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Abstract

We argue that the spectrally cut-off Gaussian free field ΦΛ on a compact Riemannian manifold or
on Rn cannot satisfy the spatial Markov property. Moreover, when the manifold is reflection positive,
we show that ΦΛ fails to be reflection positive. We explain the difficulties one encounters when
trying to deduce the reflection positivity property of the measure exp(−∥ρΦΛ∥4L4)µGFF(dΦ) from the
reflection positivity property of the Gaussian free field measure µGFF in a naive way. These issues are
probably well-known to experts of constructive quantum field theory but no detailed account can be
found in the litterature. Our note aims to fill this small gap.

1 Introduction and context

1.1 Markov property and reflection positivity of a random field. Let (M, g) be a smooth, closed,
compact Riemannian manifold or M = R × Σ where Σ is a complete Riemannian manifold endowed
with the product metric dt2 + gΣ. We denote by ∆g the positive Laplace-Beltrami operator acting on
C∞(M). In case M is compact, we write (eλ)λ∈σ(∆g) for the L2 basis of eigenfunctions of ∆g and

E⩽Λ ··= span(eλ)λ⩽Λ2 ⊂ C∞(M).

The massive Gaussian Free Field (GFF in the sequel) Φ of law µ is defined onM compact as the random
series

Φ ··=
∑

λ∈σ(∆g)

cλ

(λ+ 1)
1
2

eλ

where the coefficients cλ are independent, identically distributed, random variables with Gaussian
distribution N (0, 1). On a cylinder M = R×Σ the massive Gaussian free field is defined as the unique
Gaussian process Φ indexed by H−1(M) with covariance

E
[
Φ(f)Φ(h)

]
= ⟨f, h⟩H−1(M) .

Pick ε > 0. One can realize the Gaussian process Φ as a random variable with values in H
2−d
2 −ε(M).

Denoting by µGFF the law of Φ, we will work in the sequel with the canonical probability space(
H

2−d
2 −ε(M),O, µGFF

)
, where O stands for the Borel σ-algebra of H(2−d)/2−ε(M) = Ω. One can

take Φ(ω) = ω for every ω ∈ Ω.
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Definition 1.1 In both cases of M compact or a cylinder it is well-known that ∆g : C∞
c (M) ⊂ L2(M) →

L2(M) is essentially self-adjoint hence it admits a well-defined functional calculus. For Λ > 0 we use the
notation

ΠΛ ··= 1
(
|∆g|∞ ⩽ Λ2

)
for the sharp spectral projector – so when M is compact one has ΠΛ(∆g) : D′(M) → E⩽Λ. Note that ΠΛ

is self-adjoint. We define the spectrally cut-off GFF as

ΦΛ ··= ΠΛ(Φ) ,

which is a random smooth function.

Note that we could take a smooth compactly supported cut-off ΨΛ

(
|∆g|∞ ⩽ Λ2

)
in the sequel,

without loss of generality except in Section 3. We will use the notion of smooth functionals on a
locally convex space such as D′(M), C∞(M) or on some Sobolev space Hs(M) as discussed in [3],
along with the notion of support of a smooth functional. Both notions are recalled hereafter, we start
with smooth functionals :

Definition 1.2 Let E be a locally convex space and U ⊂ E an open subset. A function F : U 7→ R is
smooth if for every k ∈ N, x ∈ U , every (h1, . . . , hk) ∈ Ek, the limit

∂kF
(
x+ t1h1 + · · ·+ tkhk

)
∂t1 . . . ∂tk

|(t1,...,tk)=0 = Dk
xF
(
h1, . . . , hk

)
exists and DkF : U×Ek 7→ R is jointly continuous as a function of its arguments and linear in h1, . . . , hk.

We next discuss the notion of support:

Definition 1.3 In what folllows E = C∞(M),D′(M) or some Sobolev space Hs(M) of distributions on
some smooth manifold M . Let U ⊂ E be an open subset. The support of some smooth functional F :
U → R, denoted by supp(F ), is the set containing those points x ∈ M such that for every neighbourhood
Ax ⊂M of x, there exists ϕ, ψ ∈ U that verify F (ϕ) ̸= F (ψ) and supp(ϕ− ψ) ⊂ Ax.

