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Preface

Wwe consider the basic problem of harmonic maps, that of finding a harmonic repre-
sentative for a given homotopy class of maps between two Riemannian manifolds.
Given that we are unable to solve this problem for fixed metrics, we can ask whether
there exist metrics with respect to which there exists a harmonic representative -
this is known as the 'rendering problem'. In particular, we study these two problems
for maps between spheres. We do tbis by considering maps where 'reduction occurs',
that is, because the map possesses certain symmetries (equivariant), the problem of
harmonicity reduces to solving a certain second-order nonlinear ordinary differential
equation (the reduction equation). The origin of this method is the Thesis of R.T.
Smith (1972), in which certain harmonic maps between Euclidean spheres are con-
structed.

The symmetry which we make use of is that the map should preserve families of
parallel hypersurfaces with constant mean curvature. It should be noted that this
seems to be a more natural symmetry in the context of harmonic maps than the more
commonly exploited symmetry of 'equivariance with respect to group actions'.

We prove a reduction theorem for harmonic maps between space forms, and pro-
vide many examples of maps satisfying the conditions of the theorem. In some instan-
ces the reduction equation is easily soluble, on the other hand we find examples where
we have little idea about appropriate solutions to the corresponding reduction equa-
tion.

Using the stress-energy tensor associated to harmonic maps we study harmonic
morphisms, proving a theorem characterizing those harmonic morphisms with mini-
mal fibres. We then consider harmonic morphisms defined by homogeneous polyno-
mials, relating such maps to the construction of maps between spheres where reduc-
tion occurs.

By allowing deformations of the metrics, first for harmonic morphisms and then

for maps where reduction occurs, we are able to solve the rendering problem for all



classes of the homotopy groups nn(Sn) = Z for all n.

Recently it has become apparent that harmonic maps have a significant role to play
in certain problems of theoretical physics. A particular example is the description
of solitons in terms of harmonic maps from S2 into the complex projective space
CP® . It is to be hoped that this work will lead to a greater understanding of solu-
tions with symmetry of some of the variational problems of physics.

I would like to express my most sincere thanks to Jim Eells who has provided
continued support and encouragement during the preparation of this work.

I would also like to thank L. Temaire, J. Rawnsley, H. Sealey and J.C. Wood for
many helpful conversations, the Science Research Council for their financial support,
and the Institut des Hautes Etudes Scientifiques and the University of Bonn for their
hospitality and support during 1981.

I am also especially indebted to my parents who have provided encouragement

throughout.

Paul Baird
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Introduction

Let (M, g) denote the Riemannian manifold M together with its metric g. Let § be

a map between Riemannian manifolds:
¢: (Ms g) _'—"(N, h)

(all manifolds, metrics and maps will be assumed smooth unless otherwise stated).
Then the derivative of ¢, dff, is a section of the bundle of 1-forms on M with values
in the pull-back bundle ¢—1 TN

¢ ¢ € (T'm e g}

The bundle T*M®@~1 T Nis a Riemannian vector bundle and has a Levi-Civita con-

nection V acting on sections:
v: g(r*Me g7l N —-F@2 M o g1 TN).

Call vdf e 'Z(Oz T*M ® ¢~! TN) the 2°9 fundamental form of the map #.
Then we say that § is harmonic if traceg vdg = 2 Vdﬁ(xi,xi) is zero at each
_— i

point of M, where (Xi) is a local orthonormal frame field for M.

1< i< dimM

Given a map §§ as above; there are two basic problems of harmonic maps:

(i) letting [ﬂ ] denote the homotopy class of #, then does there exist a harmonic
representative ¢ € [#] such that ﬂ (M g)——»(N,h) is harmonic?

(ii) Do there exist metrics g and h on M and N respectlvely, such that there
exists a representative ¢ € [#] with ¢ : (M,g ) —»(N,h) harmonic?

The first of these problems has been considered throughout the history of elliptic
analysis and differential geometry. The first existence theorem was proved by Eells

and Sampson in [12]. The second problem is known as the rendering problem. This

has been considered by Lemaire [28 ] in the case when the domain is a surface. One

of the main objectives of this work is to study these two problems for maps

g Sm—> Sn between spheres, where the homotopy classes are represented by the
T

groups 'm (Sn ).



Up until about 1970, the only harmonic maps §: s™— Sn, m > n, that were
known were a few homogeneous polynomial maps (defined by eigenfunctions of the
Laplacian on Sm):

(a) the identity maps In: Sn — Sn for alln > 0;

(b) the Hopf maps H". Bl . gm , forn=2,4 and 8;

(c) the maps Gk: S1 — Slz z—-zk, where z € (€, |z|2 =1 and k is any
integer.

In his Thesis in 1972, Smith [33 ] gave a method whereby, given two such homo-
geneous polynomial maps, and provided certain ""damping conditions ' are satisfied,
one can construct another harmonic map between spheres.

Smith's method was to construct a 1-parameter family of maps all homotopic to
the join of the two polynomial maps. This family is parametrized by a function o
from the interval to itself. Smith then exploited the symmetry of the so constructed
map ¢a. to reduce the problem of whether ¢a is harmonic or not to solving a 2nd
order non-linear ordinary differential equation in «. This procedure of reducing
the problem of harmonicity of a certain map to solving an ordinary differential equa-
tion we shall simply call reduction . The corresponding differential equation we

shall call the reduction equation. Smith's equation has a simple physical interpre-

tation - that of a pendulum moving under the influence of a variable gravity force
with variable damping. The above damping conditions are sufficient conditions for
this equation to have a solution.

We place Smith's method into a more general setting by viewing his maps as sending
"wavefronts to wavefronts ' in the sense of geometric optics. That is, we have a

commutative diagram of the form:

¢

Lad
,_.;-'4——2
(4]

where f, g are real valued functions on M, N respectively, with values in intervals

If,I
2

respectively., and a: 1 P Ig is a smooth function. The appropriate class



of functions to which f and g must belong in order to provide a good theory turns out

to be the class of isoparametric functions as defined by Cartan in 1938 [5]. These

objects provide a rich and beautiful geometry on spheres, and it is indeed pleasing
to find that they should be related to constructing harmonic maps between spheres.
After Cartan's impressive study of isoparametric functions in papers dated 1938 -
1940 [5,6,7,8 ], the subject lay dormant until Nomizu's paper of about 1970 [32 ],
surveying Cartan's work and giving some open problems. That revived interest in
the subject, and Mﬂnzner proved an important classification theorem [30]. Also many
new examples of isoparametric functions on spheres were found, see [32,34,40,33,17]
In particular, examples of isoparametric functions on spheres whose level surfaces
are non-homogeneous were found by Ozeki and Takeuchi [33 ] and Ferus, Karcher
and Munzner [17]. These examples are very important from our point of view, since
we make essential use of them in Theorem 5.3.8, Example 8.2.2 and in Section 8.4.
This demonstrates that isoparametric functions are more natural for our purposes
than families of homogeneous submanifolds of space forms (from which point of view
one could conceivably derive our theory).
R. Wood was the first person to make a connection between isoparametric functions
and harmonic maps [43]. One of the essential features he observed was that such

functions satisfy an eikonal equation of the form

2 -
1df(x)1 = c|XI2p2 s

for some constant c, where p is an integer, p > 2. This remarkable fact makes the
connection with geometric optics even more striking.

Isoparametric functions as studied by Cartan are defined on space forms - that is,
complete connected manifolds of constant curvature. In order to consider the con-
struction of harmonic maps between more general Riemannian manifolds, we make
what we consider to be a suitable definition of an isoparametric function on an arbi-
trary Riemannian manifold in Section 2.4.

In Chapter 4 we develop the general framework, and define the necessary conditions
on § in order that reduction occurs. Maps § satisfying these conditions we call
€quivariant. We prove our main theorem (Theorem 4.1.8) which is a reduction

theorem for harmonic maps between space forms.



As a consequence of the above generalization, we can construct explicit harmonic
maps from Euclidean spaces to spheres and from hyperbolic spaces to spheres - this
is done in Sections 5.1 and 5.2. In Section 5.3 we find a very large number of
classes T m(Sn) where reduction occurs. However, many of the corresponding
reduction equations have a qualitatively different nature to those of Smith, and we are
unable at present to solve many of them. One important class of equations does have
similar properties to those of Smith, and the solutions yield some new and interesting
harmonic maps between Euclidean spheres of the same dimension. This is proved in
Theorem 5.3.8.

Two of the most significant examples in Smith's Thesis are

(i) the construction of harmonic representatives for all classes of ﬂn(sn) = 7,
for all n< 7, and

(ii) the consideration of the classes of n3(Sz) = Z, which are parametrized by
their Hopf invariant (see [26 ]).

The important point in example (i) is that the condition n < 7 is a consequence of
the damping conditions. Thus Smith's method fails to give harmonic representatives
for the classes of nn(Sn) with n > 7. In example (ii) the classes of TT 3(82)
are parametrised by their Hopf invariant d € Z. When d is the square of an integer,
d= k2 for k& Z; Smith gives a harmonic representative of this class. However,
when d =k1, k,1€Z, k,1 # 0 and k # 1; Smith provides a representative of the
class where reduction occurs, but demonstrates that the corresponding reduction
equation does not have a solution.

With the above two examples in mind we consider deformations of the metrics on
space forms (Chapter 9) - this fits quite naturally into our general framework. We
thus come to one of the main consequences of the reduction theorem. This is the
solution of the rendering problem for all classes of ryn(Sn ) for all n (Theorem
9.4.5). The deformed spheres are familiar ellipsoids whose eccentricities depend
only on n and the degree. Even allowing various deformations of metrics, we are
still at present unable to solve the rendering problem for 11 3( Sz) .

In Chapter 7 we undertake a general study of harmonic morphisms - maps between

Riemannian manifolds which pull back germs of harmonic functions to germs of har-

monic functions. We prove a theorem characterizing those harmonic morphisms for

4



which the fibres are minimal submanifolds. This generalizes a result of Eells and
sampson [12 ] stating that every Riemannian submersion which is harmonic has mini-
mal fibres.

Harmonic morphisms were first considered in detail by Fuglede [19 ], and we make
use of his ideas in Chapter 8 when we consider harmonic morphisms defined by
homogeneous polynomials. Here we find an interesting connection with isoparametric
functions, and we prove a theorem which associates to a certain class of harmonic
polynomial morphisx'ns an interesting harmonic Riemannian submersion. By using
this theorem we can construct more maps between spheres where reduction occurs.

One of the important tools used in Chapters 7, 8 and 9 is the stress-energy tensor -

a divergence free symmetric 2-tensor field on M. Such objects are well-known and
important in relativity theory, where they in some sense model the matter distri-
bution in a space-time model. For if (Sij) 1<i,j <3 are the space components
of a symmetric 2-tensor, then Sij is the i-component of a force associated to the
j-vector (the " stress' acting on a unit area orthogonal to j). Since force is a time
rate of change of momentum, this represents the rate of flow of the i-component of
momentum through a unit area orthogonal to j. We introduce the time components

of S, to obtain the 4-tensor (S 'j) represents energy

ij’ 0<i,j <3 0
flow, and S 00 Enerey density. That div S =0 and S be symmetric corresponds to

, where now S ;

various conservation laws. For if X is a Killing vector field, then
div (S(X)) =0 ,

which corresponds to conservation of momentum if X is spacelike, and conservation of
energy if X is timelike ( using the terminology of relativity theory, see [14]).
See [18 ] for more details.

Hilbert was the first person to derive the stress-energy tensor from a variational
principle [22 ], and it was following a suggestion of Taub ( 1963) that the stress-
energy tensor was used to study harmonic maps in [2 ].

In chapter 3 we briefly derive and study basic properties of the stress-energy
tensor for harmonic maps. For a much more detailed account see [2].

The emphasis with this work is on examples of harmonic maps. However, in chap-

ter 4 we attempt to provide a general framework. This framework is rather unwieldy



because of (a) the large number of conditions on the map @, and ( b) the necessary
consideration of special cases. This detracts from the underlying simplicity, and

often it is better to consider each example individually.



1 First constructions

1.1 THE LAPLACIAN ON THE SPHERE

Let M and N be smooth Riemannian manifolds of dimension m and n respectively.
Henceforth we shall write (M,g) to denote M together with its metric g.

Let §: M — N be a smooth map, then the derivative d@ is a section of the bundle
of ﬂ—l TN-valued 1-forms on M:

dg = Z(T*M ® g1 TN).

Let VM denote the Levi-Civita connection on the bundle TM — M, then V M

extends to a connection on the bundle of tensors @p ™ ® el T*M — M. The bundle
g-1 TN — M has a Riemannian structure induced from that of TN — N, allowing
us to define the Levi-Civita connection V on the bundle T*'M @ ¢‘1TN-M. The

section V(dg) = & ( 02 T™'M e ﬂ'l TN) is called the second fundamental form

of the map ¢ .

Lemma 1.1.1 If X,Y € & (TM), then

vag(x,y) = -as v ly) + vN _ag (v
NS X -

Vg (1-1.1)

/

Remark 1.1.2 This lemma is saying that contraction and covariant differentiation

commute.
We define the Laplacian A § of #, to be the trace with respect to g of the second
fundamental form Vv dg:

A B(x) = E Vdﬂx(Xa(x),Xa(x)) )

S o

at each point x of M, where Xz‘1 € (TM),a=1,2, ... , m, form a local ortho-

normal frame field about x. Then § is harmonic if A§ = 0.

Example 1.1.3 If M=R m with its standard Euclidean metric, and standard

coordinates X Xgs cee X, and §: R™ — R is a smooth function, then



‘g
2

X,
i

A¢=§

[a>]

¥ ¢g: R"— R", ¢ = TN Y
A¢=(A¢1, ...,A¢n).

r:lRm—’R,r=1,... , n, then

Remark 1.1.4 We define the energy density of the map @ to be the function
e(f#): M — R given by

e(f) (x) = = Id@(x) |2

D= D=

Z h(dg (X ),df (X)) ,
a X a X a

for each x M, where (Xa) is an orthonormal basis for TxM and h is the metric
of N. Suppose that M is compact; using the canonical measure associated with g,

we define the energy of §# to be the number
E() = [ e(® (x) &
‘M
2
Thena C map #: M — N is harmonic if and only if it is an extremal of the energy
integral E [12].

Suppose f: M — N and &: N — P are two maps, then the second fundamental

form of the composition is given by

vd(dof@) = dbovdg + vdu(dg,dd) . (1.1.2)
By taking traces we obtain the formula [12]:

Ao @) =dypo AP + trace Vdu (dg,dd). (1.1.3)

m-1

Let S denote the standard unit sphere in Rm, and let i: sm-l__. RM pe

the inclusion map.

Lemma 1.1.5 I f: R™— R is a smooth function then

m-] m 0\2 o
a5 Tton=(afs - EL Lm-nHoi, (1.1.4
or cYr
where r2(x) = |x12, forall xc R™



proof Using the formula (1.1.3) we have
Proo’

sm-1
A (foi) = df(Ai) + trace Vv df(di,di).
Also
Rm ,\2f
A (f)oi = trace vdf(di,di) + = 5 Ol
er
m-] 2 m-]
N (foi>+3£0i-df<4,s i) .
er

Let x be a point of sm-1 , then at x

Sm-l

A trace v di(x)

—
1

m
r vR di_ (X ),
a di (X ) ¥ a
X a

1

where (X ) forms an orthonormal basis for T Sm_ ,and X =+v'(0),
alc<a m X a a

where y_(t) are geodesics in s™-1 with v,(0) =x. Thus

m-1
S = "
A i E Ya ) ,
but y.'(0) = -y,(0) = - 2/er. Thus
m-]
sl L oy & ]
A i (m - 1) or -

Corollary 1.1.6 If f: R™ — R is a harmonic homogeneous polynomial of

degree p, then

Sm—l
A (foi) = - p(p+m-2)foi,
m-1]1

so foi isan eigenfunction of A

m-1
S
Remark 1.1.7 All eigenfunctions of A arise from harmonic homogeneous

polynomials on R™ in this way.

1.2 Harmonic maps into spheres

Let s-1 denote the standard sphere in Euclidean n-space, and j:Sn-1 —~ R"

the inclusion map. If ¢#:(M,g) — sP-1 jsa map; let & denote the composition



jog:M— R"

Lemma 1.2.1 The map @ is harmonic if and only if

Ad = - 2e(d) & . (1.2.1)
Proof From equation (1.1.3)
A(jog) = dj(ad) + trace vdj(dg, dg).

Since jis an isometric immersion Vv dj(X,Y) is perpendicular to dj(Z), for all
X,Y,Z © Z(TS"1) (so A # is the projection of A(d4) onto TSP-1): in parti-
cular, ¢ is harmonic if and only if A (j o #) is proportional to 4 .

Now, writing < , > for the Euclidean metric on RD

<d(jo@),jod > = 0.

We differentiate this formula at x ¢ M. Let (Xa) l<a<m be an orthonormal basis

for TxM’ with Vl;g Xa = 0 at x. Then, using Lemma 1.1.1 and summing over

repeated indices

.M . .
0 = vXa <d(10¢)(Xa),10¢>

]Rn
< Vo X))

d(j o #) X)), jo g>+ <d(jo ﬂ)(Xa),d(j o ﬂ)(Xa) >

1

<a(Gof), &> + 2e(8) . O

Corollary 1.2.2 I §: sm-1 __ gn-1 s defined by harmonic _homogeneous

polynomials of commoi: degree k, then @ is harmonic and has constant energy

density k(k +m - 2)/2.
Proof Corollary 1.1.6 and Lemma 1.2.1 give the result. ]

Example 1.2.3 The map from C to T, z — zk, zec C k=1,2, ... is defined

by harmonic homogeneous polynomials of degree k, and 1estricts to a "map Gk :

s — s! narmonic of degree k.

Example 1.2.4 ILet f: R” x RY9— RDP be an orthogonal multiplication; i.e.

f is bilinear and [(f(x,y)| = Ix| lyl, forall x & RP and all y€E RY. Then the

restriction of f produces a map ¥ :Sp'1 X Sq-1 — 8™l Ghich isa totally geodesic

10



embedding in each variable separately, and hence is harmonic of constant energy
density (p +q - 2)/2.
Ifnow p=q =n; the Hopf map H? . s2n-1 . gn .
H (x,y) = (1x12 - 1y12, 2f(x,y)) ,
is a harmonic polynomial map with constant energy density 2n. In particular, if f
is multiplication of complex, quaternionic or Cayley numbers, then we obtain the
Hopf fibrations s3 — Sz, s7”— s% or s15 — g8 respectively. For other

examples see [33].

1.3 Joins of spheres and Smith's construction

Thedﬁilll sP-1 % g4-1 of the two Euclidean spheres SP~1 and S9°1 s the
sphere Sm’l, m = p +q, obtained by writing each point z & sm-1 35 7 = (cossx,
sins y), where x <= Sp'l, y & SA-1 and s e [0,T/2]. We can think of the join as
introducing ''polar coordinates ' on the sphere sm-1

If g, sP-1_. gT1 4n4 g, s9-1_. §5-1 3re two maps; we can form the
join_ g,*8y: sPta-1__ gr+s-1 of g, and gy

gl*gz(cossx, sins y) = (coss gl(x), sins gz(y)) . (1.3.1)

Consider the case when g 1 and g 2 are defined by harmonic polynomials with

2e(g1) = a1 and 2e(g2) = a_ say, where a1 and a, are constants. Smith's idea

2
was to allow a ""reparametrization' of s in equation(1.3.1), by defining

g:sPH-1 o gr+s-1 a5
@ (coss x, sinsy) = (cos qa(s) gl(x), sina(s)gz(y)) , (1.3.2)

for some o: {0,T1/2] — [0,11/2] witha(0) =0 and o(T/2)= /2., We will derive
this map again later in Example 5.3.1. The problem of ¢ being harmonic then re-
duces to solving a second order non-linear ordinary differential equation in . To
see this we calculate A #, but in order to simplify later calculations we proceed
differently, and by a slightly longer route to Smith [36 ], and for this we must intro-
duce briefly the notion of harmonic morphism (much more will be said about these
maps later in Chapter 7).

, .

A map §: M — N is a harmonic morphism if it pulls back germs of harmonic

11



functions to germs of harmonic functions, i.e. if f: V— R is harmonic, V a domaj
in N, then f o § is harmonic on ﬂ'l (V) in M. Consequently, if § is a non-constant
harmonic morphism, then dim M > dim N, and if ¢ : N— P is a harmonic map,
then sois ¥ o § :M — P,

For x = M, let '}x' = ker dﬂx C TxM’ and let /Vx be the perpendicular com-

plement of ’7;{ in Tx M with respect to g; say that @ is horizontally conformal if

()2 g(X,Y) = 67 0X,Y) ,

for all X,Y & 77;{, where A: M —= R is some function (not necessarily smooth).

Call A the dilation of §.

Theorem 1.3.1 [19,27]: A map #:M — N is a harmonic morphism if and only if

@ is harmonic and horizontally conformal.

Corollary 1.3.2 If §:M — N is a harmonic morphism and #:N— P a harmonic

map with energy density e (¢), then ¥ o # is harmonic and has energy density given

by

2
e(vof)(x) = A(x)" e @ (P(x)), (1.3.3)
for all x = M.
Proof The result follows from Theorem 1.3.1 and the equation (1.1.3). D

Consider the join R L b ,p+q=m. Regard s as a function

s: sm-1__ R, by letting s(coss _x, sins Oy)) =s ,foralls_ < [0,71/2]. Let

0 0 0
V| be the subset of s™M-1 given by v, = s 1(0), then Vv, is isometric to sP-1,
Similarly, let V, = s~ /2y ; v, is isometric to s9-1,  pefine rvlzsm'l\v2 — v,
by

l'll ((cossx, sinsy)) = x ,
7 . sm-1 —
and 9" S \V1 V2 by

nz((cossx, sins y)) = y.

Lemma 1.3.3 The maps 111,1‘[2 are harmonic morphisms, with dilations A 1,7\
2

2
s for all z =(coss x,

respectively given by >\1(z)2 = l/coszs, )\z(z)2 = 1/sin

sins y).

12



proof For each x & V_, the horizontal space with respect to T through
—— 0 1 1

), s = [0,11/2), Yo © s9-1 consists of the tangents to all

o¥o'* %o
curves I'(u) =(coss0 y(u), sins

(cossox 0’ sins
OyO)’ where vy (u) is a curve in SP~1 withy (0) = X,

i ): 1 ~ = ~ : .
Then "1 (coss0 y(u) , sins o’ o y(u), so that, if [(u) (coss0 9 (u), sins 0yo) is

another such horizontal curve, then

hiy'(0),y'(0))

ﬂl'h(l"(o),T"(O))
g(l"(O),'f"(O))/coszs

0 ’
where h is the metric on Sp"1 and g the metric on sm-1  Hence '11 is horizon-
tally conformal with A? = l/cos2 S.

To see that ﬂl is harmonic, we compute trace Vv dl'l1 with respect to a particular

orthonormal basis. Choose zO =(coss x , sins yo) e sm-1 \V2 and curves

00’ 0
through z,:
r‘i(u) = (cosso'yi(u), smsoyo) ,
Zr(u) = (cossoxo, smso o, (n)) ,

where 'yi(u) is geodesic in sP-1 with v, (0) =x , and or(u) is geodesic in sa-1

0’

. - = 1 = zv . = .
with cr(o) Yo I..ei:Xi l“l (0) and Yr . (0). Define v(s) =(cossx_,sins Yo

0
sothat t=v'(s ) & 7 . Then
0 z0

M. = trac an
Al trace V 1

=TVvdU (X , X)) +ZVvdT (Y ,Y ) +VvdT (£,¢).
i 11 r 1 r r 1

Since yi(u) and cvr(u) are both geodesics in Sp’l, sa-1 respectively; both

Sm-l
v i X. Thus

S .
X ; and VYr Y, are proportional to ¢ at z 0
i
vam (X.,X) = - vSbT dn (X))
177 dm &)~ 1T

- 2 sP
(1/cos sO)V Xi Xi
=0.
Al = i = = i =
so le"l(Yr,Yr) 0 since dl'll(Yr) 0, and Vd nl(g,g) 0 since V£{ 0

and dﬂl(g) =0. Hence T is harmonic. O
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We now rewrite Smith's map #: sm-1__ gn-1 equation (1.3.2) as

#(z) = (cos a(s(z)) glo!'ll(z), sin a(S(z))g20 "2(2)) (1.3.4)

for all z € sT™-1 \(V1 U Vz); if z = V1 we define @(z) = (gl(z),o), and if z€ V2
we define #(z) =(0,g2(Z)).
Let t: S® 1+ R be the function given by

t((costov, sintow)) = to, where v e 8T"1 , WE Ss"'1 and to < [0,T/2]. Writing
& =iof@, where i: sP-1 — R jg the inclusion, it is straightforward to compute
A &, and one obtains, using Lemma 1.3.3 and Lemma 1.2.1 on the maps gl o ﬂl

n
and gz o 9"

pa(z) =-a(s)21dsiZ&(z) + (a'(s)1dsi? +a'(s)asIvey

+cos a(S)A(gl o l‘ll) (z) + sinoz(S)A(g2 o Tl2) (z)

=_a'(5)? 1ds? & (z) +(a"(s)1dsI2 + a'(s)AS)V t(2)

o ﬂl)(z) ' az(gzo le)(z)
- sin a(s) ———
cos s sin s

a (g
- cos w(s) 11

This lies in the plane spanned by Vvt and &(z); hence § is harmonic if and

g(z)
only if <A®#(z),Vty >=0,forallzes™ 1. Now vty . =
(- sina(s(z))g oM (z), cos a(s(z)g, o M, (z)), hence § is harmonic if and
only if
2 S 2
a"(S) 1ds| + a’(S)AS + sin a(s) cos Q(S) ( 2 - 2 >= 0, (1.3.5)

CcoSs s sin s
with (0) =0 and a(7/2) = /2.

