## Rough differential equations





▲□▶ ▲圖▶ ▲国▶ ▲国

12

Make sense of the deterministic controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i,$$

driven by a control *h* of low regularity, say  $\alpha$ -Hölder with  $0 < \alpha < 1$ , and get a solution *x* that is a continuous function of the control *h*, unlike e.g. in Itô' stochastic integration theory where *x* is only a measurable function of the (semimartingale) control.

Make sense of the deterministic controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i,$$

driven by a control *h* of low regularity, say  $\alpha$ -Hölder with  $0 < \alpha < 1$ , and get a solution *x* that is a continuous function of the control *h*, unlike e.g. in Itô' stochastic integration theory where *x* is only a measurable function of the (semimartingale) control.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

One expects the path x to be  $\alpha$ -Hölder, and V(x) as well.

Make sense of the deterministic controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i,$$

driven by a control *h* of low regularity, say  $\alpha$ -Hölder with  $0 < \alpha < 1$ , and get a solution *x* that is a continuous function of the control *h*, unlike e.g. in Itô' stochastic integration theory where *x* is only a measurable function of the (semimartingale) control.

One expects the path x to be  $\alpha$ -Hölder, and V(x) as well.

A problem of analysis about products – The product  $V(x)dh \mid \alpha \cdot (\alpha - 1)$ , is well-defined as a continuous function of V(x) and dh iff  $\alpha + (\alpha - 1) > 0$ , i.e.  $\alpha > \frac{1}{2}$ .

Make sense of the deterministic controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i,$$

driven by a control *h* of low regularity, say  $\alpha$ -Hölder with  $0 < \alpha < 1$ , and get a solution *x* that is a continuous function of the control *h*, unlike e.g. in Itô' stochastic integration theory where *x* is only a measurable function of the (semimartingale) control.

One expects the path x to be  $\alpha$ -Hölder, and V(x) as well.

A problem of analysis about products – The product  $V(x)dh \mid \alpha \cdot (\alpha - 1)$ , is well-defined as a continuous function of V(x) and dh iff  $\alpha + (\alpha - 1) > 0$ , i.e.  $\alpha > \frac{1}{2}$ .

What can be done for  $\alpha \leq \frac{1}{2}$ ?

▶ Lyons' no go theorem – Given  $\alpha < \frac{1}{2}$ , there exists no continuous functional  $l : C^{\alpha}([0, 1], \mathbb{R}) \times C^{\alpha}([0, 1], \mathbb{R}) \to \mathbb{R}$ , such that if x, y are trigonometric polynomials, then  $l(y, h) = \int_{0}^{1} y_{t} dh_{t}$ .

Make sense of the deterministic controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i,$$

driven by a control *h* of low regularity, say  $\alpha$ -Hölder with  $0 < \alpha < 1$ , and get a solution *x* that is a continuous function of the control *h*, unlike e.g. in Itô' stochastic integration theory where *x* is only a measurable function of the (semimartingale) control.

One expects the path x to be  $\alpha$ -Hölder, and V(x) as well.

A problem of analysis about products – The product  $V(x)dh \mid \alpha \cdot (\alpha - 1)$ , is well-defined as a continuous function of V(x) and dh iff  $\alpha + (\alpha - 1) > 0$ , i.e.  $\alpha > \frac{1}{2}$ .

What can be done for  $\alpha \leq \frac{1}{2}$ ?

▶ Lyons' no go theorem – Given  $\alpha < \frac{1}{2}$ , there exists no continuous functional  $I: C^{\alpha}([0, 1], \mathbb{R}) \times C^{\alpha}([0, 1], \mathbb{R}) \to \mathbb{R}$ , such that if *x*, *y* are trigonometric polynomials, then  $I(y, h) = \int_{0}^{1} y_{t} dh_{t}$ .

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Different approaches – Lyons (98'), Davie (03'), Gubinelli (04'), Friz-Victoir (08'), Bailleul (12'), Lyons & Yang (15').

A 'numerical' scheme for a time evolution

```
\mu_{ts}: \mathbb{R}^d \mapsto \mathbb{R}^d, \quad (0 \le s \le t \le T < \infty),
```

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

A 'numerical' scheme for a time evolution

```
\mu_{ts}: \mathbb{R}^d \mapsto \mathbb{R}^d, \quad (0 \le s \le t \le T < \infty),
```

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

**Self-improving**: There is an exponent a > 1 such that

 $\left\|\mu_{tu}\circ\mu_{us}-\mu_{ts}\right\|_{C^1}\lesssim |t-s|^a,\quad (0\leq s\leq u\leq t\leq T).$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A 'numerical' scheme for a time evolution

$$\mu_{ts}: \mathbb{R}^d \mapsto \mathbb{R}^d, \quad (0 \le s \le t \le T < \infty),$$

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

**Self-improving**: There is an exponent a > 1 such that

$$\left\|\mu_{tu}\circ\mu_{us}-\mu_{ts}\right\|_{C^{1}}\lesssim\left|t-s\right|^{a},\quad(0\leq s\leq u\leq t\leq T).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A flow  $\varphi = (\varphi_{ba} : \mathbb{R}^d \mapsto \mathbb{R}^d)_{0 \le a \le b \le T}$  $\varphi_{tu} \circ \varphi_{us} = \varphi_{ts}, \quad (0 \le s \le u \le t \le T).$ 

A 'numerical' scheme for a time evolution

$$\mu_{ts}: \mathbb{R}^d \mapsto \mathbb{R}^d, \quad (0 \le s \le t \le T < \infty),$$

approximate description of the evolution of a system between times s and t. Perturbations of the identity map, for s, t close.

**Self-improving**: There is an exponent a > 1 such that

$$\left\|\mu_{tu}\circ\mu_{us}-\mu_{ts}\right\|_{C^{1}}\lesssim\left|t-s\right|^{a},\quad\left(0\leq s\leq u\leq t\leq T\right).$$

A flow  $\varphi = (\varphi_{ba} : \mathbb{R}^d \mapsto \mathbb{R}^d)_{0 \le a \le b \le T}$  $\varphi_{tu} \circ \varphi_{us} = \varphi_{ts}, \quad (0 \le s \le u \le t \le T).$ 

► Theorem – One can associate to any self-improving numerical scheme a unique flow  $\varphi$  such that

$$\left\|\varphi_{ts}-\mu_{ts}\right\|_{C^{0}}\lesssim|t-s|^{a}$$

Moreover

$$\left\|\varphi_{ts}-\mu_{\pi_{ts}}\right\|_{C^0} \lesssim |\pi_{ts}|^{a-1},$$

for any partition  $\pi_{ts} = \{s < s_1 < \cdots < s_n < t\}$  of any interval [s, t], with

$$\mu_{\pi_{ts}} := \bigcirc_{i=0}^n \mu_{s_{i+1}s_i}$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - の々で

A generalised notion of control  $h : [0, T] \to \mathbb{R}^{\ell}$ , in a controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i =: V_i(x_t) dh_t^i.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A generalised notion of control  $h: [0, T] \to \mathbb{R}^{\ell}$ , in a controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i =: V_i(x_t) dh_t^i.$$

► Key elementary remark – For all  $f \in C^{\infty}(\mathbb{R}^d, \mathbb{R}), 0 \le s \le t \le T$ ,

 $f(x_t) = f(x_s) + h_{ts}^{i}(V_i f)(x_s) + \left(\int_{s}^{t} \int_{s}^{s_1} dh_{s_2}^{i} dh_{s_1}^{k}\right) (V_j V_k f)(x_s) + O(|t-s|^3),$ 

《曰》 《聞》 《臣》 《臣》 三臣 …

with vector fields  $V_i$  seen as first order differential operators.

A generalised notion of control  $h: [0, T] \to \mathbb{R}^{\ell}$ , in a controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i =: V_i(x_t) dh_t^i.$$

► Key elementary remark – For all  $f \in C^{\infty}(\mathbb{R}^d, \mathbb{R}), 0 \le s \le t \le T$ ,

$$f(x_t) = f(x_s) + h_{ts}^i(V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^j dh_{s_1}^k\right) (V_j V_k f)(x_s) + O(|t-s|^3),$$

with vector fields  $V_i$  seen as first order differential operators.

Pick  $2 \le p < 3$ . A Hölder *p*-rough path is a function

$$\left(\mathbf{X}_{ts} = (X_{ts}, \mathbb{X}_{ts})\right)_{0 \le s \le t \le T}, \quad X_{ts} = \left(X_{ts}^{i}\right)_{1 \le i \le \ell} \in \mathbb{R}^{\ell}, \ \mathbb{X}_{ts} = \left(\mathbb{X}_{ts}^{ik}\right)_{1 \le j,k \le \ell} \in \mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}$$

that plays the role of the collection of expansion coefficients

$$(h_{ts}^{i})_{1\leq i\leq \ell}, \quad \left(\int_{s}^{t}\int_{s}^{s_{1}}dh_{s_{2}}^{i}dh_{s_{1}}^{k}\right)_{1\leq j,k\leq \ell}$$

A generalised notion of control  $h: [0, T] \to \mathbb{R}^{\ell}$ , in a controlled ordinary differential equation

$$dx_t = \sum_{i=1}^{\ell} V_i(x_t) dh_t^i =: V_i(x_t) dh_t^i.$$

► Key elementary remark – For all  $f \in C^{\infty}(\mathbb{R}^d, \mathbb{R}), 0 \le s \le t \le T$ ,

$$f(x_t) = f(x_s) + h_{ts}^i(V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^j dh_{s_1}^k\right) (V_j V_k f)(x_s) + O(|t-s|^3),$$

with vector fields  $V_i$  seen as first order differential operators.

Pick  $2 \le p < 3$ . A Hölder *p*-rough path is a function

$$\left(\mathbf{X}_{ts} = (X_{ts}, \mathbb{X}_{ts})\right)_{0 \le s \le t \le T}, \quad X_{ts} = \left(X_{ts}^{j}\right)_{1 \le i \le \ell} \in \mathbb{R}^{\ell}, \ \mathbb{X}_{ts} = \left(\mathbb{X}_{ts}^{jk}\right)_{1 \le j, k \le \ell} \in \mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}$$

that plays the role of the collection of expansion coefficients

$$(h_{ts}^{i})_{1 \le i \le \ell}, \quad \left(\int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{i} dh_{s_{1}}^{k}\right)_{1 \le j,k \le \ell}$$

subject to

size constraints

$$|X_{ts}| \leq |t-s|^{1/p}, \quad |\mathbb{X}_{ts}| \leq |t-s|^{2/p}$$

algebraic constraints (relations amongst the coefficients), for all s ≤ u ≤ t,

 $\mathbf{X}_{us}\mathbf{X}_{tu} = \mathbf{X}_{ts}.$ 

《口》 《御》 《注》 《注》 [注]

# D. Numerical schemes associated to rough differential equations

Given vector fields  $V_1, \ldots, V_\ell$  on  $\mathbb{R}^d$  and a rough path  $\mathbf{X} = (X, \mathbb{X})$ , one can construct explicitly a self improving numerical scheme  $(\mu_{ts})_{0 \le s \le t \le T}$  such that for all  $x \in \mathbb{R}^d$ , for all  $f \in C_b^3(\mathbb{R}^d, \mathbb{R})$ ,

 $f(\mu_{ts}(x)) = f(x) + X_{ts}^{i}(V_{i}f)(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k}f)(x) + O_{f}(|t-s|^{3/p}).$ 

# D. Numerical schemes associated to rough differential equations

Given vector fields  $V_1, \ldots, V_\ell$  on  $\mathbb{R}^d$  and a rough path  $\mathbf{X} = (X, \mathbb{X})$ , one can construct explicitly a self improving numerical scheme  $(\mu_{ts})_{0 \le s \le t \le T}$  such that for all  $x \in \mathbb{R}^d$ , for all  $f \in C_b^3(\mathbb{R}^d, \mathbb{R})$ ,

 $f(\mu_{ts}(x)) = f(x) + X_{ts}^{i}(V_{i}f)(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k}f)(x) + O_{f}(|t-s|^{3/p}).$ 

Compare with the local expansion property of solutions of controlled ordinary differential equations

 $f(x_t) = f(x_s) + h_{ts}^i(V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^j dh_{s_1}^k\right) (V_j V_k f)(x_s) + O(|t-s|^3).$ 

# D. Numerical schemes associated to rough differential equations

Given vector fields  $V_1, \ldots, V_\ell$  on  $\mathbb{R}^d$  and a rough path  $\mathbf{X} = (X, \mathbb{X})$ , one can construct explicitly a self improving numerical scheme  $(\mu_{ts})_{0 \le s \le t \le T}$  such that for all  $x \in \mathbb{R}^d$ , for all  $f \in C_b^3(\mathbb{R}^d, \mathbb{R})$ ,

 $f(\mu_{ts}(x)) = f(x) + X_{ts}^{i}(V_{i}f)(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k}f)(x) + O_{f}(|t-s|^{3/p}).$ 

Compare with the local expansion property of solutions of controlled ordinary differential equations

$$f(x_t) = f(x_s) + h_{ts}^i(V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^j dh_{s_1}^k\right) (V_j V_k f)(x_s) + O(|t-s|^3).$$

The unique flow associated with the numerical scheme  $\mu$  by the above Theorem is the solution flow to the rough differential equation

 $dx_t = V(x_t) d\mathbf{X}_t.$ 

Rewrite the expansion property

$$f(\mu_{ts}(x)) = f(x) + X_{ts}^{i}(V_{i}f)(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k}f)(x) + O_{f}(|t-s|^{3/p}).$$

under the form

$$f \circ \mu_{ts} =: V(\mathbf{X}_{ts})f + O_f(|t-s|^{>1}).$$

$$\tag{1}$$

Rewrite the expansion property

$$f(\mu_{ts}(x)) = f(x) + X_{ts}^{i}(V_{i}f)(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k}f)(x) + O_{f}(|t-s|^{3/p}).$$

under the form

$$f \circ \mu_{ts} =: V(\mathbf{X}_{ts})f + O_f(|t-s|^{>1}).$$

$$\tag{1}$$

In particular

$$\mu_{ts} = V(\mathbf{X}_{ts}) \mathrm{Id} + O(|t-s|^{>1}).$$

Rewrite the expansion property

$$f(\mu_{ts}(x)) = f(x) + X_{ts}^{i}(V_{i}f)(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k}f)(x) + O_{f}(|t-s|^{3/p}).$$

under the form

$$f \circ \mu_{ts} =: V(\mathbf{X}_{ts})f + O_f(|t-s|^{>1}).$$
(1)

In particular

$$\mu_{ts} = V(\mathbf{X}_{ts}) \mathrm{Id} + O(|t - s|^{>1}).$$

One can write

$$\mathbf{X}_{ts} = \exp(\Lambda_{ts}),$$

and  $V(\Lambda_{ts})$  is a vector field.

Rewrite the expansion property

$$f(\mu_{ts}(x)) = f(x) + X_{ts}^{i}(V_{i}f)(x) + \mathbb{X}_{ts}^{jk}(V_{j}V_{k}f)(x) + O_{f}(|t-s|^{3/p}).$$

under the form

$$f \circ \mu_{ts} =: V(\mathbf{X}_{ts})f + O_f(|t-s|^{>1}).$$

$$\tag{1}$$

<ロト <四ト <注入 <注下 <注下 <

In particular

$$\mu_{ts} = V(\mathbf{X}_{ts}) \mathrm{Id} + O(|t-s|^{>1}).$$

One can write

$$\mathbf{X}_{ts} = \exp(\Lambda_{ts})$$

and  $V(\Lambda_{ts})$  is a vector field. Define

$$\mu_{ts} := e^{V(\Lambda_{ts})}$$

as the time 1 map of the ordinary differential equation

$$\dot{y}_u = V(\Lambda_{ts})(y_u).$$

Then

 $f \circ \mu_{ts} = e^{V(\Lambda_{ts})} f$ 



Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})} f$$
$$= V(e^{\Lambda_{ts}})f + O(|t-s|^{>1})$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})}f$$
$$= V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$$
$$= V(\mathbf{X}_{ts})f + O(|t - s|^{>1})'$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})}f$$
  
=  $V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$   
=  $V(\mathbf{X}_{ts})f + O(|t - s|^{>1})',$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

so  $\mu_{ts}$  has the expected expansion property (1)

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})} f$$
$$= V(e^{\Lambda_{ts}})f + O(|t-s|^{>1})$$
$$= V(\mathbf{X}_{ts})f + O(|t-s|^{>1})',$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

so  $\mu_{ts}$  has the expected expansion property (1), and

$$\mu_{tu} \circ \mu_{us} = V(\mathbf{X}_{us})\mu_{tu} + O(|u-s|^{>1})$$

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})}f$$
  
=  $V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$   
=  $V(\mathbf{X}_{ts})f + O(|t - s|^{>1})',$ 

so  $\mu_{ts}$  has the expected expansion property (1), and

$$\mu_{tu} \circ \mu_{us} = V(\mathbf{X}_{us})\mu_{tu} + O(|u - s|^{>1})$$
  
=  $V(\mathbf{X}_{us})(V(\mathbf{X}_{tu})\text{Id} + O(|t - u|^{>1})) + O(|u - s|^{>1})$ 

<ロト <四ト <注入 <注入 = 1 = 1

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})}f$$
  
=  $V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$   
=  $V(\mathbf{X}_{ts})f + O(|t - s|^{>1})',$ 

so  $\mu_{ts}$  has the expected expansion property (1), and

$$\mu_{tu} \circ \mu_{us} = V(\mathbf{X}_{us})\mu_{tu} + O(|u-s|^{>1})$$
  
=  $V(\mathbf{X}_{us})(V(\mathbf{X}_{tu})\mathrm{Id} + O(|t-u|^{>1})) + O(|u-s|^{>1})$   
=  $V(\mathbf{X}_{us})V(\mathbf{X}_{tu})\mathrm{Id} + O(|t-s|^{>1})$ 

<ロト <回ト < 国ト < 国ト < 国ト 三 国

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})}f$$
  
=  $V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$   
=  $V(\mathbf{X}_{ts})f + O(|t - s|^{>1})',$ 

so  $\mu_{ts}$  has the expected expansion property (1), and

$$\begin{split} \mu_{tu} \circ \mu_{us} &= V(\mathbf{X}_{us})\mu_{tu} + O(|u-s|^{>1}) \\ &= V(\mathbf{X}_{us}) \Big( V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t-u|^{>1}) \Big) + O(|u-s|^{>1}) \\ &= V(\mathbf{X}_{us}) V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t-s|^{>1}) \\ &= V(\mathbf{X}_{us} \mathbf{X}_{tu}) \mathrm{Id} + O(|t-s|^{>1})' \end{split}$$

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})}f$$
  
=  $V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$   
=  $V(\mathbf{X}_{ts})f + O(|t - s|^{>1})',$ 

so  $\mu_{ts}$  has the expected expansion property (1), and

$$\begin{split} \mu_{tu} \circ \mu_{us} &= V(\mathbf{X}_{us})\mu_{tu} + O(|u - s|^{>1}) \\ &= V(\mathbf{X}_{us}) \Big( V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t - u|^{>1}) \Big) + O(|u - s|^{>1}) \\ &= V(\mathbf{X}_{us}) V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t - s|^{>1}) \\ &= V(\mathbf{X}_{us}\mathbf{X}_{tu}) \mathrm{Id} + O(|t - s|^{>1})' \\ &= V(\mathbf{X}_{ts}) \mathrm{Id} + O(|t - s|^{>1})' \end{split}$$

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})}f$$
  
=  $V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$   
=  $V(\mathbf{X}_{ts})f + O(|t - s|^{>1})',$ 

so  $\mu_{ts}$  has the expected expansion property (1), and

$$\begin{split} \mu_{tu} \circ \mu_{us} &= V(\mathbf{X}_{us})\mu_{tu} + O(|u - s|^{>1}) \\ &= V(\mathbf{X}_{us}) \Big( V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t - u|^{>1}) \Big) + O(|u - s|^{>1}) \\ &= V(\mathbf{X}_{us}) V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t - s|^{>1}) \\ &= V(\mathbf{X}_{us}\mathbf{X}_{tu}) \mathrm{Id} + O(|t - s|^{>1})' \\ &= V(\mathbf{X}_{ts}) \mathrm{Id} + O(|t - s|^{>1})' \\ &= \mu_{ts} + O(|t - s|^{>1})' \end{split}$$

Then

$$f \circ \mu_{ts} = e^{V(\Lambda_{ts})} f$$
  
=  $V(e^{\Lambda_{ts}})f + O(|t - s|^{>1})$   
=  $V(\mathbf{X}_{ts})f + O(|t - s|^{>1})'$ 

so  $\mu_{ts}$  has the expected expansion property (1), and

$$\begin{split} \mu_{tu} \circ \mu_{us} &= V(\mathbf{X}_{us})\mu_{tu} + O(|u - s|^{>1}) \\ &= V(\mathbf{X}_{us}) \Big( V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t - u|^{>1}) \Big) + O(|u - s|^{>1}) \\ &= V(\mathbf{X}_{us}) V(\mathbf{X}_{tu}) \mathrm{Id} + O(|t - s|^{>1}) \\ &= V(\mathbf{X}_{us} \mathbf{X}_{tu}) \mathrm{Id} + O(|t - s|^{>1})' \\ &= V(\mathbf{X}_{ts}) \mathrm{Id} + O(|t - s|^{>1})' \\ &= \mu_{ts} + O(|t - s|^{>1})', \end{split}$$

so  $\mu$  defines indeed an self-improving numerical scheme.

#### Lyons' approach

- Differential equations driven by rough signals. T.J. Lyons, *Rev. Mat. Iberoamericana*, **14**(2):215–310, (1998).
- Differential equations driven by rough paths. Lecture notes in Mathematics 1908, Saint Flour XXXIV – 2004.
- An introduction to rough paths. A. Lejay, Séminaire de Probabilités XXXVII:1–59, 2003.

・ロト ・母ト ・ヨト ・ヨー うへで

#### Lyons' approach

- Differential equations driven by rough signals. T.J. Lyons, *Rev. Mat. Iberoamericana*, **14**(2):215–310, (1998).
- Differential equations driven by rough paths. Lecture notes in Mathematics 1908, Saint Flour XXXIV – 2004.
- An introduction to rough paths. A. Lejay, Séminaire de Probabilités XXXVII:1–59, 2003.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

#### Davie

• Differential equations driven by rough signals: an approach via discrete approximation. *Appl. Math. Research Express*:1–40, (2008).

#### Lyons' approach

- Differential equations driven by rough signals. T.J. Lyons, *Rev. Mat. Iberoamericana*, **14**(2):215–310, (1998).
- Differential equations driven by rough paths. Lecture notes in Mathematics 1908, Saint Flour XXXIV – 2004.
- An introduction to rough paths. A. Lejay, Séminaire de Probabilités XXXVII:1–59, 2003.