We next introduce the notion of reflection positive manifold following the work of Jaffe & Ritter [7,
8, 9]:

Definition 1.4 We say that the manifold M is reflexion positive if there exists an isometric involution
Θ :M 7→M which admits as invariant subset a submanifold Σ of dimension d− 1 such that M \Σ is the
disjoint union of two open manifolds M+ and M− that both verify ∂M+ = ∂M− = Σ. One can therefore
think of M as the disjoint union

M =M+ ∪ Σ ∪M− , Θ|Σ = IdΣ , Θ(M±) =M∓.

For clarity we write below M± for M±. The spaces of constant curvature Rd, Sd, and Hd are reflection
positive. In the sequel, we will mostly be interested in the cases M = R× Σ, Sd, for which we precise
the setting. The cylinder R×Σ is reflection positive with respect to {0}×Σ. The sphere Sd is reflection
positive with respect to any of its equators. Whenever a manifoldM is reflection positive with isometric
involution Θ, the map Θ acts via pullback on C∞(M) and D′(M) and hence on functionals on M and
D′(M)-valued random variables. Note that for a distribution ω

ΠΛ(ω)|M−
=
(
ΠΛ(ω) ◦Θ

)
|M+

= ΠΛ(ω ◦Θ)|M+
. (1)

Let A be a closed subset of M . For f ∈ C(A) we denote by fM its canonical extension by 0 outside
A. Let Ψ be a random distribution defined on our probability space Ω, with law µΨ and associated
expectation operator EΨ[·]. We introduce a sub σ-algebra of O

σ(Ψ;A) ··= σ
(
Ψ(fM ); f ∈ C(A), supp(f) ⊂ A

)
.
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We implicitly assume here that we only consider those fonctions f ∈ C(A) for which Ψ(fM ) is well-
defined. One can think of σ(Ψ;A) as the σ-algebra generated by the observables that are only sensitive
to the fluctuation of the field Ψ on the set A.

Definition 1.5 A random process Ψ as above has the Markov property if for any closed subsets A,B of
M such thatA∩B has an empty interior, and for any random variable F ∈ L2 that is σ(Ψ;B)-measurable,
one has

E
[
F |σ(Ψ;A)

]
= E

[
F |σ(Ψ; ∂A)

]
.

The Markov property was introduced by Nelson in [14, 15]; he proved that µGFF verifies this property.

Definition 1.6 A random process Ψ on a reflection positive manifold M is reflection positive if for any
C-valued function F in L2

(
D′(M), σ(Ψ;M+), µΨ

)
it holds

EΨ

[
(ΘF )F

]
⩾ 0.

Reflection positivity is one of the axioms introduced by Osterwalder and Schrader [16]; it is a crucial
condition to recover a Lorentzian Quantum Field Theory from a Euclidean Quantum Field Theory. It
is connected to the Markov property by the following fact

Lemma 1.7 ([4], Theorem 2) On a reflection positive Riemannian manifold (M, g) a random field that
has the Markov property is refection positive.

1.2 The regularized Φ4
3 measure built from the cut-off interaction. The Φ4

3 measure ν is a prob-
ability measure on D′(M) with (M, g,Θ) a closed three dimensional reflection positive manifold that
heuristically reads as

ν(dΦ) ∝ e
−c∥Φ∥4

L4(M) µGFF(dΦ). (2)

We use the non-conventional notation c for the coupling constant. Since the dimension of M is greater
then or equal to 2 the GFF is not supported on Lp functions and the L4 norm of Φ is almost surely
infinite. The formal expression (2) is thus meaningless. The probability measure ν can therefore only
be defined as the weak limit of a sequence of approximations (νρ,Λ)Λ⩾0. A choice which is often made
is to consider

νρ,Λ(dΦ) ∝ e
−c∥ρΦΛ∥4

L4(M)
−caΛ∥ρΦΛ∥2

L2(M) µGFF(dΦ) , (3)

where ρ ∈ C∞
c (M) is identically equal to 1 on a large compact set of M and (aΛ)Λ⩾0 is a suitably

chosen sequence of real number that is divergent at large Λ.
OnM the Φ4

3 measure ν is a good starting point to construct a QFT providedM is reflection positive
and ν is proved to be reflection positive too. When ν is constructed as a limit of a sequence of approxi-
mations the only way to prove reflection positivity of ν is to show that the measures νρ,Λ are reflection
positive for all Λ, in which case ν inherits the reflection positivity property of its approximations.