Lemma 1.3.4: The Laplacian A s of s is given by

As =(q-1)cot s - (p-1) tan s.

Proof Let s0 e(0,1/2), then MS = g-1 (so) is a hypersurface of sm-1,
Define ig :Mg — $ ™1 45 be the inclusion map. Then
0 0
0 = A(Soio )=ds(Ai_ ) + trace vds(di , di ) .
SO S0 S0 so

14



But ¢ = &/¢s is affine geodesic, hence vtg =0, so that vds (£,£) = ds(Vf{) +
v cl;s(g)ds (¢) = 0(ds (¢) is the unit tangentvvector along R). That is '
trace Vds(dis ,dis ) = As. Thus

o o

0 = ds(AiS) + As.
0

But since Aig is proportional to ¢ , we conclude that
0
Aig = -As E.
0

Thus A s is - (m - 2) X (mean curvature of Ms0 ).

Choose z & Mg ; 2 = (cos s, X sinso y), xesPl yesa-1 | Let r(u) =
(cosso-y(u), sinsoy) be a curve in MSO, I(0) =z, then X =r"0) = (COSSO'V'(O),O).

Now 'EI‘(u) =( - sins0 y(u), coss y). So
-4
%% T du fr lu=o
= (- sins 'y'(O),O)
0
= —tans0 X.

Thus X is a principal curvature vector of MSO in s™-1 , with principal curvature
tan SO' Similarly, vectors tangent to curves X (u) = (coss0 X, sins0 c(u)) are prin-
cipal curvature vectors with principal curvature - cot s o The result follows by
summing over the principal curvatures. ]

Equation (1.3.5) now becomes

a"(s)ldsI? + o (s)((q - 1) cots - (p - 1) tans)

! )
+ sin a(s)cos a(s) D) - 2 =90. (1.3.6)
cos s sin s

The equation has singularities at s = 0, T1/2 (that is the coefficients of «'(8) and
sin o (s) cos a(s) become infinite). We can remove these by reparametrizing

(1.3.6) using the parameter u defined by e’ =tan s. Then we obtain



a(u) + ——— ((q-2)e " —(p-2)e") a'(u)
u -u
e +e
1 . u _ -u
+ m sin o (u) cos a(u)(ale —a2e ) =0 , (1.3.7)

with v (-) =0 and a(«) = /2. This is the equation obtained by Smith in [36 ].

1.4 Outline of the solution of Smith's equation

Equation (1.3.7) is the equation of a pendulum with variable damping act_ed upon
by a force of variable gravity. The position of the pendulum is described by the
angle o = 2@ which is measured from the upward vertical. The idea is to find an
exceptional trajectory of the pendulum, so it stands vertically upwards at time u = - o,

and hangs straight down at time u = + .

gravity
gravity
Smith shows that such a solution exists if either
(i) p=q and al = a2, or
. 2 2
(ii) (p-2) < 4a1 and (g - 2) <4a2. (1.4.1)

We call (ii) the damping conditions. An outline of his construction is as follows.

Fix u0 to be the time when gravity vanishes and manipulate the initial conditions
= '
% cv(uo) and a,

hard enough(af'0 = cy"o( ao)) so that ¢(u) — 0 as u — - . Similarly, choose

00 +( ao) to get o(u) — M/2 as u — + ». Then, since the coefficients in equa-

= q’(uo). For a given a, =(0,1/2), throw the pendulum just

tion (1.3.7) are smooth; cv(; and ojg are continuous in o, [9]. Further, ry(') — 0
as o) —= 0 and a(*)' — 0 as @y — n/2. The idea is to find an @, such that
+

0

o, near 0, and aa be bounded away from 0 for o, near /2. This requires the

~. and qa match. At opposite ends one requires aB be bounded away from 0 for

16



use of a comparison theorem for second order equations, together with the inequali-
ties (ii) above. Smith gives a more sophisticated method of solving equation (1.3.7)
in [36 ]. We give this method in Chapter 6.

In [36 ] Smith gives many examples of harmonic maps constructed by the above

methods. We give a few of these.

Example 1.4.1 Let g be the identity map 1P-1.5P-1__ gP1 apg g2:S1 — s
be the map Gk of Example 1.2.3 of degree k. Then for p < 7 the damping conditions
are satisfied, and so by Smith's construction one can construct a harmonic map
g.sP1 — gP-1 5.7 ofdegree k,k=1, 2, ... (in general deg(gl* g2) =
deg(gl)_deg (g,), g sp-1__ gr-1 gy sa-1 _. s8-1) By composing with an
isometry of degree -1 we obtain harmonic maps of negative degrees. That is, we
can represent ‘Tn(S") = Z harmonically for n < 7.

2

Example 1.4.2 Let glz s3__.s be the Hopf map HZ of Example 1.2.4. Let g2
be the identity map 1P~1.sP-1 — SP-1  Then for p < 5 the damping conditions
are satisfied, and we can represent the non-trivial class of nn+1 (sh) = Zz har-

_ monically for n=3,4, ..., 8.

Example 1.4.3 Let gl: S7 — sS4 be the Hopf map H? of Example 1.2.4. Let
g2: SP-1 __ gP-1 pe the identity map 1P~1. Then gl* g2 : SP*7 — gp+4 repre-

p+4, _ - : s
piT (SF°%) 224. For p=1, ..., 6 the damping conditions

are satisfied, and we can represent that generator harmonically.

sents the generator of T

Example 1.4.4 Given an orthogonal multiplication # : sP -1 X Sq"1 — 801 a5in

Example 1.2.4; we can define a map g: SP™4-1 . gn py
@ (coss x, sinsy) = (cos ¢(s), sin o(s) ¥ (x,y)) ,

where x = SP™1, y =891 5= [0,m/2], 0(0) = 0 and o(7/2) = W. As in Section
1.3 we obtain an equation as a condition of harmonicity similar to equation 1.3.7,

but with the gravity always having the same sign. The equation is of a pendulum whose
position is described by @ = 2a, and one looks for a trajectory with the pendulum

just completing a single rotation.

17



gravity

Similar considerations apply when ¢ : S ! x S 1 . slis given by # (u,v) =

2 .
uk vl, u. v=C, lu I2 = |v| = 1. Then the relevant equation is (after reparametri-

zation)

o'(u) = (kzeu + 12e—u) sin o(u) cos o(u) , (1.4.2)

e + e

with o(-») = 0 and (o) = M. This is the equation of a pendulum with no damping
and variable gravity. If k = 1, then, due to symmetry considerations one can show
that equation 1.4.2 has a solution. However, if k # 1, then the gravity is either
increasing or decreasing. If the gravity is increasing the pendulum will be unable to
make a complete rotation. If the gravity is decreasing, the pendulum will go past
the upward vertical after performing a complete rotation. Thus there is no solution
of equation 1.4.2 with o (-«) = 0 and ¢ () = T(this can be proved precisely using
energy estimates for the pendulum).

Now 113(82) = Z can be parametrized by the integer k1, which is the Hopf linking

number - the Hopf invariant of each class.

Thus we can represent harmonically the classes of '13(82) with Hopf invariant kz,
but we cannot represent harmonically by the methods of Sections 1.3 and 1.4 the
classes of T (Sz) with Hopf invariant k1, k # 1. In particular it is unknown whether
the class of “l (Sz) with Hopf invariant 2 has a harmonic representative.

An alternatlve method of fmdmg harmomc representatives for the classes of T (S )
is as follows. The Hopf map H S — S is a harmonic morphism, and hence by
Corollary 1.3.2, if f:S2 — S is harmcnic; sois fo H2: SS—’ Sz. In parti-
cular, if f has degree k , then fo H2 has Hopf invariant k2 [26 ]. Since we have
harmonic maps f: S2 - - 82 of all degrees; we can find harmonic maps with Hopf

invariant ,k2 for all k.

18



Similarly there are harmonic maps f: S4—— S4 of degree k, for all k (from
Example 1.4.1); by composing with the Hopf map H4 :S7—— S4, we can represent
harmonically the classes of ﬂ7(S4) =7 o Zl 9 which have Hopf invariant k2 (the

Hopf invariant parametrizes the Z factor of Z Zl 2).

1.5 Hyperbolic space

Let Mm denote ]Rm equipped with the metric <> given by
<u,v>M = - ulvl + u2v2+ -l*umvm s
forallu=(u_, ... ,u ), v=(v,, ...,V )f—‘lRm. The space Mm is called
1’ S . 1 m

m-dimensional Minkowski space. Define (m-1)-dimensional hyperbolic space, or

the (m-1)-dimensional pseudo-sphere, to be the space

T R {ur-‘Mm; <u,u>. =-11 ,
M
together with the induced metric.

The pseudo-sphere is a ''spacelike ' hypersurface (if v is tangent to Hm-l, then
M > 0), whose unique normal vector field r is "timelike'"(< 5, 3 > < 0)
in the terminology of relativity theory. There are many analogies between the Eucli-

< V,V>

dean sphere Sm—1 and the pseudo-sphere Hm—l, especially concerning harmonic
maps. In particular, the usual stereographic projection sending the sphere less a

point to Euclidean space, can be modified to give the well-known isometry between

Hm-1 and (Bm-l, <,>), where Bm"1 is the open ball of radius 2 in Rm_l,
m-1
and the metric <, > = dxi ® dxi/(l -1z x 2)2 , where (xi) are the
i=1 j j
standard coordinates on Euclidean space.
Let i: H™"1 — M™ pe the inclusion map.
Lemma 1.5.1 I f: M™—~ R is a smooth function, then
m-1 m l\2
AH (foi)=(AM f+ C—fz +(m-1)f—f-)oi, (1.5.1)
en cn
where ¢/¢r denotes differentiation in the normal direction to H™1 and
m a2 02 2
aMT o £ s 2 - is the indefinite Laplacian.
X 1 3x2 X m
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Remark 1.5.2 The unit timelike normal to the pseudo-sphere at x is x itself.

Thus,

& 3 & ¢
= (x) = x_— + +o.. o+ '
an %) 17x, X)Xy o ) Xm ox_ %)
1 2 m
where (xl, ,xm) are standard coordinates on R™ .

Proof (of Lemma 1.5.1): Recall equation 1.2.1 for the 2“d fundamental form of

the composition of two maps:
vd(foi) = df(vdi) + vdf(di,di) ,

this makes sense with M™ having an indefinite metric (V is the Levi-Civita connec-
tion with respect to the indefinite metric on the bundle T * H™-1 j-lpym _
HM-1), By taking the trace of this formula with respect to the Riemannian metric

on H™-1 we get

I_Im-l Hm—l
A (foi)=df(a i) + trace vdf(di,di). (1.5.2)
But,
m a2
AM7 f)0i = trace vdf(di,di) - —toi , (1.5.3,
an2
m 2 2 a2
where AM = - 32 + 82 + ... + ¢ is the indefinite Lapla-
ex ex’y ox 2
m
cian on M™, Equations (1.5.2) and (1.5.3) give
M™ pm-1 ¢ Hm
(A f)oi = A (foi) - “Foi-df(a i) . (1.5.4)
on
Now
m-1
H
A i = trace vdi
m-1 m
- M .
= kz;l Vdi(Xk) dl(Xk) )
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m-1

where we evaluate at a point x = H with X = 'y;((O), -yk(O) =x, yk(u) geo-

m-1
desicin H™ 1 k=1, ..., m-1. Thus aH i=2 v, (0). But ' (0) =
™ol ]
v, (0) = 8/2n . Thus A i=(m-1) 8/erx.

m
Corollary 1.5.3 If f is a pseudo-harmonic polynomial (i.e. aM " £=0) of

degree k on R™, then

Hm—l
A (foi) = k(k+m-2)foi;

m-
so foi is an eigenfunction of AH ! .

Let (M,g) be a Riemannian manifold and §: M — H™"1 a map. Leti:n™ 1 . y™

be the inclusion map, and write #§=io §.

Lemma 1.5.4 The map @ is harmonic if and only if

Ad = 2e (D,

where e () = Z<dd(X,),da(X,)>__, (X, ) is an orthonormal basis for M.
—_— k k k"™ M k

Proof From equation 1.1.3
MNiof@) =di(ag) + trace vdi(dg,dg).
As in Lemma 1.2.1, v di is perpendicular to di with respect to the Minkowski metric.

Thus @ is harmonic if and only if A (&) is proportional to & That <A &, & >M =

-23(6) is as in Lemma 1.2.1. D

Example 1.5.5 Express each w =(x,y) € M2 asw =X +jy. Multiply w=x +jy

and w' =x'+ jy' using the rule w.w' =xx' +yy' +j(yx' +xy'). Then the map:
M2 M2 w_— wK is pseudo-harmonic, and induces a harmonic map ¢ from
Hl to H! with constant energy density %kz . If we express H! as

gl = {(coshs, sinhs); s € [0,9} C m2 R
then @ is simply § ((coshs, sinhs)) = (cosh ks, sinh ks).

Example 1.5.6 Introduce polar coordinates on M2 by expressing each (x,y) € M2

o
2 T T2
ex® oy

as (x,y) =(p cosh s, p sinh s). The Laplacian AMz = - goes over into
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2 2 1

o o 1 a

—; °2 - ‘2 - = - (illustrating Lemma 1.5.1). Thus aH s simply
4 at ep p €p

o2

7 - This means that mappings of the form i : H 1__ gl , % (cosh s, sinh s) =
et

(cos o (s), sin a(s)) are harmonic if and only if ¢ is linear; o(s) =ks; sucha

map has constant energy density k2/ 2.

1.6 Polar coordinates on hyperbelic space and an analogous construction to Smith's

Introduce '""polar coordinates ' on pm-1 by expressing each point z H™-1 jp
the form z =icosh sx, sinh sy), where x & Hp'l, VAS Sq"l, p+q=m and
s € [0,0) .

Define a map ¢: HP*-1 __ gT*s-1 4,

# ((cosh s x, sinh s y) = (cosh o(s)gl(x), sinh o (s)gz(y)), a(0) =0,

where glz HP! — HT-1 s harmonic with Idg1 12 = a, a constant, and g2:Sq'1_.
S5-1 is harmonic with I1d g2 l2 = a2 a constant. By viewing s as a function,

s: gm-1 __ R, s ((cosh sox, sinh soy)) = s _, we can express § in the form

O’
#(z) = (cosh cy(S(z))g1 o ﬂl(z), sinh oz(s(z))g2 om, (z)),a(0) =0,

for all z € HM™1 where n: H™-1_+~ HP-1 i5 the harmonic morphism: (cosh s x,
sinh s y) — x, and m,: H™-1\ gP-1 __ s9-1 is the harmonic morphism:

(cosh s x, sinhsy)—y, s# 0. The dilation A _ of 111 is given by A 12= 1/cosh2s,

1
and the dilation Az of l'lz is given by 7\22 = 1/sinh2 s (the proof of these facts is
similar to the proof of Lemma 1.3.3).

We compute the Laplacians:
A (cosh o(s)g1 o ‘11) =g om (cosh o (S)oz'(s)2 |ds|2 + sinh o (s) A(a(s))

+ cosh a(s) (al/coshzs)) ,

A (sinh o(8) g, © n g, 0 "2(Sinh a(s) oz'(s)2 IdS|2 + cosha (s)A (a(s))

2
- sinh a(s)(az/sinhzs)) .

Let t: H?"1 - R , n=r +8, be the function given by t ((cosh So Vs sinh sow) =8,

veHT 1 wesS 1l Then, writing #=i0 ¢ where i: HP™1 —~ MP is the
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inclusion, we see that A #(z) lies in the plane spanned by 4(z) and V't #(z) for
all z & Hm'l. By Lemma 1.5.4, § is harmonic if and only if <A &(2),
tht(z) >M- 0. Now Vtﬂ (2) = (sinh a(s) g1 o ﬂl(z),cosh a(s)g2 o l'lz(z)),
and remembering that |g1 o "ll I2 =-1, |g2 o "2 I2 =1; the condition for harmo-
nicity of § becomes
2y !
Aln(8)) - sinha(s)cosha(s)( + ) )= 0
sinh s cosh s
or,
2 25 !
a''(s)Ids1® + o'(s)A s - sinh a(s)coshu(s)( + : )
sinh™ s cosh s
= 0, with ¢(0) =0 (1.6.1)

Lemma 1.6.1 The Laplacian of s,A s, is given by

As = (p-1)tanhs + (q-1) coth s.

Proof As for the spherical case, A s(z) is - (m - 2) x (mean curvature of

MSO = g-1 (so)) foreach s € (0,x), z Mso . A calculation similar to that of

0
Lemma 1.3.4 shows that the principal curvatures of M g 0 are - tanh s, with
multiplicity (p - 1), and - coth s; with multiplicity (q - 1).

Equation (1.6.1) now becomes

o' (s) +((p-1)tanh s + (g - 1) coths) o' (s)

a a
- sinh o (s) cosh o(s) ( 2, 1 )=0,
2 2
sinh " s cosh s

with o (0) = 0. (1.6.2)

Equation (1.6.2 ) has a singularity at s = 0, we therefore reparametrize it using the

substitution e" = sinh s. The equation then becomes
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1 -
a'"(u) + T (IM‘J"l + (Cl-2)(eu +e u)) a'(u)

e +e
sinh o (u) cosh a(u) <i2 + ! > - 0
u _ _ - ’
e +e " e" elr e
a(-x) = 0. (1.6.3)

1.7 Solving the equation for hyperbolic spaces.

We provide an outline only of the solution of equation (1.6.3), giving a precise

derivation in Chapter 6.
Equation (1.6.3) can be thought of, in some sense, as the equation of a particle

constrained to move on a hyperbola in M2 with a damping force, and with a variable

"gravity ' acting upon it.

gravity
ey,

N

The qualitative nature of the gravity and damping are illustrated by the following
graphs:

Ao gravity damping

Consider the situation when u is close to -«, and so a(u) is close to 0. In this
limit sinh 2 a(u) ® 2a(u)= sin2 a(u). Thus, for large negative time, the quali-
tative behaviour of the solution of equation (1.6.3) approximates the qualitative beha-
viour of the solution to Smith's equation.

We choose a time u_ such that the gravity is greater than 0 at u 0’ and so is

0
greater than 0 for all u < u0 . We choose « 0 = a(uo) sufficiently close to 0 - note
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that we have a l1-parameter choice for o 0 The physical moden can now be appro-
ximated by a pendulum, and we pick a ai) (ao) =g (uo) to be the velocity such that
the pendulum just reaches 0 as u —-« in backward time (equations of the form
g" =G (u,B,B' ), where G, aG/PB,aG/aﬁ' are continuous, have unique solutions
through each point (uo, BO’B(; ), [9]). In Chapter 6 we will demonstrate precisely
the existence of non-trivial solutions of equation (1.6.3) which exist for all time.

We have of course only established the existence of a non-trivial solution, and have
not investigated the behaviour as u — «.

We remark that there is a 1-parameter family of solutions depending on the choice

ofozo.

Remark 1.7.1 We can write equation (1.3.5) for the spherical case in the form

A(a(s)) = g(s) sin2 a(s) , (1.7.1)

Sm—l

where s: — R and g(s) = %((a2 /sinzs) - (al/cos2 s)). Similarly, we can

write equation (1.6.1) in the form
Alo(s)) = g(s) sinh 2 a(s) , (1.7.2)

where s: H™"1__ R and g(s) = é((az/sinh2 s) + (al/cosh2 s)). We remark that
equation (1.7.1) bears a resemblance to the well-known sine - Gordon equation, and

equation (1.7.2) resembles the sinh -Gordon equation [29].

Remark 1.7.2 The method of this chapter for constructing harmonic maps § between
spheres and between hyperbolic spaces have a common feature, namely symmetry
with respect to certain functions s: M —R and t: N — R, where §: M — N.

That is the diagram

commutes, where s(M) = Is and t(N) = It are appropriate intervals. We might
ask which functions are suitable as a symmetry of @, in order to reduce the problem
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of harmonicity to solving a 2 nd order ordinary differential equation. There is a
class of functions which adapts quite beautifully to our purpose. These shall be the
subject of the next chapter.
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2 Isoparametric functions

A

2.1 Definition of isoparametric function

Let (M,g) be a space form (i.e. either the Euclidean sphere S™, Euclidean
space R™ or hyperbolic space H™ ). A smooth function f: M — R is called

isoparametric if
df(x) 12 = v (E&x) (2.1.1)

Af(x) = zbz(f(X)) , (2.1.2)

for some smooth functions ¥ l,w 9° R —R.

Such functions were introduced by Cartan [5] in 1938. Their description on Eucli-
dean space and hyperbolic space is relatively trivial, but on the sphere they are rich
in geometry. More recently isoparametric functions have been studied in [17, 30,

32, 33, 39, 40].

Lemma 2.1.1 Let f:M — R be a function satisfying equation (2.1.1), then the

integral curves of Vf are geodesics.

,A'b*/'
Proof (32] Let £ = Vf/1dfl, and let X € % (TM) be perpendicular to ¢: g(X,¢) = 0.
— 1
Then Xf =0 so £(Xf) =0. Also (¢f =df(Vi)/I1df| = z,bl(f)2 is a function of f so
X(£f) =0, hence

0 = [X,t]f
= (V& - Vg X) 1.
Thus g(VXS - vgx, &)= 0.
Since 1 =g(£,¢): g(fo,ﬁ) =0, so that g(Vg,X,&) = 0. Also g(X,£) =0 implies
g(vgx,g) = - g(X,V.E«E), so that vgg is proportional to £. But 1l =g ({,¢) implies
g(¢ ,Vgg) =0. Thus V££ = 0.
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Lemma 2.1.2 Let f:M — R_satisfy equations (2.1.1) and (2.1.2); then if

Mc = f’l(c) is a non-singular hypersurface of f; Mc has constant curvature.

Proof Let i: Mc——~ M be the inclusion map. Then
0 = A((foi)
= df(Ai) + trace vdf(di, di)
= |df| (mean curvature of Mc) + Af - vdf(s,t) ,

where ¢ = Vv{/|df| (df is non-zero on Mc since Mc is a hypersurface). Now,

using Lemma 2.1.1,

_ M. R
vdf(¢,g) = df(v g;) + Vd“g)df(g)
= (vi)idfy.
Thus the mean curvature is equal to
_ v f(df) - af , (2.1.3)

Idf |

which is a function of f.

Thus if f satisfies equations (2.1.1) and (2.1.2); the level hypersurfaces of f
form a parallel family of hypersurfaces of constant mean curvature, Conversely,
from equation (2.1.3) and by reversing the proof of Lemma 2.1.1, it is not hard to
show that given such a family which are the level hypersurfaces of a function
f: M — R, then f satisfies equations (2.1.1) and 2.1.2). Furthermore, one can

show

Proposition 2.1.3 [5] Given a parallel family of hypersurfaces of constant mean

curvature on M, then the principal curvatures on each level hypersurface are constant

on that hypersurface .

We call a hypersurface of M with constant principal curvatures an isoparametric
hypersurface.
Example 2.1.4 Let M= R™ and let f: R™ — R be defined by fx ), .., x )=

X12 + l2)

... *+ X5 ,p < m. Then |df|2 = 4f and Af = 2p. The level hypersurface
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[ = sg is given by x% + ... x% = s% and is isometric to the cylinder sO.Sp'l X

2
P
rRMP, So (0,o).
gxample 2.1.5 Let M = S™-1, and define F: R™ — R byF( (x,y)) =
x12 - ly|2, where we write R™ = RPe RY9, p+q=m, xc RPand yc RY.
Let f: sm-1_. R be the restriction FISm-l. Introduce polar coordinates on §™-1
as in Sectionl.3; so thateach z & sm-1 g expressed as z = (coss X, sinsy),
X € Sq'l, y & S9-1, Then f(z) = coszs - sinzs =cos2s, so that df = - 2 sin2sds.
Thus 1df12 = 4 sin® 25 =4 (1-£2).