#### Davie

• Differential equations driven by rough signals: an approach via discrete approximation. *Appl. Math. Research Express*:1–40, (2008).

#### Gubinelli's approach

- Controlling rough paths. J. Funct. Anal., 216:86-140, (2004).
- Curvilinear Integrals Along Enriched Paths. D. Feyel and A. de la Pradelle, *Elec. J. Probab.*,(34):860–892, (2006).
- A course on rough paths, with an introduction ro regularity structures. P. Friz and M. Hairer, Springer (2014). (Second edition to appear.)

#### Friz and Victoir's approach

• Multidimensional stochastic processes as rough paths, theory and applications. P. Friz and N. Victoir. *Cambridge studies in advanced mathematics*, **120**, (2010).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

 Diffusion Processes and Stochastic Calculus. F. Baudoin. EMS Textbooks in Mathematics, (2014).

#### Bibliography

#### Friz and Victoir's approach

- Multidimensional stochastic processes as rough paths, theory and applications. P. Friz and N. Victoir. *Cambridge studies in advanced mathematics*, **120**, (2010).
- Diffusion Processes and Stochastic Calculus. F. Baudoin. EMS Textbooks in Mathematics, (2014).

#### Bailleul's approach

- Flows driven by rough paths. *Rev. Math. Iberoamericana*, **31**(3):901–934, (2015).
- Rough flows. I. Bailleul and S. Riedel. J. Math. Soc. Japan, 71(3):915–978, (2019).
- The non-linear sewing lemma: I weak formulation. A. Brault and A. Lejay, *Elec. J. Probab.*,24(59):1–24, (2019). (Preprints: The non-linear sewing lemma: II & III.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▶ Definition –  $A C^1$ -approximate flow on  $\mathbb{R}^d$  is a family  $(\mu_{ts})_{0 \le s \le t \le T}$  of  $C^2$  maps from  $\mathbb{R}^d$  into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$\mu_{ts} - \operatorname{Id}_{C^2} = o_{t-s}(1) \tag{2}$$

and there exists positive constants  $c_1$  and a > 1, such that the inequality

$$\left\|\mu_{tu}\circ\mu_{us}-\mu_{ts}\right\|_{C^{1}}\leq c_{1}\left|t-s\right|^{a}$$
(3)

holds for all  $0 \le s \le u \le t \le T$ .



▶ Definition –  $A C^1$ -approximate flow on  $\mathbb{R}^d$  is a family  $(\mu_{ts})_{0 \le s \le t \le T}$  of  $C^2$  maps from  $\mathbb{R}^d$  into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$\mu_{ts} - \operatorname{Id}_{C^2} = o_{t-s}(1) \tag{2}$$

and there exists positive constants  $c_1$  and a > 1, such that the inequality

$$\|\mu_{tu} \circ \mu_{us} - \mu_{ts}\|_{C^1} \le c_1 |t - s|^a$$
 (3)

holds for all  $0 \le s \le u \le t \le T$ .

An example – Euler' scheme

 $\mu_{ts}(x) = x + V(x)(t-s),$ 

with  $V \in C_b^2(\mathbb{R}^d, \mathbb{R}^d)$ .

▶ Definition –  $A C^1$ -approximate flow on  $\mathbb{R}^d$  is a family  $(\mu_{ts})_{0 \le s \le t \le T}$  of  $C^2$  maps from  $\mathbb{R}^d$  into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$\mu_{ts} - \operatorname{Id}_{C^2} = o_{t-s}(1) \tag{2}$$

and there exists positive constants  $c_1$  and a > 1, such that the inequality

$$\left\|\mu_{tu}\circ\mu_{us}-\mu_{ts}\right\|_{C^{1}}\leq c_{1}\left|t-s\right|^{a}$$
(3)

holds for all  $0 \le s \le u \le t \le T$ .

An example – Euler' scheme

$$\mu_{ts}(x) = x + V(x)(t-s),$$

with  $V \in C_b^2(\mathbb{R}^d, \mathbb{R}^d)$ . Given a partition  $\pi_{ts} = \{s = s_0 < s_1 < \dots < s_{n-1} < s_n = t\}$  of an interval  $[s, t] \subset [0, T]$ , set

$$\mu_{\pi_{ts}} := \mu_{s_n s_{n-1}} \circ \cdots \circ \mu_{s_1 s_0} = \bigcirc_{i=0}^{n-1} \mu_{s_{i+1} s_i}$$

#### ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▶ Definition –  $A C^1$ -approximate flow on  $\mathbb{R}^d$  is a family  $(\mu_{ts})_{0 \le s \le t \le T}$  of  $C^2$  maps from  $\mathbb{R}^d$  into itself, depending continuously on s, t in the topology of uniform convergence, such that

$$\mu_{ts} - \operatorname{Id}_{C^2} = o_{t-s}(1) \tag{4}$$

and there exists positive constants  $c_1$  and a > 1, such that the inequality

$$\left\|\mu_{tu}\circ\mu_{us}-\mu_{ts}\right\|_{C^{1}}\leq c_{1}\left|t-s\right|^{a}$$
(5)

holds for all  $0 \le s \le u \le t \le T$ .

► Theorem 1 (Constructing flows) – A  $C^1$ -approximate flow defines a unique flow  $\varphi = (\varphi_{ls})_{0 \le s \le t \le T}$  on  $\mathbb{R}^d$  such that the inequality

$$\left\|\varphi_{ts} - \mu_{ts}\right\|_{\infty} \le c \left|t - s\right|^a \tag{6}$$

holds for a positive constant *c*, for all  $0 \le s \le t \le T$  sufficiently close, say  $t - s \le \delta$ . This flow satisfies the inequality

$$\left\|\varphi_{ts}-\mu_{\pi_{ts}}\right\|_{\infty} \lesssim c_1^2 T \left|\pi_{ts}\right|^{a-1},\tag{7}$$

for any partition  $\pi_{ts}$  of any interval [s, t] of mesh  $|\pi_{ts}| \leq \delta$ .

▶ Definition – Let  $\epsilon \in (0, 1)$  be given. A partition

$$\pi = \{s = s_0 < s_1 < \cdots < s_{n-1} < s_n = t\}$$

of an interval [s, t] is said to be  $\epsilon$ -special if it is either trivial or

- one can find an  $s_i \in \pi$  such that  $\epsilon \leq \frac{s_i s}{t s} \leq 1 \epsilon$ ,
- and for any choice u of such an s<sub>i</sub>, the partitions of [s, u] and [u, t] induced by π are both ε-special.

《曰》 《聞》 《臣》 《臣》 三臣 …

▶ Definition – Let  $\epsilon \in (0, 1)$  be given. A partition

$$\pi = \{s = s_0 < s_1 < \cdots < s_{n-1} < s_n = t\}$$

of an interval [s, t] is said to be *e*-special if it is either trivial or

- one can find an  $s_i \in \pi$  such that  $\epsilon \leq \frac{s_i s}{t s} \leq 1 \epsilon$ ,
- and for any choice u of such an s<sub>i</sub>, the partitions of [s, u] and [u, t] induced by π are both ε-special.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

A partition of any interval into sub-intervals of equal length is  $\frac{1}{3}$ -special.

▶ Definition – Let  $\epsilon \in (0, 1)$  be given. A partition

$$\pi = \{s = s_0 < s_1 < \cdots < s_{n-1} < s_n = t\}$$

of an interval [s, t] is said to be  $\epsilon$ -special if it is either trivial or

- one can find an  $s_i \in \pi$  such that  $\epsilon \leq \frac{s_i s}{t s} \leq 1 \epsilon$ ,
- and for any choice u of such an s<sub>i</sub>, the partitions of [s, u] and [u, t] induced by π are both ε-special.

A partition of any interval into sub-intervals of equal length is  $\frac{1}{3}$ -special.Set

$$m_{\epsilon} := \sup_{\epsilon \leq \beta \leq 1-\epsilon} \left(\beta^a + (1-\beta)^a\right) < 1,$$

and pick a constant

$$L>\frac{2c_1}{1-m_{\epsilon}},$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

where  $c_1$  is the constant that appears in the definition of a  $C^1$ -approximate flow, in equation (5).

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^1} \le L |t - s|^a.$$
(8)

<ロト <回ト < 国ト < 国ト < 国ト = 国

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\left\|\mu_{\pi_{ts}} - \mu_{ts}\right\|_{C^1} \le L \left|t - s\right|^a. \tag{8}$$

**Proof** – We first prove

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^0} \le L |t - s|^a.$$
(9)

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\mu_{\pi_{ts}} - \mu_{ts} \Big|_{C^1} \le L |t - s|^a.$$
(8)

Proof – We first prove

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^0} \le L |t - s|^a.$$
(9)

The proof of estimate (8) is similar and given later. We proceed by induction on the number n of sub-intervals of the partition.

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^1} \le L |t - s|^a.$$
(8)

Proof – We first prove

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^0} \le L |t - s|^a.$$
(9)

(n = 2): This is the  $C^0$  version of identity (5) defining  $C^1$ -approximate flows.

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^1} \le L |t - s|^a.$$
(8)

Proof – We first prove

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^0} \le L |t - s|^a.$$
(9)

 $(n \rightarrow n + 1)$ : Fix  $0 \le s < t \le T$  with  $t - s \le \delta$ , and let  $\pi_{ts}$  be an  $\epsilon$ -special partition of [s, t], splitting the interval [s, t] into (n + 1) sub-intervals. Let u be one of the points of the partition such that  $\epsilon \le \frac{t-u}{t-s} \le 1 - \epsilon$ , so the two partitions  $\pi_{tu}$  and  $\pi_{us}$  are both  $\epsilon$ -special, with respective cardinals no greater than n.

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\left\|\mu_{\pi_{ts}} - \mu_{ts}\right\|_{C^1} \le L \left|t - s\right|^a. \tag{8}$$

Proof – We first prove

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^0} \le L |t - s|^a.$$
(9)

Then

$$\left\|\mu_{\pi_{ts}} - \mu_{ts}\right\|_{\infty} \leq \left\|\mu_{\pi_{tu}} \circ \mu_{\pi_{us}} - \mu_{tu} \circ \mu_{\pi_{us}}\right\|_{\infty} + \left\|\mu_{tu} \circ \mu_{\pi_{us}} - \mu_{ts}\right\|_{\infty}$$

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^1} \le L |t - s|^a.$$
(8)

Proof – We first prove

$$\left\|\mu_{\pi_{ts}} - \mu_{ts}\right\|_{C^0} \le L |t - s|^a.$$
(9)

Then

$$\begin{aligned} \|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} &\leq \|\mu_{\pi_{tu}} \circ \mu_{\pi_{us}} - \mu_{tu} \circ \mu_{\pi_{us}}\|_{\infty} + \|\mu_{tu} \circ \mu_{\pi_{us}} - \mu_{ts}\|_{\infty} \\ &\leq \|\mu_{\pi_{tu}} - \mu_{tu}\|_{\infty} + \|\mu_{tu} \circ \mu_{\pi_{us}} - \mu_{tu} \circ \mu_{us}\|_{\infty} + \|\mu_{tu} \circ \mu_{us} - \mu_{ts}\|_{\infty} \end{aligned}$$

▶ Proposition 2 – Let  $(\mu_{ts})_{0 \le s \le t \le T}$  be a  $C^1$ -approximate flow on  $\mathbb{R}^d$ . Given  $\epsilon > 0$ , there exists a positive constant  $\delta$  such that for any  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and any  $\epsilon$ -special partition  $\pi_{ts}$  of the interval [s, t], we have

$$\left\|\mu_{\pi_{ts}} - \mu_{ts}\right\|_{C^1} \le L \left|t - s\right|^a. \tag{8}$$

**Proof** – We first prove

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{C^0} \le L |t - s|^a.$$
 (9)

Then

$$\begin{aligned} \|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} &\leq \|\mu_{\pi_{tu}} \circ \mu_{\pi_{us}} - \mu_{tu} \circ \mu_{\pi_{us}}\|_{\infty} + \|\mu_{tu} \circ \mu_{\pi_{us}} - \mu_{ts}\|_{\infty} \\ &\leq \|\mu_{\pi_{tu}} - \mu_{tu}\|_{\infty} + \|\mu_{tu} \circ \mu_{\pi_{us}} - \mu_{tu} \circ \mu_{us}\|_{\infty} + \|\mu_{tu} \circ \mu_{us} - \mu_{ts}\|_{\infty} \\ &\leq L|t - u|^{a} + (1 + o_{\delta}(1))L|u - s|^{a} + c_{1}|t - s|^{a} \end{aligned}$$

by the induction hypothesis and (4) – here the fact that the  $\mu_{ba}$  are  $C^1$ -close to the identity, and (5) – the  $C^0$  version of the  $C^1$ -approximate flow property.

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} \le L|t - u|^{a} + (1 + o_{\delta}(1))L|u - s|^{a} + c_{1}|t - s|^{a}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} \le L|t - u|^{a} + (1 + o_{\delta}(1))L|u - s|^{a} + c_{1}|t - s|^{a}$$

Set  $u - s := \beta(t - s)$ , with  $\epsilon \le \beta \le 1 - \epsilon$ . The above inequality rewrites

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} \leq \left\{ (1 + o_{\delta}(1))((1 - \beta)^{a} + \beta^{a})L + c_{1} \right\} |t - s|^{a}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} \le L|t - u|^{a} + (1 + o_{\delta}(1))L|u - s|^{a} + c_{1}|t - s|^{a}$$

Set  $u - s := \beta(t - s)$ , with  $\epsilon \le \beta \le 1 - \epsilon$ . The above inequality rewrites

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} \leq \left\{ (1 + o_{\delta}(1))((1 - \beta)^{a} + \beta^{a})L + c_{1} \right\} |t - s|^{a}$$

In order to close the induction, we need to choose  $\delta$  small enough for the condition

$$c_1 + (1 + o_{\delta}(1)) m_{\epsilon} L \le L \tag{10}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

to hold; this can be done since  $m_{\epsilon} < 1$ .

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} \le L|t - u|^{a} + (1 + o_{\delta}(1))L|u - s|^{a} + c_{1}|t - s|^{a}$$

Set  $u - s := \beta(t - s)$ , with  $\epsilon \le \beta \le 1 - \epsilon$ . The above inequality rewrites

$$\|\mu_{\pi_{ts}} - \mu_{ts}\|_{\infty} \leq \left\{ (1 + o_{\delta}(1))((1 - \beta)^{a} + \beta^{a})L + c_{1} \right\} |t - s|^{a}$$

In order to close the induction, we need to choose  $\delta$  small enough for the condition

$$c_1 + (1 + o_\delta(1)) m_\epsilon L \le L \tag{10}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

to hold; this can be done since  $m_{\epsilon} < 1$ .

One needs to control the derivative of  $\mu_{\pi_{ls}} - \mu_{ls}$  to prove (8). One uses the full definition of a  $C^1$ -approximate flow for that purpose, and not only its  $C^0$  version; see later.

### 1. From approximate flows to flows – An elementary identity

Existence and uniqueness both rely on the elementary identity

$$f_{N} \circ \cdots \circ f_{1} - g_{N} \circ \cdots \circ g_{1}$$

$$= \sum_{i=1}^{N} \left( g_{N} \circ \cdots \circ g_{N-i+1} \circ f_{N-i} - g_{N} \circ \cdots \circ g_{N-i+1} \circ g_{N-i} \right) \circ f_{N-i-1} \circ \cdots \circ f_{1},$$
(11)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

with  $g_i$  and  $f_i$  any maps from  $\mathbb{R}^d$  into itself.

# 1. From approximate flows to flows – An elementary identity

Existence and uniqueness both rely on the elementary identity

$$f_{N} \circ \cdots \circ f_{1} - g_{N} \circ \cdots \circ g_{1}$$

$$= \sum_{i=1}^{N} \left( g_{N} \circ \cdots \circ g_{N-i+1} \circ f_{N-i} - g_{N} \circ \cdots \circ g_{N-i+1} \circ g_{N-i} \right) \circ f_{N-i-1} \circ \cdots \circ f_{1},$$
(11)

with  $g_i$  and  $f_i$  any maps from  $\mathbb{R}^d$  into itself. E.g.

$$f \circ g \circ h - f' \circ g' \circ h'$$
  
=  $(f \circ g \circ h - f \circ g \circ h') + (f \circ g \circ h' - f \circ g' \circ h') + (f \circ g' \circ h' - f' \circ g' \circ h').$  (12)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

#### 1. From approximate flows to flows – An elementary identity

Existence and uniqueness both rely on the elementary identity

$$f_{N} \circ \cdots \circ f_{1} - g_{N} \circ \cdots \circ g_{1}$$

$$= \sum_{i=1}^{N} \left( g_{N} \circ \cdots \circ g_{N-i+1} \circ f_{N-i} - g_{N} \circ \cdots \circ g_{N-i+1} \circ g_{N-i} \right) \circ f_{N-i-1} \circ \cdots \circ f_{1},$$
(11)

with  $g_i$  and  $f_i$  any maps from  $\mathbb{R}^d$  into itself. In particular, if all the maps  $g_N \circ \cdots \circ g_k$  are Lipschitz continuous, with a common upper bound L for their Lipschitz constants, then

$$\left\|f_N\circ\cdots\circ f_1-g_N\circ\cdots\circ g_1\right\|_{\infty}\leq L\sum_{i=1}^N\|f_i-g_i\|_{\infty}.$$
(12)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

**Existence.** Set  $D_{\delta} := \{ 0 \le s \le t \le T ; t - s \le \delta \}$  and  $\mathbb{D}_{\delta} = D_{\delta} \cap \{ \text{dyadic numbers} \}.$ 



**Existence.** Set  $D_{\delta} := \{0 \le s \le t \le T ; t - s \le \delta\}$  and  $\mathbb{D}_{\delta} = D_{\delta} \cap \{\text{dyadic numbers}\}$ . Given  $s = a2^{-k_0}$  and  $t = b2^{-k_0}$  in  $\mathbb{D}_{\delta}$ , define for  $n \ge k_0$ 

$$\mu_{ts}^{(n)} := \mu_{s_{N(n)}s_{N(n)-1}} \circ \cdots \circ \mu_{s_1s_0},$$

where  $s_i = s + i2^{-n}$  and  $s_{N(n)} = t$ .

**Existence.** Set  $D_{\delta} := \{0 \le s \le t \le T ; t - s \le \delta\}$  and  $\mathbb{D}_{\delta} = D_{\delta} \cap \{\text{dyadic numbers}\}$ . Given  $s = a2^{-k_0}$  and  $t = b2^{-k_0}$  in  $\mathbb{D}_{\delta}$ , define for  $n \ge k_0$ 

 $\mu_{ts}^{(n)}:=\mu_{s_{N(n)}s_{N(n)-1}}\circ\cdots\circ\mu_{s_1s_0},$ 

where  $s_i = s + i2^{-n}$  and  $s_{N(n)} = t$ . Given  $n \ge k_0$ , write

$$\mu_{ts}^{(n+1)} = \bigcup_{i=0}^{N(n)-1} (\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i})$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

**Existence.** Set  $D_{\delta} := \{0 \le s \le t \le T ; t - s \le \delta\}$  and  $\mathbb{D}_{\delta} = D_{\delta} \cap \{\text{dyadic numbers}\}$ . Given  $s = a2^{-k_0}$  and  $t = b2^{-k_0}$  in  $\mathbb{D}_{\delta}$ , define for  $n \ge k_0$ 

 $\mu_{ts}^{(n)} := \mu_{s_{\mathcal{N}(n)}s_{\mathcal{N}(n)-1}} \circ \cdots \circ \mu_{s_1s_0},$ 

where  $s_i = s + i2^{-n}$  and  $s_{N(n)} = t$ . Given  $n \ge k_0$ , write

$$\mu_{ts}^{(n+1)} = \bigcup_{i=0}^{N(n)-1} \left( \mu_{s_{i+1}s_i + 2^{-n-1}} \circ \mu_{s_i + 2^{-n-1}s_i} \right)$$

and use the elementary identity (11) with

$$f_i = \mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i}, \quad g_i = \mu_{s_{i+1}s_i}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

**Existence.** Set  $D_{\delta} := \{0 \le s \le t \le T ; t - s \le \delta\}$  and  $\mathbb{D}_{\delta} = D_{\delta} \cap \{\text{dyadic numbers}\}$ . Given  $s = a2^{-k_0}$  and  $t = b2^{-k_0}$  in  $\mathbb{D}_{\delta}$ , define for  $n \ge k_0$ 

 $\mu_{ts}^{(n)}:=\mu_{s_{N(n)}s_{N(n)-1}}\circ\cdots\circ\mu_{s_1s_0},$ 

where  $s_i = s + i2^{-n}$  and  $s_{N(n)} = t$ . Given  $n \ge k_0$ , write

$$\mu_{ts}^{(n+1)} = \bigcup_{i=0}^{N(n)-1} \left( \mu_{s_{i+1}s_i + 2^{-n-1}} \circ \mu_{s_i + 2^{-n-1}s_i} \right)$$

and use the elementary identity (11) with

$$f_i = \mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i}, \quad g_i = \mu_{s_{i+1}s_i}$$

and the fact that the compositions of the g-maps

 $\mu_{s_{N(n)}s_{N(n)-1}} \circ \cdots \circ \mu_{s_{N(n)-i+1}s_{N(n)-i}}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

are Lipschitz continuous with a common Lipschitz constant L

**Existence.** Set  $D_{\delta} := \{0 \le s \le t \le T ; t - s \le \delta\}$  and  $\mathbb{D}_{\delta} = D_{\delta} \cap \{\text{dyadic numbers}\}$ . Given  $s = a2^{-k_0}$  and  $t = b2^{-k_0}$  in  $\mathbb{D}_{\delta}$ , define for  $n \ge k_0$ 

 $\mu_{ts}^{(n)}:=\mu_{s_{N(n)}s_{N(n)-1}}\circ\cdots\circ\mu_{s_1s_0},$ 

where  $s_i = s + i2^{-n}$  and  $s_{N(n)} = t$ . Given  $n \ge k_0$ , write

$$\mu_{ts}^{(n+1)} = \bigcup_{i=0}^{N(n)-1} \left( \mu_{s_{i+1}s_i + 2^{-n-1}} \circ \mu_{s_i + 2^{-n-1}s_i} \right)$$

and use the elementary identity (11) with

$$f_i = \mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i}, \quad g_i = \mu_{s_{i+1}s_i}$$

and the fact that the compositions of the g-maps

 $\mu_{S_{N(n)}S_{N(n)-1}} \circ \cdots \circ \mu_{S_{N(n)-i+1}S_{N(n)-i}}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

are Lipschitz continuous with a common Lipschitz constant L, to get

$$\left\|\mu_{ls}^{(n+1)} - \mu_{ls}^{(n)}\right\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \left\|\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i}\right\|_{\infty} \le c_1 LT \, 2^{-(a-1)n}.$$

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで

$$\left\| \mu_{ts}^{(n+1)} - \mu_{ts}^{(n)} \right\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \left\| \mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i} \right\|_{\infty} \le c_1 LT \, 2^{-(a-1)n}.$$
So
$$\left( \mu^{(n)} - \mu \right) \in C \left( \mathbb{D}_{\delta}, \, C_b^0(\mathbb{R}^d, \mathbb{R}^d) \right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

converges uniformly on  $\mathbb{D}_{\delta}$  to some continuous function  $\varphi - \mu$ .

$$\|\mu_{ts}^{(n+1)} - \mu_{ts}^{(n)}\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \|\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i}\|_{\infty} \le c_1 LT \, 2^{-(a-1)n}.$$
So
$$(\mu^{(n)} - \mu) \in C(\mathbb{D}_{\delta}, C_b^0(\mathbb{R}^d, \mathbb{R}^d))$$

converges uniformly on  $\mathbb{D}_{\delta}$  to some continuous function  $\varphi - \mu$ . One has

 $\left\|\varphi_{ts}-\mu_{ts}\right\|_{\infty}\leq C\left|t-s\right|^{a}$ 

as a consequence of estimate (8) for  $\mu_{\pi_{ts}}$  in Proposition 2.

$$\left\|\mu_{ts}^{(n+1)} - \mu_{ts}^{(n)}\right\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \left\|\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i}\right\|_{\infty} \le c_1 LT \, 2^{-(a-1)n}.$$

So

$$\left(\mu^{(n)}-\mu\right)\in C\left(\mathbb{D}_{\delta}, C_{b}^{0}(\mathbb{R}^{d}, \mathbb{R}^{d})\right)$$

converges uniformly on  $\mathbb{D}_{\delta}$  to some continuous function  $\varphi - \mu$ . One has

 $\left\|\varphi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

as a consequence of estimate (8) for  $\mu_{\pi_{ts}}$  in Proposition 2.