In [1] Albeverio & Kusuoka use the approximation (3) to construct the Φ4
3 measure on Rd and

claim that the measures (νρ,Λ)Λ⩾0 are reflection positive – from which they conclude that the limiting
measure is also reflection positive. They justify their claim in [1, section 7.2 p. 82-83] as follows.
Denoting for any closed subset A ⊂Mh

GA,ρ,Λ ··= e
−c∥ρΦΛ∥4

L4(A)
−caΛ∥ρΦΛ∥2

L2(A) ≤ 1, (4)

one has GM,ρ,Λ = GM−,ρ,ΛGM+,ρ,Λ. They first claim that GA,ρ,Λ ∈ L2
(
H

2−d
2 −ε(M), σ(Φ;A), µGFF

)
and

for F ∈ L2
(
H

2−d
2 −ε(M), σ(Φ;M+), µGFF

)
they reexpress in [1, section 7.2 last line of p. 82 and first

two lines of p. 83] the expectation

Eνρ,Λ

[
(ΘF )F

]
=

1

ZΛ
EµGFF

[
GM−,ρ,ΛGM+,ρ,Λ (ΘF )F

]
3



with Zρ,Λ ··= EµGFF [GM,ρ,Λ], under the form

EµGFF

[
GM−,ρ,ΛGM+,ρ,Λ (ΘF )F

] (1)
=

∫
F (ω)GM+,ρ,Λ(ω)F (ω ◦Θ)GM+,ρ,Λ(ω ◦Θ)µGFF(dω).

The reflection positivity of νρ,Λ would then stem from the reflection positivity of the measure µGFF

applied to FGM+,Λ, provided GM+,ρ,Λ and FGM+,ρ,Λ are both in L2(H
2−d
2 −ε(M), σ(Φ;M+), µGFF).

However we make the following observation. For any closed subset A ⊊M of non-empty interior and Λ
sufficiently large the random variable GA,ρ,Λ is not σ(Φ;A)-measurable. In fact this will follow from a
more general claim which is proved in Section 2 :

Theorem 1.8 Let M be a smooth complete Riemannian manifold of dimension d. Let A ⊊M be a closed
subset with nonempty interior, and G a smooth functional on C∞(M) such that the random variable
G ◦ΠΛ(Φ) is σ(Φ;A)-measurable. Then the function G ◦ΠΛ on H

2−d
2 −ε(M) is constant.

In the particular case we are interested in Theorem 1.8 tells us that if GA,ρ,Λ(Φ) were indeed
σ(Φ;A)-measure then the function GA,ρ,Λ(·) on H

2−d
2 −ε(M) would be constant. We obtain a con-

tradiction as the polynomial functional f ∈ H
2−d
2 −ε(M) 7→ c∥ρfλ∥4L4(A) + caΛ∥ρfλ∥2L2(A) should then

constant, giving by rescaling a non-constant polynomial function of degree four of a real variable. Now
since GM±,ρ,Λ is not σ(Φ;M±)-measurable one cannot apply the spatial Markov property to write
the equality

EµGFF

[
GM−,ρ,ΛGM+,ρ,Λ(ΘF )F

]
= EµGFF

[
EµGFF

[
GM−,ρ,ΛΘF

∣∣σ(Φ;Σ)]EµGFF

[
GM+,ρ,ΛF

∣∣σ(Φ;Σ)] ].
This seems to indicate that the discussion in [1, Section 7.2 last line of p.82 and first two lines of p.83]
might need some more justifications. This seems necessary as we prove in Theorem 5.2 in Section 5
that the regularized Φ4

3 measures νρ,Λ are not reflection positive for a small enough coupling constant
c > 0 in (3). Moreover we give hereafter three arguments that show that the cut-off free field ΦΛ can
by no means be neither Markov nor reflection positive, neither on cylinders like Rd nor on compact
manifolds. (It seems that the authors of [1] erroneously claim that ΦΛ has the Markov property when
write that “Similarly to the proof of Theorem 5 in [156], we can prove that PNΦ under the free field
measure µ0 is a Markov field”, at the beginning of their Section 7.2.) This also confirms that any
approach involving spectral cut-offs is unlikely to be efficient in order to prove the reflection positive
of the Φ4

3 measure.