Now af =f""1dsi2 + f' A s, but from Lemma 1.3.4 A s =(q-1) cot s - (p-1)tans,

whence

4((p-2) cos2 s -(q -2) sin2 s)

Af

2((p-2)(1#) - (q-2)(1-)) ,

and equations (2.1.1) and (2.1.2) are both satisfied.
The level hypersurface Mg = f-1 (cos2 so) , s0 € (0,1/2) is isometric to a pro-

duct of spheres cossOSF’“1 X sins0 sq-1,

Example 2.1.6 Let M =H™-1  Introduce polar coordinates on gpm-1 by expres-

sing each point z & H™-1 a5z = (coshs X, sinhs y), x € gP-1 , Yy E Sq‘l, m=p+q
and s € [0,). Define f: HM-1 — R by f(z) =cosh2s. Then df = 2sinh2s ds so
that 1df12 =4(f2-1). Now Af=£f"(s)IdsZ + f'(s)A s, and from Lemma 1.6.1

A s =(p-1) tanhs +(q-1) coths, whence

Af = 4((p-2) coshzs + (q-2) sinhzs)
= 2 ((p-2)(f-1) + (gq-2)(f+1)) ,

and f is isoparametric.
The level hypersurface MSO =f-1(cosh2 sO) , s0 €(0,o), is isometric to the pro-
duct cosh S, HP-1x sinh S, sa-1 |

2.2 Properties of isoparametric functions and Munzner's classification theorem

Let Mc be a level hypersurface of the isoparametric function f: M — R. For
X & 3 A: —_— : —_— - N S M N
€ Mg, let A be the shape operator; TxMc TxMc X ng X e Tx c

where ¢ is the unit normal vector field to Mc. Then the 279 fundamental form
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hof M_,he®(©T*M ), isdefined by g(AX,¥) = h(X,Y) forall X,Y €T M.
The eigenvalues of A are the principal curvatures , A 1 (x), ... ,Ap (x) say; let
S1 (X) , cev Sp (x) denote the corresponding eigenspaces.

The equation of Codazzi [38] is

g(R(X,Y)Z,¢) = (vxh) (Y,2 - (vyh) (X,2Z) , (2.2.1)

for all X,Y,Z e(g(TMc), where R is the curvature tensor of M, and ¢ € & (TM)

is the unit normal vector field to Mc. Since M has constant curvature K say,

R(X,Y)Z =K(g(Y,Z)X -g(X,Z) Y, is tangent to Mc’ and equation (2.2.1, becomes

(Vxh:(Y,Z; = (VYh) X,Z2), (2.2.2)
for all X,Y,Z G%TMC).
ILet X € Si and Y,Z € Sj’ then, since the Aj are constant on Mc
(Vxh)(Y,Z) = X(h(Y,2)) - h(VXY,Z) - h(Y,VXZ)
= X(\g(Y,Z2)) -2g(V,Y,Z) - A glY,V,Z)
(]g ]g X ]g X
= lj(ng)(Y,Z)
= 0.
Thus
0 = (VYh) (X,2)
= Y(h(X,2)) - h(VYX,Z) - h(X,VYZ)
=0 - Ajg(VYX.,Z) - Aig(X,VYZ)
= (J\j - )\i) g(X,VYZ) . (2.2.3)

Thus, forall Y,Ze S.: U(V_Z)e S, where I: T_M —T_M is projection.
j Y j X X ¢
We therefore have

Proposition 2.2.1 The distribution S.,j=1,

. , P, is integrable, and the

integral submanifolds are totally geodesic in M. Furthermore the leaves of S,

are umbilical in M with mean curvature vector parallel to ¢ .

So in the case

M =S™M-1 | the leaves are small spheres in S™-1
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proof That the distribution is integrable and totally geodesic follows from equation

(2.2.3) . Since, for Y,Z ¢ Sj

= + .
VYZ H(VYZ) Aig(Y,Z)ﬁ ;

the leaves of Sj are umbilical in M with mean curvature parallel to ¢ . [:]
Suppose M is S™-1 (the cases M = R™, H™-1 are similar).

Define 2% Mc—~ M by
v,(x) = cost + sint ¢ , forallx= M .
t X c

Foreachi=1,2,...,p, write Ki(x) =cot Oi for some oi depending only on the level hyper-

surface Mc' Suppose X & Si, i.e. X =p3"(0), p(0) = x, where B(s) is a curve in Mc'

Then

-4
d-yoi X) = 1s ('yeioﬂ(s))lszo

1

d
; g ¢
cos oiX + smei is B(s) |s=0

Il

cosh. X + sinp. (V_ ¢)
i i X

cosaiX + Sin()i (—coton) . (2.2.4)

Thus d'yt(X) = 0 if and only if t=0i and X € Si(X)’ for some i =1,2, ... , p.

Call Yy (Mc) a focal variety of f .
i

Theorem 2.2.2 [32] Each focal variety is a minimal submanifold of sm-1

Remark 2.2.3 From equation (2.2.4) we see that dyt(X) is proportional to X for
all X e S],, j=1, ... , p. Thus _9”2 X e Si , where & denotes Lie derivation on M,

and since ng =—>\ix; we see that v X=y£X+VX§ (—TSj, j=1, ... , p, so the

3

principal curvature distributions are parallel with respect to &.

Proposition 2.2.4 [5] I M is Sm'1 , there are at most two focal varieties .

¥ Mis R™ or H™! there is at most one.

Let V1’V2 denote the focal varieties (if there is only one, then let V2 =¢), and
let U: M\V2 —V 1 be the projection map down the integral curves of ¢, then
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Proposition 2.2.5 Themap M: M \V2 -V 1 is harmonic. If the number of

distinct principal curvatures is less than or equal to two, then T is a harmonic

morphism (c.f. Lemma 1.3.3).

Proof Suppose dim M = m, and let x eM\Vz. Choose a frame field Xl, cees Xm

about x adapted to the Sj spaces, in the sense that for each j, if dim Sj = mj, a
subset X; , ..., Xj of X , ... ,X forms an orthonormal basis for S, at each
N mj 1 m j
point, and let X m- ¢. Furthermore, since the integral submanifolds of the Sj
distributions are totally geodesic in the level hypersurfaces of f, we can suppose

Vx. X is proportionalto £ for i=1, ..., m.
1

Now TI= ‘yo. for some j =1, ... , m, so the horizontal space through x is 9(; =
]

':_ Si (x), and the vertical space 7x = Sj (x) ® R ¢. From equation (2.2.4) we see
17)

that 1 is horizontally conformal if and only if the number of distinct principal curva-
tures p is equal to 2.

To see that T is harmonic, we work out trace vd 1. If i=1, ..., m -1 then

VAMX,X) = -dMvxg X.) + V dm(x.)
1 1 i1 1

dl'l(Xi)
=0 .

from equation (2.2.4) and since Vx_ X, is proportional to ¢. Clearly vd T(£,£) = 0,
1

1
so that T is harmonic. ]

On R™ | the number of distinct principal curvatures on each level hypersurface
of f is 1, and on H™-1 ot most 2 [5]. Cartan classified all such families of iso-
parametric hypersurfaces. He also solved the classification problem for p =3 on
sm-1 [6 ], finding that m could be only 2,5,8,14 or 26. M&nzner [30 ] showed that
every isoparametric hypersurface is algebraic, and only certain p are allowed; we

state his remarkable theorem without proof.

Theorem 2.2.5 [30] ILet M be gm-1 and M, an isoparametric hypersurface with

p distinct principal curvatures Al, cee s lp with multiplicities ml, o.M

p
respectively. Then

(i) mj,9 = m; - i.e. there are at most 2 distinct multiplicities.

(ii) M, is the level surface of the restriction to sm-1 of 5 homogeneous
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polynomial F on r™ satisfying
IvF(x)12 = plix2P2 (2.2.5)
AF(x) = dixIP2 | (2.2.6)
where d = pz(mz—ml)/Zi_f p isevenand 0 if p is odd.

(iii) Conversely, any such F defines a family of isoparametric hypersurfaces on

sm-l

.

(iv) p canonly be 1,2,3,4 or 6.

Remark 2.2.6 We will call p the degree of the isoparametric function, hypersurface

or family of hypersurfaces.

Remark 2.2.7 The function f = F Ism_l has image f(S™-1) = [-1,1], where F
is as in Theorem 2.2.5 (ii). The sets f~1 (-1), £-1(1) correspond to the focal va-

rieties.

Remark 2.2.8 If one puts f =cos ps, s = [0,TI/p], then s represents the affine

parameter such that ¢ = Vs,

Lemma 2.2.9 The Laplacian A s(x) is minus the mean curvature of the level hyper-

= -1 (—
surface MSO f™" (cos pso), X € MSO .
Proof Let iso: Mso —= M be the inclusion map. Then

0

A(soi_ )
So

6 )

ds(AiSO) + trace Vds(diso, di o

But ¢ = ¢/2s is affine geodesic, hence vgg =0; sothat Vds(¢,8) = ds(Vgg) +
st(g) ds(¢) = 0(ds(¢) is the unit vector along R). That is

trace Vds(diSO,diso) = As, Thus
0 = ds(AiSO) + As.
But since A i, is proportional to {I ; we conclude that A s.{ = - Aig 0" El

%
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Remark 2.2.10 With respect to the affine parameter s, whose level hypersurfaces

we denote by Mg _= s-1 (sg), the principal curvatures are A; = - cot(s0+ (i-1)TVp),

0
i=1, ..., p, on MSO, and the corresponding integral small sphere of the distribu-

tion S;(x), x € Mso , has radius sin (s0 + (i-1)T/p). Hence we get

Remark 2.2.11 The mean curvature varies from -« to + ©» on s™-1 and is con-

tinuous, thus, for each family of hypersurfaces on Sm'l, there exists one hyper-
surface with zero mean curvature, i.e. minimal. In fact the minimal hypersurface

is Myy/2p = £71(cos m/2) = £71(0).

2.3 Examples of isoparametric functions

Example 2.3.1 The isoparametric families of hypersurfaces of degree 1 are all

given by the restriction of linear functions:

(i) On R™; define f: RM — R by f(xl, e, xm) =x_. The level hyper-

X
surfaces are isometric to R™~1 and there is no focal variety.

(ii) On S™-1. write z € S™-1 asz = (coss, sins x), x € S™"2 and sc [0,N].
Define f: s™-1 —~ R by f(z) =coss. The level hypersurfaces are (m-2)-dimen-

sional small spheres. Each focal variety is a single point f -1 (1) and £-1(-1).

(iii) on Hm'l there are three distinct cases.

m-

(a) For each z € H , write z = (coshs, sinhs y),y € s™-1 and se [0,0). Let
f: HM-1 — R be defined by f(z) = coshs. The level hypersurfaces are (m-1)-

dimensional spheres. There is one focal variety which is a point.

LT
IS\
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(b) Let z e H™"1 pe written as z = (coshs X, sinhs), x € HM2 s € [0,) .
pefine f: ™1 - R by f(z) = sinhs. The level hypersurfaces are "equidistants"

from the plane xm =0 in M™, and are (m-2)-dimensional hyperbolic spaces. There

is no focal variety.

(¢) Express HM-1 as the upper half plane in R™ ! with metric ds? =

2

(dx1

2 2 .
+ ... + dxm_1 )/xm_1 , where xl, vee X are standard coordinates

m-1

on R™-1 | Define f: H™1 L R by f(x o ..o s Xm_g) = Xpy_- The level hyper-

surfaces are ""horospheres' - that is, they are isometric to (m-2)- dimensional

Euclidean spaces. There is no focal variety.

A

0

xm-l

Example 2.3.2 The isoparametric families of hypersurfaces of degree 2 on R™,

s™-1 nd H™-1 are all given in Examples 2.1.4, 2.1.5 and 2.1.6. In Example
2.1.4 there is one focal variety which is isometric to R™"P, mn Example 2.1.5
there are two focal varieties, one is isometric to SP-1 and the other is isometric to

sA-1, Example 2.1.6 there is one focal variety isometric to HP-1,

Example 2.3.4 Define F: R3’*2 « R, 1v= 1,2,3,40r 8 by

F(u,v,X,Y,Z) = ud - 3uv? + %u(X)_( + YY - 2ZZ) + 32—ﬁ” V(XX - YY)
+ 33 xyz + 270, (2.3.1)

where u,v ¢R, X,Y,Z €F, Fis one of R, C, quaternions or Cayley numbers, and

T is conjugationon F. Then f = F S 3V+1 isan isoparametric function of
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degree 3 (all such arise in this way [6 ]). The focal varieties are antipodal, and are
isometric to the projective plane PZ(F) , embedded as the standard Veronese minimaj

submanifold in the sphere.

Example 2.3.5 [32] Identify (n+1)-dimensional complex space ¢! with R e
n+l

RM1 by writing a point ze @ =(z, een 2000 20= Kby S1 0004,

n+l"’ 7j i i

cee + i s eee . i ’
s xn+l) 1(y1 y_..). We shall also write z as (x,y)

as z =x +iy =(x
y n+l

1
whenever this is convenient.
Let F: "1 — R be defined by

2

Fz) = (Ix12 - 1y12)2 + 4 <x,y>2. (2.3.2)

Then f = F lszn+1 is isoparametric of degree 4 on s2ntl
Define ig: S! x Sp41 9 — 820%1, where S, 5 is the Stiefel manifold of ortho-

normal 2-frames in R2*1 by
1s(ei0, (x,y)) = eie (coss x + isinsy) ,

where s € [0,T1/4]. Then is is an immersion which double covers the level hyper-

surface Mg = f -1(sin22s). The hypersurface is obtained by the identification
(6, (x,y)) ~ (6 + 1, (-x,-y)).

The principal curvatures of Mg are -cots, -cot(s - 1/4), -cot (s - 1/2),
-cot(s - 37/4) with multiplicities n-1, 1, n-1,1 respectively. There are two focal
varieties, one at s = 0, which corresponds to the set {e io.x] = Sle“/SO, and one
at s = /4, which corresponds to the set {e‘e(x + 1y)/22 , i.e. the set{(x +iy)/2%‘, =

Sh +1.2- Letus study the Riemannian geometry of Mg in more detail.

Define Ss+1 5 to be the analytic submanifold of R"1e R™*! given by s° e1e -

{(x,y) e RM*1lg RO, |x 2= coszs, ly 12 = sinzs and <x,y> = 0} = {(coss x,sins y)
n+l + X
eRe R, (x,y) € Sp+1, 9). Let €,5+++,€pn,q be the orthonormal basis for R

suchthate =(0,...,0,1,0,...,0), with the 1 in the i'th place. Choose pcS ntl,

2
tobe p = (coss e smse ). Consider the following curves in Rn+1:
y(u) = cos(u/coss)e + sin(u/coss) e,
. (u) = cos(u/sins) e, + sin(u/sins) e, i i=3,...,n+1, (2.3.3)
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and define the curves through p in Sns+

1,2°
= sins
yi(U) (coss 'yi(u), in e2)
A (u) = (cosse, sinsxi(u)), i=3,...,n+
p(u) = (coss(cosue + sinue,), sins(-sinue, + cosse,)) . (2.3.4)

The tangent space to Srsl+ at p is given by

1,2

Tpssn+1 9 - {(V,W)p; <v,w> =0 = <w,y> and <v,y> + <X,w>

= 0 where p = (x,y)! ,
and the vectors
' —3
v '(0) (ei'o)p

Aj(0) = (0,e) ,i=3,...,n+
i'p

u'(o) = (coss e2, -sins el) s (2.3.5)

form an orthonormal basis at p for T s® .
p n+l1,2

S

Lemma 2.3.6 The curves (2.3.4) are all geodesic in S n+1.2

(VBn+1 N
B'(0)

the curves (2.3.4).

at p - that is,

S

| . .
g (0) )p is perpendicular to TpS n+1,2"

where B (u) is one of

Proof A curve p(u), p(0) =p, in SIS1 is geodesic at p if and only if g"(0) is

+1,2

perpendicular to Tpsfl+ For example, p''(0) = (coss(—el) , sins (-e2) ).

1,2 °
Clearly the scalar product of p "(0) with the vectors of (2.3.5) is zero. Similarly
for the other curves of (2.3.4). Il

We study i;ls’ the double cover of M s’ which locally can be described as the set
of points el? (coss x + isins y), se(0,1/4), (x,y) € Sn+1,2 and 9 € [0,2T1).
Fix ¢, then S, 5 is embedded in ¢"*1 as the manifold Srsx+1,2 . Fix coss x +
isins y, then as ¢ varies, we trace out a great circle of S$2n+l How does this

. s
ci i
rcle intersect the S n+1,2
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i@ ~
Fix p=e o(coss xO + isins yo) S Ms . Consider the two curves

y(u) = ew(u)(coss x0 + isins yO)

5u) = e 29 (coss x(u) + isins y(u)) , (2.3.6)

both of which are contained in Ms’ where x(0) = xo,y(O) =y, 0(0) = 90 and

0
(x(u), y(u)) € Sp4q g for all u. These are both curves through p, and without loss

of generality 6 '(0) = 1. Then
' i6
y (0) = in'(0) e 0 (coss Xy * isins yO)
=e oO(-sins y, * icoss x )
and
' i00 ' s s '
6 (0) = e (coss x(0) + isins y (0)) .

The Riemannian scalar product

<y'(0),6'(0)> = i(cossx, + isinsy ). (coss x'(0) + isinsy'(0))

]

i(isins coss yo.x'(o) - icoss sins xo.y' (0)),

3 ' = ' =
since xo.x(O) yo-y (0) 0

1]

sinSZSxo.y'(o), since xO.y'(O) + yo.x'(O) =0

= cos(2s-1/2) X, y' (0) .

Thus the angle of incidence of y and 6 is independent of 9 0’ and is 2s - /2. Fur-
thermore, the plane of incidence at p is spanned by p'(0) and -y'(O) , where p is as

in (2.3.4). We therefore have

Lemma 2.3.7 The level hypersurfaces Ms’ locally can be described as an "angu-
1 . S s :
" -
lar product'of S° with S 11,27 where the angle of incidence is 2s - 11/2, and the

plane of incidence is spanned by the tangent vectors to the curve u(u) of (2.3.4) and
the curve vy (u) of (2.3.6).

Example 2.3.8 [17] An n-tuple (P ORI Pn) of symmetric endomorphisms of
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Bz 1 is called a Clifford system if

PP +PP =261, i,j=1, ..., n. (2.3.7)
ij ji ij

Theorem 2.3.9 [17] Given a Clifford system (Pl, e Pn) on Rzl such that

ml =n and m2 = 1-n are both positive, then

2 21

F(x) = IxI1% - 22 <Pxx>% xe R,

defines an isoparametric function f =F lszl_l on s21-1 of degree 4, with the

multiplicities of the principal curvatures being (m1 ,m 9 ).

Example 2.3.5 is a special case of this example. This family of examples also
includes many where the level hypersurfaces of f are non-homogeneous (they are not
the orbits of a subgroup of the orthogonal group) - including the non-homogeneous
examples of Ozeki and Takeuchi [33 ] (which we give explicitly in chapter 8). Fur-
thermore these examples include ones where the focal varieties are also non-homo-

geneous.

2.4 Generalizing the notion of isoparametric families of hypersurfaces

We wish to generalize the notion of isoparametric families of hypersurfaces to
Riemannian manifolds whose curvature is not necessarily constant. There are various
possible definitions, but we make one which is suitable for our purpose of constructing
harmonic maps.

Let (M,g) be a Riemannian manifold together with a family of hypersurfaces

(M)
c cel
where dense subset K of M such that M\K is foliated by hypersurfaces Mc. Suppose

, where I is some indexing set, in the sense that there exists a closed no-

that on M\K the following conditions are satisfied:

(i) The locally defined unit normal vector field to the foliation ¢, satisfies vgg =0.

(ii) If Mc is a hypersurface in the foliation, then the principal curvatures
7\1, cee lp are defined up to a sign. Suppose that for each i =1, ..., p; Ai is
constant on Mc'

(iii) If Sk is the distribution on Mc corresponding to the principal curvature Ak’
then projection down the integral curves of g,ps: MS——— Mc’ preserves Sk in the
sense that, if X € Sk(x), b S MS, then Ps . X e Sk(ps(x), provided that Pg is a
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diffeomorphism (i.e. we don't encounter a focal variety). Then we call the family

of hypersurfaces a generalized family of isoparametric hypersurfaces. In certain

circumstances, it may be that the family of hypersurfaces is no longer defined by a

function.

be a generalized family of isoparametric hypersurfaces

Lemma 2.4.1 Let(M )
— —'c¢cal

on M _which are the level sets of a function f: M — R, then

dfI12 = o Xty

af = zbz(f) )

for some functions rbl and ¥ 9 - Call such an f a generalized isoparametric function.

Proof The vector field ¢ is defined, up to a sign, by ¢ = ViAdf!. Let X< ker df,
then, since g(X,¢) =0 and vgg = 0; we conclude that g(VEX,g) =0, and
vgx € ker df. Also g({,%) =1 implies ng € ker df, thus 0= [X,¢ f =X (¢f) -
£(Xf) =X(¢f). But &f =( Idflz)% , so that ker(d(1dfI12)2) Dker df. Since the dimen-
sions are equal and finite; we conclude that ker (d(|df |2)% ) = ker df, and that
1df 2 = z,bl(f) for some function zbl.

Equation (2.1.3) is still valid for non-constant curvature, giving Af = wz(f) , for

some function 11)2. ]

Remark 2.4.2 Since the curvature term in the Codazzi equation (2.2.1) is now no

longer necessarily zero, it is not necessarily true that the S distribution on Mc

k
is totally geodesic or integrable.

Example 2.4.3 All isoparametric functions f on sm-1 define a generalized iso-

parametric family of hypersurfaces on R Pm"l, In the case when the degree of f
is even; the family of isoparametric surfaces on R P™-1 pas two focal varieties.
In the case when the degree of f is odd; there is just one focal variety.

2m

Example 2.4.4 Express R as R2P o R2% where p +q = m, and identify

R2P o R29 with ¢P © €9 in the obvious way. Consider F : R2® . R,
F(x,y) = Ix 2 - Iy|2, X €R2p, y € R2P, yEqu, whose restriction defines an
isoparametric function on S2M-1 with focalvarieties S2P~! and S29-1. The

function f factors through the action of sl on s2m-1 , to give a generalized iso-
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. . m-1 . -
parametric function on C P with focal varieties ( PP 1 and € P9-1, The level
hypersurfaces are diffeomorphic to s2p-1 s29-1 /g1 |

Remark 2.4.5 The function f:528*!

- R of Example 2.3.5 factors through the

action of 81 on $20*1 to give a well-defined function g on € PP, with focal varieties
1 : : 0

RP" and sn+1,2 /S*. The level hypersurfaces are diffeomorphic to Sn+1’2/S .

Then g is a generalized isoparametric function.

Remark 2.4.6 letn:C P3 — S4 be the Hopf map, and let f: S4 — IR be the iso-

parametric function of degree 3 of Example 2.3.4. Define g: € P3 — R by

g(x) = f(M(x)), for all x € CP. Then g is a generalized isoparametric function. For

example, if M: M — N is a harmonic Riemannian submersion, and Nc is a hyper-

surface of constant mean curvature in N, then l'l'1 (Nc) has constant mean curvature

in M [15].

Example 2.4.7 Consider the tangent bundle TM of a Riemannian manifold ( M, g).

Let T be the projection map T: TM - M. Define the metric G on TM to be the
Sasaki metric [35] , and write D for the Levi-Civita connection on TM . The metric
G and connection D have the properties that

(i) the horizontal lift of any geodesic of Mis a geodesic of TM .

(ii) Every straight line in the fibre of T: TM — M is a geodesic of T M.

(iii) Every fibre of TI: TM — M is totally geodesic in TM.

