Regularity structures for quasilinear
singular SPDEs
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» Local in time well-posedness — Take u € co’ (T). One can construct a
regularity structure, containing infinitely many trees of any fixed degree,
within which one can make sense of the equation

L0 = 0pu — a(u)P2u = F(u)€ + g(u)(xu)?

and prove local in time well-posedness, in the full subcritical regime.



» Local in time well-posedness — Take ug € co’ (T). One can construct a
regularity structure, containing infinitely many trees of any fixed degree,
within which one can make sense of the equation

L= dru— a(u)iu = F(u)€ + g(u)(dxu)®
and prove local in time well-posedness, in the full subcritical regime.
Set v := e"az(uo), with 7 small.
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Assumption 1 — One can define the BPHZ model of the non-translation
invariant (§KPZ) equation
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Set v := e"az(uo), with 1 small.

L% = du — a(w)2u = F(u)€ + g(u)(du)® + (a(u) — a(v))&iu (D
Assumption 1 — One can define the BPHZ model of the non-translation
invariant (§KPZ) equation

Oz — a(v)diz = F(2)€ + g(2)(02)°.
» Renormalized equation — The solution u® to

£ = F(u)E" +g(u) (B’
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with initial condition up € C° (T) converges (in law) on a random time
interval, as € | 0. Here 7° runs over an infinite number of rooted decorated
trees, €a<“>"(7p, -) depends on v, x?(7) explicit polynomial of a and its
derivatives.



For A > 0 define the constant /', from the operator (0; — Ad7) " and £° in the
same way as we define the function £°*)“(7P .) using the non-translation
invariant operator (d; — a(v)d2)™* and ¢°.

Assumption 2 — One has the e-uniform
éa(ﬂ)f(TP’X) _ /a(ﬂ(X))ff(TP) + 0, (m\P\)7

for some m > 0.
The assumption holds e.g. for the 2-dimensional quasilinear (gPAM) equation or the quasilinear (gKPZ) equation

in the spacetime white noise regime. It should hold in much greater generality.
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» Counterterm — Under the above assumption the counterterm

ga(v),c(,rp’ ) € Ipl_ a € €
T‘rp) (a(u, ) — a(v)) X7 (7)) (u) F(r)(u)
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where T runs over a finite set of decorated trees and O(1) is e-uniform.
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where T runs over a finite set of decorated trees and O(1) is e-uniform.
If further £ stationary Gaussian, and white in time if time-dependent and additive noise, then counterterm of the

form e £5(T)
A0 e 1y '
O = e



A regularity structure

— Index set {TP} where 7 trees of the RS of (gKPZ) and p integer
decorations on each edge of 7.

— The p decoration has no effect of the algebraic structure A, A™,
homogeneity.

— Fix parameter m. For fixed homogeneity 3 consider series
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Models
g ()| < M2 — 2|, |Qe(MEa®)(2)] < mPlgloV*,

for a heat type operator Qy.
Admissibility with respect to K**) ~ (9, — a(v)6§)71

Nzir) = & (K o (@2K°)7 ) (1)

Modelled distributions — As usual, with a reconstruction map R and
multilevel Schauder estimates.



» Local in time well-posedness

— Series instead of finite sums does not cause any problem: In Picard
iteration

e~ Ka<")’M(F(u)C + G(u)(Du)® + (A(u) — A(v))D2u), ()

each time you go inside D? you get an a priori small factor A(u) — A(v)
v~ you produce converging series.



» Local in time well-posedness

— Series instead of finite sums does not cause any problem: In Picard
iteration

u~ KM (Fu) + G(u)(Du)’ + (Aw) = AW))Dw),  (2)
each time you go inside D? you get an a priori small factor A(u) — A(v)
v~ you produce converging series.

— As in semilinear setting, small factor for contraction comes from the gain
in time explosion in multilevel Schauder estimates for K2("):M



» Renormalized equation — An automated approach in a (second order)
semilinear setting:

— The coefficients u. of the modelled distribution u = ] u.7 solution of
equation satisfy a coherence property

Ur = .F(T)(U], UX(0,1))
for some explicit functions F(7) defined inductively.

— The function 7 +— F(7) satisfies a morphism property.
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Bruned, Chandra, Chevyrev & Hairer (Renormalising SPDEs in regularity structures) US€
multi-pre-Lie structures. We use a different algebraic structure introduced
by Bruned & Manchon (Aigebraic deformations for (S)PDEs), used in Bailleul & Bruned
(Locality for singular stochastic PDEs), well adapted to an inductive construction of
admissible models based on the use of strong preparation maps.
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Ur = .F(T)(U], UX(0,1))
for some explicit functions F(7) defined inductively.
— The function 7 +— F(7) satisfies a morphism property.

Bruned, Chandra, Chevyrev & Hairer (Renormalising SPDEs in regularity structures) US€
multi-pre-Lie structures. We use a different algebraic structure introduced
by Bruned & Manchon (Aigebraic deformations for (S)PDEs), used in Bailleul & Bruned
(Locality for singular stochastic PDEs), well adapted to an inductive construction of
admissible models based on the use of strong preparation maps.

% The star map
(0,7)eTex T—o*T

is a generalisation of the grafting map, with T, = {X*[1Zn, ()}

* The morphism property reads here

fa({xkﬁzn,.(a,)} *T) - {akonl ---Dnj}"’(r)} ﬁ}'a(a;).



From Bailleul & Bruned, for a model M built from a continuous noise £ and a
strong preparation map R, and u™ the solution to the RS equation (2) with

model M, the function
u=RM(uM)

is a solution to

ou — a(u)diu = f(u)é + g(u)(deu)® + ZF‘?((R —id)*Cm) (u, Oxu, v, Oxv).
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From Bailleul & Bruned, for a model M built from a continuous noise £ and a
strong preparation map R, and u™ the solution to the RS equation (2) with
model M, the function

u=RM(uM)
is a solution to

ou — a(u)diu = f(u)é + g(u)(deu)® + Z}_a((R —id)*Cm) (u, Oxu, v, Oxv).

For BPHZ-type strong preparation maps
F2(-- ) (u, Oxu, v, 0xv) = F(- ) (u, Oxu, v).
The solution of the coherence relation has here a particular structure
F*(7) (e, 01 €0) = x°(7)(@) (aleo) — () F(7) (co)

for some functions x?(7) and F(7) defined inductively, with x*(7) a
polynomial function of a and its derivatives.



» Counterterm — Still with continuous noise £, for A > 0 denote by
7+ [*(77) the BPHZ character built from the operator d; — Ad2. Assumption
2 trades BPHZ character built from d; — a(v)é2 for 1°(").
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o Lemma — For any T with null p-decoration the function
A (1)

is analytic in any given bounded interval (a,b) < (0,+00) with a > 0 and
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1 .,
maA/*(T): > P
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Then one has

UM o
Sy X (D) (a(u) = a(v)) " F()(u)

- R XOOTEO 5 ) (a(u) - )

= Z XQ(T)(Z)(:-)—(T)(U) - (a(u) _ a(,u))" Z la(v('))(TP)

0 [pl=n

Lemma Z w /a(u('))(T).