As  $\varphi$  is a uniformly continuous function of  $(s, t) \in \mathbb{D}_{\delta}$ , it has a unique continuous extension to  $D_{\delta}$ , still denoted by  $\varphi$ .

$$\left\|\mu_{ls}^{(n+1)} - \mu_{ls}^{(n)}\right\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \left\|\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i}\right\|_{\infty} \le c_1 LT 2^{-(a-1)n}.$$

So

$$\left(\mu^{(n)}-\mu\right)\in C\left(\mathbb{D}_{\delta}, C_{b}^{0}(\mathbb{R}^{d}, \mathbb{R}^{d})\right)$$

converges uniformly on  $\mathbb{D}_{\delta}$  to some continuous function  $\varphi - \mu$ . One has

 $\left\|\varphi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$ 

as a consequence of estimate (8) for  $\mu_{\pi_{ts}}$  in Proposition 2.

As  $\varphi$  is a uniformly continuous function of  $(s, t) \in \mathbb{D}_{\delta}$ , it has a unique continuous extension to  $D_{\delta}$ , still denoted by  $\varphi$ . To see that it defines a flow on  $D_{\delta}$ , notice that for dyadic times  $s \le u \le t$ , we have

$$\mu_{ts}^{(n)} = \mu_{tu}^{(n)} \circ \mu_{us}^{(n)},$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for n big enough

$$\left\|\mu_{ts}^{(n+1)} - \mu_{ts}^{(n)}\right\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \left\|\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i}\right\|_{\infty} \le c_1 LT \, 2^{-(a-1)n}.$$

So

$$\left(\mu^{(n)}-\mu\right)\in C\left(\mathbb{D}_{\delta}, C_{b}^{0}(\mathbb{R}^{d}, \mathbb{R}^{d})\right)$$

converges uniformly on  $\mathbb{D}_{\delta}$  to some continuous function  $\varphi - \mu$ . One has

 $\left\|\varphi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$ 

as a consequence of estimate (8) for  $\mu_{\pi_{ts}}$  in Proposition 2.

As  $\varphi$  is a uniformly continuous function of  $(s, t) \in \mathbb{D}_{\delta}$ , it has a unique continuous extension to  $D_{\delta}$ , still denoted by  $\varphi$ . To see that it defines a flow on  $D_{\delta}$ , notice that for dyadic times  $s \le u \le t$ , we have

$$\mu_{ts}^{(n)} = \mu_{tu}^{(n)} \circ \mu_{us}^{(n)},$$

for *n* big enough; so, since the maps  $\varphi_{tu}^{(n)}$  are uniformly Lipschitz continuous, we have

$$\varphi_{ts} = \varphi_{tu} \circ \varphi_{us}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for triples of times in  $\mathbb{D}_{\delta}$ 

$$\left\|\mu_{ts}^{(n+1)} - \mu_{ts}^{(n)}\right\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \left\|\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i}\right\|_{\infty} \le c_1 LT \, 2^{-(a-1)n}.$$

So

$$\left(\mu^{(n)}-\mu\right)\in C\left(\mathbb{D}_{\delta}, C_{b}^{0}(\mathbb{R}^{d}, \mathbb{R}^{d})\right)$$

converges uniformly on  $\mathbb{D}_{\delta}$  to some continuous function  $\varphi - \mu$ . One has

 $\left\|\varphi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$ 

as a consequence of estimate (8) for  $\mu_{\pi_{ts}}$  in Proposition 2.

As  $\varphi$  is a uniformly continuous function of  $(s, t) \in \mathbb{D}_{\delta}$ , it has a unique continuous extension to  $D_{\delta}$ , still denoted by  $\varphi$ . To see that it defines a flow on  $D_{\delta}$ , notice that for dyadic times  $s \le u \le t$ , we have

$$\mu_{ts}^{(n)} = \mu_{tu}^{(n)} \circ \mu_{us}^{(n)},$$

for *n* big enough; so, since the maps  $\varphi_{tu}^{(n)}$  are uniformly Lipschitz continuous, we have

 $\varphi_{ts} = \varphi_{tu} \circ \varphi_{us}$ 

・ロト ・回ト ・ヨト ・ヨト ・ヨー うへで

for triples of times in  $\mathbb{D}_{\delta}$ , hence for all times since  $\varphi$  is continuous.

$$\left\|\mu_{ts}^{(n+1)} - \mu_{ts}^{(n)}\right\|_{\infty} \le L \sum_{i=0}^{N(n)-1} \left\|\mu_{s_{i+1}s_i+2^{-n-1}} \circ \mu_{s_i+2^{-n-1}s_i} - \mu_{s_{i+1}s_i}\right\|_{\infty} \le c_1 LT \, 2^{-(a-1)n}.$$

So

$$\left(\mu^{(n)}-\mu\right)\in C\left(\mathbb{D}_{\delta}, C_{b}^{0}(\mathbb{R}^{d}, \mathbb{R}^{d})\right)$$

converges uniformly on  $\mathbb{D}_{\delta}$  to some continuous function  $\varphi - \mu$ . One has

 $\left\|\varphi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$ 

as a consequence of estimate (8) for  $\mu_{\pi_{ts}}$  in Proposition 2.

As  $\varphi$  is a uniformly continuous function of  $(s, t) \in \mathbb{D}_{\delta}$ , it has a unique continuous extension to  $D_{\delta}$ , still denoted by  $\varphi$ . To see that it defines a flow on  $D_{\delta}$ , notice that for dyadic times  $s \le u \le t$ , we have

$$\mu_{ts}^{(n)} = \mu_{tu}^{(n)} \circ \mu_{us}^{(n)},$$

for *n* big enough; so, since the maps  $\varphi_{tu}^{(n)}$  are uniformly Lipschitz continuous, we have

#### $\varphi_{ts} = \varphi_{tu} \circ \varphi_{us}$

for triples of times in  $\mathbb{D}_{\delta}$ , hence for all times since  $\varphi$  is continuous. The map  $\varphi$  is easily extended as a flow to the whole of  $\{0 \le s \le t \le T\}$ .

**Uniqueness.** Let  $\psi$  be any *flow* such that

 $\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}.$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

**Uniqueness.** Let  $\psi$  be any *flow* such that

$$\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$$

Rewrite

$$\psi_{ts} = \mu_{ts} + O_c (|t-s|^a).$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

**Uniqueness.** Let  $\psi$  be any *flow* such that

$$\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$$

Rewrite

$$\psi_{ts} = \mu_{ts} + O_c \big( |t - s|^a \big)$$

Then

$$\psi_{ts} = \psi_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \psi_{s_1s_0} = \left(\mu_{s_{2^n}s_{2^{n-1}}} + O_c(2^{-an})\right) \circ \cdots \circ \left(\mu_{s_1s_0} + O_c(2^{-an})\right)$$

◆□▶ ◆御▶ ◆理≯ ◆理≯ ─ 注

**Uniqueness.** Let  $\psi$  be any *flow* such that

$$\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$$

Rewrite

$$\psi_{ts} = \mu_{ts} + O_c (|t-s|^a)$$

Then

$$\psi_{ts} = \psi_{s_{2^n} s_{2^{n-1}}} \circ \dots \circ \psi_{s_1 s_0} = \left( \mu_{s_{2^n} s_{2^{n-1}}} + O_c(2^{-an}) \right) \circ \dots \circ \left( \mu_{s_1 s_0} + O_c(2^{-an}) \right)$$
$$= \mu_{s_{2^n} s_{2^{n-1}}} \circ \dots \circ \mu_{s_1 s_0} + \Delta_n = \mu_{ts}^{(n)} + \Delta_n$$

◆□▶ ◆御▶ ◆理≯ ◆理≯ ─ 注

**Uniqueness.** Let  $\psi$  be any *flow* such that

$$\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$$

Rewrite

$$\psi_{ts} = \mu_{ts} + O_c \big( |t - s|^a \big)$$

Then

$$\begin{split} \psi_{ts} &= \psi_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \psi_{s_1s_0} = \left( \mu_{s_{2^n}s_{2^{n-1}}} + O_c(2^{-an}) \right) \circ \cdots \circ \left( \mu_{s_1s_0} + O_c(2^{-an}) \right) \\ &= \mu_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \mu_{s_1s_0} + \Delta_n = \mu_{ts}^{(n)} + \Delta_n, \end{split}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

where  $\Delta_n$  is of the form of the right hand side of the elementary identity (11)

**Uniqueness.** Let  $\psi$  be any *flow* such that

$$\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$$

Rewrite

$$\psi_{ts} = \mu_{ts} + O_c \big( |t - s|^a \big)$$

Then

$$\begin{split} \psi_{ts} &= \psi_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \psi_{s_1s_0} = \left( \mu_{s_{2^n}s_{2^{n-1}}} + O_c(2^{-an}) \right) \circ \cdots \circ \left( \mu_{s_1s_0} + O_c(2^{-an}) \right) \\ &= \mu_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \mu_{s_1s_0} + \Delta_n = \mu_{ts}^{(n)} + \Delta_n, \end{split}$$

where  $\Delta_n$  is of the form of the right hand side of the elementary identity (11), so

 $\|\Delta_n\|_{\infty} \leq L2^n 2^{-an} = o_n(1)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

**Uniqueness.** Let  $\psi$  be any *flow* such that

$$\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$$

Rewrite

$$\psi_{ts} = \mu_{ts} + O_c \big( |t - s|^a \big)$$

Then

$$\begin{split} \psi_{ts} &= \psi_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \psi_{s_1s_0} = \left( \mu_{s_{2^n}s_{2^{n-1}}} + O_c(2^{-an}) \right) \circ \cdots \circ \left( \mu_{s_1s_0} + O_c(2^{-an}) \right) \\ &= \mu_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \mu_{s_1s_0} + \Delta_n = \mu_{ts}^{(n)} + \Delta_n, \end{split}$$

where  $\Delta_n$  is of the form of the right hand side of the elementary identity (11), so

 $\|\Delta_n\|_{\infty} \leq L2^n 2^{-an} = o_n(1)$ 

since all the maps

$$\mu_{s_{2}n s_{2}n_{-1}} \circ \cdots \circ \mu_{s_{2}n_{-\ell+1}s_{2}n_{-\ell}}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

are L-Lipschitz continuous.

**Uniqueness.** Let  $\psi$  be any *flow* such that

$$\left\|\psi_{ts}-\mu_{ts}\right\|_{\infty}\leq c\left|t-s\right|^{a}$$

Rewrite

$$\psi_{ts} = \mu_{ts} + O_c \big( |t - s|^a \big)$$

Then

$$\begin{split} \psi_{ts} &= \psi_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \psi_{s_1s_0} = \left( \mu_{s_{2^n}s_{2^{n-1}}} + O_c(2^{-an}) \right) \circ \cdots \circ \left( \mu_{s_1s_0} + O_c(2^{-an}) \right) \\ &= \mu_{s_{2^n}s_{2^{n-1}}} \circ \cdots \circ \mu_{s_1s_0} + \Delta_n = \mu_{ts}^{(n)} + \Delta_n, \end{split}$$

where  $\Delta_n$  is of the form of the right hand side of the elementary identity (11), so

 $\|\Delta_n\|_{\infty} \leq L2^n 2^{-an} = o_n(1)$ 

since all the maps

$$\mu_{s_{2}ns_{2}n_{-1}} \circ \cdots \circ \mu_{s_{2}n_{-\ell+1}s_{2}n_{-\ell}}$$

are *L*-Lipschitz continuous. Sending *n* to infinity shows that  $\psi_{ts} = \varphi_{ts}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recall the local expansion property of solutions of controlled ordinary differential equations

 $dx_t = V_i(x_t)dh_t^i$ .

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Recall the local expansion property of solutions of controlled ordinary differential equations

$$dx_t = V_i(x_t)dh_t^i$$
.

Recall we see vector fields as first order differential operators, so  $V_j V_k$  is a second order differential operator e.g., with

 $V_j V_k f = (D^2 f) (V_j V_k) + (D f) (D V_k (V_j)).$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recall the local expansion property of solutions of controlled ordinary differential equations

$$dx_t = V_i(x_t)dh_t^i$$
.

Recall we see vector fields as first order differential operators, so  $V_j V_k$  is a second order differential operator e.g., with

$$V_j V_k f = (D^2 f)(V_j V_k) + (Df)(DV_k(V_j)).$$

One has

$$f(x_t) = f(x_s) + \left(\int_s^t dh_{s_1}^i\right) (V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^i dh_{s_1}^k\right) (V_j V_k f)(x_s) + (\cdots) \\ + \left(\int_{s \le s_1 \le \cdots \le s_n \le t} dh_{s_n}^{i_n} \dots dh_{s_1}^{i_1}\right) (V_{i_n} \dots V_{i_1} f)(x_s) + O(|t - s|^{n+1})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recall the local expansion property of solutions of controlled ordinary differential equations

$$dx_t = V_i(x_t)dh_t^i$$
.

Recall we see vector fields as first order differential operators, so  $V_j V_k$  is a second order differential operator e.g., with

$$V_j V_k f = (D^2 f)(V_j V_k) + (Df)(DV_k(V_j)).$$

One has

$$f(x_t) = f(x_s) + \left(\int_s^t dh_{s_1}^i\right) (V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^i dh_{s_1}^k\right) (V_j V_k f)(x_s) + (\cdots) \\ + \left(\int_{s \le s_1 \le \cdots \le s_n \le t} dh_{s_n}^{i_n} \dots dh_{s_1}^{i_1}\right) (V_{i_n} \dots V_{i_1} f)(x_s) + O(|t - s|^{n+1})$$

Rough paths are placeholders for the family of coefficients

$$\begin{aligned} H_{ts} &:= \\ \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{i} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{i} dh_{s_{1}}^{i} \right)_{1 \le j, k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}} \right)_{1 \le j_{n}, \dots, i_{1} \le \ell} \right) \end{aligned}$$

that appear in the expansion, when *h* is not sufficiently regular for making sense of the iterated integrals, e.g. *h* is only  $\alpha$ -Hölder with  $\alpha \le 1/2$ .

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Recall the local expansion property of solutions of controlled ordinary differential equations

$$dx_t = V_i(x_t)dh_t^i$$
.

Recall we see vector fields as first order differential operators, so  $V_j V_k$  is a second order differential operator e.g., with

$$V_j V_k f = (D^2 f)(V_j V_k) + (Df)(DV_k(V_j)).$$

One has

$$f(x_t) = f(x_s) + \left(\int_s^t dh_{s_1}^i\right) (V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^i dh_{s_1}^k\right) (V_j V_k f)(x_s) + (\cdots) \\ + \left(\int_{s \le s_1 \le \cdots \le s_n \le t} dh_{s_n}^{i_n} \dots dh_{s_1}^{i_1}\right) (V_{i_n} \dots V_{i_1} f)(x_s) + O(|t - s|^{n+1})$$

Rough paths are placeholders for the family of coefficients

$$\begin{aligned} H_{ts} &:= \\ \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{i} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k} \right)_{1 \le j, k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}} \right)_{1 \le i_{n}, \dots, i_{1} \le \ell} \right) \end{aligned}$$

that appear in the expansion, when *h* is not sufficiently regular for making sense of the iterated integrals, e.g. *h* is only  $\alpha$ -Hölder with  $\alpha \le 1/2$ . Like the function *H*, they take values in an algebraic structure that gives much insight on them.

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ .

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ .

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ . Given  $u, v \in \mathbb{R}^{\ell}$ , one has

 $(u \otimes v)(v') := v'(v) u,$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

for any  $\nu' \in (\mathbb{R}^{\ell})'$ . So  $(\mathbb{R}^{\ell})^{\otimes 2} = L((\mathbb{R}^{\ell})', \mathbb{R}^{\ell})$ .

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ . Given  $u, v \in \mathbb{R}^{\ell}$ , one has

### $(u \otimes v)(v') := v'(v) u,$

for any  $v' \in (\mathbb{R}^{\ell})'$ . So  $(\mathbb{R}^{\ell})^{\otimes 2} = L((\mathbb{R}^{\ell})', \mathbb{R}^{\ell})$ . Given  $u, v, w \in \mathbb{R}^{\ell}$ , one has  $(u \otimes v \otimes w)(w') := w'(w) u \otimes v$ ,

for any  $w' \in (\mathbb{R}^{\ell})'$ .



Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ . Given  $u, v \in \mathbb{R}^{\ell}$ , one has

#### $(u \otimes v)(v') := v'(v) u,$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

for any  $v' \in (\mathbb{R}^{\ell})'$ . So  $(\mathbb{R}^{\ell})^{\otimes 2} = L((\mathbb{R}^{\ell})', \mathbb{R}^{\ell})$ . Given  $u, v, w \in \mathbb{R}^{\ell}$ , one has  $(u \otimes v \otimes w)(w') := w'(w) u \otimes v$ ,

for any  $w' \in (\mathbb{R}^{\ell})'$ . Let  $(\epsilon_1, \dots, \epsilon_{\ell})$  stand for the canonical basis of  $\mathbb{R}^{\ell}$ . The family  $(\epsilon_{i_1} \otimes \dots \otimes \epsilon_{i_k})_{1 \leq i_1, \dots, i_k \leq \ell}$  defines the canonical basis of  $(\mathbb{R}^{\ell})^{\otimes k}$ .

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ . Given  $u, v \in \mathbb{R}^{\ell}$ , one has

#### $(u \otimes v)(v') := v'(v) u,$

for any  $v' \in (\mathbb{R}^{\ell})'$ . So  $(\mathbb{R}^{\ell})^{\otimes 2} = L((\mathbb{R}^{\ell})', \mathbb{R}^{\ell})$ . Given  $u, v, w \in \mathbb{R}^{\ell}$ , one has  $(u \otimes v \otimes w)(w') := w'(w) u \otimes v$ ,

for any  $w' \in (\mathbb{R}^{\ell})'$ . Let  $(\epsilon_1, \ldots, \epsilon_{\ell})$  stand for the canonical basis of  $\mathbb{R}^{\ell}$ . The family  $(\epsilon_{i_1} \otimes \cdots \otimes \epsilon_{i_k})_{1 \leq i_1, \ldots, i_k \leq \ell}$  defines the canonical basis of  $(\mathbb{R}^{\ell})^{\otimes k}$ . An element  $\mathbf{a} \in (\mathbb{R}^{\ell})^{\otimes k}$  is identified with the collection of its coordinates  $(a^{i_n \ldots i_1})_{1 \leq i_1, \ldots, i_n \leq \ell}$  in the canonical basis.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ . Given  $u, v \in \mathbb{R}^{\ell}$ , one has

#### $(u \otimes v)(v') := v'(v) u,$

for any  $v' \in (\mathbb{R}^{\ell})'$ . So  $(\mathbb{R}^{\ell})^{\otimes 2} = L((\mathbb{R}^{\ell})', \mathbb{R}^{\ell})$ . Given  $u, v, w \in \mathbb{R}^{\ell}$ , one has  $(u \otimes v \otimes w)(w') := w'(w) u \otimes v$ ,

for any  $w' \in (\mathbb{R}^{\ell})'$ . Let  $(\epsilon_1, \ldots, \epsilon_{\ell})$  stand for the canonical basis of  $\mathbb{R}^{\ell}$ . The family  $(\epsilon_{i_1} \otimes \cdots \otimes \epsilon_{i_k})_{1 \le i_1, \ldots, i_k \le \ell}$  defines the canonical basis of  $(\mathbb{R}^{\ell})^{\otimes k}$ . An element  $\mathbf{a} \in (\mathbb{R}^{\ell})^{\otimes k}$  is identified with the collection of its coordinates  $(a^{i_1 \ldots i_1})_{1 \le i_1, \ldots, i_n \le \ell}$  in the canonical basis. For  $N \in \mathbb{N} \cup \{\infty\}$ , set  $T_{\ell}^N := \bigoplus_{\ell=0}^N (\mathbb{R}^{\ell})^{\otimes \ell}$ , with  $(\mathbb{R}^{\ell})^{\otimes 0} := \mathbb{R}$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ . Given  $u, v \in \mathbb{R}^{\ell}$ , one has