Define f: TM — R by f(x,v) = |v|2, where x € M and v & TxM. Then ¢ =Vf
is a geodesic vector field in TM. Let Mc =£"1(c) be a hypersurface of TM, ¢ # 0.
Then for x & Mc ; let X e TXMc be horizontal with respect to TI. Then ng =0,
so X is a principal curvature vector with principal curvature 0 of multiplicity equal
tom=dimM. If X~= TxMc is vertical with respect to 1T, then Dxf = X/c, and X
is a principal curvature vector with principal curvature -1/c of multiplicity m - 1.
Clearly the principal curvature eigenspaces are preserved under projection down the
integral curves of ¢. Hence f: TM — R is a generalized isoparametric function.
Since the horizontal distribution of M: TM — M is integrable if and only if M is
flat; the eigenspace distribution corresponding to the principal curvature 0 will not

in general be integrable.
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3 The stress—energy tensor

3.1 Derivation of the stress-energy tensor

Let (M,g) be a compact Riemannian manifold, and consider an action which, for

simplicity, we suppose has the form

1 = [ LGhe ax (3.1.1)

where @ is a section of a Riemannian fibre bundle T: E — M, and L is a function
on the bundle of 1-jets of sections of I:E — M; L:Jl(E) — R, with L possibly
depending on the metric of E.

Example 3.1.1 Let #:(M,g) — (N,h) be a smooth map, E =M x N. Then # can
be regarded as a section of E. Let L(jl(ﬂ)) = |d@ 12 be the square of the Hilbert-
Schmidt norm of dg.

In general one looks for extremals of the action (3.1.1) with respect to variations
of the section #, and one finds that ¢§ is an extremal if and only if @ satisfies the

Euler-Lagrange equations

LG =0 , (3.1.2)

where & A9) € g(ﬂ-l TE) (we write #% for the Euler-Lagrange operator on sec-
tions). In Example 3.1.1, the extremals are the harmonic maps and the Euler-

Lagrange equation for § is
af = 0. (3.1.3)
Suppose now we vary the metric g. If g(u)is a smooth 1-parameter family of

metrics, g(0) = g, then 6g = 8g/8u|u= 0 lies in%(@2 T M).

Proposition 3.1.2 For a fixed section @,

i | _ =
du lu—O fM <S¢,6g> dx,
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where S¢ €e¥ (02 T *M), called the stress-energy tensor of §, is given by

s¢= agL+%gL, and <, > is the metric induced on ®2T*M from g (by agL we

. 2
mean the section of @ T*M, which is given in components by (egL) ab =
eL g g
agcd ac-bd
to a local coordinate system (xa) on M).

Proof Suppose g has a local representation in the form g = 8ab dx? dxb (summing

over repeated indices) with respect to local coordinates (xa) on M. Then

dI | = aL 2(dx)
AL o AL o gy 4 [ p 24X 4.
du - fM agab ab M agab ab

1
The volume element dx can be written in the form dx = (det g)fdx1 Aveendx™

Then

&(dx)

1 -4 1 m
= 3(detg)~2 (co-factor of g . )dx" A ...adx
egab ab

= 3(det g)'1 (co-factor of gab) (detg)é dxln ... Adx™
ab
g dx. 0

Corollary 3.1.3 I @ and L are as in Example 3.1.1, then

= _ *
Sg e(f)g g h.

Proof Let (xa, ya) 'be a local coordinate system on E = MxN. These induce co-

a
ordinates (xa,ya’, yaa) on Jl(E) with respect to which L(x , ya , y:) =

ab o B a_ b a, B
= = h -
g yaybhaﬁ’ where g gabdx dx  and h oz,de dy” are local represen
tatives of the metrics g,h respectively (summing over repeated indices). Then
ij
TR AT
Eab Eab )
ijg = sl
But g Bjk 6k , SO

ij o
0= 280 g, *+ &Y 2Ejk
%8y, ) TR

(summing over repeated indices), where g = gabdxa dxb with respect
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Whence

eg)  _ il %Bik ik
’g =-8 eg g
ab ab
- _ Gl sa (b _jk
g 6,6, 8
= - gla jb
_ aa pb . . . *
Thus eL/egab = -y 'y hozB . Or in coordinate free notation agL(ﬂ) =-¢"h.
]
Proposition 3.1.4 If X is a smooth vector field on M, then
[ <&AP), dgX)>dx - 2[ v*S (X)dx = 0,
™ M g

g’ HAY Sﬂ(X) = EVX Sg(X ,X), where(X)

where V*S_ denotes the divergence of S

g

is an orthonormal frame field.

Proof Let wu be the family of diffeomorphisms associated to the vector field X,

then for each u

ot
1

d
[, vax

fw (M)L dx

u

1]

*
wau (L dx).

Therefore f (Ldx - zbu*(L dx)) =0, ard so
M
[ Ly (Ldx)=0
M

where .gx denotes Lie derivation with respeci: to X. Also

[ Ly (Ldx) = [ <&£AP),ds (X)>dx + [ <s¢,.§fxg> dx.
‘M ‘M M

Now, in coordinates, letting '"; ''denote covariant differentiation; (-%(g)ab = 2X(a.b)
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(the bracket ( ,) means symmetrization of the indices),so that

ab ab ab
dx = -
fM(Sﬂ 5g,,) dx 2,fM<(s¢ X)) - Sy, p%,) dx
~ ab
= -2 'stﬂ;bXa dx. D

Corollary 3.1.5 If # is an extremal of I, and so satisfies the Euler-Lagrange

equations (3.1.2), then

*
v s =0
g

Proof The statement follows immediately from Proposition 3.1.4, since X was

arbitrarily chosen. U

Proposition 3.1.6 Suppose (M,g) is any Riemannian manifold (i.e. not necessarily

compact), and @#:(M,g) — (N,h) a map. Let S¢ eg((az T *M) be given by
S¢ = e(f)g-@*h, thenfor all X cZ(TM) ,

<Af,df(X)> = - V'S _(X).

g

Proof In coordinates, as in Corollary 3.1.3,

- 1 digo B _ 4% B
(Sﬂ)ab 2(g7 8 !6]. h )gab\,.._ggwﬂ_bfhaﬁﬁ'
\,_,.‘,\/v_‘__'_____/‘
Thus

b ij aﬁl a;b B« B:b
(8 = €8% - 97 -0

_ a_ B;b
=99 haB. ]
2
N\ Corollary 3.1.7 X #:(M,g) — (N,h) is harmonic, and S‘{j €Z(O" T*M) is given
by S, = e(f)g - §*h, then

)
© wv*s, = o.
[

Q\ Conversely, if # is a submersion almost everywhere, and V*S¢ = 0, then § is

harmonic.
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3.2 Examples

Example 3.2.1 Suppose #: (M,g) — (N,h) is conformal with §*h = pg for some

smooth function p: M —= R. Then Corollary 3.1.3 gives

Sn = ipm-2)g . (3.2.1)

Thus if m =2,8; = 0; and if m > 2 and § is harmonic, Corollary 3.1.7 implies

p is constant, i.e. # is homothetic. This generalizes a result of Hoffman and Osser-
man [24].

= 0, then 0 =trace S, = 3 (m - 2)e(@), whence, if §#§ is non-

g g

constant; m =2 and ¢ *h = e{@#)g, i.e. § is conformal. Thus

Conversely, if S

Proposition 3.2.2 K # :(M,g)— (N,h), then S_ = 0 if and only if dim M =2

g

and § is conformal.

Corollary 3.2.3 Suppose §: (Sz, g) — (N,h) is a harmonic map of the 2-sphere

into a Riemannian manifold N, then @ is conformal.

Proof Choose local isothermal coordinates z on Sz, so that g = p(z)dz dZ. Then

atensor T € %(@2 T*M) has a type decomposition of the form T = T(Z’o) + T(1’1)+

T(O'Z), where T(isJ) g spanned by dz'dz’ locally. A calculation shows that
(¢*h)(1’1) =e(@#)g. Thus S¢ = S¢(2,O) + 8(0,2) , where S¢(0.2) = s¢(2,05.

That the divergence, V *S =0, amounts to S ¢(2,0) being a quadratic holomorphic

g

differential on S2. But it is well-known that there are no non-trivial quadratic holo-

morphic differentials on s2. Thus S, = 0, and Proposition 3.2.2 shows that § is

g

conformal.

:L‘(Example 3.2.4 Suppose #:(M,g) — (N,h) is a Riemannian submersion, i.e. § is

a submersion, and the differential is an isometry on the horizontal space. Then

. Proposition 3.2.5 (See [12] for a different proof) : the map ¢ is harmonic if and -

only if the fibres are minimal.

Proof Locally, about a point x € M, choose an orthonormal frame field for
™, X, ..., X ,X , «+.,X , where the first n vectors are horizontal and the
1 n’ ~ n+l m

last n - m vectors are vertical. Choose indices i,j, ... to run from 1 to n;r,s,...
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to run from n+1 to m and a,b, ... to run from 1 to m, and use the usual summa-

tion convention for rel)eabed indices.

Suppose § is harmonic, and Y € #(TM) is arbitrary, then

0 = (an Sg) (Y,Xa)
_ *
a
- * _ax* _a*
= - Xa((¢ h)(Y,Xa)) ) h(VXaY,Xa) /) h(Y,VXaXa). (3.2.2)

Choose Y = Xj to be horizontal, then

0 = xig(xj,xi)

g(VXin’Xi) + g(Xj,VXiXi)

g(%VXi X X)) + g(xj,)fvxi X))

* *
¢ h(VXin,Xi) + 0 h(X].,in Xi)’

>

where % denotes projection onto the horizontal space. So that

- *
0 [/ h(Y,vxrxr),

and the fibre is minimal.

Conversely, if the fibres are minimal, then v *s

g~ 0 U]

3.3 The eigenvalue decomposition of the stress-energy tensor

Let §:(M,g) - (N,h) be a smooth map, and let m = dim M, n = dim N. Suppose

#*h has eigenvalues v Ym with respect to g, where v_. > ... > Yin 2 0.

UREEE 1
Let X ORXE Xm be an orthonormal basis on a domain of M adapted to this eigen-

value decomposition, i.e. if T], is the eigenspace of vj, then a subset of Xl’ oo X

m
forms an orthonormal basis of Tj' The energy density of the map § is given by
. m
e(f) = v /2. (3.3.1)
k=1 k

If Pec %O(Q?‘T‘t M), then let Pij = P(Xi,Xj) denote the components of P with
by eee .
espect to X 1’ R Xm Then
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S. =e(Mg,. - h),
ij ij ij
= 1(8) -v)6,. .
i’ ij
Now
(1 - 26iq)
e(f) -y, = 27147, |
@ 1 q 2 q
therefore
S.. = £ —— v 6. . (3.3.2)
ij q 2 q ij
Example 3.3.1 In Example 3.2.4, when # is a Riemannian submersion; vl,...,Vn=1
and v sy eee s V=0,
n+l, m

Example 3.3.2 If @ is a harmonic morphism, as inSection 1.3, with dilation

A:M - R,then v, ..., v =)\2,and v
n n

1 ,...,vm=0.

+1

Example 3.3.3 In Proposition 2.2.5, the eigenspace of S n corresponding to non-
zero eigenvalues, correspond with the principal curvature spaces Si’ i=1,...p,

i# j, where M= ye . The eigenspace Tk of S" with Y T 0 corresponds to the
J

kernel of dTI, i.e. the direct sum of Sj with R ¢, where ¢ is the unit normal vector

field to the isoparametric family.

48



4 Equivariant theory

4.1 Maps which are equivariant with respect to isoparametric functions.

Let M be a space form upon which is defined an isoparametric function f:M - R.
Let M * be the union of non-singular hypersurfaces of f with the induced topology,

and let l'lf: M* - M*/f be the canonical projection. Then M”*/f inherits a topology

from M”* with respect to which it becomes an open interval. If X € M*f; define a
metric g at X as follows. If X € T; (M*/f) and x € ﬂf-l (X), then there exists a
unique normal X to X at x such that d rlf(X) =X ; define g (X,Y)= g(X,Y).

LY

Lemma 4.1.1 The metric g defined above is well-defined.

Proof We must check that g , as defined above, is independent of the choice of

X E l'l (x) forall Xx € M*/f. Let x,ye N -1 (x), 6(u) a curve defining the unique

f
normal X to X at x, and 6(u) be a curve defining the unique normal X to X at y,
such that d TI (X) =d 11 (X) X. Then d n (X) = (d/du)(l‘l o 6(u))| and
d IT (X) (d/du) (TI od(u)) | Since the level surfaces are parallel we can

choose 6 and 6 so thatnfoé(u) =T_.o0 6(u), for all u €(-¢,¢) for some € > 0. Thus

~ o~ f

g(X,X) = g(X,X) and the result now follows. D

With respect to the metric g , l'lf: (M’,g) - (M /f,g) becomes a Riemannian
submersion. We add in appropriate end points to the interval M*/f corresponding to
the focal varieties of f, to obtain a closed, half-open or open interval I., depending

on whether there are two, one or no focal varieties respectively. We extend Tlf to

amap I: M - I . Similarly if g is an isoparametric function on a space form N,

f f

we can define I‘lg: N —- Ig .
Reparametrize f,g to become unit affine parameters s,t respectively (see Remark

2.2.8) ;s0 ¢ =Vs and 5 = Vt both have norm 1.
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Suppose f: M - N is a smooth map such that

g
M — N
s | t
Is It (4.1.1)
a

is commutative for some o« : IS - It . If, in addition,

dﬂ(f)x = u(x)nmx), forall xeM , (4.1.2)

where u: M - R is some function, then we shall call § wavefront preserving (WFP)

with respect to the isoparametric functions s and t.

Lemma 4.1.2 If §: M - N is WFP with respect to the isoparametric functions

s:M =1 and t: N = 1, then
s — g’ —

= ' g *

d¢(§)x, a (s(x))nmx),foralleM ,

where ¢ = Vs,n =Vt and o isasin Diagram (4.1.1).

Proof From equation (4.1.2), d¢(§)x = 11(X)17¢ x)* Since t: N — It is a Rieman-

nian submersion and d@(¢) is horizontal with respect to t

1age) 1? = 1atodg ) 1%
But
dto dg(¢) =dao ds(¢), from diagram (4.1.1)
= da(d/es)
= d(s),
writing &/8s for the unit tangent vector to Is' ]
Suppose § : M — N is WFP with respect to s and t; choose a particular hyper-
surface Mso of M* for some fixed SO’ and let ¢so = ﬂlM S:OMSO»NQ(SO). Define

projections p: ) Ms, , o: N* -~ Ny (sg) t0 be the maps which project onto
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MSO’ NO’(SO) respectively along the integral curves of ¢, » respectively. Then

are both diffeomorphisms. Thus

o, =P tMs"Ms,OEU : N, - N
s |Ms 0"t |Nt t a(s )
we can aefine a map ¢s,t: Mg - N; by
_ -1
ﬂs’t(x) =0 o ﬂso o os(x), for all x Ms . (4.1.3)

The map ﬂs t is not necessarily independent of the choice of s however

O;

Lemma 4.1.3 Provided that §(M*)Cc N* (i.e. there is no s in the interior of IS

with a(s) alt - the end points of It) , then ﬂs ¢ is well-defined and independent of

the choice of s 0

Proof Choose a hypersurface Msl of M* for some fixed S and define'Bs:Ms - Msl

to be the projection down the normal geodesics, and similarly for 5;': Nt - Na(s y
. 1
Define 'Es,t:Ms -~ N, by

-1

¢s,t(X) =q o ¢Sl o ps(x), for all x & Ms .

Let x € Mg ; then the unique normal geodesic y to MS through x intersects MSO

at x say*, and MSl at X, Suppose ¢so (xo) =Y, and ¢Sl(x1) =y, Since, for

allze M = ;
z c E] dﬂ(g)z u(Z)nﬂ(Z),

desic passing through Yo and y; Thus,

then @ty) = 6, where 6 is the unique normal geo-

By () = G 0 fg 0 B )
=T )
=l )
= ¢y 0 fg 0p (x)
= ¢s,t(X) . O

If § is WFP with respect to s and t and satisfies the conditions of Lemma 4.1.3,
then we shall call g simply wavefront preserving (S-WFP) with respect to s and t.

Lemma 4.1.4 Suppose that § is S-WFP with respect to the isoparametric functions
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s and t, then ¢|Ms1= ﬂsl’a(sl)’ for all sle int Ig.

Proof Let x & Ms , then the unique normal geodesicy to Mg 1 at x intersects MSO
1

at X, say. Also y =g(x)= N and there exists a unique normal geodesic &

0(51)’

to N at @#(x) intersecting N
a(sl) o

through a focal variety).

at y, say (6 is unique since we do not pass
(sq) 0

. * — . = =
Since for allz € M7, dﬂ(g)z = u(Z)T’ﬂ(z)’ #(y) =6, and ¢(x0) Yo Thus

_ -1
”sl’a(sl)(") - coz(sl) o ¢80°‘°sl(x)

Thus #(x) = ¢ (x) for all xe Ms1 . I:]

sl,a(sl)
Let the hypersurface Ms Have distinct principal curvatures Al(s) s eee )‘p (s),

and N; have distinct principal curvatures ul(t) s see s uq(t). Let Sk(x) be the

eigenspace of Ak(s) at x€ Mg, k=1, ...,p, and T].(y) the eigenspace of pj (t) at

y&EN,j=1, ..., q. Denote the integral submanifolds of Sk(x), Tj(y) by_'/k(x),

t
,7-j(y) respectively.

let §: M — N be S-WFP with respect to s and t. Suppose in addition there is
a jk with
(i) dﬂso (Sg (x)) C Ty, (ﬂso(x)), for all x € MS0 and for all k.

Lemma 4.1.5 I #: M - N is S-WFP with respect to s and t, and satisfies

condition (i) above, then dﬂs,t(sk(x) C Tik(gs,t(x”’ for all x € Mg and for all

k, for some i(=1, ceees .

Proof Consider the map Yo Mg — M of Section 2.2; forall x € Mg

y (x) = cosu x + sinu {
u X
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(we assume that M is a sphere - the other cases are similar). Then ps and yg _g
0

are identical, and equation (2.2.4) shows that dpS(X) is proportional to X. The

unit normal at yu(x) ,-X € M_, is given by

s’
g‘y (x) = -sinu x + cosu ¢_,
u X

£ whence we conclude that

and it is now straightfcrward to compute Vv ,
& P d pg(X)

ps(X)
_ - -1 -
dpS(Sk(x)) =8, (p (x)). Similarly dc7t (Tjk(ﬂsoo pS(X))) =

-1
’I;k(ot o ﬂSO o ps(x)). Hence dﬂs,t(sk(x” C Tjk(ﬂs,t(x)).

Corollary 4.1.6 Forall x¢c M”* and for all k ;

g ( k(x)) C.7jk(¢(x)),

for some jk=1, cees 4.

If §:M - N is S-WFP with respect to s and t; let yk(s,t):MS - R be de-
fined by

yk(s,t)(x) = trace h(dﬂs’t, dg ),

S (x) s,t

k
for all x € Ms’ k=1, ...,p, where h is the metric on N. Suppose

(i) df. (S, (x)) C T; (f. (x)), forall x € Mg .
So k ) o

(ii) ﬂs ¢ MS - N is harmonic for all s and t, and

(iii) for each k, (s,t) (x) depends only on s and t.
Yk

Then call § S-equivariant with respect to the isoparametric functions s and t.

p
Write y(s,t) = 3 yk(s,t) for such a @.
k=1

Example 4.1.7 Let g:s™ ! . gb-1

1.3. Clearly # is S-equivariant with respect to isoparametric functions s,t of

be one of Smith's maps defined in Section

degree 2 on Sm"l, sn-1 respectively. Indeed, each level hypersurface Mg is

isometric to coss SP~1 x sins s9-1 , and each level hypersurface N, is isometric

53



to cost ST-1 x sint S5-1, The map ﬂs ¢ Ms - Nt is defined by

ﬂs ¢ (coss x, sinsy) = (cost gl(x), sint gz(y)) ,

’

where x € sP1, y e s9-1, g ¢ sP-1 = gT-1 j5 harmonic with ldg, 2 = a con-

stant and 8y: s9-1 - §8-1 js harmonic with Idgo 2 = a, constant. Thus ﬂs,t is
harmonic, and yl(s,t) = cos?t a1/0052 s, yz(s,t) = sint a2/ sin?s depend only on
s and t, and # is S-equivariant.

Similarly the maps between hyperbolic spaces defined in Section 1.6 are S-equi-

variant with respect to isoparametric functions of degree two.

Theorem 4.1.8 I #: M - N is S-equivariantwith respect to isoparametric

functions s and t, then @ is harmonic if and only if

P
a'(s) + Asa'(s) +k.>:1 WY T 0, (4.1.4)
= k

for all s € int Is’ if and only if

a'(s) + Asa'(s) - %dt-y(s,a(s)) =0 , (4.1.5)
for all s & int Is'

Remark 4.1.9 If the condition that a map # be harmonic reduces to solving a second

order ordinary differential equation; we will say that reduction occurs.

Remark 4.1.10 A reduction theorem for maps equivariant with respect to group

actions is proved by Smith [36 ] (see [36 ] for the definition of such maps). We re-
mark that when @ is both equivariant with respect to the action of G on M and H on
N, G and H are Lie groups, and harmonically r-equivariant in the sense that we have

described, then the reduction equation of [36 ] and equation (4.1.5) above both agree.

Remark 4.1.11 We will give two proofs of Theorem 4.1.8, one direct proof and one

using the stress-energy tensor and obtain equations (4.1.4) and (4.1.5) respectively.
Afterwards we will show more directly that equations (4.1.4) and (4.1.5) are in fact

the same.

First proof of Theorem 4.1.8 We first of all show that there exists a smooth function
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4: M* = IR, such that

Af(x) = zb(X)rﬁ(x) ,

foralleM’. 2

For each level hypersurface MSO of s, let isO: MSO - M denote the inclusion

map. Then §o iso is harmonic onto its image N thus

a(so)’
ABois Yx) = by Ing

for each x € MSO , where wlz MSO - IR is some function. Now

Alfoig ) = df(Ai, ) + trace vdg(di, , di. ).
So So So 5,

Since Aig is proportional to £ ; equation (4.1.2) implies
0
dﬂ(Also)(x) = ‘l’z(x)"ﬂ(x)’

for all x € Mg and for some function zbz: Mg - R. Therefore
0 0

: . _ n
trace Vdﬂ(dnso, dlso)(x) zb3(x) d(x)’

for all x € Mg and for some function ¢,: Mg - RR.
0 3 0

Furthermore, from lLemma 1.1.1,

- M N
vdg(g,£) = -dﬂ(vg £) + Vdmg)dﬂ(é)

N , !
=V o' (s)n® (s)m

for some function ¥, M* - R. Thus
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A @ = trace vdg

trace Vdﬂ(diso, diso) + vdg(£,¢)

= ¥n,

for some function ¥: M* - R. We must now work out h (A g,n).

Let (X ) . be an orthonormal frame field on a domain in M, which
a'1l< a <dimM-1

is tangent to the h;persurfaces Mg; thus (Xa,é) forms an orthonormal

l<a<dimM -1
frame field on a domain of M. Then

A@ = trace vdg

=3 vdg(X ,X ) + vdg(£,8) , (4.1.6)
a a a
and
- N
vdg(¢,¢) dﬂ(Vgé) + vdmg)dﬂ(é)
= N '
Va'(sm @ (s)n
= a'(s)(d(a'(s))n)n)
= ’( ) " )_1.__
= o (s).a’'(s °01'(S) n
= o"(s)7 . (4.1.7)
Now
L Vdg(X ,X ) = A oig ) - df(aig ).
But

0 = A(soig )
5o

ds(Aai_. ) + trace Vvds(di, ,di_ )
So So So

ds(Aig ) + As,
0

since Vds (£,¢) =0 (s being a Riemannian submersion). Thus
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Ald = - AstonM , (4.1.8)
So So

and

-dﬂ(mso> = o'(s)Aasy,

by Lemma 4.1.2.

Finally, let ()_(a) denote the orthonormal basis on Mso such that

1< a< dimM-1
diso (ia) = Xa for each a. For simplicity of notation write <X,Y>=h(X,Y) for
all X,Y G%TN). Then, for each a,

0 = <d(¢oiso)(f(a),n>;

therefore, taking the covariant derivative with respect to d¢s ()_{a) , where we write
0

gs =fPoig ,
SO so

N v b N
0 = %<V 5 ,df, (X ),r> + <dfy, (X ),V < N>
a d”so (Xa) SO a SO a d¢50 (Xa)
—-— — — — N —
- — ‘
z <vddy (XX ¢ dgso(vxaxa),n >+ A (X,).Vag X )n>
0

= <A ﬂso’n> + §<d¢so(ia), 'ﬂjk d¢SO (-)_(a)> ’
a

summing over the a, where we suppose Xa € Sk for each a. Thus
a

<AfBs ,m > = Z u; , (4.1.9)
SO Kk I-l]k‘Yk

and from equation (4.1.6)
= " \ !
<Af.,n>=a (s) +a(s)as + E"ik"k'

Therefore the map @ is harmonic if and only if equation (4.1.4) holds. E]

Second proof of Theorem 4.1.8 Write the metric g on M* in the form g = ds2 + gy

where g is the induced metric on M_. Similarly express h on N*as h= dt2 +h,
s s t

where ht is the induced metric on Nt . Then

57



S = e(f)g - #*h
= L(y(s,t) + la'(s)1?)(ds? + g) - g* (dt2 +h) (4.1.10)

where t = a(s). If (X ) ] is the orthonormal basis chosen as in the
a 1< a < dimM-1

first proof, then for each b

* = o* V'g*
v Sﬂ(xb) v (e(ﬂ)g)(Xb) (@ h)(Xb)

p— * *

==V (¢ ht)(xb)
_ * * *

= -Xa(ﬂ! ht(Xa,Xb)) + 4 ht(VXa Xa,xb) + ¢ ht(xa,vx X )

b
a

* * *,
- (g ht(E,Xb)) +6 ht(Vg E,Xb) + 8 ht(i,Vgxb)

X b

- _ * * *
Xa(ﬂ ht(Xa,Xb)) + ht(VXaXa,Xb) +4 ht(Xa,V . X)),

(4.1.11)
summing over repeated indices. On the other hand, ¢SO is harmonic onto its image,

SO

where ¥ is the connection on Mg . Now
0

*
= 1 - =
s’zjs 3 y(so,to)gso ﬂso h, where t0 o/(so) ,
0
N * . * 2
= zy(s ,t)g - @ ht,smceﬂ (dt®) = o0.
070778, "S5 o S0
Thus
— * * -
0=-V (#g h )(Xb)

0o 0

— * — —_ * — - — * —_ - —
- X g by KX+ B by (viaxa,xb) * s by (Xa’vi:‘b"
(4.1.12)
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where (ia) is the frame field of the first proof. Also

l<a< dimM-1

ST e . s T M
leSO(Xc,Xd) —dlso(V}—(-ch) + chxd, for all c¢,d,

from Lemma 1.1.1. Since is is an isometric immersion; v diSO (i,f) is
0

perpendicular to di . (Z) for all X , Y,Z €@ (TM_ ), so that
Sy SO

(Vv

<di =
0o X,

s Xd),dlso(xe)> = <v, X,,X > forall c,d,e.

X Td e
c
Substituting this into equation (4.1.12) shows that the right hand side of equation

(4.1.11) is zero, and v*S_ is zero on vectors tangent to the level hypersurfaces of

g

s. It remains to evaluate v*s_ on t.

g

vTS,(6) = hdy(e) + a'(s)a'(s)-v* (g T dt? + ¢*ht)(£_)

= bdy + td y.(dt/ds) + a''(s)a'(s)

- vt - V(8 R (6) (4.1.13)

We work out V*(g *dtz)(i ). Consider v*(d sz); for any X c&(TM) ;

x. 19 2 2
Vv (ds®)(X) (VX ds )(Xa,X) + (Vfds ) (£,X)

a

2 _ 2 _ 2
Xa(ds (Xa,X)) ds (anxa,X) ds (Xa,vxa X)

+ <vgds2)(z,x>

- dS(Vx Xa).ds(X) + £(ds(£).ds(X)) -ds(£).ds(v, X) .
a S

On the other hand
As = V' (ds)

= (ands)(Xa) + (ngs)(g)
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£(ds(§)) - ds(Vx_Xj)

- dS(VX Xa) .
a

Therefore v*(ds2)(¢) = As and v*(dsz)(xa) = 0 for each a, so that
V*(dsz) = Asds.
Now ¢ *dt2 = o/'(s)zdsz; therefore

v 1dal?ds?) = vy (a'(s)zdszxxa) + v

(a'(s)2ds?) (&)
. ¢

I

' 2 2 ' 2 2
VXa(oz (s)7).ds (Xa) + Vg(a(s) ).ds“(¢)

+ o,'(s)2 Asds

2a'(s)a'(s)ds + a'(s)2 Asds.

We now evaluate - v (9 *ht)(é):

- V*(ﬂ*ht)(é) P, (X, Vy £)

a

_ *
-y #7h (X X )

= -Z ALY, .
k k'k
Thus equation (4.1.13) becomes
v*sﬂ(g) = #d_y + }d_y.(dt/ds) - a"(s) a'(s)

- as(a'(s))? - Z A (4.1.14)

We therefore obtain the equation
" ' 1 1 _
-4 - - =0, 4.1.
a (s)+ Asa (s) 2dt'y 2 o(3) (ds'y 2 E)\k'yk) (4.1.15)

as a condition of harmonicity. Proposition 4.1.12 below will show that the last term
in equation 4.1.15 is zero, and that we have indeed established that # is harmonic

if and only if equation (4.1.5) holds, ]
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Proposition 4.1.12  If #:M — N is S-equivariant with respect to isoparametric

functions s and t, then

(i) dgv - 2A v =0
(ii) dt‘yk + 2pjk‘yk =0,
foreach k=1, ..., p.

* —
Proof From Corollary 4.1.6, we see that for all xeM , ¢ I/ (x): }l/(x)_.'e/.(ﬂ(x))
7k k I
has constant energy density. Without loss of generality assume that M is Sm”1 and
N is SP-1 g0 that ,‘/k and 7’-] are small spheres (the other cases are similar).

Fix a level hypersurface My , and fix x & M. , and consider ¢
So So Y

0 | k(xo)’

n.
I/k (xO) g '7j (g (xo)). Rescale the map to obtain a map vk - s Tk , where
k

mk is the multiplicity of A, , and n], the multiplicity of yj. Then |d ¥ 2=a =

k’ k

constant.
From Remark 2.2, 10,.‘/k(x) is a small sphere of radius sin(s -(k-1)T/p) for

X E Ms’ andy‘]-k(y) is a small sphere of radius sin (t - (jk— 1)n/q) fory € Nt'

We therefore find that

¥ (5:) = a . sin’ (- (-1 T/q) /sin®(s - (k-1) /p).
Therefore
d_y, is,t) - - 2ol (kL) pleosie- ko) Wp)
sin®(s - (k-1)T/p)
. 2 i
. sin (t—(]k_l)n/q)ak
= - 2cot(s-(k-1)T /p)y, (s,t)
=22 o
and
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2sin(t -(j, -=1) W/q)cos(t-(j, -1)N/q. vy
k k k
dt'yk(s,t)

sin2 (t-(j, -1) /g
= 2cot(t-(jk- 1) /q) Yk

B -Z”ikyk . O

Remark 4.1.13 In fact condition (iii) can be removed in the definition of S-equi-

variance on account of Proposition 4.1.14 below. However, we retain it in the

statement of Theorem 4.1.8 in order to simplify the exposition.

Proposition 4.1.14 If ¢§: M — N is S-WFP, harmonic and satisfies conditions

(i) and (ii), then Eujkyk( = dt'y|t=a(s)) depends only on s.

Proof By the conditions on ¢,

<d(]to ¢s ¢ =0.
Let (Xa) be a local orthonormal basis on Ms’ adapted to the principal curvature spa-
spaces. Then, for each a,

0= Vx, <d(j o ¢s’t)(xa),n>

N
= <V,,. d(j,off (X ), n>
d(]tO ¢s,t) (Xa) t 's,t’ Ta

N
+ <d(]t0¢ )(X ), Vd( o¢ )(Xa)n>

= <Vdjt(d¢s t(xa)’dﬂs t(Xa)), n >

5 - U, j 4.1.16
+ <d(]t°¢s,t)(xa)’ B d(]t°¢s,t) (Xa) > ( )
k(a)
where Xa € Sk(a) say .
On the other hand § is harmonic, so Ag=0. But

0 =A¢
= trace Vd¢(dis,dis) + vdfg(t,t),
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and since vdg (£,¢) = A(s,t)n, where A depends onlyon s and t (t= o (s)) (c.f.
Lemma 4.1.2), then

trace Vdﬂ(dis, dis) = B(s,t) n, (t = a(s))

with B depending only on s and t. Now

Alf o iS) dﬂ(Ais) + trace Vdﬂ(dis,dis)

1]

C(s,t)n, (t = o(s))

where C depends only on s and t (since dﬂ(Ais) = D(s,t) n (t=a(s)), with D
depending only on s and t). Since # o is = jt o ¢s t(t = als));

A(jtoﬂs t) = E(s,t)n,(t=0a(s)),

with E depending onlyon s and t , i.e.

djt(Aﬂs,t) + trace vd jt(d ¢s,t’d¢ ) = E(s,t)7.

s,t
But ﬂs ¢ is harmonic, so that

trace djt(dﬂ d¢s ) = E(s,t)n.

s,t’ ,t

Whence, from equation (4.1,.16) , we see that ﬁ i Yy depends only on s and t,
k

with t = a(s). J

We now wish to remove the ""S'" condition on § ; i.e. we want to allow o with
a(s) € d It for s € int IS. Furthermore, we want to allow the possibility that ¢
covers N several times,

Suppose N is Sn'l, and t:Sn'1 - R is an isoparametric function of degree q.
Let f: Sn’1 - [-1,1] be the restriction of the standard homogeneous polynomial F
of Munzner's theorem (Theorem 2.2.5) giving s. Call § :M - st-1 wavefront

preserving (WFP) if

gn-1

(i)

=

s f

I R [-1,1] , commutes,
sq
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and (ii) dﬂ(VS)x = u(x)vt for some u: M - R, for all x € M, where

cosq: R - [-1,1]is given{i)(;():osq (t) =cosqt, for all t € R. Then Lemma 4.1.2
is still valid. I N is R™ or H? 1 we remove the function cosq, and Diagram (4.1.1)
applies. We may also wish to restrict a: Is - R to have fixed boundary conditions,
and to have values in a certain domain D C R (for example, we may wish to find har-
monic maps covering the sphere twice using isoparametric functions of degree 2, in
which case we would suppose «: [0,T/2] — [0,T]).

Suppose in addition, that we can define a map ﬂs : MS - Nf-l for all
’

t (cosqt)’

s € int Is’ and for all t € D\a(8 Is), such that gs,a(s) = ”IMS, and the curves

6S(t)(x) = ﬂs t(x), for each s & int Is and for each x EMS, satisfy

’

(d/db Gs(t)(x) = Vs(t)"ﬂ(x) )

for some function vy M* - R depending only on s.

Suppose for all x € M*, (i) dﬂ(Sk(X)) c Tjk (#(x)), for all k, and for some Jier

Lemma 4.1.14 I §: M - s™1 is WFP with respect to s and t, and satisfies

condition (i) above, then das,t (Sk(x)) - Tjk(ﬂs,t (x)) forall xe Ms and for all

k=1, ..., p.

Proof From the proof of Lemma 4.1.5; it is clear that projection along the integral

curves of £,n preserves the eigenspaces S T], respectively, provided that we do

k’
not project through a focal variety. However, for all s € int Is’ and for all
te D\a(als) , there existsa S < int Is with a well-defined projection pS:MS - M;

along integral curves of £, and a well-defined projection ot: Nt - along

N ~
a(s)
integral curves of . This is because all § < int Is are allowed, and there exists at

least one such § with N close enough to N,. Hence the map ¢s ¢ preserves

a(s) t° ,
the principal curvature eigenspaces. D
If furthermore (ii) ﬂs ¢ is harmonic for all s € Is and for all teD\(a(d IS) ),

and (iii) -yk(s,t)(x) = trace S (%) h(dﬂs ¢ ,dﬁs t) depends only on s and t, for

each k=1, ..., p; we call § equivariant with respect to s and t.

Now locally, we can consider an equivariant map ¢ as being S-equivariant, by

considering t as varying in an interval of the form [11/q, (1+1) I1/q ] (in the case N
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is a sphere), for some 1 =0, ..., q - 1. Since the proofs of Theorem 4.1.8 are
local in nature (one works in a sufficiently small domain about each point) ; it is clear

that Theorem 4.1.8 is also true for equivariant maps. Thus

Theorem 4.1.15 If §:M — N is equivariant with respect to isoparametric functions

s and t, then # is harmonic if and only if

p
1
a'"(s) + Asa(s) + T p; =0, (4.1.4)
k=1 "k Yk
for all s < int Is’ if and only if
o''(s) + osa'(s) - édt'y(s,oz(s)) =0, (4.1.5)

for all s & int IS.

Remark 4.1.16 Equations (4.1.4) and (4.1.5) are valid for s ¢ int Is; it is con-

ceivable (and often the case) that the equations become singular for s € 9 IS, that is

lim_. As and lim (Z p; vk ) are infinite. In this case, one looks for a re-
s~ ¢elg s =2 Ig Ik

parametrization of the equations so as to remove the singularities.

Remark 4.1.17 Given §:M* — N* which is S-equivariant with o satisfying equation

(4.1.4); it is sometimes possible to extend @ to a smooth map §:M - N. For

example, this is the case for the Smith maps of Section 1.3.

4.2 Generalized equivariant maps between Riemannian manifolds.

Let M,N be connected Riemannian manifolds each admitting a generalized family

of isoparametric hypersurfaces (Mc)c c1’ (N d) respectively. Let M* be the

d=J
union of the hypersurfaces of M; M* = U Mc’ then M* has a topology induced from
cel

that of M. Let M:M* — I be the projection, then I inherits a topology from M*
with respect to which it becomes a set of open intervals. As before we can define a
metric on I with respect to which TT becomes a Riemannian submersion (M* has the
metric induced from M). We can add in appropriate end points to the intervals I
corresponding to focal varieties, to obtain a closed, half-closed or open interval (or
possibly a circle in the case that M is a torus or Klein bottle c.f. Section 5.1 (iii)).

Similarly we can define N* and the projection map o: N' - J.

65



Suppose that the generalized family of isoparametric hypersurfaces (Mc) cel is
defined by a function f on M, and furthermore, that f admits a reparametrization
= s(f) such that |Vs |2 = 1, then we say that the generalized family of isopara-

metric hypersurfaces admits a unit speed reparametrization.

Iet §: M = N be a map between Riemannian manifolds which admit generalized

families of isoparametric hypersurfaces (Mc )c c1’ (N d) de J respectively, both of

which admit unit speed reparametrizations. The notions of § being wavefront pre-
serving and equivariant can be defined as in Section 4.1 (by making the definitions
locally). Lemmas 4.1.2, 4.1.3, 4.1.4 and 4.1.5 all remain valid. Similarly the
proofs of Theorem 4.1.8 (replacing equation (4.1.5) with equation (4.1.15)) remain

valid, and we obtain

Theorem 4.2.1 If §: M — N is equivariant with respect to the generalized iso-

parametric functions f: M - R and g: N — R, where f and g admit unit speed

reparametrizations s and t respectively, then ¢ is harmonic if and only if

P
"s) + Asa'(s) + T =0, 4.2.1
a'( o Zs p,k‘yk ( )

for all s € int IS, if and only if

a'"(s) + Asa'(s) - zd, v(s,a(s))

1 I
—_—— - > - . .

for all s € int IS .

Remark 4.2.2 Proposition 4.1.12 is no longer necessarily valid; however it can

be proved directly that equations (4.2.1) and (4.2.2) are equivalent.

Proposition 4.2.3 With the notations defined above and in Section 4.1; if § is

equivariant ;
! . = - 4 (
o (s) ’J]k Yk )‘kyk zdyk(s,t) (£), (4.2.3)

for each k=1, ...., p.

Proof Let (Xa)lﬁai dim M-1 be a local orthonormal frame field on M, and suppose
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that (in) 1<icmy forms an orthonormal basis for Sk at each point (mk = dim Sk).

Then, for each k,

_ * M
NV T ? g h(in, ka‘i)
i

_ M
= _ %: <d¢(in), dﬂ(VXk' £)>
i

N
= d d . -
‘iL‘< ¢(in),V ¢(in £) Vdmxki)dﬂ(ib

= 0'(5) Iij -yk + ?<d¢(in),Vd¢(Xkl,£)>.

But

T <df(Xy.),VdB(Xg ,£)> = £<df(X,),df (VX ) + vV, dF(Xy.)> .
i i i i i £ Ki & i

Since the functions are isoparametric, projection down the integral curves of ¢

preserves the S spaces. Thus, if 6(u) is an integral curve of ¢, then we can choose

k

our frame field (in)i _ such that G(u)*in is proportional to in. Thus

1, ceen My

<z : Xy, is proportional to Xy for each i; but kaig =\ X, » therefore Vg X is

proportional to in .

But 1= g(in,in), thus Vg in = 0. Thus we obtain

§<d¢(in),Vd¢ (X2 £)> = Z<dpX,).V, dg Xk, )>

3
= 3dy (&). O
Since dyk(g) = ds-yk + dt yk(dt/ds); we see that equations (4.2.1) and (4.2.2)
are indeed equivalent.

Remark 4.2.4 Remark 4.1.17 applies equally for maps @ satisfying equation (4.2.1).

The theory of this chapter is best illustrated when applied to specific examples.
With each example, the qualitative features of the above theory can be very different.

We shall see how to adapt Theorem 4.1.8 in the next chapter. We shall leave the
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application of Theorem 4,2.1 until Chapter 9, where we consider deformations of

metrics.
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5 Examples of equivariant maps

5.1 Maps from Euclidean space to the sphere

First of all we prove a lemma which will be useful throughout this chapter.

Lemma 5.1.1 Suppose f:M - R is a smooth function on a Riemannian manifold M

with 1df (2 = tbl(f), Af = wz(f) for some smooth functions zbl and zl)2. Then,

given an equation of the form

o (£) 112 + o) Af = v(f) , (5.1.1)

for some smooth function ¥ ; under reparametrization u = u(f), u'(f) # 0, equation

(5.1.1) remains invariant - that is, writing g(u) = a(f(u)); equation(5.1.1)becomes

g w) 1dui® + pl(w)Aau = (),
where ¥ (u) =d(f(u)).

Proof We can write f as a function of u,f = f(u):

g'(u) = o' (£) £ (u)
g"w) = o"(H)f' (W2 + o'(Hi'"(u) .
Also
1df12 = £' (w2 1du 2
af = £ 1dui? + f'(wau.
Therefore
"1t + o't = —— (8"(w) - g ) S8 £ w)? idu?
£' (u) f (u)

+ {%—(% (" (w) 1du1Z + £'(u) Au).

= g"(u)1dul? + g'(u) Au. 0
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Example 5.1.2 Let #: R™ — S™ be defined by

g (s.x) = (cos a(s), sin a(s).x) ,

where x f-?Sm'l, s € [0,0 ) and o(0) = 0. The map § is equivariant with respect to
the isoparametric functions s and t, where s(so.x) = SO’ for all s0 € [0,) and

X & Sm'l, and t((costo, sint_.x) = tO’ for all toc—‘ [0,M and x € S™M-1, The square

0
of the norm of the derivative of s and the Laplacian of s are given by

dsi® = 1, As = (m-1)/s , (5.1.2)
and y(s,t) = Idfis tI2 is given by
.2 2
v(s,t) = (m-1),sin" t/s" . (5.1.3)

From Theorem 4.1.8; § is harmonic if and only if

(m-1)

2
s

a''(s) + a'(s) - . sin a(s)cos a(s) = 0. (5.1.4)

(m-1).
S

This equation is singular at s = 0, and we remove the singularity with a suitable sub-
stitution. Using Lemma 5.1.1 we make the substitution u = u(s), where u is given

by e =s. Then
[dul? = l/e2u s
and
Au = (m -2 )/ez"l s
whence equation (5.1.4) becomes
a'"(u) + (m-2)a'(u) - $(m-1).sin2 a(u) = 0 , (5.1.5)

where u €(-w,w), andasu —- - o; a(u) - 0.
Equation 5.1.5 is a well-known equation - namely the equation of a pendulum with
constant gravity and constant damping. The variable u measures time, and @ = 2 o

is the angle the pendulum makes with the upward vertical.
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gravity

We require an exceptional trajectory satisfying equation (5.1.5), such that the
pendulum is just standing vertically upwards at time u = - « .

The solutions of the pendulum equation are well-known, see for example [23,
p.183&p.196]. Consider first the exceptional case; m = 2. Then the damping is
zero - a good treatmentof this case is to be found in [ 4, Section 6.3 ]. For each
uo € (- =, ), there is a unique solution to equation (5.1.5) with initial conditions
a(uo) = a _ and a'(uo) = oz'o, for all a, € [0,2 1] and for all a;) € R. Choose

0

@) = /2, then if
(i) a(’) = 1; the solution ¢: R - R is strictly monotonic and has image (0, Mwith

lim @(u)=T1 and lim a(u) =0. Infact o(u) = sin~1 tanh(u-uo) - this solution

u—co U—+ -
is called critical. _

(ii) a;) < 1, then @: R - R is oscillatory with image contained in a closed sub-
interval of (0, T).

(iii) a;) > 1, then the solution ¢ is strictly monotonic increasing and surjective
onto R.

In order to obtain a smooth harmonic map we choose the critical solution (i), giving
amap §: RZ - Sz, covering s2 except for the one point (-1,0). Note in fact that
we have a 1-parameter family of maps corresponding to the choice of ozo. That the
map @ so constructed is smooth at 0 € R2 is demonstrated in Chapter 6.

In the case when m > 2; the damping is non-zero. For each u_ ¢ (~«,«), and for

0
each a(uo) = ao ; there is again a critical solution with lim  a(u) = 0. However,
u—-oo
in this case lim af(u) = T/2, corresponding to the pendulum hanging straight down.
u —~oo

In fact the pendulum does not reach the upward vertical on its first upward swing,
and performs decreasing oscillations about the downward vertical position. As in the

case when m = 2, the map §§ is smooth across the point 0 € R m
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Such solutions have been considered by J.C. Wood [42 ], in connection with the
Dirichlet problem for the Euclidean disc, where he shows that there is no map from
the Euclidean disc tolthe sphere of the above form with OIO > T/2 + sin"ltanh (Km) s
where Km =(m-1)2/(m - 2),

Similar considerations apply to the map g: R™ - gt given by

g (s.x) = (cos al(s), sin a(s).g(x)}, a(0) =0

for all x Gsm'l, s  [0,), and where g: sm-1 SP-1 js harmonic of constant
energy density. The corresponding reduction equation has the same form as equation
(5.1.5) but with a different value for the gravity. The qualitative behaviour of the

solutions is the same as for the case when g is the identity map.

Example 5.1.3 Let §:R™M - S™ be defined, for each integer k, by

g((x,sy)) = (cos a(s).eikx, sina(s).y) , (5.1.6)

with a(0) =0, where x e R, y csm-2 ,m>3andsc[0,~). Then@ isequivariant with
respect to the isoparametric functions s and t, where s((x,soy)) = SO’ for all

s,€[0,=), xE R and y € S™-2  and t((cos to-u,sin to. v =t , for all t € [0,1/2],
ucs! and v esm- 2. The square of the norm of the derivative of s and the Laplacian

of s are given by

dsi2 =1, As = (m-2)/s , (5.1.7)
and vy (s,t) is given by

y(s,t) = kzcoszt + (m - 2)sin2t/s2 . (5.1.8)

From Theorem 4.1.8, § is harmonic if and only if

. 2
m=2) i) - Um=2)- ).

2
s

o''(s) + sin a(s) cos a(s) = 0. (5.1.9)

This equation is singular when s = 0, and so, using Lemma 5.1.1, we make the sub-
stitution u = u(s) where eu = s, to give the equation
" [ 1 2 2u .

a(u) +(m-3)a (u) - 2((m-2) -k .e" ).sin2a(u) = 0, (5.1.10)

where u ©(-w,o ) and lim a(u) = 0.
u——co
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Equation (5.1.10) is that of a pendulum with constant damping and variable gravity.
As in Example 5.1.2, u measures time and & = 2¢ is the angle the pendulum makes

with the upward vertical.

Ql

gravity

gravity

For each u0 € (-e0,), there exists a unique solution a(ao,a(;) to equation (5.1.10)

with prescribed initial conditions a(uo) = ao and a'(uo) = az), for all ao €(0,1/2)
and for all ozo' € R. We look for exceptional solutions such that the pendulum is just
standing vertically upwards at time u = - «. We demonstrate the existence of such
non-trivial solutions in Chapter 6.

Note that we have a 1-parameter family of solutions depending on our choice of e
Different choices of ao lead to qualitatively different solutions. To see this we first

of all state a comparison theorem for second order equations.

Theorem 5.1.4 [9] Let pi' and ki be continuous on [a,b], i =1,2, and let

0 < p2(u) < pl(u)

> -
kz(u) > kl(u), uela,b].

Let Li be the operator Liv = (piv') "+ ki V. _I_f_fi is a solution of Lifi =0, let
- tan-1 ' c
w, tan (fi/pifi ). If wz(a) > wl(a) , then wz(u) > W, (u) for all u e [a,b].

Moreover, if k,(u) > kl(u) on (a,b), then wz(u) > wl(u) for a<uc< b,
To apply this, write equation (1.3.7) in the form
o"(u) +h(u) o'(u) + g(u)sin2 a(u) = 0.
We can write this in divergence form:
La=(pa) +k a=0,

where
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u
p(u) = exp ([ (h(s)ds)
tuo

ka(u) = g(u) sin 2 a(u) p(u) /a(u) .

Proposition 5.1.5 If @ is chosen close enough to 0; the solution o never

covers the sphere.

Proof Let u1 be the time such that

m-3)2 = 2%.e2%1 - (m-2)) - A,

for some fixed A > 0 (such a u1 always exists), and let al = a(ul). Then al de-
pends continuously on 00 and ozo' (c.f. [9]). As ao - 0; a(; - 0 and a - 0,

since in the limit ao =0, a(; = 0 the solution is trivial. Thus there exists % such

that a < N/4. Consider the equation

8"(u) +bo6'(u) + cou) =0 , (5.1.11)
with b=(m-3) and ¢ = k2. e2u 1 -(m-2). Given the initial conditions G(ul) =oz(u1)
and 6 '(ul) = a'(ul), this has a periodic solution with period I'= 21/(4c - b2 ) =2T/A.

Choose ao such that there exists u2 with u2 > ul, I < u2

o (u2) < T/2. Then over the interval [ul,u2 ], we can use the comparison theorem

_ul anda.z =

(Theorem 5.1.4). Since the gravity of the equation (5.1, 10) dominates that of equa-
tion (5.1.11) over the interval [ul,u2 ]; Theorem 5.1.4 shows that wl(u) _>_w2(u)

for u € [u,,u, ], where w, = tan‘l(a/pla') and w, = tan~1( 6/p25'), where p, and
p2 are defined as in Theorem 5.1.4. In particular w, passes through 11/2 if w2
does ; i.e. o' has become zero and the solution turns. Since the gravity is now in-

creasing, the solution o will make decreasing oscillations, and lim a(u) = 0. D
u —-oco

In contrast to Example 5.1.2 we can show that

Proposition 5.1.6 I (m-3)2 < 4(m-2), i.e. m=3, ..., 7; then there exist

solutions covering the whole sphere.

Proof We take it as given that for each ozo (0, 1/2), there is an ozo' with a(ao,a(;)
asymptotic to 0 as u — - «, This will be shown in Lemma 6.1.4 and Lemma 6.1.5.

Furthermore, the solution « is strictly decreasing as u decreases from u 0 We
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show that a(; is bounded away from 0 as a, = /2. For in this case, the solution
a(ao, oz;)) will continue past T/2 as u increases from u, if % is chosen close
enough to /2.

Suppose there is a sequence aon - T/2 such that ozo'n — 0. Since in the limit
o = N/2, oz' = 0 the solution is trivial; we can assume uo to be arbitrarily small,

i.g. for any l?l, Q’(Ol(l; ,oz(;n)(ul) - T/2 as o - /2 (the solution depends con-
tinuously on the initial conditions). Let a= o oz;l ,a’ n) be a solution of equation
(5.1.10), where n is chosen sufficiently large. Make two substitutions into equation
(5.1.10): firstly let 6 = M/2 - @, and secondly let v = - u. Equation (5.1.10) then

becomes
6"(v) = (m-3)6"(v) - 3((m-2) - kZe 2"). sin2 6(v)
Consider the equation of the harmonic oscillator:
g"(v) = (m-3)p'(v) - MB(v),

where M is chosen such that ((m-2) - k2 e2u) sin26/26 - M > 0 on a suitable

interval [vo,vl ]with the period of g <v_ - vo(v0 = uo). Let B have the same initial

1
data as 6 at v, and let w=6'g-6pg'. Then

W' = 6B (m-3)¢( 6— - .&.) + (M_((m_z)_e-Zv) Sin26)
6 B 26
wilvy) =0, wive) = 0.

Provided 6'/6 < B'/p(i.e. w < 0) with 6.8> 0, we have w' < 0. Also as long
as w' <0 we have w < 0. Now look at the first zero of g on [vo,v1 ]l We must
have ﬁ' 6 > 0 here since w < 0, which implies 6 has a zero on [VO’Vl ]. This is
impossible since 6 is strictly increasing and > 0. O

If we continue following the qualitative behaviour of the solution considered in the
proof of Proposition 5.1.6, we see that since the gravity changes for u > u 0’ the
pendulum now moves under the influence of an upward gravity force past o= 1I.

The gravity now increases and continues to have the same sign. If a;) is small

enough, the pendulum will perform ever decreasing oscillations about o= TI.
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gravity
gravity

~—_ %
Conceivably, there may be a certain a;) such that the trajectory is exceptional and
reaches 3T/2 as u—w, If a(; is large enough the pendulum could make several ro-
tations before tending to its equilibrium position.

Similar conditions apply to maps §: R m Sn of the form

#((x,s.y)) = (cos a(s).eikx, sina(s).g(x)), a(0) = 0,

where k is an integer, s € [0,0), x € R, y € S™2 and g:S™ 2 -~ $2 jghar-
monic of constant energy density.
Again all the above constructed harmonic maps are smooth across the focal varie-

ties (c.f. Chapter 6).

Example 5.1.7 [11] Consider the map § : RZ -~ s2 given by

g ((x,s)) = (cosMs).eikx, sina(s)), a(0) = 0, (5.1.12)
where k is a non-zero integer, s €(-«=,o)and x € R. Then § is equivariant with
ldsi2 =1, as-=o0,
and
v (s,t) = k2.coszt.
Equation (4.1.5) becomes
a''(s) = k2. sin a(s). cos a(s) . (5.1.13)

This equation has a periodic solution in terms of elliptic functions, and the map ¢

factors to produce a harmonic niap from the torus to the sphere.

5.2 Maps from hyperbolic space to the sphere
Example 5.2.1 Let § : H® — S™ be defined by
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@ ((coshs, sinhs.x)) = (cosa(s), sina(s).x), a(0) = 0. (5.2.1)

where x € Sm'1 and s € [0,). Then @ is equivariant with respect to the isopara-
metric functions s and t, where s: H® - R is given by s((cosh sO,sinh so.x))=so,

and t: S™ — R is given by t((cos tO’ sinto.x)) = tO. From Lemma 1.6.1, we

obtain
1ds12 = 1, As = (m-1).coths ,
and vy (s,t) is given by
. 2 L 2
y(s,t)= (m-1). sin" t/sinh" s .
From Theorem 4.1.8, @ is harmonic if and only if

(m-1)

o' (s) + (m-1).coths.a'(s) - . sina(s)cosa(s) = 0. (5.2.2)

sinh™ s
This equation has a singularity at s = 0, and so we make the substitution u = u(s),
u .
where e = sinhs. Then

u

)/e

lduiZ = (e" +e™

and
Au = (" + (m-2)" +e™M)/e"

whence, from Lemma 5.1.1 the reduction equation becomes

o) + - et s m-2) e+ e o) -2 sina(u)cosatu)
e +e e(e +te )
=0, (5.2.3)

where u €(-w,o) and lim a(u) =0,
u—-c0

Equation (5.2.3) is that of a pendulum with variable gravity and variable damping.
The graph of the damping has the form :
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(m-1)

(m-2)

u=-o U= w
and the graph of the gravity has the form

(m-1)

Uu=-w u= o

We look for an exceptional solution with the pendulum just standing up on end at
time u=- o, As for the Euclidean case; we have a 1-parameter family of such solu-
tions with the resulting map smooth across the point s = 0. However, the asymptotic
development of these solutions as u -» «is not known.

Similar considerations apply to maps @#: H® — So of the form
¢ ((coshs, sinhs.x)) = (cosa(s), sina(s).g(x)), a(0) = 0 , (5.2.4)

where s €[0,x), X eSm'l and g: sm-1 . gt-1 j5 harmonic of constant energy

density.

Example 5.2.2 Let #:H™ — S™ pe defined, for each integer k, by

p((coshs.x, sinhs.y)) = (cosa(s).eikx, sinwo(s).y) , (5.2.5)

a(0) =0, where x GHI, y es™2 and s e [0,). Then ¢ is equivariant with respect
to the isoparametric functions s and t, where s:H™ - R is given by
s((coshs .x, sinhso.y)) = sO, for all S0 €l0,x),x Hl, y csm-2 , and

0
t:S™ - R is given by t(cost _u, sinto.v)) = tO’ for all to efo,n/2],u <—:S1 and

0
v € sm-2 . From Lemma 1.6.1 we obtain

Idsi2 = 1, As = tanhs + (m-1)coths ;

also vy (s,t) is given by
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y(s,t) = kzcoszt/coshzs + (m-2)sin2t/sinhzs.

From Theorem 4.1.8, § is harmonic if and only if

" ] . m-1 k2
o (s) + (tanhs + (m-2)coths)a (s) - sina(s)cosal(s - 5 F 0.
inh s cosh s
(5.2.6)
This equation has a singularity at s = 0, and so we make the substitution u = u(s)
where e = sinhs, to give the equation
a'(u) + u_lTu . 2e + (m-3)(e" + e-u)) o' (u)
e +e
-sin @(u) cos o (u) (m-1 k2 )
& o il =0, (5.2.7)
u -u u u -u
e +e e e +e

where u €(-o,0) and lim «a(u) =0.
u— -

Equation (5.2.7) is the equation of a pendulum with variable gravity and damping.

The damping is given by the following graph:

(m -1)
(m _ 3) —_‘—’/—-—_—
U=- o U= o
and the gravity by the graph
u=- oo u= oo
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As in Example 5.1.3, we have an interesting 1-parameter family of non-trivial
solutions with the pendulum just standing up on end at time u=- «, and smooth across
the point s = 0. By similar arguments to those of Proposition 5.1.5 we can show
that, provided k is large enough, there exist solutions which turn before a(u) = /4
is reached. However, the qualitative aspect of the various solutions as u — « is not

yet known.

5.3 Maps from sphere to sphere.

Example 5.3.1 The maps of Smith described in Section 1.3 are examples of equi-

variant maps between spheres. Then ¢ : sm-1 . gn-1 g given by
g ((coss.x, sins.y)) = (cosa(s).gl(x), sinoz(s).g2 (y)), (5.3.1)

with @ (0) =0 and o(1/2) =T/2, where x € SP~1, y qu—l, p+q=m, sc[0,1/2]
and g sP-1l . gr-1 ) By se-1 . s5°1 are both harmonic with Id g 12 = a, con-
stant, i = 1,2, Using Lemma 1.3.4 we obtain

ldst?> = 1, As = (q-1)cots - (p- 1) tans .
Also

2 .2
(s.t) = cos t a + sin t a
Y N _2 . 1 _‘ P .
cos s sin' s
From Theorem 4.1.8 we conclude that @ is harmonic if and only if equation (1.3.5)
is satisfied. A more detailed consideration of this example is to be found in Sections
1.3 and 1.4.

Example 5.3.2 Let f: 82n+1 - R be the isoparametric function of Example 2.3.5.

Recall that the level surfaces MS are parametrized by the sets {elo (coss.x +

isins.y) € ¢n+1 ; <€ [0,21], (x,y)E S }, for each s €[0,1/4]; in fact MS is

n+1,2
. . 1 s 0 s . . -
isometric to S° x Sn 41,2 /S", where Sn+1, o 18 the analytic submanifold of
+ +
Rn 1 ® Rn 1 defined by the set
S _ : — gt n+l — 1
Sn+1,2 {(coss.x, sins.y)e R e R ; (X,y)€ sn+1,2‘ .
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Define #: S0 = &% by

ﬂ:(ew (coss.x + isins.y)) = (cosa(s), sina(s).eZiko) , (5.3.2)

where k is some non-zero integer, o(0) =0 and «(T/4) = 1. Then ¢§ is S-equi-
variant with respect to the isoparametric functions s and t, where s: 82n+1 - R
is given by s(eie (cosso.x + isinso.y)) = SO’ for all s0 c€(o,1/4], 8 € [0,2T] and
.u)) =t_, for all

n+l, 0 0
to = [0,M] and u eSl. The principal curvatures of Ms are -cot s, -cot(s - 11/4),

(x,y)e 8 9 and t: S2 - R is given by t((costo, sint

-cot(s - T/2), -cot(s - 31/4) with multiplicities n-1,1,n-1, 1 respectively, hence

1-tans _ 1 +tans
1 +tans 1 - tans

As = -(n-1)tans + (n-1)cots + . (5.3.3)

Also
y(s,t) = 4k2 . sin2t .
From Theorem 4.1.8 we conclude that ¢ is harmonic if and only if

1 - tans 1 +tans '
" - - + - -
a'"(s) + (-(n-1)tans + (n-1)cots + 1 tans 1 —tans ) a (s)

- 4k2 sina(s)cosa(s) = 0, (5.3.4)

with @(0) =0, and «(T1/4) = 7. This is singular at s = 0, 11/4, and so make the

substitution u = u(s), where eu =tans/(1 - tans). Then

tdu? = (1+2¢" + 2¢2%)/e2" |, and (5.3.5)
u, 2 2 u u
pu = e +eu)[2(1+eu) _lf2  m-le
2u u u
e e 1+e
(1+e%) 1 u
+ (n-1) + - (1+2e) ] . (5.3.6)
u u
e 1+ 2e
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Using Lemma 5.1.1, equation (5.3.4) becomes

u +9al u
o' (u) + —'—'e-u——— [2(1 +eu) - leﬁe -(n-l)lf +(n_])&+§~u)
(1+2e +2e" ) 1+e e

2 2u .
po 2 _(1+2eY) ] o) - 4k”e ls;moz(uz)'.lcc;sa(u) -
1+2e (1+2 + 2°)

(5.3.7)
where u €(-w,), lim a«@(u) =0 and lim a(u) =1I.
u—>- oo u —>o0

Equation (5.3.7) is that of a pendulum with variable gravity and damping.

Damping. Gravity.

U==-o u

[} U=-—oco § u =o0

As before @ = 2o measures the angle the pendulum makes with the upward vertical.

gravity

We look for an exceptional trajectory such that the pendulum starts at the top at
time u=- «; makes one circuit, and just reaches the top again at time u =». Itis
not known whether or not the equation has such a solution - we would certainly expect
a solution in the case n = 2 due to the symmetric appearance of the gravity and dam-

ping. It has been pointed out by R. Wood that these maps are all homotopically trivial.

Example 5.3.3 Let f: 32n+1 — R be the isoparametric function of Example 5.3.2.

s 2
4,2 — S by

s
Consider the case when n = 3, and define a map #°: S
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S
= - + - + - + - +
(/] ((x’y)) Sin2s ( lez yzyl X3y4 X4Y3, x1y3 X3Y1 X4y2 x2Y4,

- - +
x1y4+x4y1 X,Yq x3y2), (5.3.8)

4 2 2
where x = (xl, ...,x4),y=(y1, ,y4)GR s |x|2=cos s, |y|2=sin s and

<X,y >=0. Then

2
18512 = (4/sin”28) (Ix 12 1y 12 - <x,y>2),

so that ﬂS(SZ 2) C Sz. Furthermore, one can show that ¢S is onto (see Example
8.2.1).
Consider the point p = (coss(1,0,0,0), sins(0,1,0,0) Si 9 and consider the

following curves through p in SZ 9 (see Example 2.3.5):

31 (u) = (coss(cosu,0,0, sinu), sins(0,cosu,sinu,0))

Bz(u) = (coss(cosu,0,sinu,0), sins(0, cosu,0,sinu))

B3(u) = (coss(cosu,0,0,sinu), sins(0,cosu, -sinu,0))

ﬁ4(u) = (coss(cosu.0,sinu,0), sins(0,cosu,0,-sinu))

p (u) = (coss(cosu,sinu,0,0), sins(-sinu, cosu,0,0)) , (5.3.9)

The tangent vectors to these curves at u = 0 span Tpsf1 9 and are all orthonormal.

The acceleration vectors at u = 0 are all perpendicular to TpSi 9 in Tp(B4 ® B4) ,
s ,
S4’2

i.e. the curves are geodesic at p (that is V B'(0) = 0 when g is one of the

B'(0)
curves (5.3.9)). Under g5 the curves map to
al(u) = ¢soﬁl(u) = (-cos2u, -sin2u,0)
8% 0 (W) = (-1,0,0)
#° 0 p(u) = (-1,0,0)

oz4(u) =¢%0 34(11) (-cos2u,0,sin2u)

(-1,0,0) . (5.3.10)

g5 o p(u)

=

From this we deduce that #° is a harmonic Riemannian submersion, and in particular
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#% has constant energy density equal to 4.

Define a map #: S’ — s3 by

[} (eia(coss.x+ isins.y)) = (cosa(s),sina(s).f( (cossx, sinsy)) ,

(56.3.11)
with @(0) =0 and «(T/4) = 1I. Then § is S-equivariant with respect to the isopara-
metric functions s and t, where s: S — R is given by s(ew (cos So°X + isin sO.y))
= SO’ for all so c[0,n/4], 8= [0,2MT]and (x,y) € S4’2 , and t: s~ R is given by
t((cost , sint .u)) =t , forall t & [0,Mand u €S2, The function y (s,t) is given
by

y(s,t) = Bsinzt.

From Theorem 4.1.8 we conclude that # is harmonic if and only if equation (4.1.5)
is satisfied; this equation is precisely the same as equation (5.3.7) with n=3 and

k = (2)% . It is not known whether this equation has a solution or not. Neither do we
know which homotopy class of I‘I7(S3) = ZZ’ ¢ would represent.

Similarly we can define submersions from Sg’ to S* and from Ssi 5.2 to S8, to
give maps representing a class in 1115(85) = z6 and 112 9(S9)respectively .
Example 5.3.4 Let f: g2n+l | R be the isoparametric function of Example 5.3.2.
Consider S5 and the map ¢S: sS 2 R of Example 5.3.3. Define fi:S7 - S4,

4,2 4
for each integer k. by

¢(ei0(coss.x + isins.y)) = (cosa(s).emko , sina(s).¢s(coss.x,sinsy)) ,
(5.1,12)
where @(0) =0 and a(T/4) = 11/2. Then @ is S-equivariant with respect to the
isoparametric functions s and t, where s: S7 — R is as in Example 5.3.3, and

t: st . R is given by t( costo.u,sint .V) =t0, for all to €f,n/2], u esl and

ve 82 . °
Ilet pe s7 be the point p = eio (cosse1 + isin se2), where (ei)i=1 4 are
the standard orthonormal vectors in R4. Consider the geodesic curve ’u’i.r; é7 ;
v(u) =ei"l (cosse1 + isinsez). Then, in Example 2.3.5, we saw that v(u) inter-
sects Si’z at an angle of 2s - T/2 and in the plane spanned by v'(0) and p '(0),
where p is defined as in Example 2.3.5 (c.f. Lemma 2.3.7). By choosing an
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orthonormal basis to Ms at p defined by tangent vectors to the curves (5.3.9); we

find

2 2
cos t.4k .2
y(s,t) = - + 8sint. (5.3.13)

cos 2s
From Theorem 4.,1.8; @ is harmonic if and only if

1-tans _ 1 +tans) '(s)
1 +tans 1-tans ©

o''(s) + (-(n-1)tans + (n-1)cots +

) 4k2
- sin o (s)cosa(s). - 3 R (5.3.14)
cos 2s
where n=3, s [0,11/4], a(0) =0 and a(1/4) = TI/2. This equation has singula-
rities at s = 0, 1I/4, and we reparametrize it using the parameter u = u(s) where

e = tan s/(1-tans). Using Lemma 5.1.1 we obtain the equation

u u u u
+ - +
L - eu _ [ a1sety - L l21e _ (m-pe’ | (n_l)l_ue_
(1+2e +2e ) e 1+e e
1 u 1 .
 — - (1+2e )] o (u)-sina(u)cosa(u)x
u
1+2e
8e2u 4k2'32u
— w2 - w3 | (5.3.15)
(1+2e + 2e° ) (1+2e)

where u € (-e0,0), lim =~ @(u) =0 and lim a(u) = 1/2.
u —+>-c u—o

Equation (5.3.15) is that of a pendulum with variable gravity and damping (& = 2«

measures the angle the pendulum makes with the upward vertical).

Damping Gravity
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The gravity has a negative component only if k = -1,1. We would require an ex-
ceptional solution with the pendulum just standing up on end when u = - «, and hanging
straight down when u = «, We would expect such a solution for k = -1,1, since then

the gravity has a balancing effect.

Example 5.3.5 (This example was suggested to me by H. Karcher ):

Let f: S™ 1 _. [-1,1] be an isoparametric function on S™~1 | defined as the
restriction of a homogeneous polynomial F of degree p on R™ (c.f. Theorem 2.2.5),
If the multiplicities of the distinct principal curvatures are equal; the polynomial is

harmonic. Then we can normalize F such that

IWFx)1Z = x1?P~2, forall x ¢ R™ (5.3.16

In this case the map § = VF lsm'l defines a harmonic polynomial map from gm-1

to Sm'l. That discovery was made by R. Wood [43]. Suppose now that the multi-

plicities of the distinct principal curvatures are not necessarily equal.

Proposition 5.3.6 Let ¢ be defined as above, where F is now any polynomial

satisfying the conditions of Theorem 2.2.5, then ¢ is equivariant with respect to

the isoparametric functions f on the domain sphere and f on the range sphere.

Proof (due to H. Karcher) We can express each point x € R™ in the form
Xx=r.e,

where r € [0,») and e €s™-1 Then F(r.e) = rpf(e), and so
(1/p) VF (e) = f(e).e + (1/p) Vi(e) . (5.3.17)

let M 0 f-l(o) be the minimal hypersurface (any choice of hypersurfaces will do).
Let e(s) =e.coss + ge sins, where e C—‘MO, ge is the unit normal to Mo at e, and

s €[-n/2p, 1/2p]. Then

f(e(s)) = sinps, (5.3.18)
and

v f(e(s)) = pcosps.e'(s) . (5.3.19)
Also

e'(s) = -e.sins + £ -cOSS (5.3.20)
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so

<vf,e > = p.cosps . (5.3.21)
and
(1/p) VF(e(s)) = sinps.e(s) + cosps.e'(s)
= sin(p-1)s.e + cos(p-1)s. ge . (5.3.22)
The result now follows from equation (5.3.22). D

Remark 5.3.7 If we let s € [-T1/2p, T1/2p ] represent the affine geodesic parameter,
so that f = cosp(s+T1/2p) . Then s =- T/2p and s = 1/2p correspond to the focal

varieties, and s = 0 corresponds to the minimal hypersurface. Now

1]

g (e(s)) sin (p-1)s.e + cos(p-1)s. ge

cos(-(p-1)s + T/2).e + sin(-(p-1)s+ N/2. E‘e . (5.3.23)

So that under the map @, the minimal hypersurface is mapped onto a focal variety
and (a) if p is odd, both focal varieties are mapped onto a single focal variety, and
(b) if p is even, both focal varieties are mapped to themselves. If we allow a re
parametrization of the map as in Theorem 4. 1. 15, then the function o is such that
o: [-1/2p,N/2p] — [1/2p, (2p-1) N/2p] with o (- T/2p) = (2p-1) 1/2p and
a(1/2p) = W/2p.

