Rough differential equations

A. What this is all about

Make sense of the deterministic controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i},
$$

driven by a control h of low regularity, say α-Hölder with $0<\alpha<1$, and get a solution x that is a continuous function of the control h, unlike e.g. in Itô' stochastic integration theory where x is only a measurable function of the (semimartingale) control.

A. What this is all about

Make sense of the deterministic controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i},
$$

driven by a control h of low regularity, say α-Hölder with $0<\alpha<1$, and get a solution x that is a continuous function of the control h, unlike e.g. in Itô' stochastic integration theory where x is only a measurable function of the (semimartingale) control.

One expects the path x to be α-Hölder, and $V(x)$ as well.

A. What this is all about

Make sense of the deterministic controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i},
$$

driven by a control h of low regularity, say α-Hölder with $0<\alpha<1$, and get a solution x that is a continuous function of the control h, unlike e.g. in Itô' stochastic integration theory where x is only a measurable function of the (semimartingale) control.

One expects the path x to be α-Hölder, and $V(x)$ as well.
A problem of analysis about products - The product $V(x) d h \mid \alpha \cdot(\alpha-1)$, is well-defined as a continuous function of $V(x)$ and dh iff $\alpha+(\alpha-1)>0$, i.e. $\alpha>\frac{1}{2}$.

A. What this is all about

Make sense of the deterministic controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i},
$$

driven by a control h of low regularity, say α-Hölder with $0<\alpha<1$, and get a solution x that is a continuous function of the control h, unlike e.g. in Itô' stochastic integration theory where x is only a measurable function of the (semimartingale) control.

One expects the path x to be α-Hölder, and $V(x)$ as well.
A problem of analysis about products - The product $V(x) d h \mid \alpha \cdot(\alpha-1)$, is well-defined as a continuous function of $V(x)$ and dh iff $\alpha+(\alpha-1)>0$, i.e. $\alpha>\frac{1}{2}$.

What can be done for $\alpha \leq \frac{1}{2}$?

- Lyons' no go theorem - Given $\alpha<\frac{1}{2}$, there exists no continuous functional $I: C^{\alpha}([0,1], \mathbb{R}) \times C^{\alpha}([0,1], \mathbb{R}) \rightarrow \mathbb{R}$, such that if x, y are trigonometric polynomials, then $I(y, h)=\int_{0}^{1} y_{t} d h_{t}$.

A. What this is all about

Make sense of the deterministic controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i},
$$

driven by a control h of low regularity, say α-Hölder with $0<\alpha<1$, and get a solution x that is a continuous function of the control h, unlike e.g. in Itô' stochastic integration theory where x is only a measurable function of the (semimartingale) control.

One expects the path x to be α-Hölder, and $V(x)$ as well.
A problem of analysis about products - The product $V(x) d h \mid \alpha \cdot(\alpha-1)$, is well-defined as a continuous function of $V(x)$ and dh iff $\alpha+(\alpha-1)>0$, i.e. $\alpha>\frac{1}{2}$.

What can be done for $\alpha \leq \frac{1}{2}$?

- Lyons' no go theorem - Given $\alpha<\frac{1}{2}$, there exists no continuous functional $I: C^{\alpha}([0,1], \mathbb{R}) \times C^{\alpha}([0,1], \mathbb{R}) \rightarrow \mathbb{R}$, such that if x, y are trigonometric polynomials, then $I(y, h)=\int_{0}^{1} y_{t} d h_{t}$.

Different approaches - Lyons (98'), Davie (03'), Gubinelli (04'), Friz-Victoir (08'), Bailleul (12'), Lyons \& Yang (15').

B. Constructing flows

A 'numerical' scheme for a time evolution

$$
\mu_{t s}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}, \quad(0 \leq s \leq t \leq T<\infty)
$$

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

B. Constructing flows

A 'numerical' scheme for a time evolution

$$
\mu_{t s}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}, \quad(0 \leq s \leq t \leq T<\infty)
$$

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

Self-improving: There is an exponent $a>1$ such that

$$
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{C^{1}} \leq|t-s|^{a}, \quad(0 \leq s \leq u \leq t \leq T)
$$

B. Constructing flows

A 'numerical' scheme for a time evolution

$$
\mu_{t s}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}, \quad(0 \leq s \leq t \leq T<\infty)
$$

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

Self-improving: There is an exponent $a>1$ such that

$$
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{C^{1}} \leq|t-s|^{a}, \quad(0 \leq s \leq u \leq t \leq T)
$$

A flow $\varphi=\left(\varphi_{b a}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}\right)_{0 \leq a \leq b \leq T}$

$$
\varphi_{t u} \circ \varphi_{u s}=\varphi_{t s}, \quad(0 \leq s \leq u \leq t \leq T)
$$

B. Constructing flows

A 'numerical' scheme for a time evolution

$$
\mu_{t s}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}, \quad(0 \leq s \leq t \leq T<\infty)
$$

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

Self-improving: There is an exponent $a>1$ such that

$$
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{C^{1}} \leq|t-s|^{a}, \quad(0 \leq s \leq u \leq t \leq T)
$$

A flow $\varphi=\left(\varphi_{b a}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}\right)_{0 \leq a \leq b \leq T}$

$$
\varphi_{t u} \circ \varphi_{u s}=\varphi_{t s}, \quad(0 \leq s \leq u \leq t \leq T)
$$

- Theorem - One can associate to any self-improving numerical scheme a unique flow φ such that

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{C^{0}} \lesssim|t-s|^{a}
$$

Moreover

$$
\left\|\varphi_{t s}-\mu_{\pi_{t s}}\right\|_{C^{0}} \lesssim\left|\pi_{t s}\right|^{a-1}
$$

for any partition $\pi_{t s}=\left\{s<s_{1}<\cdots<s_{n}<t\right\}$ of any interval [s, t], with

$$
\mu_{\pi_{t s}}:=\bigcirc_{i=0}^{n} \mu_{s_{i+1} s_{i}}
$$

C．Rough paths

A generalised notion of control $h:[0, T] \rightarrow \mathbb{R}^{\ell}$ ，in a controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i}=: V_{i}\left(x_{t}\right) d h_{t}^{i}
$$

C. Rough paths

A generalised notion of control $h:[0, T] \rightarrow \mathbb{R}^{\ell}$, in a controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i}=: V_{i}\left(x_{t}\right) d h_{t}^{i}
$$

- Key elementary remark - For all $f \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), 0 \leq s \leq t \leq T$,

$$
f\left(x_{t}\right)=f\left(x_{s}\right)+h_{t s}^{i}\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+O\left(|t-s|^{3}\right)
$$

with vector fields V_{i} seen as first order differential operators.

C. Rough paths

A generalised notion of control $h:[0, T] \rightarrow \mathbb{R}^{\ell}$, in a controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i}=: V_{i}\left(x_{t}\right) d h_{t}^{i}
$$

- Key elementary remark - For all $f \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), 0 \leq s \leq t \leq T$,

$$
f\left(x_{t}\right)=f\left(x_{s}\right)+h_{t s}^{i}\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+O\left(|t-s|^{3}\right),
$$

with vector fields V_{i} seen as first order differential operators.
Pick $2 \leq p<3$. A Hölder p-rough path is a function

$$
\left(\mathbf{X}_{t s}=\left(X_{t s}, \mathbb{X}_{t s}\right)\right)_{0 \leq s \leq t \leq T}, \quad X_{t s}=\left(X_{t s}^{i}\right)_{1 \leq i \leq \ell} \in \mathbb{R}^{\ell}, \mathbb{X}_{t s}=\left(\mathbb{X}_{t s}^{j k}\right)_{1 \leq j, k \leq \ell} \in \mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}
$$

that plays the role of the collection of expansion coefficients

$$
\left(h_{t s}^{i}\right)_{1 \leq i \leq \ell}, \quad\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}
$$

C. Rough paths

A generalised notion of control $h:[0, T] \rightarrow \mathbb{R}^{\ell}$, in a controlled ordinary differential equation

$$
d x_{t}=\sum_{i=1}^{\ell} V_{i}\left(x_{t}\right) d h_{t}^{i}=: V_{i}\left(x_{t}\right) d h_{t}^{i}
$$

- Key elementary remark - For all $f \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right), 0 \leq s \leq t \leq T$,

$$
f\left(x_{t}\right)=f\left(x_{s}\right)+h_{t s}^{i}\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+O\left(|t-s|^{3}\right)
$$

with vector fields V_{i} seen as first order differential operators.
Pick $2 \leq p<3$. A Hölder p-rough path is a function

$$
\left(\mathbf{X}_{t s}=\left(X_{t s}, \mathbb{X}_{t s}\right)\right)_{0 \leq s \leq t \leq T}, \quad X_{t s}=\left(X_{t s}^{i}\right)_{1 \leq i \leq \ell} \in \mathbb{R}^{\ell}, \mathbb{X}_{t s}=\left(\mathbb{X}_{t s}^{j k}\right)_{1 \leq j, k \leq \ell} \in \mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}
$$

that plays the role of the collection of expansion coefficients

$$
\left(h_{t s}^{i}\right)_{1 \leq i \leq \ell}, \quad\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}
$$

subject to

- size constraints

$$
\left|X_{t s}\right| \leqslant|t-s|^{1 / p}, \quad\left|\mathbb{X}_{t s}\right| \lesssim|t-s|^{2 / p}
$$

- algebraic constraints (relations amongst the coefficients), for all $s \leq u \leq t$,

$$
\mathbf{X}_{u s} \mathbf{X}_{t u}=\mathbf{X}_{t s} .
$$

D．Numerical schemes associated to rough differential equations

Given vector fields V_{1}, \ldots, V_{ℓ} on \mathbb{R}^{d} and a rough path $\mathbf{X}=(X, \mathbb{X})$ ，one can construct explicitly a self improving numerical scheme $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ such that for all $x \in \mathbb{R}^{d}$ ，for all $f \in C_{b}^{3}\left(\mathbb{R}^{d}, \mathbb{R}\right)$,

$$
f\left(\mu_{t s}(x)\right)=f(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O_{f}\left(|t-s|^{3 / p}\right)
$$

D．Numerical schemes associated to rough differential equations

Given vector fields V_{1}, \ldots, V_{ℓ} on \mathbb{R}^{d} and a rough path $\mathbf{X}=(X, \mathbb{X})$ ，one can construct explicitly a self improving numerical scheme $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ such that for all $x \in \mathbb{R}^{d}$ ，for all $f \in C_{b}^{3}\left(\mathbb{R}^{d}, \mathbb{R}\right)$,

$$
f\left(\mu_{t s}(x)\right)=f(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O_{f}\left(|t-s|^{3 / p}\right)
$$

Compare with the local expansion property of solutions of controlled ordinary differential equations

$$
f\left(x_{t}\right)=f\left(x_{s}\right)+h_{t s}^{i}\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+O\left(|t-s|^{3}\right)
$$

D. Numerical schemes associated to rough differential equations

Given vector fields V_{1}, \ldots, V_{ℓ} on \mathbb{R}^{d} and a rough path $\mathbf{X}=(X, \mathbb{X})$, one can construct explicitly a self improving numerical scheme $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ such that for all $x \in \mathbb{R}^{d}$, for all $f \in C_{b}^{3}\left(\mathbb{R}^{d}, \mathbb{R}\right)$,

$$
f\left(\mu_{t s}(x)\right)=f(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O_{f}\left(|t-s|^{3 / p}\right)
$$

Compare with the local expansion property of solutions of controlled ordinary differential equations

$$
f\left(x_{t}\right)=f\left(x_{s}\right)+h_{t s}^{i}\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+O\left(|t-s|^{3}\right)
$$

The unique flow associated with the numerical scheme μ by the above Theorem is the solution flow to the rough differential equation

$$
d x_{t}=V\left(x_{t}\right) d \mathbf{X}_{t}
$$

D. Numerical schemes associated to rough differential equations - The core of the matter
 - Rewrite the expansion property

$$
f\left(\mu_{t s}(x)\right)=f(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O_{f}\left(|t-s|^{3 / p}\right) .
$$

under the form

$$
\begin{equation*}
f \circ \mu_{t s}=: V\left(\mathbf{X}_{t s}\right) f+O_{f}\left(|t-s|^{>1}\right) . \tag{1}
\end{equation*}
$$

D．Numerical schemes associated to rough differential equations－The core of the matter

－Rewrite the expansion property

$$
f\left(\mu_{t s}(x)\right)=f(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O_{f}\left(|t-s|^{3 / p}\right) .
$$

under the form

$$
\begin{equation*}
f \circ \mu_{t s}=: V\left(\mathbf{X}_{t s}\right) f+O_{f}\left(|t-s|^{>1}\right) . \tag{1}
\end{equation*}
$$

In particular

$$
\mu_{t s}=V\left(\mathbf{X}_{t s}\right) \mathrm{Id}+O\left(|t-s|^{>1}\right) .
$$

D. Numerical schemes associated to rough differential equations - The core of the matter

- Rewrite the expansion property

$$
f\left(\mu_{t s}(x)\right)=f(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O_{f}\left(|t-s|^{3 / p}\right)
$$

under the form

$$
\begin{equation*}
f \circ \mu_{t s}=: V\left(\mathbf{X}_{t s}\right) f+O_{f}\left(|t-s|^{>1}\right) . \tag{1}
\end{equation*}
$$

In particular

$$
\mu_{t s}=V\left(\mathbf{X}_{t s}\right) \mathrm{Id}+O\left(|t-s|^{>1}\right) .
$$

- One can write

$$
\mathbf{X}_{t s}=\exp \left(\Lambda_{t s}\right),
$$

and $V\left(\Lambda_{t s}\right)$ is a vector field.

D. Numerical schemes associated to rough differential equations - The core of the matter

- Rewrite the expansion property

$$
f\left(\mu_{t s}(x)\right)=f(x)+X_{t s}^{i}\left(V_{i} f\right)(x)+\mathbb{X}_{t s}^{j k}\left(V_{j} V_{k} f\right)(x)+O_{f}\left(|t-s|^{3 / p}\right) .
$$

under the form

$$
\begin{equation*}
f \circ \mu_{t s}=: V\left(\mathbf{X}_{t s}\right) f+O_{f}\left(|t-s|^{>1}\right) . \tag{1}
\end{equation*}
$$

In particular

$$
\mu_{t s}=V\left(\mathbf{X}_{t s}\right) \mathrm{Id}+O\left(|t-s|^{>1}\right) .
$$

- One can write

$$
\mathbf{X}_{t s}=\exp \left(\Lambda_{t s}\right),
$$

and $V\left(\Lambda_{t s}\right)$ is a vector field. Define

$$
\mu_{t s}:=e^{V\left(\Lambda_{t s}\right)}
$$

as the time 1 map of the ordinary differential equation

$$
\dot{y}_{u}=V\left(\Lambda_{t s}\right)\left(y_{u}\right) .
$$

D．Numerical schemes associated to rough differential equations－The core of the matter

Then

$$
f \circ \mu_{t s}=e^{V\left(\Lambda_{t s}\right)} f
$$

D．Numerical schemes associated to rough differential equations－The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\Lambda_{t s}}\right) f+O\left(|t-s|^{>1}\right)
\end{aligned}
$$

D．Numerical schemes associated to rough differential equations－The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\Lambda_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime}
\end{aligned}
$$

D．Numerical schemes associated to rough differential equations－The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\wedge_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property（1）

D．Numerical schemes associated to rough differential equations－The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\wedge_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property（1），and

$$
\mu_{t u} \circ \mu_{u s}=V\left(\mathbf{X}_{u s}\right) \mu_{t u}+O\left(|u-s|^{>1}\right)
$$

D. Numerical schemes associated to rough differential equations - The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\wedge_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property (1), and

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =V\left(\mathbf{X}_{u s}\right) \mu_{t u}+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right)\left(V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-u|^{>1}\right)\right)+O\left(|u-s|^{>1}\right)
\end{aligned}
$$

D. Numerical schemes associated to rough differential equations - The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\Lambda_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property (1), and

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =V\left(\mathbf{X}_{u s}\right) \mu_{t u}+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right)\left(V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-u|^{>1}\right)\right)+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right)
\end{aligned}
$$

D. Numerical schemes associated to rough differential equations - The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\wedge_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property (1), and

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =V\left(\mathbf{X}_{u s}\right) \mu_{t u}+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right)\left(V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-u|^{>1}\right)\right)+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s} \mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right)^{\prime}
\end{aligned}
$$

D. Numerical schemes associated to rough differential equations - The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\wedge_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property (1), and

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =V\left(\mathbf{X}_{u s}\right) \mu_{t u}+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right)\left(V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-u|^{>1}\right)\right)+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \mathrm{Id}+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s} \mathbf{X}_{t u}\right) \mathrm{Id}+O\left(|t-s|^{>1}\right)^{\prime} \\
& =V\left(\mathbf{X}_{t s}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right)^{\prime}
\end{aligned}
$$

D. Numerical schemes associated to rough differential equations - The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\wedge_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property (1), and

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =V\left(\mathbf{X}_{u s}\right) \mu_{t u}+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right)\left(V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-u|^{>1}\right)\right)+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s} \mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right)^{\prime} \\
& =V\left(\mathbf{X}_{t s}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right)^{\prime} \\
& =\mu_{t s}+O\left(|t-s|^{>1}\right)^{\prime}
\end{aligned}
$$

D．Numerical schemes associated to rough differential equations－The core of the matter

Then

$$
\begin{aligned}
f \circ \mu_{t s} & =e^{V\left(\Lambda_{t s}\right)} f \\
& =V\left(e^{\Lambda_{t s}}\right) f+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{t s}\right) f+O\left(|t-s|^{>1}\right)^{\prime}
\end{aligned}
$$

so $\mu_{t s}$ has the expected expansion property（1），and

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =V\left(\mathbf{X}_{u s}\right) \mu_{t u}+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right)\left(V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-u|^{>1}\right)\right)+O\left(|u-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right) \\
& =V\left(\mathbf{X}_{u s} \mathbf{X}_{t u}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right)^{\prime} \\
& =V\left(\mathbf{X}_{t s}\right) \operatorname{Id}+O\left(|t-s|^{>1}\right)^{\prime} \\
& =\mu_{t s}+O\left(|t-s|^{>1}\right)^{\prime},
\end{aligned}
$$

so μ defines indeed an self－improving numerical scheme．

Bibliography

Lyons＇approach

－Differential equations driven by rough signals．T．J．Lyons，Rev．Mat． Iberoamericana，14（2）：215－310，（1998）．
－Differential equations driven by rough paths．Lecture notes in Mathematics 1908， Saint Flour XXXIV－ 2004.
－An introduction to rough paths．A．Lejay，Séminaire de Probabilités XXXVII：1－59， 2003.

Bibliography

Lyons' approach

- Differential equations driven by rough signals. T.J. Lyons, Rev. Mat. Iberoamericana, 14(2):215-310, (1998).
- Differential equations driven by rough paths. Lecture notes in Mathematics 1908, Saint Flour XXXIV - 2004.
- An introduction to rough paths. A. Lejay, Séminaire de Probabilités XXXVII:1-59, 2003.

Davie

- Differential equations driven by rough signals: an approach via discrete approximation. Appl. Math. Research Express:1-40, (2008).

Bibliography

Lyons' approach

- Differential equations driven by rough signals. T.J. Lyons, Rev. Mat. Iberoamericana, 14(2):215-310, (1998).
- Differential equations driven by rough paths. Lecture notes in Mathematics 1908, Saint Flour XXXIV - 2004.
- An introduction to rough paths. A. Lejay, Séminaire de Probabilités XXXVII:1-59, 2003.

Davie

- Differential equations driven by rough signals: an approach via discrete approximation. Appl. Math. Research Express:1-40, (2008).

Gubinelli's approach

- Controlling rough paths. J. Funct. Anal., 216:86-140, (2004).
- Curvilinear Integrals Along Enriched Paths. D. Feyel and A. de la Pradelle, Elec. J. Probab.,(34):860-892, (2006).
- A course on rough paths, with an introduction ro regularity structures. P. Friz and M. Hairer, Springer (2014). (Second edition to appear.)

Bibliography

Friz and Victoir's approach

- Multidimensional stochastic processes as rough paths, theory and applications. P. Friz and N. Victoir. Cambridge studies in advanced mathematics, 120, (2010).
- Diffusion Processes and Stochastic Calculus. F. Baudoin. EMS Textbooks in Mathematics, (2014).

Bibliography

Friz and Victoir's approach

- Multidimensional stochastic processes as rough paths, theory and applications. P. Friz and N. Victoir. Cambridge studies in advanced mathematics, 120, (2010).
- Diffusion Processes and Stochastic Calculus. F. Baudoin. EMS Textbooks in Mathematics, (2014).

Bailleul's approach

- Flows driven by rough paths. Rev. Math. Iberoamericana, 31(3):901-934, (2015).
- Rough flows. I. Bailleul and S. Riedel. J. Math. Soc. Japan, 71(3):915-978, (2019).
- The non-linear sewing lemma: I weak formulation. A. Brault and A. Lejay, Elec. J. Probab.,24(59):1-24, (2019). (Preprints: The non-linear sewing lemma: II \& III.)

1. From approximate flows to flows

1. From approximate flows to flows

- Definition - $\boldsymbol{A} C^{1}$-approximate flow on \mathbb{R}^{d} is a family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ of C^{2} maps from \mathbb{R}^{d} into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$
\begin{equation*}
\left\|\mu_{t s}-\mathrm{Id}\right\|_{C^{2}}=o_{t-s}(1) \tag{2}
\end{equation*}
$$

and there exists positive constants c_{1} and $a>1$, such that the inequality

$$
\begin{equation*}
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{C^{1}} \leq c_{1}|t-s|^{a} \tag{3}
\end{equation*}
$$

holds for all $0 \leq s \leq u \leq t \leq T$.

1. From approximate flows to flows

- Definition - A C^{1}-approximate flow on \mathbb{R}^{d} is a family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ of C^{2} maps from \mathbb{R}^{d} into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$
\begin{equation*}
\left\|\mu_{t s}-\mathrm{Id}\right\|_{C^{2}}=o_{t-s}(1) \tag{2}
\end{equation*}
$$

and there exists positive constants c_{1} and $a>1$, such that the inequality

$$
\begin{equation*}
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{C^{1}} \leq c_{1}|t-s|^{a} \tag{3}
\end{equation*}
$$

holds for all $0 \leq s \leq u \leq t \leq T$.
An example - Euler' scheme

$$
\mu_{t s}(x)=x+V(x)(t-s)
$$

with $V \in C_{b}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.