#### $(u \otimes v)(v') := v'(v) u,$

for any  $v' \in (\mathbb{R}^{\ell})'$ . So  $(\mathbb{R}^{\ell})^{\otimes 2} = L((\mathbb{R}^{\ell})', \mathbb{R}^{\ell})$ . Given  $u, v, w \in \mathbb{R}^{\ell}$ , one has  $(u \otimes v \otimes w)(w') := w'(w) u \otimes v$ ,

for any  $w' \in (\mathbb{R}^{\ell})'$ . Let  $(\epsilon_1, \dots, \epsilon_{\ell})$  stand for the canonical basis of  $\mathbb{R}^{\ell}$ . The family  $(\epsilon_{i_1} \otimes \dots \otimes \epsilon_{i_k})_{1 \le i_1, \dots, i_k \le \ell}$  defines the canonical basis of  $(\mathbb{R}^{\ell})^{\otimes k}$ . An element  $\mathbf{a} \in (\mathbb{R}^{\ell})^{\otimes k}$  is identified with the collection of its coordinates  $(a^{i_n \dots i_1})_{1 \le i_1, \dots, i_n \le \ell}$  in the canonical basis. For  $N \in \mathbb{N} \cup \{\infty\}$ , set  $T_{\ell}^N := \bigoplus_{r=0}^N (\mathbb{R}^{\ell})^{\otimes r}$ , with  $(\mathbb{R}^{\ell})^{\otimes 0} := \mathbb{R}$ . For  $\mathbf{a} = \bigoplus_{r=0}^N a^r$  and  $\mathbf{b} = \bigoplus_{r=0}^N b^r$  in  $T_{\ell}^N$  $\mathbf{a} + \mathbf{b} := \bigoplus_{r=0}^N (a^r + b^r)$ ,  $\mathbf{ab} := \bigoplus_{r=0}^N c^r$ , with  $c^r = \sum_{k=0}^r a^k \otimes b^{r-k} \in (\mathbb{R}^{\ell})^{\otimes r}$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Collections of real valued coefficients  $(a^{i_n..i_1})_{1 \le i_1,...,i_n \le \ell}$ , are better seen here as elements of the tensor space  $(\mathbb{R}^{\ell})^{\otimes n}$ . One can see any element of  $\mathbb{R}^{\ell}$  as a linear map on the dual space  $(\mathbb{R}^{\ell})'$ . Given  $u, v \in \mathbb{R}^{\ell}$ , one has

#### $(u \otimes v)(v') := v'(v) u,$

for any  $v' \in (\mathbb{R}^{\ell})'$ . So  $(\mathbb{R}^{\ell})^{\otimes 2} = L((\mathbb{R}^{\ell})', \mathbb{R}^{\ell})$ . Given  $u, v, w \in \mathbb{R}^{\ell}$ , one has  $(u \otimes v \otimes w)(w') := w'(w) u \otimes v$ ,

for any  $w' \in (\mathbb{R}^{\ell})'$ . Let  $(\epsilon_1, \dots, \epsilon_{\ell})$  stand for the canonical basis of  $\mathbb{R}^{\ell}$ . The family  $(\epsilon_{i_1} \otimes \dots \otimes \epsilon_{i_k})_{1 \le i_1, \dots, i_k \le \ell}$  defines the canonical basis of  $(\mathbb{R}^{\ell})^{\otimes k}$ . An element  $\mathbf{a} \in (\mathbb{R}^{\ell})^{\otimes k}$  is identified with the collection of its coordinates  $(a^{i_1 \dots i_1})_{1 \le i_1, \dots, i_n \le \ell}$  in the canonical basis. For  $N \in \mathbb{N} \cup \{\infty\}$ , set  $T_{\ell}^N := \bigoplus_{r=0}^N (\mathbb{R}^{\ell})^{\otimes r}$ , with  $(\mathbb{R}^{\ell})^{\otimes 0} := \mathbb{R}$ . For  $\mathbf{a} = \bigoplus_{r=0}^N a^r$  and  $\mathbf{b} = \bigoplus_{r=0}^N b^r$  in  $T_{\ell}^N$  $\mathbf{a} + \mathbf{b} := \bigoplus_{r=0}^N (a^r + b^r)$ ,  $\mathbf{ab} := \bigoplus_{r=0}^N c^r$ , with  $c^r = \sum_{k=0}^r a^k \otimes b^{r-k} \in (\mathbb{R}^{\ell})^{\otimes r}$ 

The space  $T_{\ell}^{N}$  is called the (truncated) **tensor algebra over**  $\mathbb{R}^{\ell}$  (if *N* is finite).

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Think of

$$\left(1, \left(\int_{s}^{t} dh_{s_{1}}^{i}\right)_{1 \leq i \leq \ell}, \left(\int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{i} dh_{s_{1}}^{k}\right)_{1 \leq j,k \leq \ell}, \dots, \left(\int_{s \leq s_{1} \leq \dots \leq s_{n} \leq t} dh_{s_{n}}^{i_{n}} \dots dh_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \dots, i_{1} \leq \ell}\right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

as a typical element of  $T_{\ell}^{N,1} := \{ \mathbf{a} \in T_{\ell}^{N}, \mathbf{a}^{0} = 1 \}.$ 

Think of

$$\left(1, \left(\int_{s}^{t} dh_{s_{1}}^{i}\right)_{1 \leq i \leq \ell}, \left(\int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{i} dh_{s_{1}}^{k}\right)_{1 \leq j,k \leq \ell}, \dots, \left(\int_{s \leq s_{1} \leq \dots \leq s_{n} \leq t} dh_{s_{n}}^{i_{n}} \dots dh_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \dots, i_{1} \leq \ell}\right)$$

as a typical element of  $T_{\ell}^{N,1} := \{ \mathbf{a} \in T_{\ell}^{N}, \mathbf{a}^{0} = 1 \}$ . Define the dilation

 $\delta_{\lambda}(\mathbf{a}) = (1, \lambda a^1, \dots, \lambda^N a^N),$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

for all  $\lambda \in \mathbb{R}$  and  $\mathbf{a} \in T_{\ell}^{N,1}$ .

Think of

$$\left(1, \left(\int_{s}^{t} dh_{s_{1}}^{i}\right)_{1 \leq i \leq \ell}, \left(\int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{i} dh_{s_{1}}^{k}\right)_{1 \leq j,k \leq \ell}, \dots, \left(\int_{s \leq s_{1} \leq \dots \leq s_{n} \leq t} dh_{s_{n}}^{i_{n}} \dots dh_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \dots, i_{1} \leq \ell}\right)$$

as a typical element of  $T_{\ell}^{N,1} := \{ \mathbf{a} \in T_{\ell}^{N}, \mathbf{a}^{0} = 1 \}$ . Define the dilation

 $\delta_{\lambda}(\mathbf{a}) = (1, \lambda a^1, \dots, \lambda^N a^N),$ 

for all  $\lambda \in \mathbb{R}$  and  $\mathbf{a} \in T_{\ell}^{N,1}$ . We define a norm

$$\|\mathbf{a}\| := \sum_{m=1}^{N} \|a^m\|_{\text{Eucl}}^{1/m}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Think of

$$\left(1, \left(\int_{s}^{t} dh_{s_{1}}^{i}\right)_{1 \leq i \leq \ell}, \left(\int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{i} dh_{s_{1}}^{k}\right)_{1 \leq j,k \leq \ell}, \dots, \left(\int_{s \leq s_{1} \leq \dots \leq s_{n} \leq t} dh_{s_{n}}^{i_{n}} \dots dh_{s_{1}}^{i_{1}}\right)_{1 \leq i_{n}, \dots, i_{1} \leq \ell}\right)$$

as a typical element of  $T_{\ell}^{N,1} := \{ \mathbf{a} \in T_{\ell}^{N}, \mathbf{a}^{0} = 1 \}$ . Define the dilation

 $\delta_{\lambda}(\mathbf{a}) = (1, \lambda a^1, \dots, \lambda^N a^N),$ 

for all  $\lambda \in \mathbb{R}$  and  $\mathbf{a} \in T_{\ell}^{N,1}$ . We define a norm

$$\|\mathbf{a}\| := \sum_{m=1}^{N} \|a^m\|_{\mathrm{Eucl}}^{1/m}$$

that is homogeneous with respect to the dilation

 $\left\|\delta_{\lambda}(\mathbf{a})\right\| = |\lambda| \|\mathbf{a}\|.$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Elements of  $T_{\ell}^{N,1}$  are invertible, with

$$\mathbf{a}^{-1} = \sum_{n \ge 0} (\mathbf{1} - \mathbf{a})^n,$$

with  $\mathbf{1} := (1, 0, 0, \dots)$ .



Elements of  $T_{\ell}^{N,1}$  are invertible, with

$$\mathbf{a}^{-1} = \sum_{n \ge 0} (\mathbf{1} - \mathbf{a})^n,$$

with  $\mathbf{1} := (1, 0, 0, ...)$ . The exponential map  $\exp : T_{\ell}^{N,0} \to T_{\ell}^{N,1}$ , and the logarithm map  $T_{\ell}^{N,1} \to T_{\ell}^{N,0}$ , are defined by

$$\exp(\mathbf{a}) = \sum_{0 \le n < N+1} \frac{\mathbf{a}^n}{n!}, \quad \log(\mathbf{b}) = \sum_{1 \le n < N+1} \frac{(-1)^n}{n} (1-\mathbf{b})^n;$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

they are inverse from one another.

Elements of  $T_{\ell}^{N,1}$  are invertible, with

$$\mathbf{a}^{-1} = \sum_{n \ge 0} (\mathbf{1} - \mathbf{a})^n,$$

with  $\mathbf{1} := (1, 0, 0, ...)$ . The exponential map  $\exp : T_{\ell}^{N,0} \to T_{\ell}^{N,1}$ , and the logarithm map  $T_{\ell}^{N,1} \to T_{\ell}^{N,0}$ , are defined by

$$\exp(\mathbf{a}) = \sum_{0 \le n < N+1} \frac{\mathbf{a}^n}{n!}, \quad \log(\mathbf{b}) = \sum_{1 \le n < N+1} \frac{(-1)^n}{n} (1 - \mathbf{b})^n$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

they are inverse from one another. They are polynomial diffeomorphisms if  $N < \infty$ .

Elements of  $T_{\ell}^{N,1}$  are invertible, with

$$\mathbf{a}^{-1} = \sum_{n \ge 0} (\mathbf{1} - \mathbf{a})^n,$$

with  $\mathbf{1} := (1, 0, 0, ...)$ . The exponential map  $\exp : T_{\ell}^{N,0} \to T_{\ell}^{N,1}$ , and the logarithm map  $T_{\ell}^{N,1} \to T_{\ell}^{N,0}$ , are defined by

$$\exp(\mathbf{a}) = \sum_{0 \le n < N+1} \frac{\mathbf{a}^n}{n!}, \quad \log(\mathbf{b}) = \sum_{1 \le n < N+1} \frac{(-1)^n}{n} (1-\mathbf{b})^n$$

they are inverse from one another. They are polynomial diffeomorphisms if  $N < \infty$ . The formula  $[\mathbf{a}, \mathbf{b}] := \mathbf{a}\mathbf{b} - \mathbf{b}\mathbf{a}$ , defines a Lie bracket on  $T_{\ell}^{N}$ .

Elements of  $T_{\ell}^{N,1}$  are invertible, with

$$\mathbf{a}^{-1} = \sum_{n \ge 0} (\mathbf{1} - \mathbf{a})^n,$$

with  $\mathbf{1} := (1, 0, 0, ...)$ . The exponential map  $\exp : T_{\ell}^{N,0} \to T_{\ell}^{N,1}$ , and the logarithm map  $T_{\ell}^{N,1} \to T_{\ell}^{N,0}$ , are defined by

$$\exp(\mathbf{a}) = \sum_{0 \le n < N+1} \frac{\mathbf{a}^n}{n!}, \quad \log(\mathbf{b}) = \sum_{1 \le n < N+1} \frac{(-1)^n}{n} (1-\mathbf{b})^n$$

they are inverse from one another. They are polynomial diffeomorphisms if  $N < \infty$ . The formula  $[\mathbf{a}, \mathbf{b}] := \mathbf{a}\mathbf{b} - \mathbf{b}\mathbf{a}$ , defines a Lie bracket on  $T_{\ell}^{N}$ .

► Definition – The Lie algebra

 $g_{\ell}^{N} := \{ \text{linear combinations of at most } N \text{ iterated brackets of elements of } \mathbb{R}^{\ell} \subset T_{\ell}^{N} \} \subset T_{\ell}^{N,0} \}$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

is called the N-step free nilpotent Lie algebra.

Elements of  $T_{\ell}^{N,1}$  are invertible, with

$$\mathbf{a}^{-1} = \sum_{n \ge 0} (\mathbf{1} - \mathbf{a})^n,$$

with  $\mathbf{1} := (1, 0, 0, ...)$ . The exponential map  $\exp : T_{\ell}^{N,0} \to T_{\ell}^{N,1}$ , and the logarithm map  $T_{\ell}^{N,1} \to T_{\ell}^{N,0}$ , are defined by

$$\exp(\mathbf{a}) = \sum_{0 \le n < N+1} \frac{\mathbf{a}^n}{n!}, \quad \log(\mathbf{b}) = \sum_{1 \le n < N+1} \frac{(-1)^n}{n} (1-\mathbf{b})^n$$

they are inverse from one another. They are polynomial diffeomorphisms if  $N < \infty$ . The formula  $[\mathbf{a}, \mathbf{b}] := \mathbf{a}\mathbf{b} - \mathbf{b}\mathbf{a}$ , defines a Lie bracket on  $T_{\ell}^{N}$ .

► Definition – The Lie algebra

 $g_{\ell}^{N} := \{ \text{linear combinations of at most } N \text{ iterated brackets of elements of } \mathbb{R}^{\ell} \subset T_{\ell}^{N} \} \subset T_{\ell}^{N,0} \}$ 

is called the *N*-step free nilpotent Lie algebra. The subset  $G_{\ell}^{N} := \exp(g_{\ell}^{N})$  of  $T_{\ell}^{N,1}$  is a group for the multiplication operation. It is called the *N*-step nilpotent Lie group on  $\mathbb{R}^{\ell}$ . This is a manifold with tangent space  $\mathbf{a} g_{\ell}^{N}$  at  $\mathbf{a}$ .

## 2.2 Hölder *p*-rough paths

Fix s and look at the evolution of

 $H_{ts} =$  $\left(1, \left(\int_{s}^{t} dh_{s_{1}}^{i}\right)_{1 \le i \le \ell}, \left(\int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k}\right)_{1 \le j,k \le \ell}, \dots, \left(\int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}}\right)_{1 \le j_{n},\dots,j_{1} \le \ell}\right)$ 

<ロト <四ト <注入 <注下 <注下 <

as a function of t.

Fix s and look at the evolution of

$$H_{ts} = \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{i} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k} \right)_{1 \le j,k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}} \right)_{1 \le i_{n},\dots,i_{1} \le \ell} \right)$$

as a function of t. One has

 $dH_{ts} = H_{ts}dh_t$ ,

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where  $dh_t \in \mathbb{R}^{\ell} \subset g_{\ell}^N$ .

Fix s and look at the evolution of

$$H_{ts} = \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{i} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k} \right)_{1 \le j, k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}} \right)_{1 \le j_{n}, \dots, i_{1} \le \ell} \right)$$

as a function of t. One has

 $dH_{ts} = H_{ts}dh_t$ ,

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where  $dh_t \in \mathbb{R}^{\ell} \subset g_{\ell}^N$ . As  $H_{ts}dh_t \in T_{H_{ts}}G_{\ell}^N$  if  $H_{ts} \in G_{\ell}^N$ , and  $H_{ss} = \mathbf{1} \in G_{\ell}^N$ 

Fix s and look at the evolution of

$$H_{ts} = \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{i} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k} \right)_{1 \le j, k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}} \right)_{1 \le j_{n}, \dots, i_{1} \le \ell} \right)$$

as a function of t. One has

 $dH_{ts} = H_{ts}dh_t$ ,

<ロト <回ト < 国ト < 国ト < 国ト = 国

where  $dh_t \in \mathbb{R}^\ell \subset g_\ell^N$ . As  $H_{ts}dh_t \in T_{H_{ts}}G_\ell^N$  if  $H_{ts} \in G_\ell^N$ , and  $H_{ss} = \mathbf{1} \in G_\ell^N$ , then  $H_{ts} \in G_\ell^N$  for all  $t \ge s$ 

Fix s and look at the evolution of

$$H_{ts} = \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{i} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k} \right)_{1 \le j,k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}} \right)_{1 \le i_{n},\dots,i_{1} \le \ell} \right)$$

as a function of t. One has

 $dH_{ts} = H_{ts}dh_t$ 

where  $dh_t \in \mathbb{R}^\ell \subset g_\ell^N$ . As  $H_{ls}dh_t \in T_{H_{ls}}G_\ell^N$  if  $H_{ts} \in G_\ell^N$ , and  $H_{ss} = \mathbf{1} \in G_\ell^N$ , then  $H_{ts} \in G_\ell^N$  for all  $t \ge s$ , and for all  $s \le u \le t$ 

 $H_{ts} = H_{us}H_{tu},$ 

<ロト <回ト < 国ト < 国ト < 国ト 三 国

from the flow property of solutions to ordinary differential equations.

Fix s and look at the evolution of

$$H_{ts} = \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{i} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k} \right)_{1 \le j, k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{i_{n}} \cdots dh_{s_{1}}^{i_{1}} \right)_{1 \le j_{n}, \dots, i_{1} \le \ell} \right)$$

as a function of t. One has

 $dH_{ts} = H_{ts}dh_t$ 

where  $dh_t \in \mathbb{R}^\ell \subset g_\ell^N$ . As  $H_{ts}dh_t \in T_{H_{ts}}G_\ell^N$  if  $H_{ts} \in G_\ell^N$ , and  $H_{ss} = \mathbf{1} \in G_\ell^N$ , then  $H_{ts} \in G_\ell^N$  for all  $t \ge s$ , and for all  $s \le u \le t$ 

 $H_{ts} = H_{us}H_{tu},$ 

<ロト <回ト < 国ト < 国ト < 国ト = 国

from the flow property of solutions to ordinary differential equations. We call this identity Chen's relation.

Fix s and look at the evolution of

$$H_{ts} = \left( 1, \left( \int_{s}^{t} dh_{s_{1}}^{j} \right)_{1 \le i \le \ell}, \left( \int_{s}^{t} \int_{s}^{s_{1}} dh_{s_{2}}^{j} dh_{s_{1}}^{k} \right)_{1 \le j, k \le \ell}, \dots, \left( \int_{s \le s_{1} \le \dots \le s_{n} \le t} dh_{s_{n}}^{j_{n}} \cdots dh_{s_{1}}^{j_{1}} \right)_{1 \le j_{n}, \dots, i_{1} \le \ell} \right)$$

as a function of t. One has

$$dH_{ts} = H_{ts}dh_t$$

where  $dh_t \in \mathbb{R}^\ell \subset g_\ell^N$ . As  $H_{ts}dh_t \in T_{H_{ts}}G_\ell^N$  if  $H_{ts} \in G_\ell^N$ , and  $H_{ss} = \mathbf{1} \in G_\ell^N$ , then  $H_{ts} \in G_\ell^N$  for all  $t \ge s$ , and for all  $s \le u \le t$ 

 $H_{ts} = H_{us}H_{tu},$ 

from the flow property of solutions to ordinary differential equations. We call this identity Chen's relation. So one can write

$$H_{ts} = \left(H_{s0}\right)^{-1} H_{t0},$$

<ロト <四ト <注入 <注下 <注下 <

Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

▶ Definition – Let  $1 \le p$ . A Hölder *p*-rough path on [0, T] is a  $T_{\ell}^{[p],1}$ -valued path  $X: t \in [0, T] \mapsto 1 \oplus X_t^1 \oplus X_t^2 \oplus \cdots \oplus X_t^{[p]}$ ,



Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

▶ Definition – Let  $1 \le p$ . A Hölder *p*-rough path on [0, T] is a  $T_{\ell}^{[p],1}$ -valued path **X**:  $t \in [0, T] \mapsto 1 \oplus X_t^1 \oplus X_t^2 \oplus \cdots \oplus X_t^{[p]}$ , such that

$$\left\|X^{m}\right\|_{\frac{m}{p}} := \sup_{0 \le s < t \le T} \frac{\left|X_{ts}^{m}\right|}{\left|t-s\right|^{\frac{m}{p}}} < \infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for all m = 1 ... [p].

Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

▶ Definition – Let  $1 \le p$ . A Hölder *p*-rough path on [0, T] is a  $T_{\ell}^{[p],1}$ -valued path **X**:  $t \in [0, T] \mapsto 1 \oplus X_t^1 \oplus X_t^2 \oplus \cdots \oplus X_t^{[p]}$ , such that

$$\left\|X^{m}\right\|_{\frac{m}{p}} := \sup_{0 \le s < t \le T} \frac{\left|X_{ts}^{m}\right|}{\left|t-s\right|^{\frac{m}{p}}} < \infty$$

for all  $m = 1 \dots [p]$ . We define the norm of **X** to be

$$\|\boldsymbol{X}\| := \max_{m=1\dots[p]} \|\boldsymbol{X}^m\|_{\frac{m}{p}},$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

and a distance  $d(\mathbf{X}, \mathbf{Y}) := \|\mathbf{X} - \mathbf{Y}\|$  on the set of Hölder p-rough path.

Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

▶ Definition – Let  $1 \le p$ . A Hölder *p*-rough path on [0, T] is a  $T_{\ell}^{[p],1}$ -valued path **X**:  $t \in [0, T] \mapsto 1 \oplus X_t^1 \oplus X_t^2 \oplus \cdots \oplus X_t^{[p]}$ , such that

$$\left\|X^{m}\right\|_{\frac{m}{p}} := \sup_{0 \le s < t \le T} \frac{\left|X_{ts}^{m}\right|}{\left|t-s\right|^{\frac{m}{p}}} < \infty$$

for all  $m = 1 \dots [p]$ . We define the norm of **X** to be

$$\|\boldsymbol{X}\| := \max_{m=1\dots[p]} \|\boldsymbol{X}^m\|_{\frac{m}{p}},$$

and a distance  $d(\mathbf{X}, \mathbf{Y}) := \|\mathbf{X} - \mathbf{Y}\|$  on the set of Hölder *p*-rough path. A Hölder weak geometric *p*-rough path on [0, T] is a  $G_{\ell}^{[p]}$ -valued Hölder *p*-rough path.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

► Definition – Let  $1 \le p$ . A Hölder *p*-rough path on [0, T] is a  $T_{\ell}^{[\rho], 1}$ -valued path  $X: t \in [0, T] \mapsto 1 \oplus X_t^1 \oplus X_t^2 \oplus \cdots \oplus X_t^{[\rho]}$ , such that

$$\left\|X^{m}\right\|_{\frac{m}{p}} := \sup_{0 \le s < t \le T} \frac{\left|X_{ts}^{m}\right|}{\left|t-s\right|^{\frac{m}{p}}} < \infty$$

for all  $m = 1 \dots [p]$ . We define the norm of **X** to be

$$\|\boldsymbol{X}\| := \max_{m=1\dots[p]} \|\boldsymbol{X}^m\|_{\frac{m}{p}},$$

and a distance  $d(\mathbf{X}, \mathbf{Y}) := \|\mathbf{X} - \mathbf{Y}\|$  on the set of Hölder *p*-rough path. A Hölder weak geometric *p*-rough path on [0, T] is a  $G_{\ell}^{[p]}$ -valued Hölder *p*-rough path.

Chen's relation

$$\mathbf{X}_{ts} = \mathbf{X}_{us}\mathbf{X}_{tu}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

holds by definition of the increments.

Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

► Definition – Let  $1 \le p$ . A Hölder *p*-rough path on [0, T] is a  $T_{\ell}^{[\rho], 1}$ -valued path  $X : t \in [0, T] \mapsto 1 \oplus X_t^1 \oplus X_t^2 \oplus \cdots \oplus X_t^{[\rho]}$ , such that

$$\left\|X^{m}\right\|_{\frac{m}{p}} := \sup_{0 \le s < t \le T} \frac{\left|X_{ts}^{m}\right|}{\left|t-s\right|^{\frac{m}{p}}} < \infty$$

for all  $m = 1 \dots [p]$ . We define the norm of **X** to be

$$\|\boldsymbol{X}\| := \max_{m=1\dots[p]} \|\boldsymbol{X}^m\|_{\frac{m}{p}},$$

and a distance  $d(\mathbf{X}, \mathbf{Y}) := \|\mathbf{X} - \mathbf{Y}\|$  on the set of Hölder *p*-rough path. A Hölder weak geometric *p*-rough path on [0, T] is a  $G_{\ell}^{[p]}$ -valued Hölder *p*-rough path.

For  $2 \le p < 3$ , Chen's relation is equivalent to

 $X_{ts}^{1} = X_{tu}^{1} + X_{us}^{1}, \quad X_{ts}^{2} = X_{tu}^{2} + X_{us}^{1} \otimes X_{tu}^{1} + X_{us}^{2}$ 

・ロト ・母ト ・ヨト ・ヨー うへで

Condition on  $X^1$  means that  $X_{ts}^1$  is the increment of the  $\mathbb{R}^\ell$ -valued path  $(X_{r0}^1)_{0 \le r \le T}$ . Condition on  $X^2$  analogue of  $\int_s^t \int_s^r = \int_s^u \int_s^r + \int_u^t \int_s^u + \int_u^t \int_u^r$ .

Given a  $T_{\ell}^{N,1}$ -valued path **X** set  $\mathbf{X}_{ts} := \mathbf{X}_{s}^{-1} \mathbf{X}_{t}$ .

▶ Definition – Let  $1 \le p$ . A Hölder *p*-rough path on [0, T] is a  $T_{\ell}^{[p],1}$ -valued path **X**:  $t \in [0, T] \mapsto 1 \oplus X_t^1 \oplus X_t^2 \oplus \cdots \oplus X_t^{[p]}$ , such that

$$\left\|X^{m}\right\|_{\frac{m}{p}} := \sup_{0 \le s < t \le T} \frac{\left|X_{ts}^{m}\right|}{\left|t-s\right|^{\frac{m}{p}}} < \infty$$

for all  $m = 1 \dots [p]$ . We define the norm of **X** to be

$$\|\boldsymbol{X}\| := \max_{m=1\dots[p]} \|\boldsymbol{X}^m\|_{\frac{m}{p}},$$

and a distance  $d(\mathbf{X}, \mathbf{Y}) := \|\mathbf{X} - \mathbf{Y}\|$  on the set of Hölder *p*-rough path. A Hölder weak geometric *p*-rough path on [0, T] is a  $G_{\ell}^{[p]}$ -valued Hölder *p*-rough path.

The metric

$$\overline{d}(\mathbf{X},\mathbf{Y}) := \left| X_0^1 - Y_0^1 \right| + d(\mathbf{X},\mathbf{Y})$$

turns the set of all Hölder *p*-rough paths into a (non-separable) complete metric space.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

3. Flows driven by rough paths

Given a collection of vector fields  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  on  $\mathbb{R}^d$ , set for  $z \in \mathbb{R}^\ell$ 

$$V(z) := \sum_{i=1}^{\ell} z^i V_i =: z^i V_i.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We identify naturally V(z) with a first order differential operator.

Given a collection of vector fields  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  on  $\mathbb{R}^d$ , set for  $z \in \mathbb{R}^\ell$ 

$$V(z) := \sum_{i=1}^{\ell} z^i V_i =: z^i V_i.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

We identify naturally V(z) with a first order differential operator. We extend the map  $V \in L(\mathbb{R}^{\ell}, C_{b}^{[p]+1}(\mathbb{R}^{d}, \mathbb{R}^{d}))$  to  $T_{\ell}^{\infty}$  setting  $V(1) = \text{Id} : C(\mathbb{R}^{d}) \mapsto C(\mathbb{R}^{d})$ 

Given a collection of vector fields  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  on  $\mathbb{R}^d$ , set for  $z \in \mathbb{R}^\ell$ 

$$V(z) := \sum_{i=1}^{\ell} z^i V_i =: z^i V_i.$$

We identify naturally V(z) with a first order differential operator. We extend the map  $V \in L(\mathbb{R}^{\ell}, C_{b}^{[p]+1}(\mathbb{R}^{d}, \mathbb{R}^{d}))$  to  $\mathcal{T}_{\ell}^{\infty}$  setting  $V(\mathbf{1}) = \mathrm{Id} : C(\mathbb{R}^{d}) \mapsto C(\mathbb{R}^{d})$ , and for  $z_{1} \otimes \cdots \otimes z_{k} \in (\mathbb{R}^{\ell})^{\otimes k}$  defining a *k*-th order differential operator  $V(z_{1} \otimes \cdots \otimes z_{k})$  setting

$$V(z_1 \otimes \cdots \otimes z_k) := V(z_1) \circ \cdots \circ V(z_k),$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

and requiring linearity.

Given a collection of vector fields  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  on  $\mathbb{R}^d$ , set for  $z \in \mathbb{R}^\ell$ 

$$V(z) := \sum_{i=1}^{\ell} z^i V_i =: z^i V_i.$$

We identify naturally V(z) with a first order differential operator. We extend the map  $V \in L(\mathbb{R}^{\ell}, C_{b}^{[p]+1}(\mathbb{R}^{d}, \mathbb{R}^{d}))$  to  $\mathcal{T}_{\ell}^{\infty}$  setting  $V(1) = \mathrm{Id} : C(\mathbb{R}^{d}) \mapsto C(\mathbb{R}^{d})$ , and for  $z_{1} \otimes \cdots \otimes z_{k} \in (\mathbb{R}^{\ell})^{\otimes k}$  defining a *k*-th order differential operator  $V(z_{1} \otimes \cdots \otimes z_{k})$  setting

 $V(z_1 \otimes \cdots \otimes z_k) := V(z_1) \circ \cdots \circ V(z_k),$ 

and requiring linearity. In those terms, the expansion property of ODE solutions

$$f(x_t) = f(x_s) + \left(\int_s^t dh_{s_1}^i\right) (V_i f)(x_s) + \left(\int_s^t \int_s^{s_1} dh_{s_2}^i dh_{s_1}^k\right) (V_j V_k f)(x_s) + (\cdots) + \left(\int_{s \le s_1 \le \cdots \le s_n \le t} dh_{s_n}^{i_n} \dots dh_{s_1}^{i_1}\right) (V_{i_n} \dots V_{i_1} f)(x_s) + O(|t - s|^{n+1})$$

rewrites

$$f(x_t) = (V(H_{ts})f)(x_s) + O(|t-s|^{n+1}).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Given a collection of vector fields  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  on  $\mathbb{R}^d$ , set for  $z \in \mathbb{R}^\ell$ 

$$V(z) := \sum_{i=1}^{\ell} z^i V_i =: z^i V_i.$$

We identify naturally V(z) with a first order differential operator. We extend the map  $V \in L(\mathbb{R}^{\ell}, C_{b}^{[p]+1}(\mathbb{R}^{d}, \mathbb{R}^{d}))$  to  $\mathcal{T}_{\ell}^{\infty}$  setting  $V(1) = \mathrm{Id} : C(\mathbb{R}^{d}) \mapsto C(\mathbb{R}^{d})$ , and for  $z_{1} \otimes \cdots \otimes z_{k} \in (\mathbb{R}^{\ell})^{\otimes k}$  defining a *k*-th order differential operator  $V(z_{1} \otimes \cdots \otimes z_{k})$  setting

 $V(z_1 \otimes \cdots \otimes z_k) := V(z_1) \circ \cdots \circ V(z_k),$ 

and requiring linearity. We have the fundamental morphism property

 $V(\mathbf{a})V(\mathbf{b}) = V(\mathbf{ab}), \quad \mathbf{a}, \mathbf{b} \in T_{\ell}^{\infty},$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Given a collection of vector fields  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  on  $\mathbb{R}^d$ , set for  $z \in \mathbb{R}^\ell$ 

$$V(z) := \sum_{i=1}^{\ell} z^i V_i =: z^i V_i.$$

We identify naturally V(z) with a first order differential operator. We extend the map  $V \in L(\mathbb{R}^{\ell}, C_{b}^{[p]+1}(\mathbb{R}^{d}, \mathbb{R}^{d}))$  to  $\mathcal{T}_{\ell}^{\infty}$  setting  $V(\mathbf{1}) = \mathrm{Id} : C(\mathbb{R}^{d}) \mapsto C(\mathbb{R}^{d})$ , and for  $z_{1} \otimes \cdots \otimes z_{k} \in (\mathbb{R}^{\ell})^{\otimes k}$  defining a *k*-th order differential operator  $V(z_{1} \otimes \cdots \otimes z_{k})$  setting

 $V(z_1 \otimes \cdots \otimes z_k) := V(z_1) \circ \cdots \circ V(z_k),$ 

and requiring linearity. We have the fundamental morphism property

 $V(\mathbf{a})V(\mathbf{b}) = V(\mathbf{ab}), \quad \mathbf{a}, \mathbf{b} \in T_{\ell}^{\infty},$ 

so V is a Lie algebra morphism sending  $T_{\ell}^{\infty}$ -brackets into brackets of differential operators

 $[V(\mathbf{a}), V(\mathbf{b})] = V([\mathbf{a}, \mathbf{b}]).$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Given a collection of vector fields  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  on  $\mathbb{R}^d$ , set for  $z \in \mathbb{R}^\ell$ 

$$V(z) := \sum_{i=1}^{\ell} z^i V_i =: z^i V_i.$$

We identify naturally V(z) with a first order differential operator. We extend the map  $V \in L(\mathbb{R}^{\ell}, C_{b}^{[p]+1}(\mathbb{R}^{d}, \mathbb{R}^{d}))$  to  $\mathcal{T}_{\ell}^{\infty}$  setting  $V(\mathbf{1}) = \mathrm{Id} : C(\mathbb{R}^{d}) \mapsto C(\mathbb{R}^{d})$ , and for  $z_{1} \otimes \cdots \otimes z_{k} \in (\mathbb{R}^{\ell})^{\otimes k}$  defining a *k*-th order differential operator  $V(z_{1} \otimes \cdots \otimes z_{k})$  setting

 $V(z_1 \otimes \cdots \otimes z_k) := V(z_1) \circ \cdots \circ V(z_k),$ 

and requiring linearity. We have the fundamental morphism property

 $V(\mathbf{a})V(\mathbf{b}) = V(\mathbf{ab}), \quad \mathbf{a}, \mathbf{b} \in T^{\infty}_{\ell},$ 

so V is a Lie algebra morphism sending  $T_{\ell}^{\infty}$ -brackets into brackets of differential operators

 $[V(\mathbf{a}), V(\mathbf{b})] = V([\mathbf{a}, \mathbf{b}]).$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

As brackets of vector fields are vector fields,  $V(g_{\ell}^{N})$  is made up vector fields.

Let  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  be smooth vector fields on  $\mathbb{R}^d$ , with bounded  $2[\rho] + 1$  derivatives ( $V_i \in C_b^{[\rho]+1}$  suffices).

Let  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  be smooth vector fields on  $\mathbb{R}^d$ , with bounded 2[p] + 1 derivatives ( $V_i \in C_b^{[p]+1}$  suffices). Given a weak geometric *p*-rough path **X**, and  $0 \le s \le t \le T < \infty$ , set

 $\Lambda_{ts} := \log \mathbf{X}_{ts} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty},$ 

Let  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  be smooth vector fields on  $\mathbb{R}^d$ , with bounded 2[p] + 1 derivatives ( $V_i \in C_b^{[p]+1}$  suffices). Given a weak geometric *p*-rough path **X**, and  $0 \le s \le t \le T < \infty$ , set

$$\Lambda_{ts} := \log \mathbf{X}_{ts} \in T_{\ell}^{[\rho]} \subset T_{\ell}^{\infty},$$

and let  $\mu_{ts}$  stand for the well-defined time 1 map associated with the ordinary differential equation

 $\dot{y}_u = V(\Lambda_{ts})(y_u), \quad 0 \le u \le 1.$ 

Let  $V_1, \ldots, V_\ell \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$  be smooth vector fields on  $\mathbb{R}^d$ , with bounded 2[p] + 1 derivatives ( $V_i \in C_b^{[p]+1}$  suffices). Given a weak geometric *p*-rough path **X**, and  $0 \le s \le t \le T < \infty$ , set

$$\Lambda_{ts} := \log \mathbf{X}_{ts} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty},$$

and let  $\mu_{ts}$  stand for the well-defined time 1 map associated with the ordinary differential equation

$$\dot{y}_u = V(\Lambda_{ts})(y_u), \quad 0 \le u \le 1.$$

▶ Proposition – There exists a positive constant c, depending only on the  $V_i$ , such that the inequality

$$\left\| f \circ \mu_{ts} - V(\boldsymbol{X}_{ts}) f \right\|_{\infty} \le c \left( 1 + \|\boldsymbol{X}\|^{[p]} \right) \|f\|_{C^{[p]+1}} \|t - s\|^{\frac{[p]+1}{p}}$$
(13)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

holds for any  $f \in C_b^{[p]+1}(\mathbb{R}^d)$ .

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

one has

 $\left\|\Lambda_{ts}^{m}\right\| \lesssim |t-s|^{m/p},$ 

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_{\ell}^m,$$

one has

$$\left\|\Lambda_{ts}^{m}\right\| \lesssim \left|t-s\right|^{m/p}$$

and

$$\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{ts}^{*k} = \mathbf{X}_{ts} + O\left(|t-s|^{\frac{[p]+1}{p}}\right) \in T_{\ell}^{\infty},$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where \* stands for the multiplication in  $T_{\ell}^{\infty}$ , while  $X_{ls} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$ .

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

one has

$$\left\|\boldsymbol{\Lambda}_{ts}^{m}\right\| \lesssim |t-s|^{m/p},$$

and

$$\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{ts}^{*k} = \mathbf{X}_{ts} + O\left(|t-s|^{\frac{[p]+1}{p}}\right) \in T_{\ell}^{\infty},$$

where \* stands for the multiplication in  $T_{\ell}^{\infty}$ , while  $X_{ts} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$ . Then

$$f(y_1) = f(x) + \int_0^1 \{V(\Lambda_{ts})f\}(y_{u_1}) \, du_1$$

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

one has

$$\left\|\Lambda_{ts}^{m}\right\| \lesssim \left|t-s\right|^{m/p},$$

and

$$\sum_{k=0}^{[p]} \frac{1}{k!} \Lambda_{ts}^{*k} = \mathbf{X}_{ts} + O\left(|t-s|^{\frac{[p]+1}{p}}\right) \in T_{\ell}^{\infty},$$

where \* stands for the multiplication in  $T^{\infty}_{\ell}$ , while  $\textbf{X}_{ts} \in T^{[p]}_{\ell} \subset T^{\infty}_{\ell}$ . Then

$$f(y_1) = f(x) + \{V(\Lambda_{ts})f\}(x) + \int_0^1 \int_0^{u_1} \{V(\Lambda_{ts})V(\Lambda_{ts})f\}(y_{u_2}) \, du_2 \, du_2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

one has

$$\left\|\boldsymbol{\Lambda}_{ts}^{m}\right\| \lesssim |t-s|^{m/p},$$

and

$$\sum_{k=0}^{[\rho]} \frac{1}{k!} \Lambda_{ts}^{*k} = \mathbf{X}_{ts} + O\left(|t-s|^{\frac{[\rho]+1}{\rho}}\right) \in T_{\ell}^{\infty},$$

where \* stands for the multiplication in  $T^{\infty}_{\ell}$ , while  $\textbf{X}_{ts} \in T^{[p]}_{\ell} \subset T^{\infty}_{\ell}$ . Then

$$f(y_1) = f(x) + \left\{ V(\Lambda_{ts})f \right\}(x) + \int_0^1 \int_0^{u_1} \left\{ V(\Lambda_{ts}^{*2})f \right\}(y_{u_2}) \, du_2 \, du_2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

one has

$$\left\|\boldsymbol{\Lambda}_{ts}^{m}\right\| \lesssim |t-s|^{m/p},$$

and

$$\sum_{k=0}^{[\rho]} \frac{1}{k!} \Lambda_{ts}^{*k} = \mathbf{X}_{ts} + O\left(|t-s|^{\frac{[\rho]+1}{\rho}}\right) \in T_{\ell}^{\infty},$$

where \* stands for the multiplication in  $T_{\ell}^{\infty}$ , while  $X_{ts} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$ . Then

$$f(y_1) = f(x) + \left\{ V(\Lambda_{ls})f \right\}(x) + \frac{1}{2} \left\{ V(\Lambda_{ls}^{*2})f \right\}(x) + \int_0^1 \int_0^{s_1} \int_0^{s_2} \left\{ V(\Lambda_{ls}^{*3})f \right\}(y_{u_3}) \, du_3 \, du_2 \, du_1,$$

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

one has

$$\left\|\Lambda_{ts}^{m}\right\| \lesssim \left|t-s\right|^{m/p},$$

and

$$\sum_{k=0}^{[\rho]} \frac{1}{k!} \Lambda_{ts}^{*k} = \mathbf{X}_{ts} + O\left(|t-s|^{\frac{[\rho]+1}{\rho}}\right) \in T_{\ell}^{\infty},$$

where \* stands for the multiplication in  $T_{\ell}^{\infty}$ , while  $X_{ts} \in T_{\ell}^{[p]} \subset T_{\ell}^{\infty}$ . Then by induction

$$f(y_1) = \left\{ V\left(\sum_{k=0}^{[p]} \frac{1}{k!} (\Lambda_{ts})^{*k}\right) f \right\}(x) + \int_{0 \le u_{[p]+1} \le \dots \le u_1} \left\{ V\left(\Lambda_{ts}^{*([p]+1)}\right) f \right\}(y_{u_{[p]+1}}) du$$

**Proof** – Writing

$$\Lambda_{ts} = \bigoplus_{m=1}^{[p]} \Lambda_{ts}^m \in \bigoplus_{m=1}^{[p]} T_\ell^m,$$

one has

$$\left\|\Lambda_{ts}^{m}\right\| \lesssim \left|t-s\right|^{m/p},$$

and

$$\sum_{k=0}^{[\rho]} \frac{1}{k!} \Lambda_{ts}^{*k} = \mathbf{X}_{ts} + O\left(\left|t-s\right|^{\frac{[\rho]+1}{\rho}}\right) \in T_{\ell}^{\infty},$$

where \* stands for the multiplication in  $T_{\ell}^{\infty}$ , while  $\boldsymbol{X}_{\textit{ts}} \in T_{\ell}^{[\textit{p}]} \subset T_{\ell}^{\infty}$ .

$$f(y_1) = \left\{ V\left(\sum_{k=0}^{[p]} \frac{1}{k!} (\Lambda_{ls})^{*k}\right) f \right\} (x) + \int_{0 \le u_{[p]+1} \le \dots \le u_1} \left\{ V(\Lambda_{ls}^{*([p]+1)}) f \right\} (y_{u_{[p]+1}}) du$$
$$= \left( V(\mathbf{X}_{ls}) f \right) (x) + O\left( |t-s|^{\frac{[p]+1}{p}} \right).$$

-

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

► Corollary – The family  $(\mu_{ts})_{0 \le s \le t \le T}$  is a  $C^1$ -approximate flow.

► Corollary – The family  $(\mu_{ts})_{0 \le s \le t \le T}$  is a  $C^1$ -approximate flow.

**Proof** – Write  $\pi : T_{\ell}^{\infty} \to T_{\ell}^{\infty} / T_{\ell}^{[p]}$ , for the canonical projection map.



► Corollary – The family  $(\mu_{ts})_{0 \le s \le t \le T}$  is a  $C^1$ -approximate flow.

**Proof** – Write  $\pi : T_{\ell}^{\infty} \to T_{\ell}^{\infty} / T_{\ell}^{[p]}$ , for the canonical projection map. For  $0 \le s \le u \le t \le T$ , one has

 $\mu_{tu} \circ \mu_{us} = \left\{ V(\mathbf{X}_{tu}) \mathrm{Id} \right\} \circ \mu_{us} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us}$ 



► Corollary – The family  $(\mu_{ts})_{0 \le s \le t \le T}$  is a  $C^1$ -approximate flow.

**Proof** – Write  $\pi : T_{\ell}^{\infty} \to T_{\ell}^{\infty} / T_{\ell}^{[\rho]}$ , for the canonical projection map. For  $0 \le s \le u \le t \le T$ , one has

$$\begin{split} \mu_{tu} \circ \mu_{us} &= \left\{ V(\mathbf{X}_{tu}) \mathrm{Id} \right\} \circ \mu_{us} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \\ &= V(\mathbf{X}_{us}) V(\mathbf{X}_{tu}) \mathrm{Id} + \epsilon^{V(\mathbf{X}_{tu}) \mathrm{Id}}_{us} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

► Corollary – The family  $(\mu_{ts})_{0 \le s \le t \le T}$  is a  $C^1$ -approximate flow.

**Proof** – Write  $\pi : T_{\ell}^{\infty} \to T_{\ell}^{\infty} / T_{\ell}^{[\rho]}$ , for the canonical projection map. For  $0 \le s \le u \le t \le T$ , one has

$$\begin{split} \mu_{tu} \circ \mu_{us} &= \left\{ V(\mathbf{X}_{tu}) \mathrm{Id} \right\} \circ \mu_{us} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \\ &= V(\mathbf{X}_{us}) V(\mathbf{X}_{tu}) \mathrm{Id} + \epsilon^{V(\mathbf{X}_{tu}) \mathrm{Id}} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \\ &= V(\mathbf{X}_{ts}) \mathrm{Id} + V \Big( \pi \Big( \mathbf{X}_{us} \mathbf{X}_{tu} \Big) \Big) \mathrm{Id} + \epsilon^{V(\mathbf{X}_{tu}) \mathrm{Id}} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

► Corollary – The family  $(\mu_{ts})_{0 \le s \le t \le T}$  is a  $C^1$ -approximate flow.