From Theorem 4.1.15, # is harmonic if and only if the corresponding reduction
equation is satisfied. In the case when the multiplicities of the distinct principal
curvatures are equal and F is harmonic, then §§ is harmonic and equation (4.1.5)
is satisfied. In fact from equation (5.3.23) one sees that a(s)=- (p-1)s + /2 is
the solution. More generally, suppose p=4. We will try to find ano: [-11/8,11/8 ] —
[(n/8,7 M/8] with o (-T1/8) = 711/8 and a(11/8) = TI/8 satisfying equation (4.1.5). We
remark that equation (4.1.5) is no longer that of a simple pendulum.,

Recall from Remark 2.2.10 that the principal curvatures are - cot(s + 1/8),

-cot (s-T1/8), -cot(s-3T1/8) and -cot(s-5 1I/8) (remembering that s is now para-
metrized in the interval [-T1/8,11/8 ] instead of [0,11/4]), with multiplicities m_,m_,

1" 2

m1 ,m, respectively. Thus
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. 2 .2
y(s,t) = m sin® (t+ M/8) + o S0 (t- 11/8)

sin2(s+ n/8) sinz(s-n/s)

sin? (t-311/8) o sin2 (t- 511/8)

> ) , (5.2.24)
1 sin®(s-31/8) sinZ(s - 5T1/8)
and equation (4.1.5) becomes
a"(s) + (-m1 tan(s+1/8 + mlcot(s+ 1n/8)
. 1-tan(s+T11/8) _ 1+tan(s+T11/8 ) o' (s)
l1+tan(s+1/8)  1-tan(s+1/8) ©
. 1 1
- mlsm(oz(s) + T/8)cos(a(s) + l'l/8)[ - 2 ]
sin” (s+11/8) cos (s+T1/8)
. 1 1
- mzsm(a(s)— n/8)cos(a(s)—n/8)[ - 2 ]
sin” (s-T1/8) cos (s-T11/8)
=0, (5.3.25)

with s [-0/8,T1/8], a(-11/8) =71/8 and a(1T/8) = /8 .
We now reparametrize this equation, using the parameter u defined by eu =

tan (s+11/8) / (1-tan(s+1/8)) , S0 u € (-w,), A computation shows that

ldu? = (1+2e% + 202%)2/e2Y |
and,
u 2 2u u u
+

Au=((1e) +e )[2(1+eu)_1+2e - m ., —2

u u 1 u

e e 1+e

u
+ ml (_]_‘_teu—) + m2 _l—u - m2(1+2eu)]
e 1+2e

Using Lemma 5.1.1, equation (5.3.25) becomes,
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u

u u
1 e u 1+2e
a (u) + [2(1+e)_——-m
((1 +eu)2 +e2 ) eu 1 1+eu
u m
+ 1 (l+ue - 2 T m2 (1+2eu)] o' ()
e 1+2e
sin(a(u) + T/8)cos (a(u) +H/8)[e—u et ]
L T S 2e" Q1 +eu)2
sin(o(u) - T1/8)cos(a(u) - 11/8) [2e“ _ 2" ] - o
2 et + 2 + 2 (1 +2eu)2

(5.3.26)

At first sight this equation looks decidedly unpleasant, but if we look at the quali-

tative features, we find it has much in common with the Smith equation described in

Section 1.3.
Express the equation in the form
12
o (W) = h(wa'(u) + g, (W) sin(a(u) + 1/8)cos (a(u) + 11/8)

+ gz(u)sin(oz(u) - N/8)cos(a(u) - T/8) . (5.3.27)

Then, for unear -,
_ u 2u
h(u) = —(ml-l) - (m1-2)0(e ) + (m1+m2)0(e )
_ _ u
gl(u) = m 0(e’)
_ 3u
gz(u) 0(e ).

AAJ
where by 0 (f(u)) near u=- « ", for some smooth non-zero function f, we mean

that 0 (f(u))/f(u) is bounded and positive for u near -« . Also for u near + e,

h) = (my-1) +(m, - 2) 0(e™) - (m +m))0(e -2u,
g, () = 0(e ")

_ _ -u
gz(u) = m, o(e )
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Equation (5.3.27) can be thought of as that of a compound pendulum consisting of
two penduli fixed at right angles. Each pendulum is acted on by a different varying
gravity force (g 1 and gz), and the system has a varying damping force acting upon it.
The position of the system is described by the angle @ = 2 o, located between the two
penduli.

Label the two penduli 1 and 2 as in the above diagram. Then one wishes to find an
exceptional trajectory of the system with & just starting off at time -« at the angle

7 T/4, and just reaching the angle U /4 at time u =+ .

Note that at time u=-«, the mass of the system lies entirely in pendulum 1. Then
the mass transfers to pendulum 2 as time progresses, and then finally at time u=o,
the mass of the system lies entirely in pendulum 2.

One can attempt to solve the equation in a way similar to the one Smith uses for
equation (1.3.7) in [36 ] - this was described at the beginning of Section 1.4. One
fixes the time u, when gl (u 0) = gz(uo) , and then the idea is to manipulate the initial

1

conditions « 0 = a(u 0) and « 0 = a'(uo). However, the method is very long-winded
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and involves several comparisons with other equations. The more elegant method
used by Smith to solve equation (1.3.7) in [37] adapts to solve equation (5.3.26),
and in Chapter 6 we show that equation (5.3.26) has a solution asymptotic to 71'/8,

/8 as u tends to -«, respectively, if either

(i) m, =m,,

or 2
(ii) (ml -1)

2 . _
< 4m1 and (m2 -1) <4m2, l.e.ml,m2 1, ...,5. (5.3.28)

As for Smith's equation we call (ii) the damping conditions. Note how conditions

(i) and (ii) compare with the damping conditions described at the beginning of Section
1.4. Furthermore, in Chapter 6, we show that such a solution to equation (5.3.26)
yields a smooth harmonic map between spheres. We therefore have

Theorem 5.3.8 Let F: R™ — R be a homogeneous polynomial defining an iso-
1_ gm-1

is

parametric function of degree 4 on sM-1 then g = VF | gm-1 sm-

homotopic to a harmonic map, provided either of the above conditions (i) or (ii) are

satisfied .

Remark 5.3.9 There are several examples of inhomogeneous families of isopara-

metric hypersurfaces of degree 4 with m1 and m2

(see, for example, [16]). Theorem 5.3.8 then gives us examples of harmonic maps

satisfying the damping conditions

equivariant with respect to inhomogeneous isoparametric functions. This illustrates
that equivariance with respect to isoparametric functions is of some importance in
the context of harmonic maps, i.e. we have generalized from the context of homo-

geneous hypersurfaces.

Remark 5.3.10 Similar considerations apply when p = 6. Indeed one can again

show that if m 1 and m 2 satisfy (5.3.28), then the equivariant map described in Pro-
position 5.3.6 is homotopic to a harmonic map. However, we leave the details of

this calculation to be described elsewhere.

We briefly consider an alternative way of describing the physical motion represen-
ted by equation (5.3.27). Transform the function « to a new function y which re-
presents the centre of mass of the compound pendulum represented by equation

(5.3.27) :

91



AN

Referring to the diagram, we see that
= tan~l 2
© = tan ~ (x/( 2°-x)).
Taking moments about pendulum 1 we obtain

1
+ = i
(g1 gz)x 22, gy

%
2 g2
+

So © = tan’l(gz/gl), and

y = 2a + T/4 - tan~1 (g,/8,) - (5.3.29)

Furthermore, a computation shows that

1
%glsin(2a+ n/4) + %gzsin(za- T/4) = é(gl2 +g22)zsin-y
g g - &8,
' 1°2 ~ ®2°1
@ = Ely )
g )
2 2 " " U U ' '
. (g” +g,)(gg, -8,8) - 2(g +g)(gg, -8 g.)
and o = 3(y" + 1 2 1°2 2°1 1 2" °1°2 21).
( 2, 2)2
g, g,
Whence equation (5.3.27) becomes
2.1
y"(W) = hwy' () + (gl(u)z + g, ()% siny () + pw, (5.3.30)
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Where ’

1 1
2 (g, +gé ) (glgz' - gzgl') - (g12 + g22) (glg'2 - gzgi')

' (]
+ h(glgz - g2g1)

2, _2
B, T8

This is the equation of a simple pendulum with varying damping, acted upon by a
variable gravity force, and with a force p of varying modulus acting tangentially to

the circular motion. One can check that lim p(u) = lim p(u) = 0. Further-
u —e u — -

more, if u is sufficiently large p(u) > 0 and p(u) = 0(e~34), A smooth harmonic
map will be given by a solution of equation (5.3.30) which is asymptotic to 2T, 0 as

u — - x, respectively.
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6 On certain ordinary differential
equations of the pendulum type

6.1 Existence of solutions

The equations that arise in the various examples of Chapter 1 and Chapter 5 behave
in a similar way to equation (1.3.7) of Smith close to the asymptotic limit u = - «.
We adopt the methods used by Smith in [36 ] to investigate these equations. Equation
(5.3.26) is dealt with separately using results of Hartman [21]. These results were
used by Smith to solve equation (1.3.7) in [37]. We use this method to solve both
equation (1.3.7) and equation (5.3.26).

First of all we list the equations to be considered, illustrating the various qualitative
features of each one.

() 1

" -u '
o' (u) + ((q-2)e - (p-2)e) a' (u)

e +e

+ —————— sina(u)cosa(u) (a e'-a_ e )=0,
—u 1 2

where u €(-w,»), a(-o) =0 and a(«) = 1/2.

This equation arises with the Smith construction for harmonic maps from sphere to
sphere. The constants a1 and a, are given by a = k(k +p - 2) and a, = 1(1+q-2),
where k is the degree of a homogeneous polynomial map glz sP-1 . sT1 and 1 s
the degree of a homogeneous polynomial map g2 :89-1 . gs-1 (¢ f, Corollary 1.1.6
and Section 1.3), However, in Chapter 9 we will consider deformations of metrics,
and then the special relationship between the values of the gravity and damping need
no longer hold. We will therefore suppose simply that a1 and a_ are positive num-

bers.

2
Equation (6.1.1) is that of a pendulum with variable damping acted upon by a force

of variable gravity as was described in Section 1.4. Write the equation in the form
o' (1) = h(u)a'(u) + g(u)sina(u) cos a(u) , (6.1.2)

94



where, near u = - o« ,

—@-2) *+ 0

h(u) =
and
g = +a, - o™,
By "0(f(u)) near u = - »", for some smooth non-zero function f, we mean that

0(f(w), f(u) is bounded and positive for u near - »., Also near u= +w,

h) = (p-2) - o(e™
and
g(u) = - al + O(e-zu) .
(ii)
o' (u) + — — (e’ + @-2) (" +e ")) a' )
e +e
. a a
sinh ¢ (u) cosh ¢ (u) ( 1 + 2 ) =0, (6.1.3)
u -u u, -u u
e + e e +e e

where u € (-wo,) and @ (-x) =0 .
This is the hyperbolic analogue of case (i) (c.f. Section 1.6). Here we assume

that a_ > 0, and a, > 0. Write this equation in the form

1
a"(w) = h(u) a'(u) + g(u) sinh a(u) cosh a(u) , (6.1.4)
where, near u = - o,
hu) = -(g-2) - 0(e2%)
and
glu) = a, o+ 0e?) .
(iii)
o' (u) + (m-2)a' (u) - (m-1)sina(u) cosa(u) =0, (6.1.5)
@'(u) + (m-3) o' () - ((m-2) - kZe®™) sina(u) cosa(u) =0 , (6.1.6)

where u € (-«,o) and a(-«) = 0. Both these equations arise in the construction of
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harmonic maps from Euclidean space to sphere. The first has been well studied
(see, for example , [23]), representing a pendulum with constant damping acted upon

by a force of constant gravity. If we write the second of these equations in the form
a'(u) = h(u)a'(u) + g(u)sina(u) cosa(u) , (6.1.7)

then, for u near - o ;

h(u) = -(m-3)
and
g(u) = (m-2) - O(ezu) .
(iv)
o) + — €+ m-2) " +e™)) a ()
e +e
- (m-1) sin @(u) cosa(u) = 0, (6.1.8)
u u -
e (e + )
o) + —2 2e" + m-3) (" +e™)) o' (u)
e + e
. 2
_ sina(u)cosa(u) [m—l __k ], (6.1.9)
u -u u u -u
e +e e e +e

where u €(-o,o) and @ (-«) = 0. These equations arise in the construction of har-

monic maps from hyperbolic space to sphere. We can express them both in the form
o' (u) = h(u)a'(u) + g(u) sina@(u)cosa(u) , (6.1.10)
where, for u near - « ;
h(u) = -b - 0(e®™)
and

(m-1) - 0(e2%) .

g(u)

with b equal to (m - 2) in the first case, and (m - 3) in the second.
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(v)

u
u u
+
a"(u) N e [ 2(1+eu) _ 1+2e _ 1 +

2 u u
(1 +eu) +e“! et 1+e e

m

2 u ]
+ - m_(1+2e) ] a (u)
1+2eu 2
sin(a (u) + N/8)cos(a(u) + 11/8) [e-u _ e ]
1 e-u + 2+ 2eu (1+eu)2 3
- m, sin(a@(u) - 1M/8) cos(a(u) - 1M/8) [2eu _ 2euu - ] - 0.
e "+ 2 + 2" (1+2e)

(6.1.11)

where u €(-w,x) , a(-x) =71/8 and a(w) = 11/8. This equation arises in Example
5.3.5 for harmonic maps from sphere to sphere. It is now no longer the equation of
a simple pendulum, but a compound pendulum, consisting of two penduli fixed to-
gether, separated by an angle of T1/2 - the system having a variable damping and

variable gravities acting on each pendulum distinctly.

(%

\

Write this equation in the form
a''(u) = h(uea'(u) + g, (u) sin (a(u) + 1/8) cos(a(u) + 1/8)

+ gz(u)sin(a(u) - T/8)cos(a(u) - T1/8) (6.1.12)

Then for u near - o:
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_ u 2u
h (u) —-(ml-l) -(m1-2)0(e ) + (m1+ m2)0(e ),
_ _ u
gl(u) m, 0(e )
and
_ 3u
gz(u) O(e ),
and for u near o ;
_ -u -2u
h(u) = (mz—l) + (m2-2)0(e ) - (ml+ m2)0(e ),
_ _ -u
gz(u) =m, o(e )
and

-3
g1<u) = 0"y .
Note also that gl(u), gz(u) > 0, for all u €(-c,).
Consider a general equation which includes (i) - (iv) as special cases:

o" (1) = h(wa'(w) - glu)fla))f (alu)) , (6.1.13)

where f is an analytic function with the property that f(x) - x = + 0(x3). Also h(u)

and g(u) are smooth functions on (-« ,») and for u near -« ;

hw) = -b+ 0(e™)

and

a + O(ezu) ,

g(u)

for some constants a and b.

Now f'(x) =1+ 0(x2), so that as x increases from 0, so does f(x); let x0 be
the first x greater than 0 such that f(xo) f'(xO) =0, or if no such x exists; let x0
be an arbitrary positive number. Choose a time u 0 such that g(u) > 0 for all
ug< u. By the uniqueness theorem for ordinary differential equations the above
equation has a unique solution through (u o o,a;)) which we denote by a(ao,a;)) -
this exists for all time. The following parallels closely the methods of Smith [36 ].

Let A (ao) = {a;) € R; a(ao,a/(')) decreases monotonically to zero in finite time
as u decreases from u0 } Then this set is bounded below by 0. Choose 01(; (ao) =

inf A(ag) -
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Lemma 6.1.1 a;) (x) is a well defined function on (0, xo).

Proof Since A(ao) is bounded below by 0; it suffices to show that A(ao) is non-

empty, i.e. given o, & (O,XO); we wish to find an oz;) such that a(ao,a;)) decreases

0
monotonically to 0 in finite time as u decreases from uo.

As long as a'(v) >0 on [u,uo ] for some u < u_, we see from equation (6.1,13)

O’
that, provided also > 0 ;

a (v) < c, e, (v)

on [u, uo ] for some positive constants c1 and cz. Integrating this inequality over

[u,uO ] yields

o'u) - '@ < e (ug-u) ey lag - @)

u - u),
501(0 )

- dw< - o + -
a(u)< a, cl(u0 u) .

Choose oz;) such that

—a;)+cl(u -u) < "% ..

0
(uo—u)

Then, for all v,u< v < uO:
1 ' 1
- - + - - + -
a (v) < —ap * c (u vi<-a, cl(u0 u)
< - ao/(uo— u) .
Integrating again over [u,u 0 ] yields

- (a(uo) - a(u)) < - @, -

i.e. a(u)< 0, and o has decreased monotonically to 0 in finite time as required. [:]

Lemma 6.1.2 ""o is strictly positive on (0,x,) .
Proof Given a, e (O,xo), suppose ao(ao) =0, then at uO,
LAl ]
o (uo) = g(uo)f(ao)f (a0)> 0,
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and so o''(u) > 0 for u sufficiently close to uo. Thus o (u) initially increases as
u both increases and decreases from u 0 Therefore there cannot be elements oz;)

—

in A(ao) arbitrarily close to zero, whence oz;) (ao) > 0. L]

Lemma 6.1.3 A(a ) is open for all aOE(O,x ).

Proof Suppose ao S A(a ) and a(ao,ao) arrives at 0 (as time travels backwards)
for the first time at time u. Then a'(u) > 0. For o (u)_>_ 0 and if o'(u) = 0 with
a(u) =0, it follows from the uniqueness theorem for ordinary differential equations
that ¢ = 0. Hence o decreases through 0 with positive derivative. Also o'(v)> 0
for u<v <Ugs since if o'(v) =0, then « "(v) > 0 and o would not be monotonic.
Again from the proof of Lemma 6.1.2 we see that « (u )> 0. Hence ¢' >0 on
[u-e€, u ] for some € >0, and so any function which is close enough to ¢ in the C

norm w1ll decrease monotonically to 0 on this interval in backward time. Therefore

points near a:) are in A (ao) and A(ao) is open. U
Lemma 6,1.4 For all o, E(O,xo), a(ao,a;’ (ao)) is strictly decreasing as u
decreases from u  and is asymptotic to 0 as u— - w.

0
Proof We show that o'> 0 on(-oo,uo], and that 0 < ¢ on (-, uo ]. For this will
show that o decreases to some asymptotic value o, with 0 < o <X 0 But then
as u — -, o'(u),o' (u) — 0, so equation (6.1.13) implies that the only possible value
for a_ is 0.

Assume that one of these two conditions is violated. One must go wrong first, for
if both are violated simultaneously, the uniqueness theorem implies that we have the
trivial solution. On the other hand neither goes wrong at u 0 from Lemma 6.1.2,
Suppose a'(u) =0 for u < uo(for the first time), and 0 < o (u) < Xy then o''(u)> 0
and o increases as time decreases from u. But, by the definition of oz;) , there
are functions arbitrarily close to o on [u- e, u0 ] which are strictly decreasing or
go past 0 on this interval - a contradiction.

Suppose now that a(u) =0, and &' > 0 on [u,u 1. Then a;)(ao)e A(ao) - this
is not possible since A(a ) is open and a (a ) =inf A (ao) . D

We now demonstrate a local uniqueness result.
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Lemma 6.1.5 Provided that uo is chosen sufficiently close to - « that h(u) <0

for all u< uo, and a, is chosen sufficiently close to 0 thatif 0<x <y < o
then f(x)f'(x)< f(y)f (y) (i. e. ff' is an increasing function), then oz;) (on) is

the unique initial derivative for which we get a solution of the desired form in backward

time. Specifically, if 0 < B(; < cv(; (ozo) then the associated solution oz(ozo, ﬁ(;)

must eventually start to increase before reaching 0, and if B(; > a(’) (a 0) , then

By = Alay) .

Remark 6.1.6 The conditions of the above Lemma are always satisfied for any u 0
and o 0 in the case of equation (6.1.3), thus we have a global uniqueness result in
that case.

1 ' . _ [
Proof (of Lemma 6.1.5) Let ,30 <a, (ao) and write a, a(ozo,azo (ozo)) and

— ' - ' '
a, = a(ao,ﬁo). Then ozl(uo) az(uo)and a; (u0)> ozz(uo). Suppose that

2
[ ' - . : - _ : =
al(uo) - az(uo) € > 0. Define the function e(u) (oz1 012) (u). Thene(uo) €,

and
e (uo) = o (uo) - a2(u0)
_ ' _ ' ' _ !
h(uo)(al(uo) oy (uo)) + g(uo)(f(al)f (al) f(az)f (az))(uo)

= ' '
= h(uo)(al(uo) -a, (uo)) <0 .

Suppose there exists a u < uO, with e '(u) = 0. Then
h(u) o) () + g(w) £ (a (W) £'(a ()

= h(u)a'2 (u) + g(u)f(az(unf'(az(u)) ,
i.e.

h(u)(oz'l(u) - oz'2 (u)) = g(u)(f(a2 (u)f' (az(u))-f(ozl(u))f'(ozl(u))) .

But oz'l (u) > oz'z(u) and al(u) < az(u), so that the left hand side of this expression
is less than 0, and the right hand side is greater than 0 as ff " isan increasing
function — a contradiction; so e '(u) < 0 for all u < u, which implies that e (u) > €

for all u < u_. But lim e(u) = 0-lim al (1) > €. Thus a' has become
- 0 U —— o U— -0 2 2

negative in finite time, and o, starts to increase (for decreasing time) before

2
reaching 0.
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If on the other hand B;) > a;) (ao) , then clearly o, = c/(ao, ﬁ;) ) cannot turn be-
&

fore reaching 0, since then the trajectories of o, = oz(ozo,a;) (ao)) and a,

space R2 (the curves u — (alu), a'(u)) C R2) would cross - an impossibility.

in phase

Hence the only possibility is that ﬁ(; S A(ao) or o« is asymptotic to 0. But the

2
above arguments show that if o 9 is asymptotic to 0, then « 1 must turn in finite
. . 1 . . '
time, i.e. aO(aO)G A(ao) - a contradiction. Hence By € A (ozo). O

Corollary 6.1.7 If the conditions of Lemma 6.1.5 are satisfied then oz(') (ao) is a

continuous function of « 0

n
Proof Suppose we have a sequence an - a, but a'o (ao ) < a;) (ao) - ¢ for some

0
€>0. Let /3(; = a;) (ao) - €/2. Then from Lemma 6.1.5 we see that

(i) O‘(O‘g y BL)) decreases monotonically to 0 in finite time for all n (since

1 n 1
ao(ao ) <[30), and
(ii) ola 0,36) eventually begins to increase (as time decreases) before reaching 0.

Letting ag — a_ this yields a contradiction. 0]

0
Corollary 6.1.8

1
ozo(ao) —0 as o, — 0.

In case (i) the problem is to find a solution asymptotic to 1/2 asu — «. In his
Thesis Smith's method was to derive the unique velocity o' ~

(1]
(ao)) is asymptotic to 0 as u — - « as above, and similarly to derive

(ozo) such that

1
a(ozo, N 7 S
the unique velocity o (ao) such that a(ao,a (ao)) is asymptotic to TI/2 as
1

0
0 as o, tends to 11/2, 0 respectively. Then Corollary 6.1.7 and Corollary 6.1.8

u — o, The damping conditions ensure a(; (@ 0) and o ' (@ 0) are bounded away from

show there exists an o« 0 with a;)— (ao) = a' * (a 0) yielding the required solution.
Later, in [34], Smith gave a more sophisticated method of solving case (i) by
applying results of Hartman [21]. This method can be applied to solve equation
(6.1.11) of case (v) and we use it now to solve both case (i) and case (v).

Suppose we are given an equation of the form

"

a = F(u,a,a'), (6.1.14)

where F(u,a,a') is a continuous function on the set E(p,R) ={ (u,a ,a') ;

102



0<uc<p, lal< R, a' arbitrary] .

Theorem 6.1.9 [21], [31] Suppose F is as above, and

(i) F(u,R,0)> 0, F(u,-R,0)< 0, for 0 < u< p, and
(ii) IFl < ¢ ( la' ) where ¢(s) , 0 < s <e is a positive continuous function satisfying

* sds - ., et a
0 ¢(s) —

(6.1.14) has at least one solution in E(p,R) satisfying «(0) = o a(p) = ap. Fur-

oy be such that lo I, Iozpl < R. Then equation

0 0

thermore, lo' | < C, where C is a constant depending only on ¢, R and p.

Write equation (6.1.1) in the form

"

o' = Flu,a,a’) ,

then |F |< Co(l + |la' 1) for some constant C, and F(u,0,0) = F(u,1/2,0) = 0.
Adjusting the range of a(to [0,T1/2] instead of [-R,R ]) and the time scale (to [-T,T]
instead of [0,p]), we can apply Theorem 6.1.9 to yield

Lemma 6.1.10 Given T > 0 there is a solution o of equation (6.1.1) satisfying
op (-T)=0, aT(T) =71/2,
0 < ap(u) < /2 and lagl< C on(-T,T), (6.1.15)

with C depending only on C 0"

Proof It suffices to show that 0 < aT(u) < M/2 on(-T,T). We know from Theo-
rem 6.1.9 that 0 < aT(u)_g n/2 on(-T,T). If uy € (-T,T) has aT(uO) =0, in

1

order that o remains in [0,T1/2 ] (before or after uo); aT (uo) = 0. But equation
6.1.1 now implies a;, (u 0) = 0. The uniqueness theorem then implies that o =0-
a contradiction. ]

We now consider a sequence T = T(n) — o, From standard equicontinuity argu-

ments (c.f. Hartman [21 ], Chapter 1, Section 2) « converges in 02 on compact

T(n)

sets to a solution o of equation (6.1.1) with 0 < o < T/2, and with ler, | bounded.

Lemma 6.1.11 Provided the damping conditions (1.4.1) hold, the solution o

0
of equation (6.1.1) described above is non-trivial.

