the poly-
nomial Xk. To avoid infinite linear spans we introduce the projection map P+

ε,p from T to the subalgebra
T+
ε,p spanned by the symbols

Xk
n∏

i=1

Iki
(τi) (2.3)

with n ∈ N, k, ki ∈ Nd, and τi ∈ T such that |τi|ε,p + β0 > |ki|s for each i, and define
∆ε,p ··= (id⊗P+

ε,p)∆, ∆+
ε,p

··=
(
P+
ε,p ⊗ P+

ε,p

)
∆;

so ∆ε,p and ∆+
ε,p send T into the algebraic tensor products T ⊗ T+

ε,p and T+
ε,p ⊗ T+

ε,p, respectively. For any
subset C ⊂ T, we denote by P(C) the set of all planted trees of the form Ik(τ), with τ ∈ C and k ∈ Nd,
and define alg+ε,p(C) as the subalgebra generated by the symbols (2.3) with τi chosen from C. By a similar
argument to [17, 8], we can see that T+

ε,p is a Hopf algebra with coproduct ∆+
ε,p and T has a right comodule

structure with coaction ∆ε,p. Denote by S+
ε,p the antipode of (T+

ε,p,∆
+
ε,p).

2.3 Differentiable sectors. For each τ ∈ T, denote by #τ the set of vertices v ∈ Nτ for which t(v) = #,
and write |τ |# for the number of such vertices in τ . For each τ ∈ T and v ∈ #τ , denote by Dvτ the same
tree as τ except that the # symbol at vertex v has been replaced with the ⊙ symbol. For any subset
C ⊂ T(0) we define

•

C ··=
{
Dvτ ; τ ∈ C, v ∈ #τ

}
.

Also we define the linear map D : span(T(0)) → span(T(1)) by setting for any τ ∈ T(0)

Dτ ··=
∑
v∈#τ

Dvτ (2.4)

if #τ ̸= ∅, and Dτ ··= 0 otherwise. Note that D preserves the |·|ε,∞-degree of trees because |⊙|ε,∞ = |#|ε,∞
but may change the | · |ε,p-degree when p is finite.

Definition – Let B be a finite subset of T(0). We call V = span(B) a differentiable sector if it satisfies
the following properties.

(a) The vector space V is a sector (see Definition 2.5 of [17]), that is, setting
V +
0,∞ ··= alg+0,∞(B)

one has S+
0,∞(V +

0,∞) ⊂ V +
0,∞ and

∆0,∞(V ) ⊂ V ⊗ V +
0,∞, ∆+

0,∞(V +
0,∞) ⊂ V +

0,∞ ⊗ V +
0,∞.

(b) Setting
•

V ··= span(
•

B),
•

V +
0,2

··= alg+0,2(B ∪
•

B) ∩ span(T(1)),
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one has S+
0,2(

•

V +
0,2) ⊂

•

V +
0,2 and

∆0,2(
•

V ) ⊂
(

•

V ⊗ V +
0,∞ + V ⊗

•

V +
0,2

)
, ∆+

0,2(
•

V +
0,2) ⊂

(
•

V +
0,2 ⊗ V +

0,∞ + V +
0,∞ ⊗

•

V +
0,2

)
.

(c) There exists a constant ε0 = ε0(B) > 0 such that, for any τ, σ ∈ B, |σ|0,p < |τ |0,p implies
|σ|ε,p < |τ |ε,p for any ε ∈ (0, ε0) and p ∈ {2,∞}.

We choose the letter B for ‘basis’. Note that p has no influences on the trees in B. The property (c)
means that the coproduct on V , resp. V +

0,∞, is also independent of ε: ∆
(+)
ε,p = ∆

(+)
0,∞ on V , resp. V +

0,∞, for
any (ε, p) ∈ [0, ε0)× [2,∞]. While the property that |σ|0,p < |τ |0,p implies |σ|ε,p < |τ |ε,p holds for generic
p ∈ [2,∞] and any ε ∈ (0, ε0(p)) with small ε0(p) > 0, this ε0(p) cannot be uniform over all p. This is why
we assume the property (c) only for p ∈ {2,∞}.

We provide a more detailed description on the p-dependence of ∆ε,p. For any planted tree µ ∈ P(
•

B)

such that 0 < |µ|ε,2 ≤ |s|
2 , we define the exponent

pε(µ) ··=
|s|

|s|
2 − |µ|ε,2

∈ (2,∞];

so pε(µ) is the unique p for which |µ|ε,p = 0. The set

Iε ··=
ß
pε(µ) ; µ ∈ P(

•

B), 0 < |µ|ε,2 <
|s|
2

™
⊂ (2,∞)

is finite and its associated ‘floor function’ is defined as
⌊p⌋Iε ··= max

{
q ∈ {2} ∪ Iε ; q < p

}
for any p ∈ (2,∞]. The projection operator P+

ε,p is right continuous in p and constant in any interval
which is disjoint with Iε, so is the co-action operator ∆ε,p. Hence they behave like right continuous ‘step
functions’. The regularity structure of the one-dimensional multiplicative stochastic heat equation provides
an elementary example. For instance, under the choices s = (2, 1) and α0 = − 3

2 we have

∆ε,p

( )
=


⊗ 1−#⊗ , for p ≥ 6

1 + 2ε
,

⊗ 1−#⊗ − (Xe2#)⊗ , for p <
6

1 + 2ε
,

(2.5)

with a dotted line for the operator Ie2 .
If B consists of all trees which strongly conform to a complete subcritical rule (see [8, Section 5]) and

with degrees | · |0,∞ less than some fixed number, then V = span(B) is a differentiable sector – See Section
4.1. In the sequel we fix a differentiable sector V and its basis B. The defining properties of a differentiable
sector ensure that the tuple

Vε ··=
(
(V,∆ε,∞), (V +

0,∞,∆+
ε,∞)

)
defines a concrete regularity structure in the sense of [3]. The structure of the (ε, p)-dependent tuple

Wε,p ··=
(
(W ··= V ⊕

•

V,∆ε,p),
(
W+

ε,p
··= V +

0,∞ ⊕
•

V +
ε,p,∆

+
ε,p

))
,

where
•

V +
ε,p

··= alg+ε,p(B ∪
•

B) ∩ span(T(1)), is encapsulated in a useful variation on the notion of regularity
structure that we call a regularity-integrability structure.

2.4 Regularity-integrability structures. We introduce this notion to deal with models on a usual
regularity structure and their first order Malliavin derivative in a single setting. See the companion work
[21] for more detailed descriptions.

Definition – A regularity-integrability structure (A, T,G) consists of the following elements.
(a) The index set A is a subset of R × [1,∞] such that{

(γ, r) ∈ A ; γ < β, r ≥ q
}

is finite for every (β, q) ∈ R × [1,∞], where we define the strict partial order on R × [1,∞] by

(γ, r) < (β, q)
def⇐⇒ γ < β and r ≥ q.

(b) The vector space T =
⊕

a∈A Ta is an algebraic sum of Banach spaces (Ta, ∥ · ∥a).
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(c) The structure group G is a group of continuous linear operators on T such that one has for all
Γ ∈ G and a ∈ A

(Γ− id)Ta ⊂
⊕

a′∈A, a′<a

Ta′ .

For (β, q) ∈ A the number β is a regularity exponent and q is an integrability exponent. One says that
the regularity-integrability structure has a regularity α0 ∈ R if (α0,∞) < a for any a ∈ A. Denoting by
Pa : T → Ta the canonical projection, we set with a slight abuse of notations

∥τ∥a ··= ∥Paτ∥a
for any τ ∈ T and a ∈ A.

We return to the setting of Section 2.3 with fixed (ε, p). For each τ ∈ B∪
•

B we define the integrability
exponent

ip(τ) =

®
∞ if τ ∈ B,

p if τ ∈
•

B.
(2.6)

Then we have the grading on W = V ⊕
•

V by
Aε,p ··=

{(
|τ |ε,p, ip(τ)

)
; τ ∈ B ∪

•

B
}
=
{(

|τ |ε,∞,∞
)
; τ ∈ B

}
∪
{(

| •
τ |ε,p, p

)
;

•
τ ∈

•

B
}
,

W =
⊕

a∈Aε,p

Wa, Wa ··= span
{
τ ∈ B ∪

•

B ;
(
|τ |ε,p, ip(τ)

)
= a}.

We further introduce the group G+
ε,p of characters on the Hopf algebra(

W+
ε,p

··= V +
0,∞ ⊕

•

V +
ε,p,∆

+
ε,p

)
,

or equivalently, on the quotient Hopf algebra alg+ε,p(B ∪
•

B)/Ï, where Ï the Hopf ideal generated by trees
with more than one ⊙ symbols. The group G+

ε,p has a representation in GL(W ) where g ∈ G+
ε,p is mapped to

(id⊗ g)∆ε,p. Denote by Gε,p the image group. Then the triple (Aε,p,W,Gε,p) is a regularity-integrability
structure; it is said to be associated with the concrete regularity-integrability structure

Wε,p ··=
(
(W,∆ε,p), (W

+
ε,p,∆

+
ε,p)
)
.

A substructure (A′
ε,p,W

′, G′
ε,p) of (Aε,p,W,Gε,p) is a regularity-integrability structure where A′

ε,p ⊂
Aε,p,W

′ ⊂ W and G′
ε,p ⊂ Gε,p. We also have an analogous notion of concrete regularity-integrability

substructure.

2.5 Models on regularity-integrability structures. Fix (ε, p) ∈ [0, ε0)× [2,∞] and c > 0. Assume
we are given a pair of maps M = (Π, g) such that

Π : W → Cα0,Q(wc), g : Rd 7→ G+
ε,p

and Π is continuous and linear. The map Π is called an interpretation map. Set, for any τ ∈ W and
µ ∈ W+

ε,p,
Πε,p

x τ ··=
(
Π⊗ (gx ◦ S+

ε,p)
)
∆ε,pτ,

gε,pyx (µ) ··=
(
gy ⊗ (gx ◦ S+

ε,p)
)
∆+

ε,pµ.

We talk of the map Πε,p
x as the recentered interpretation map.

Definition – A pair of maps M = (Π, g) as above is called a model on Wε,p (with weight wc) if

∥Πε,p : τ∥wc
··= sup

0<t≤1
t−|τ |ε,p/ℓ∥Qt(x,Π

ε,p
x τ)∥

L
ip(τ)
x (wc)

< ∞ (2.7)

for any τ ∈ B ∪
•

B and

∥gε,p : µ∥wc
··= ∥gx(µ)∥Lip(µ)

x (wc)
+ sup

y∈Rd\{0}

(
wc(y)

∥∥gε,p(x+y)x(µ)
∥∥
L

ip(µ)
x (wc)

∥y∥|µ|ε,ps

)
< ∞ (2.8)

for any µ ∈ P(B ∪
•

B) ∩ W+
ε,p, where ip(µ) = p if µ ∈ P(

•

B) and ip(µ) = ∞ otherwise. We denote by
M(Wε,p)wc the set of all models and define the quantity

∥M∥M(Wε,p)wc
··= max

τ∈B∪
•
B

∥Πε,p : τ∥wc + max
µ∈P(B∪

•
B)∩W+

ε,p

∥gε,p : µ∥wc
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for any M ∈ M(Wε,p)wc . We also define a metric ∥M1 :M2∥M(Wε,p)wc
on M(Wε,p)wc setting for M1,M2 ∈

M(Wε,p)wc

∥M1 :M2∥M(Wε,p)wc
··= max

τ∈B∪
•
B

∥Πε,p
1 ,Πε,p

2 : τ∥wc
+ max

µ∈P(B∪
•
B)∩W+

ε,p

∥gε,p1 , gε,p2 : µ∥wc ,

where the quantities in the right hand side are defined in the same way as (2.7) and (2.8) but with (Π1)
ε,p
x τ−

(Π2)
ε,p
x τ , (g1)x(µ)−(g2)x(µ), and (g1)

ε,p
yx (µ)−(g2)

ε,p
yx (µ) in places of Πε,p

x τ , gx(µ), and gε,pyx (µ), respectively.

Since the exponents ε and p are involved not only in the definition of the recentered maps Πε,p
x and gε,pyx

but also in the definition of the norms (2.7) and (2.8) via the degree map | · |ε,p, it would be more proper
to write ∥(·)ε,p : τ∥ε,p;wc for the norms. For the sake of readability, we use the above lightened notations.

In the setting of regularity-integrability structures one can prove analogues of the reconstruction theorem
and the multilevel Schauder estimate. They are stated in Appendix A in Theorem 22 and Theorem 24.
One can find the detailed self-contained proofs of them in [21].