**Proof** – Write  $\pi : T_{\ell}^{\infty} \to T_{\ell}^{\infty} / T_{\ell}^{[\rho]}$ , for the canonical projection map. For  $0 \le s \le u \le t \le T$ , one has

$$\begin{split} \mu_{tu} \circ \mu_{us} &= \left\{ V(\mathbf{X}_{tu}) \mathrm{Id} \right\} \circ \mu_{us} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \\ &= V(\mathbf{X}_{us}) V(\mathbf{X}_{tu}) \mathrm{Id} + \epsilon^{V(\mathbf{X}_{tu}) \mathrm{Id}} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \\ &= V(\mathbf{X}_{ts}) \mathrm{Id} + V \Big( \pi \Big( \mathbf{X}_{us} \mathbf{X}_{tu} \Big) \Big) \mathrm{Id} + \epsilon^{V(\mathbf{X}_{tu}) \mathrm{Id}} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us} \\ &= \mu_{ts} + \epsilon^{\mathrm{Id}}_{ts} + V \Big( \pi \Big( \mathbf{X}_{us} \mathbf{X}_{tu} \Big) \Big) \mathrm{Id} + \epsilon^{V(\mathbf{X}_{tu}) \mathrm{Id}} + \epsilon^{\mathrm{Id}_{tu}} \circ \mu_{us}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ Definition – A flow on  $\mathbb{R}^d$  is said to be a solution flow to the rough differential equation

 $d\varphi = V(\varphi) d\mathbf{X}_t$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▶ Definition – A flow on  $\mathbb{R}^d$  is said to be a solution flow to the rough differential equation

 $d\varphi = V(\varphi) d\mathbf{X}_t$ 

if there exists a constant a > 1 independent of **X** and two possibly **X**-dependent positive constants  $\delta$  and c such that one has

 $\|\varphi_{ts}-\mu_{ts}\|_{\infty}\leq c\,|t-s|^{a},$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for all  $0 \le s \le t \le T$  with  $t - s \le \delta$ 

▶ Definition – A flow on  $\mathbb{R}^d$  is said to be a solution flow to the rough differential equation

 $d\varphi = V(\varphi) d\mathbf{X}_t$ 

if there exists a constant a > 1 independent of **X** and two possibly **X**-dependent positive constants  $\delta$  and c such that one has

 $f \circ \varphi_{ts} = V(\mathbf{X}_{ts})f + O_{c,f}(|t-s|^{a}),$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for all  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and  $f \in C_b^{[p]+1}(\mathbb{R}^d)$ .

▶ Definition – A flow on  $\mathbb{R}^d$  is said to be a solution flow to the rough differential equation

 $d\varphi = V(\varphi) d\mathbf{X}_t$ 

if there exists a constant a > 1 independent of **X** and two possibly **X**-dependent positive constants  $\delta$  and c such that one has

 $f \circ \varphi_{ts} = V(\mathbf{X}_{ts})f + O_{c,f}(|t-s|^a),$ 

for all  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and  $f \in C_b^{[p]+1}(\mathbb{R}^d)$ .

Theorem – The rough differential equation

 $d\varphi = V(\varphi) d\boldsymbol{X}_t$ 

has a unique solution flow; it takes values in the space of uniformly Lipschitz continuous homeomorphisms of  $\mathbb{R}^d$  with uniformly Lipschitz continuous inverses, and depends continuously on **X**.

► Definition – An  $\mathbb{R}^d$ -valued path z is said to be a solution path to the rough differential equation

 $dz = V(z)d\mathbf{X}_t$ 



▶ Definition – An  $\mathbb{R}^d$ -valued path z is said to be a solution path to the rough differential equation

 $dz = V(z)d\mathbf{X}_t$ 

if there exists a constant a > 1 independent of **X** and two possibly **X**-dependent positive constants  $\delta$  and c such that one has

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

▶ Definition – An  $\mathbb{R}^d$ -valued path z is said to be a solution path to the rough differential equation

 $dz = V(z)d\mathbf{X}_t$ 

if there exists a constant a > 1 independent of **X** and two possibly **X**-dependent positive constants  $\delta$  and c such that one has

 $f(z_t) = \left(V(\boldsymbol{X}_{ts})f\right)(z_s) + O_{c,f}\left(|t-s|^a\right),$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

▶ Definition – An  $\mathbb{R}^d$ -valued path z is said to be a solution path to the rough differential equation

 $dz = V(z)d\mathbf{X}_t$ 

if there exists a constant a > 1 independent of **X** and two possibly **X**-dependent positive constants  $\delta$  and c such that one has

 $f(z_t) = (V(\boldsymbol{X}_{ts})f)(z_s) + O_{c,f}(|t-s|^a),$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for all  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and  $f \in C_b^{[p]+1}(\mathbb{R}^d)$ .

► Definition – An  $\mathbb{R}^d$ -valued path z is said to be a solution path to the rough differential equation

 $dz = V(z)d\mathbf{X}_t$ 

if there exists a constant a > 1 independent of **X** and two possibly **X**-dependent positive constants  $\delta$  and c such that one has

 $f(z_t) = (V(\boldsymbol{X}_{ts})f)(z_s) + O_{c,f}(|t-s|^a),$ 

for all  $0 \le s \le t \le T$  with  $t - s \le \delta$ , and  $f \in C_b^{[p]+1}(\mathbb{R}^d)$ .

► Theorem – The rough differential equation

$$dz = V(z)dX_t, \quad z_0 = x \in \mathbb{R}^d,$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

has a unique solution path. It is a continuous function of X in the uniform norm topology.

▶ Proof – **Existence.**  $z_t := \varphi_{t0}(x)$  is a solution path.

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path.



**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)| \leq \mathbf{C}|t - \mathbf{S}|^{\alpha}.$ 



**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

 $y_{k\epsilon} = \varphi_{k\epsilon,(k-1)\epsilon} (y_{(k-1)\epsilon}) + O_c(\epsilon^{\alpha})$ 

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} \Big( y_{(k-1)\epsilon} \Big) + O_c \Big( \epsilon^{\alpha} \Big) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} \Big( \varphi_{(k-1)\epsilon,(k-2)\epsilon} \Big( y_{(k-2)\epsilon} \Big) + O_c \Big( \epsilon^{\alpha} \Big) \Big) + O_c \Big( \epsilon^{\alpha} \Big) \end{aligned}$$

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} \big( y_{(k-1)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} \Big( \varphi_{(k-1)\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \Big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_{cL} \big( \epsilon^{\alpha} \big) + O_c \big( \epsilon^{\alpha} \big), \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ls}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} (y_{(k-1)\epsilon}) + O_c(\epsilon^{\alpha}) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} (\varphi_{(k-1)\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_c(\epsilon^{\alpha})) + O_c(\epsilon^{\alpha}) \\ &= \varphi_{k\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_{cL}(\epsilon^{\alpha}) + O_c(\epsilon^{\alpha}), \end{aligned}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

and see by induction that

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} (y_{(k-1)\epsilon}) + O_c(\epsilon^{\alpha}) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} (\varphi_{(k-1)\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_c(\epsilon^{\alpha})) + O_c(\epsilon^{\alpha}) \\ &= \varphi_{k\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_{cL}(\epsilon^{\alpha}) + O_c(\epsilon^{\alpha}), \end{aligned}$$

and see by induction that

$$y_{k\epsilon} = \varphi_{k\epsilon,(k-n)\epsilon} (y_{(k-n)\epsilon}) + O_{cL} ((n-1)\epsilon^{\alpha}) + O_{c} (\epsilon^{\alpha})$$

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} (y_{(k-1)\epsilon}) + O_c(\epsilon^{\alpha}) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} (\varphi_{(k-1)\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_c(\epsilon^{\alpha})) + O_c(\epsilon^{\alpha}) \\ &= \varphi_{k\epsilon,(k-2)\epsilon} (y_{(k-2)\epsilon}) + O_{cL}(\epsilon^{\alpha}) + O_c(\epsilon^{\alpha}), \end{aligned}$$

and see by induction that

$$\begin{split} y_{k\epsilon} &= \varphi_{k\epsilon,(k-n)\epsilon} \big( y_{(k-n)\epsilon} \big) + O_{cL} \big( (n-1)\epsilon^{\alpha} \big) + O_{c} \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,0}(x) + O_{cL} \big( k\epsilon^{\alpha} \big) + O_{\epsilon}(1) \end{split}$$

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} \big( y_{(k-1)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} \Big( \varphi_{(k-1)\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \Big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_{cL} \big( \epsilon^{\alpha} \big) + O_c \big( \epsilon^{\alpha} \big), \end{aligned}$$

and see by induction that

$$\begin{split} y_{k\epsilon} &= \varphi_{k\epsilon,(k-n)\epsilon} \big( y_{(k-n)\epsilon} \big) + O_{cL} \big( (n-1)\epsilon^{\alpha} \big) + O_{c} \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,0}(x) + O_{cL} \big( k\epsilon^{\alpha} \big) + o_{\epsilon}(1) \\ &= z_{k\epsilon} + O_{cL} \big( k\epsilon^{\alpha} \big) + o_{\epsilon}(1). \end{split}$$

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $\left|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)\right| \leq \mathbf{C} |t - \mathbf{s}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} \big( y_{(k-1)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} \Big( \varphi_{(k-1)\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \Big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_{cL} \big( \epsilon^{\alpha} \big) + O_c \big( \epsilon^{\alpha} \big), \end{aligned}$$

and see by induction that

$$y_{k\epsilon} = \varphi_{k\epsilon,(k-n)\epsilon} (y_{(k-n)\epsilon}) + O_{cL}((n-1)\epsilon^{\alpha}) + O_{c}(\epsilon^{\alpha})$$
$$= \varphi_{k\epsilon,0}(x) + O_{cL}(k\epsilon^{\alpha}) + o_{\epsilon}(1)$$
$$= z_{k\epsilon} + O_{cL}(k\epsilon^{\alpha}) + o_{\epsilon}(1).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Taking  $\epsilon$  and k so that  $k\epsilon$  converges to some  $t \in [0, T]$ , we see that  $y_t = z_t$ , since  $\alpha > 1$ .

**Uniqueness.** Set  $\alpha := \min(\frac{3}{p}, a)$ , and let  $y_{\bullet}$  be any other solution path. One has

 $|\mathbf{y}_t - \varphi_{ts}(\mathbf{y}_s)| \leq \mathbf{C} |t - \mathbf{S}|^{\alpha}.$ 

Using the fact that the maps  $\varphi_{ts}$  are uniformly Lipschitz continuous, with a Lipschitz constant bounded above by *L* say, one can write for any  $\epsilon > 0$  and any integer  $k \leq \frac{T}{\epsilon}$ 

$$\begin{aligned} y_{k\epsilon} &= \varphi_{k\epsilon,(k-1)\epsilon} \big( y_{(k-1)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-1)\epsilon} \Big( \varphi_{(k-1)\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_c \big( \epsilon^{\alpha} \big) \Big) + O_c \big( \epsilon^{\alpha} \big) \\ &= \varphi_{k\epsilon,(k-2)\epsilon} \big( y_{(k-2)\epsilon} \big) + O_{cL} \big( \epsilon^{\alpha} \big) + O_c \big( \epsilon^{\alpha} \big), \end{aligned}$$

and see by induction that

$$y_{k\epsilon} = \varphi_{k\epsilon,(k-n)\epsilon} (y_{(k-n)\epsilon}) + O_{cL} ((n-1)\epsilon^{\alpha}) + O_{c} (\epsilon^{\alpha})$$
  
=  $\varphi_{k\epsilon,0}(x) + O_{cL} (k\epsilon^{\alpha}) + o_{\epsilon}(1)$   
=  $z_{k\epsilon} + O_{cL} (k\epsilon^{\alpha}) + o_{\epsilon}(1).$ 

Taking  $\epsilon$  and k so that  $k\epsilon$  converges to some  $t \in [0, T]$ , we see that  $y_t = z_t$ , since  $\alpha > 1$ .

The continuous dependence of the solution path  $z_{\bullet}$  with respect to **X** is transfered from  $\varphi$  to  $z_{\bullet}$ .

#### Written version of the lectures on my teaching web page

https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf



## Further reading

#### Branched rough paths (towards regularity structures)

- Ramification of rough paths. M. Gubinelli, J. Diff. Eq., 248(4):693-721, (2010).
- Geometric versus non-geometric rough paths. M. Hairer and D. Kelly, *Ann. Inst. H. Poincaré Probab. Stat.*, **51**(1):207–251, (2015).
- On the definition of a solution to a rough differential equation. I. Bailleul, to appear in *Ann. Fac. Sci. Toulouse.*

#### Applications to stochastic analysis... so many!

- Tiny sample in Chap. 5 of my lecture notes, and Chap. 9-11 of Friz-Hairer's book.
- Mean field rough differential equations
  - Evolving communities with individual preferences. T. Cass and T. Lyons, *Proc. London Math. Soc.*, **110**(1):83–107, (2015).
  - Solving mean field rough differential equations. I. Bailleul and R. Catellier and F. Delarue, *Elec. J. Probab.*, 25(21):1–51, (2020).
  - Pathwise McKean-Vlasov Theory with Additive Noise. M. Coghi and J.D. Deuschel and P. Friz and M. Maurelli, arXiv:1812.11773, (2018).

## Further reading

#### **Fast-slow systems**

- Deterministic homogenization for fast-slow systems with chaotic noise. D. Kelly and I. Melbourne, *J. Funct. Anal.*, **272**(10):4063–4102, (2017).
- Rough flows and homogenization in stochastic turbulence. I. Bailleul and R. Catellier, *J. Diff. Eq*, **263**(8):4894–4928, (2017).
- Homogenization with fractional random fields. J. Gehringer and X.-M. Li, arXiv:1911.12600, (2019).

#### Signature, analysis of streams and machine learning

- Uniqueness for the signature of a path of bounded variation and the reduced path group. B. Hambly and T. Lyons, *Ann. Math.*, **171**(1):109–167, (2010).
- The Signature of a Rough Path: Uniqueness. H. Boedihardjo and X. Geng and T. Lyons and D. Yang, *Adv. Math.*, **293**:720–737, (2016).
- Reconstruction for the signature of a rough path. X. Geng, *Proc. London Math. Soc.*, **114**(3):495–526, (2017).
- Rough paths, Signatures and the modelling of functions on streams. T. Lyons, https://arxiv.org/abs/1405.4537, (2014).
- Kernels for sequentially ordered data. F. Kiraly and H. Oberhauser, arXiv:1601.08169, (2016).
- Signature moments to characterize laws of stochastic processes. I. Chevyrev and H. Oberhauser, arXiv:1810.10971, (2018).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

**Theorem** – Assume  $(n) \mathbf{X}$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

**Theorem** – Assume  $(n) \mathbf{X}$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

《曰》 《聞》 《臣》 《臣》 三臣 …

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

Proof – • X is a Hölder *p*-rough path

**Theorem** – Assume  ${}^{(n)}X$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • X is a Hölder *p*-rough path: direct consequence of the uniform bounds (14) and pointwise convergence:

 $\left|X_{ts}^{i}\right| = \lim_{n} \left|{}^{(n)}X_{ts}^{i}\right| \le C|t-s|^{\frac{i}{p}}.$ 

**Theorem** – Assume  ${}^{(n)}X$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Would the convergence of  ${}^{(n)}\mathbf{X}$  to  $\mathbf{X}$  be uniform, we could find  $\epsilon_n \searrow 0$ , such that, uniformly in *s*, *t*,

$$\left|X_{ts}^{i}-{}^{(n)}X_{ts}^{i}\right| \leq \epsilon_{n}, \quad \left|X_{ts}^{i}-{}^{(n)}X_{ts}^{i}\right| \leq 2C|t-s|^{\frac{i}{p}}.$$

**Theorem** – Assume  $(n) \mathbf{X}$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {^{(n)}X} \right\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Would the convergence of  ${}^{(n)}\mathbf{X}$  to  $\mathbf{X}$  be uniform, we could find  $\epsilon_n \searrow 0$ , such that, uniformly in *s*, *t*,

$$\left|X_{ts}^{i}-{}^{(n)}X_{ts}^{i}\right| \leq \epsilon_{n}, \quad \left|X_{ts}^{i}-{}^{(n)}X_{ts}^{i}\right| \leq 2C|t-s|^{\frac{i}{p}}.$$

Using  $a \wedge b \leq a^{1-\theta}b^{\theta}$ , with  $\theta = \frac{p}{q} < 1$ 

**Theorem** – Assume  $(n) \mathbf{X}$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Would the convergence of  ${}^{(n)}X$  to X be uniform, we could find  $\epsilon_n \searrow 0$ , such that, uniformly in *s*, *t*,

$$|X_{ts}^{i} - {}^{(n)}X_{ts}^{i}| \le \epsilon_{n}, \quad |X_{ts}^{i} - {}^{(n)}X_{ts}^{i}| \le 2C|t - s|^{\frac{i}{p}}.$$

Using  $a \wedge b \leq a^{1-\theta}b^{\theta}$ , with  $\theta = \frac{p}{q} < 1$ , we have

$$\left|X_{ts}^{i}-{}^{(n)}X_{ts}^{i}\right|\leq\epsilon_{n}^{1-\frac{p}{q}}|t-s|^{\frac{i}{q}},$$

which entails the convergence result as a Hölder q-rough path.

**Theorem** – Assume  $(n) \mathbf{X}$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \|{}^{(n)}X\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

Proof – • Pointwise convergence suffices to get the result!

**Theorem** – Assume  $(n) \mathbf{X}$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Pointwise convergence suffices to get the result! Given a partition  $\pi$  of [0, 1] and any  $0 \le s \le t \le 1$ , denote by  $\overline{s}, \overline{t}$  the nearest points in  $\pi$  to s and t respectively.

**Theorem** – Assume  ${}^{(n)}X$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Pointwise convergence suffices to get the result! Given a partition  $\pi$  of [0, 1] and any  $0 \le s \le t \le 1$ , denote by  $\overline{s}, \overline{t}$  the nearest points in  $\pi$  to s and t respectively. Writing

 $d\left(\mathbf{X}_{ts}, {}^{(n)}\mathbf{X}_{ts}\right) \leq d\left(\mathbf{X}_{ts}, \mathbf{X}_{\bar{ts}}\right) + d\left(\mathbf{X}_{\bar{ts}}, {}^{(n)}\mathbf{X}_{\bar{ts}}\right) + d\left({}^{(n)}\mathbf{X}_{\bar{ts}}, {}^{(n)}\mathbf{X}_{ts}\right)$ 

**Theorem** – Assume  ${}^{(n)}X$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \|^{(n)} X\| \le C < \infty, \tag{14}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Pointwise convergence suffices to get the result! Given a partition  $\pi$  of [0, 1] and any  $0 \le s \le t \le 1$ , denote by  $\overline{s}, \overline{t}$  the nearest points in  $\pi$  to s and t respectively. Writing

$$d\left(\mathbf{X}_{ts}, {}^{(n)}\mathbf{X}_{ts}\right) \leq d\left(\mathbf{X}_{ts}, \mathbf{X}_{\overline{ts}}\right) + d\left(\mathbf{X}_{\overline{ts}}, {}^{(n)}\mathbf{X}_{\overline{ts}}\right) + d\left({}^{(n)}\mathbf{X}_{\overline{ts}}, {}^{(n)}\mathbf{X}_{ts}\right)$$

and

$$\mathbf{X}_{\bar{t}\bar{s}} = \mathbf{X}_{s\bar{s}} \mathbf{X}_{ts} \mathbf{X}_{\bar{t}t}, \quad {}^{(n)} \mathbf{X}_{\bar{t}\bar{s}} = {}^{(n)} \mathbf{X}_{s\bar{s}} {}^{(n)} \mathbf{X}_{ts} {}^{(n)} \mathbf{X}_{\bar{t}t}$$

**Theorem** – Assume  ${}^{(n)}X$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \left\| {}^{(n)}X \right\| \le C < \infty, \tag{14}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Pointwise convergence suffices to get the result! Given a partition  $\pi$  of [0, 1] and any  $0 \le s \le t \le 1$ , denote by  $\overline{s}, \overline{t}$  the nearest points in  $\pi$  to s and t respectively. Writing

$$d\left(\mathbf{X}_{ts}, {}^{(n)}\mathbf{X}_{ts}\right) \leq d\left(\mathbf{X}_{ts}, \mathbf{X}_{\overline{ts}}\right) + d\left(\mathbf{X}_{\overline{ts}}, {}^{(n)}\mathbf{X}_{\overline{ts}}\right) + d\left({}^{(n)}\mathbf{X}_{\overline{ts}}, {}^{(n)}\mathbf{X}_{ts}\right)$$

and

$$\mathbf{X}_{\bar{t}\bar{s}} = \mathbf{X}_{s\bar{s}} \mathbf{X}_{ts} \mathbf{X}_{\bar{t}t}, \quad {}^{(n)} \mathbf{X}_{\bar{t}\bar{s}} = {}^{(n)} \mathbf{X}_{s\bar{s}} {}^{(n)} \mathbf{X}_{ts} {}^{(n)} \mathbf{X}_{\bar{t}t}$$

and using the uniform estimate (14)

**Theorem** – Assume  ${}^{(n)}X$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \|^{(n)} X\| \le C < \infty, \tag{14}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Pointwise convergence suffices to get the result! Given a partition  $\pi$  of [0, 1] and any  $0 \le s \le t \le 1$ , denote by  $\overline{s}, \overline{t}$  the nearest points in  $\pi$  to s and t respectively. Writing

$$d\left(\mathbf{X}_{ts}, {}^{(n)}\mathbf{X}_{ts}\right) \leq d\left(\mathbf{X}_{ts}, \mathbf{X}_{\overline{ts}}\right) + d\left(\mathbf{X}_{\overline{ts}}, {}^{(n)}\mathbf{X}_{\overline{ts}}\right) + d\left({}^{(n)}\mathbf{X}_{\overline{ts}}, {}^{(n)}\mathbf{X}_{ts}\right)$$

and

$$\mathbf{X}_{\bar{t}\bar{s}} = \mathbf{X}_{s\bar{s}}\mathbf{X}_{ts}\mathbf{X}_{\bar{t}t}, \quad {}^{(n)}\mathbf{X}_{\bar{t}\bar{s}} = {}^{(n)}\mathbf{X}_{s\bar{s}}{}^{(n)}\mathbf{X}_{ts}{}^{(n)}\mathbf{X}_{\bar{t}t}$$

and using the uniform estimate (14), the first and third terms in the above upper bound can be made arbitrarily small by choosing a partition with a small enough mesh, uniformly in s, t and n.

**Theorem** – Assume  ${}^{(n)}X$  is a sequence of Hölder p-rough paths with uniform bounds

$$\sup_{n} \|^{(n)} X\| \le C < \infty, \tag{14}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

which converge pointwise, in the sense that  ${}^{(n)}X_{ts}$  converges to some  $X_{ts}$  for each  $0 \le s \le t \le 1$ . Then the limit object X is a Hölder p-rough path, and  ${}^{(n)}X$  converges to X as a Hölder q-rough path, for any p < q < [p] + 1.