1.3 Organization of the work. We prove Theorem 1.8 in Section 2. This somehow shows that the
spatial Markov property for the cut-off GFF is not well-posed since we prove that the only σ(Φ;M+)-
measurable random variables of the formG(ΦΛ) whereG is smooth are constants. In Section 3 we give
a counter-example showing that the cut-off free field the cylinder R × Σ is not reflection positive, by
constructing a function on which the bilinear form associated to the cut-off covariance acts negatively,
see Theorem 3.2 below. In Section 4 we show that the cut-off free field on compact manifolds also has a
covariance which is not reflection positive, by constructing a counter-example, see Theorem 4.1 below.
Given Lemma 1.7 the results of these sections show that the cut-off regularized Gaussian free field does
not have the Markov property in these settings. All our arguments point toward some possible issue in
the proof of reflection positivity of the Φ4

3 measure proposed in [1]. Note that in the flat case M = R3,
it is a well-established fact that the Φ4

3 measure is reflection positive, since it can be constructed as
the limit of a sequence of Gibbs measure on the lattice [6], where regularized measures are reflection
positive. However this construction does not generalize to the case of a compact Riemannian manifold
M where lattice regularization is not an option. Hence the proof of the reflection positivity of the
Φ4

3 measure on the sphere S3 is still an open problem. We prove in Section 5 that the regularized Φ4
3

measures νρ,Λ are not reflection positive for a small enough coupling constant c > 0.
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2 The cut-off GFF admits only trivial smooth localized observ-
ables

We prove Theorem 1.8 in this section. Our proof is based on the result due to Lebeau-Robbiano [12],
Jerison-Lebeau [10], Lebeau-Zuazua [13] which asserts that the zero set (also called nodal set) of
linear combinations of Laplace eigenfunctions always has empty interior:

Lemma 2.1 (Nodal sets of linear combinations of eigenfunctions) Let (M, g) be a smooth closed com-
pact Riemannian manifold. Then for any Λ ∈ (0,∞) and any nontrivial finite linear combination of the
eigenfunctions of ∆g that we denote by f ∈ E⩽Λ, the zero set Zf = {x ∈ M |f(x) = 0} of the function f
has empty interior.

Proof: Assume there exists f ∈ E⩽Λ such that ∥f∥L2(M) = 1 and Zf contains an open subset U . Then
the Lebeau-Robbiano spectral inequality [10, Thm 14.6 p. 230] states that given U ⊂ M , there exists
constants C,K > 0 such that for all φ ∈ E⩽Λ, we have an inequality of the form:

∥φ∥L2(M) ⩽ CeKΛ∥φ∥L2(U) ,

where C,K do not depend on φ. Setting φ = f yields

∥f∥L2(M) ⩽ CeKΛ∥f∥L2(U) = 0 ,

since we assumed f |U = 0. This yields a contradiction with the assumption ∥f∥L2(M) = 1. ■

Corollary 2.2 We assume (M, g) is a smooth closed compact Riemannian manifold or M = Rn with
the flat metric and B is some open subset B ⊊ M . Let T ∈ D′(M) be a distribution such that for all
f ∈ C∞

c (B), T (ΠΛf) = 0. Then ΠΛT = 0.

Proof: Since ΠΛ is self-adjoint, we have

T (ΠΛf) = ⟨ΠΛT, f⟩L2(M).

Therefore, ΠΛT ∈ E⩽Λ which is vanishing on the interior of B. Hence, it is null by Lemma 2.1.
In the case M = Rn, we repeat the exact same argument and conclude using the fact that ΠΛT is

analytic by the Paley-Wiener Theorem hence null if it vanishes on the open set B. ■

We can now give the proof of Theorem 1.8. We work by contradiction. Set F = G ◦ ΠΛ which
is a smooth functional on H

2−d
2 −ε(M). Assuming that F is σ(Φ;A)-measurable, for every direction

h ∈ C∞
c (Ac) we have the identity

F (Φ + h) = F (Φ)

for Φ in a set Ωh ⊂ Ω of probability 1 that depends on h. Now we would like to go from an h-
dependent almost sure statement to a deterministic statement meaning F (Φ + h) − F (Φ) = 0 for all
distribution Φ ∈ H

2−d
2 −ε(M). Assume by contradiction that there is some φ ∈ H

2−d
2 −ε(M) such that

F (φ+h)−F (φ) ̸= 0. Assume without loss of generality that F (φ+h)−F (φ) = L > 0. The functional

Φ ∈ H
2−d
2 −ε(M) 7→ F (Φ + h)− F (Φ)

is smooth, hence by continuity there is some open subset φ ∋ Uφ of H
2−d
2 −ε(M) such that 0 < L

2 ⩽
F |Uφ

⩽ 3L
2 . Then there is some R > 0 for which we have the inclusion of the closed ball B(φ,R) ⊂ Uφ

for the H
2−d
2 −ε(M) topology. Denote by χB(φ,R) the indicator function of B(φ,R). One then has

0 = EµGFF

[
(F (·+ h)− F )χB(φ,R)

]
⩾
L

2
µ (B(φ,R))
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the first equality follows from the almost sure vanishing of F (·+ h)− F , which implies that

µ
(
B(φ,R)

)
= 0.

But it is an important fact about the massive GFF that µGFF has full support in H
2−d
2 −ε(M) since the

Cameron-Martin space H1(M) is everywhere dense in H
2−d
2 −ε(M) for the H

2−d
2 −ε(M) topology [2,

thm 3.6.1 p. 119] [11, Prop 3.68 p. 28]. This yields a first contradiction and implies that F (Φ + h) =

F (Φ) for all distributions Φ ∈ H
2−d
2 −ε(M) and all h ∈ C∞

c (Ac) which is much stronger than the almost
sure statement. It means that G ◦ΠΛ should not depend on h ∈ C∞

c (Ac). More precisely, by definition
of the support of a functional (see Definition 1.3), for any such h we have G(ΦΛ + ΠΛh) = G(ΦΛ),
which implies that DΦ(G ◦ΠΛ)(h) = 0. Observing that

DΦ(G ◦ΠΛ)(h) = lim
t↘0

G(ΦΛ + tΠΛh)−G(ΦΛ)

t
= DΦΛ

(G)(ΠΛh) ,

we conclude that DΦΛ(G)(ΠΛh) = 0. In view of Corollary 2.2 taking B = Ac and T = DΦΛ(G), we
thus have that ΠΛDΦΛ

(G) = 0. In particular, for all f ∈ C∞(M),

ΠΛDΦΛ(G)(f) = DΦΛ(G)(ΠΛf) = DΦ(G ◦ΠΛ)(f) = 0,

so G ◦ΠΛ is indeed constant.

3 The cut-off GFF on cylinders is not reflection positive

In this section, we give an explicit counter-example contradicting the fact that ΦΛ can be reflection
positive on Rd and more generally on any Riemannian cylinder M of the form M = R × Σ where
Σ is complete Riemannian and the cylinder is endowed with the split metric dt2 + gΣ, based on the
following

Lemma 3.1 ([5], Theorem 6.2.2) A Gaussian random field Ψ with covariance C is reflection positive if
and only if its covariance is reflection positive, in the sens that for any f ∈ C∞

c (R⩾0 × Σ),

⟨Θf, Cf⟩L2(M) ⩾ 0.

We construct hereafter such a function f such that
〈
Θf,

ΠΛ(∆g)
∆g+1 f

〉
L2(M)

< 0, which implies

Theorem 3.2 The spectrally cut-off massive Gaussian free field on Rd or on any Riemannian cylinder ΦΛ

is not reflection positive.

This implies that the spectrally cut-off GFF cannot be Markov. To construct our counter-example, we
need the following Lemma.

Lemma 3.3 Let κ ∈ [1, 1 + 1]. There exists a function h ∈ C∞
c (R⩾0) such that∫ 1

−1

ĥ(−ξ) ĥ(ξ) dξ

ξ2 + κ
< 0.

Proof: Note that because h is real, one has ĥ(−ξ) = ĥ(ξ). Thus h just needs to satisfy∫ 1

−1

ĥ(ξ)2
dξ

ξ2 + κ
< 0.

Now write
ĥ(ξ) = Ah(ξ) + iBh(ξ) ,
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where
Ah(ξ) ··=

∫
h(x) cos(ξx)dx , Bh(ξ) ··=

∫
h(x) sin(ξx)dx ,

so that Ah is even and Bh is odd. This gives

ĥ(ξ)2 = Ah(ξ)
2 −Bh(ξ)

2 + 2i Ah(ξ)Bh(ξ)︸ ︷︷ ︸
integral = 0, odd

.