In the proof of Theorem 6 we will consider restricted bounds on concrete regularity-integrability sub-
structures W ′

ε,p =
(
(U,∆ε,p), (U

+,∆+
ε,p)
)

of Wε,p of the form

U = span(A), U+ = alg+ε,p(A′) ∩ span(T(1))

for some subsets A,A′ ⊂ B ∪
•

B. For any M ∈ M(Wε,p)wc
it is useful to define the restricted quantity

∥M∥M(W ′
ε,p)wc

··= ∥Πε,p :U∥wc + ∥gε,p :U+∥wc

··= max
τ∈A

∥Πε,p : τ∥wc + max
µ∈P(A′)∩W+

ε,p

∥gε,p : µ∥wc .
(2.9)

In particular the restriction to the concrete regularity structure Vε =
(
(V,∆ε,∞), (V +

0,∞,∆+
ε,∞)

)
is a model

in the usual sense of [17]. Recall again that the parameter p is useless in Vε, but the parameter ε is involved
in the norms via the degree map | · |ε,∞.

Recall from (1.6) the definition of the operator K acting on functions over Rd. An interpretation map
Π is said to be K-admissible if it satisfies

(ΠXk)(x) = xk, Π(Ikτ) = ∂kK(·,Πτ),
for all k and τ . For any K-admissible interpretation map Π such that

Π : W → C0
+(R

d) ··= C(Rd) ∩
⋂
c>0

L∞(wc),

we can define a model Mε,p = (Π, gε,p) on Wε,p from the recursive definition of gε,p given by the formula

(gε,px )−1(Xk) = (−x)k, (gε,px )−1(Ikτ) = −
∑
l∈Nd

(−x)l

l!
1|Ik+lτ |ε,p>0 ∂

k+lK(x,Πε,p
x τ) (2.10)

for the inverse (gε,px )−1 ··= gε,px ◦S+
ε,p. (See e.g. Section 3 of Bruned’s work [6].) For any choice of ξ = Π(#)

and h = Π(⊙) both in C0
+(R

d), we can define the unique multiplicative K-admissible interpretation map
Πξ,h; it is called the naive interpretation map associated to (ξ, h).

2.6 Renormalized models. Here is how to build a large family of K-admissible interpretation maps
from a naive one. Recall from [6] and Bruned & Nadeem’s work [10] the following definition.

Definition – A preparation map is a linear map
R : W → W

which leaves stable the subspace V and has the following properties.
(a) R fixes the polynomials and the noises: Rτ = τ for τ ∈ {Xk,#,⊙}.
(b) For each τ ∈ B ∪

•

B there exist finitely many τi ∈ B ∪
•

B and constants λi such that

Rτ = τ +
∑
i

λiτi, with |τi|0,p > |τ |0,p for p ∈ {2,∞} and |τi|# < |τ |#.

(c) R fixes planted trees: R Ik = Ik.
(d) R commutes with the coproduct: (R⊗ id)∆0,2 = ∆0,2R.
(e) R commutes with the derivative map (2.4): RD = DR.



10

It is easily checked that the triangular property (b) and the commutation (d) also hold for arbitrary
exponents (ε, p) ∈ [0, ε0) × [2,∞]. First, by the property (c) of differential sectors, |τi|0,p > |τ |0,p implies
|τi|ε,p > |τ |ε,p for p ∈ {2,∞}. Since |τ |ε,p is affine for 1

p , these inequalities extend to all p ∈ [2,∞]. Next,
we have the commutation (R ⊗ id)∆ε,2 = ∆ε,2R because ∆0,2 = ∆ε,2 by the property (c) of differential
sectors. Since ∆ε,p = (id⊗P+

ε,p)∆ε,2 by definition, we also have
(R⊗ id)∆ε,p = (id⊗P+

ε,p)(R⊗ id)∆ε,2 = (id⊗P+
ε,p)∆ε,2R = ∆ε,pR.

A typical example of R is defined from the choice of constants {ℓ(σ)}σ∈B, |σ|ε,∞<0 by the extraction-
contraction formula as in Corollary 4.5 of [6], or by its dual formula

R∗
ℓ (τ) =

∑
σ∈B, |σ|ε,∞<0

ℓ(σ)

S(σ)
(τ ⋆ σ), (τ ∈ B) (2.11)

as in Bailleul & Bruned’s work [1]. See [1] or Bruned & Manchon’s work [9] for the precise definitions of
all operators. These definitions are easily extended to all τ ∈ B ∪

•

B.
For any given preparation map R, let

M̂R : W → W

be the linear map uniquely defined from R by requiring that M̂R is multiplicative, fixes polynomials and
noises, and satisfies

M̂R(Ikτ) = Ik
(
M̂R(Rτ)

)
for all k and τ . Then the linear map

MR ··= M̂RR.

is the renormalization map associated to the preparation map R. It follows from the property (c)
of preparation maps that if Π is a K-admissible interpretation map then so is the map

ΠR ··= ΠMR.

Then we write
MR;ε,p ··= (ΠR, gR;ε,p)

for the model on Wε,p constructed from the K-admissible interpretation map ΠR by formula (2.10) with
ΠR in place of Π. When Π = Πξ,h is the naive interpretation map associated to ξ, h ∈ C0

+(R
d), we denote

the associated model by
Mξ,h,R;ε,p

In the setting of singular stochastic PDEs we insist on renormalizing models with preparation maps
that are interpretable. Denote by uR the solution, in a space of modelled distributions, to the regularity
structure formulation of an equation Lu = f(u, ξ) associated with a model built from a preparation map
R and a smooth noise ξ. We say that R is interpretable if the reconstruction uR of uR is the solution
to an equation of the form LuR = f(uR, ξ) + c(uR), for some counterterms c(uR) that may depend on
uR and some of its derivatives. It was proved in Proposition 3.2 of [1] that the maps R of the form
(2.11) are indeed interpretable preparation maps. The BPHZ renormalisation map from [8] corresponds
to a particular choice of coefficients ℓ(σ) in the formula (2.11). Our proof of Theorem 6 works for any
preparation map.

Before going to the main result we introduce two important algebraic identities. The proofs of them
are given in Section 4.2. The following fact is also proved in Proposition 4.1 of [10].
3 – Lemma. Let ξ, h ∈ C0

+(R
d) and let R be a preparation map. For any τ ∈ B one has

dξ(Π
ξ,R;ε,∞
x τ)(h) ··=

d

dt
(Πξ+th,R;ε,∞

x τ)
∣∣
t=0

= Πξ,h,R;ε,∞
x (Dτ), (2.12)

where the letter h is removed from Πξ,h,R;ε,∞
x τ since this quantity is independent of h.

We remark that the integrability exponent in the right hand side of (2.12) is ∞, rather than any finite
p. We further introduce some notations to make explicit the difference between ΠR;ε,p

x and ΠR;ε,2
x . We

define the linear map hR;ε,p
x : W+

ε,2 → R by

hR;ε,p
x (Ikσ) ··= 1|Ikσ|ε,p≤0<|Ikσ|ε,2∂

kK
(
x,Π

R;ε,⌊pε(Ikσ)⌋Iε
x σ

)
(2.13)

for any planted trees, and by hR;ε,p
x (τ) ··= 0 for non-planted trees τ . The strict inequality in the indicator

implies that hR;ε,p
x (µ) = 0 if µ ∈ P(B). For any arbitrary tree τ and e = (e+, e−) ∈ Eτ denote by {τe+, τe−}

the connected components of τ \ {e} such that τe− contains the root and the node e−. Last, given k ∈ Nd
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and v ∈ Nτ denote by ↑kv τ the decorated tree τ with the same decorations as τ except that the node v has
now decoration n(v) + k. The following formula plays a crucial role in the proof of Theorem 6, especially
in the proof of Lemma 15. Bruned & Nadeem proved in Proposition 3.7 of [10] a statement with a similar
flavour.

4 – Lemma. Let MR;ε,p be arbitrary renormalized model constructed from the K-admissible model and the
preparation map R. For any τ ∈

•

B and any p ∈ [2,∞], one has

ΠR;ε,p
x τ = ΠR;ε,2

x τ +
∑
e∈Eτ

∑
k∈Nd

1

k!
hR;ε,p
x (Ie(e)+kτ

e
+)Π

R;ε,p
x (↑ke− τe−)

= ΠR;ε,2
x τ +

(
ΠR;ε,p

x ⊗ hR;ε,p
x

)
∆ε,2τ.

(2.14)

Note that τe− in (2.14) does not contain the ⊙ symbol, so p in ΠR;ε,p
x (↑ke− τe−) can be arbitrary. In the

example (2.5) with ξ, h ∈ C0
+(R

d) and with an identity preparation map, one has

Πξ,h;ε,p
x

( )
(·) =


(
K(·, h)−K(x, h)

)
ξ(·), for p ≥ 6

1 + 2ε
,(

K(·, h)−K(x, h)− ∂2K(x, h)(· − x2)
)
ξ(·), for p <

6

1 + 2ε
,

Then the formula (2.14) writes

Πξ,h;ε,p
x

( )
(·) = Πξ,h;ε,2

x

( )
(·) + ∂2K(x, h) (· − x2)ξ(·)

= Πξ,h;ε,2
x

( )
(·) + hξ,h;ε,px

( )
Πξ,h;ε,p

x (Xe2#)(·)

for p ≥ 6
1+2ε .

2.7 A convergence result. Let V = span(B) be a differentiable sector. We fix the Hilbert space
H = H−κ,Q(w0) with κ ≥ 0 and the Banach space Ω = Cα0,Q(wc) for some c > 0 and α0 < −|s|/2 − κ.
For a family of compactly supported smooth functions ϱn ∈ C∞(Rd) converge weakly to a Dirac mass at
0 as n ∈ N goes to ∞, we define a random variable ξn on Ω setting

ξn(ω) ··= ϱn ∗ ω ∈ Ω.

Set as well for h ∈ H
hn ··= ϱn ∗ h.

We denote by Πξn,hn the naive interpretation map on W associated with (ξn, hn) – it is a random variable
(Πξn,hn(·))(ω) ··= Πξn(ω),hn(·). If we are given a deterministic preparation map Rn on W we denote by
Mξn,hn,Rn;ε,p =

(
Πξn,hn,Rn , gξn,hn,Rn;ε,p

)
the random (K-admissible) model on Wε,p associated to Rn and

the random naive interpretation map Πξn,hn . The associated recentered interpretation map is denoted by
Πξn,hn,Rn;ε,p

x . The following result is a direct consequence of Proposition 3.16 of [6].

5 – Lemma. The renormalized model Mξn,hn,Rn;ε,p takes almost surely its values in M(Wε,p)wc
.

We can now state our main result.

6 – Theorem. Pick κ ≥ 0 and α0 < −|s|/2 − κ and c > 0. Let P be a Borel probability measure on
Ω = Cα0,Q(wc) for some c > 0 that is stationary under the spacetime translations and satisfies the H(=
H−κ,Q(w0))-spectral gap inequality. Let V = span(B) be a differentiable sector for which all τ ∈ B \ {#}
satisfy

|τ |0,∞ +
|s|
2

> 0.

Assume we are given a family (Rn)n≥0 of deterministic preparation maps on W for which all the quantities

E
[
Q1(0,Π

ξn,Rn;0,∞
0 τ)

]
(2.15)

converge as n goes to ∞, for any τ ∈ B with |τ |0,∞ ≤ 0, where the useless letter hn is removed. Then for
any c > 0, ε ∈ (0, ε0), p ∈ [2,∞], and q ∈ [1,∞), one has

sup
n∈N

E

[
sup

∥h∥H≤1

∥Mξn,hn,Rn;ε,p∥qM(Wε,p)wc

]
< ∞, (2.16)

and that Mξn,hn,Rn;ε,p converges in Lq
(
Ω,P;M(Wε,p)wc

)
as n goes to ∞.
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As a direct consequence of Theorem 6, the (hn-independent) restrictions to the concrete regularity
structure Vε =

(
(V,∆ε,∞), (V +

0,∞,∆+
ε,∞)

)
of the models Mξn,hn,Rn;ε,∞ converge in Lq

(
Ω,P;M(Vε)wc

)
as n

goes to ∞ for any q ∈ [1,∞) and c > 0.
This result extends (the weighted version of) the main result of [20] into arbitrary preparation maps.

Proceeding as in the proof of Theorem 6.18 of [8] one can see that there is a unique preparation map
Rn = Rn(P) of the form (2.11) such that the associated model (called BPHZ model) satisfies

E
[
(Πξn,Rnτ)(x)

]
= 0 (2.17)

for any x ∈ Rd and τ ∈ B of non-positive | · |0,∞-degree. Moreover, we can construct an analogue here of
BPHZ model of [20] by

E
[
Q1(0,Π

ξn,Rn;0,∞
x τ)

]
= 0

for all τ ∈ B of non-positive | · |0,∞-degree. The convergence result of [20] is restricted to BPHZ and BPHZ
models. BPHZ model obviously satisfies the assumption of our result. Also for BPHZ model, it is not
difficult to show the convergence of (2.15) from the condition (2.17), following the induction steps in the
proof of Theorem 6 described below.

We close this section by technical remarks on weights. The use of a weight wc is a usual thing in the
study of random fields on the full space Rd. Such fields may grow to infinity as |x| goes to ∞. On the
analytic side, since we have modifications of Hölder inequality and Young inequality on weighted spaces
(see Section 2.2 of [21]), these weights do not cause any serious problems in the proofs.