▶ Proof – • Pointwise convergence suffices to get the result! Given a partition  $\pi$  of [0, 1] and any  $0 \le s \le t \le 1$ , denote by  $\overline{s}, \overline{t}$  the nearest points in  $\pi$  to s and t respectively. Writing

$$d\left(\mathbf{X}_{ts}, {}^{(n)}\mathbf{X}_{ts}\right) \leq d\left(\mathbf{X}_{ts}, \mathbf{X}_{\bar{t}\bar{s}}\right) + d\left(\mathbf{X}_{\bar{t}\bar{s}}, {}^{(n)}\mathbf{X}_{\bar{t}\bar{s}}\right) + d\left({}^{(n)}\mathbf{X}_{\bar{t}\bar{s}}, {}^{(n)}\mathbf{X}_{ts}\right)$$

and

$$\mathbf{X}_{\bar{t}\bar{s}} = \mathbf{X}_{s\bar{s}} \mathbf{X}_{ts} \mathbf{X}_{\bar{t}t}, \quad {}^{(n)} \mathbf{X}_{\bar{t}\bar{s}} = {}^{(n)} \mathbf{X}_{s\bar{s}} {}^{(n)} \mathbf{X}_{ts} {}^{(n)} \mathbf{X}_{\bar{t}t}$$

and using the uniform estimate (14), the first and third terms in the above upper bound can be made arbitrarily small by choosing a partition with a small enough mesh, uniformly in *s*, *t* and *n*. Second term dealt with the pointwise convergence assumption as it involves only finitely many points once the partition  $\pi$  has been chosen as above.

<

▶ Definition – Pick an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path  $X = (X, \mathbb{X})$ , for  $2 \le p < 3$ .

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▶ Definition – Pick an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path  $X = (X, \mathbb{X})$ , for  $2 \le p < 3$ . An  $\mathbb{R}^{d}$ -valued path  $z_{\bullet}$  is said to be a path controlled by X if its increments  $Z_{ts} := z_t - z_s$ , satisfy

 $Z_{ts} := Z'_s X_{ts} + R_{ts},$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▶ Definition – Pick an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path  $\mathbf{X} = (X, \mathbb{X})$ , for  $2 \le p < 3$ . An  $\mathbb{R}^{d}$ -valued path  $z_{\bullet}$  is said to be a path controlled by X if its increments  $Z_{ts} := z_t - z_s$ , satisfy

 $Z_{ts} := Z'_s X_{ts} + R_{ts},$ 

for all  $0 \le s \le t \le 1$ , for an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued  $\frac{1}{p}$ -Lipschitz map  $Z'_{\bullet}$ , and some  $\mathbb{R}^{d}$ -valued  $\frac{2}{p}$ -Lipschitz map R.

▶ Definition – Pick an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path  $\mathbf{X} = (X, \mathbb{X})$ , for  $2 \le p < 3$ . An  $\mathbb{R}^{d}$ -valued path  $z_{\bullet}$  is said to be a path controlled by X if its increments  $Z_{ts} := z_t - z_s$ , satisfy

$$Z_{ts} := Z'_s X_{ts} + R_{ts},$$

for all  $0 \le s \le t \le 1$ , for an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued  $\frac{1}{p}$ -Lipschitz map  $Z'_{\bullet}$ , and some  $\mathbb{R}^{d}$ -valued  $\frac{2}{p}$ -Lipschitz map R. The pair (z, Z') is is assigned a norm

 $\|(z, Z')\| := \|Z'\|_{\frac{1}{p}} + \|R\|_{\frac{2}{p}} + |z_0|.$ 

▶ Definition – Pick an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path  $\mathbf{X} = (X, \mathbb{X})$ , for  $2 \le p < 3$ . An  $\mathbb{R}^{d}$ -valued path  $z_{\bullet}$  is said to be a path controlled by X if its increments  $Z_{ts} := z_t - z_s$ , satisfy

$$Z_{ts} := Z'_s X_{ts} + R_{ts},$$

for all  $0 \le s \le t \le 1$ , for an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued  $\frac{1}{p}$ -Lipschitz map  $Z'_{\bullet}$ , and some  $\mathbb{R}^{d}$ -valued  $\frac{2}{p}$ -Lipschitz map R. The pair (z, Z') is is assigned a norm

 $||(z, Z')|| := ||Z'||_{\frac{1}{p}} + ||R||_{\frac{2}{p}} + |z_0|.$ 

The image of a controlled path z by an  $\mathbb{R}^n$ -valued  $C^1$  map F on  $\mathbb{R}^d$  is a controlled path F(z) with derivative  $D_{z_t}F \circ Z'_t$  at time t.

▶ Definition – Pick an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path  $\mathbf{X} = (X, \mathbb{X})$ , for  $2 \le p < 3$ . An  $\mathbb{R}^{d}$ -valued path  $z_{\bullet}$  is said to be a path controlled by X if its increments  $Z_{ts} := z_t - z_s$ , satisfy

$$Z_{ts} := Z_s' X_{ts} + R_{ts},$$

for all  $0 \le s \le t \le 1$ , for an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued  $\frac{1}{p}$ -Lipschitz map  $Z'_{\bullet}$ , and some  $\mathbb{R}^{d}$ -valued  $\frac{2}{p}$ -Lipschitz map R. The pair (z, Z') is is assigned a norm

 $\|(z, Z')\| := \|Z'\|_{\frac{1}{p}} + \|R\|_{\frac{2}{p}} + |z_0|.$ 

The image of a controlled path z by an  $\mathbb{R}^n$ -valued  $C^1$  map F on  $\mathbb{R}^d$  is a controlled path F(z) with derivative  $D_{z_t}F \circ Z'_t$  at time t.

For linear maps  $A, B \in L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ , and  $a, b \in \mathbb{R}^{\ell}$ , set

 $(A \otimes B)(a \otimes b) := (Aa) \otimes (Bb).$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

► Theorem – A family  $(\mu_{ts})_{0 \le s \le t \le T}$  of elements of  $\mathbb{R}^d$  such that

 $\left|\mu_{tu}+\mu_{us}-\mu_{ts}\right|\lesssim |t-s|^a,$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

for a > 1 is said to be almost additive.

► Theorem – A family  $(\mu_{ts})_{0 \le s \le t \le T}$  of elements of  $\mathbb{R}^d$  such that

 $\left|\mu_{tu}+\mu_{us}-\mu_{ts}\right|\lesssim |t-s|^a,$ 

for a > 1 is said to be almost additive. There exists a unique  $\mathbb{R}^d$ -valued function  $\varphi$  such that

 $\left|\varphi_t-\varphi_s-\mu_{ts}\right|\lesssim |t-s|^a.$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ .



▶ Proposition – Let X = (X, X) be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{s} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_s(a \otimes b) = (Z'_s(a))(b).$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{s} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_{s}(a \otimes b) = (Z'_{s}(a))(b).$ 

We define an almost-additive map setting

$$\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for all  $0 \le s \le t \le 1$ .

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{s} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_{s}(a \otimes b) = (Z'_{s}(a))(b).$ 

We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s$$

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{s} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_s(a \otimes b) = (Z'_s(a))(b).$ 

We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

▶ Proof – Writing  $f_{ts} := f_t - f_s$ , an elementary computation using Chen's relation  $X_{ts} = X_{tu} + X_{us} + X_{us} \otimes X_{tu}$ , for any  $0 \le s \le u \le t \le 1$ , gives

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{s} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_{s}(a \otimes b) = (Z'_{s}(a))(b).$ 

We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s.$$

▶ Proof – Writing  $f_{ts} := f_t - f_s$ , an elementary computation using Chen's relation  $X_{ts} = X_{tu} + X_{us} + X_{us} \otimes X_{tu}$ , for any  $0 \le s \le u \le t \le 1$ , gives

$$(\mu_{tu} + \mu_{us}) - \mu_{ts} = z_{us}X_{tu} + Z'_{us}\mathbb{X}_{tu} - Z'_sX_{us}\otimes X_{tu}$$

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{S} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_s(a \otimes b) = (Z'_s(a))(b).$ 

We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s.$$

▶ Proof – Writing  $f_{ts} := f_t - f_s$ , an elementary computation using Chen's relation  $X_{ts} = X_{tu} + X_{us} + X_{us} \otimes X_{tu}$ , for any  $0 \le s \le u \le t \le 1$ , gives

$$\begin{aligned} \left(\mu_{tu} + \mu_{us}\right) - \mu_{ts} &= z_{us} X_{tu} + Z'_{us} \mathbb{X}_{tu} - Z'_{s} X_{us} \otimes X_{tu} \\ &= \left(z_{us} - Z'_{s} X_{us}\right) X_{tu} + O\left(|t-s|^{\frac{3}{p}}\right) \end{aligned}$$

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{S} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_{s}(a \otimes b) = (Z'_{s}(a))(b).$ 

We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s.$$

▶ Proof – Writing  $f_{ts} := f_t - f_s$ , an elementary computation using Chen's relation  $X_{ts} = X_{tu} + X_{us} + X_{us} \otimes X_{tu}$ , for any  $0 \le s \le u \le t \le 1$ , gives

$$\begin{aligned} \left(\mu_{tu} + \mu_{us}\right) - \mu_{ts} &= z_{us} X_{tu} + Z'_{us} \mathbb{X}_{tu} - Z'_{s} X_{us} \otimes X_{tu} \\ &= \left(z_{us} - Z'_{s} X_{us}\right) X_{tu} + O\left(|t - s|^{\frac{3}{p}}\right) \\ &= R_{us} X_{tu} + O\left(|t - s|^{\frac{3}{p}}\right) \end{aligned}$$

▶ Proposition – Let  $\mathbf{X} = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . Let (z, Z') be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^{d})$ -valued path controlled by X, so  $Z'_{s} \in L(\mathbb{R}^{\ell} \otimes \mathbb{R}^{\ell}, \mathbb{R}^{d})$  is s.t.

 $Z'_s(a \otimes b) = (Z'_s(a))(b).$ 

We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s.$$

▶ Proof – Writing  $f_{ts} := f_t - f_s$ , an elementary computation using Chen's relation  $X_{ts} = X_{tu} + X_{us} + X_{us} \otimes X_{tu}$ , for any  $0 \le s \le u \le t \le 1$ , gives

$$\begin{aligned} \left(\mu_{tu} + \mu_{US}\right) - \mu_{ts} &= z_{US} X_{tu} + Z'_{US} \mathbb{X}_{tu} - Z'_{S} X_{US} \otimes X_{tu} \\ &= \left(z_{US} - Z'_{S} X_{US}\right) X_{tu} + O\left(|t - s|^{\frac{3}{p}}\right) \\ &= R_{US} X_{tu} + O\left(|t - s|^{\frac{3}{p}}\right) = O\left(|t - s|^{\frac{3}{p}}\right) \end{aligned}$$

▶ Proposition – Let  $X = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s.$$

Given vector fields  $V_1, \ldots, V_\ell$  on  $\mathbb{R}^d$  and  $x \in \mathbb{R}^d$ , define  $F(x) \in L(\mathbb{R}^\ell, \mathbb{R}^d)$  setting

 $F(x)(z) := \sum_{1 \le i \le \ell} z^i V_i(x).$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

▶ Proposition – Let  $X = (X, \mathbb{X})$  be an  $\mathbb{R}^{\ell}$ -valued Hölder p-rough path, with  $2 \le p < 3$ . We define an almost-additive map setting

 $\mu_{ts} := z_s X_{ts} + Z'_s \mathbb{X}_{ts},$ 

for all  $0 \le s \le t \le 1$ . Its associated  $\varphi$  map is denoted by

$$\varphi_t =: \int_0^t (z, z')_s \, d\mathbf{X}_s.$$

Given vector fields  $V_1, \ldots, V_\ell$  on  $\mathbb{R}^d$  and  $x \in \mathbb{R}^d$ , define  $F(x) \in L(\mathbb{R}^\ell, \mathbb{R}^d)$  setting

 $F(x)(z) := \sum_{1 \le i \le \ell} z^i V_i(x).$ 

► Corollary – A path  $x_{\bullet}$  in  $\mathbb{R}^d$  is a solution to the rough differential equation

 $dx_t = F(x_t) d\mathbf{X}_t$ 

iff it is a path controlled by X, with derivative  $F(x_{\bullet})$ , and

$$x_t = x_0 + \int_0^t \big(F(x), (DF)(F(x))\big)_s d\mathbf{X}_s.$$

4. Applications to stochastic analysis

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let  $(B_t)_{0 \le t \le 1}$  be an  $\mathbb{R}^{\ell}$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let  $(B_l)_{0 \le l \le 1}$  be an  $\mathbb{R}^{\ell}$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Set

$$\mathbb{B}'_{ts} := \int_{s}^{t} \int_{s}^{u} dB_{r} \otimes dB_{u} = \int_{s}^{t} B_{us} \otimes dB_{u}$$



Let  $(B_t)_{0 \le t \le 1}$  be an  $\mathbb{R}^{\ell}$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Set

$$\mathbb{B}'_{ts} := \int_s^t \int_s^u dB_r \otimes dB_u = \int_s^t B_{us} \otimes dB_u.$$

This process satisfies Chen's relation

$$\mathbb{B}_{ts}^{I} = \mathbb{B}_{tu}^{I} + \mathbb{B}_{us}^{I} + B_{us} \otimes B_{tu}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

for any  $0 \le s \le u \le t \le 1$ .

Let  $(B_t)_{0 \le t \le 1}$  be an  $\mathbb{R}^\ell$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Set

$$\mathbb{B}'_{ts} := \int_s^t \int_s^u dB_r \otimes dB_u = \int_s^t B_{us} \otimes dB_u.$$

This process satisfies Chen's relation

$$\mathbb{B}_{ts}^{I} = \mathbb{B}_{tu}^{I} + \mathbb{B}_{us}^{I} + B_{us} \otimes B_{tu}$$

for any  $0 \le s \le u \le t \le 1$ . Recall for  $\mathbf{a} \in T_{\ell}^{2,1}$ 

$$\|\mathbf{a}\| = \|\mathbf{1} \oplus a^{1} \oplus a^{2}\| = |a^{1}| + \sqrt{|a^{2}|}, \quad d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a}^{-1}\mathbf{b}\|$$

Let  $(B_t)_{0 \le t \le 1}$  be an  $\mathbb{R}^{\ell}$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Set

$$\mathbb{B}'_{ts} := \int_s^t \int_s^u dB_r \otimes dB_u = \int_s^t B_{us} \otimes dB_u.$$

This process satisfies Chen's relation

$$\mathbb{B}_{ts}^{I} = \mathbb{B}_{tu}^{I} + \mathbb{B}_{us}^{I} + B_{us} \otimes B_{tu}$$

for any  $0 \le s \le u \le t \le 1$ . Recall for  $\mathbf{a} \in T_{\ell}^{2,1}$ 

$$\|\mathbf{a}\| = \|\mathbf{1} \oplus \mathbf{a}^{1} \oplus \mathbf{a}^{2}\| = |\mathbf{a}^{1}| + \sqrt{|\mathbf{a}^{2}|}, \quad d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a}^{-1}\mathbf{b}\|$$

So **B**<sup>*l*</sup> is a Hölder *p*-rough path iff it is a 1/p-Hölder continuous  $(T_{\ell}^{2,1}, d)$ -valued path.

Let  $(B_t)_{0 \le t \le 1}$  be an  $\mathbb{R}^{\ell}$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Set

$$\mathbb{B}'_{ts} := \int_s^t \int_s^u dB_r \otimes dB_u = \int_s^t B_{us} \otimes dB_u.$$

This process satisfies Chen's relation

$$\mathbb{B}_{ts}^{I} = \mathbb{B}_{tu}^{I} + \mathbb{B}_{us}^{I} + B_{us} \otimes B_{tu}$$

for any  $0 \le s \le u \le t \le 1$ . Recall for  $\mathbf{a} \in T_{\ell}^{2,1}$ 

$$\|\mathbf{a}\| = \|\mathbf{1} \oplus a^{1} \oplus a^{2}\| = |a^{1}| + \sqrt{|a^{2}|}, \quad d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a}^{-1}\mathbf{b}\|$$

So **B**<sup>*l*</sup> is a Hölder *p*-rough path iff it is a 1/p-Hölder continuous  $(T_{\ell}^{2,1}, d)$ -valued path. Use Kolmogorov's criterion

 $\mathbb{E}\left[\left\|\mathbf{B}_{ts}^{\prime}\right\|^{q}\right] \lesssim |t-s|^{q/2},$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for  $0 < \frac{1}{2} - \frac{1}{q} < \frac{1}{p}$ .

Let  $(B_t)_{0 \le t \le 1}$  be an  $\mathbb{R}^{\ell}$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Set

$$\mathbb{B}'_{ts} := \int_s^t \int_s^u dB_r \otimes dB_u = \int_s^t B_{us} \otimes dB_u.$$

This process satisfies Chen's relation

$$\mathbb{B}_{ts}^{I} = \mathbb{B}_{tu}^{I} + \mathbb{B}_{us}^{I} + B_{us} \otimes B_{tu}$$

for any  $0 \le s \le u \le t \le 1$ . Recall for  $\mathbf{a} \in T_{\ell}^{2,1}$ 

$$\|\mathbf{a}\| = \|\mathbf{1} \oplus \mathbf{a}^1 \oplus \mathbf{a}^2\| = |\mathbf{a}^1| + \sqrt{|\mathbf{a}^2|}, \quad d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a}^{-1}\mathbf{b}\|$$

So **B**<sup>*l*</sup> is a Hölder *p*-rough path iff it is a 1/p-Hölder continuous  $(T_{\ell}^{2,1}, d)$ -valued path. Use Kolmogorov's criterion

 $\mathbb{E}\left[\left\|\mathbf{B}_{ts}^{I}\right\|^{q}\right] \lesssim |t-s|^{q/2},$ 

for  $0 < \frac{1}{2} - \frac{1}{q} < \frac{1}{p}$ . Equivalent to requiring

$$\left\|B_{ts}\right\|_{L^q} \lesssim |t-s|^{\frac{1}{2}}, \qquad \left\|\mathbb{B}_{ts}^{I}\right\|_{L^{\frac{q}{2}}} \lesssim |t-s|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let  $(B_t)_{0 \le t \le 1}$  be an  $\mathbb{R}^{\ell}$ -valued Brownian motion defined on some probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Set

$$\mathbb{B}'_{ts} := \int_s^t \int_s^u dB_r \otimes dB_u = \int_s^t B_{us} \otimes dB_u.$$

This process satisfies Chen's relation

$$\mathbb{B}_{ts}^{I} = \mathbb{B}_{tu}^{I} + \mathbb{B}_{us}^{I} + B_{us} \otimes B_{tu}$$

for any  $0 \le s \le u \le t \le 1$ . Recall for  $\mathbf{a} \in T_{\ell}^{2,1}$ 

$$\|\mathbf{a}\| = \|\mathbf{1} \oplus a^{1} \oplus a^{2}\| = |a^{1}| + \sqrt{|a^{2}|}, \quad d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a}^{-1}\mathbf{b}\|$$

So **B**<sup>*l*</sup> is a Hölder *p*-rough path iff it is a 1/p-Hölder continuous  $(T_{\ell}^{2,1}, d)$ -valued path. Use Kolmogorov's criterion

 $\mathbb{E}\left[\left\|\mathbf{B}_{ts}^{\prime}\right\|^{q}\right] \lesssim |t-s|^{q/2},$ 

for  $0 < \frac{1}{2} - \frac{1}{q} < \frac{1}{p}$ . Equivalent to requiring

$$\left\|B_{ts}\right\|_{L^{q}} \lesssim |t-s|^{\frac{1}{2}}, \qquad \left\|\mathbb{B}_{ts}^{I}\right\|_{L^{\frac{q}{2}}} \lesssim |t-s|.$$

▲ロト ▲御 ▶ ▲ 唐 ▶ ▲ 唐 ▶ ● のへで

True as a consequence of the scaling properties of Brownian motion.

The process  $\mathbf{B}^{t}$  is almost surely a Hölder *p*-rough path; it is called the Itô Brownian rough path.

The process  $\mathbf{B}^{t}$  is almost surely a Hölder *p*-rough path; it is called the Itô Brownian rough path. Set

$$\mathbb{B}_{ts}^{S} := \int_{s}^{t} \int_{s}^{u} \circ dB_{r} \otimes \circ dB_{u} = \int_{s}^{t} B_{us} \otimes \circ dB_{u},$$

The process  $\mathbf{B}^{t}$  is almost surely a Hölder *p*-rough path; it is called the Itô Brownian rough path. Set

$$\mathbb{B}_{ts}^{S} := \int_{s}^{t} \int_{s}^{u} \circ dB_{r} \otimes \circ dB_{u} = \int_{s}^{t} B_{us} \otimes \circ dB_{u},$$

so

$$\mathbb{B}_{ts}^{S} = \mathbb{B}_{ts}^{l} + \frac{1}{2}(t-s)\mathrm{Id}.$$

The process  $\mathbf{B}^{l}$  is almost surely a Hölder *p*-rough path; it is called the Itô Brownian rough path. Set

$$\mathbb{B}_{ts}^{S} := \int_{s}^{t} \int_{s}^{u} \circ dB_{r} \otimes \circ dB_{u} = \int_{s}^{t} B_{us} \otimes \circ dB_{u},$$

SO

$$\mathbb{B}_{ts}^{S} = \mathbb{B}_{ts}^{l} + \frac{1}{2}(t-s) \mathrm{Id}.$$

The process  $B^S := (B, \mathbb{B}^S)$  is almost surely a Hölder *p*-rough path; it is called the Itô Brownian rough path.

The process **B**<sup>*I*</sup> is almost surely a Hölder *p*-rough path; it is called the Itô Brownian rough path. Set

$$\mathbb{B}_{ts}^{S} := \int_{s}^{t} \int_{s}^{u} \circ dB_{r} \otimes \circ dB_{u} = \int_{s}^{t} B_{us} \otimes \circ dB_{u},$$

SO

$$\mathbb{B}_{ts}^{S} = \mathbb{B}_{ts}^{l} + \frac{1}{2}(t-s) \mathrm{Id}.$$

The process  $\mathbf{B}^{S} := (B, \mathbb{B}^{S})$  is almost surely a Hölder *p*-rough path; it is called the Itô Brownian rough path. Unlike  $\mathbf{B}^{I}$ , it is a *weak geometric* Hölder *p*-rough path.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# 4.1 The Brownian rough path Given $n \ge 1$ , set $\mathcal{F}_n := \sigma\{B_{k2^{-n}}; 0 \le k \le 2^n\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

4.1 The Brownian rough path Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}} ; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with B at dyadic times  $k2^{-n}$ .