1. From approximate flows to flows

- Definition - A C^{1}-approximate flow on \mathbb{R}^{d} is a family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ of C^{2} maps from \mathbb{R}^{d} into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$
\begin{equation*}
\left\|\mu_{t s}-\mathrm{Id}\right\|_{C^{2}}=o_{t-s}(1) \tag{2}
\end{equation*}
$$

and there exists positive constants c_{1} and $a>1$, such that the inequality

$$
\begin{equation*}
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{C^{1}} \leq c_{1}|t-s|^{a} \tag{3}
\end{equation*}
$$

holds for all $0 \leq s \leq u \leq t \leq T$.
An example - Euler' scheme

$$
\mu_{t s}(x)=x+V(x)(t-s)
$$

with $V \in C_{b}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.
Given a partition $\pi_{t s}=\left\{s=s_{0}<s_{1}<\cdots<s_{n-1}<s_{n}=t\right\}$ of an interval $[s, t] \subset[0, T]$, set

$$
\mu_{\pi_{t s}}:=\mu_{s_{n} s_{n-1}} \circ \cdots \circ \mu_{s_{1} s_{0}}=\bigcirc_{i=0}^{n-1} \mu_{s_{i+1}} s_{i}
$$

1. From approximate flows to flows

- Definition - A C^{1}-approximate flow on \mathbb{R}^{d} is a family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ of C^{2} maps from \mathbb{R}^{d} into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$
\begin{equation*}
\left\|\mu_{t s}-\mathrm{Id}\right\|_{C^{2}}=o_{t-s}(1) \tag{4}
\end{equation*}
$$

and there exists positive constants c_{1} and $a>1$, such that the inequality

$$
\begin{equation*}
\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{C^{1}} \leq c_{1}|t-s|^{a} \tag{5}
\end{equation*}
$$

holds for all $0 \leq s \leq u \leq t \leq T$.

- Theorem 1 (Constructing flows) - A C^{1}-approximate flow defines a unique flow $\varphi=\left(\varphi_{t s}\right)_{0 \leq s \leq t \leq T}$ on \mathbb{R}^{d} such that the inequality

$$
\begin{equation*}
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a} \tag{6}
\end{equation*}
$$

holds for a positive constant c, for all $0 \leq s \leq t \leq T$ sufficiently close, say $t-s \leq \delta$. This flow satisfies the inequality

$$
\begin{equation*}
\left\|\varphi_{t s}-\mu_{\pi_{t s}}\right\|_{\infty} \lesssim c_{1}^{2} T\left|\pi_{t s}\right|^{a-1}, \tag{7}
\end{equation*}
$$

for any partition $\pi_{t s}$ of any interval $[s, t]$ of mesh $\left|\pi_{t s}\right| \leq \delta$.

1. From approximate flows to flows - Step 1 of the proof

- Definition - Let $\epsilon \in(0,1)$ be given. A partition

$$
\pi=\left\{s=s_{0}<s_{1}<\cdots<s_{n-1}<s_{n}=t\right\}
$$

of an interval $[s, t]$ is said to be ϵ-special if it is either trivial or

- one can find an $s_{i} \in \pi$ such that $\epsilon \leq \frac{s_{i}-s}{t-s} \leq 1-\epsilon$,
- and for any choice u of such an s_{i}, the partitions of $[s, u]$ and $[u, t]$ induced by π are both ϵ-special.

1．From approximate flows to flows－Step 1 of the proof

－Definition－Let $\epsilon \in(0,1)$ be given．A partition

$$
\pi=\left\{s=s_{0}<s_{1}<\cdots<s_{n-1}<s_{n}=t\right\}
$$

of an interval $[s, t]$ is said to be ϵ－special if it is either trivial or
－one can find an $s_{i} \in \pi$ such that $\epsilon \leq \frac{s_{i}-s}{t-s} \leq 1-\epsilon$ ，
－and for any choice u of such an s_{i} ，the partitions of $[s, u]$ and $[u, t]$ induced by π are both ϵ－special．

A partition of any interval into sub－intervals of equal length is $\frac{1}{3}$－special．

1. From approximate flows to flows - Step 1 of the proof

- Definition - Let $\epsilon \in(0,1)$ be given. A partition

$$
\pi=\left\{s=s_{0}<s_{1}<\cdots<s_{n-1}<s_{n}=t\right\}
$$

of an interval $[s, t]$ is said to be ϵ-special if it is either trivial or

- one can find an $s_{i} \in \pi$ such that $\epsilon \leq \frac{s_{i}-s}{t-s} \leq 1-\epsilon$,
- and for any choice u of such an s_{i}, the partitions of $[s, u]$ and $[u, t]$ induced by π are both ϵ-special.

A partition of any interval into sub-intervals of equal length is $\frac{1}{3}$-special.Set

$$
m_{\epsilon}:=\sup _{\epsilon \leq \beta \leq 1-\epsilon}\left(\beta^{a}+(1-\beta)^{a}\right)<1,
$$

and pick a constant

$$
L>\frac{2 c_{1}}{1-m_{\epsilon}}
$$

where c_{1} is the constant that appears in the definition of a C^{1}-approximate flow, in equation (5).

1. From approximate flows to flows - Step 1 of the proof

- Proposition $2-\operatorname{Let}\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}-approximate flow on \mathbb{R}^{d}. Given $\epsilon>0$, there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and any ϵ-special partition $\pi_{t s}$ of the interval $[s, t]$, we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

1. From approximate flows to flows - Step 1 of the proof

- Proposition $2-\operatorname{Let}\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}-approximate flow on \mathbb{R}^{d}. Given $\epsilon>0$, there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and any ϵ-special partition $\pi_{t s}$ of the interval $[s, t]$, we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t S}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

Proof - We first prove

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{0}} \leq L|t-s|^{a} . \tag{9}
\end{equation*}
$$

1．From approximate flows to flows－Step 1 of the proof

- Proposition $2-\operatorname{Let}\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}－approximate flow on \mathbb{R}^{d} ．Given $\epsilon>0$ ，there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$ ，and any ϵ－special partition $\pi_{t s}$ of the interval $[s, t]$ ，we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

Proof－We first prove

$$
\begin{equation*}
\left\|\mu_{\pi_{t S}}-\mu_{t s}\right\|_{C^{0}} \leq L|t-s|^{a} . \tag{9}
\end{equation*}
$$

The proof of estimate（8）is similar and given later．We proceed by induction on the number n of sub－intervals of the partition．

1. From approximate flows to flows - Step 1 of the proof

- Proposition 2 - Let $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}-approximate flow on \mathbb{R}^{d}. Given $\epsilon>0$, there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and any ϵ-special partition $\pi_{t s}$ of the interval $[s, t]$, we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

Proof - We first prove

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{0}} \leq L|t-s|^{a} . \tag{9}
\end{equation*}
$$

$(n=2)$: This is the C^{0} version of identity (5) defining C^{1}-approximate flows.

1. From approximate flows to flows - Step 1 of the proof

- Proposition $2-$ Let $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}-approximate flow on \mathbb{R}^{d}. Given $\epsilon>0$, there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and any ϵ-special partition $\pi_{t s}$ of the interval $[s, t]$, we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

Proof - We first prove

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{0}} \leq L|t-s|^{a} . \tag{9}
\end{equation*}
$$

$(n \rightarrow n+1)$: Fix $0 \leq s<t \leq T$ with $t-s \leq \delta$, and let $\pi_{t s}$ be an ϵ-special partition of [$s, t]$, splitting the interval $[s, t]$ into $(n+1)$ sub-intervals. Let u be one of the points of the partition such that $\epsilon \leq \frac{t-u}{t-s} \leq 1-\epsilon$, so the two partitions $\pi_{t u}$ and $\pi_{u s}$ are both ϵ-special, with respective cardinals no greater than n.

1. From approximate flows to flows - Step 1 of the proof

- Proposition $2-\operatorname{Let}\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}-approximate flow on \mathbb{R}^{d}. Given $\epsilon>0$, there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and any ϵ-special partition $\pi_{t s}$ of the interval $[s, t]$, we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

Proof - We first prove

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{0}} \leq L|t-s|^{a} . \tag{9}
\end{equation*}
$$

Then

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq\left\|\mu_{\pi_{t u}} \circ \mu_{\pi_{u s}}-\mu_{t u} \circ \mu_{\pi_{u s}}\right\|_{\infty}+\left\|\mu_{t u} \circ \mu_{\pi_{u s}}-\mu_{t s}\right\|_{\infty}
$$

1. From approximate flows to flows - Step 1 of the proof

- Proposition 2 - Let $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}-approximate flow on \mathbb{R}^{d}. Given $\epsilon>0$, there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and any ϵ-special partition $\pi_{t s}$ of the interval $[s, t]$, we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

Proof - We first prove

$$
\begin{equation*}
\left\|\mu_{\pi_{t S}}-\mu_{t s}\right\|_{C^{0}} \leq L|t-s|^{a} . \tag{9}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} & \leq\left\|\mu_{\pi_{t u}} \circ \mu_{\pi_{u s}}-\mu_{t u} \circ \mu_{\pi_{u s}}\right\|_{\infty}+\left\|\mu_{t u} \circ \mu_{\pi_{u s}}-\mu_{t s}\right\|_{\infty} \\
& \leq\left\|\mu_{\pi_{t u}}-\mu_{t u}\right\|_{\infty}+\left\|\mu_{t u} \circ \mu_{\pi_{u s}}-\mu_{t u} \circ \mu_{u s}\right\|_{\infty}+\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{\infty}
\end{aligned}
$$

1. From approximate flows to flows - Step 1 of the proof

- Proposition 2 - Let $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ be a C^{1}-approximate flow on \mathbb{R}^{d}. Given $\epsilon>0$, there exists a positive constant δ such that for any $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and any ϵ-special partition $\pi_{t s}$ of the interval $[s, t]$, we have

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{1}} \leq L|t-s|^{a} . \tag{8}
\end{equation*}
$$

Proof - We first prove

$$
\begin{equation*}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{C^{0}} \leq L|t-s|^{a} . \tag{9}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} & \leq\left\|\mu_{\pi_{t u}} \circ \mu_{\pi_{u s}}-\mu_{t u} \circ \mu_{\pi_{u s}}\right\|_{\infty}+\left\|\mu_{t u} \circ \mu_{\pi_{u s}}-\mu_{t s}\right\|_{\infty} \\
& \leq\left\|\mu_{\pi_{t u}}-\mu_{t u}\right\|_{\infty}+\left\|\mu_{t u} \circ \mu_{\pi_{u s}}-\mu_{t u} \circ \mu_{u s}\right\|_{\infty}+\left\|\mu_{t u} \circ \mu_{u s}-\mu_{t s}\right\|_{\infty} \\
& \leq L|t-u|^{a}+\left(1+o_{\delta}(1)\right) L|u-s|^{a}+c_{1}|t-s|^{a}
\end{aligned}
$$

by the induction hypothesis and (4) - here the fact that the $\mu_{b a}$ are C^{1}-close to the identity, and (5) - the C^{0} version of the C^{1}-approximate flow property.

1．From approximate flows to flows－Step 1 of the proof

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq L|t-u|^{a}+\left(1+o_{\delta}(1)\right) L|u-s|^{a}+c_{1}|t-s|^{a}
$$

1. From approximate flows to flows - Step 1 of the proof

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq L|t-u|^{a}+\left(1+o_{\delta}(1)\right) L|u-s|^{a}+c_{1}|t-s|^{a}
$$

Set $u-s:=\beta(t-s)$, with $\epsilon \leq \beta \leq 1-\epsilon$. The above inequality rewrites

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq\left\{\left(1+o_{\delta}(1)\right)\left((1-\beta)^{a}+\beta^{a}\right) L+c_{1}\right\}|t-s|^{a} .
$$

1. From approximate flows to flows - Step 1 of the proof

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq L|t-u|^{a}+\left(1+o_{\delta}(1)\right) L|u-s|^{a}+c_{1}|t-s|^{a}
$$

Set $u-s:=\beta(t-s)$, with $\epsilon \leq \beta \leq 1-\epsilon$. The above inequality rewrites

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq\left\{\left(1+o_{\delta}(1)\right)\left((1-\beta)^{a}+\beta^{a}\right) L+c_{1}\right\}|t-s|^{a} .
$$

In order to close the induction, we need to choose δ small enough for the condition

$$
\begin{equation*}
c_{1}+\left(1+o_{\delta}(1)\right) m_{\epsilon} L \leq L \tag{10}
\end{equation*}
$$

to hold; this can be done since $m_{\epsilon}<1$.

1．From approximate flows to flows－Step 1 of the proof

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq L|t-u|^{a}+\left(1+o_{\delta}(1)\right) L|u-s|^{a}+c_{1}|t-s|^{a}
$$

Set $u-s:=\beta(t-s)$ ，with $\epsilon \leq \beta \leq 1-\epsilon$ ．The above inequality rewrites

$$
\left\|\mu_{\pi_{t s}}-\mu_{t s}\right\|_{\infty} \leq\left\{\left(1+o_{\delta}(1)\right)\left((1-\beta)^{a}+\beta^{a}\right) L+c_{1}\right\}|t-s|^{a} .
$$

In order to close the induction，we need to choose δ small enough for the condition

$$
\begin{equation*}
c_{1}+\left(1+o_{\delta}(1)\right) m_{\epsilon} L \leq L \tag{10}
\end{equation*}
$$

to hold；this can be done since $m_{\epsilon}<1$ ．
One needs to control the derivative of $\mu_{\pi_{t s}}-\mu_{t s}$ to prove（8）．One uses the full definition of a C^{1}－approximate flow for that purpose，and not only its C^{0} version；see later．

1. From approximate flows to flows - An elementary identity

Existence and uniqueness both rely on the elementary identity

$$
\begin{align*}
& f_{N} \circ \cdots \circ f_{1}-g_{N} \circ \cdots \circ g_{1} \\
& =\sum_{i=1}^{N}\left(g_{N} \circ \cdots \circ g_{N-i+1} \circ f_{N-i}-g_{N} \circ \cdots \circ g_{N-i+1} \circ g_{N-i}\right) \circ f_{N-i-1} \circ \cdots \circ f_{1}, \tag{11}
\end{align*}
$$

with g_{i} and f_{i} any maps from \mathbb{R}^{d} into itself.

1. From approximate flows to flows - An elementary identity

Existence and uniqueness both rely on the elementary identity

$$
\begin{align*}
& f_{N} \circ \cdots \circ f_{1}-g_{N} \circ \cdots \circ g_{1} \\
& =\sum_{i=1}^{N}\left(g_{N} \circ \cdots \circ g_{N-i+1} \circ f_{N-i}-g_{N} \circ \cdots \circ g_{N-i+1} \circ g_{N-i}\right) \circ f_{N-i-1} \circ \cdots \circ f_{1}, \tag{11}
\end{align*}
$$

with g_{i} and f_{i} any maps from \mathbb{R}^{d} into itself. E.g.

$$
\begin{align*}
& f \circ g \circ h-f^{\prime} \circ g^{\prime} \circ h^{\prime} \\
& =\left(f \circ g \circ h-f \circ g \circ h^{\prime}\right)+\left(f \circ g \circ h^{\prime}-f \circ g^{\prime} \circ h^{\prime}\right)+\left(f \circ g^{\prime} \circ h^{\prime}-f^{\prime} \circ g^{\prime} \circ h^{\prime}\right) . \tag{12}
\end{align*}
$$

1. From approximate flows to flows - An elementary identity

Existence and uniqueness both rely on the elementary identity

$$
\begin{align*}
& f_{N} \circ \cdots \circ f_{1}-g_{N} \circ \cdots \circ g_{1} \\
& =\sum_{i=1}^{N}\left(g_{N} \circ \cdots \circ g_{N-i+1} \circ f_{N-i}-g_{N} \circ \cdots \circ g_{N-i+1} \circ g_{N-i}\right) \circ f_{N-i-1} \circ \cdots \circ f_{1}, \tag{11}
\end{align*}
$$

with g_{i} and f_{i} any maps from \mathbb{R}^{d} into itself. In particular, if all the maps $g_{N} \circ \cdots \circ g_{k}$ are Lipschitz continuous, with a common upper bound L for their Lipschitz constants, then

$$
\begin{equation*}
\left\|f_{N} \circ \cdots \circ f_{1}-g_{N} \circ \cdots \circ g_{1}\right\|_{\infty} \leq L \sum_{i=1}^{N}\left\|f_{i}-g_{i}\right\|_{\infty} . \tag{12}
\end{equation*}
$$

1. From approximate flows to flows - Step 2 of the proof

Existence. Set $\mathrm{D}_{\delta}:=\{0 \leq s \leq t \leq T ; t-s \leq \delta\}$ and $\mathbb{D}_{\delta}=D_{\delta} \cap\{$ dyadic numbers $\}$.

1. From approximate flows to flows - Step 2 of the proof

Existence. Set $\mathrm{D}_{\delta}:=\{0 \leq s \leq t \leq T ; t-s \leq \delta\}$ and $\mathbb{D}_{\delta}=D_{\delta} \cap\{$ dyadic numbers $\}$. Given $s=a 2^{-k_{0}}$ and $t=b 2^{-k_{0}}$ in \mathbb{D}_{δ}, define for $n \geq k_{0}$

$$
\mu_{t s}^{(n)}:=\mu_{S_{N(n)} s_{N(n)-1}} \circ \cdots \circ \mu_{s_{1} s_{0}},
$$

where $s_{i}=s+i 2^{-n}$ and $s_{N(n)}=t$.

1．From approximate flows to flows－Step 2 of the proof

Existence．Set $\mathrm{D}_{\delta}:=\{0 \leq s \leq t \leq T ; t-s \leq \delta\}$ and $\mathbb{D}_{\delta}=D_{\delta} \cap\{$ dyadic numbers $\}$ ．Given $s=a 2^{-k_{0}}$ and $t=b 2^{-k_{0}}$ in \mathbb{D}_{δ} ，define for $n \geq k_{0}$

$$
\mu_{t s}^{(n)}:=\mu_{S_{N(n)} s_{N(n)-1}} \circ \cdots \circ \mu_{s_{1} s_{0}},
$$

where $s_{i}=s+i 2^{-n}$ and $s_{N(n)}=t$ ．Given $n \geq k_{0}$ ，write

$$
\mu_{t s}^{(n+1)}=\bigodot_{i=0}^{N(n)-1}\left(\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}\right)
$$

1. From approximate flows to flows - Step 2 of the proof

Existence. Set $\mathrm{D}_{\delta}:=\{0 \leq s \leq t \leq T ; t-s \leq \delta\}$ and $\mathbb{D}_{\delta}=D_{\delta} \cap\{$ dyadic numbers $\}$. Given $s=a 2^{-k_{0}}$ and $t=b 2^{-k_{0}}$ in \mathbb{D}_{δ}, define for $n \geq k_{0}$

$$
\mu_{t s}^{(n)}:=\mu_{S_{N(n)} s_{N(n)-1}} \circ \cdots \circ \mu_{s_{1} s_{0}},
$$

where $s_{i}=s+i 2^{-n}$ and $s_{N(n)}=t$. Given $n \geq k_{0}$, write

$$
\mu_{t s}^{(n+1)}=\bigodot_{i=0}^{N(n)-1}\left(\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}\right)
$$

and use the elementary identity (11) with

$$
f_{i}=\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}, \quad g_{i}=\mu_{s_{i+1} s_{i}}
$$

1. From approximate flows to flows - Step 2 of the proof

Existence. Set $\mathrm{D}_{\delta}:=\{0 \leq s \leq t \leq T ; t-s \leq \delta\}$ and $\mathbb{D}_{\delta}=D_{\delta} \cap\{$ dyadic numbers $\}$. Given $s=a 2^{-k_{0}}$ and $t=b 2^{-k_{0}}$ in \mathbb{D}_{δ}, define for $n \geq k_{0}$

$$
\mu_{t s}^{(n)}:=\mu_{S_{N(n)} s_{N(n)-1}} \circ \cdots \circ \mu_{s_{1} s_{0}},
$$

where $s_{i}=s+i 2^{-n}$ and $s_{N(n)}=t$. Given $n \geq k_{0}$, write

$$
\mu_{t s}^{(n+1)}={\left.\underset{i=0}{N(n)-1}\left(\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}\right)\right) .}
$$

and use the elementary identity (11) with

$$
f_{i}=\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}} \quad \quad g_{i}=\mu_{s_{i+1}} s_{i}
$$

and the fact that the compositions of the g-maps

$$
\mu_{s_{N(n)}} s_{N(n)-1} \circ \cdots \circ \mu_{s_{N(n)-i+1}} s_{N(n)-i}
$$

are Lipschitz continuous with a common Lipschitz constant L

1. From approximate flows to flows - Step 2 of the proof

Existence. Set $\mathrm{D}_{\delta}:=\{0 \leq s \leq t \leq T ; t-s \leq \delta\}$ and $\mathbb{D}_{\delta}=D_{\delta} \cap\{$ dyadic numbers $\}$. Given $s=a 2^{-k_{0}}$ and $t=b 2^{-k_{0}}$ in \mathbb{D}_{δ}, define for $n \geq k_{0}$

$$
\mu_{t s}^{(n)}:=\mu_{S_{N(n)} s_{N(n)-1}} \circ \cdots \circ \mu_{s_{1} s_{0}},
$$

where $s_{i}=s+i 2^{-n}$ and $s_{N(n)}=t$. Given $n \geq k_{0}$, write

$$
\mu_{t s}^{(n+1)}={\left.\underset{i=0}{N(n)-1}\left(\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}\right)\right) .}
$$

and use the elementary identity (11) with

$$
f_{i}=\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}} \quad \quad g_{i}=\mu_{s_{i+1}} s_{i}
$$

and the fact that the compositions of the g-maps

$$
\mu_{s_{N(n)}} s_{N(n)-1} \circ \cdots \circ \mu_{s_{N(n)-i+1}} s_{N(n)-i}
$$

are Lipschitz continuous with a common Lipschitz constant L, to get

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n}
$$

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n} .
$$

So

$$
\left(\mu^{(n)}-\mu\right) \in C\left(\mathbb{D}_{\delta}, C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)
$$

converges uniformly on \mathbb{D}_{δ} to some continuous function $\varphi-\mu$.