3 – The mechanics of convergence

We define a preorder ⪯ on T that we use to prove Theorem 6 by a finite induction. Set

σ ⪯ τ
def⇐⇒

(
|σ|#, |Eσ|, |σ|0,∞

)
≤
(
|τ |#, |Eτ |, |τ |0,∞

)
(3.1)

with the inequality ≤ in the right hand side standing here for the lexicographical order. Write
B \ {Xk}k∈Nd =

{
τ1 ⪯ τ2 ⪯ · · · ⪯ τN

}
.

Although there may be different choices τi for this representation of B \ {Xk}k∈Nd , the choice has no
consequence on Theorem 6 as it is only used as a tool in the proof of this result. Recall from (2.3) the
definition of the algebra alg+ε,p(C), for an arbitrary subset C of B. For 1 ≤ i ≤ N set

Bi ··=
{
τ1, . . . , τi

}
, Vi ··= span

(
Bi ∪ {Xk}k∈Nd

)
, V +

i
··= alg+0,∞(Bi).

We also define
•

Vi ··= span(
•

Bi),
•

V +
i,ε,p

··= alg+ε,p(Bi ∪
•

Bi) ∩ span(T(1)).

The proof of the following properties is given in Section 4.3.
7 – Lemma. One has, for any 1 ≤ i ≤ N and (ε, p) ∈ [0, ε0)× [2,∞],(

∆ε,p(τ)− τ ⊗ 1
)
∈ Vi−1 ⊗ V +

i−1, τ ∈ Bi

and (
∆ε,p(

•
τ)− •

τ ⊗ 1
)
∈
(

•

Vi−1 ⊗ V +
i−1 + Vi−1 ⊗

•

V +
i−1,ε,p

)
,

•
τ ∈

•

Bi.

For 1 ≤ i ≤ N set
V0 := span

(
{Xk}k∈Nd

)
and

Wi ··= Vi−1 ⊕
•

Vi, W+
i,ε,p

··= V +
i ⊕

•

V +
i,ε,p,

It follows from Lemma 7 that
Vi,ε ··=

(
(Vi,∆ε,∞),

(
V +
i−1,∆

+
ε,∞
))

, Wi,ε,p ··=
(
(Wi,∆ε,p),

(
W+

i−1,ε,p,∆
+
ε,p

))
are concrete regularity-integrability substructures of Wε,p. As an example one could have

V1 = span
(
{#} ∪ {Xk}k∈Nd

)
, W1 = span

(
{⊙} ∪ {Xk}k∈Nd

)
,

V2 = span
({

#,
}
∪ {Xk}k∈Nd

)
, W2 = span

({
#,⊙, ,

}
∪ {Xk}k∈Nd

)
,

V3 = span
({

#, ,
}
∪ {Xk}k∈Nd

)
, W3 = span

({
#, ,⊙, , , , ,

}
∪ {Xk}k∈Nd

)
.

(3.2)

These spaces would be involved in the study of the three-dimensional parabolic Anderson model equation.
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Let {Mξn,hn,Rn;ε,p}n be the sequence of random models on Wε,p under consideration. For any fixed
p ∈ [2,∞], we write below

bd(W , i, p), resp. cv(W , i, p),

to mean the statements that

sup
n∈N

E
ï

sup
∥h∥H≤1

∥Mξn,hn,Rn;ε,p∥qM(Wi,ε,p)wc

ò
< ∞

for any ε ∈ (0, ε0), c > 0, and q ∈ [1,∞), resp. the restriction of models Mξn,hn,Rn;ε,p on Wi,ε,p converges
in Lq

(
Ω,P;M(Wi,ε,p)wc

)
as n goes to ∞ for any ε, c, q, and h ∈ H with ∥h∥H ≤ 1. We also write{

bd(W , i, p)
}
p
, resp.

{
cv(W , i, p)

}
p
,

to mean each statement holds for any p ∈ [2,∞]. Similarly, we write
bd(V , i), resp. cv(V , i),

to mean the similar statements to bd(W , i, p), resp. cv(W , i, p) with Vi,ε in place of Wi,ε,p. (It is in-
dependent of p and h.) Our induction is a three step process that can schematically be described as
follows.

Step 1 (§3.2): cv(W , i,∞) 99K cv(V , i)

Step 2 (§3.3): cv(W , i, p), cv(V , i) −→ g-part of cv(W , i+ 1, p)

Step 3 (§3.4):
cv(W , i, 2), cv(V , i) −→ Π-part of cv(W , i+ 1, 2){

cv(W , i, p)
}
p

´
−→ Π-part of

{
cv(W , i+1, p)

}
p

The dashed line in Step 1 is used to emphasize that this is a probabilistic step: We obtain stochastic
estimates for the models on Vi,ε in terms of stochastic estimates for the models on Wi,δ,∞ for some δ < ε.
On the other hand, we use solid lines in Step 2 and Step 3 to emphasize that they are deterministic steps:
We obtain ω-wise estimates for the models on Wi+1,ε,p in terms of ω-wise estimates for the models on
{Wi,δ,qa}a and Vi,δ for some finite set {qa} ⊂ [2,∞] and δ < ε. In the setting of example (3.2) we would
first construct the deterministic model on ⊙ (the initial case), then the random model on # (Step 1), and
then successively on , (Steps 2 and 3), then (Step 1), then , , (Steps 2 and 3), finally on

(Step 1).
We only describe in this section the flow of the proof of Theorem 6 and defer the proof of a number of

lemmas to Section 4. To lighten the notations we will suppress from the notations the exponents ξn, hn, Rn

in the remainder of this section; so we simply write
Mn;ε,p = (Πn, gn;ε,p)

rather than Mξn,hn,Rn;ε,p. Occasionally we write Mn,h;ε,p = (Πn,h, gn,h;ε,p) to emphasize the dependence
on h.

We first prove the n-uniform bound (2.16) by proving the bd-versions of Steps 1-3 – this is the content
of Sections 3.1-3.4. We use these uniform bounds together with some local Lipschitz estimates satisfied by
the reconstruction and integration maps to prove in a second time the convergence result – Section 3.5.
Notation. The following notations will be useful in the course of the proof. Set for all x, y ∈ Rd

Γn;ε,pyx
··=
(

id⊗ gn;ε,pyx

)
∆ε,p.

These operators leave each space Vi and Wi stable. (The pair of (Πn, Γn;ε,p) is called a model in the original
terminology of [17].) For any ρ ∈ B∪

•

B denote by Pρ : T → R the canonical projection to the ρ-coefficient.
We define the quantities

∥Γn;ε,p : Vi∥wc
··= max

τ∈Bi
σ∈Bi−1

sup
y∈Rd\{0}

∥∥PσΓ
n;ε,p
(x+y)xτ

∥∥
L∞

x (wc)

wc(y)−1∥y∥|τ |ε,p−|σ|ε,p
s

, (3.3)

and
∥Γn;ε,p :Wi∥wc

··= ∥Γn;ε,p : Vi−1∥wc

+ max
τ∈

•

Bi

sup
y∈Rd\{0}

(
max

σ∈
•

Bi−1

∥∥PσΓ
n;ε,p
(x+y)xτ

∥∥
L∞

x (wc)

wc(y)−1∥y∥|τ |ε,p−|σ|ε,p
s

+ max
η∈Bi−1

∥∥PηΓ
n;ε,p
(x+y)xτ

∥∥
Lp

x(wc)

wc(y)−1∥y∥|τ |ε,p−|η|ε,p
s

)
.
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In the second one, when we pick the σ ∈
•

Bi−1 component of Γn;ε,p(x+y)xτ it only involves some trees in V +
i−1,

from Lemma 7. This is why we take an L∞
x norm. A similar comment applies to the η terms, where we

take an Lp
x norm.

Let mB stand for the maximum of the number of branches at the roots of µ which appear in the right
part of the tensor product ∆0,2τ =

∑
σ ⊗ µ for arbitrary τ ∈ B. We obtain from Lemma 7 the estimates∥∥Γn;ε,p : Vi

∥∥
wcmB

≲
(
1 + ∥gn;ε,p : V +

i−1∥wc

)mB
,∥∥Γn;ε,p : •

Vi

∥∥
wcmB

≲
(
1 + ∥gn;ε,p : V +

i−1∥wc

)mB−1(
1 + ∥gn;ε,p : V +

i−1∥wc + ∥gn;ε,p :
•

V +
i−1,ε,p∥wc

)
,∥∥Γn;ε,p :Wi

∥∥
wcmB

≲
(
1 + ∥gn;ε,p :W+

i−1,ε,p∥wc

)mB
.

(3.4)

3.1 Convergence for the initial case. For the initial case one has W1 = span
(
{⊙} ∪ {Xk}k∈Nd

)
and

W+
0,ε,p = alg+ε,p(∅) = span({Xk}k∈Nd), and it is sufficient to check the convergence of Πn

x(⊙) = hn to h in
B

|⊙|ε,p
p,∞ (w0), with | ⊙ |ε,p = α0 − ε+ |s|

p . This entails the convergence in H−κ,Q(w0), which is continuously
embedded into B

|⊙|ε,p,Q
p,∞ (w0) for every ε > 0.

3.2 Step 1: From bd(W , i,∞) to bd(V , i). Recall the definition of Vi,ε = (Vi, V
+
i−1). Since Vi =

Vi−1 ⊕ span{τi}, Vi−1 ⊂ Wi and V +
i−1 ⊂ W+

i−1,ε,∞, it is sufficient to prove the bound for

sup
n∈N

E
[∥∥Πn;ε,∞ : τi

∥∥q
wc

]
in terms of the assumed boundedness results on Wi,ε,∞ = (Wi,W

+
i−1,ε,∞). We use different arguments

depending on the sign of |τi|0,∞. It turns out that if |τi|0,∞ > 0 we have an ω-wise bound of ∥Πn;ε,∞ :
τi∥wc in terms of ω-wise bounds of Mn;ε,∞ on Wi,ε,∞. If |τi|0,∞ ≤ 0 we only have an Lq(Ω) control of
∥Πn;ε,∞ : τi∥wc

. Lemmas 8 to 10 for this step below are proved in Section 4.4.
If |τi|0,∞ > 0, then |τi|ε,∞ > 0 for any ε ∈ (0, ε0), and the proof reduces to an application of the

reconstruction theorem (see Theorem 22). Indeed, the modelled distribution
fn;ε,∞
τi (x) ··=

(
id⊗ gn;ε,∞x

)
∆ε,∞τi − τi

belongs in that case to D(|τi|ε,∞,∞)(Vi−1; Γ
n;ε,∞)wcB

, with a positive regularity exponent. Its reconstruction
is uniquely determined and coincides with Πnτi. Moreover, the reconstruction theorem comes with a bound
on

Πn;ε,∞
x τi = Πnτi − Πn;ε,∞

x (fn
τi(x)).

8 – Lemma. Let |τi|0,∞ > 0. For any ε ∈ (0, ε0) and c > 0, there exists a positive constant C which is
independent of n and ω, one has

∥Πn;ε,∞ : τi∥wc(mB+1)
≤ C∥Πn;ε,∞ : Vi−1∥wc ∥Γn;ε,∞ : Vi∥wcmB

.

Recall from (3.4) that the bounds of ∥Γn;ε,∞ : Vi∥wcmB
is obtained from the bounds of ∥gn;ε,∞ : V +

i−1∥wc ,
which is contained in the assumption bd(W , i,∞). Consider next the case where |τi|0,∞ ≤ 0, so |τi|ε,∞ < 0
if ε > 0. We cannot use the above reconstruction argument as fn;ε,∞

τi no longer has a unique reconstruction.
Instead, we use the H-spectral gap inequality and the algebraic identity(

dωΠ
n;ε,∞
x τi

)
(h) =

(
dξnΠ

ξn,Rn;ε,∞
x τi

)(
(dωξn)(h)

)
= Πξn,hn,Rn;ε,∞

x (Dτi) = Πn,h;ε,∞
x (Dτi),

which follows from Lemma 3 and the chain rule. Hence, for any finite exponent q = 2r, one gets from the
inequality (2.2) that

E
[∣∣Qt(x,Π

n;ε,∞
x τi)

∣∣q] ≲q

∣∣E[Qt(x,Π
n;ε,∞
x τi)

]∣∣q + E
ï

sup
∥h∥H≤1

∣∣Qt

(
x,Πn,h;ε,∞

x (Dτi)
)∣∣qò.

The following result holds for the expectation part, which is the only place in this work where we use the
assumption that the law of the noise is invariant by the translations. Define the quantity

En,R
i

··= E
[
Q1(0,Π

n;ε,∞
0 τi)

]
= E

[
Q1(0,Π

n;0,∞
0 τi)

]
,

which is uniformly bounded over n by assumption.
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9 – Lemma. Let |τi|0,∞ ≤ 0. For any ε ∈ (0, ε0), there exists a positive constant C which is independent
of n, one has∥∥E

[
Qt(x,Π

n;ε,∞
x τi)

]∥∥
L∞

x (wc(mB+1))
≤ C

(
|En,R

i |+ t
|τi|ε,∞

ℓ E
[
∥Πn;ε,∞ : Vi−1∥wc ∥Γn;ε,∞ : Vi∥wcmB

])
.