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注

4.1 The Brownian rough path Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma\{B_{k2^{-n}}; 0 \le k \le 2^n\}$ , and let  $B^{(n)}_{\bullet}$  be the continuous piecewise linear path that coincides with B at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

4.1 The Brownian rough path Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma\{B_{k2^{-n}}; 0 \le k \le 2^n\}$ , and let  $B^{(n)}_{\bullet}$  be the continuous piecewise linear path that coincides with B at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

4.1 The Brownian rough path Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma\{B_{k2^{-n}}; 0 \le k \le 2^n\}$ , and let  $B^{(n)}_{\bullet}$  be the continuous piecewise linear path that coincides with B at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),ik} = \mathbb{E}[\mathbb{B}_{ts}^{S,ik}|\mathcal{F}_n], \tag{15}$$
  
and  $\mathbb{B}_{ts}^{(n),ii} = \frac{1}{2} \left(B_{ts}^{(n),i}\right)^2.$ 

Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}}; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with *B* at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),ik} = \mathbb{E}[\mathbb{E}_{ts}^{S,ik}|\mathcal{F}_n], \qquad (15)$$
  
and  $\mathbb{E}_{ts}^{(n),ii} = \frac{1}{2} \left(B_{ts}^{(n),i}\right)^2.$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

▶ Proposition – The Hölder p-rough path  $\mathbf{B}^{(n)} := (\mathbf{B}^{(n)}, \mathbb{B}^{(n)})$  converges almost-surely to  $\mathbf{B}^{S}$  in the Hölder p-rough path topology.

Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}} ; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with *B* at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

and  $\mathbb{B}_{tc}^{(n),ii} = \frac{1}{2}$ 

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),jk} = \mathbb{E}[\mathbb{B}_{ts}^{S,jk}|\mathcal{F}_n], \qquad (15)$$
$$\left(B_{ts}^{(n),j}\right)^2.$$

▶ Proposition – The Hölder p-rough path  $\mathbf{B}^{(n)} := (\mathbf{B}^{(n)}, \mathbb{B}^{(n)})$  converges almost-surely to  $\mathbf{B}^{S}$  in the Hölder p-rough path topology.

▶ Proof – Use our statement on rough paths convergence.

Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}} ; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with *B* at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),jk} = \mathbb{E}[\mathbb{E}_{ts}^{S,jk}|\mathcal{F}_n], \tag{15}$$
  
and  $\mathbb{E}_{ts}^{(n),ii} = \frac{1}{2} \left(B_{ts}^{(n),i}\right)^2.$ 

《曰》 《聞》 《臣》 《臣》 三臣 …

▶ Proposition – The Hölder p-rough path  $\mathbf{B}^{(n)} := (\mathbf{B}^{(n)}, \mathbb{B}^{(n)})$  converges almost-surely to  $\mathbf{B}^{S}$  in the Hölder p-rough path topology.

Proof – Use our statement on rough paths convergence. The almost-sure pointwise convergence follows from the martingale convergence theorem applied to the martingales in (15).

Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}} ; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with *B* at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),ik} = \mathbb{E}[\mathbb{B}_{ts}^{S,ik}|\mathcal{F}_n], \tag{15}$$
  
and  $\mathbb{B}_{ts}^{(n),ii} = \frac{1}{2} \left(B_{ts}^{(n),i}\right)^2.$ 

▶ Proposition – The Hölder p-rough path  $\mathbf{B}^{(n)} := (\mathbf{B}^{(n)}, \mathbb{B}^{(n)})$  converges almost-surely to  $\mathbf{B}^{S}$  in the Hölder p-rough path topology.

Proof – To get the almost-sure uniform bound

$$\sup_{n} \left\| \mathbf{B}^{(n)} \right\| < \infty \tag{16}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}} ; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with *B* at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),ik} = \mathbb{E}[\mathbb{B}_{ts}^{S,ik}|\mathcal{F}_n], \tag{15}$$
  
and  $\mathbb{B}_{ts}^{(n),ii} = \frac{1}{2} \left(B_{ts}^{(n),i}\right)^2.$ 

▶ Proposition – The Hölder p-rough path  $\mathbf{B}^{(n)} := (\mathbf{B}^{(n)}, \mathbb{B}^{(n)})$  converges almost-surely to  $\mathbf{B}^{S}$  in the Hölder p-rough path topology.

Proof – To get the almost-sure uniform bound

$$\sup_{n} \left\| \mathbf{B}^{(n)} \right\| < \infty \tag{16}$$

< ロ > (四 > (四 > ( 四 > ( 四 > ) ) 권)

notice that the estimates

$$\left|B_{ts}\right| \leq C_{p} \left|t-s\right|^{\frac{1}{p}}, \qquad \left|\mathbb{B}_{ts}^{S,jk}\right| \leq C_{p}^{2} \left|t-s\right|^{\frac{2}{p}}$$

obtained from Kolmogorov's regularity criterion with  $C_p \in L^q$  for (any) q > 2

Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}} ; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with *B* at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),ik} = \mathbb{E}[\mathbb{B}_{ts}^{S,ik}|\mathcal{F}_n],$$
(15)  
and  $\mathbb{B}_{ts}^{(n),ii} = \frac{1}{2} \left(B_{ts}^{(n),i}\right)^2.$ 

▶ Proposition – The Hölder p-rough path  $\mathbf{B}^{(n)} := (\mathbf{B}^{(n)}, \mathbb{B}^{(n)})$  converges almost-surely to  $\mathbf{B}^{S}$  in the Hölder p-rough path topology.

Proof – To get the almost-sure uniform bound

$$\sup_{n} \|\mathbf{B}^{(n)}\| < \infty \tag{16}$$

notice that the estimates

$$\left|B_{ts}\right| \leq C_{p} \left|t-s\right|^{\frac{1}{p}}, \qquad \left|\mathbb{B}_{ts}^{S,jk}\right| \leq C_{p}^{2} \left|t-s\right|^{\frac{2}{p}}$$

obtained from Kolmogorov's regularity criterion with  $C_p \in L^q$  for (any) q > 2, give

 $\left|B_{ts}^{(n)}\right| \leq \mathbb{E}\left[C_{\rho} \middle| \mathcal{F}_{n}\right] |t-s|^{\frac{1}{p}}, \qquad \left|\mathbb{B}_{ts}^{(n), jk}\right| \leq \mathbb{E}\left[C_{\rho}^{2} \middle| \mathcal{F}_{n}\right] |t-s|^{\frac{2}{p}},$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

Given  $n \ge 1$ , set  $\mathcal{F}_n := \sigma \{ B_{k2^{-n}} ; 0 \le k \le 2^n \}$ , and let  $B_{\bullet}^{(n)}$  be the continuous piecewise linear path that coincides with *B* at dyadic times  $k2^{-n}$ . Denote by  $B^{(n),i}$  the coordinates of  $B^{(n)}$ . Setting

$$\mathbb{B}_{ts}^{(n)} := \int_{s}^{t} B_{us}^{(n)} \otimes dB_{u}^{(n)},$$

one has, for  $j \neq k$ ,

$$B_{ts}^{(n)} = \mathbb{E}[B_{ts}|\mathcal{F}_n], \qquad \mathbb{B}_{ts}^{(n),ik} = \mathbb{E}[\mathbb{B}_{ts}^{S,ik}|\mathcal{F}_n], \tag{15}$$
  
and  $\mathbb{B}_{ts}^{(n),ii} = \frac{1}{2} \left(B_{ts}^{(n),i}\right)^2.$ 

▶ Proposition – The Hölder *p*-rough path  $\mathbf{B}^{(n)} := (\mathbf{B}^{(n)}, \mathbb{B}^{(n)})$  converges almost-surely to  $\mathbf{B}^{S}$  in the Hölder *p*-rough path topology.

Proof – To get the almost-sure uniform bound

$$\sup_{n} \left\| \mathbf{B}^{(n)} \right\| < \infty \tag{16}$$

notice that the estimates

$$\left|B_{ts}\right| \leq C_{p} \left|t-s\right|^{\frac{1}{p}}, \qquad \left|\mathbb{B}_{ts}^{S,jk}\right| \leq C_{p}^{2} \left|t-s\right|^{\frac{2}{p}}$$

obtained from Kolmogorov's regularity criterion with  $C_p \in L^q$  for (any) q > 2, give

 $\left|B_{ts}^{(n)}\right| \leq \mathbb{E}\left[C_{\rho} \middle| \mathcal{F}_n\right] |t-s|^{\frac{1}{p}}, \qquad \left|\mathbb{B}_{ts}^{(n),jk}\right| \leq \mathbb{E}\left[C_{\rho}^2 \middle| \mathcal{F}_n\right] |t-s|^{\frac{2}{p}},$ 

so the uniform estimate (16) follows from Doob's maximal inequality.

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration.

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\mathbf{B}'_s = \int_0^1 F_s \, dB_s$$

▲口> ▲御> ▲注> ▲注> 三注

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\boldsymbol{B}_s' = \int_0^1 F_s \, dB_s$$

Proof – One has

$$\int_{0}^{1} (F, F') \, d\mathbf{B}' = \lim_{|\pi|\downarrow 0} \sum_{i} \left( F_{t_{i}} B_{t_{i+1}t_{i}} + F'_{t_{i}} \mathbb{B}'_{t_{i+1}t_{i}} \right)$$

and

$$\int_0^1 F_s \, dB_s = \lim_{|\pi| \downarrow 0} - \operatorname{probab} \sum_i F_{t_i} B_{t_{i+1}t_i}.$$

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\boldsymbol{B}'_s = \int_0^1 F_s \, dB_s$$

Proof – Suffices to see that

$$\sum_{i} F'_{t_i} \mathbb{B}_{t_{i+1}t_i} \xrightarrow[|\pi|\downarrow 0]{L^2} 0.$$

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\boldsymbol{B}_s^l = \int_0^1 F_s \, dB_s$$

Proof – Suffices to see that

$$\sum_{i} F'_{t_i} \mathbb{B}_{t_{i+1}t_i} \xrightarrow[|\pi|\downarrow 0]{L^2} 0.$$

• If F' bounded above by M, then, since F' is adapted and independent of  $\mathbb{B}'_{t_{i+1}t_i}$ , conditioning gives

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\boldsymbol{B}'_s = \int_0^1 F_s \, dB_s$$

Proof – Suffices to see that

$$\sum_{i} F'_{t_i} \mathbb{B}_{t_{i+1}t_i} \xrightarrow[|\pi|\downarrow 0]{L^2} 0.$$

• If F' bounded above by M, then, since F' is adapted and independent of  $\mathbb{B}_{t_{i+1}t_i}^{I}$ , conditioning gives

$$\left\|\sum_{i} F'_{t_{i}} \mathbb{B}'_{t_{i+1}t_{i}}\right\|_{L^{2}}^{2} = \sum_{i} \left\|F'_{t_{i}} \mathbb{B}'_{t_{i+1}t_{i}}\right\|_{L^{2}}^{2} \leq M^{2} \sum_{i} \left\|\mathbb{B}_{t_{i+1}t_{i}}\right\|_{L^{2}}^{2} \leq M^{2} |\pi|.$$

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\boldsymbol{B}_s^{\prime} = \int_0^1 F_s \, dB_s$$

Proof – Suffices to see that

$$\sum_{i} F'_{t_i} \mathbb{B}_{t_{i+1}t_i} \xrightarrow[|\pi|\downarrow 0]{L^2} 0.$$

Otherwise introduce the stopping time

$$au_M := \inf \left\{ u \in [0, 1] ; |F'_u| > M \right\} \wedge 1.$$

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\boldsymbol{B}_s^l = \int_0^1 F_s \, dB_s$$

Proof – Suffices to see that

$$\sum_{i} F'_{t_i} \mathbb{B}_{t_{i+1}t_i} \xrightarrow[|\pi|\downarrow 0]{L^2} 0.$$

Otherwise introduce the stopping time

$$au_M := \inf \left\{ u \in [0, 1] ; |F'_u| > M \right\} \land 1.$$

Then we have proved that

$$\int_0^{\tau_M} (F,F') \, d\mathbf{B}' = \int_0^1 F_s^{\tau_M} \, dB_s,$$

▶ Proposition – Let  $(F_s)_{0 \le s \le 1}$  be an  $L(\mathbb{R}^{\ell}, \mathbb{R}^d)$ -valued path controlled by *B*, adapted to the Brownian filtration, with derivative process  $(F'_s)_{0 \le s \le 1}$  also adapted to that filtration. Then we have almost-surely

$$\int_0^1 (F,F')_s \, d\boldsymbol{B}_s^l = \int_0^1 F_s \, dB_s$$

Proof – Suffices to see that

$$\sum_{i} F'_{t_i} \mathbb{B}_{t_{i+1}t_i} \xrightarrow[|\pi|\downarrow 0]{L^2} 0.$$

Otherwise introduce the stopping time

$$\tau_{M} := \inf \left\{ u \in [0, 1] ; |F'_{u}| > M \right\} \land 1.$$

Then we have proved that

$$\int_0^{\tau_M}(F,F')\,d\mathbf{B}'=\int_0^1F_s^{\tau_M}\,dB_s,$$

(日) (四) (三) (三) (三)

so pass to the limit  $M \to \infty$ .

## 4.2 Rough and stochastic integrals Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 F_{\mathbf{s}} \circ dB_{\mathbf{s}}.$$

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 F_s \circ dB_s.$$

Proof – One has

$$\int_0^1 (F, F') \, d\mathbf{B}^S = \int_0^1 (F, F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star),$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - のんの

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 F_s \circ dB_s$$

Proof – One has

$$\int_0^1 (F, F') \, d\mathbf{B}^S = \int_0^1 (F, F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star),$$

with a well-defined additional term

$$(\star) := \lim_{|\pi| \searrow 0} \sum_{i} F'_{t_i} \frac{1}{2} (t_{i+1} - t_i) \operatorname{Id}$$

《曰》 《聞》 《臣》 《臣》 三臣 …

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') d\mathbf{B}^S = \int_0^1 F_s \circ dB_s.$$

Proof – One has

$$\int_0^1 (F, F') \, d\mathbf{B}^S = \int_0^1 (F, F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star).$$

with a well-defined additional term

$$(\star) := \lim_{|\pi| \searrow 0} \sum_{i} F'_{t_i} \frac{1}{2} (t_{i+1} - t_i) \operatorname{Id}.$$

Denote by Sym(A) the symmetric part of a matrix A and recall that

$$\frac{1}{2}(t_{i+1} - t_i) \operatorname{Id} = \operatorname{Sym}(\mathbb{B}_{t_{i+1}t_i}^S) - \operatorname{Sym}(\mathbb{B}_{t_{i+1}t_i}^I) = \frac{1}{2} B_{t_{i+1}t_i}^{\otimes 2} - \operatorname{Sym}(\mathbb{B}_{t_{i+1}t_i}^I)$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F')\,d\mathbf{B}^S = \int_0^1 F_s \circ dB_s.$$

Proof – One has

$$\int_0^1 (F, F') \, d\mathbf{B}^S = \int_0^1 (F, F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star).$$

with a well-defined additional term

$$(\star) := \lim_{|\pi| \searrow 0} \sum_{i} F'_{t_i} \frac{1}{2} (t_{i+1} - t_i) \operatorname{Id}.$$

Denote by Sym(A) the symmetric part of a matrix A and recall that

$$\frac{1}{2}(t_{i+1} - t_i) \operatorname{Id} = \operatorname{Sym}(\mathbb{B}_{t_{i+1}t_i}^S) - \operatorname{Sym}(\mathbb{B}_{t_{i+1}t_i}^I) = \frac{1}{2} B_{t_{i+1}t_i}^{\otimes 2} - \operatorname{Sym}(\mathbb{B}_{t_{i+1}t_i}^I)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

One sees as above that  $\sum_{i} F'_{t_i} \operatorname{Sym}(\mathbb{B}'_{t_{i+1}t_i})$  converges to 0 in  $L^2$ .

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 F_s \circ dB_s$$

Proof – One has

$$\int_0^1 (F, F') \, d\mathbf{B}^S = \int_0^1 (F, F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star).$$

with a well-defined additional term

$$(\star) := \lim_{|\pi| \searrow 0} \sum_{i} F'_{t_i} \frac{1}{2} (t_{i+1} - t_i) \operatorname{Id}.$$

So

$$(\star) \stackrel{a.s.}{=} \lim_{|\pi|\searrow 0} \frac{1}{2} \sum_{i} F'_{t_i} B^{\otimes 2}_{t_{i+1}t_i}.$$

《曰》 《聞》 《臣》 《臣》 三臣 …

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 F_s \circ dB_s$$

Proof – One has

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 (F,F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star),$$

with a well-defined additional term

$$(\star):=\lim_{|\pi|\searrow 0} \sum_{i} F'_{t_i} \frac{1}{2}(t_{i+1}-t_i) \operatorname{Id}.$$

So

$$(\star) \stackrel{a.s.}{=} \lim_{|\pi| \searrow 0} \frac{1}{2} \sum_{i} F'_{t_i} B^{\otimes 2}_{t_{i+1}t_i}$$

But since

$$F_{t_i}'B_{t_{i+1}t_i}=F_{t_{i+1}t_i}+R_{t_{i+1}t_i}$$

for a  $\frac{2}{p}$ -Hölder remainder term R

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 F_s \circ dB_s$$

Proof – One has

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 (F,F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star),$$

with a well-defined additional term

$$(\star):=\lim_{|\pi|\searrow 0} \sum_{i} F'_{t_i} \frac{1}{2}(t_{i+1}-t_i) \operatorname{Id}.$$

So

$$(\star) \stackrel{a.s.}{=} \lim_{|\pi| \searrow 0} \frac{1}{2} \sum_{i} F'_{t_i} B^{\otimes 2}_{t_{i+1}t_i}$$

But since

$$F_{t_i}'B_{t_{i+1}t_i} = F_{t_{i+1}t_i} + \mathbf{R}_{t_{i+1}t_i}$$

for a  $\frac{2}{p}$ -Hölder remainder term *R*, the above sum equals

$$\frac{1}{2} \Big( \sum_{i} F_{t_{i+1}t_i} B_{t_{i+1}t_i} \Big) + o_{|\pi|}(1).$$

► Corollary – Under the above assumptions one has almost surely

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 F_s \circ dB_s$$

Proof – One has

$$\int_0^1 (F,F') \, d\mathbf{B}^S = \int_0^1 (F,F') \, d\mathbf{B}^I + (\star) = \int_0^1 F_s \, dB_s + (\star),$$

with a well-defined additional term

$$(\star):=\lim_{|\pi|\searrow 0} \sum_{i} F'_{t_i} \frac{1}{2}(t_{i+1}-t_i) \operatorname{Id}.$$

So

$$(\star) \stackrel{a.s.}{=} \lim_{|\pi| \searrow 0} \frac{1}{2} \sum_{i} F'_{t_i} B^{\otimes 2}_{t_{i+1}t_i}$$

But since

$$\mathsf{F}_{t_i}'\mathsf{B}_{t_{i+1}t_i}=\mathsf{F}_{t_{i+1}t_i}+\mathsf{R}_{t_{i+1}t_i}$$

for a  $\frac{2}{p}$ -Hölder remainder term *R*, the above sum equals

$$\frac{1}{2} \Big( \sum_{i} F_{t_{i+1}t_i} B_{t_{i+1}t_i} \Big) + o_{|\pi|}(1).$$

1 Dac

We recognize a quantity which converges in probability to the bracket  $\langle F, B \rangle$ .

► Corollary – Let  $F = (V_1, ..., V_\ell)$  be  $C_b^3$  vector fields on  $\mathbb{R}^d$ .



► Corollary – Let  $F = (V_1, ..., V_\ell)$  be  $C_b^3$  vector fields on  $\mathbb{R}^d$ . The solution to the rough differential equation

 $dx_t = F(x_t) \, d\mathbf{B}_t^S \tag{17}$ 

► Corollary – Let  $F = (V_1, ..., V_\ell)$  be  $C_b^3$  vector fields on  $\mathbb{R}^d$ . The solution to the rough differential equation

$$dx_t = F(x_t) d\mathbf{B}_t^S \tag{17}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

coincides almost-surely with the solution to the Stratonovich differential equation

 $dz_t = V_i(z_t) \circ dB_t^i$ .

► Corollary – Let  $F = (V_1, ..., V_\ell)$  be  $C_b^3$  vector fields on  $\mathbb{R}^d$ . The solution to the rough differential equation

$$dx_t = F(x_t) \, d\boldsymbol{B}_t^S \tag{17}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

coincides almost-surely with the solution to the Stratonovich differential equation

 $dz_t = V_i(z_t) \circ dB_t^i$ .

Proof – We saw that solving (17) is equivalent to satisfying

$$x_t = x_0 + \int_0^t (F(\cdot), (DF)(F(\cdot))(x_s) d\mathbf{B}_s^S)$$

► Corollary – Let  $F = (V_1, ..., V_\ell)$  be  $C_b^3$  vector fields on  $\mathbb{R}^d$ . The solution to the rough differential equation

$$dx_t = F(x_t) \, d\boldsymbol{B}_t^S \tag{17}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

coincides almost-surely with the solution to the Stratonovich differential equation

 $dz_t = V_i(z_t) \circ dB_t^i$ .

Proof – We saw that solving (17) is equivalent to satisfying

$$x_t = x_0 + \int_0^t (F(\cdot), (DF)(F(\cdot))(x_s) d\mathbf{B}_s^S.$$

Given the previous corollary, it suffices to see that the path x is adapted to the Brownian filtration.

► Corollary – Let  $F = (V_1, ..., V_\ell)$  be  $C_b^3$  vector fields on  $\mathbb{R}^d$ . The solution to the rough differential equation

$$dx_t = F(x_t) \, d\mathbf{B}_t^S \tag{17}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

coincides almost-surely with the solution to the Stratonovich differential equation

 $dz_t = V_i(z_t) \circ dB_t^i$ .

Proof – We saw that solving (17) is equivalent to satisfying

$$x_t = x_0 + \int_0^t \big(F(\cdot), (DF)(F(\cdot))(x_s) \, d\mathbf{B}_s^S.$$

Given the previous corollary, it suffices to see that the path *x* is adapted to the Brownian filtration. This is clear from its construction as  $\varphi_{ls}(x_0)$  with the solution flow  $\varphi$  built using the non-anticipative schemes  $\mu_{ls}$ .

► Corollary (Wong-Zakai) – The solution path to the ordinary differential equation

$$dx_t^{(n)} = F(x_t^{(n)}) dB_t^{(n)}$$
(18)

► Corollary (Wong-Zakai) – The solution path to the ordinary differential equation

$$dx_t^{(n)} = F(x_t^{(n)}) dB_t^{(n)}$$
(18)

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - のんの

converges almost-surely to the solution path to the Stratonovich differential equation

 $dx_t = F(x_t) \circ dB_t.$ 

► Corollary (Wong-Zakai) – The solution path to the ordinary differential equation

$$dx_t^{(n)} = F(x_t^{(n)}) dB_t^{(n)}$$
(18)

-

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

converges almost-surely to the solution path to the Stratonovich differential equation

 $dx_t = F(x_t) \circ dB_t.$ 

Proof – It suffices to notice that solving the rough differential equation

 $dz_t^{(n)} = F(z_t^{(n)}) d\mathbf{B}_t^{(n)}$ 

is equivalent to solving equation (18).

#### Thank you all for attending the lectures!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで