
Random models

Joint work with M. Hoshino



� Theorem (Convergence for general models) – Assume the noise symbol is
the only element of the regularity structure with degree less than or equal to
−|s|/2. Assume that the law of the random noise has a spectral gap. Last,
suppose we have some preparation maps Rn for which the quantities

E
[
Q1(0,Π

n
0τ)

]
converge for all the symbols τ with non-positive degree. Then the
renormalized models associated with these preparation maps converge in
Lq(P) for any 1 ≤ q < ∞.

(Qt convolution with a heat kernel.) Similar result proved first by Hairer &
Steele for the BPHZ model M(P).

Work below with Ω a certain Besov
space.

� Theorem (Continuity in law for BPHZ) – Let (Pj)j∈N be a sequence of
probability measures on Ω that converges weakly to a limit probability
measure P. If all the Pj satisfy a spectral gap inequality with the same
constant then the law of M(Pj) converges weakly to the law of M(P).

Result of a similar flavour proved first by Tempelmayr in a multi-index

setting.
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On a post-stamp – We obtain an inductive construction of the renormalised
model using

1. a notion of (here parameter-dependent) regularity-integrability
structure, the reconstruction and multilevel Schauder theorems for an
associated notion of modelled distribution,

2. an inductive construction of regularized renormalised models based on
the use of preparation maps,

3. a comparison result for models with different parameters.
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Regularity-integrability structures (A,T ,G )

Motivation: Measure the size of the recentered Πxτ in some τ -dependent
space.

– A ⊂ R× [1,∞] such that{
(γ, r) ∈ A ; γ < β, r ≥ q

}
is finite for every (β, q) ∈ R× [1,∞], where

(γ, r) < (β, q)
def⇐⇒ γ < β and r ≥ q.

– T =
⊕

a∈A Ta

– G a group of continuous linear operators on T such that

(Γ− id)Ta ⊂
⊕

a′∈A, a′<a

Ta′ .
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Models on regularity-integrability structures (RIS) – For a ∈ A

∥Π∥a = max
{

sup
0<t≤1

t−α/ℓ
∥∥Qt(x ,Πxτ)

∥∥
L
p
x
; τ ∈ T(α,p), (α, p) < a

}
,

∥Γ∥a = max
τ∈T(α,p)

(β,q)<(α,p)<a

sup
h∈Rd\{0}

∥h∥β−α
s

∥∥{Γ(x+h)xτ}(β,q)
∥∥
L
p:q
x
.
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a′∈A, a′<a

Ta′ .

Modelled distributions on (RIS) – For c = (γ, r) and f ∈ Dc

∥f ∥c ··= max
(α,p)<c

sup
h∈Rd\{0}

∥∥{f (x + h)− Γ(x+h)x f (x)
}
(α,p)

∥∥
L
r :p
x

∥h∥γ−α
s

There are versions of the reconstruction and multilevel Schauder theorems.



Regularity-integrability structures

� An example – For α0 < −|s|/2− κ think of

H−κ ↪→ B
α0+

|s|
p

p,∞ ↪→ Cα0 .

For a parameter p ∈ [1,∞] set

|#|p = α0, |⊙|p = α0 +
|s|
p

T =
⊕
α

T(α,∞) ⊕
⊕
β

T(β,p) =
{
no ⊙

}
⊕

{
exactly one ⊙

}

P+
p : T → T+ projection on forests of trees with positive | · |p degree. The

expansion map
∆p = (id⊗ P+

p )∆

e.g., for one-dimensional multiplicative stochastic heat equation

∆p

( )
=

 ⊗ 1−#⊗ , for p ≥ 6−,

⊗ 1−#⊗ − (X#)⊗ , for p < 6−.
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Renormalised models

There is on T a natural derivative operator D : # → ⊙. The tree structure
of the symbols allows for inductive constructions.

� Definition of preparation maps – Linear maps R that fix the polynomials,
noises #,⊙ and planted trees, with

(R ⊗ id)∆2 = ∆2R, RD = DR,

and
Rτ = τ +

∑
i

λiτi ,

with |τi |r > |τ |r for r ∈ {2,∞} and |τi |# < |τ |#.

These maps somehow renormalise only what happens at the root of a tree.
We propagate this definition by defining inductively M×R as a multiplicative
map such that

M×R(Ikτ) = Ik

(
M×R(Rτ)

)

Renormalised interpretation map

ΠR = ΠM×RR

and a unique associated admissible model on T .
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Renormalised models

Our (RIS) depends on a parameter p. The recentered quantities depend on
p, write ΠR;p

x τ or Πξ,h,R;p
x τ , where Π(#) = ξ and Π(⊙) = h.

� Derivative lemma – For a ‘smooth’ noise ξ and for τ with no derivative
noise one has

dξ(Π
ξ,R;∞
x τ)(h) ··=

d

dt
(Πξ+th,R;∞

x τ)
∣∣
t=0

= Πξ,h,R;∞
x (Dτ).