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n} .
$$

So

$$
\left(\mu^{(n)}-\mu\right) \in C\left(\mathbb{D}_{\delta}, C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)
$$

converges uniformly on \mathbb{D}_{δ} to some continuous function $\varphi-\mu$. One has

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

as a consequence of estimate (8) for $\mu_{\pi_{t s}}$ in Proposition 2.

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n} .
$$

So

$$
\left(\mu^{(n)}-\mu\right) \in C\left(\mathbb{D}_{\delta}, C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)
$$

converges uniformly on \mathbb{D}_{δ} to some continuous function $\varphi-\mu$. One has

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

as a consequence of estimate (8) for $\mu_{\pi_{t s}}$ in Proposition 2.
As φ is a uniformly continuous function of $(s, t) \in \mathbb{D}_{\delta}$, it has a unique continuous extension to D_{δ}, still denoted by φ.

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n}
$$

So

$$
\left(\mu^{(n)}-\mu\right) \in C\left(\mathbb{D}_{\delta}, C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)
$$

converges uniformly on \mathbb{D}_{δ} to some continuous function $\varphi-\mu$. One has

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

as a consequence of estimate (8) for $\mu_{\pi_{t s}}$ in Proposition 2.
As φ is a uniformly continuous function of $(s, t) \in \mathbb{D}_{\delta}$, it has a unique continuous extension to D_{δ}, still denoted by φ. To see that it defines a flow on D_{δ}, notice that for dyadic times $s \leq u \leq t$, we have

$$
\mu_{t s}^{(n)}=\mu_{t u}^{(n)} \circ \mu_{u s}^{(n)}
$$

for n big enough

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n}
$$

So

$$
\left(\mu^{(n)}-\mu\right) \in C\left(\mathbb{D}_{\delta}, C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)
$$

converges uniformly on \mathbb{D}_{δ} to some continuous function $\varphi-\mu$. One has

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

as a consequence of estimate (8) for $\mu_{\pi_{t s}}$ in Proposition 2.
As φ is a uniformly continuous function of $(s, t) \in \mathbb{D}_{\delta}$, it has a unique continuous extension to D_{δ}, still denoted by φ. To see that it defines a flow on D_{δ}, notice that for dyadic times $s \leq u \leq t$, we have

$$
\mu_{t s}^{(n)}=\mu_{t u}^{(n)} \circ \mu_{u s}^{(n)}
$$

for n big enough; so, since the maps $\varphi_{t u}^{(n)}$ are uniformly Lipschitz continuous, we have

$$
\varphi_{t s}=\varphi_{t u} \circ \varphi_{u s}
$$

for triples of times in \mathbb{D}_{δ}

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n}
$$

So

$$
\left(\mu^{(n)}-\mu\right) \in C\left(\mathbb{D}_{\delta}, C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)
$$

converges uniformly on \mathbb{D}_{δ} to some continuous function $\varphi-\mu$. One has

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

as a consequence of estimate (8) for $\mu_{\pi_{t s}}$ in Proposition 2.
As φ is a uniformly continuous function of $(s, t) \in \mathbb{D}_{\delta}$, it has a unique continuous extension to D_{δ}, still denoted by φ. To see that it defines a flow on D_{δ}, notice that for dyadic times $s \leq u \leq t$, we have

$$
\mu_{t s}^{(n)}=\mu_{t u}^{(n)} \circ \mu_{u s}^{(n)}
$$

for n big enough; so, since the maps $\varphi_{t u}^{(n)}$ are uniformly Lipschitz continuous, we have

$$
\varphi_{t s}=\varphi_{t u} \circ \varphi_{u s}
$$

for triples of times in \mathbb{D}_{δ}, hence for all times since φ is continuous.

1. From approximate flows to flows - Step 2 of the proof

$$
\left\|\mu_{t s}^{(n+1)}-\mu_{t s}^{(n)}\right\|_{\infty} \leq L \sum_{i=0}^{N(n)-1}\left\|\mu_{s_{i+1} s_{i}+2^{-n-1}} \circ \mu_{s_{i}+2^{-n-1} s_{i}}-\mu_{s_{i+1} s_{i}}\right\|_{\infty} \leq c_{1} L T 2^{-(a-1) n}
$$

So

$$
\left(\mu^{(n)}-\mu\right) \in C\left(\mathbb{D}_{\delta}, C_{b}^{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)
$$

converges uniformly on \mathbb{D}_{δ} to some continuous function $\varphi-\mu$. One has

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

as a consequence of estimate (8) for $\mu_{\pi_{t s}}$ in Proposition 2.
As φ is a uniformly continuous function of $(s, t) \in \mathbb{D}_{\delta}$, it has a unique continuous extension to D_{δ}, still denoted by φ. To see that it defines a flow on D_{δ}, notice that for dyadic times $s \leq u \leq t$, we have

$$
\mu_{t s}^{(n)}=\mu_{t u}^{(n)} \circ \mu_{u s}^{(n)},
$$

for n big enough; so, since the maps $\varphi_{t u}^{(n)}$ are uniformly Lipschitz continuous, we have

$$
\varphi_{t s}=\varphi_{t u} \circ \varphi_{u s}
$$

for triples of times in \mathbb{D}_{δ}, hence for all times since φ is continuous. The map φ is easily extended as a flow to the whole of $\{0 \leq s \leq t \leq T\}$.

1．From approximate flows to flows－Step 2 of the proof

Uniqueness．Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a} .
$$

1. From approximate flows to flows - Step 2 of the proof

Uniqueness. Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a} .
$$

Rewrite

$$
\psi_{t s}=\mu_{t s}+O_{c}\left(|t-s|^{a}\right)
$$

1. From approximate flows to flows - Step 2 of the proof

Uniqueness. Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

Rewrite

$$
\psi_{t s}=\mu_{t s}+O_{c}\left(|t-s|^{a}\right)
$$

Then

$$
\psi_{t s}=\psi_{s_{2 n} s_{2 n-1}} \circ \cdots \circ \psi_{s_{1} s_{0}}=\left(\mu_{s_{2} n s_{2^{n}-1}}+O_{c}\left(2^{-a n}\right)\right) \circ \cdots \circ\left(\mu_{s_{1} s_{0}}+O_{c}\left(2^{-a n}\right)\right)
$$

1. From approximate flows to flows - Step 2 of the proof

Uniqueness. Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

Rewrite

$$
\psi_{t s}=\mu_{t s}+O_{c}\left(|t-s|^{a}\right)
$$

Then

$$
\begin{aligned}
\psi_{t s} & =\psi_{s_{2 n} s_{2 n-1}} \circ \cdots \circ \psi_{s_{1} s_{0}}=\left(\mu_{s_{2^{n} s_{2^{n}-1}}}+O_{c}\left(2^{-a n}\right)\right) \circ \cdots \circ\left(\mu_{s_{1} s_{0}}+O_{c}\left(2^{-a n}\right)\right) \\
& =\mu_{s_{2^{n} s_{2} n_{-1}}} \circ \cdots \circ \mu_{s_{1} s_{0}}+\Delta_{n}=\mu_{t s}^{(n)}+\Delta_{n}
\end{aligned}
$$

1. From approximate flows to flows - Step 2 of the proof

Uniqueness. Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

Rewrite

$$
\psi_{t s}=\mu_{t s}+O_{c}\left(|t-s|^{a}\right)
$$

Then

$$
\begin{aligned}
\psi_{t s} & =\psi_{s_{2 n} s_{2 n-1}} \circ \cdots \circ \psi_{s_{1} s_{0}}=\left(\mu_{s_{2^{n} s_{2} n_{-1}}}+O_{c}\left(2^{-a n}\right)\right) \circ \cdots \circ\left(\mu_{s_{1} s_{0}}+O_{c}\left(2^{-a n}\right)\right) \\
& =\mu_{s_{2^{n} s_{2} n_{-1}}} \circ \cdots \circ \mu_{s_{1} s_{0}}+\Delta_{n}=\mu_{t s}^{(n)}+\Delta_{n}
\end{aligned}
$$

where Δ_{n} is of the form of the right hand side of the elementary identity (11)

1. From approximate flows to flows - Step 2 of the proof

Uniqueness. Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

Rewrite

$$
\psi_{t s}=\mu_{t s}+O_{c}\left(|t-s|^{a}\right)
$$

Then

$$
\begin{aligned}
\psi_{t s} & =\psi_{s_{2 n} s_{2 n-1}} \circ \cdots \circ \psi_{s_{1} s_{0}}=\left(\mu_{s_{2^{n} s_{2} n_{-1}}}+O_{c}\left(2^{-a n}\right)\right) \circ \cdots \circ\left(\mu_{s_{1} s_{0}}+O_{c}\left(2^{-a n}\right)\right) \\
& =\mu_{s_{2^{n} s_{2} n_{-1}}} \circ \cdots \circ \mu_{s_{1} s_{0}}+\Delta_{n}=\mu_{t s}^{(n)}+\Delta_{n}
\end{aligned}
$$

where Δ_{n} is of the form of the right hand side of the elementary identity (11), so

$$
\left\|\Delta_{n}\right\|_{\infty} \leq L 2^{n} 2^{-a n}=o_{n}(1)
$$

1. From approximate flows to flows - Step 2 of the proof

Uniqueness. Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a}
$$

Rewrite

$$
\psi_{t s}=\mu_{t s}+O_{C}\left(|t-s|^{a}\right)
$$

Then

$$
\begin{aligned}
\psi_{t s} & =\psi_{s_{2 n} s_{2 n-1}} \circ \cdots \circ \psi_{s_{1} s_{0}}=\left(\mu_{s_{2^{n} s_{2} n_{-1}}}+O_{c}\left(2^{-a n}\right)\right) \circ \cdots \circ\left(\mu_{s_{1} s_{0}}+O_{c}\left(2^{-a n}\right)\right) \\
& =\mu_{s_{2^{n} s_{2} n_{-1}}} \circ \cdots \circ \mu_{s_{1} s_{0}}+\Delta_{n}=\mu_{t s}^{(n)}+\Delta_{n}
\end{aligned}
$$

where Δ_{n} is of the form of the right hand side of the elementary identity (11), so

$$
\left\|\Delta_{n}\right\|_{\infty} \leq L 2^{n} 2^{-a n}=o_{n}(1)
$$

since all the maps

$$
\mu_{s_{2} n} s_{2 n-1} \circ \cdots \circ \mu_{s_{2} n_{-\ell+1}} s_{2 n_{-\ell}}
$$

are L-Lipschitz continuous.

1. From approximate flows to flows - Step 2 of the proof

Uniqueness. Let ψ be any flow such that

$$
\left\|\psi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a} .
$$

Rewrite

$$
\psi_{t s}=\mu_{t s}+O_{C}\left(|t-s|^{a}\right)
$$

Then

$$
\begin{aligned}
\psi_{t s} & =\psi_{s_{2^{n} s_{2 n}-1}} \circ \cdots \circ \psi_{s_{1} s_{0}}=\left(\mu_{s_{2} n s_{2^{n}-1}}+O_{c}\left(2^{-a n}\right)\right) \circ \cdots \circ\left(\mu_{s_{1} s_{0}}+O_{c}\left(2^{-a n}\right)\right) \\
& =\mu_{s_{2 n} s_{2^{n}-1}} \circ \cdots \circ \mu_{s_{1} s_{0}}+\Delta_{n}=\mu_{t s}^{(n)}+\Delta_{n}
\end{aligned}
$$

where Δ_{n} is of the form of the right hand side of the elementary identity (11), so

$$
\left\|\Delta_{n}\right\|_{\infty} \leq L 2^{n} 2^{-a n}=o_{n}(1)
$$

since all the maps

$$
\mu_{s_{2} n} s_{2 n-1} \circ \cdots \circ \mu_{s_{2} n_{-\ell+1}} s_{2 n_{-\ell}}
$$

are L-Lipschitz continuous. Sending n to infinity shows that $\psi_{t s}=\varphi_{t s}$.

2．Rough paths

2. Rough paths

Recall the local expansion property of solutions of controlled ordinary differential equations

$$
d x_{t}=V_{i}\left(x_{t}\right) d h_{t}^{i} .
$$

2．Rough paths

Recall the local expansion property of solutions of controlled ordinary differential equations

$$
d x_{t}=V_{i}\left(x_{t}\right) d h_{t}^{i}
$$

Recall we see vector fields as first order differential operators，so $V_{j} V_{k}$ is a second order differential operator e．g．，with

$$
V_{j} V_{k} f=\left(D^{2} f\right)\left(V_{j} V_{k}\right)+(D f)\left(D V_{k}\left(V_{j}\right)\right)
$$

2. Rough paths

Recall the local expansion property of solutions of controlled ordinary differential equations

$$
d x_{t}=V_{i}\left(x_{t}\right) d h_{t}^{i}
$$

Recall we see vector fields as first order differential operators, so $V_{j} V_{k}$ is a second order differential operator e.g., with

$$
V_{j} V_{k} f=\left(D^{2} f\right)\left(V_{j} V_{k}\right)+(D f)\left(D V_{k}\left(V_{j}\right)\right)
$$

One has

$$
\begin{aligned}
f\left(x_{t}\right)= & f\left(x_{s}\right)+\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+(\cdots) \\
& +\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)\left(V_{i_{n}} \ldots V_{i_{1}} f\right)\left(x_{s}\right)+O\left(|t-s|^{n+1}\right)
\end{aligned}
$$

2. Rough paths

Recall the local expansion property of solutions of controlled ordinary differential equations

$$
d x_{t}=V_{i}\left(x_{t}\right) d h_{t}^{i} .
$$

Recall we see vector fields as first order differential operators, so $V_{j} V_{k}$ is a second order differential operator e.g., with

$$
V_{j} V_{k} f=\left(D^{2} f\right)\left(V_{j} V_{k}\right)+(D f)\left(D V_{k}\left(V_{j}\right)\right)
$$

One has

$$
\begin{aligned}
f\left(x_{t}\right)= & f\left(x_{s}\right)+\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+(\cdots) \\
& +\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)\left(V_{i_{n}} \ldots V_{i_{1}} f\right)\left(x_{s}\right)+O\left(|t-s|^{n+1}\right)
\end{aligned}
$$

Rough paths are placeholders for the family of coefficients

$$
H_{t s}:=
$$

$$
\left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right) .
$$

that appear in the expansion, when h is not sufficiently regular for making sense of the iterated integrals, e.g. h is only α-Hölder with $\alpha \leq 1 / 2$.

2. Rough paths

Recall the local expansion property of solutions of controlled ordinary differential equations

$$
d x_{t}=V_{i}\left(x_{t}\right) d h_{t}^{i} .
$$

Recall we see vector fields as first order differential operators, so $V_{j} V_{k}$ is a second order differential operator e.g., with

$$
V_{j} V_{k} f=\left(D^{2} f\right)\left(V_{j} V_{k}\right)+(D f)\left(D V_{k}\left(V_{j}\right)\right)
$$

One has

$$
\begin{aligned}
f\left(x_{t}\right)= & f\left(x_{s}\right)+\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+(\cdots) \\
& +\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)\left(V_{i_{n}} \ldots V_{i_{1}} f\right)\left(x_{s}\right)+O\left(|t-s|^{n+1}\right)
\end{aligned}
$$

Rough paths are placeholders for the family of coefficients
$H_{t s}:=$

$$
\left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right) .
$$

that appear in the expansion, when h is not sufficiently regular for making sense of the iterated integrals, e.g. h is only α-Hölder with $\alpha \leq 1 / 2$. Like the function H, they take values in an algebraic structure that gives much insight on them.

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$.

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$. One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$.

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$. One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$. Given $u, v \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v)\left(v^{\prime}\right):=v^{\prime}(v) u
$$

for any $v^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. So $\left(\mathbb{R}^{\ell}\right)^{\otimes 2}=L\left(\left(\mathbb{R}^{\ell}\right)^{\prime}, \mathbb{R}^{\ell}\right)$.

2．1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$ ，are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$ ．One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$ ．Given $u, v \in \mathbb{R}^{\ell}$ ，one has

$$
(u \otimes v)\left(v^{\prime}\right):=v^{\prime}(v) u
$$

for any $v^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$ ．So $\left(\mathbb{R}^{\ell}\right)^{\otimes 2}=L\left(\left(\mathbb{R}^{\ell}\right)^{\prime}, \mathbb{R}^{\ell}\right)$ ．Given $u, v, w \in \mathbb{R}^{\ell}$ ，one has

$$
(u \otimes v \otimes w)\left(w^{\prime}\right):=w^{\prime}(w) u \otimes v,
$$

for any $w^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$ ．

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$. One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$. Given $u, v \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v)\left(v^{\prime}\right):=v^{\prime}(v) u
$$

for any $v^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. So $\left(\mathbb{R}^{\ell}\right)^{\otimes 2}=L\left(\left(\mathbb{R}^{\ell}\right)^{\prime}, \mathbb{R}^{\ell}\right)$. Given $u, v, w \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v \otimes w)\left(w^{\prime}\right):=w^{\prime}(w) u \otimes v,
$$

for any $w^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. Let $\left(\epsilon_{1}, \ldots, \epsilon_{\ell}\right)$ stand for the canonical basis of \mathbb{R}^{ℓ}. The family $\left(\epsilon_{i_{1}} \otimes \cdots \otimes \epsilon_{i_{k}}\right)_{1 \leq i_{1}, \ldots, i_{k} \leq \ell}$ defines the canonical basis of $\left(\mathbb{R}^{\ell}\right)^{\otimes k}$.

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$. One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$. Given $u, v \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v)\left(v^{\prime}\right):=v^{\prime}(v) u
$$

for any $v^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. So $\left(\mathbb{R}^{\ell}\right)^{\otimes 2}=L\left(\left(\mathbb{R}^{\ell}\right)^{\prime}, \mathbb{R}^{\ell}\right)$. Given $u, v, w \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v \otimes w)\left(w^{\prime}\right):=w^{\prime}(w) u \otimes v,
$$

for any $w^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. Let $\left(\epsilon_{1}, \ldots, \epsilon_{\ell}\right)$ stand for the canonical basis of \mathbb{R}^{ℓ}. The family $\left(\epsilon_{i_{1}} \otimes \cdots \otimes \epsilon_{i_{k}}\right)_{1 \leq i_{1}, \ldots, i_{k} \leq \ell}$ defines the canonical basis of $\left(\mathbb{R}^{\ell}\right)^{\otimes k}$. An element $\mathbf{a} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ is identified with the collection of its coordinates $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$ in the canonical basis.

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$. One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$. Given $u, v \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v)\left(v^{\prime}\right):=v^{\prime}(v) u
$$

for any $v^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. So $\left(\mathbb{R}^{\ell}\right)^{\otimes 2}=L\left(\left(\mathbb{R}^{\ell}\right)^{\prime}, \mathbb{R}^{\ell}\right)$. Given $u, v, w \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v \otimes w)\left(w^{\prime}\right):=w^{\prime}(w) u \otimes v,
$$

for any $w^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. Let $\left(\epsilon_{1}, \ldots, \epsilon_{\ell}\right)$ stand for the canonical basis of \mathbb{R}^{ℓ}. The family $\left(\epsilon_{i_{1}} \otimes \cdots \otimes \epsilon_{i_{k}}\right)_{1 \leq i_{1}, \ldots, i_{k} \leq \ell}$ defines the canonical basis of $\left(\mathbb{R}^{\ell}\right)^{\otimes k}$. An element $\mathbf{a} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ is identified with the collection of its coordinates $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$ in the canonical basis.
For $N \in \mathbb{N} \cup\{\infty\}$, set $T_{\ell}^{N}:=\bigoplus_{r=0}^{N}\left(\mathbb{R}^{\ell}\right)^{\otimes r}$, with $\left(\mathbb{R}^{\ell}\right)^{\otimes 0}:=\mathbb{R}$.