The important idea is that since ĥ(0) =
∫
h(x)dx > 0, one needs to shift the weight of integration (ξ2+

κ)−1 “away from zero”. This can be done by taking derivatives: setting h = φ(2n), we have∫ 1

−1

φ̂(2n)(ξ)2
dξ

ξ2 + κ
= 2

∫ 1

0

(iξ)4n

ξ2 + κ

(
Aφ(ξ)

2 −Bφ(ξ)
2
)
dξ

= 2

∫ 1

0

ξ4n

ξ2 + κ

(
Aφ(ξ)

2 −Bφ(ξ)
2
)
dξ.

Note that we have taken care of choosing a number of derivatives that makes (iξ)4n real. Now, observe
that ∫ 1

0
ξ4n

ξ2+κ

(
Aφ(ξ)

2 −Bφ(ξ)
2
)
dξ∫ 1

0
ξ4n

ξ2+κdξ
−→

(
Aφ(1)

2 −Bφ(1)
2
)

as n −→ ∞.

Choosing φ supported near π
2 ensures that cos(x) ≈ 0 and sin(x) ≈ 1, so that Aφ(1)

2 − Bφ(1)
2 < 0.

Taking n large enough but finite and rescaling φ, one finally obtains the desired result. Moreover, since
φ is compactly supported on R⩾0, so is h. ■

Proof of Theorem 3.2: As alluded to, the proof follows from the fact that we provide a counter-
example of the positivity of the covariance, that is to say, we construct f ∈ C∞

c (R⩾0 × Σ) such that〈
Θf,

ΠΛ(∆g)
∆g+1 f

〉
L2(M)

< 0.
We denote by E(λ)dλ the projection valued measure of the slice Laplacian ∆Σ which is well–known

to be self-adjoint by the completeness of Σ. To any function f ∈ L2(M) on the cylinder M = R × Σ,
we will denote by

f̂(τ, λ) =

∫
e−itτE(λ) (f(t, .)) dt

its Fourier transform w.r.t. the time variable t and its spectral transform with respect to the spectral
measure of ∆Σ. Then we rewrite the pairing as〈

Θf,
ΠΛ(∆g)

∆g + 1
f

〉
L2(M)

=

∫
{τ2∨λ2⩽Λ}⊂R×R⩾0

1

τ2 + λ2 + 1

(∫
Σ

f̂(−τ, λ)f̂(τ, λ)dV
)
dτdλ

=

∫ Λ

−Λ

(∫ Λ

0

1

τ2 + λ2 + 1

(∫
Σ

f̂(−τ, λ) f̂(τ, λ) dV
)
dλ

)
dτ

Now we will reduce to the one variable case by a scaling argument. Let φ ∈ C∞
c (R⩾0) such that∫ 1

−1
φ̂2(τ)

τ2+λ2+ 1
Λ2
dτ < 0 for all λ ∈ [0, 1]. The existence of such φ comes from Lemma 3.3. Choose

χ ∈ L2(Σ) such that
∫
Σ
|χ|2 = 1 and χ has non trivial spectral measure in the interval [0, 1]:∫ 1

0

∥∥E(λ)(χ)
∥∥2
L2(Σ)

dλ > 0.

Then set

f =

∫ ∞

0

Λφ(Λt)E

(
λ

Λ

)
(χ)dλ.
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Replacing the expression of f in the pairing we get〈
Θf,

ΠΛ(∆g)

∆g + 1
f

〉
L2(M)

=

∫ Λ

0

∥∥∥E ( λ
Λ

)
(χ)
∥∥∥2
L2(Σ)

(∫ Λ

−Λ

φ̂( τΛ )
2

τ2 + λ2 + 1
dτ

)
dλ

= Λ2

∫ 1

0

∥∥E (λ) (χ)
∥∥2
L2(Σ)

(∫ 1

−1

φ̂(τ)2

Λ2(τ2 + λ2) + 1
dτ

)
dλ

=

∫ 1

0

∥∥E (λ) (χ)
∥∥2
L2(Σ)

(∫ 1

−1

φ̂(τ)2

τ2 + λ2 + 1
Λ2

dτ

)
dλ < 0.

We have thus proven that the cut-off covariance is not reflection positive, and by Lemma 3.1, ΦΛ is
therefore not reflection positive. ■

4 The cut-off GFF on compact manifolds is not reflection positive

As discussed in the introduction, it suffices to show that the cut-off GFF is not reflection positive, this
will also imply that it is not Markov.

Theorem 4.1 Assume that (M, g) is a smooth compact Riemannian manifold which is reflection positive.
Then there exists L > 0 such that for any Λ ⩾ L, there exists a function f ∈ C∞

c (M+) such that〈
Θf,

ΠΛ(∆g)

∆g + 1
f

〉
L2(M)

< 0.

Proof: First, by commutativity of ∆g and Θ, note that we can choose the L2 basis of ∆g in such a
way that any eigenfunction eλ of the Laplacian ∆g satisfies either Θeλ = eλ which we call even or
Θeλ = −eλ which we call odd. Observe that the odd eigenfunctions are non empty since the span of
eigenfunctions is dense in C∞(M) which contains odd functions hence odd eigenfunctions is a non
empty subset of eigenfunctions. Hence we choose L large enough so that there exists λ ⩽ L2 such that
eλ is odd. Given Λ ⩾ L2, we note λ∗ the largest eigenvalue ⩽ Λ2 with odd eigenfunction eλ∗ .

Second, consider the linear map

T : f ∈ C∞(M+) 7→ (⟨f, eλ⟩)λ⩽Λ2 ∈ Rdim(E⩽Λ).

Then we would like to show that linear T : C∞(M+) 7→ Rdim(E⩽Λ) is onto. Assume by contradiction
it were not onto, then T (C∞(M+)) is a strict vector subspace of Rdim(E⩽Λ) then we can choose some
vector (cλ)λ⩽Λ2 in T (C∞(M+))

⊥. In other words there exists a linear combination φ =
∑

λ⩽Λ2 cλeλ ∈
E⩽Λ, φ ̸= 0 such that for all f ∈ C∞

c (M+):∑
λ⩽Λ2

cλ ⟨eλ, f⟩ = 0,

meaning φ ∈ E⩽Λ vanishes onM+. ButM+ has nonempty interior which contradicts Lemma 2.1 hence
the map T is surjective. The surjectivity of T ensures we can find f ∈ C∞

c (M+) such that ⟨f, eλ⟩ = 0 if
λ ̸= λ∗ and ⟨f, eλ∗⟩ = 1. For this f , we calculate〈
Θf,

ΠΛ(∆g)

∆g + 1
f

〉
L2(M)

=
∑
λ⩽Λ2

⟨f,Θeλ⟩
1

λ+ 1
⟨f, eλ⟩ = −⟨f, eλ∗⟩

1

λ∗ + 1
⟨f, eλ∗⟩ = − 1

λ∗ + 1
< 0 ,

which concludes the proof. ■
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5 A counterexample on R3

For f ∈ L2(R3) write

(ρΠΛΦ)(f) ··=
∫
R3

f(x)ρ(x)(ΠΛΦ)(x) gdx.

We would like to summarize in one key lemma the central idea behind our counterexample.

Lemma 5.1 Let A ⊂ Rd be a closed subset with nonempty interior and B ⊂ Rd∗ a closed compact ball in
Fourier space. Denote by L2

A(Rd) the subspace of L2 functions whose supported is contained in A. Then
the Fourier restriction map defined as

T : φ ∈ L2
A(Rd) 7−→ φ̂|B ∈ L2(B)

has everywhere dense image.

The idea of proof is very similar to the one of Thm 4.1. The simple but powerful idea is that any
function on the ball B can be approximated by the Fourier transform of something supported in A.
Proof: By contradiction, if Ran(T ) were not dense, then Ran(T )⊥ would be a non-empty closed vector
subspace and there would be some non-null element g ∈ L2(B) such that for all f ∈ L2

A

0 =
〈
f̂ , g
〉
L2(B)

=
〈
f̂ , χBg

〉
L2(Rd)

=
〈
f,F−1 (χBg)

〉
L2(Rd)

,

from Plancherel identity. The function F−1 (χBg) is therefore not supported on A hence vanishes on
some open subset. This contradicts the fact that F−1 (χBg) is a non-trivial analytic function by the
Paley-Wiener Theorem. ■

We emphasize here the dependence of the measures νρ,Λ on the coupling constant c by writing
νc,ρ,Λ. Write as well Gc,ρ,Λ for GM,ρ,Λ in (4). Denote by (x1, x2, x3) the canonical coordinates of a
point x ∈ R3. Last write f ∈ L2(R3

+) to mean that f ∈ L2(R3) and supp(f) ⊂ {x1 > 0}.