From that estimate and the H-spectral gap inequality, we obtain the bound
E
[∣∣Qt(x,Π

n;ε,∞
x τi)

∣∣qwc(mB+2)(x)
q
]

≲ wc(x)
q

Å∣∣E[Qt(x,Π
n;ε,∞
x τi)

]∣∣qwc(mB+1)(x)
q + E

ï
sup

∥h∥H≤1

∣∣Qt

(
x,Πn,h;ε,∞

x (Dτi)
)∣∣qwc(x)

q

òã
≲ wc(x)

q

Å
|En,R

i |q + t
|τi|ε,∞

ℓ q E
[
∥Πn;ε,∞ : Vi−1∥wc

∥Γn;ε,∞ : Vi∥wcmB

]q
+ t

|Dτi|ε,∞
ℓ q E

ï
sup

∥h∥H≤1

∥Πn,h;ε,∞ :Wi∥qwc

òã
.

Recall that Dτi ∈
•

Vi ⊂ Wi and that D preserves the | · |ε,∞ degree, so |Dτi|ε,∞ = |τi|ε,∞. By integrating
the above estimate over x we get the bound

E
[∥∥Qt(x,Π

n;ε,∞
x τi)

∥∥q
Lq

x(wc(mB+2))

]
≲ |En,R

i |q + t
|τi|ε,∞

ℓ q

Å
E
[
∥Πn;ε,∞ : Vi−1∥wc

∥Γn;ε,∞ : Vi∥wcmB

]q
+ E
ï

sup
∥h∥H≤1

∥Πn,h;ε,∞ :Wi∥qwc

òã (3.5)

To trade the Lq
x(wc(mB+2)) norm for an L∞

x (wc(mB+2)) norm in the above estimate we use an argument
that is reminiscent of the proof of Besov embedding. Here we need a slight change of the parameter ε.
10 – Lemma. Let |τi|0,∞ ≤ 0. For any ε ∈ (0, ε0

2 ) and q ∈ [1,∞), there exists a positive constant C which
is independent of n, one has

E
[
∥Πn;2ε,∞ : τi∥qwc(mB+2)

]
≤ C

Å
|En,R

i |q + E
[
∥Πn;ε,∞ : Vi−1∥qwc

∥Γn;ε,∞ : Vi∥qwcmB

]
+ E
ï

sup
∥h∥H≤1

∥Πn,h;ε,∞ :Wi∥qwc

òã
.

Lemma 8 and Lemma 10 provide an Lq(Ω) bound of ∥Πn;ε,∞ : τi∥wc(mB+2)
in terms of the moment of

∥Mn;ε/2,p∥M(Wi,ε/2,∞)wc
, which is a part of bd(W , i,∞).

3.3 Step 2: From bd(W , i, p) and bd(V , i) to the g-part of bd(W , i + 1, p). We fix parameters
ε ∈ (0, ε0) and p ∈ [2,∞] in this step. Recall that

Wi+1,ε,p =
(
(Wi+1,∆ε,p), (W

+
i,ε,p,∆

+
ε,p)
)
.

In this step, we show the ω-wise bounds of
sup
n∈N

∥gn;ε,p : Ik(τ)∥wc

for any planted trees Ik(τ) with τ ∈ Bi ∪
•

Bi and k ∈ Nd in terms of the assumed boundedness results on
Wi,ε,p and Vi,ε. Define for that purpose a modelled distribution fn;ε,p

τ setting
fn;ε,p
τ (x) =

(
id⊗ gn;ε,px

)
∆ε,pτ − τ ∈ D(|τ |ε,p,ip(τ))(Wi; Γ

n;ε,p)wcmB
.

We further define the linear map I+
ε,p : Wi → W+

i,ε,p by setting

I+
ε,p(τ) ··=

®
I(τ), if |τ |ε,p + β0 > 0,

0, if |τ |ε,p + β0 ≤ 0,

which is an abstract integration map of order β0 (see Definition 23). Then it turns out the model Mn;ε,p

on Wi,ε,p and the model Mn+;ε,p = (Πn+;ε,p, Γn+;ε,p) on the concrete regularity-integrability structure
(W+

i,ε,p,W
+
i,ε,p) given by

(Πn+;ε,pµ)(x) = gn;ε,px (µ), Γn+;ε,p
yx

··=
(

id⊗ gn;ε,pyx

)
∆+

ε,p

are compatible for I+
ε,p – see the proof of Lemma 11. As in the usual setting of regularity structures,

one needs some additional terms to turn I+
ε,p(f

n;ε,p
τ ) into a modelled distribution – here in a regularity-

integrability setting. We define the modelled distribution Kn+
ε,pf

n;ε,p
τ by the formula (A.1) with the model
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Mn;ε,p and a reconstruction Πnτ of fn;ε,p
τ , which is certainly a reconstruction because the bound for

Πn;ε,p
x τ = Πnτ − Πn;ε,p

x fn;ε,p
τ is a part of bd(W , i, p) and bd(V , i).

11 – Lemma. gn;ε,pyx (Ikτ) coincides with the Xk-coefficient of (Kn+
ε,pf

n;ε,p
τ )(y)− Γn+;ε,p

yx

(
Kn+

ε,pf
n;ε,p
τ (x)

)
.

The multilevel Schauder estimate from Theorem 24 then gives an upper bound on gn;ε,pyx (Ikτ) in terms
of the norm of fn;ε,p

τ . They take the following form, proved in Section 4.5.

12 – Lemma. For any ε ∈ (0, ε0), p ∈ [2,∞], and c > 0, there exists a positive constant C which is
independent of n, ω, and h ∈ H with ∥h∥H ≤ 1, one has

∥gn;ε,p : Ik(τ)∥wc(mB+2)
≤
®
C
(
1 + ∥Mn;ε,∞∥M(Vi,ε)wc

)mB+2
, if τ ∈ Bi,

C
(
1 + ∥Mn;ε,p∥M(Wi,ε,p)wc

)mB+2
, if τ ∈

•

Bi.

Re-inserting the h in the notations Mn,h and Πn,h;ε,∞ for Mn and Πn;ε,∞ to emphasize the dependence
on h of these objects, the n-uniform control of

E
[

sup
∥h∥H≤1

∥gn,h;ε,p :W+
i,ε,p∥

q
wc

]
is given by the joint assumptions bd(W , i, p) and bd(V , i).

3.4 Step 3: From
{
bd(W , i, p)

}
p

and bd(V , i) to the Π-part of
{
bd(W , i + 1, p)

}
p
. It is sufficient

to show the bound of
sup
n∈N

∥Πn;ε,p : τ∥wc

for any τ ∈
•

Bi+1 in terms of the assumed boundedness results on Wi,ε,p and Vi,ε. We first establish the
result for p = 2 and next extend it into all p ∈ [2,∞] by using the formula (2.14).

Let τ be of the form Dvσ with some σ ∈ Bi+1 and v ∈ #σ. Since τ is not the initial tree ⊙, the
assumption of Theorem 6 gives here

|τ |0,2 = |τ |0,∞ +
|s|
2

= |σ|0,∞ +
|s|
2

> 0.

Thus, as in Lemma 8, one gets the following statement from an application of the reconstruction theorem
to a modelled distribution

fn;ε,2
τ (x) =

(
id⊗ gn;ε,2x

)
∆ε,2τ − τ ∈ D(|τ |ε,2,2)(Vi ⊕

•

Vi; Γ
n;ε,2)wc .

Note that (Vi ⊕
•

Vi,W
+
i−1,ε,2) is a concrete regularity-integrability substructure and recall from (3.4) that

the bound of ∥Γn;ε,2 : Vi ⊕
•

Vi∥wcmB
follows from the assumption bd(W , i, 2).

13 – Lemma. For any ε ∈ (0, ε0) and c > 0, there exists a positive constant C which is independent of n,
ω, and h ∈ H with ∥h∥H ≤ 1 one has

∥Πn;ε,2 : τ∥wc(mB+1)
≤ C∥Πn;ε,2 : Vi ⊕

•

Vi∥wc
∥Γn;ε,2 : Vi ⊕

•

Vi∥wcmB
.

The proof is almost the same as that of Lemma 8 and left to the reader. Next we recall the algebraic
formula (2.14)

Πn;ε,p
x τ = Πn;ε,2

x τ +
(
Πn;ε,p

x ⊗ hn;ε,px

)
∆ε,2τ

to infer from the bound of Lemma 13 a similar bound on Πn;ε,p
x τ . We can estimate as follows the size of

the hn;ε,px terms. Recall from Section 2.3 the definitions of the exponent pε(µ) and the floor function ⌊p⌋Iε .

14 – Lemma. For any µ ∈ P(
•

Bi), p ∈ [2,∞], and pε(µ) > r ≥ ⌊pε(µ)⌋Iε one has
∥hn;ε,px (µ)∥Lr

x(wc(mB+1)) ≲ ∥Πn;ε,r :Wi∥wc

(
1 + ∥Γn;ε,r :Wi∥wc

)
.

The proof is given in Section 4.6. Formula (2.14) then leads to the following estimate.

15 – Lemma. For any ε ∈ (0, ε0), p ∈ [2,∞], and c > 0, there exist a finite subset Rε,p of [2,∞], an
exponent ε′ ∈ (0, ε), and a positive constant C, which are independent of n, ω, and h ∈ H with ∥h∥H ≤ 1,
one has

∥Πn;ε,p : τ∥wc(mB+2)
≤ C

(
1 +

∑
q∈Rε,p

∥Mn;ε′,q∥M(Wi,ε′,q)wc
+ ∥Mn;ε′,∞∥M(Vi,ε′ )wc

)mB+2

.
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Thus we see from Lemma 15 that the n-uniform control of
E
[

sup
∥h∥H≤1

∥Πn,h;ε,p : τ∥qwc(mB+2)

]
is given by the joint assumptions {bd(W , i, p)}p and bd(V , i).

A finite number of iterations of Steps 1-3 starting from the initial case of Section 3.1 proves the n-uniform
bounds of Mn in Lq

(
Ω,P;M(Wε,p)wc

)
for any p ∈ [2,∞], q ∈ [1,∞), ε ∈ (0, ε0) and c > 0.

3.5 From uniform boundedness to convergence results. Since the models Mn stay in a bounded
set of Lq

(
Ω,P;M(Wε,p)wc

)
for any p, q, ε, c, we can use the local Lipschitz estimates satisfied by the

reconstruction operator and the Kn+
ε,p maps – see Theorem 22 and Theorem 24 in Appendix A, to prove

the Cauchy property

lim
n,m→∞

E
ï

sup
∥h∥H≤1

∥Mn;ε,p :Mm;ε,p∥qM(Wε,p)wc

ò
= 0 (3.6)

for any p, q, ε, c. Since M(Wε,p)wc
is complete, this implies the convergence in Lq

(
Ω,P;M(Wε,p)wc

)
of

{Mn;ε,p}n. We can prove the Cauchy property (3.6) starting from the convergence result of the initial
case (Section 3.1) and following the same induction steps as above. We only collect below the statements
corresponding to the different lemmas from sections 3.2, 3.3 and 3.4. A statement corresponding to Lemma
k in one of the previous sections is numbered here Lemma k′. We denote by

Qn

the arbitrary nonnegative random variable which polynomially depends on sup∥h∥H≤1 ∥Mn;ε,p∥M(Wε,p)wc

where the parameters ε, p, c run over an n-independent finite set. We know that
sup
n∈N

E
[
Qq

n

]
< ∞

for any q ∈ [1,∞).

3.5.1 Step 1: From cv(W , i,∞) to cv(V , i).

8’ – Lemma. For |τi|0,∞ > 0, one has the ω-wise estimate
∥Πn;ε,∞,Πn;ε,∞ : τi∥wc(mB+2)

≤ (Qn +Qm)∥Mn;ε,∞ :Mm;ε,∞∥M(Vi−1,ε,p)wc

for any n,m ∈ N.

10’ – Lemma. For |τi|0,∞ ≤ 0, there exists a positive constant C which is independent of n,m ∈ N and
one has the moment estimate

E
[
∥Πn;2ε,∞,Πn;2ε,∞ : τi∥qwc(mB+2)

]
≤ C

Å
|En,R

i − Em,R
i |q + E

[
∥Mn;ε,∞ :Mm;ε,∞∥2qM(Vi−1,ε,p)wc

]
+ E
ï

sup
∥h∥H≤1

∥Πn,h;ε,∞,Πm,h;ε,∞ :Wi∥qwc

ò
.

ã
for any q ∈ [1,∞).

3.5.2 Step 2: From cv(W , i, p) and cv(V , i) to the g-part of cv(W , i + 1, p). Fix τ ∈ Bi ∪
•

Bi and
k ∈ Nd.
12’ – Lemma. One has

∥gn;ε,p, gm;ε,p : Ik(τ)∥wc ≤
®
(Qn +Qm)∥Mn;ε,∞ :Mm;ε,∞∥M(Vi,ε)wc

, if τ ∈ Bi,

(Qn +Qm)∥Mn;ε,p :Mm;ε,p∥M(Wi,ε,p)wc
, if τ ∈

•

Bi.