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$. One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$. Given $u, v \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v)\left(v^{\prime}\right):=v^{\prime}(v) u
$$

for any $v^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. So $\left(\mathbb{R}^{\ell}\right)^{\otimes 2}=L\left(\left(\mathbb{R}^{\ell}\right)^{\prime}, \mathbb{R}^{\ell}\right)$. Given $u, v, w \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v \otimes w)\left(w^{\prime}\right):=w^{\prime}(w) u \otimes v,
$$

for any $w^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. Let $\left(\epsilon_{1}, \ldots, \epsilon_{\ell}\right)$ stand for the canonical basis of \mathbb{R}^{ℓ}. The family $\left(\epsilon_{i_{1}} \otimes \cdots \otimes \epsilon_{i_{k}}\right)_{1 \leq i_{1}, \ldots, i_{k} \leq \ell}$ defines the canonical basis of $\left(\mathbb{R}^{\ell}\right)^{\otimes k}$. An element $\mathbf{a} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ is identified with the collection of its coordinates $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$ in the canonical basis.
For $N \in \mathbb{N} \cup\{\infty\}$, set $T_{\ell}^{N}:=\bigoplus_{r=0}^{N}\left(\mathbb{R}^{\ell}\right)^{\otimes r}$, with $\left(\mathbb{R}^{\ell}\right)^{\otimes 0}:=\mathbb{R}$. For $\mathbf{a}=\underset{r=0}{N} a^{r}$ and $\mathbf{b}=\underset{r=0}{\stackrel{N}{\oplus}} b^{r}$ in T_{ℓ}^{N}

$$
\begin{aligned}
& \mathbf{a}+\mathbf{b}:=\underset{r=0}{\underset{r}{\oplus}}\left(a^{r}+b^{r}\right), \\
& \mathbf{a b}:=\underset{r=0}{N} c^{r}, \quad \text { with } c^{r}=\sum_{k=0}^{r} a^{k} \otimes b^{r-k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes r}
\end{aligned}
$$

2.1 An algebraic prelude

Collections of real valued coefficients $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$, are better seen here as elements of the tensor space $\left(\mathbb{R}^{\ell}\right)^{\otimes n}$. One can see any element of \mathbb{R}^{ℓ} as a linear map on the dual space $\left(\mathbb{R}^{\ell}\right)^{\prime}$. Given $u, v \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v)\left(v^{\prime}\right):=v^{\prime}(v) u
$$

for any $v^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. So $\left(\mathbb{R}^{\ell}\right)^{\otimes 2}=L\left(\left(\mathbb{R}^{\ell}\right)^{\prime}, \mathbb{R}^{\ell}\right)$. Given $u, v, w \in \mathbb{R}^{\ell}$, one has

$$
(u \otimes v \otimes w)\left(w^{\prime}\right):=w^{\prime}(w) u \otimes v,
$$

for any $w^{\prime} \in\left(\mathbb{R}^{\ell}\right)^{\prime}$. Let $\left(\epsilon_{1}, \ldots, \epsilon_{\ell}\right)$ stand for the canonical basis of \mathbb{R}^{ℓ}. The family $\left(\epsilon_{i_{1}} \otimes \cdots \otimes \epsilon_{i_{k}}\right)_{1 \leq i_{1}, \ldots, i_{k} \leq \ell}$ defines the canonical basis of $\left(\mathbb{R}^{\ell}\right)^{\otimes k}$. An element $\mathbf{a} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ is identified with the collection of its coordinates $\left(a^{i_{n} \ldots i_{1}}\right)_{1 \leq i_{1}, \ldots, i_{n} \leq \ell}$ in the canonical basis.
For $N \in \mathbb{N} \cup\{\infty\}$, set $T_{\ell}^{N}:=\bigoplus_{r=0}^{N}\left(\mathbb{R}^{\ell}\right)^{\otimes r}$, with $\left(\mathbb{R}^{\ell}\right)^{\otimes 0}:=\mathbb{R}$. For $\mathbf{a}=\underset{r=0}{N} a^{r}$ and $\mathbf{b}=\underset{r=0}{\stackrel{N}{\oplus}} b^{r}$ in T_{ℓ}^{N}

$$
\begin{aligned}
& \mathbf{a}+\mathbf{b}:=\underset{r=0}{\underset{r}{\oplus}}\left(a^{r}+b^{r}\right), \\
& \mathbf{a b}:=\underset{r=0}{N} c^{r}, \quad \text { with } c^{r}=\sum_{k=0}^{r} a^{k} \otimes b^{r-k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes r}
\end{aligned}
$$

The space T_{ℓ}^{N} is called the (truncated) tensor algebra over \mathbb{R}^{ℓ} (if N is finite).

2.1 An algebraic prelude

Think of
$\left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)$
as a typical element of $T_{\ell}^{N, 1}:=\left\{\mathbf{a} \in T_{\ell}^{N}, a^{0}=1\right\}$.

2.1 An algebraic prelude

Think of
$\left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)$
as a typical element of $T_{\ell}^{N, 1}:=\left\{\mathbf{a} \in T_{\ell}^{N}, a^{0}=1\right\}$. Define the dilation

$$
\delta_{\lambda}(\mathbf{a})=\left(1, \lambda a^{1}, \ldots, \lambda^{N} a^{N}\right)
$$

for all $\lambda \in \mathbb{R}$ and $\mathbf{a} \in T_{\ell}^{N, 1}$.

2.1 An algebraic prelude

Think of
$\left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)$
as a typical element of $T_{\ell}^{N, 1}:=\left\{\mathbf{a} \in T_{\ell}^{N}, a^{0}=1\right\}$. Define the dilation

$$
\delta_{\lambda}(\mathbf{a})=\left(1, \lambda a^{1}, \ldots, \lambda^{N} a^{N}\right)
$$

for all $\lambda \in \mathbb{R}$ and $\mathbf{a} \in T_{\ell}^{N, 1}$. We define a norm

$$
\|\mathbf{a}\|:=\sum_{m=1}^{N}\left\|a^{m}\right\|_{\text {Eucl }}^{1 / m},
$$

2.1 An algebraic prelude

Think of

$$
\left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
$$

as a typical element of $T_{\ell}^{N, 1}:=\left\{\mathbf{a} \in T_{\ell}^{N}, a^{0}=1\right\}$. Define the dilation

$$
\delta_{\lambda}(\mathbf{a})=\left(1, \lambda a^{1}, \ldots, \lambda^{N} a^{N}\right)
$$

for all $\lambda \in \mathbb{R}$ and $\mathbf{a} \in T_{\ell}^{N, 1}$. We define a norm

$$
\|\mathbf{a}\|:=\sum_{m=1}^{N}\left\|a^{m}\right\|_{\text {Eucl }}^{1 / m}
$$

that is homogeneous with respect to the dilation

$$
\left\|\delta_{\lambda}(\mathbf{a})\right\|=|\lambda|\|\mathbf{a}\| .
$$

2.1 An algebraic prelude

Elements of $T_{\ell}^{N, 1}$ are invertible, with

$$
\mathbf{a}^{-1}=\sum_{n \geq 0}(\mathbf{1}-\mathbf{a})^{n},
$$

with $1:=(1,0,0, \ldots)$.

2.1 An algebraic prelude

Elements of $T_{\ell}^{N, 1}$ are invertible, with

$$
\mathbf{a}^{-1}=\sum_{n \geq 0}(\mathbf{1}-\mathbf{a})^{n},
$$

with $\mathbf{1}:=(1,0,0, \ldots)$. The exponential map $\exp : T_{\ell}^{N, 0} \rightarrow T_{\ell}^{N, 1}$, and the logarithm map $T_{\ell}^{N, 1} \rightarrow T_{\ell}^{N, 0}$, are defined by

$$
\exp (\mathbf{a})=\sum_{0 \leq n<N+1} \frac{\mathbf{a}^{n}}{n!}, \quad \log (\mathbf{b})=\sum_{1 \leq n<N+1} \frac{(-1)^{n}}{n}(1-\mathbf{b})^{n} ;
$$

they are inverse from one another.

2.1 An algebraic prelude

Elements of $T_{\ell}^{N, 1}$ are invertible, with

$$
\mathbf{a}^{-1}=\sum_{n \geq 0}(\mathbf{1}-\mathbf{a})^{n},
$$

with $\mathbf{1}:=(1,0,0, \ldots)$. The exponential map exp : $T_{\ell}^{N, 0} \rightarrow T_{\ell}^{N, 1}$, and the logarithm map $T_{\ell}^{N, 1} \rightarrow T_{\ell}^{N, 0}$, are defined by

$$
\exp (\mathbf{a})=\sum_{0 \leq n<N+1} \frac{\mathbf{a}^{n}}{n!}, \quad \log (\mathbf{b})=\sum_{1 \leq n<N+1} \frac{(-1)^{n}}{n}(1-\mathbf{b})^{n} ;
$$

they are inverse from one another. They are polynomial diffeomorphisms if $N<\infty$.

2.1 An algebraic prelude

Elements of $T_{\ell}^{N, 1}$ are invertible, with

$$
\mathbf{a}^{-1}=\sum_{n \geq 0}(\mathbf{1}-\mathbf{a})^{n},
$$

with $\mathbf{1}:=(1,0,0, \ldots)$. The exponential map $\exp : T_{\ell}^{N, 0} \rightarrow T_{\ell}^{N, 1}$, and the logarithm map $T_{\ell}^{N, 1} \rightarrow T_{\ell}^{N, 0}$, are defined by

$$
\exp (\mathbf{a})=\sum_{0 \leq n<N+1} \frac{\mathbf{a}^{n}}{n!}, \quad \log (\mathbf{b})=\sum_{1 \leq n<N+1} \frac{(-1)^{n}}{n}(1-\mathbf{b})^{n} ;
$$

they are inverse from one another. They are polynomial diffeomorphisms if $N<\infty$. The formula $[\mathbf{a}, \mathbf{b}]:=\mathbf{a b}-\mathbf{b a}$, defines a Lie bracket on T_{ℓ}^{N}.

2.1 An algebraic prelude

Elements of $T_{\ell}^{N, 1}$ are invertible, with

$$
\mathbf{a}^{-1}=\sum_{n \geq 0}(\mathbf{1}-\mathbf{a})^{n},
$$

with $\mathbf{1}:=(1,0,0, \ldots)$. The exponential map $\exp : T_{\ell}^{N, 0} \rightarrow T_{\ell}^{N, 1}$, and the logarithm map $T_{\ell}^{N, 1} \rightarrow T_{\ell}^{N, 0}$, are defined by

$$
\exp (\mathbf{a})=\sum_{0 \leq n<N+1} \frac{\mathbf{a}^{n}}{n!}, \quad \log (\mathbf{b})=\sum_{1 \leq n<N+1} \frac{(-1)^{n}}{n}(1-\mathbf{b})^{n} ;
$$

they are inverse from one another. They are polynomial diffeomorphisms if $N<\infty$. The formula $[\mathbf{a}, \mathbf{b}]:=\mathbf{a b}-\mathbf{b a}$, defines a Lie bracket on T_{ℓ}^{N}.

- Definition - The Lie algebra
$g_{\ell}^{N}:=\left\{\right.$ linear combinations of at most N iterated brackets of elements of $\left.\mathbb{R}^{\ell} \subset T_{\ell}^{N}\right\} \subset T_{\ell}^{N, 0}$
is called the N -step free nilpotent Lie algebra.

2.1 An algebraic prelude

Elements of $T_{\ell}^{N, 1}$ are invertible, with

$$
\mathbf{a}^{-1}=\sum_{n \geq 0}(\mathbf{1}-\mathbf{a})^{n},
$$

with $\mathbf{1}:=(1,0,0, \ldots)$. The exponential map $\exp : T_{\ell}^{N, 0} \rightarrow T_{\ell}^{N, 1}$, and the logarithm map $T_{\ell}^{N, 1} \rightarrow T_{\ell}^{N, 0}$, are defined by

$$
\exp (\mathbf{a})=\sum_{0 \leq n<N+1} \frac{\mathbf{a}^{n}}{n!}, \quad \log (\mathbf{b})=\sum_{1 \leq n<N+1} \frac{(-1)^{n}}{n}(1-\mathbf{b})^{n} ;
$$

they are inverse from one another. They are polynomial diffeomorphisms if $N<\infty$. The formula $[\mathbf{a}, \mathbf{b}]:=\mathbf{a b}-\mathbf{b a}$, defines a Lie bracket on T_{ℓ}^{N}.

- Definition - The Lie algebra
$g_{\ell}^{N}:=\left\{\right.$ linear combinations of at most N iterated brackets of elements of $\left.\mathbb{R}^{\ell} \subset T_{\ell}^{N}\right\} \subset T_{\ell}^{N, 0}$
is called the N-step free nilpotent Lie algebra. The subset $G_{\ell}^{N}:=\exp \left(g_{\ell}^{N}\right)$ of $T_{\ell}^{N, 1}$ is a group for the multiplication operation. It is called the N-step nilpotent Lie group on \mathbb{R}^{ℓ}. This is a manifold with tangent space a g_{ℓ}^{N} at a.

2.2 Hölder p-rough paths

Fix s and look at the evolution of

$$
\begin{aligned}
& H_{t s}= \\
& \left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell^{\prime}}\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
\end{aligned}
$$

as a function of t.

2.2 Hölder p-rough paths

Fix s and look at the evolution of

$$
\begin{aligned}
& H_{t s}= \\
& \left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell^{\prime}},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
\end{aligned}
$$

as a function of t. One has

$$
d H_{t s}=H_{t s} d h_{t}
$$

where $d h_{t} \in \mathbb{R}^{\ell} \subset g_{\ell}^{N}$.

2.2 Hölder p-rough paths

Fix s and look at the evolution of

$$
\begin{aligned}
& H_{t s}= \\
& \left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell^{\prime}}\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
\end{aligned}
$$

as a function of t. One has

$$
d H_{t s}=H_{t s} d h_{t}
$$

where $d h_{t} \in \mathbb{R}^{\ell} \subset g_{\ell}^{N}$. As $H_{t s} d h_{t} \in T_{H_{t s}} G_{\ell}^{N}$ if $H_{t s} \in G_{\ell}^{N}$, and $H_{s s}=\mathbf{1} \in G_{\ell}^{N}$

2.2 Hölder p-rough paths

Fix s and look at the evolution of

$$
\begin{aligned}
& H_{t s}= \\
& \left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
\end{aligned}
$$

as a function of t. One has

$$
d H_{t s}=H_{t s} d h_{t}
$$

where $d h_{t} \in \mathbb{R}^{\ell} \subset g_{\ell}^{N}$. As $H_{t s} d h_{t} \in T_{H_{t s}} G_{\ell}^{N}$ if $H_{t s} \in G_{\ell}^{N}$, and $H_{s s}=\mathbf{1} \in G_{\ell}^{N}$, then $H_{t s} \in G_{\ell}^{N}$ for all $t \geq s$

2.2 Hölder p-rough paths

Fix s and look at the evolution of

$$
\begin{aligned}
& H_{t s}= \\
& \left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell},\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
\end{aligned}
$$

as a function of t. One has

$$
d H_{t s}=H_{t s} d h_{t}
$$

where $d h_{t} \in \mathbb{R}^{\ell} \subset g_{\ell}^{N}$. As $H_{t s} d h_{t} \in T_{H_{t s}} G_{\ell}^{N}$ if $H_{t s} \in G_{\ell}^{N}$, and $H_{s s}=\mathbf{1} \in G_{\ell}^{N}$, then $H_{t s} \in G_{\ell}^{N}$ for all $t \geq s$, and for all $s \leq u \leq t$

$$
H_{t s}=H_{u s} H_{t u}
$$

from the flow property of solutions to ordinary differential equations.

2.2 Hölder p-rough paths

Fix s and look at the evolution of

$$
\begin{aligned}
& H_{t s}= \\
& \left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell^{\prime}}\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
\end{aligned}
$$

as a function of t. One has

$$
d H_{t s}=H_{t s} d h_{t}
$$

where $d h_{t} \in \mathbb{R}^{\ell} \subset g_{\ell}^{N}$. As $H_{t s} d h_{t} \in T_{H_{t s}} G_{\ell}^{N}$ if $H_{t s} \in G_{\ell}^{N}$, and $H_{s s}=\mathbf{1} \in G_{\ell}^{N}$, then $H_{t s} \in G_{\ell}^{N}$ for all $t \geq s$, and for all $s \leq u \leq t$

$$
H_{t s}=H_{u s} H_{t u},
$$

from the flow property of solutions to ordinary differential equations. We call this identity Chen's relation.

2.2 Hölder p-rough paths

Fix s and look at the evolution of

$$
\begin{aligned}
& H_{t s}= \\
& \left(1,\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)_{1 \leq i \leq \ell^{\prime}}\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)_{1 \leq j, k \leq \ell}, \ldots,\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \cdots d h_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \ldots, i_{1} \leq \ell}\right)
\end{aligned}
$$

as a function of t. One has

$$
d H_{t s}=H_{t s} d h_{t}
$$

where $d h_{t} \in \mathbb{R}^{\ell} \subset g_{\ell}^{N}$. As $H_{t s} d h_{t} \in T_{H_{t s}} G_{\ell}^{N}$ if $H_{t s} \in G_{\ell}^{N}$, and $H_{s s}=\mathbf{1} \in G_{\ell}^{N}$, then $H_{t s} \in G_{\ell}^{N}$ for all $t \geq s$, and for all $s \leq u \leq t$

$$
H_{t s}=H_{u s} H_{t u}
$$

from the flow property of solutions to ordinary differential equations. We call this identity Chen's relation. So one can write

$$
H_{t s}=\left(H_{s 0}\right)^{-1} H_{t 0}
$$

2．2 Hölder p－rough paths

Given a $T_{\ell}^{N, 1}$－valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ ．

2.2 Hölder p-rough paths

Given a $T_{\ell}^{N, 1}$-valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$.

- Definition - Let $1 \leq p$. A Hölder p-rough path on $[0, T]$ is a $T_{\ell}^{[p], 1}$-valued path $X: t \in[0, T] \mapsto 1 \oplus X_{t}^{1} \oplus X_{t}^{2} \oplus \cdots \oplus X_{t}^{[p]}$,

2.2 Hölder p-rough paths

Given a $T_{\ell}^{N, 1}$-valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$.

- Definition - Let $1 \leq p$. A Hölder p-rough path on $[0, T]$ is a $T_{\ell}^{[p], 1}$-valued path $X: t \in[0, T] \mapsto 1 \oplus X_{t}^{1} \oplus X_{t}^{2} \oplus \cdots \oplus X_{t}^{[p]}$, such that

$$
\left\|X^{m}\right\|_{\frac{m}{p}}:=\sup _{0 \leq s<t \leq T} \frac{\left|X_{t s}^{m}\right|}{|t-s|^{\frac{m}{p}}}<\infty
$$

for all $m=1 \ldots[p]$.

2.2 Hölder p-rough paths

Given a $T_{\ell}^{N, 1}$-valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$.

- Definition - Let $1 \leq p$. A Hölder p-rough path on $[0, T]$ is a $T_{\ell}^{[p], 1}$-valued path $X: t \in[0, T] \mapsto 1 \oplus X_{t}^{1} \oplus X_{t}^{2} \oplus \cdots \oplus X_{t}^{[p]}$, such that

$$
\left\|X^{m}\right\|_{\frac{m}{p}}:=\sup _{0 \leq s<t \leq T} \frac{\left|X_{t s}^{m}\right|}{|t-s|^{\frac{m}{p}}}<\infty
$$

for all $m=1 \ldots[p]$. We define the norm of \boldsymbol{X} to be

$$
\|\boldsymbol{X}\|:=\max _{m=1 \ldots[p]}\left\|X^{m}\right\|_{\frac{m}{p}}
$$

and a distance $d(\boldsymbol{X}, \boldsymbol{Y}):=\|\boldsymbol{X}-\boldsymbol{Y}\|$ on the set of Hölder p-rough path.

2.2 Hölder p-rough paths

Given a $T_{\ell}^{N, 1}$-valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$.

- Definition - Let $1 \leq p$. A Hölder p-rough path on $[0, T]$ is a $T_{\ell}^{[p], 1}$-valued path $X: t \in[0, T] \mapsto 1 \oplus X_{t}^{1} \oplus X_{t}^{2} \oplus \cdots \oplus X_{t}^{[p]}$, such that

$$
\left\|X^{m}\right\|_{\frac{m}{p}}:=\sup _{0 \leq s<t \leq T} \frac{\left|X_{t s}^{m}\right|}{|t-s|^{\frac{m}{p}}}<\infty
$$

for all $m=1 \ldots[p]$. We define the norm of \boldsymbol{X} to be

$$
\|\boldsymbol{X}\|:=\max _{m=1 \ldots[p]}\left\|X^{m}\right\|_{\frac{m}{p}},
$$

and a distance $d(\boldsymbol{X}, \boldsymbol{Y}):=\|\boldsymbol{X}-\boldsymbol{Y}\|$ on the set of Hölder p-rough path. A Hölder weak geometric p-rough path on $[0, T]$ is a $G_{\ell}^{[p]}$-valued Hölder p-rough path.

2．2 Hölder p－rough paths

Given a $T_{\ell}^{N, 1}$－valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ ．
－Definition－Let $1 \leq p$ ．A Hölder p－rough path on $[0, T]$ is a $T_{\ell}^{[p], 1}$－valued path $X: t \in[0, T] \mapsto 1 \oplus X_{t}^{1} \oplus X_{t}^{2} \oplus \cdots \oplus X_{t}^{[p]}$ ，such that

$$
\left\|X^{m}\right\|_{\frac{m}{p}}:=\sup _{0 \leq s<t \leq T} \frac{\left|X_{t t}^{m}\right|}{|t-s|^{\frac{m}{p}}}<\infty
$$

for all $m=1 \ldots[p]$ ．We define the norm of \boldsymbol{X} to be

$$
\|\boldsymbol{X}\|:=\max _{m=1 \ldots[p]}\left\|X^{m}\right\|_{\frac{m}{p}},
$$

and a distance $d(\boldsymbol{X}, \boldsymbol{Y}):=\|\boldsymbol{X}-\boldsymbol{Y}\|$ on the set of Hölder p－rough path．A Hölder weak geometric p－rough path on $[0, T]$ is a $G_{\ell}^{[p]}$－valued Hölder p－rough path．
Chen＇s relation

$$
\mathbf{X}_{t s}=\mathbf{X}_{u s} \mathbf{X}_{t u}
$$

holds by definition of the increments．

2.2 Hölder p-rough paths

Given a $T_{\ell}^{N, 1}$-valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$.

- Definition - Let $1 \leq p$. A Hölder p-rough path on $[0, T]$ is a $T_{\ell}^{[p], 1}$-valued path $X: t \in[0, T] \mapsto 1 \oplus X_{t}^{1} \oplus X_{t}^{2} \oplus \cdots \oplus X_{t}^{[p]}$, such that

$$
\left\|X^{m}\right\|_{\frac{m}{p}}:=\sup _{0 \leq s<t \leq T} \frac{\left|X_{t s}^{m}\right|}{|t-s|^{\frac{m}{p}}}<\infty
$$

for all $m=1 \ldots[p]$. We define the norm of \boldsymbol{X} to be

$$
\|\boldsymbol{X}\|:=\max _{m=1 \ldots[p]}\left\|X^{m}\right\|_{\frac{m}{p}},
$$

and a distance $d(\boldsymbol{X}, \boldsymbol{Y}):=\|\boldsymbol{X}-\boldsymbol{Y}\|$ on the set of Hölder p-rough path. A Hölder weak geometric p-rough path on $[0, T]$ is a $G_{\ell}^{[p]}$-valued Hölder p-rough path.
For $2 \leq p<3$, Chen's relation is equivalent to

$$
X_{t s}^{1}=X_{t u}^{1}+X_{u s}^{1}, \quad X_{t s}^{2}=X_{t u}^{2}+X_{u s}^{1} \otimes X_{t u}^{1}+X_{u s}^{2}
$$

Condition on X^{1} means that $X_{t s}^{1}$ is the increment of the \mathbb{R}^{ℓ}-valued path $\left(X_{r 0}^{1}\right)_{0 \leq r \leq T}$.
Condition on X^{2} analogue of $\int_{s}^{t} \int_{s}^{r}=\int_{s}^{u} \int_{s}^{r}+\int_{u}^{t} \int_{s}^{u}+\int_{u}^{t} \int_{u}^{r}$.