(From Bruned & Nadeem’s work Diagram-free approach for convergence of trees based models in Regularity

Structures)

� Comparison lemma – For any τ with one derivative noise ⊙ and any
p ∈ [2,∞], one has

ΠR;p
x τ = ΠR;2

x τ +
(
ΠR;p

x ⊗ kR;p
x

)
∆2τ.

for some explicit characters kR;p
x .

Extension to p ∈ (2,∞) of a statement with a similar flavour in Bruned & Nadeem. Analogy with

Linares, Otto, Tempelmayr & Tsatsoulis: ΠR,∞
x (Dβ) ≃ δΠxβ , ΠR,2

x (Dβ)(y) ≃
(
δΠxβ − (dΓ∗xy )Πyβ

)
(y) –

comes with good estimates,
((

ΠR;∞
x ⊗ kR;p∞

x

)
∆2β

)
(y) ≃ ((dΓ∗xy )Πyβ )(y).
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The inductive mechanics

� A (pre)order for the induction

σ ⪯ τ
def⇐⇒

(
|σ|#, |Eσ|, |σ|∞

)
≤

(
|τ |#, |Eτ |, |τ |∞

)
with ≤ the lexicographical order. Write
B \ {X k}k∈Nd =

{
τ1 ⪯ τ2 ⪯ · · · ⪯ τN

}
.

Set
Vi ··= span

(
τ1, . . . , τi ∪ {X k}k∈Nd

)
, Wi = Vi−1 ⊕ V̇i .

� Example

V1 = span
(
#, {X k}

)
, W1 = span

(
⊙, {X k}

)
,

V2 = span
(
#, , {X k}

)
, W2 = span

(
#,⊙, , , {X k}

)
,

V3 = span
(
#, , , {X k}

)
, W3 = span

(
#, ,⊙, , , , , , {X k}

)
Associated regularity structures Vi,p and Wi,p and spaces of modelled
distributions M(Vi,p) and M(Wi,p).
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The inductive mechanics

� H-spectral gap assumption – For H = H−κ and Ω = Cα0

E
[
(F − E[F ])2

]
≲ E

[
sup

∥h∥H≤1

|dF (h)|2
]
.

Set
ξn(ω) ··= ϱn ∗ ω ∈ Ω, hn ··= ϱn ∗ h, (h ∈ H).

Given any preparation map Rn write Mn;p = Mξn,hn,Rn ;p for the random
admissible model associated with ξn, hn,Rn or its restriction to Vi,p or Wi,p.

� Centering condition – Take any preparation maps Rn such that

E
[
Q1(0,Π

n;∞
0 τ)

]
converges

for all τ with |τ |∞ ≤ 0 and no noise derivative.

� cv(W , i , p) – One has

sup
n∈N

E
[

sup
∥h∥H≤1

∥Mn;p∥qM(Wi,p)

]
< ∞

for any q ∈ [1,∞), and the restrictions of the models Mn;p on Wi,p converge
in Lq

(
Ω,P;M(Wi,p)

)
, for any 1 ≤ q < ∞ and any h ∈ H with ∥h∥H ≤ 1.

Similar definition of cv(V , i) (Does not depend on p.). Write {cv(·)}p to
mean cv(·, p) for all 1 ≤ p ≤ ∞. Induction hypothesis: {cv(W , i , p)}p.
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The inductive mechanics: structure of the induction

Step 1 cv(W , i ,∞) 99K cv(V , i) – Builds the model on ‘trees’ from the model on derivative trees

Step 2
(
cv(W , i , p) + cv(V , i)

)
=⇒ Γ-part of cv(W , i + 1, p)

2 & 3 build the model on new ‘derivative trees’

Step 3 (a)
(
cv(W , i , 2) + cv(V , i)

)
=⇒ Π-part of cv(W , i + 1, 2) – Builds

ΠR,2
x (Dσ)

(b)
(
Π-part of cv(W , i + 1, 2) +

{
cv(W , i , p)

}
p

)
=⇒ Π-part of

{
cv(W , i + 1, p)

}
p

– Builds ΠR,p
x (Dσ) for all 1 ≤ p ≤ ∞
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Steps 2 and 3 are deterministic. Step 2 uses multilevel Schauder estimates.
Step 3 (a): When p = 2 all non-trivial trees have positive |·|2-degree and
one can use the reconstruction theorem for free on some well-chosen
modelled distributions to get estimates on ΠR,2

x (Dσ).
(b): The Comparison Lemma shows that Πn;p

x (Dσ)− Πn;2
x (Dσ) is a

sum of terms which can be controlled by the induction hypothesis.
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Comparison with Hairer & Steele’s work –

– We use a recursive construction of models based on preparation maps.
(No need to work with trees with the extended o-decoration.)

– We trade the use of pointed modelled distributions for a notion of
regularity-integrability structure. Straightforward commutation of the
noise derivative operator and p = ∞ renormalized model.

– We are not restricted to working with the BPHZ renormalization
scheme.

Details:

- A functional setting based on semigroups vs scaled centered functions.

- Our result stated for one noise and one integration operator. Can be generalized to
multiple noises and systems.
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