3.5.3 Step 3: From cv(W , i, p) and cv(V , i) to the Π-part of cv(W , i+ 1, p). Fix τ ∈
•

Bi+1.
15’ – Lemma. With the same choice of Rε,p ⊂ [2,∞] and ε′ ∈ (0, ε) as Lemma 15, one has

∥Πn;ε,p,Πm;ε,p : τ∥wc ≤ (Qn +Qm)

( ∑
q∈Rε,p

∥Mn;ε′,q :Mm;ε′,q∥M(Wi,ε′,q)wc
+ ∥Mn;ε′,∞ :Mm;ε′,∞∥M(Vi,ε′ )wc

)

4 – Proofs of the lemmas

We give in this section the proofs of the lemmas used in our proof of Theorem 6.
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4.1 Examples of differentiable sectors. Let B be a set of all trees which strongly conform to a
complete subcritical rule and with degrees | · |0,∞ less than some fixed number. We show that V = span(B)

is a differentiable sector focusing on only (b). It is obvious for the initial case ⊙ ∈ B. Pick τ ∈
•

B of the
form τ = Dvσ with σ ∈ B and v ∈ #σ. If v is a root of τ , then τ is of the form ⊙η and the root of η ∈ B
has a type 1. Then ∆0,∞η = ∆0,2η is of the form

∑
η1 ⊗ η2, where η1 strongly confirms the rule and has

the root with type 1, and η2 ∈ V +
0,∞, and #η1 also strongly confirms the rule. Hence ⊙η1 = Dv(#η1) ∈

•

B
and one has

∆0,2τ = ∆0,2(⊙η) = (∆0,2⊙)(∆0,2η) =
∑

(⊙η1)⊗ η2 ∈
•

V ⊗ V +
0,∞.

The proof for the case that v is not the root is similar. The proof of the property on ∆+
0,2 is a simple

modification.

4.2 Proofs of algebraic identities. We prove two algebraic identities stated in Section 2.6. In the
proofs, we use the fact proved by Bruned in Proposition 3.15 of [6] that one can factorize the renormalized
interpretation map by

ΠR;ε,p
x = Π̂R;ε,p

x R, (4.1)
where Π̂R;ε,p

x is a linear and some multiplicative map defined by

Π̂R;ε,p
x (Xk) = (· − x)k, Π̂R;ε,p

x (Ikτ) = ∂kK(·,ΠR;ε,p
x τ)−

∑
l∈Nd, |l|s<|Ikτ |ε,p

(· − x)l

l!
∂k+lK(x,ΠR;ε,p

x τ).

Proof of Lemma 3 – In addition to (2.12), we also prove the similar identity
dξ(Π̂

ξ,R;ε,∞
x τ)(h) = Π̂ξ,h,R;ε,∞

x (Dτ) (4.2)
simultaneously. The proof is an induction on the preorder ⪯ defined by (3.1). Both (2.12) and (4.2) are
obvious for the initial cases τ ∈ {#, Xk}. Let τ be a planted tree of the form Ik(σ) with σ ∈ B. If σ

satisfies (2.12), then by the definition of Π̂ξ,R;ε,∞
x operator,

dξ(Π̂
ξ,R;ε,∞
x τ)(h) = dξ

Å
∂kK(·,Πξ,R;ε,∞

x σ)−
∑

|l|s<|Ikσ|ε,∞

(· − x)l

l!
∂k+lK(x,Πξ,R;ε,∞

x σ)

ã
(h)

= ∂kK(·,Πξ,h,R;ε,∞
x Dσ)−

∑
|l|s<|Ikσ|ε,∞

(· − x)l

l!
∂k+lK(x,Πξ,h,R;ε,∞

x Dσ)

= Π̂ξ,h,R;ε,∞
x (IkDσ) = Π̂ξ,h,R;ε,∞

x (Dτ).

In the third equality, we use the fact that D preserves the | · |ε,∞-degree: |Ik(Dσ)|ε,∞ = |Ikσ|ε,∞. Thus τ

satisfies (4.2). Next we consider a non-planted tree τ factorized by τ =
∏N

i=0 ηi with η0 = Xk and planted
trees ηi (1 ≤ i ≤ N). If each ηi satisfies (4.2), then we use the multiplicativity of Π̂ξ,R;ε,∞

x and Leibniz
rules for dξ and D to derive

dξ(Π̂
ξ,R;ε,∞
x τ)(h) = dξ

Å∏
i

(Π̂ξ,R;ε,∞
x ηi)

ã
(h) =

∑
i

dξ(Π̂
ξ,R;ε,∞
x ηi)(h)

∏
j ̸=i

(Π̂ξ,R;ε,∞
x ηj)

=
∑
i

(Π̂ξ,h,R;ε,∞
x Dηi)(h)

∏
j ̸=i

(Π̂ξ,R;ε,∞
x ηj) = Π̂ξ,h,R;ε,∞

x

Å∑
i

(Dηi)
∏
j ̸=i

ηj

ã
= Π̂ξ,h,R;ε,∞

x Dτ.

Thus τ satisfies (4.2). Finally, by using the commutation (e) between R and D, we have
dξ(Π

ξ,R;ε,∞
x τ)(h) = dξ(Π̂

ξ,R;ε,∞
x Rτ)(h) = Π̂ξ,h,R;ε,∞

x D(Rτ)

= Π̂ξ,h,R;ε,∞
x R(Dτ) = Πξ,h,R;ε,∞

x (Dτ).

In the third equality, we use the triangular property (b) of R and the inductive assumption that all trees
σ with |σ|# < |τ |# satisfy (4.2). Thus τ satisfies (2.12).
Proof of Lemma 4 – To simplify the notations we suppress the R, ε dependence in the notation and we
write Πp

x, h
p
x,∆p, |τ |p, p(µ) for ΠR;ε,p

x , hR;ε,p
x ,∆ε,p, |τ |ε,p, pε(µ) respectively.

The proof proceeds by a similar induction to the proof of Lemma 3. In addition to (2.14), we prove

Π̂p
xτ = Π̂2

xτ +
∑
e∈Eτ

∑
k∈Nd

1

k!
hpx(Ie(e)+kτ

e
+) Π̂

p
x(↑ke− τe−) (4.3)
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simultaneously. It is obvious for the initial case τ = ⊙. Let τ be a planted tree Ik(σ) with σ ∈
•

B. By the
definition of Π̂p

x and the inductive assumption that (2.14) holds for σ ∈
•

B,

Π̂p
xτ = ∂kK

(
·,Πp

xσ
)
−

∑
|l|s<|τ |p

(· − x)l

l!
∂k+lK

(
x,Πp

xσ
)

=

Å
∂kK

(
·,Π2

xσ
)
−

∑
|l|s<|τ |p

(· − x)l

l!
∂k+lK

(
x,Π2

xσ
)ã

+
∑
e,m

1

m!
hpx(σ

e,m
+ )

Å
∂kK

(
·,Πp

xσ
e,m
−
)
−

∑
|l|s<|τ |p

(· − x)l

l!
∂k+lK

(
x,Πp

xσ
e,m
−
)ã

,

where we write σe,m
+ = Im+e(e)σ

e
+ and σe,m

− = ↑me− σe
− for simplicity. Here we can compare the two

quantities in the big parentheses with Π̂2
xτ and Π̂p

x Ik(σ
e,m
− ) except different domains for l in both cases.

Recall that |τ |p ≤ |τ |2. Also, since |σe,m
+ |p ≤ 0 for m such that hpx(σ

e,m
+ ) ̸= 0, we have

|τ |p = |Ikσ|p = |σe,m
+ |p + |Ik(σe,m

− )|p ≤ |Ik(σe,m
− )|p.

One therefore has

Π̂p
xτ = Π̂2

xτ +
∑

|τ |p≤|l|s<|τ |2

(· − x)l

l!
∂k+l K

(
x,Π2

xσ
)

+
∑
e,m

1

m!
hpx(σ

e,m
+ )

Å
Π̂p

xIk(σ
e,m
− ) +

∑
|τ |p≤|l|s<|Ik(σ

e,m
− )|p

(· − x)l

l!
∂k+lK

(
x,Πp

xσ
e,m
−
)ã

.

(4.4)

By using the assumption (2.14) on σ with the integrability exponent p(Ik+lσ) − r for sufficiently small
r > 0 (fixed later), we have that the second term in the right hand side of (4.4) is equal to∑

|τ |p≤|l|s<|τ |2

(· − x)l

l!
∂k+l
x K

(
x,Πp(Ik+lσ)−r

x σ
)

−
∑

|τ |p≤|l|s<|τ |2

(· − x)l

l!

∑
e,m

1

m!
hp(Ik+lσ)−r
x (σe,m

+ ) ∂k+lK
(
x,Πp(Ik+lσ)−r

x σe,m
−
)
.

The first term is of the form
∑

l
1
l!h

p
x(Ik+lσ)Π̂

p
xX

l, which appears in (4.3) in the case that e is the unique
edge connected to the root of τ = Ikσ. The other terms in (4.3) appear in the third term of the right
hand side of (4.4) as the form

∑
e,m

1
m! h

p
x(σ

e,m
+ )Π̂p

xIk(σ
e,m
− ). Therefore to show that (4.3) holds for τ it is

sufficient to show the identity∑
e,m

1

m!
hpx(σ

e,m
+ )

∑
|τ |p≤|l|s<|Ik(σ

e,m
− )|p

(· − x)l

l!
∂k+lK

(
x,Πp

xσ
e,m
−
)

=
∑

|τ |p≤|l|s<|τ |2

(· − x)l

l!

∑
e,m

1

m!
hp(Ik+lσ)−r
x (σe,m

+ ) ∂k+lK
(
x,Πp(Ik+lσ)−r

x σe,m
−
)
,

that is, to show that the following two conditions are equivalent when we choose any small r > 0.

(a) |σe,m
+ |p ≤ 0 < |σe,m

+ |2 and |τ |p ≤ |l|s < |Ik(σe,m
− )|p,

(b) |τ |p ≤ |l|s < |τ |2 and |σe,m
+ |p(Ik+lσ)−r ≤ 0 < |σe,m

+ |2.

First we assume (a). Since |Ik(σe,m
− )|2 = |Ik(σe,m

− )|p > |l|s,
|τ |2 = |Ikσ|2 = |σe,m

+ |2 + |Ik(σe,m
− )|2 > |l|s.

Also, since |Ik+lσ|p(Ik+lσ)−r → 0 as r → 0 and |Ik+l(σ
e,m
− )|p is a p-independent positive number, if r > 0

is small enough then
|σe,m

+ |p(Ik+lσ)−r = |Ik+lσ|p(Ik+lσ)−r − |Ik+l(σ
e,m
− )|p(Ik+lσ)−r ≤ 0.

Thus (b) holds. Next we assume (b). Note that | · |p-degree is monotonically decreasing in p. Since
|Ik+lσ|p = |τ |p − |l|s ≤ 0 implies p ≥ p(Ik+lσ), we have

|σe,m
+ |p ≤ |σe,m

+ |p(Ik+lσ)−r ≤ 0.
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Moreover, since |Ik+lσ|p(Ik+lσ)−r > 0 for any r > 0, one also has
|Ik+l(σ

e,m
− )|p = |Ik+l(σ

e,m
− )|p(Ik+lσ)−r = |Ik+lσ|p(Ik+lσ)−r − |σe,m

+ |p(Ik+lσ)−r > 0

Thus (a) holds. Since (a) and (b) are equivalent, (4.3) holds for τ .

We now consider non-planted trees of the form τ = σµ with σ ∈ B and µ ∈ {⊙}∪P(
•

B). Note that the
cut at e in (4.3) makes sense only if e ∈ Eµ since hpx vanishes on trees without ⊙ symbol. Assuming that
(4.3) holds for µ, and recalling the multiplicativity of Π̂p

x, we have
Π̂p

xτ = (Π̂p
xσ)(Π̂

p
xµ)

= (Π̂p
xσ)

Å
Π̂2

xµ+
∑
e∈Eµ

∑
k∈Nd

1

k!
hpx(Ie(e)+kµ

e
+) Π̂

p
x(↑ke− µe

−)

ã
= Π̂2

x(σµ) +
∑
e∈Eµ

∑
k∈Nd

1

k!
hpx(Ie(e)+kµ

e
+) Π̂

p
x

(
σ(↑ke− τe−)

)
= Π̂2

xτ +
∑
e∈Eτ

∑
k∈Nd

1

k!
hpx(Ie(e)+kτ

e
+) Π̂

p
x(↑ke− τe−).

In the third equality, we use the fact that Π̂p
xσ is independent of p for σ ∈ B. Thus (4.3) holds for τ .