2.2 Hölder p-rough paths

Given a $T_{\ell}^{N, 1}$-valued path \mathbf{X} set $\mathbf{X}_{t s}:=\mathbf{X}_{s}^{-1} \mathbf{X}_{t}$.

- Definition - Let $1 \leq p$. A Hölder p-rough path on $[0, T]$ is a $T_{\ell}^{[p], 1}$-valued path $X: t \in[0, T] \mapsto 1 \oplus X_{t}^{1} \oplus X_{t}^{2} \oplus \cdots \oplus X_{t}^{[p]}$, such that

$$
\left\|X^{m}\right\|_{\frac{m}{p}}:=\sup _{0 \leq s<t \leq T} \frac{\left|X_{t t}^{m}\right|}{|t-s|^{\frac{m}{p}}}<\infty
$$

for all $m=1 \ldots[p]$. We define the norm of \boldsymbol{X} to be

$$
\|\boldsymbol{X}\|:=\max _{m=1 \ldots[p]}\left\|X^{m}\right\|_{\frac{m}{p}},
$$

and a distance $d(\boldsymbol{X}, \boldsymbol{Y}):=\|\boldsymbol{X}-\boldsymbol{Y}\|$ on the set of Hölder p-rough path. A Hölder weak geometric p-rough path on $[0, T]$ is a $G_{\ell}^{[p]}$-valued Hölder p-rough path.

The metric

$$
\bar{d}(\mathbf{X}, \mathbf{Y}):=\left|X_{0}^{1}-Y_{0}^{1}\right|+d(\mathbf{X}, \mathbf{Y})
$$

turns the set of all Hölder p-rough paths into a (non-separable) complete metric space.
3. Flows driven by rough paths

3.1 Differential operators

Given a collection of vector fields $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ on \mathbb{R}^{d}, set for $z \in \mathbb{R}^{\ell}$

$$
V(z):=\sum_{i=1}^{\ell} z^{i} V_{i}=: z^{i} V_{i} .
$$

We identify naturally $V(z)$ with a first order differential operator.

3.1 Differential operators

Given a collection of vector fields $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ on \mathbb{R}^{d}, set for $z \in \mathbb{R}^{\ell}$

$$
V(z):=\sum_{i=1}^{\ell} z^{i} V_{i}=: z^{i} V_{i} .
$$

We identify naturally $V(z)$ with a first order differential operator. We extend the map $V \in L\left(\mathbb{R}^{\ell}, C_{b}^{[p]+1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)$ to T_{ℓ}^{∞} setting $V(1)=I d: C\left(\mathbb{R}^{d}\right) \mapsto C\left(\mathbb{R}^{d}\right)$

3．1 Differential operators

Given a collection of vector fields $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ on \mathbb{R}^{d} ，set for $z \in \mathbb{R}^{\ell}$

$$
V(z):=\sum_{i=1}^{\ell} z^{i} V_{i}=: z^{i} V_{i} .
$$

We identify naturally $V(z)$ with a first order differential operator．We extend the map $V \in L\left(\mathbb{R}^{\ell}, C_{b}^{[p]+1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)$ to T_{ℓ}^{∞} setting $V(1)=\operatorname{Id}: C\left(\mathbb{R}^{d}\right) \mapsto C\left(\mathbb{R}^{d}\right)$ ，and for $z_{1} \otimes \cdots \otimes z_{k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ defining a k－th order differential operator $V\left(z_{1} \otimes \cdots \otimes z_{k}\right)$ setting

$$
V\left(z_{1} \otimes \cdots \otimes z_{k}\right):=V\left(z_{1}\right) \circ \cdots \circ V\left(z_{k}\right)
$$

and requiring linearity．

3.1 Differential operators

Given a collection of vector fields $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ on \mathbb{R}^{d}, set for $z \in \mathbb{R}^{\ell}$

$$
V(z):=\sum_{i=1}^{\ell} z^{i} V_{i}=: z^{i} V_{i} .
$$

We identify naturally $V(z)$ with a first order differential operator. We extend the map $V \in L\left(\mathbb{R}^{\ell}, C_{b}^{[p]+1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right.$) to T_{ℓ}^{∞} setting $V(1)=\operatorname{Id}: C\left(\mathbb{R}^{d}\right) \mapsto C\left(\mathbb{R}^{d}\right)$, and for $z_{1} \otimes \cdots \otimes z_{k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ defining a k-th order differential operator $V\left(z_{1} \otimes \cdots \otimes z_{k}\right)$ setting

$$
V\left(z_{1} \otimes \cdots \otimes z_{k}\right):=V\left(z_{1}\right) \circ \cdots \circ V\left(z_{k}\right)
$$

and requiring linearity. In those terms, the expansion property of ODE solutions

$$
\begin{aligned}
f\left(x_{t}\right)= & f\left(x_{s}\right)+\left(\int_{s}^{t} d h_{s_{1}}^{i}\right)\left(V_{i} f\right)\left(x_{s}\right)+\left(\int_{s}^{t} \int_{s}^{s_{1}} d h_{s_{2}}^{j} d h_{s_{1}}^{k}\right)\left(V_{j} V_{k} f\right)\left(x_{s}\right)+(\cdots) \\
& +\left(\int_{s \leq s_{1} \leq \cdots \leq s_{n} \leq t} d h_{s_{n}}^{i_{n}} \ldots d h_{s_{1}}^{i_{1}}\right)\left(V_{i_{n}} \ldots V_{i_{1}} f\right)\left(x_{s}\right)+O\left(|t-s|^{n+1}\right)
\end{aligned}
$$

rewrites

$$
f\left(x_{t}\right)=\left(V\left(H_{t s}\right) f\right)\left(x_{s}\right)+O\left(\left.|t-s|\right|^{n+1}\right)
$$

3.1 Differential operators

Given a collection of vector fields $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ on \mathbb{R}^{d}, set for $z \in \mathbb{R}^{\ell}$

$$
V(z):=\sum_{i=1}^{\ell} z^{i} V_{i}=: z^{i} V_{i} .
$$

We identify naturally $V(z)$ with a first order differential operator. We extend the map $V \in L\left(\mathbb{R}^{\ell}, C_{b}^{[p]+1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)$ to T_{ℓ}^{∞} setting $V(1)=\operatorname{Id}: C\left(\mathbb{R}^{d}\right) \mapsto C\left(\mathbb{R}^{d}\right)$, and for $z_{1} \otimes \cdots \otimes z_{k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ defining a k-th order differential operator $V\left(z_{1} \otimes \cdots \otimes z_{k}\right)$ setting

$$
V\left(z_{1} \otimes \cdots \otimes z_{k}\right):=V\left(z_{1}\right) \circ \cdots \circ V\left(z_{k}\right)
$$

and requiring linearity. We have the fundamental morphism property

$$
V(\mathbf{a}) V(\mathbf{b})=V(\mathbf{a b}), \quad \mathbf{a}, \mathbf{b} \in T_{\ell}^{\infty},
$$

3.1 Differential operators

Given a collection of vector fields $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ on \mathbb{R}^{d}, set for $z \in \mathbb{R}^{\ell}$

$$
V(z):=\sum_{i=1}^{\ell} z^{i} V_{i}=: z^{i} V_{i} .
$$

We identify naturally $V(z)$ with a first order differential operator. We extend the map $V \in L\left(\mathbb{R}^{\ell}, C_{b}^{[p]+1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right.$) to T_{ℓ}^{∞} setting $V(1)=\operatorname{Id}: C\left(\mathbb{R}^{d}\right) \mapsto C\left(\mathbb{R}^{d}\right)$, and for $z_{1} \otimes \cdots \otimes z_{k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ defining a k-th order differential operator $V\left(z_{1} \otimes \cdots \otimes z_{k}\right)$ setting

$$
V\left(z_{1} \otimes \cdots \otimes z_{k}\right):=V\left(z_{1}\right) \circ \cdots \circ V\left(z_{k}\right)
$$

and requiring linearity. We have the fundamental morphism property

$$
V(\mathbf{a}) V(\mathbf{b})=V(\mathbf{a b}), \quad \mathbf{a}, \mathbf{b} \in T_{\ell}^{\infty},
$$

so V is a Lie algebra morphism sending T_{ℓ}^{∞}-brackets into brackets of differential operators

$$
[V(\mathbf{a}), V(\mathbf{b})]=V([\mathbf{a}, \mathbf{b}])
$$

3.1 Differential operators

Given a collection of vector fields $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ on \mathbb{R}^{d}, set for $z \in \mathbb{R}^{\ell}$

$$
V(z):=\sum_{i=1}^{\ell} z^{i} V_{i}=: z^{i} V_{i}
$$

We identify naturally $V(z)$ with a first order differential operator. We extend the map $V \in L\left(\mathbb{R}^{\ell}, C_{b}^{[p]+1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)$ to T_{ℓ}^{∞} setting $V(1)=\operatorname{Id}: C\left(\mathbb{R}^{d}\right) \mapsto C\left(\mathbb{R}^{d}\right)$, and for $z_{1} \otimes \cdots \otimes z_{k} \in\left(\mathbb{R}^{\ell}\right)^{\otimes k}$ defining a k-th order differential operator $V\left(z_{1} \otimes \cdots \otimes z_{k}\right)$ setting

$$
V\left(z_{1} \otimes \cdots \otimes z_{k}\right):=V\left(z_{1}\right) \circ \cdots \circ V\left(z_{k}\right)
$$

and requiring linearity. We have the fundamental morphism property

$$
V(\mathbf{a}) V(\mathbf{b})=V(\mathbf{a b}), \quad \mathbf{a}, \mathbf{b} \in T_{\ell}^{\infty},
$$

so V is a Lie algebra morphism sending T_{ℓ}^{∞}-brackets into brackets of differential operators

$$
[V(\mathbf{a}), V(\mathbf{b})]=V([\mathbf{a}, \mathbf{b}])
$$

As brackets of vector fields are vector fields, $V\left(g_{\ell}^{N}\right)$ is made up vector fields.

3.2 A 'numerical' scheme with the local expansion property

Let $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be smooth vector fields on \mathbb{R}^{d}, with bounded $2[p]+1$ derivatives ($V_{i} \in C_{b}^{[p]+1}$ suffices).

3.2 A 'numerical' scheme with the local expansion property

Let $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be smooth vector fields on \mathbb{R}^{d}, with bounded $2[p]+1$ derivatives ($V_{i} \in C_{b}^{[p]+1}$ suffices). Given a weak geometric p-rough path \mathbf{X}, and $0 \leq s \leq t \leq T<\infty$, set

$$
\Lambda_{t s}:=\log \mathbf{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}
$$

3.2 A 'numerical' scheme with the local expansion property

Let $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be smooth vector fields on \mathbb{R}^{d}, with bounded $2[p]+1$ derivatives ($V_{i} \in C_{b}^{[p]+1}$ suffices). Given a weak geometric p-rough path \mathbf{X}, and $0 \leq s \leq t \leq T<\infty$, set

$$
\Lambda_{t s}:=\log \mathbf{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}
$$

and let $\mu_{t s}$ stand for the well-defined time 1 map associated with the ordinary differential equation

$$
\dot{y}_{u}=V\left(\Lambda_{t s}\right)\left(y_{u}\right), \quad 0 \leq u \leq 1 .
$$

3.2 A 'numerical' scheme with the local expansion property

Let $V_{1}, \ldots, V_{\ell} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be smooth vector fields on \mathbb{R}^{d}, with bounded $2[p]+1$ derivatives ($V_{i} \in C_{b}^{[p]+1}$ suffices). Given a weak geometric p-rough path \mathbf{X}, and $0 \leq s \leq t \leq T<\infty$, set

$$
\Lambda_{t s}:=\log \mathbf{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}
$$

and let $\mu_{t s}$ stand for the well-defined time 1 map associated with the ordinary differential equation

$$
\dot{y}_{u}=V\left(\Lambda_{t s}\right)\left(y_{u}\right), \quad 0 \leq u \leq 1 .
$$

- Proposition - There exists a positive constant c, depending only on the V_{i}, such that the inequality

$$
\begin{equation*}
\left\|f \circ \mu_{t s}-V\left(\boldsymbol{X}_{t s}\right) f\right\|_{\infty} \leq c\left(1+\|\boldsymbol{X}\|^{[p]}\right)\|f\|_{C[p]+1}|t-s|^{\frac{[p]+1}{\rho}} \tag{13}
\end{equation*}
$$

holds for any $f \in C_{b}^{[p]+1}\left(\mathbb{R}^{d}\right)$.

3．2 A＇numerical＇scheme with the local expansion property

Proof－Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m},
$$

3．2 A＇numerical＇scheme with the local expansion property

Proof－Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

3.2 A 'numerical' scheme with the local expansion property

Proof - Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

and

$$
\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{t s}^{* k}=\mathbf{X}_{t s}+O\left(|t-s|^{\frac{[p]+1}{p}}\right) \in T_{\ell}^{\infty}
$$

where $*$ stands for the multiplication in T_{ℓ}^{∞}, while $\mathbf{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$.

3.2 A 'numerical' scheme with the local expansion property

Proof - Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

and

$$
\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{t s}^{* k}=\mathbf{X}_{t s}+O\left(|t-s|^{\frac{[p]+1}{\rho}}\right) \in T_{\ell}^{\infty},
$$

where $*$ stands for the multiplication in T_{ℓ}^{∞}, while $\mathrm{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$. Then

$$
f\left(y_{1}\right)=f(x)+\int_{0}^{1}\left\{V\left(\Lambda_{t s}\right) f\right\}\left(y_{u_{1}}\right) d u_{1}
$$

3．2 A＇numerical＇scheme with the local expansion property

Proof－Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

and

$$
\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{t s}^{* k}=\mathbf{X}_{t s}+O\left(|t-s|^{\frac{[p]+1}{\rho}}\right) \in T_{\ell}^{\infty},
$$

where $*$ stands for the multiplication in T_{ℓ}^{∞} ，while $\mathrm{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$ ．Then

$$
f\left(y_{1}\right)=f(x)+\left\{V\left(\Lambda_{t s}\right) f\right\}(x)+\int_{0}^{1} \int_{0}^{u_{1}}\left\{V\left(\Lambda_{t s}\right) V\left(\Lambda_{t s}\right) f\right\}\left(y_{u_{2}}\right) d u_{2} d u_{1}
$$

3.2 A 'numerical' scheme with the local expansion property

Proof - Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

and

$$
\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{t s}^{* k}=\mathbf{X}_{t s}+O\left(|t-s|^{\frac{[p]+1}{\rho}}\right) \in T_{\ell}^{\infty},
$$

where $*$ stands for the multiplication in T_{ℓ}^{∞}, while $\mathrm{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$. Then

$$
f\left(y_{1}\right)=f(x)+\left\{V\left(\Lambda_{t s}\right) f\right\}(x)+\int_{0}^{1} \int_{0}^{u_{1}}\left\{V\left(\Lambda_{t s}^{* 2}\right) f\right\}\left(y_{u_{2}}\right) d u_{2} d u_{1}
$$

3.2 A 'numerical' scheme with the local expansion property

Proof - Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

and

$$
\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{t s}^{* k}=\mathbf{X}_{t s}+O\left(|t-s|^{\frac{[p]+1}{\rho}}\right) \in T_{\ell}^{\infty},
$$

where $*$ stands for the multiplication in T_{ℓ}^{∞}, while $\mathrm{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$. Then
$f\left(y_{1}\right)=f(x)+\left\{V\left(\Lambda_{t s}\right) f\right\}(x)+\frac{1}{2}\left\{V\left(\Lambda_{t s}^{* 2}\right) f\right\}(x)+\int_{0}^{1} \int_{0}^{s_{1}} \int_{0}^{s_{2}}\left\{V\left(\Lambda_{t s}^{* 3}\right) f\right\}\left(y_{u_{3}}\right) d u_{3} d u_{2} d u_{1}$,

3.2 A 'numerical' scheme with the local expansion property

Proof - Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

and

$$
\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{t s}^{* k}=\mathbf{X}_{t s}+O\left(|t-s|^{\frac{[p]+1}{\rho}}\right) \in T_{\ell}^{\infty}
$$

where $*$ stands for the multiplication in T_{ℓ}^{∞}, while $\mathbf{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$. Then by induction

$$
f\left(y_{1}\right)=\left\{V\left(\sum_{k=0}^{[p]} \frac{1}{k!}\left(\Lambda_{t s}\right)^{* k}\right) f\right\}(x)+\int_{0 \leq u_{[p]+1} \leq \cdots \leq u_{1}}\left\{V\left(\Lambda_{t s}^{*([p]+1)}\right) f\right\}\left(y_{u_{[p]+1}}\right) d u
$$

3.2 A 'numerical' scheme with the local expansion property

Proof - Writing

$$
\Lambda_{t s}=\bigoplus_{m=1}^{[p]} \Lambda_{t s}^{m} \in \bigoplus_{m=1}^{[p]} T_{\ell}^{m}
$$

one has

$$
\left\|\Lambda_{t s}^{m}\right\| \lesssim|t-s|^{m / p}
$$

and

$$
\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{t s}^{* k}=\mathbf{X}_{t s}+O\left(|t-s|^{\frac{[p]+1}{p}}\right) \in T_{\ell}^{\infty}
$$

where $*$ stands for the multiplication in T_{ℓ}^{∞}, while $\mathrm{X}_{t s} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$.

$$
\begin{aligned}
f\left(y_{1}\right) & =\left\{V\left(\sum_{k=0}^{[p]} \frac{1}{k!}\left(\Lambda_{t s}\right)^{* k}\right) f\right\}(x)+\int_{0 \leq u_{[p]+1} \leq \cdots \leq u_{1}}\left\{V\left(\Lambda_{t s}^{*([p]+1)}\right) f\right\}\left(y_{u_{[p]+1}}\right) d u \\
& =\left(V\left(\mathbf{X}_{t s}\right) f\right)(x)+O\left(|t-s|^{\frac{[p]+1}{\rho}}\right) .
\end{aligned}
$$

3.2 A 'numerical' scheme with the local expansion property

- Corollary - The family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ is a C^{1}-approximate flow.

3．2 A＇numerical＇scheme with the local expansion property

－Corollary－The family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ is a C^{1}－approximate flow．
Proof－Write $\pi: T_{\ell}^{\infty} \rightarrow T_{\ell}^{\infty} / T_{\ell}^{[p]}$ ，for the canonical projection map．

3.2 A 'numerical' scheme with the local expansion property

- Corollary - The family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ is a C^{1}-approximate flow.

Proof - Write $\pi: T_{\ell}^{\infty} \rightarrow T_{\ell}^{\infty} / T_{\ell}^{[p]}$, for the canonical projection map. For $0 \leq s \leq u \leq t \leq T$, one has

$$
\mu_{t u} \circ \mu_{u s}=\left\{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}\right\} \circ \mu_{u s}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s}
$$

3.2 A 'numerical' scheme with the local expansion property

- Corollary - The family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ is a C^{1}-approximate flow.

Proof - Write $\pi: T_{\ell}^{\infty} \rightarrow T_{\ell}^{\infty} / T_{\ell}^{[p]}$, for the canonical projection map. For $0 \leq s \leq u \leq t \leq T$, one has

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =\left\{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}\right\} \circ \mu_{u s}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s} \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \mathrm{Id}+\epsilon_{u s}^{V\left(\mathbf{x}_{t u}\right) \mathrm{Id}}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s}
\end{aligned}
$$

3.2 A 'numerical' scheme with the local expansion property

- Corollary - The family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ is a C^{1}-approximate flow.

Proof - Write $\pi: T_{\ell}^{\infty} \rightarrow T_{\ell}^{\infty} / T_{\ell}^{[p]}$, for the canonical projection map. For $0 \leq s \leq u \leq t \leq T$, one has

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =\left\{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}\right\} \circ \mu_{u s}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s} \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \mathrm{Id}+\epsilon_{u s}^{V\left(\mathbf{x}_{t u}\right) \mathrm{Id}}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s} \\
& =V\left(\mathbf{X}_{t s}\right) \mathrm{Id}+V\left(\pi\left(\mathbf{X}_{u s} \mathbf{X}_{t u}\right)\right) \mathrm{Id}+\epsilon_{u s}^{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s}
\end{aligned}
$$

3.2 A 'numerical' scheme with the local expansion property

- Corollary - The family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ is a C^{1}-approximate flow.

Proof - Write $\pi: T_{\ell}^{\infty} \rightarrow T_{\ell}^{\infty} / T_{\ell}^{[p]}$, for the canonical projection map. For $0 \leq s \leq u \leq t \leq T$, one has

$$
\begin{aligned}
\mu_{t u} \circ \mu_{u s} & =\left\{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}\right\} \circ \mu_{u s}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s} \\
& =V\left(\mathbf{X}_{u s}\right) V\left(\mathbf{X}_{t u}\right) \mathrm{Id}+\epsilon_{u s}^{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s} \\
& =V\left(\mathbf{X}_{t s}\right) \mathrm{Id}+V\left(\pi\left(\mathbf{X}_{u s} \mathbf{X}_{t u}\right)\right) \mathrm{Id}+\epsilon_{u s}^{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}}+\epsilon^{\mathrm{Id} t u} \circ \mu_{u s} \\
& =\mu_{t s}+\epsilon_{t s}^{\mathrm{Id}}+V\left(\pi\left(\mathbf{X}_{u s} \mathbf{X}_{t u}\right)\right) \mathrm{Id}+\epsilon_{u s}^{V\left(\mathbf{X}_{t u}\right) \mathrm{Id}}+\epsilon^{\mathrm{Id}}+\frac{\mathrm{d}_{t u}}{} \circ \mu_{u s} .
\end{aligned}
$$

3.2 A 'numerical' scheme with the local expansion property

- Definition - A flow on \mathbb{R}^{d} is said to be a solution flow to the rough differential equation

$$
d \varphi=V(\varphi) d \mathbf{X}_{t}
$$

3.2 A 'numerical' scheme with the local expansion property

- Definition - A flow on \mathbb{R}^{d} is said to be a solution flow to the rough differential equation

$$
d \varphi=V(\varphi) d \mathbf{X}_{t}
$$

if there exists a constant a > 1 independent of \boldsymbol{X} and two possibly \boldsymbol{X}-dependent positive constants δ and c such that one has

$$
\left\|\varphi_{t s}-\mu_{t s}\right\|_{\infty} \leq c|t-s|^{a},
$$

for all $0 \leq s \leq t \leq T$ with $t-s \leq \delta$

3.2 A 'numerical' scheme with the local expansion property

- Definition - A flow on \mathbb{R}^{d} is said to be a solution flow to the rough differential equation

$$
d \varphi=V(\varphi) d \mathbf{X}_{t}
$$

if there exists a constant $a>1$ independent of \boldsymbol{X} and two possibly \boldsymbol{X}-dependent positive constants δ and c such that one has

$$
f \circ \varphi_{t s}=V\left(\boldsymbol{X}_{t s}\right) f+O_{c, f}\left(|t-s|^{a}\right),
$$

for all $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and $f \in C_{b}^{[p]+1}\left(\mathbb{R}^{d}\right)$.