Theorem 5.2 For c > 0 small enough there exists a function f ∈ L2(R3
+) such that

Eνc,ρ,Λ

[
(ρΠΛΦ)(Θf) (ρΠΛΦ)(f)

]
< 0. (5)

This implies that the regularized Φ4
3 measures νc,ρ,Λ are not reflection positive for c > 0 small enough,

depending on Λ and ρ.

Proof: Since 0 ≤ Gc,ρ,Λ(φ) is converging to 1 as c > 0 goes to 0 for all distributions φ one has from
dominated convergence

Eνc,ρ,Λ

[
(ρΠΛΦ)(Θf) (ρΠΛΦ)(f)

]
−→
c→0+

EµGFF

[
(ρΠΛΦ)(Θf) (ρΠΛΦ)(f)

]
. (6)

To justify the use of the dominated convergence at some fixed cut-off ρ and Λ we note the lower bound
on the interaction

c∥ρΦΛ∥4L4(R3) + caΛ∥ρΦΛ∥2L2(R3) ⩾ c

∫
R3

ρ4Φ4
Λ − c

|aΛ|
2δ2

Vol(supp(ρ))− c
|aΛ|δ2

2

∫
R3

Φ4
Λρ

4,

for any δ > 0, using Young’s inequality and the compactness of the support of ρ. Choosing δ small
enough yields a lower bound of the form

c∥ρΦΛ∥4L4(R3) + caΛ∥ρΦΛ∥2L2(R3) ⩾ c
2

3
∥ρΦΛ∥4L4(R3) − cK

for some K > 0.
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From the convergence result in (6) it suffices to find f ∈ L2(R3
+) such that

EµGFF

[
(ρΠΛΦ)(Θf) (ρΠΛΦ)(f)

]
=
〈
ψΛ(

√
∆)(ρΘf) , (∆ + 1)−1

(
ψΛ(

√
∆)(ρf)

)〉
L2
< 0

and choose c > 0 small enough. Set the linear map

T : f ∈ L2(R3
+) 7−→ ρ̂fχB(0,Λ) ∈ L2

(
B(0,Λ)

)
where on the right hand side we consider the restriction of the Fourier transform ρ̂f to the Fourier ball
of radius Λ. By a similar argument as in Lemma 5.1, the key idea is to prove that the image of T is
dense in L2(B(0,Λ)). If it were not true Ran(T )⊥ would be a non-empty closed vector subspace and
there would be some non-null element g ∈ L2(B(0,Λ)) such that for all f ∈ L2(R3

+)

0 =
〈
ρ̂f , g

〉
L2(B(0,Λ))

=
〈
ρ̂f , χB(0,Λ)g

〉
L2(R3)

=
〈
f, ρF−1

(
χB(0,Λ)g

)〉
L2(R3)

,

from Plancherel identity. The function ρF−1
(
χB(0,Λ)g

)
is therefore not supported on the half-space

{x1 > 0}. Since ρ > 0 on some non-empty region of {x1 > 0} this implies that the function
F−1

(
χB(0,Λ)g

)
vanishes in some open subset contained in the half-space {x1 > 0}. This contradicts

the fact that F−1
(
χB(0,Λ)g

)
is a non-trivial analytic function by the Paley-Wiener Theorem.

So the provisional conclusion is that there exists a sequence fn in L2(R3
+) such that the sequence

T (fn) converges in L2(B(0,Λ)) to ξ1χB(0,Λ)(ξ). Therefore for this precise sequence fn we find that〈
ψΛ(

√
∆)(ρΘf) , (∆ + 1)−1

(
ψΛ(

√
∆)(ρf)

)〉
L2

=

∫
R3∗

ψΛ(|ξ|)2
(
|ξ|2 + 1

)−1
T (fn)(−ξ1, ξ2, ξ3)T (fn)(ξ1, ξ2, ξ3) dξ

is converging as n goes to ∞ to∫
R3∗

ψΛ(ξ)
2
(
|ξ|2 + 1

)−1
(−ξ21)χ2

B(0,Λ) dξ = −
∫
R3∗

ψΛ(ξ)
2
(
|ξ|2 + 1

)−1
ξ21 dξ < 0.

This shows indeed that the heat regularized (and space localized) Gaussian free field measure is not
reflection positive. Of course the Gaussian free field measure itself is reflection positive and the above
proof breaks down when Λ = +∞ as the function ξ1 is no longer an elelment of L2. ■

Theorem 5.2 does not exclude the fact that νc,ρ,Λ may be reflection positive for some coupling
constant c that would not be small enough.
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