Finally, by using the commutation (d) between R and ∆2 and the triangular property (b) of R with
respect to | · |#, we have

(Πp
x − Π2

x)τ = (Π̂p
x − Π̂2

x)Rτ = (Π̂p
x ⊗ hpx)∆2Rτ

= (Π̂p
xR⊗ hpx)∆2τ = (Πp

x ⊗ hpx)∆2τ.

Thus (2.14) holds for τ .

4.3 Proof of Lemma 7. The triangular structure of coproducts as in Lemma 7 is well known in the
literature, so experts can skip this part. Recall from (3.1) the definition of the preorder ⪯ and write σ ≺ τ
if (|σ|#, |Eσ|, |σ|0,∞) < (|τ |#, |Eτ |, |τ |0,∞) in the lexicographical order. For any subset C ⊂ T and τ ∈ T
we define

C≺τ ··=
{
σ ∈ C ; σ ≺ τ

}
.

The following statement is used in the proof of Lemma 7.

16 – Lemma. For any τ ∈ T,(
∆0,2τ − τ ⊗ 1

)
∈ span(T≺τ )⊗ alg+0,2(T≺τ ). (4.5)

Furthermore, if B is a differentiable sector, then for any τ ∈ B,(
∆0,2τ − τ ⊗ 1

)
∈ span(B≺τ )⊗ alg+0,2(B≺τ ),

and for any τ ∈
•

B,(
∆0,2τ − τ ⊗ 1

)
∈
Å

span(
•

B≺τ )⊗ alg+0,2(B≺τ ) + span(B≺τ )⊗
(

alg+0,2(B≺τ ∪
•

B≺τ ) ∩ span(T(1))
)ã

.

Proof – We can show the first assertion by the induction. It is trivial for the initial cases τ ∈ {#,⊙, Xk}.
If τ, σ ∈ T satisfy (4.5) we have that ∆0,2(τσ) = (∆0,2τ)(∆0,2σ) belongs to

(τσ)⊗ 1+
(
τ span(T≺σ)

)
⊗ alg+0,2(T≺σ) +

(
σ span(T≺τ )

)
⊗ alg+0,2(T≺τ )

+
(

span(T≺τ ) span(T≺σ)
)
⊗ alg+0,2(T≺τ ∪T≺σ)

⊂
(
(τσ)⊗ 1+ span(T≺τσ)⊗ alg+0,2(T≺τσ)

)
;

hence τσ satisfies (4.5). Moreover if τ ∈ T satisfies (4.5) one has τ ≺ Ikτ and(
∆0,2(Ikτ)− Ikτ ⊗ 1

)
∈
(
Ik(span(T≺τ ))⊗ alg+0,2(T≺τ ) + span{X l}l ⊗ alg+0,2({τ})

)
∈ span(T≺Ikτ )⊗ alg+0,2(T≺Ikτ );

so Ikτ satisfies (4.5). The remaining assertions follow from the definition of a differential sector, so we are
done. �
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Proof of Lemma 7 – It is sufficient to show that
τ ∈ Bi ⇒ B≺τ ⊂ Bi−1,

µ ∈
•

Bi ⇒ B≺µ ⊂ Bi−1,
•

B≺µ ⊂
•

Bi−1.

The first statement is left to the reader. To show the second statement, let µ = Dvτ for some τ ∈ Bi. If
σ ∈ B≺µ, then since

|σ|# ≤ |µ|# < |τ |#,
we have σ ≺ τ and σ ∈ Bi−1. If ρ = Dwη ∈

•

B≺µ with η ∈ B, then since(
|ρ|#, |Eρ|, |ρ|0,∞

)
=
(
|η|# − 1, |Eη|, |η|0,∞

)
,

ρ ≺ µ implies η ≺ τ . Thus η ∈ Bi−1 and ρ ∈
•

Bi−1.

4.4 Proof of the lemmas of Section 3.2. We have three statements to prove.
Proof of Lemma 8 – Recall from Definition 20 the definition of the quantities LfMc;wb

and ∥f∥Γc;wb

involved in the definition of modelled distribution. Also recall that we can write
fn;ε,∞
τi (x) = Γn;ε,∞x τi − τi

with Γn;ε,∞x =
(

id⊗ gn;ε,∞x

)
∆ε,∞ which satisfies Γn;ε,∞yx Γn;ε,∞x = Γn;ε,∞y . Then the relation

Γn;ε,∞yx fn;ε,∞
τi (x)− fn;ε,∞

τi (y)

= Γn;ε,∞yx (Γn;ε,∞x − id)τi − (Γn;ε,∞y − id)τi = (id− Γn;ε,∞yx )τi.

yields that fn;ε,∞
τi belongs to the space D(|τi|ε,∞,∞)(Vi−1; Γ

n;ε,∞)wcmB
with the norms

L fn;ε,∞
τi M(|τi|ε,∞,∞);wcmB

≲
(
1 + ∥gn;ε,∞ : V +

i−1∥wc

)mB
, ∥fn;ε,∞

τi ∥Γ
n;ε,∞

(|τi|ε,∞,∞);wcmB
≤ ∥Γn;ε,∞ : Vi∥wcmB

.

Since |τi|ε,∞ > 0 there exists a unique reconstruction of fn;ε,∞
τi for the restriction of Mn;ε,∞ to the concrete

regularity structure (Vi−1, V
+
i−1). Moreover, since the relation Πn;ε,∞

x Γn;ε,∞x = Πn yields
Πn;ε,∞

x τi = Πnτi − Πn;ε,∞
x

(
fn;ε,∞
τi (x)

)
,

the reconstruction of fn;ε,∞
τi is noting but Πnτi. Hence the reconstruction theorem implies the inequality

∥Πn;ε,∞ : τi∥wc(mB+1)
= sup

0<t≤1
t−

|τ|ε,∞
ℓ ∥Qt(x,Π

n;ε,∞
x τi)∥L∞

x (wc(mB+1))

≲ ∥Πn;ε,∞ : Vi−1∥wc
∥fn;ε,∞

τi ∥Γ
n;ε,∞

(|τi|ε,∞,∞);wcmB
,

which gives the result.
Before going to the proof of Lemma 9, we prove some useful technical results.

17 – Lemma. There exists a finite positive constant Cc depending only on (Qt)t>0 and c > 0 such that,
for any q ≥ p ∈ [1,∞], t ∈ (0, 1], and f ∈ Lp(wc), one has

∥Gt ∗ f∥Lq(wc) ≤ Cc t
|s|
ℓ ( 1

q−
1
p )∥f∥Lp(wc).

Proof – Since |(Gt ∗ f)wc| ≤ (Gtw
−1
c ) ∗ (|f |wc), the result follows from usual Young inequality. The

proportional constant is ∥Gtw
−1
c ∥Lr(Rd), where 1

r = 1 + 1
q − 1

p . By (1.3) we have the bound

∥Gtw
−1
c ∥Lr(Rd) ≲ t−

|s|
ℓ (1− 1

r ) = t
|s|
ℓ ( 1

q−
1
p ).

�

18 – Lemma. For any ε ∈ (0, ε0), p ∈ [2,∞], and c, d > 0, there exists a positive constant C, which is
independent of n, ω, and h ∈ H with ∥h∥H ≤ 1, one has∥∥∥∥ ∫

Rd

Gt(x− y)
∣∣Qt

(
y,Πn;ε,p

x τ − Πn;ε,p
y τ

)∣∣dy∥∥∥∥
L

ip(τ)
x (wc+d)

≤ Ct
|τ|ε,p

ℓ ∥Γn;ε,p :W⪯τ∥wd
∥Πn;ε,p :W≺τ∥wc

for any τ ∈ B ∪
•

B, where W≺τ is a linear space spanned by all trees σ ≺ τ and W⪯τ ··= W≺τ ⊕ span{τ}.
Proof – To simplify the notations we omit the useless symbols n, ε, p from the model. By the change of
variable y → x− z and the expansion of Γyx, we can write the quantity inside L

ip(τ)
x norm as∫

Rd

Gt(z)
∣∣Qt

(
x− z,Πx−z(Γ(x−z)x − id)τ

)∣∣dz =
∑
σ≺τ

∫
Rd

Gt(z)|PσΓ(x−z)xτ ||Qt(x− z,Πx−zσ)|dz.
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By Hölder inequality and the elementary inequality ∥f(x − z)∥Lp
x(Rd) ≤ wc(z)

−1∥f∥Lp
x(Rd), we can bound

the L
ip(τ)
x norm of above quantity from above by∑

σ≺τ

∫
Rd

Gt(z)∥PσΓ(x−z)xτ∥Lip(τ):ip(σ)
x

∥Qt(x− z,Πx−zσ)∥Lip(σ)
x

dz

≤
∑
σ≺τ

∫
Rd

Gt(z)wc+d(z)
−1∥z∥|τ |ε,p−|σ|ε,p

s t
|σ|ε,p

ℓ ∥Γ :W⪯τ∥wd
∥Π :W≺τ∥wc

dz

≲
∑
σ≺τ

t
|τ|ε,p−|σ|ε,p

ℓ t
|σ|ε,p

ℓ ∥Γ :W⪯τ∥wd
∥Π :W≺τ∥wc = t

|τ|ε,p
ℓ ∥Γ :W⪯τ∥wd

∥Π :W≺τ∥wc .

Here the exponent p : q for 1 ≤ p ≤ q ≤ ∞ is defined at the beginning of Appendix A; ip(τ) : ip(σ) = p if
τ ∈

•

B and σ ∈ B, otherwise ip(τ) : ip(σ) = ∞. �

Proof of Lemma 9 – A similar statement was proved by Linares, Otto, Tempelmayr & Tsatsoulis in
Proposition 4.6 of [23]. We follow here their reasoning. To simplify the notations we write Πx, Γ, Ei for
Πn;ε,∞

x , Γn;ε,∞, En,R
i , respectively.

Note that E
[
Qt(x,Πxτi)

]
is independent of x by stationarity of the law of the random noise under the

translations of Rd. One therefore has for any 0 < s < t

∂tE
[
Qt(x,Πxτi)

]
=

∫
Rd

∂tQt−s(x, y)E
[
Qs(y,Πxτi)

]
dy

=

∫
Rd

∂tQt−s(x, y)E
[
Qs

(
y,Πxτi − Πyτi

)]
dy.

Picking s = t
2 we apply Lemma 18 and have∥∥∂tE[Qt(x,Πxτi)

]∥∥
L∞

x (wc(mB+1))
≲ t

|τ|ε,∞
ℓ −1E

[
∥Γ : Vi∥wcmB

∥Π : Vi−1∥wc

]
.

Since |τi|ε,∞ < 0 and
E
[
Q1(x,Πxτi)

]
= E

[
Q1(0,Π0τ)

]
= Ei

by the stationarity of the law of the noise, we obtain the result by writing∥∥E
[
Qt(x,Πxτi)

]∥∥
L∞

x (wc(mB+1))
≤
∥∥E
[
Q1(x,Πxτi)

]∥∥
L∞

x (wc(mB+1))
+

∫ 1

t

∥∥∂sE[Qs(x,Πxτi)
]∥∥

L∞
x (wc(mB+1))

ds

≲ |Ei|+ t
|τi|ε,∞

ℓ E
[
∥Γ : Vi∥wcmB

∥Π : Vi−1∥wc

]
.

Proof of Lemma 10 – Here we omit the parameters n,∞, R similarly to the proof of Lemma 9, but
we leave the parameter ε to make explicit the ε-dependence of the quantities ∥(·)n;ε,∞ : τi∥wc

. Note that
Πε

xτi = Π2ε
x τi by the property (c) of differentiable sectors. By using the integral formula

Qt(x,Π
ε
xτi) = Q1(x,Π

ε
xτi)−

∫ 1

t

∂sQs(x,Π
ε
xτi)ds,

which is also used in the proof of Lemma 9, we have

E
[
∥Π2ε : τi∥qwc(mB+2)

]
= E
ï

sup
0<t≤1

t−
|τi|2ε,∞

ℓ q∥Qt(x,Π
ε
xτi)∥

q
L∞

x (wc(mB+2))

ò
≤ E

[
∥Q1(x,Π

ε
xτi)∥

q
L∞

x (wc(mB+2))

]
+E

ñ
sup

0<t≤1

∣∣∣∣ ∫ 1

t

s−
|τi|2ε,∞

ℓ ∥∂sQs(x,Π
ε
xτi)∥L∞

x (wc(mB+2))ds

∣∣∣∣q
ô

=·· A1 +A2.

We focus on A2. By the semigroup property of Qs we have

∂sQs(x,Π
ε
xτi) =

∫
Rd

(∂sQ) s
2
(x, y)Q s

2
(y,Πε

xτi)dy

=

∫
Rd

(∂sQ) s
2
(x, y)Q s

2
(y,Πε

yτi)dy +

∫
Rd

(∂sQ) s
2
(x, y)Q s

2
(y,Πε

xτi − Πε
yτi)dy.