3.2 A 'numerical' scheme with the local expansion property

- Definition - A flow on \mathbb{R}^{d} is said to be a solution flow to the rough differential equation

$$
d \varphi=V(\varphi) d \mathbf{X}_{t}
$$

if there exists a constant a>1 independent of \boldsymbol{X} and two possibly \boldsymbol{X}-dependent positive constants δ and c such that one has

$$
f \circ \varphi_{t s}=V\left(\boldsymbol{X}_{t s}\right) f+O_{c, f}\left(|t-s|^{a}\right),
$$

for all $0 \leq s \leq t \leq T$ with $t-s \leq \delta$, and $f \in C_{b}^{[p]+1}\left(\mathbb{R}^{d}\right)$.

- Theorem - The rough differential equation

$$
d \varphi=V(\varphi) d \boldsymbol{X}_{t}
$$

has a unique solution flow; it takes values in the space of uniformly Lipschitz continuous homeomorphisms of \mathbb{R}^{d} with uniformly Lipschitz continuous inverses, and depends continuously on \boldsymbol{X}.

3.3 Solution paths to rough differential equations

- Definition - An \mathbb{R}^{d}-valued path z is said to be a solution path to the rough differential equation

$$
d z=V(z) d \mathbf{X}_{t}
$$

3.3 Solution paths to rough differential equations

- Definition - An \mathbb{R}^{d}-valued path z is said to be a solution path to the rough differential equation

$$
d z=V(z) d \mathbf{X}_{t}
$$

if there exists a constant $\boldsymbol{a}>1$ independent of \boldsymbol{X} and two possibly \boldsymbol{X}-dependent positive constants δ and c such that one has

3．3 Solution paths to rough differential equations

－Definition－An \mathbb{R}^{d}－valued path z is said to be a solution path to the rough differential equation

$$
d z=V(z) d \mathbf{X}_{t}
$$

if there exists a constant $\boldsymbol{a}>1$ independent of \boldsymbol{X} and two possibly \boldsymbol{X}－dependent positive constants δ and c such that one has

$$
f\left(z_{t}\right)=\left(V\left(X_{t s}\right) f\right)\left(z_{s}\right)+O_{c, f}\left(|t-s|^{a}\right)
$$

3．3 Solution paths to rough differential equations

- Definition－An \mathbb{R}^{d}－valued path z is said to be a solution path to the rough differential equation

$$
d z=V(z) d \mathbf{X}_{t}
$$

if there exists a constant $\boldsymbol{a}>1$ independent of \boldsymbol{X} and two possibly \boldsymbol{X}－dependent positive constants δ and c such that one has

$$
f\left(z_{t}\right)=\left(V\left(X_{t s}\right) f\right)\left(z_{s}\right)+O_{c, f}\left(|t-s|^{a}\right)
$$

for all $0 \leq s \leq t \leq T$ with $t-s \leq \delta$ ，and $f \in C_{b}^{[p]+1}\left(\mathbb{R}^{d}\right)$ ．

3.3 Solution paths to rough differential equations

- Definition - An \mathbb{R}^{d}-valued path z is said to be a solution path to the rough differential equation

$$
d z=V(z) d \mathbf{X}_{t}
$$

if there exists a constant $\boldsymbol{a}>1$ independent of \boldsymbol{X} and two possibly \boldsymbol{X}-dependent positive constants δ and c such that one has

$$
f\left(z_{t}\right)=\left(V\left(X_{t s}\right) f\right)\left(z_{s}\right)+O_{c, f}\left(|t-s|^{a}\right)
$$

$$
\text { for all } 0 \leq s \leq t \leq T \text { with } t-s \leq \delta \text {, and } f \in C_{b}^{[p]+1}\left(\mathbb{R}^{d}\right) \text {. }
$$

- Theorem - The rough differential equation

$$
d z=V(z) d \boldsymbol{X}_{t}, \quad z_{0}=x \in \mathbb{R}^{d}
$$

has a unique solution path. It is a continuous function of \boldsymbol{X} in the uniform norm topology.

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{\bullet} be any other solution path.

3．3 Solution paths to rough differential equations

－Proof－Existence．$z_{t}:=\varphi_{t 0}(x)$ is a solution path．
Uniqueness．Set $\alpha:=\min \left(\frac{3}{p}, a\right)$ ，and let y_{\bullet} be any other solution path．One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

3．3 Solution paths to rough differential equations

－Proof－Existence．$z_{t}:=\varphi_{t 0}(x)$ is a solution path．
Uniqueness．Set $\alpha:=\min \left(\frac{3}{p}, a\right)$ ，and let y_{\bullet} be any other solution path．One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous，with a Lipschitz constant bounded above by L say，one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

3．3 Solution paths to rough differential equations

－Proof－Existence．$z_{t}:=\varphi_{t 0}(x)$ is a solution path．
Uniqueness．Set $\alpha:=\min \left(\frac{3}{p}, a\right)$ ，and let y_{\bullet} be any other solution path．One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous，with a Lipschitz constant bounded above by L say，one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
y_{k \epsilon}=\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right)
$$

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{\bullet} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right)\right)+O_{c}\left(\epsilon^{\alpha}\right)
\end{aligned}
$$

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{\bullet} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right)\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon)}\right)+O_{C L}\left(\epsilon^{\alpha}\right)+O_{c}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{0} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right)\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon)}\right)+O_{C L}\left(\epsilon^{\alpha}\right)+O_{c}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

and see by induction that

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{0} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right)\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon)}\right)+O_{C L}\left(\epsilon^{\alpha}\right)+O_{C}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

and see by induction that

$$
y_{k \epsilon}=\varphi_{k \epsilon,(k-n) \epsilon}\left(y_{(k-n) \epsilon}\right)+O_{C L}\left((n-1) \epsilon^{\alpha}\right)+O_{c}\left(\epsilon^{\alpha}\right)
$$

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{0} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right)\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon)}\right)+O_{C L}\left(\epsilon^{\alpha}\right)+O_{C}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

and see by induction that

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-n) \epsilon}\left(y_{(k-n) \epsilon}\right)+O_{c L}\left((n-1) \epsilon^{\alpha}\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon, 0}(x)+O_{c L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1)
\end{aligned}
$$

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{0} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right)\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon)}\right)+O_{C L}\left(\epsilon^{\alpha}\right)+O_{c}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

and see by induction that

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-n) \epsilon}\left(y_{(k-n) \epsilon}\right)+O_{C L}\left((n-1) \epsilon^{\alpha}\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon, 0}(x)+O_{C L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) \\
& =z_{k \epsilon}+O_{C L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) .
\end{aligned}
$$

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{0} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right)\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon)}\right)+O_{c L}\left(\epsilon^{\alpha}\right)+O_{c}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

and see by induction that

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-n) \epsilon}\left(y_{(k-n) \epsilon}\right)+O_{C L}\left((n-1) \epsilon^{\alpha}\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon, 0}(x)+O_{C L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) \\
& =z_{k \epsilon}+O_{C L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) .
\end{aligned}
$$

Taking ϵ and k so that $k \in$ converges to some $t \in[0, T]$, we see that $y_{t}=z_{t}$, since $\alpha>1$.

3.3 Solution paths to rough differential equations

- Proof - Existence. $z_{t}:=\varphi_{t 0}(x)$ is a solution path.

Uniqueness. Set $\alpha:=\min \left(\frac{3}{p}, a\right)$, and let y_{0} be any other solution path. One has

$$
\left|y_{t}-\varphi_{t s}\left(y_{s}\right)\right| \leq c|t-s|^{\alpha} .
$$

Using the fact that the maps $\varphi_{t s}$ are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by L say, one can write for any $\epsilon>0$ and any integer $k \leq \frac{T}{\epsilon}$

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-1) \epsilon}\left(y_{(k-1) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-1) \epsilon}\left(\varphi_{(k-1) \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon}\right)+O_{C}\left(\epsilon^{\alpha}\right)\right)+O_{c}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon,(k-2) \epsilon}\left(y_{(k-2) \epsilon)}\right)+O_{C L}\left(\epsilon^{\alpha}\right)+O_{C}\left(\epsilon^{\alpha}\right),
\end{aligned}
$$

and see by induction that

$$
\begin{aligned}
y_{k \epsilon} & =\varphi_{k \epsilon,(k-n) \epsilon}\left(y_{(k-n) \epsilon}\right)+O_{C L}\left((n-1) \epsilon^{\alpha}\right)+O_{C}\left(\epsilon^{\alpha}\right) \\
& =\varphi_{k \epsilon, 0}(x)+O_{C L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) \\
& =z_{k \epsilon}+O_{C L}\left(k \epsilon^{\alpha}\right)+o_{\epsilon}(1) .
\end{aligned}
$$

Taking ϵ and k so that $k \in$ converges to some $t \in[0, T]$, we see that $y_{t}=z_{t}$, since $\alpha>1$.
The continuous dependence of the solution path $z_{\text {. }}$ with respect to \mathbf{X} is transfered from φ to $z_{\text {. }}$.

Further reading

Written version of the lectures on my teaching web page
https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf

Further reading

Branched rough paths (towards regularity structures)

- Ramification of rough paths. M. Gubinelli, J. Diff. Eq., 248(4):693-721, (2010).
- Geometric versus non-geometric rough paths. M. Hairer and D. Kelly, Ann. Inst. H. Poincaré Probab. Stat., 51(1):207-251, (2015).
- On the definition of a solution to a rough differential equation. I. Bailleul, to appear in Ann. Fac. Sci. Toulouse.

Applications to stochastic analysis... so many!

- Tiny sample in Chap. 5 of my lecture notes, and Chap. 9-11 of Friz-Hairer's book.
- Mean field rough differential equations
- Evolving communities with individual preferences. T. Cass and T. Lyons, Proc. London Math. Soc., 110(1):83-107, (2015).
- Solving mean field rough differential equations. I. Bailleul and R. Catellier and F. Delarue, Elec. J. Probab., 25(21):1-51, (2020).
- Pathwise McKean-Vlasov Theory with Additive Noise. M. Coghi and J.D. Deuschel and P. Friz and M. Maurelli, arXiv:1812.11773, (2018).

Further reading

Fast-slow systems

- Deterministic homogenization for fast-slow systems with chaotic noise. D. Kelly and I. Melbourne, J. Funct. Anal., 272(10):4063-4102, (2017).
- Rough flows and homogenization in stochastic turbulence. I. Bailleul and R. Catellier, J. Diff. Eq, 263(8):4894-4928, (2017).
- Homogenization with fractional random fields. J. Gehringer and X.-M. Li, arXiv:1911.12600, (2019).

Signature, analysis of streams and machine learning

- Uniqueness for the signature of a path of bounded variation and the reduced path group. B. Hambly and T. Lyons, Ann. Math., 171(1):109-167, (2010).
- The Signature of a Rough Path: Uniqueness. H. Boedihardjo and X. Geng and T. Lyons and D. Yang, Adv. Math., 293:720-737, (2016).
- Reconstruction for the signature of a rough path. X. Geng, Proc. London Math. Soc., 114(3):495-526, (2017).
- Rough paths, Signatures and the modelling of functions on streams. T. Lyons, https://arxiv.org/abs/1405.4537, (2014).
- Kernels for sequentially ordered data. F. Kiraly and H. Oberhauser, arXiv:1601.08169, (2016).
- Signature moments to characterize laws of stochastic processes. I. Chevyrev and H. Oberhauser, arXiv:1810.10971, (2018).

On rough paths convergence

－Theorem－Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p－rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|{ }^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise，in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$ ．Then the limit object \boldsymbol{X} is a Hölder p－rough path，and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q－rough path，for any $p<q<[p]+1$ ．

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof $-\bullet \mathbf{X}$ is a Hölder p-rough path

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof -• \mathbf{X} is a Hölder p-rough path: direct consequence of the uniform bounds (14) and pointwise convergence:

$$
\left|X_{t s}^{i}\right|=\lim _{n}\left|{ }^{(n)} X_{t s}^{i}\right| \leq C|t-s|^{\frac{i}{p}}
$$

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - • Would the convergence of ${ }^{(n)} \mathbf{X}$ to \mathbf{X} be uniform, we could find $\epsilon_{n} \searrow 0$, such that, uniformly in s, t,

$$
\left|X_{t s}^{i}-{ }^{(n)} X_{t s}^{i}\right| \leq \epsilon_{n}, \quad\left|X_{t s}^{i}-{ }^{(n)} X_{t s}^{i}\right| \leq 2 C|t-s|^{\frac{i}{p}}
$$

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\|(n) X\| \leq C<\infty \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - • Would the convergence of ${ }^{(n)} \mathbf{X}$ to \mathbf{X} be uniform, we could find $\epsilon_{n} \searrow 0$, such that, uniformly in s, t,

$$
\left|X_{t s}^{i}-{ }^{(n)} X_{t s}^{i}\right| \leq \epsilon_{n}, \quad\left|X_{t s}^{i}-{ }^{(n)} X_{t s}^{i}\right| \leq 2 C|t-s|^{\frac{i}{p}}
$$

Using $a \wedge b \leq a^{1-\theta} b^{\theta}$, with $\theta=\frac{p}{q}<1$

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|{ }^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - • Would the convergence of ${ }^{(n)} \mathbf{X}$ to \mathbf{X} be uniform, we could find $\epsilon_{n} \searrow 0$, such that, uniformly in s, t,

$$
\left|X_{t s}^{i}-{ }^{(n)} X_{t s}^{i}\right| \leq \epsilon_{n}, \quad\left|X_{t s}^{i}-{ }^{(n)} X_{t s}^{i}\right| \leq 2 C|t-s|^{\frac{i}{p}}
$$

Using $a \wedge b \leq a^{1-\theta} b^{\theta}$, with $\theta=\frac{p}{q}<1$, we have

$$
\left|X_{t s}^{i}-{ }^{(n)} X_{t s}^{i}\right| \leq \epsilon_{n}^{1-\frac{p}{q}}|t-s|^{\frac{i}{q}},
$$

which entails the convergence result as a Hölder q-rough path.

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - • Pointwise convergence suffices to get the result!

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - • Pointwise convergence suffices to get the result! Given a partition π of $[0,1]$ and any $0 \leq s \leq t \leq 1$, denote by \bar{s}, \bar{t} the nearest points in π to s and t respectively.

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - • Pointwise convergence suffices to get the result! Given a partition π of $[0,1]$ and any $0 \leq s \leq t \leq 1$, denote by \bar{s}, \bar{t} the nearest points in π to s and t respectively. Writing

$$
d\left(\mathbf{X}_{t s},{ }^{(n)} \mathbf{X}_{t s}\right) \leq d\left(\mathbf{X}_{t s}, \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left(\mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left({ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{t s}\right)
$$

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - - Pointwise convergence suffices to get the result! Given a partition π of $[0,1]$ and any $0 \leq s \leq t \leq 1$, denote by \bar{s}, \bar{t} the nearest points in π to s and t respectively. Writing

$$
d\left(\mathbf{X}_{t s},{ }^{(n)} \mathbf{X}_{t s}\right) \leq d\left(\mathbf{X}_{t s}, \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left(\mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left({ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{t s}\right)
$$

and

$$
\mathbf{X}_{\bar{t} \bar{s}}=\mathbf{X}_{s \bar{s}} \mathbf{X}_{t s} \mathbf{X}_{\bar{t} t}, \quad{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}={ }^{(n)} \mathbf{X}_{s \bar{s}}{ }^{(n)} \mathbf{X}_{t s}^{(n)} \mathbf{X}_{\bar{t} t}
$$

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - - Pointwise convergence suffices to get the result! Given a partition π of $[0,1]$ and any $0 \leq s \leq t \leq 1$, denote by \bar{s}, \bar{t} the nearest points in π to s and t respectively. Writing

$$
d\left(\mathbf{X}_{t s},{ }^{(n)} \mathbf{X}_{t s}\right) \leq d\left(\mathbf{X}_{t s}, \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left(\mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left({ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{t s}\right)
$$

and

$$
\mathbf{X}_{\bar{t} \bar{s}}=\mathbf{X}_{s \bar{s}} \mathbf{X}_{t s} \mathbf{X}_{\bar{t} t}, \quad{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}={ }^{(n)} \mathbf{X}_{s \bar{s}}{ }^{(n)} \mathbf{X}_{t s}{ }^{(n)} \mathbf{X}_{\bar{t} t}
$$

and using the uniform estimate (14)

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - - Pointwise convergence suffices to get the result! Given a partition π of $[0,1]$ and any $0 \leq s \leq t \leq 1$, denote by \bar{s}, \bar{t} the nearest points in π to s and t respectively. Writing

$$
d\left(\mathbf{X}_{t s},{ }^{(n)} \mathbf{X}_{t s}\right) \leq d\left(\mathbf{X}_{t s}, \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left(\mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left({ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{t s}\right)
$$

and

$$
\mathbf{X}_{\bar{t} \bar{s}}=\mathbf{X}_{s \bar{s}} \mathbf{X}_{t s} \mathbf{X}_{\bar{t} t}, \quad{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}={ }^{(n)} \mathbf{X}_{s \bar{s}}{ }^{(n)} \mathbf{X}_{t s}{ }^{(n)} \mathbf{X}_{\bar{t} t}
$$

and using the uniform estimate (14), the first and third terms in the above upper bound can be made arbitrarily small by choosing a partition with a small enough mesh, uniformly in s, t and n.

On rough paths convergence

- Theorem - Assume ${ }^{(n)} \boldsymbol{X}$ is a sequence of Hölder p-rough paths with uniform bounds

$$
\begin{equation*}
\sup _{n}\left\|^{(n)} X\right\| \leq C<\infty, \tag{14}
\end{equation*}
$$

which converge pointwise, in the sense that ${ }^{(n)} \boldsymbol{X}_{t s}$ converges to some $\boldsymbol{X}_{t s}$ for each $0 \leq s \leq t \leq 1$. Then the limit object \boldsymbol{X} is a Hölder p-rough path, and ${ }^{(n)} \boldsymbol{X}$ converges to \boldsymbol{X} as a Hölder q-rough path, for any $p<q<[p]+1$.

- Proof - - Pointwise convergence suffices to get the result! Given a partition π of $[0,1]$ and any $0 \leq s \leq t \leq 1$, denote by \bar{s}, \bar{t} the nearest points in π to s and t respectively. Writing

$$
d\left(\mathbf{X}_{t s},{ }^{(n)} \mathbf{X}_{t s}\right) \leq d\left(\mathbf{X}_{t s}, \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left(\mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}\right)+d\left({ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}},{ }^{(n)} \mathbf{X}_{t s}\right)
$$

and

$$
\mathbf{X}_{\bar{t} \bar{s}}=\mathbf{X}_{s \bar{s}} \mathbf{X}_{t s} \mathbf{X}_{\bar{t} t}, \quad{ }^{(n)} \mathbf{X}_{\bar{t} \bar{s}}={ }^{(n)} \mathbf{X}_{s \bar{s}}{ }^{(n)} \mathbf{X}_{t s}{ }^{(n)} \mathbf{X}_{\bar{t} t}
$$

and using the uniform estimate (14), the first and third terms in the above upper bound can be made arbitrarily small by choosing a partition with a small enough mesh, uniformly in s, t and n. Second term dealt with the pointwise convergence assumption as it involves only finitely many points once the partition π has been chosen as above.

Controlled paths and rough integral

- Definition - Pick an \mathbb{R}^{ℓ}-valued Hölder p-rough path $\boldsymbol{X}=(X, \mathbb{X})$, for $2 \leq p<3$.