In the last line, the L∞
x (wc(mB+1)) norm of the second term is bound above by

s
|τi|ε,∞

ℓ −1 (⋆)ε, (⋆)ε ··= ∥Γε : Vi∥wcmB
∥Πε : Vi−1∥wc
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by Lemma 18. For the remaining term we can use Lemma 17 and the bound |∂tQt(x)| ≲ t−1Gt(x) to get∥∥∥∥∫
Rd

(∂sQ) s
2
(x, y)Q s

2
(y,Πε

yτi)dy

∥∥∥∥
L∞

x (wc(mB+2))

≲ s−
|s|
ℓ

1
q−1∥Q s

2
(y,Πε

yτi)∥Lq
y(wc(mB+2)).

Write q′ for the conjugate exponent of q. If we choose sufficiently large q such that q > ℓ+|s|
|τi|ε,∞−|τi|2ε,∞ ,

then since
( |τi|ε,∞−|τi|2ε,∞

ℓ − |s|
ℓ

1
q − 1

)
q′ > −1, we get from Hölder inequality in t the estimate∫ 1

0

s−
|τi|2ε,∞

ℓ ∥∂sQs(x,Π
ε
xτi)∥L∞

x (wc(mB+2))ds

≲
∫ 1

0

s
|τi|ε,∞−|τi|2ε,∞

ℓ − |s|
ℓ

1
q−1s−

|τi|ε,∞
ℓ ∥Q s

2
(y,Πε

yτi)∥Lq
y(wc(mB+2))ds+ (⋆)ε

∫ 1

0

s
|τi|ε,∞−|τi|2ε,∞

ℓ −1ds

≲
Å∫ 1

0

s−
|τi|ε,∞

ℓ q ∥Q s
2
(y,Πε

yτi)∥
q
Lq

y(wc(mB+2))
ds

ã 1
q

+ (⋆)ε.

We conclude from the estimate (3.5) that

A2 ≲
∫ 1

0

s−
|τi|ε,∞

ℓ q E
[
∥Q s

2
(y,Πε

yτi)∥
q
Lq

y(wc(mB+2))

]
ds+ E[(⋆)q]

≲ |Ei|q + E
ï

sup
∥h∥H≤1

∥Πn,h;ε,∞ :Wi∥qwc

ò
+ E[(⋆)q].

The proof of the estimate of A1 is similar and left to the reader.

4.5 Proofs of the Lemmas of Section 3.3. We prove the following two statements. We suppress the
useless exponents n, ε, p from the objects for more readability.
Proof of Lemma 11 – The proof is classical and recalled here for completeness. Similar arguments can
be found at Section 4 of [2].

We first prove the compatibility between M = Mn;ε,p and M+ = Mn+;ε,p. Recall that gx = gn;ε,px is
defined by the formulas (2.10). We define another character fx = fn;ε,px by the formula

fx(X
k) = xk, fx(Ikτ) = 1|Ikτ |>0 ∂

kK(x,Πxτ). (4.6)
Then the characters gx and fx are related to each other by the equivalent identities

g−1
x (Ikτ) = −

∑
l∈Nd

(−x)l

l!
fx(Ik+lτ), fx(Ikτ) = −

∑
m∈Nd

xm

m!
g−1
x (Ik+mτ),

and we have the explicit representation of gx
gx(I+

k τ) = (fx ⊗ gx)(I+
k ⊗ id)∆τ. (4.7)

We can obtain the last one by applying the operator gx ⊗ g−1
x ⊗ gx to the identity∑

m∈Nd

Xm

m!
⊗∆+I+

k+mτ =
∑

m∈Nd

Xm

m!
⊗ (I+

k+m ⊗ id)∆τ +
∑

m,l∈Nd

Xm

m!
⊗ X l

l!
⊗ I+

k+l+mτ

and using the fact (g−1
x ⊗ gx)∆

+I+
k+mτ = 0 and the binomial theorem. The identity (4.7) yields the

formula
gyx
(
(I+ + JM(x))τ

)
= fy(I+Γyxτ),

as follows.
fy(I+Γyxτ) = (fy ⊗ gy ⊗ g−1

x )(I+ ⊗ id⊗ id)(id⊗∆+)∆τ

= (fy ⊗ gy ⊗ g−1
x )(I+ ⊗ id⊗ id)(∆⊗ id)∆τ

= (gy ⊗ g−1
x )(I+ ⊗ id)∆τ

= (gy ⊗ g−1
x )

Å
∆+I+τ −

∑
k∈Nd

Xk

k!
⊗ I+

k τ

ã
= gyx(I+τ) +

∑
k,l∈Nd

yk

k!

(−x)l

l!
fx(Ik+lτ)
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= gyx(I+τ) +
∑

m∈Nd

(y − x)m

m!
fx(Imτ) = gyx

(
(I+ + JM(x))τ

)
.

Thus for any x, y, z ∈ Rd we have

gzy

{
Γ+yx(I+ + JM(x))τ −

(
I+ + JM(y)

)
Γyxτ

}
= gzx(I+ + JM(x))τ − fz(I+ΓzyΓyxτ)

= fz(I+Γzxτ)− fz(I+Γzxτ) = 0.

Since the quantity inside gzy is in the subspace span{Xk}k, on which gzy is injective, we have the com-
patibility

Γ+yx
(
I+ + JM(x)

)
τ =

(
I+ + JM(y)

)
Γyxτ.

Next we prove Lemma 11. It is straightforward from the definition of K+ to show the explicit representation

(K+fτ )(x) = I+
(
fτ (x)

)
+
∑
k∈Nd

gx(Ikτ)
Xk

k!
.

for fτ = fn;ε,p
τ . This formula further transformed into

(K+fτ )(x) = (id⊗gx)∆
+I+τ − I+τ = fI+τ .

Thus we have the result in a similar argument to the proof of Lemma 8.

Proof of Lemma 12 – We consider the case where τ ∈
•

Bi and let the reader treat the case where τ ∈ Bi.
We saw in a similar argument to the proof of Lemma 8 that fτ belongs to the space

D(|τ |ε,p,p)(Wi; Γ)wcmB
,

with norms
|||fτ |||Γ(|τ |ε,p,p);wcmB

≲
(
1 + ∥g :W+

i−1,ε,p∥wc

)mB
.

Therefore we have from Theorem 24 the estimate
|||K+fτ |||(|τ |ε,p+β0,p);wc(mB+2)

≲ ∥Π :Wi∥wc

(
1 + ∥Γ :Wi∥wc

)
|||fτ |||Γ(|τ |ε,p,p);wcmB

+ JΠτKΠ,fτ(|τ |ε,p,p);wc(mB+2)

≲
(
1 + |||M|||M(Wi,ε,p)wc

)mB+2
,

on which one reads the conclusion.

4.6 Proofs of the lemmas of Section 3.4. Recall τ ∈
•

Bi+1. We have two statements to prove.

Proof of Lemma 14 – Recall from (2.13) the definition of hn;ε,px . The proof leads to the estimate of the
character fx defined by (4.6). This is a content of Lemma 5.6 of [21], but the proof is recalled here for
completeness. Pick σ ∈

•

Bi with µ = Ik(σ). Note that, by the behavior of Πn;ε,p as a ‘step function’ of p,
we can write

hn;ε,px (µ) ··= 1|µ|ε,p≤0<|µ|ε,2 f
n;ε,r
x (µ), fn;ε,rx (µ) ··= ∂kK(x,Πn;ε,r

x σ).

We can write the fn;ε,rx (µ) by the form∫ 1

0

∂kKt(x,Π
n;ε,r
x σ)dt =

∫ 1

0

∫
Rd

∂k
xK t

2
(x, y)Q t

2
(y,Πn;ε,r

x σ)dydt.

By Lemma 18, we can replace Πn;ε,r
x σ by Πn;ε,r

y σ with an error ∥Γn;ε,r : Wi∥wcmB
∥Πn;ε,r : Wi∥wc , where

note that |µ|ε,r > |µ|ε,pε(µ) = 0 and the t-dependent factor t
|µ|ε,r

ℓ −1 is integrable. After the replacement,
we obtain the statement as a direct consequence of the size estimate (2.7) satisfied by Q t

2
(y,Πn;ε,r

y σ).

Proof of Lemma 15 – To lighten the notations we suppress in this proof the exponent n from the models
and their associated quantities. By the semigroup property of Qt we have

Qt(x,Π
ε,p
x τ) =

∫
Rd

Q t
2
(x, y)Q t

2
(y,Πε,p

x τ)dy

=

∫
Rd

Q t
2
(x, y)Q t

2
(y,Πε,p

y τ)dy +

∫
Rd

Q t
2
(x, y)Q t

2
(y,Πε,p

x τ − Πε,p
y τ)dy

=·· B1 +B2.

We can apply Lemma 18 to bound above the Lp
x(wc(mB+1)) norm of B2 by

t
|τ|ε,p

ℓ ∥Γε,p :Wi∥wcmB
∥Πε,p :Wi∥wc

,
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For B1 write (2.14) in synthetic form

Πε,p
y τ = Πε,2

y τ +
∑
τ1,τ2

hε,py (τ1)Π
ε,p
y τ2 (4.8)

with τ1 ∈
•

Bi, τ2 ∈ Bi, |τ1|ε,p + |τ2|ε,p = |τ |ε,p, and p ≥ pε(τ1). Note the elementary yet fundamental
identities

|τ |ε,2 + |s|
(1
p
− 1

2

)
= |τ |ε,p, |τ2|ε,p + |s|

(1
p
− 1

q1

)
= |τ |ε,p − |τ1|ε,q1 .

For any small ζ > 0 (fixed later), we can choose q1 = q1(ε, ζ) such that ⌊pε(τ1)⌋Iε ≤ q1 < pε(τ1) and
|τ |ε,p − |τ |ε+ζ,p > |τ1|ε,q1 > 0 = |τ1|ε,pε(τ1).

We then have from Lemmas 13 and 14 an upper bound for ∥B1∥Lp
x(wc(mB+2)) of the form∥∥∥∥∫

Rd

Gt(x− y)
∣∣Q t

2
(y,Πε,2

y τ)
∣∣dy + ∑

τ1,τ2

∫
Rd

Gt(x− y)|hε,py (τ1)|
∣∣Q t

2
(y,Πε,p

y τ2)
∣∣dy∥∥∥∥

Lp
x(wc(mB+2))

≲ t
|s|
ℓ ( 1

p−
1
2 )∥Q t

2
(y,Πε,2

y τ)∥L2
y(wc) +

∑
τ1,τ2

t
|s|
ℓ ( 1

p−
1
q1

)∥hε,py (τ1)∥Lq1
y (wc(mB+1))

∥∥Q t
2
(y,Πε,p

y τ2)
∥∥
L∞

y (wc)

≲ t
|s|
ℓ ( 1

p−
1
2 )t

|τ|ε,2
ℓ ∥Πε,2 : τ∥wc +

∑
τ1,τ2

t
|s|
ℓ ( 1

p−
1
q1

)t
|τ2|ε,∞

ℓ

(
1 + ∥Mε,q1∥M(Wi,ε,q1 )wc

)mB+1∥Πε,∞ : Vi∥wc

= t
|τ|ε,p

ℓ ∥Πε,2 : τ∥wc
+
∑
τ1,τ2

t
|τ|ε,p−|τ1|ε,q1

ℓ

(
1 + ∥Mε,q1∥M(Wi,ε,q1 )wc

)mB+1∥Πε,∞ : Vi∥wc

≲ t
|τ|ε+ζ,p

ℓ

(
1 +

∑
q1

∥Mε,q1∥M(Wi,ε,q1
)wc

+ ∥Mε,∞∥M(Vi,ε)wc

)mB+2

.

To obtain the expected bound we use the left continuity of Πε,p
x τ with respect to ε. Choosing small ζ > 0

such that Πε,p
x τ = Πε−ζ,p

x τ (it depends on ε, p) and using the above estimates we get the bound
∥Qt(x,Π

ε,p
x τ)∥Lp

x(wc(mB+2)) = ∥Qt(x,Π
ε−ζ,p
x τ)∥Lp

x(wc(mB+2))

≲ t
|τ|ε,p

ℓ

(
1 +

∑
q1(ε−ζ,ζ)

∥Mε−ζ,q1∥M(Wi,ε−ζ,q1
)wc

+ ∥Mε−ζ,∞∥M(Vi,ε−ζ)wc

)mB+2

,

which implies the result.

5 – Proof of Theorem 2

Our proof of Theorem 2 follows the pattern of proof of the corresponding statement in Tempelmayr’s
recent work [29]. Since this part is independent of the parameters ε, p, c, we suppress them from the
corresponding objects. For instance, we write M(W ) for M(Wε,p)wc .