Controlled paths and rough integral

－Definition－Pick an \mathbb{R}^{ℓ}－valued Hölder p－rough path $\boldsymbol{X}=(X, \mathbb{X})$ ，for $2 \leq p<3$ ．An \mathbb{R}^{d}－valued path z_{0} is said to be a path controlled by X if its increments $Z_{t s}:=z_{t}-z_{s}$ ， satisfy

$$
Z_{t s}:=Z_{s}^{\prime} X_{t s}+R_{t s}
$$

Controlled paths and rough integral

－Definition－Pick an \mathbb{R}^{ℓ}－valued Hölder p－rough path $\boldsymbol{X}=(X, \mathbb{X})$ ，for $2 \leq p<3$ ．An \mathbb{R}^{d}－valued path z_{0} is said to be a path controlled by X if its increments $Z_{t s}:=z_{t}-z_{s}$ ， satisfy

$$
Z_{t s}:=Z_{s}^{\prime} X_{t s}+R_{t s},
$$

for all $0 \leq s \leq t \leq 1$ ，for an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$－valued $\frac{1}{p}$－Lipschitz map Z_{0}^{\prime} ，and some \mathbb{R}^{d}－valued $\frac{2}{p}$－Lipschitz map R ．

Controlled paths and rough integral

- Definition - Pick an \mathbb{R}^{ℓ}-valued Hölder p-rough path $\boldsymbol{X}=(X, \mathbb{X})$, for $2 \leq p<3$. An \mathbb{R}^{d}-valued path z_{0} is said to be a path controlled by X if its increments $Z_{t s}:=z_{t}-z_{s}$, satisfy

$$
Z_{t s}:=Z_{s}^{\prime} X_{t s}+R_{t s},
$$

for all $0 \leq s \leq t \leq 1$, for an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued $\frac{1}{p}$-Lipschitz map Z_{0}^{\prime}, and some \mathbb{R}^{d}-valued $\frac{2}{p}$-Lipschitz map R. The pair $\left(z, Z^{\prime}\right)$ is is assigned a norm

$$
\left\|\left(z, Z^{\prime}\right)\right\|:=\left\|Z^{\prime}\right\|_{\frac{1}{p}}+\|R\|_{\frac{2}{p}}+\left|z_{0}\right| .
$$

Controlled paths and rough integral

－Definition－Pick an \mathbb{R}^{ℓ}－valued Hölder p－rough path $\boldsymbol{X}=(X, \mathbb{X})$ ，for $2 \leq p<3$ ．An \mathbb{R}^{d}－valued path z_{0} is said to be a path controlled by X if its increments $Z_{t s}:=z_{t}-z_{s}$ ， satisfy

$$
Z_{t s}:=Z_{s}^{\prime} X_{t s}+R_{t s},
$$

for all $0 \leq s \leq t \leq 1$ ，for an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$－valued $\frac{1}{p}$－Lipschitz map Z_{\circ}^{\prime} ，and some \mathbb{R}^{d}－valued $\frac{2}{p}$－Lipschitz map R ．The pair $\left(z, Z^{\prime}\right)$ is is assigned a norm

$$
\left\|\left(z, Z^{\prime}\right)\right\|:=\left\|Z^{\prime}\right\|_{\frac{1}{p}}+\|R\|_{\frac{2}{p}}+\left|z_{0}\right| .
$$

The image of a controlled path z by an \mathbb{R}^{n}－valued C^{1} map F on \mathbb{R}^{d} is a controlled path $F(z)$ with derivative $D_{z_{t}} F \circ Z_{t}^{\prime}$ at time t ．

Controlled paths and rough integral

- Definition - Pick an \mathbb{R}^{ℓ}-valued Hölder p-rough path $\boldsymbol{X}=(X, \mathbb{X})$, for $2 \leq p<3$. An \mathbb{R}^{d}-valued path z_{0} is said to be a path controlled by X if its increments $Z_{t s}:=z_{t}-z_{s}$, satisfy

$$
Z_{t s}:=Z_{s}^{\prime} X_{t s}+R_{t s},
$$

for all $0 \leq s \leq t \leq 1$, for an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued $\frac{1}{p}$-Lipschitz map Z_{0}^{\prime}, and some \mathbb{R}^{d}-valued $\frac{2}{p}$-Lipschitz map R. The pair $\left(z, Z^{\prime}\right)$ is is assigned a norm

$$
\left\|\left(z, Z^{\prime}\right)\right\|:=\left\|Z^{\prime}\right\|_{\frac{1}{p}}+\|R\|_{\frac{2}{p}}+\left|z_{0}\right| .
$$

The image of a controlled path z by an \mathbb{R}^{n}-valued C^{1} map F on \mathbb{R}^{d} is a controlled path $F(z)$ with derivative $D_{z_{t}} F \circ Z_{t}^{\prime}$ at time t.
For linear maps $A, B \in \mathrm{~L}\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$, and $a, b \in \mathbb{R}^{\ell}$, set

$$
(A \otimes B)(a \otimes b):=(A a) \otimes(B b)
$$

Controlled paths and rough integral

- Theorem - A family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ of elements of \mathbb{R}^{d} such that

$$
\left|\mu_{t u}+\mu_{u s}-\mu_{t s}\right| \lesssim|t-s|^{a},
$$

for $a>1$ is said to be almost additive.

Controlled paths and rough integral

- Theorem - A family $\left(\mu_{t s}\right)_{0 \leq s \leq t \leq T}$ of elements of \mathbb{R}^{d} such that

$$
\left|\mu_{t u}+\mu_{u s}-\mu_{t s}\right| \lesssim|t-s|^{2},
$$

for $a>1$ is said to be almost additive. There exists a unique \mathbb{R}^{d}-valued function φ such that

$$
\left|\varphi_{t}-\varphi_{s}-\mu_{t s}\right| \leqslant|t-s|^{2} .
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$.

Controlled paths and rough integral

－Proposition－Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}－valued Hölder p－rough path，with $2 \leq p<3$ ． Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$－valued path controlled by X

Controlled paths and rough integral

－Proposition－Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}－valued Hölder p－rough path，with $2 \leq p<3$ ． Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$－valued path controlled by X ，so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s．t．

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by X, so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s.t.

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s},
$$

for all $0 \leq s \leq t \leq 1$.

Controlled paths and rough integral

－Proposition－Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}－valued Hölder p－rough path，with $2 \leq p<3$ ． Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$－valued path controlled by X ，so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s．t．

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

We define an almost－additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s},
$$

for all $0 \leq s \leq t \leq 1$ ．Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by X, so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s.t.

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s},
$$

for all $0 \leq s \leq t \leq 1$. Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

- Proof - Writing $f_{t s}:=f_{t}-f_{s}$, an elementary computation using Chen's relation $\mathbb{X}_{t s}=\mathbb{X}_{t u}+\mathbb{X}_{u s}+X_{u s} \otimes X_{t u}$, for any $0 \leq s \leq u \leq t \leq 1$, gives

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by X, so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s.t.

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s},
$$

for all $0 \leq s \leq t \leq 1$. Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

- Proof - Writing $f_{t s}:=f_{t}-f_{s}$, an elementary computation using Chen's relation $\mathbb{X}_{t s}=\mathbb{X}_{t u}+\mathbb{X}_{u s}+X_{u s} \otimes X_{t u}$, for any $0 \leq s \leq u \leq t \leq 1$, gives

$$
\left(\mu_{t u}+\mu_{u s}\right)-\mu_{t s}=z_{u s} X_{t u}+Z_{u s}^{\prime} \mathbb{X}_{t u}-Z_{s}^{\prime} X_{u s} \otimes X_{t u}
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by X, so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s.t.

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s},
$$

for all $0 \leq s \leq t \leq 1$. Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

- Proof - Writing $f_{t s}:=f_{t}-f_{s}$, an elementary computation using Chen's relation $\mathbb{X}_{t s}=\mathbb{X}_{t u}+\mathbb{X}_{u s}+X_{u s} \otimes X_{t u}$, for any $0 \leq s \leq u \leq t \leq 1$, gives

$$
\begin{aligned}
\left(\mu_{t u}+\mu_{u s}\right)-\mu_{t s} & =z_{u s} X_{t u}+Z_{u s}^{\prime} \mathbb{X}_{t u}-Z_{s}^{\prime} X_{u s} \otimes X_{t u} \\
& =\left(z_{u s}-Z_{s}^{\prime} X_{u s}\right) X_{t u}+O\left(|t-s|^{\frac{3}{p}}\right)
\end{aligned}
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by X, so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s.t.

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s}
$$

for all $0 \leq s \leq t \leq 1$. Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

- Proof - Writing $f_{t s}:=f_{t}-f_{s}$, an elementary computation using Chen's relation $\mathbb{X}_{t s}=\mathbb{X}_{t u}+\mathbb{X}_{u s}+X_{u s} \otimes X_{t u}$, for any $0 \leq s \leq u \leq t \leq 1$, gives

$$
\begin{aligned}
\left(\mu_{t u}+\mu_{u s}\right)-\mu_{t s} & =z_{u s} X_{t u}+Z_{u s}^{\prime} \mathbb{X}_{t u}-Z_{s}^{\prime} X_{u s} \otimes X_{t u} \\
& =\left(z_{u s}-Z_{s}^{\prime} X_{u s}\right) X_{t u}+O\left(|t-s|^{\frac{3}{p}}\right) \\
& =R_{u s} X_{t u}+O\left(|t-s|^{\frac{3}{p}}\right)
\end{aligned}
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. Let $\left(z, Z^{\prime}\right)$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by X, so $Z_{s}^{\prime} \in L\left(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ is s.t.

$$
Z_{s}^{\prime}(a \otimes b)=\left(Z_{s}^{\prime}(a)\right)(b)
$$

We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s}
$$

for all $0 \leq s \leq t \leq 1$. Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

- Proof - Writing $f_{t s}:=f_{t}-f_{s}$, an elementary computation using Chen's relation $\mathbb{X}_{t s}=\mathbb{X}_{t u}+\mathbb{X}_{u s}+X_{u s} \otimes X_{t u}$, for any $0 \leq s \leq u \leq t \leq 1$, gives

$$
\begin{aligned}
\left(\mu_{t u}+\mu_{u s}\right)-\mu_{t s} & =z_{u s} X_{t u}+Z_{u s}^{\prime} \mathbb{X}_{t u}-Z_{s}^{\prime} X_{u s} \otimes X_{t u} \\
& =\left(z_{u s}-Z_{s}^{\prime} X_{u s}\right) X_{t u}+O\left(|t-s|^{\frac{3}{\rho}}\right) \\
& =R_{u s} X_{t u}+O\left(|t-s|^{\frac{3}{p}}\right)=O\left(|t-s|^{\frac{3}{p}}\right) .
\end{aligned}
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s},
$$

for all $0 \leq s \leq t \leq 1$. Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

Given vector fields V_{1}, \ldots, V_{ℓ} on \mathbb{R}^{d} and $x \in \mathbb{R}^{d}$, define $F(x) \in L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ setting

$$
F(x)(z):=\sum_{1 \leq i \leq \ell} z^{i} V_{i}(x)
$$

Controlled paths and rough integral

- Proposition - Let $\boldsymbol{X}=(X, \mathbb{X})$ be an \mathbb{R}^{ℓ}-valued Hölder p-rough path, with $2 \leq p<3$. We define an almost-additive map setting

$$
\mu_{t s}:=z_{s} X_{t s}+Z_{s}^{\prime} \mathbb{X}_{t s}
$$

for all $0 \leq s \leq t \leq 1$. Its associated φ map is denoted by

$$
\varphi_{t}=: \int_{0}^{t}\left(z, z^{\prime}\right)_{s} d \mathbf{X}_{s}
$$

Given vector fields V_{1}, \ldots, V_{ℓ} on \mathbb{R}^{d} and $x \in \mathbb{R}^{d}$, define $F(x) \in L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$ setting

$$
F(x)(z):=\sum_{1 \leq i \leq \ell} z^{i} V_{i}(x)
$$

- Corollary - A path x_{\bullet} in \mathbb{R}^{d} is a solution to the rough differential equation

$$
d x_{t}=F\left(x_{t}\right) d \mathbf{X}_{t}
$$

iff it is a path controlled by X, with derivative $F\left(x_{0}\right)$, and

$$
x_{t}=x_{0}+\int_{0}^{t}(F(x),(D F)(F(x)))_{s} d \mathbf{X}_{s}
$$

4. Applications to stochastic analysis

4.1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}-valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

4．1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}－valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ ．Set

$$
\mathbb{B}_{t s}^{\prime}:=\int_{s}^{t} \int_{s}^{u} d B_{r} \otimes d B_{u}=\int_{s}^{t} B_{u s} \otimes d B_{u}
$$

4．1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}－valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ ．Set

$$
\mathbb{B}_{t s}^{\prime}:=\int_{s}^{t} \int_{s}^{u} d B_{r} \otimes d B_{u}=\int_{s}^{t} B_{u s} \otimes d B_{u}
$$

This process satisfies Chen＇s relation

$$
\mathbb{B}_{t s}^{\prime}=\mathbb{B}_{t u}^{\prime}+\mathbb{B}_{u s}^{\prime}+B_{u s} \otimes B_{t u}
$$

for any $0 \leq s \leq u \leq t \leq 1$ ．

4.1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}-valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Set

$$
\mathbb{B}_{t s}^{\prime}:=\int_{s}^{t} \int_{s}^{u} d B_{r} \otimes d B_{u}=\int_{s}^{t} B_{u s} \otimes d B_{u}
$$

This process satisfies Chen's relation

$$
\mathbb{B}_{t s}^{\prime}=\mathbb{B}_{t u}^{\prime}+\mathbb{B}_{u s}^{\prime}+B_{u s} \otimes B_{t u}
$$

for any $0 \leq s \leq u \leq t \leq 1$. Recall for $\mathbf{a} \in T_{\ell}^{2,1}$

$$
\|\mathbf{a}\|=\left\|1 \oplus a^{1} \oplus a^{2}\right\|=\left|a^{1}\right|+\sqrt{\left|a^{2}\right|}, \quad d(\mathbf{a}, \mathbf{b})=\left\|\mathbf{a}^{-1} \mathbf{b}\right\| .
$$

4.1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}-valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Set

$$
\mathbb{B}_{t s}^{\prime}:=\int_{s}^{t} \int_{s}^{u} d B_{r} \otimes d B_{u}=\int_{s}^{t} B_{u s} \otimes d B_{u}
$$

This process satisfies Chen's relation

$$
\mathbb{B}_{t s}^{\prime}=\mathbb{B}_{t u}^{\prime}+\mathbb{B}_{u s}^{\prime}+B_{u s} \otimes B_{t u}
$$

for any $0 \leq s \leq u \leq t \leq 1$. Recall for $\mathbf{a} \in T_{\ell}^{2,1}$

$$
\|\mathbf{a}\|=\left\|1 \oplus a^{1} \oplus a^{2}\right\|=\left|a^{1}\right|+\sqrt{\left|a^{2}\right|}, \quad d(\mathbf{a}, \mathbf{b})=\left\|\mathbf{a}^{-1} \mathbf{b}\right\| .
$$

So \mathbf{B}^{\prime} is a Hölder p-rough path iff it is a $1 / p$-Hölder continuous $\left(T_{\ell}^{2,1}, d\right)$-valued path.

4.1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}-valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Set

$$
\mathbb{B}_{t s}^{\prime}:=\int_{s}^{t} \int_{s}^{u} d B_{r} \otimes d B_{u}=\int_{s}^{t} B_{u s} \otimes d B_{u}
$$

This process satisfies Chen's relation

$$
\mathbb{B}_{t s}^{\prime}=\mathbb{B}_{t u}^{\prime}+\mathbb{B}_{u s}^{\prime}+B_{u s} \otimes B_{t u}
$$

for any $0 \leq s \leq u \leq t \leq 1$. Recall for $\mathbf{a} \in T_{\ell}^{2,1}$

$$
\|\mathbf{a}\|=\left\|1 \oplus a^{1} \oplus a^{2}\right\|=\left|a^{1}\right|+\sqrt{\left|a^{2}\right|}, \quad d(\mathbf{a}, \mathbf{b})=\left\|\mathbf{a}^{-1} \mathbf{b}\right\| .
$$

So \mathbf{B}^{\prime} is a Hölder p-rough path iff it is a $1 / p$-Hölder continuous $\left(T_{\ell}^{2,1}, d\right)$-valued path. Use Kolmogorov's criterion

$$
\mathbb{E}\left[\left\|\mathbf{B}_{t s}^{\prime}\right\|^{q}\right] \lesssim|t-s|^{q / 2},
$$

for $0<\frac{1}{2}-\frac{1}{q}<\frac{1}{p}$.

4.1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}-valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Set

$$
\mathbb{B}_{t s}^{\prime}:=\int_{s}^{t} \int_{s}^{u} d B_{r} \otimes d B_{u}=\int_{s}^{t} B_{u s} \otimes d B_{u}
$$

This process satisfies Chen's relation

$$
\mathbb{B}_{t s}^{\prime}=\mathbb{B}_{t u}^{\prime}+\mathbb{B}_{u s}^{\prime}+B_{u s} \otimes B_{t u}
$$

for any $0 \leq s \leq u \leq t \leq 1$. Recall for $\mathbf{a} \in T_{\ell}^{2,1}$

$$
\|\mathbf{a}\|=\left\|1 \oplus a^{1} \oplus a^{2}\right\|=\left|a^{1}\right|+\sqrt{\left|a^{2}\right|}, \quad d(\mathbf{a}, \mathbf{b})=\left\|\mathbf{a}^{-1} \mathbf{b}\right\| .
$$

So \mathbf{B}^{\prime} is a Hölder p-rough path iff it is a $1 / p$-Hölder continuous $\left(T_{\ell}^{2,1}, d\right)$-valued path. Use Kolmogorov's criterion

$$
\mathbb{E}\left[\left\|\mathbf{B}_{t s}^{\prime}\right\|^{q}\right] \lesssim|t-s|^{q / 2},
$$

for $0<\frac{1}{2}-\frac{1}{q}<\frac{1}{p}$. Equivalent to requiring

$$
\left\|B_{t s}\right\|_{L q} \lesssim|t-s|^{\frac{1}{2}}, \quad\left\|\mathbb{B}_{t s}^{\prime}\right\|_{L^{\frac{q}{2}}} \lesssim|t-s| .
$$

4.1 The Brownian rough path

Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ be an \mathbb{R}^{ℓ}-valued Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Set

$$
\mathbb{B}_{t s}^{\prime}:=\int_{s}^{t} \int_{s}^{u} d B_{r} \otimes d B_{u}=\int_{s}^{t} B_{u s} \otimes d B_{u}
$$

This process satisfies Chen's relation

$$
\mathbb{B}_{t s}^{\prime}=\mathbb{B}_{t u}^{\prime}+\mathbb{B}_{u s}^{\prime}+B_{u s} \otimes B_{t u}
$$

for any $0 \leq s \leq u \leq t \leq 1$. Recall for $\mathbf{a} \in T_{\ell}^{2,1}$

$$
\|\mathbf{a}\|=\left\|1 \oplus a^{1} \oplus a^{2}\right\|=\left|a^{1}\right|+\sqrt{\left|a^{2}\right|}, \quad d(\mathbf{a}, \mathbf{b})=\left\|\mathbf{a}^{-1} \mathbf{b}\right\| .
$$

So \mathbf{B}^{\prime} is a Hölder p-rough path iff it is a $1 / p$-Hölder continuous $\left(T_{\ell}^{2,1}, d\right)$-valued path. Use Kolmogorov's criterion

$$
\mathbb{E}\left[\left\|\mathbf{B}_{t s}^{\prime}\right\|^{q}\right] \lesssim|t-s|^{q / 2},
$$

for $0<\frac{1}{2}-\frac{1}{q}<\frac{1}{p}$. Equivalent to requiring

$$
\left\|B_{t s}\right\|_{L q} \lesssim|t-s|^{\frac{1}{2}}, \quad\left\|\mathbb{B}_{t s}^{\prime}\right\|_{L^{\frac{q}{2}}} \lesssim|t-s| .
$$

True as a consequence of the scaling properties of Brownian motion.

4.1 The Brownian rough path

The process \mathbf{B}^{\prime} is almost surely a Hölder p-rough path; it is called the ltô Brownian rough path.

4．1 The Brownian rough path

The process \mathbf{B}^{\prime} is almost surely a Hölder p－rough path；it is called the ltô Brownian rough path．Set

$$
\mathbb{B}_{t s}^{S}:=\int_{s}^{t} \int_{s}^{u} \circ d B_{r} \otimes \circ d B_{u}=\int_{s}^{t} B_{u s} \otimes \circ d B_{u}
$$

4.1 The Brownian rough path

The process \mathbf{B}^{\prime} is almost surely a Hölder p-rough path; it is called the ltô Brownian rough path. Set

$$
\mathbb{B}_{t s}^{S}:=\int_{s}^{t} \int_{s}^{u} \circ d B_{r} \otimes \circ d B_{u}=\int_{s}^{t} B_{u s} \otimes \circ d B_{u}
$$

so

$$
\mathbb{B}_{t s}^{S}=\mathbb{B}_{t s}^{\prime}+\frac{1}{2}(t-s) \mathrm{Id}
$$

4.1 The Brownian rough path

The process \mathbf{B}^{\prime} is almost surely a Hölder p-rough path; it is called the ltô Brownian rough path. Set

$$
\mathbb{B}_{t s}^{S}:=\int_{s}^{t} \int_{s}^{u} \circ d B_{r} \otimes \circ d B_{u}=\int_{s}^{t} B_{u s} \otimes \circ d B_{u}
$$

so

$$
\mathbb{B}_{t s}^{S}=\mathbb{B}_{t s}^{\prime}+\frac{1}{2}(t-s) \mathrm{Id}
$$

The process $\mathbf{B}^{S}:=\left(B, \mathbb{B}^{S}\right)$ is almost surely a Hölder p-rough path; it is called the Itô Brownian rough path.

4.1 The Brownian rough path

The process \mathbf{B}^{\prime} is almost surely a Hölder p-rough path; it is called the ltô Brownian rough path. Set

$$
\mathbb{B}_{t s}^{S}:=\int_{s}^{t} \int_{s}^{u} \circ d B_{r} \otimes \circ d B_{u}=\int_{s}^{t} B_{u s} \otimes \circ d B_{u}
$$

so

$$
\mathbb{B}_{t s}^{S}=\mathbb{B}_{t s}^{\prime}+\frac{1}{2}(t-s) \mathrm{Id}
$$

The process $\mathbf{B}^{S}:=\left(B, \mathbb{B}^{S}\right)$ is almost surely a Hölder p-rough path; it is called the Itô Brownian rough path. Unlike \mathbf{B}^{\prime}, it is a weak geometric Hölder p-rough path.

4.1 The Brownian rough path

 Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$
4．1 The Brownian rough path

Given $n \geq 1$ ，set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$ ，and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$ ．

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$.

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$. Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

4．1 The Brownian rough path

Given $n \geq 1$ ，set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$ ，and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$ ．Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$ ．Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has，for $j \neq k$ ，

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathscr{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{s, j k} \mid \mathscr{F}_{n}\right] \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{\text {ts }}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$ ．

4．1 The Brownian rough path

Given $n \geq 1$ ，set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$ ，and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$ ．Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$ ．Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has，for $j \neq k$ ，

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathscr{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{s, j k} \mid \mathscr{F}_{n}\right] \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{\text {ts }}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$ ．
－Proposition－The Hölder p－rough path $\boldsymbol{B}^{(n)}:=\left(B^{(n)}, \mathbb{B}^{(n)}\right)$ converges almost－surely to \boldsymbol{B}^{S} in the Hölder p－rough path topology．

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$. Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has, for $j \neq k$,

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathcal{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{S, j k} \mid \mathcal{F}_{n}\right] \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{\text {ts }}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$.

- Proposition - The Hölder p-rough path $\boldsymbol{B}^{(n)}:=\left(B^{(n)}, \mathbb{B}^{(n)}\right)$ converges almost-surely to \boldsymbol{B}^{S} in the Hölder p-rough path topology.
- Proof - Use our statement on rough paths convergence.

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$. Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has, for $j \neq k$,

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathcal{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{S, j k} \mid \mathcal{F}_{n}\right] \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{\text {ts }}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$.

- Proposition - The Hölder p-rough path $\boldsymbol{B}^{(n)}:=\left(B^{(n)}, \mathbb{B}^{(n)}\right)$ converges almost-surely to \boldsymbol{B}^{S} in the Hölder p-rough path topology.
- Proof - Use our statement on rough paths convergence. The almost-sure pointwise convergence follows from the martingale convergence theorem applied to the martingales in (15).

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$. Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has, for $j \neq k$,

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathscr{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{s, j k} \mid \mathscr{F}_{n}\right] \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{t s}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$.

- Proposition - The Hölder p-rough path $\boldsymbol{B}^{(n)}:=\left(B^{(n)}, \mathbb{B}^{(n)}\right)$ converges almost-surely to \boldsymbol{B}^{S} in the Hölder p-rough path topology.
- Proof - To get the almost-sure uniform bound

$$
\begin{equation*}
\sup _{n}\left\|\mathbf{B}^{(n)}\right\|<\infty \tag{16}
\end{equation*}
$$

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$. Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has, for $j \neq k$,

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathscr{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{S, j k} \mid \mathscr{F}_{n}\right], \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{\text {ts }}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$.

- Proposition - The Hölder p-rough path $\boldsymbol{B}^{(n)}:=\left(B^{(n)}, \mathbb{B}^{(n)}\right)$ converges almost-surely to B^{S} in the Hölder p-rough path topology.
- Proof - To get the almost-sure uniform bound

$$
\begin{equation*}
\sup _{n}\left\|\mathbf{B}^{(n)}\right\|<\infty \tag{16}
\end{equation*}
$$

notice that the estimates

$$
\left|B_{t s}\right| \leq C_{p}|t-s|^{\frac{1}{p}}, \quad\left|\mathbb{B}_{t s}^{S, j k}\right| \leq C_{p}^{2}|t-s|^{\frac{2}{p}}
$$

obtained from Kolmogorov's regularity criterion with $C_{p} \in L^{q}$ for (any) $q>2$

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$. Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has, for $j \neq k$,

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathscr{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{s, j k} \mid \mathscr{F}_{n}\right], \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{\text {ts }}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$.

- Proposition - The Hölder p-rough path $\boldsymbol{B}^{(n)}:=\left(B^{(n)}, \mathbb{B}^{(n)}\right)$ converges almost-surely to B^{S} in the Hölder p-rough path topology.
- Proof - To get the almost-sure uniform bound

$$
\begin{equation*}
\sup _{n}\left\|\mathbf{B}^{(n)}\right\|<\infty \tag{16}
\end{equation*}
$$

notice that the estimates

$$
\left|B_{t s}\right| \leq C_{p}|t-s|^{\frac{1}{p}}, \quad\left|\mathbb{B}_{t s}^{S, j k}\right| \leq C_{p}^{2}|t-s|^{\frac{2}{p}}
$$

obtained from Kolmogorov's regularity criterion with $C_{p} \in L^{q}$ for (any) $q>2$, give

$$
\left|B_{t s}^{(n)}\right| \leq \mathbb{E}\left[C_{p} \mid \mathscr{F}_{n}\right]|t-s|^{\frac{1}{p}}, \quad\left|\mathbb{B}_{t s}^{(n) . j k}\right| \leq \mathbb{E}\left[C_{p}^{2} \mid \mathscr{F}_{n}\right]|t-s|^{\frac{2}{p}},
$$

4.1 The Brownian rough path

Given $n \geq 1$, set $\mathcal{F}_{n}:=\sigma\left\{B_{k 2^{-n}} ; 0 \leq k \leq 2^{n}\right\}$, and let $B_{\bullet}^{(n)}$ be the continuous piecewise linear path that coincides with B at dyadic times $k 2^{-n}$. Denote by $B^{(n), i}$ the coordinates of $B^{(n)}$. Setting

$$
\mathbb{B}_{t s}^{(n)}:=\int_{s}^{t} B_{u s}^{(n)} \otimes d B_{u}^{(n)}
$$

one has, for $j \neq k$,

$$
\begin{equation*}
B_{t s}^{(n)}=\mathbb{E}\left[B_{t s} \mid \mathscr{F}_{n}\right], \quad \mathbb{B}_{t s}^{(n), j k}=\mathbb{E}\left[\mathbb{B}_{t s}^{s, j k} \mid \mathscr{F}_{n}\right], \tag{15}
\end{equation*}
$$

and $\mathbb{B}_{t s}^{(n), i i}=\frac{1}{2}\left(B_{t s}^{(n), i}\right)^{2}$.

- Proposition - The Hölder p-rough path $\boldsymbol{B}^{(n)}:=\left(B^{(n)}, \mathbb{B}^{(n)}\right)$ converges almost-surely to B^{S} in the Hölder p-rough path topology.
- Proof - To get the almost-sure uniform bound

$$
\begin{equation*}
\sup _{n}\left\|\mathbf{B}^{(n)}\right\|<\infty \tag{16}
\end{equation*}
$$

notice that the estimates

$$
\left|B_{t s}\right| \leq C_{p}|t-s|^{\frac{1}{p}}, \quad\left|\mathbb{B}_{t s}^{S, j k}\right| \leq C_{p}^{2}|t-s|^{\frac{2}{p}}
$$

obtained from Kolmogorov's regularity criterion with $C_{p} \in L^{q}$ for (any) $q>2$, give

$$
\left|B_{t s}^{(n)}\right| \leq \mathbb{E}\left[C_{p} \mid \mathscr{F}_{n}\right]|t-s|^{\frac{1}{p}}, \quad\left|\mathbb{B}_{t s}^{(n) . j k}\right| \leq \mathbb{E}\left[C_{p}^{2} \mid \mathscr{F}_{n}\right]|t-s|^{\frac{2}{p}},
$$

so the uniform estimate (16) follows from Doob's maximal inequality.

4.2 Rough and stochastic integrals

- Proposition - Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by B, adapted to the Brownian filtration, with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration.

4.2 Rough and stochastic integrals

- Proposition - Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by B, adapted to the Brownian filtration, with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration. Then we have almost-surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

4．2 Rough and stochastic integrals

－Proposition－Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$－valued path controlled by B ，adapted to the Brownian filtration，with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration． Then we have almost－surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

－Proof－One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}=\lim _{|x| \mid 00} \sum_{i}\left(F_{t_{i}} B_{t_{i+1} t_{i}}+F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right)
$$

and

$$
\int_{0}^{1} F_{s} d B_{s}=\lim _{|\pi| \backslash 0}-\text { probab } \sum_{i} F_{t_{i}} B_{t_{i+1} t_{i}}
$$

4．2 Rough and stochastic integrals

－Proposition－Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$－valued path controlled by B ，adapted to the Brownian filtration，with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration． Then we have almost－surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

－Proof－Suffices to see that

$$
\sum_{i} F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1}} t_{i} \xrightarrow{|\pi| \mid \cup 0} 0
$$

4.2 Rough and stochastic integrals

- Proposition - Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by B, adapted to the Brownian filtration, with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration. Then we have almost-surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

- Proof - Suffices to see that

$$
\sum_{i} F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1}} t_{i} \xrightarrow\left[|\pi|\lfloor 0]{\stackrel{L^{2}}{\longrightarrow}} 0\right.
$$

- If F^{\prime} bounded above by M, then, since F^{\prime} is adapted and independent of $\mathbb{B}_{t_{i+1} t_{i}}^{\prime}$, conditioning gives

4.2 Rough and stochastic integrals

- Proposition - Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by B, adapted to the Brownian filtration, with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration. Then we have almost-surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

- Proof - Suffices to see that

$$
\sum_{i} F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1}} t_{i} \xrightarrow\left[|\pi|\lfloor 0]{\stackrel{L^{2}}{\longrightarrow}} 0\right.
$$

- If F^{\prime} bounded above by M, then, since F^{\prime} is adapted and independent of $\mathbb{B}_{t_{i+1} t_{i}}^{\prime}$, conditioning gives

$$
\left\|\sum_{i} F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right\|_{L^{2}}^{2}=\sum_{i}\left\|F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right\|_{L^{2}}^{2} \leq M^{2} \sum_{i}\left\|\mathbb{B}_{t_{i+1} t_{i}}\right\|_{L^{2}}^{2} \leq M^{2}|\pi| .
$$

4.2 Rough and stochastic integrals

- Proposition - Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by B, adapted to the Brownian filtration, with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration. Then we have almost-surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

- Proof - Suffices to see that

$$
\sum_{i} F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1}} t_{i} \xrightarrow{\stackrel{L^{2}}{|r| \cup 0} 0} 0
$$

- Otherwise introduce the stopping time

$$
\tau_{M}:=\inf \left\{u \in[0,1] ;\left|F_{u}^{\prime}\right|>M\right\} \wedge 1 .
$$

4.2 Rough and stochastic integrals

- Proposition - Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by B, adapted to the Brownian filtration, with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration. Then we have almost-surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

- Proof - Suffices to see that

$$
\sum_{i} F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1}} t_{i} \xrightarrow\left[|\pi|\lfloor 0]{\stackrel{L^{2}}{\longrightarrow}} 0\right.
$$

- Otherwise introduce the stopping time

$$
\tau_{M}:=\inf \left\{u \in[0,1] ;\left|F_{u}^{\prime}\right|>M\right\} \wedge 1 .
$$

Then we have proved that

$$
\int_{0}^{\tau_{M}}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}=\int_{0}^{1} F_{s}^{\tau M} d B_{s}
$$

4.2 Rough and stochastic integrals

- Proposition - Let $\left(F_{s}\right)_{0 \leq s \leq 1}$ be an $L\left(\mathbb{R}^{\ell}, \mathbb{R}^{d}\right)$-valued path controlled by B, adapted to the Brownian filtration, with derivative process $\left(F_{s}^{\prime}\right)_{0 \leq s \leq 1}$ also adapted to that filtration. Then we have almost-surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right)_{s} d B_{s}^{\prime}=\int_{0}^{1} F_{s} d B_{s}
$$

- Proof - Suffices to see that

$$
\sum_{i} F_{t_{i}}^{\prime} \mathbb{B}_{t_{i+1}} t_{i} \xrightarrow[|\pi| \backslash 0]{\stackrel{L^{2}}{\longrightarrow}} 0
$$

- Otherwise introduce the stopping time

$$
\tau_{M}:=\inf \left\{u \in[0,1] ;\left|F_{u}^{\prime}\right|>M\right\} \wedge 1 .
$$

Then we have proved that

$$
\int_{0}^{\tau_{M}}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}=\int_{0}^{1} F_{s}^{\tau_{M}} d B_{s}
$$

so pass to the limit $M \rightarrow \infty$.

4.2 Rough and stochastic integrals

- Corollary - Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

4．2 Rough and stochastic integrals

－Corollary－Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

－Proof－One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{S}+(\star)
$$

4.2 Rough and stochastic integrals

- Corollary - Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

- Proof - One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{s}+(\star)
$$

with a well-defined additional term

$$
(\star):=\lim _{|\pi| \searrow 0} \sum_{i} F_{t_{i}}^{\prime} \frac{1}{2}\left(t_{i+1}-t_{i}\right) \text { Id. }
$$

4.2 Rough and stochastic integrals

- Corollary - Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

- Proof - One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{S}+(\star)
$$

with a well-defined additional term

$$
(\star):=\lim _{|\pi|>0} \sum_{i} F_{t_{i}}^{\prime} \frac{1}{2}\left(t_{i+1}-t_{i}\right) \text { Id. }
$$

Denote by $\operatorname{Sym}(A)$ the symmetric part of a matrix A and recall that

$$
\frac{1}{2}\left(t_{i+1}-t_{i}\right) \operatorname{Id}=\operatorname{Sym}\left(\mathbb{B}_{t_{i+1} t_{i}}^{S}\right)-\operatorname{Sym}\left(\mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right)=\frac{1}{2} B_{t_{i+1} t_{i}}^{\otimes 2}-\operatorname{Sym}\left(\mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right)
$$

4.2 Rough and stochastic integrals

- Corollary - Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{s}
$$

- Proof - One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{S}+(\star)
$$

with a well-defined additional term

$$
(\star):=\lim _{|\pi|>0} \sum_{i} F_{t_{i}}^{\prime} \frac{1}{2}\left(t_{i+1}-t_{i}\right) \mathrm{Id} .
$$

Denote by $\operatorname{Sym}(A)$ the symmetric part of a matrix A and recall that

$$
\frac{1}{2}\left(t_{i+1}-t_{i}\right) \operatorname{Id}=\operatorname{Sym}\left(\mathbb{B}_{t_{i+1} t_{i}}^{S}\right)-\operatorname{Sym}\left(\mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right)=\frac{1}{2} B_{t_{i+1} t_{i}}^{\otimes 2}-\operatorname{Sym}\left(\mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right)
$$

One sees as above that $\sum_{i} F_{t_{i}}^{\prime} \operatorname{Sym}\left(\mathbb{B}_{t_{i+1} t_{i}}^{\prime}\right)$ converges to 0 in L^{2}.

4.2 Rough and stochastic integrals

- Corollary - Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

- Proof - One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{s}+(\star)
$$

with a well-defined additional term

$$
(\star):=\lim _{|\pi|>0} \sum_{i} F_{t_{i}}^{\prime} \frac{1}{2}\left(t_{i+1}-t_{i}\right) \text { Id. }
$$

So

$$
(\star) \stackrel{\text { a.s. }}{=} \lim _{|\pi|>0} \frac{1}{2} \sum_{i} F_{t_{i}}^{\prime} B_{t_{i+1} t_{i}}^{\otimes 2}
$$

4.2 Rough and stochastic integrals

- Corollary - Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

- Proof - One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{s}+(\star)
$$

with a well-defined additional term

$$
(\star):=\lim _{|\pi| \searrow 0} \sum_{i} F_{t_{i}}^{\prime} \frac{1}{2}\left(t_{i+1}-t_{i}\right) \text { Id. }
$$

So

$$
(\star) \stackrel{\text { a.s. }}{=} \lim _{|\pi| \searrow 0} \frac{1}{2} \sum_{i} F_{t_{i}}^{\prime} B_{t_{i+1} t_{j}}^{\otimes 2}
$$

But since

$$
F_{t_{i}}^{\prime} B_{t_{i+1} t_{i}}=F_{t_{i+1} t_{i}}+\mathrm{R}_{t_{i+1} t_{i}}
$$

for a $\frac{2}{p}$-Hölder remainder term R

4．2 Rough and stochastic integrals

－Corollary－Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

－Proof－One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{s}+(\star)
$$

with a well－defined additional term

$$
(\star):=\lim _{|\pi|>0} \sum_{i} F_{t_{i}}^{\prime} \frac{1}{2}\left(t_{i+1}-t_{i}\right) \mathrm{Id} .
$$

So

$$
(\star) \stackrel{\text { a.s. }}{=} \lim _{|\pi|>0} \frac{1}{2} \sum_{i} F_{t_{i}}^{\prime} B_{t_{i+1} t_{i}}^{\otimes 2}
$$

But since

$$
F_{t_{i}}^{\prime} B_{t_{i+1} t_{i}}=F_{t_{i+1} t_{i}}+\mathrm{R}_{t_{i+1} t_{i}}
$$

for a $\frac{2}{p}$－Hölder remainder term R ，the above sum equals

$$
\frac{1}{2}\left(\sum_{i} F_{t_{i+1} t_{i}} B_{t_{i+1} t_{i}}\right)+o_{|\pi|}(1)
$$

4.2 Rough and stochastic integrals

- Corollary - Under the above assumptions one has almost surely

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1} F_{S} \circ d B_{S}
$$

- Proof - One has

$$
\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{S}=\int_{0}^{1}\left(F, F^{\prime}\right) d \mathbf{B}^{\prime}+(\star)=\int_{0}^{1} F_{S} d B_{S}+(\star)
$$

with a well-defined additional term

$$
(\star):=\lim _{|\pi|>0} \sum_{i} F_{t_{i}}^{\prime} \frac{1}{2}\left(t_{i+1}-t_{i}\right) \text { Id. }
$$

So

$$
(\star) \stackrel{\text { a.s. }}{=} \lim _{|\pi|>0} \frac{1}{2} \sum_{i} F_{t_{i}}^{\prime} B_{t_{i+1} t_{i}}^{\otimes 2}
$$

But since

$$
F_{t_{i}}^{\prime} B_{t_{i+1} t_{i}}=F_{t_{i+1} t_{i}}+\mathrm{R}_{t_{i+1}} t_{i}
$$

for a $\frac{2}{p}$-Hölder remainder term R, the above sum equals

$$
\frac{1}{2}\left(\sum_{i} F_{t_{i+1} t_{i}} B_{t_{i+1} t_{i}}\right)+o_{|\pi|}(1)
$$

We recognize a quantity which converges in probability to the bracket $\langle F, B\rangle$.

4.3 Rough and stochastic differential equations

- Corollary - Let $F=\left(V_{1}, \ldots, V_{\ell}\right)$ be C_{b}^{3} vector fields on \mathbb{R}^{d}.

4．3 Rough and stochastic differential equations

－Corollary－Let $F=\left(V_{1}, \ldots, V_{\ell}\right)$ be C_{b}^{3} vector fields on \mathbb{R}^{d} ．The solution to the rough differential equation

$$
\begin{equation*}
d x_{t}=F\left(x_{t}\right) d \boldsymbol{B}_{t}^{S} \tag{17}
\end{equation*}
$$

4.3 Rough and stochastic differential equations

- Corollary - Let $F=\left(V_{1}, \ldots, V_{\ell}\right)$ be C_{b}^{3} vector fields on \mathbb{R}^{d}. The solution to the rough differential equation

$$
\begin{equation*}
d x_{t}=F\left(x_{t}\right) d \boldsymbol{B}_{t}^{S} \tag{17}
\end{equation*}
$$

coincides almost-surely with the solution to the Stratonovich differential equation

$$
d z_{t}=V_{i}\left(z_{t}\right) \circ d B_{t}^{i}
$$

4.3 Rough and stochastic differential equations

- Corollary - Let $F=\left(V_{1}, \ldots, V_{\ell}\right)$ be C_{b}^{3} vector fields on \mathbb{R}^{d}. The solution to the rough differential equation

$$
\begin{equation*}
d x_{t}=F\left(x_{t}\right) d \boldsymbol{B}_{t}^{S} \tag{17}
\end{equation*}
$$

coincides almost-surely with the solution to the Stratonovich differential equation

$$
d z_{t}=V_{i}\left(z_{t}\right) \circ d B_{t}^{i}
$$

- Proof - We saw that solving (17) is equivalent to satisfying

$$
x_{t}=x_{0}+\int_{0}^{t}\left(F(\cdot),(D F)(F(\cdot))\left(x_{s}\right) d \mathbf{B}_{s}^{S}\right.
$$

4.3 Rough and stochastic differential equations

- Corollary - Let $F=\left(V_{1}, \ldots, V_{\ell}\right)$ be C_{b}^{3} vector fields on \mathbb{R}^{d}. The solution to the rough differential equation

$$
\begin{equation*}
d x_{t}=F\left(x_{t}\right) d \boldsymbol{B}_{t}^{S} \tag{17}
\end{equation*}
$$

coincides almost-surely with the solution to the Stratonovich differential equation

$$
d z_{t}=V_{i}\left(z_{t}\right) \circ d B_{t}^{i}
$$

- Proof - We saw that solving (17) is equivalent to satisfying

$$
x_{t}=x_{0}+\int_{0}^{t}\left(F(\cdot),(D F)(F(\cdot))\left(x_{s}\right) d \mathbf{B}_{s}^{S}\right.
$$

Given the previous corollary, it suffices to see that the path x is adapted to the Brownian filtration.

4.3 Rough and stochastic differential equations

- Corollary - Let $F=\left(V_{1}, \ldots, V_{\ell}\right)$ be C_{b}^{3} vector fields on \mathbb{R}^{d}. The solution to the rough differential equation

$$
\begin{equation*}
d x_{t}=F\left(x_{t}\right) d \boldsymbol{B}_{t}^{S} \tag{17}
\end{equation*}
$$

coincides almost-surely with the solution to the Stratonovich differential equation

$$
d z_{t}=V_{i}\left(z_{t}\right) \circ d B_{t}^{i}
$$

- Proof - We saw that solving (17) is equivalent to satisfying

$$
x_{t}=x_{0}+\int_{0}^{t}\left(F(\cdot),(D F)(F(\cdot))\left(x_{s}\right) d \mathbf{B}_{s}^{S}\right.
$$

Given the previous corollary, it suffices to see that the path x is adapted to the Brownian filtration. This is clear from its construction as $\varphi_{t s}\left(x_{0}\right)$ with the solution flow φ built using the non-anticipative schemes $\mu_{t s}$.

4.3 Rough and stochastic differential equations

- Corollary (Wong-Zakai) - The solution path to the ordinary differential equation

$$
\begin{equation*}
d x_{t}^{(n)}=F\left(x_{t}^{(n)}\right) d B_{t}^{(n)} \tag{18}
\end{equation*}
$$

4.3 Rough and stochastic differential equations

- Corollary (Wong-Zakai) - The solution path to the ordinary differential equation

$$
\begin{equation*}
d x_{t}^{(n)}=F\left(x_{t}^{(n)}\right) d B_{t}^{(n)} \tag{18}
\end{equation*}
$$

converges almost-surely to the solution path to the Stratonovich differential equation

$$
d x_{t}=F\left(x_{t}\right) \circ d B_{t}
$$

4.3 Rough and stochastic differential equations

- Corollary (Wong-Zakai) - The solution path to the ordinary differential equation

$$
\begin{equation*}
d x_{t}^{(n)}=F\left(x_{t}^{(n)}\right) d B_{t}^{(n)} \tag{18}
\end{equation*}
$$

converges almost-surely to the solution path to the Stratonovich differential equation

$$
d x_{t}=F\left(x_{t}\right) \circ d B_{t}
$$

- Proof - It suffices to notice that solving the rough differential equation

$$
d z_{t}^{(n)}=F\left(z_{t}^{(n)}\right) d \mathbf{B}_{t}^{(n)}
$$

is equivalent to solving equation (18).

Thank you all for attending the lectures!