Assume now that we are given a sequence (Pj)j≥0 of stationary Borel probability measures on Ω =
Cα0,Q(wc) that all satisfy the spectral gap inequality (2.1) with the same constant C. Also, assume that
Pj tend weakly to a probability P∞. Then P∞ also satisfies the spectral gap inequality with the same C.
It is easily checked for any bounded cylindrical functions F : Ω → R of the form

F (ω) = f
(
φ1(ω), . . . , φm(ω)

)
,

where φ1, . . . , φm ∈ Ω∗ and f ∈ C∞(Rn) and extended to all F by a density argument – see e.g. Lemma
2.23 in Hairer & Steele’s work [20] for the density argument. For each j ∈ N ∪ {∞} and n ∈ N, let
Mn

j (ω) = Mξn(ω),Rn
j be the BPHZ model on W associated with the random variable ξn(ω) = ϱn ∗ ω and

the unique BPHZ-type preparation map Rn
j defined by (2.17). We also denote by Mj = limn→∞ Mn

j the
Lq(Pj)-limit for any q < ∞ ensured by Theorem 6. From its proof, it is obvious that the quantities

sup
n∈N

Ej

[
∥Mn

j ∥
q
M(W )

]
have the j-uniform upper bound and the convergence

lim
n→∞

Ej

[
∥Mn

j :Mj∥qM(W )

]
= 0

is j-uniform.
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By Skhorohod representation theorem there is a probability space (E, E ,Q) and random variables
ξ̃j : E → Ω

for each j ∈ N ∪ {∞} such that the Q-law of ξ̃j is equal to Pj and ξ̃j converges Q-almost surely to ξ̃∞ as
j → ∞. Once we define the random variables‹Mn

j
··= Mn

j (ξ̃j) : E → M(W ), ‹Mj ··= Mj(ξ̃j) : E → M(W ),

we have that
(1) for each j ∈ N ∪ {∞}, the Q-law of ‹Mn

j (resp. ‹Mj) is equal to the Pj-law of Mn
j (resp. Mj), and‹Mn

j converges to ‹Mj in Lq(E,Q;M(W )) for any q < ∞ as n goes to ∞,
(2) for each n ∈ N, the random variables ‹Mn

j converges Q-almost surely to ‹Mn
∞ in M(W ) as j → ∞.

Point (2) follows from the facts that ‹Mn
j is a constinuous function of the smooth function ξ̃nj = ϱn ∗ ξ̃j and

the Q-almost sure convergence of ξ̃nj to ξ̃n∞ in the space of smooth functions as j → ∞. Denoting by EQ[·]
the expectation operator associated to Q, one has for every j, k ∈ N and n ∈ N,

EQ
[
∥‹Mj : ‹M∞∥qM(W )

]
≲ EQ

[
∥‹Mj : ‹Mn

j ∥
q
M(W )

]
+ EQ

[
∥‹Mn

j : ‹Mn
∞∥qM(W )

]
+ EQ

[
∥‹Mn

∞ : ‹M∞∥qM(W )

]
.

By point (1), the first and third terms in the right hand side are bounded above by (j, k)-independent
constant Cn which vanishes as n goes to ∞. By point (2) and the j-uniformly integrability of ∥‹Mn

j ∥M(W ),
the second term vanishes as j → ∞ for each n by Vitali convergence theorem. Therefore we have

lim
j→∞

EQ
[
∥‹Mj : ‹M∞∥qM(W )

]
= 0,

which implies that the Pj-law of Mj converges to the P∞-law of M∞ as j → ∞.

A – Reconstruction and multilevel Schauder estimates in regularity-integrability structures

We give in this section a summary of the results on modelled distributions over a regularity-integrability
structure proved in the companion work [21]. Given 1 ≤ p ≤ q ≤ ∞ we define the exponent p : q ∈ [p,∞]
from the relation

1

p : q
+

1

q
=

1

p
.

19 – Definition. Let T = (A, T,G) be a regularity-integrability structure of regularity α0 ≤ 0. For any
c > 0, we define M(T )wc as the set of pairs

(
{Πx}x∈Rd , {Γxy}x,y∈Rd

)
with the following properties.

(1) (Algebraic conditions) The maps Πx : T → Cα0,Q(wc) are linear continuous, Γxy ∈ G, and
ΠxΓxy = Πy, Γxx = Id, and ΓxyΓyz = Γxz for any x, y, z ∈ Rd.

(2) (Analytic conditions) For any a ∈ R × [1,∞], one has

∥Π∥a;wc
··= max

(α,p)∈A
(α,p)<a

sup
0<t≤1

t−α/ℓ

∥∥∥∥∥ sup
τ∈T(α,p)\{0}

∣∣Qt(x,Πxτ)
∣∣

∥τ∥(α,p)

∥∥∥∥∥
Lp

x(wc)

< ∞

and

∥Γ∥a;wc
··= max

(α,p),(β,q)∈A
(β,q)<(α,p)<a

sup
y∈Rd\{0}

{
wc(y)

∥y∥α−β
s

∥∥∥∥∥ sup
τ∈T(α,p)\{0}

∥Γ(x+y)xτ∥(β,q)
∥τ∥(α,p)

∥∥∥∥∥
Lp:q

x (wc)

}
< ∞.

We write
|||M|||a;wc

··= ∥Π∥a;wc
+ ∥Γ∥a;wc

.

Furthermore, for any two models Mi = (Πi,Γi) ∈ M(T )wc
with i ∈ {1, 2}, define the pseudo-metric

|||M1;M2|||a;wc
··= ∥Π1 −Π2∥a;wc

+ ∥Γ1 − Γ2∥a;wc

by replacing Π and Γ above with Π1 −Π2 and Γ1 − Γ2 respectively.

The topological space M(T )wc
is complete with respect to the pseudo-metrics |||M1;M2|||a;wc

.

20 – Definition. Let M = (Π,Γ) ∈ M(T )wc . For every c = (γ, r) ∈ R × [1,∞] and b > 0, we define
Dc(Γ)wb

as the space of all functions f : Rd → T<c ··=
⊕

a∈A, a<c Ta such that

L f Mc;wb
··= max

(α,p)<c

∥∥∥f(x)∥(α,p)∥∥Lr:p
x (wb)

< ∞,
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∥f∥Γc;wb
··= max

(α,p)<c
sup

h∈Rd\{0}
wb(y)

∥∥∥∆Γ
x;hf∥(α,p)

∥∥
Lr:p

x (wb)

∥h∥γ−α
s

< ∞,

where
∆Γ

x;hf ··= f(x+ h)− Γ(x+h)xf(x).

We call each element of Dc(Γ)wb
a modelled distribution. In addition, we write

|||f |||Γc;wb
··= L f Mc;wb

+ ∥f∥Γc;wb
.

Furthermore, for any models Mi = (Πi,Γi) ∈ M(T )wc
and functions fi ∈ Dc(Γi)wb

with i ∈ {1, 2}, we
define

|||f1; f2|||Γ1;Γ2
c;wb

··= L f1 − f2 Mc;wb
+ ∥f1; f2∥Γ1;Γ2

c;wb

by
L f1 − f2 Mc;wb

··= max
(α,p)<c

∥∥∥f1(x)− f2(x)∥(α,p)
∥∥
Lr:p

x (wb)
,

∥f1; f2∥Γ1;Γ2
c;wb

··= max
(α,p)<c

sup
h∈Rd\{0}

wb(y)

∥∥∥∆Γ1

x;hf1 −∆Γ2

x;hf2∥(α,p)
∥∥
Lr:p

x (wb)

∥h∥γ−α
s

.

For any subspace V of T which is stable under G, we denote by Dc(V ; Γ)wb
the space of all modelled

distributions f ∈ Dc(Γ)wb
which takes values in V

Recall from (1.4) the definition of the weighted Besov spaces Bα,Q
pq (w) associated to Q.

21 – Definition. Let M = (Π,Γ) ∈ M(T )wc
and c = (γ, r) ∈ R × [1,∞]. Then for any f ∈ Dc(Γ)wb

, any
distribution Λ ∈ Bα0,Q

r,∞ (wb+c) satisfying

JΛKΠ,f
c;wb+c

··= sup
0<t≤1

t−γ/ℓ
∥∥Qt(x,Λ

Π,f
x )

∥∥
Lr

x(wb+c)
< ∞,

(
ΛΠ,f
x

··= Λ−Πxf(x)
)

is called a reconstruction of f for M. Furthermore, for any models Mi = (Πi,Γi) ∈ M(T )wc
and

functions fi ∈ Dc(Γi)wb
with i ∈ {1, 2}, if there is a reconstruction Λi for each i, we define

JΛ1; Λ2Kc;wb+c
··= sup

0<t≤1
t−γ/ℓ

∥∥Qt

(
x, (Λ1)

Π1,f1
x − (Λ2)

Π2,f2
x

)∥∥
Lr

x(wb+c)
.

The next statement is the regularity-integrability counterpart of the reconstruction theorem.

22 – Theorem. Pick M = (Π,Γ) ∈ M(T )wc
and c = (γ, r) ∈ R× [1,∞] with γ > 0. There exists a unique

reconstruction RMf of f ∈ Dc(Γ)wb
for M. Moreover, it holds that

∥RMf∥
B

α0,Q
r,∞ (wb+c)

≲ ∥Π∥c;wc |||f |||Γc;wb
,

JRMfKΠ,f
c;wb+c

≲ ∥Π∥c;wc
∥f∥Γc;wb

.

Moreover there is an affine function Cλ > 0 of λ > 0 such that∥∥RM1f1 −RM2f2
∥∥
B

α0,Q
r,∞ (wb+c)

≤ Cλ

(
∥Π1 −Π2∥c;wc + |||f1; f2|||Γ1,Γ2

c;wb

)
,

q
RM1f1;RM2f2

y
c;wb+c

≤ Cλ

(
∥Π1 −Π2∥c;wc

+ ∥f1; f2∥Γ1,Γ2
c;wb

)
,

for any models Mi = (Πi,Γi) ∈ M(T )wc and functions fi ∈ Dc(Γi)wb
with i ∈ {1, 2} such that |||Mi|||c;wc ≤

λ and |||fi|||c;wb
≤ λ.

We now lift the operator K into an operator that maps modelled distributions on modelled distributions.

23 – Definition. Let T = (A, T,G) be a regularity-integrability structure. In addition, let T = (A, T ,G)
be a regularity-integrability structure satisfying the following properties.

(1) N[s]× {∞} ⊂ A, where N[s] ··=
{
|k|s ; k ∈ Nd

}
.

(2) For each α ∈ N[s], the vector space T (α,∞) contains all Xk with |k|s = α.
(3) The linear space span{Xk}k∈Nd is closed under the action of the group G.

For M ∈ M(T )wc we define the linear map JM(x) : T → span{Xk} ⊂ T by setting

JM(x)τ ··=
∑

|k|s<α+β0

Xk

k!
∂kK(x,Πxτ)
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for any (α, p) ∈ A and τ ∈ T(α,p). A continuous linear map I : T → T is called an abstract integration
map of order β0 ∈ (0, ℓ− ℓ1) if

I : T(α,p) → T (α+β0,p)

for any (α, p) ∈ A. The models M = (Π,Γ) ∈ M(T )wc and M = (Π,Γ) ∈ M(T )wc are said to be
compatible for I if they satisfy the following properties.

(i) For any k ∈ Nd one has

(ΠxX
k)(·) = (· − x)k, ΓyxX

k =
∑
l≤k

Ç
k

l

å
(y − x)lXk−l.

(ii) For any x, y ∈ Rd one has
Γyx ◦

(
I + JM(x)

)
=
(
I + JM(y)

)
◦ Γyx.

For any model M = (Π,Γ) ∈ M(T )wc , f ∈ Dc(Γ)wb
with c = (γ, r) ∈ R× [1,∞], and its reconstruction

Λ, we set

NM(x; f,Λ) ··=
∑

|k|s<γ+β0

Xk

k!
∂kK

(
x,ΛΠ,f

x

)
.

Finally, we define
KMf(x) ··= I(f(x)) + JM(x)(f(x)) +NM(x; f,Λ). (A.1)

24 – Theorem. Let β0 ∈ (0, ℓ − ℓ1) and c = (γ, r) ∈ R × [1,∞]. Then for any M = (Π,Γ) ∈ M(T )wc ,
f ∈ Dc(Γ)wb

, and any reconstruction Λ of f for M, the function KMf belongs to D(γ+β0,r)(Γ)w2c+b
, and

LKMf M(γ+β0,r);w2c+b
≲ (1 + ∥Π∥c;wc

)(1 + ∥Γ∥c;wc
)L f Mc;wb

+ JΛKΠ,f
c;wc+b

,

∥KMf∥Γ(γ+β0,r);w2c+b
≲ (1 + ∥Π∥c;wc

)(1 + ∥Γ∥c;wc
)∥f∥Γc;wb

+ JΛKΠ,f
c;wc+b

.

Moreover there is a quadratic function Cλ > 0 of λ > 0 such that

|||KM1f1;KM2f2|||(γ+β0,r);w2c+b
≤ Cλ

(
|||M1;M2|||c;wc

+ |||f1; f2|||c;wb
+ ∥Λ1; Λ2∥c;wc+b

)
,

for any models Mi = (Πi,Γi) ∈ M(T )wc
and Mi = (Πi,Γi) ∈ M(T )wc

such that Mi and Mi are compatible,
and functions fi ∈ Da(Γi)wb

with i ∈ {1, 2} such that |||Mi|||c;wc ≤ λ and |||fi|||c;wb
≤ λ.
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