Proof Suppose ao(u) = 0 for all u € R. Writing equation (6.1.1) in the form
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o"(u) = h(u)a'(u) + g(u)sina(u)cos a(u) ,

we see that there is a solution o = of equation (6.1.1) satisfying conditions

o
T(n)

(6.1.15) which is very small out to a large value of u, say u, < T(n). Then g(ul)

is close to -a. Choose ai’ near a1 so that al' + gsinacos a/a < 0 on a suitable

interval [u 0,u 1 ] and also that the equation

g"=(p-2)p" -a," 8,

has non-real roots and period less than u 1~ Let g have the same initial data as

o
@ at u, andlet w = @'B-ap'. Then
w' = ap [h(w)a'/a - (p-2)8"/8)
+ (al' + g(u) singcos a/a) ],

1
w(uo) =0 and w (uo) < 0.

Provided o'/a < B'/@(i.e.w < 0) with a,8 >0 we have w' <0. Also as long as
w' < 0 we have w < 0. Now look at the first zero of g on [uo,ul ]. We must have
B'a > 0 here since w < 0 - this is impossible if o> 0 on [uo,u1 ]. Hence o has a
zero on this interval, contradicting (6.1.15). Therefore « 0= 0 is impossible.

Similarly o = T/2 is impossible. ]

Lemma 6.1.12 If o is a non-trivial solution of equation (6.1.1) with 0 < & < /2

and lo'| < C, then @'(u) > 0 whenever |ul is sufficiently large, and o has the

asymptotic limits 0, 1/2 as u — -=,« respectively.

Proof Suppose uo is close to + 8 and p-2 > 0, then we can assume h(u) > 0 and
g(u) <0 for all u > u,- Then if a'(uo)f 0 a"(uo) < 0. Thus there exists a sub-

sequent time u1 >u_ such that a'(u 1) =-¢<0. Then o' remains negative as long

as o' remains negat?ive, so that o' < - € until o has decreased to 0 and become ne-
gative - a contradiction. Hence a'(uo) > 0.

Suppose p-2 =0, Then if a'(u) < 0(ularge), a" must become negative before o'
changes sign. Hence a' < 0 for all subsequent u. In fact, since o' is bounded, it
follows that o' must become negative and remain so at least until o decreases to
some small value. However, using the same comparison which showed that a was

non-trivial leads to a contradiction.
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Thus «'(u) >0 for u sufficiently large, and « has an asymptotic limit < /2.
The same argument used in the proof of Lemma 6.1.4 now shows the limit must in
fact equal /2. The case when u is close to -« is similar. O]

We now study case (v). Consider equation (6.1.12); express this in the form

o' = F(u,a,0') .

Then |F1< C(1+ la'l) for some C and
F(u,771/8,0) = - gz(u)/z <0,
F(u, 1m/8,0) = gl(u)/2 >0 .

Applying Theorem 6.1.9, adjusting the ranges of o and time (remembering that
7 /8 corresponds to -R and M/8 corresponds to R), we have

Lemma 6.1.13 Given T > 0, there is a solution e of equation (6.1.11) with

aT(-T) = 71/8, OtT(T) =n/8 ,
71/8 > an(u) > N/8 and lapl< C on (-T,T), (6.1.16)

with C depending only on CO'

Proof Itsuffices to show that7n/8 > (uw) > 7/8on(-T,T). We know from Theorem6.1.9
that 77r/83aT(u)3 m/8on(-T,T). Suppose u &(-T,T)issuchthat o T(uo) =77/8; in order
that o, remains in [ 7 n/8, 7/ 8 ] ( before and after uo) we must have oz'T(uO) = 0. Then
equation (6. 1. 11) implies that a','I,(uO) =- gz(uo)/z <0, and ozdecreases past 77/8 as u

increases from u, - a contradiction. Similarly we cannot have ozT(uO) =8, [J

As before we consider a sequence T = T(n) — «, and by equicontinuity arguments
aT(n) converges in c2 on compact sets to a solution a, of equation (6.1.11) with
7n/8 > a > /8 with ab bounded. Clearly a, cannot be constant since sin(2a -m4)

and sin(2q +7/4) cannot be 0 simultaneously.

Lemma 6.1.14 Let o be the non-trivial solution of equation (6.1.12) described

above. Then provided the damping conditions (5.3.28) hold; as u —-co,ao(u) —~T11/8

andas u — - o, ao(u) — 71/8.
Proof Unlike case (i), overdamping in this case could cause the solution to be
asymptotic to /2.
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Consider the case when u — . We claim there are three possibilities:

(a) lim o (u) = 50/8 ,
u—w 0
(b) lim @ (u) = n/s ,

0

u—ow
() 2(a 0" T/8) continually oscillates about the downward vertical TI.
Of course (b) and (c¢) could both happen. Case (c) could conceivably occur if
lim h(u) = O(m2 =1). We will show that the damping conditions ensure that (b)
u—w

is the only possible case.

Make the substitution yo =2 0" T/4, then equation (6.1.12) becomes

'y(')'(u) = h(u)-y(;(u) +g1(u)cos yo(u) * g, sin yo(u) (6.1,17)

where 311/2 > Yo 2 0- Suppose 3 n/2 > yo(u)z T for all u > u , for some large u .
Thenyi)(u)>0 for uzuo,since if-y&(u)_go,togetherwith the fact that sinyo_<_0andcos 705 0,
equation (6.1.17) shows that ‘y(')' < 0 at least until Yo has passed through 1. But if
.y(;(u) > 0; llilnlw'yo(u) exists and lies between 31/2 and T; equation (6.1.7) shows
this is impossible. Hence ¥y 0 must pass through T and continue to do so every time
Y, enters the range (17, 311/2).

Similarly if 1/2 > yo(u)z 0 for all u > u, for some large u,- Then -y(;(u) <0

for u > u_, since if ‘y(; (1) > 0; equation (6.1.17) shows that y(')' > 0 at least until

Yo passes(,)through mn/2. But if y(; (u) <0 for u > u,s Ililnlwyo(u) exists and equa-
tion (6.1.17) shows that this limit must equal 0.

If on the other hand I > 'yo(u) > /2 for all u> u0 for some large uo. Then since
g,(1) — 0 as u —w, the only possibility is that Lu:lﬂo ¥o(w) = M. For, if 'y(; >0
for u>u; 'y(; cannot become negative until ‘y(')' has become negative. And y, must
become increasingly close to T for this to occur. Inspection of equation (6.1.17)
then shows vy o must remain close to T, or pass outside of [11/2, T ].

The only other possibility is that y o continually oscillates about the downward
vertical T, showing that one of (a), (b) or (c) hold.

If we assume either (a) or (c) holds, then there is a solution y = Y of equation
(6.1.17) which passes close to N for large u < T. The idea is to compare y with the

solution of the equation with constant gravity and constant damping, to show that y
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cannot possibly equal 0 at time T.

Let us briefly consider the pendulum equation.
g'l(u) = MB'(u) - msing(u) , (6.1.18)

where M and m are constant, and we measure the angle g in a clockwise direction
from the downward vertical. Suppose M <0 and m > 0, then the damping resists the
motion, and a generic solution performs decreasing oscillations about the downward

vertical. Indeed, comparison with the equation of a harmonic oscillator:
w'(u) = Mw' (1) - maw(u) ,

for small g, shows that @ must oscillate continually about the downward vertical if
M2 - 4m < 0. If on the other hand M > 0 and m > 0, then the damping increases the
acceleration in the direction of the motion. By making the substitution u — - u,

equation (6.1.18) becomes
g'(u) = - MB'(u) - msing(u) ,

so that a generic solution g performs decreasing oscillations in backward time, i.e.
g performs increasing oscillations as u increases. In this case g is either asympto-
tic to the position of unstable equilibrium T', or g8 eventually moves around the circle
in a single direction.

Now consider the equation
g"(w) = MB'(u) - msinpu) - €, (6.1.19)

where M,m,e are all constant greater than 0, and we assume ¢ to be small. This
represents the motion of a pendulum with constant gravity and damping and with a
force of constant modulus tangent to the circular trajectory. A particular solution of
equation (6.1.19) (which is approximately linear for small g) is g(u) = sin-l(-e/m) .
And a generic solution performs decreasing oscillations about the equilibrium position
Bg= sin~1(-¢/m) in backward time. So as u progresses a generic solution performs
increasing oscillations about sin~1 (-¢/m) , and either tends to a position of unstable
equilibrium at 1 + sin-1(-¢/m), or eventually moves around the circle in a single

direction.
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' sin™! (-¢/m)

For a detailed account of equation (6.1.19) see [34, Ch.6, Sec.2].
Perform the substitution v = y - T + eO in equation (6.1.17), where 00=sin'l(e/m),
and the constants in equation (6.1.19) have yet to be chosen. Then equation (6.1.17)

becomes

v"(u) = h(u)v'(u) - g,(u)cos (v-6,) - g,(usin(v-6.) . (6.1.20)

Similarly put n =8 +46 0 into equation (6.1.19), which then becomes

r"(u) = My '(u) - msin(g - 6) - € . (6.1.21)

<1\

@

First of all assume that m, = 1 sothat lim h(u) = 0. Assume also that v passes
u - oo

through 0 for large u, say u,- Let u 1 be the last time this occurs (since v (T) =

-m+6 0 this must exist). Let v and 5 have the same initial conditions at u 1 De-

fine the Wronskian w = v'pn - vy '. Then
' " 1"

w = VN -vy

+ m
v n

! s .
_l:_}v_ - ML)+ (-g sin(v- 6) Sm(ﬂ‘eo)) !

1
<
3
=

1
w(ul)—O , w (ul)— 0.

Also, at u1 ,
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W" - n'(v"- 7}")

n'[(h-M)g' - g cos(-0)) -g,sin(-§ ) +msin(-6) +e].

1

We now make careful choices of the constants M,m and e . Remembering that u,
can be chosen arbitrarily large, we choose M to be small so that h(u) - M < 0,
m so that - gz(u) +m<0 and € = gl(uo), where u, is chosen sufficiently large
that gl(u) < gl(uo), for all u > u,- Then, since n'(ul) < 0, we must have w"(ul)>0.
Therefore w' becomes < 0 immediately after u,-. Also, since (v''- n")(ul) >0;
v'-7' >0 and v - r >0 immediately after u,. Thatis 0 >v>7 . Now the function
X — sin x/x is increasingon [-M,0], so x — sin x/(x+a) is increasingon [-1,0],

i.e. Xx — sin(x-a)/x is increasingon [-T+a,a]. Thus
sin(v - oo)v > sin(n - 60)/1; >0,
immediately after u 1 Whence

sin(v- 6¢g) + m sin(9- 6g)
4 n

_gz < 0.

Now if v'/v < n'/n with v',n' <0 and 0>v>n, then v' <n'. SO 0>v>1
continues, and w' continues to be < 0 at least until n' becomes zero for the first

time. This must occur before n reaches - M +¢ , since n is bounded above by

0’
/2 +d on the previous swing, for some small constant d, and ¢ and M can be made

~

arbitrarily small,

Then w < 0 here, so that u'n <0, i.e.v'> 0 since n < 0. So v' has become zero.
But then equation (6.1.19) gives

" - _ _ - . _
v glcos(v 00) gzsm(v 00)

v

- € cos(v—oo) - msin(u-ao)

o,
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provided 0 > v > -T1/2 - 26 0 So that v' then becomes positive. Now v' cannot change
sign before v", but v'' remains positive at least until v has passed through 0 again.
This contradicts the definition of u 1

Suppose now that m_ > 1, and (c) occurs. Let v -+ 90, so VO satisfies

=Y,
2 0 0
equation (6.1.20). Then a comparison of Y with 5 similar to the above shows that

either lim =-T+g

v i.e. case (b) holds, or v _passes through W/2 +¢ _or

0’
-T+0 0 in finite time (since n performs increasing oscillations) - contradiction.
There remains the possibility that v remains close to 0, but always remains < 0

for large u. In this case, comparison with the equation
g = Mp'-mp ,

exactly as for Lemma 6.1.11, shows that v must subsequently pass through 0. Thus

(a) and (c) are impossible, and case (b) holds. Similarly, when u — - o, ao(u) —~711/8.

O

Remark 6.1.15 If the damping conditions do not hold, then it is conceivable that the

above methods of solving equation (6.1.2) and equation (6.1,12) lead in the first case
to a trivial solution and in the second case to a solution asymptotic to 511/8. In the

first case the graph of on for large T has the form

n/2

u=-T u="T

And in the second case the graph has the form
51/8

n/8

~

u=-T u=T

It is clear that if o = lim o , then ¢ _ = 0 in the first case and
0 n—-o T(n) 0
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lim ozo(u) = 5T1/8 in the second case.

u —+x

6.2 Asymptotic estimates

In this section we prove the following.

Theorem 6.2.1 Let o be a solution of any of the equations of cases (ii) - (iv) of

Section 6.1, which we express in the form

o (w) = h(wa'(u) + glu)f(e(u)f'(alu))

If a=1lim g(u) and -b=1lim h(u),a,b > 0; let 1 be the number such that

—_— u — - u—-o

a = 1(1+b), and assume that 1 >1. Then for u close to -,

0(elu) ,

(i) afu)

O(elu) ,

(ii) o(u)

and
(iii)a'(w) - 1a(u) = O(e(l +2)u) )

We demonstrate the theorem by proving a series of lemmas, dealing with each case

separately. Again we follow closely the methods used by Smith in [36 ] for case (i).

Lemma 6.2.2 If o is a solution of equation (6.1.3 ), then eventually (u close to -«)

a'(u) > (1 - 0(e2)) sinh o (u) ,

where 1 is the positive number satisfying a, = 1(1 +q-2).

Proof Choose u1 <u 0 such that h(ul) and g(ul) are close to their asymptotic va-

lues of -(q - 2) and a_ respectively. For u < ul, let 1(u) be the solution near 1 of

2
the equation

A2 -101 +q-2))/1(u) =h(u) = - (q- 2) - 0(e2%) .

Then 1(u) =1 - O(e"u) . We wish to show a'(u)z 1(u) sinh ¢ (u).
Let B be the solution of the equation

B "(v) 1(u) sinh B(v)

a(u)

g (u)

Then g is asymptotic to 0 asv — -, For v< u;
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g (v) 1(w)? sinh B(v) cosh g(v)

h(u) cosh g(v) ﬁ'(v) +a, sinh g(v)cosh p(v)
< h(v)g'(v) +a, sinh B(v) cosh B(v) . (6.2.8)

Now, suppose a'(u) < g'(u), then equation (6.2.8) shows that o'(u) > 8 (u). Let
u, <u be the first time for which either a(uz) = ﬁ(uz),a'(uz) = ﬁ'(uz) or a"(uz) =
B"(uz). But if o' > ﬁ"and o' < /3' on(uz,u] with a(u) = g(u), then oz'(uz) < ﬁ'(uz)
and a(uz) > B(uz). Hence the only possibility is a"(uz) = ﬁ"(uz). However,

a(uz) > B(uz) implies sinh o cosha > sinh gcosh g at u_,. Equation (6.2.8) shows

9
this is impossible. Hence u2 = o, Thus ﬁ' - o' is non-decreasing on (- w,u] - a

contradiction, since both o'(u) and 8'(u) tendto 0 as u — - «. B

Lemma 6.2.3 Eventually (u close to - «)

a'(u) < (1+0 (™)) sinh a(u)cosh a(u) .

Proof Choose u. as in the previous lemma. For u< u 1’ let 1(u) be the solution

1
near 1 of the equation,

(1 (w2 - g(u)/1(w) =-(q - 2) .

Then 1(u) =1+ O(ezu). We wish to show that a'(u)f 1(u) sinh @ (u)cosh a(u) for
u< ul.

Let B(v) be the solution of the equation
B'(v) = 1(u) sinh g(v)cosh g(v)
g (u) = a(u).

Then B is asymptotic to 0 as v — -w,

For v<u,
8"(v) = 1(u)2(cosh? g(v) + sinh® g(v)) sinh B(v) cosh (v)

>1 (u)2 sinh g(v) cosh g(v)

2 _

= ‘1(“1)( ) W) £1(v) +g(u) sinh B(v) cosh B(v)
u

=-1(q-2) B'(v) + g(u) sinh g(v) cosh g(v)

> h(v) g'(v) + g(u) sinh g(v) cosh g(v) . (6.2.9)
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Now suppose o' (u) > B'(u), then equation (6.2.9) shows that a"(u) < 3"(u). This
]

yields a contradiction as in the previous proof.
Lemma 6.2.4 There exist positive constants b1 and b2 such thai for u sufficiently

close to - o .

% < sinha(u) < bye

1 1u

b1 e

Proof We know eventually that
a’(u)z 1" (u)sinh o (u) ,

where 17 (u) =1 - O(ezu). Then for v< u,

a'(v) > 17 (v) sinh a(v)

> 1~ (u) sinh @(v) ,

so ¢ lies below the solution of

1" (u) sinh B(v)
(6.2.10)

B "(v) =

{ g (u) = a(u)
giving sinh a(v) < sinh g(v) for v< u.

The explicit solution of equation (6.2.10) is given by

cosech g (v) + coth g(v) = (cosech a(u) + coth a(u)) exp (1" (u) (u-v)) .
Now the left-hand side is equal to sinh R(v)/(1 + cosh g(v)). We can assume u is
sufficiently small that cosh a(u) < 2 say.

Then

sinh g(v) = (1 +cosh g(v)) c, exp (1" (u) v)
< 3¢, exp (1" (u)v) ,
where . is a constant depending on u .
Hence
(6.1.11)
113
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for some constant du depending on u .

Let f(u) = sinh a(u).
Then

£' (u) = sinh a(u) o' (u)
1* (u) sinh o (u) cosh? a(u)
(1 + sinh2 o (u)) 17 £
(1 +sinh a(w) 17 f
= 1tf + 1712

IA

IA

’

where 1+(u) =1+ O(ezu) , and we assume that u is sufficiently small that sinh a(u) <1,

From equation (6.2.11) we have that

sinhza(u) < boe'Jlu ,

where b0 and py are constants with ¢ > 1. Hence

f'(u) < 1hf + boeulu
We estimate a solution of the equation

plv

g'(v) 1tg(v) + bye

g (u) f(u) ,

so that g(v) < f(v), for v < u. The solution of the homogeneous part is given by

) = cexp([ 17(s)d
gH(v cexp(‘0 (s)ds)

cexp lv exp (f(;’ O(ezs) ds)
A 1v
>ce s

since the integral is uniformly bounded, where we assume Cisa negative constant.

A particular solution of the inhomogeneous equation is

v s 4
g (v) = g (v) ["exp(- 1 (x)dx)exp(puls)ds .
I H < fo

(Note that in order that gI(u) =f(u) > 0, we must choose ¢ above to be negative).
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Then

vV (p-1)1s
gI(v) > gH(v) f e ds

0
A~ 1v
>-ce .
1v 1v
Hence gI(v) > de” ", for some constant d. So f(v) > b1 e ,for v <u,
For the other half of the inequality, we have that
f'(u) = cosh a(u) o' (u)
>cosh a(u) 17 (u) sinh a(u)
>17(u) f(u) .
If g is a solution of
g'(v) = 17(v)g(v)
g (u) = f(u),
then

g(v) = cexp fv 17 (x) dx
0
= cexp [ (1-0(e2%))dx
‘0
= celvexp(‘%v—o(ezx)dx)

= delv,

where ¢ and d are constants. Hence f(v) < g(v) < bzelv, for v< u. U
The equations of cases (iii) and (iv) are very similar. We prove the results for

equation (6.1.9) and similar considerations apply to equations (6.1.5) , (6.1.6) and

(6.1.8).

Lemma 6.2.5 If o is a solution of equation (6.1.9), then eventually (u close to -«)

o' (u) < (1- 0 (%" )) sina(u) ,

where 1 is defined as for Theorem 6.2.1.

Proof Choose u 159, such that h(u 1) and g(u 1) are close to their asymptotic values

of -b and (m - 3) respectively. For u < u, let 1(u) be the solution near 1 of the

equation,
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1@? - gw)/1w) = -b.

Then 1(u) =1 - O(ezu). We wish to show that a'(u) < 1(u) sina(u) .
Let g(v) be the solution of the equation

B'(v) 1(u) sing(v)

B (u) a(u) .
Then g is asymptotic to 0 as v — - o, For v< u,

l(u)2 sin g(v) cos g(v)

B"(V)

2
= _—g_l(ul)(u-) w cos B(v) B'(v) + g(u) sin (v) cos A(v)

-b cosﬁ(v)B'(v) + g(u) sing(v) cos g(v)

h(v) g'(v) + g(u) sin B(v)cos g(v) . (6.1.12)

v

Now suppose a'(u) > 8'(u), then equation (6.1.12) shows that o'(u) < g' (u). The

proof now concludes as for Lemma 6.2.2. I:

Lemma 6.2.6 Eventually (u close to - «) ,

¢ (@) > (1-0(e™) sina(u) cosalu) .

Proof Choose u, as before. For u < ul, let 1(u) be the solution near 1 of the

1
equation

1@? - gw)/1) = h) .

Then 1(u) = 1 - O(ezu) (there being two contributions to - O(e2u ), one from g(u)
and the other from h(u)). We wish to show that a'(u)z 1(u) sina(u) cosa(u).

Let B be the solution of the equation

g'(v) = 1(u)cosp(v)sing(v)

a(u) .

B (u)

Then B is asymptoticto 0 as v—~-o , For v<u,
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B"(v) = l(u)2 (coszﬁ(v) - sinzﬁ(v))cosﬁ(v)sinﬁ(v)

< 12 cos g(v) sin A(v)

2
- (A)”-glu)) .
) B (v) + g(u)cosg(v) sing(v)

= h(u)ﬁ'(v) + g(u)cos g(v) sin g(v)
< h(v) ﬁ'(v) + g(u)cos g(v) sinp(v) . (6.1.13)

Now suppose a'(u) < B'(u), then equation (6:1.13) shows that o' > B"(u). The

proof concludes as before. ]

Lemma 6.2.7 There exist positive constants b1 and b2 such that for u suffi-

ciently close to - « ;

blelu < sina(u) < b2elu .

Proof The proof is similar to that for Lemma 6.2.4, using the estimates for o'

obtained in Lemma 6.2.5 and Lemma 6.2.6. D
This concludes the proof of Theorem 6.2.1.

6.3. Smoothness of certain equivariant harmonic maps

Recall that a solution to the reduction equation gives a smooth harmonic map from
M*to N*. In the case when this map extends to a map from M to N, we need to

know this extension is smooth at points of M\ M * .

Theorem 6.3.1 The harmonic maps which arise from solutions of the equations of

cases (i) - (v) all extend to smooth harmonic maps across M\M* , where M is

the appropriate domain depending on which case is being considered.

In cases (i) and (iv), this theorem can most readily be derived from the following.
Suppose M and N are compact, and let i : N — V be an isometric immersion of N
into a Euclidean space V. The completion of the space of smooth maps &:M — V

with norm

1
181 = ([ (ex)? + 1vax)Z)dx?
M
is a Banach space, denoted by L% (M,V).
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The subset Lﬁz(M,N) ={oc Lzl(M,V); & (M) C N is a smooth manifold. The energy
integral (c.f. Remark 1.1.4) defines a function E: L21(M,N) — R. There are ex-
trema of E which are not C0 [10]. However, Hildebrandt has shown that any extremal
of E which is in L21 N0 is smooth. Since the Laplacian is the Euler-Lagrange
operator associated to the energy integral E, it is clear that the maps constructed in
cases (i) and ( v) are extrema of E, Also these maps lie in L21 nco , and hence

they are smooth.

In cases (ii), (iii) and (iv) the domain is no longer compact, and in general the
energy is no longer finite. However, we can now appeal to the regularity theorem of
Eells and Sampson [12 ], which states that any c2- map between smooth manifolds which
is harmonic is smooth. It suffices therefore to show the maps are c? at points of

M\M*

. We demonstrate this by proving a series of lemmas, using the estimates of
the last section. We remark that we are again adapting the programme of Smith [36 ]
which he used for the maps of case (i) (Hildebrandt's result was not known at that
time).

Using the notations of Chapter 4, let V = M\M?* be the focal variety of the isopara-
metric function s: M — R corresponding to s = 0(or u = -»), and let WC N be the
focal variety or isoparametric hypersurface of N onto which V is mapped under §.
For a point x € V we pick suitable 02 charts about x and #(x). These charts canbe
thought of as generalized Fermi coordinates (see for example [1]), and they will be
chosen in such a way as to induce an equivariant map between subsets of Euclidean
spaces.

Since V is a smooth submanifold ( Theorem 2.2.2), there is a smooth chart (ﬁl ,Bl)
about x inV , with L-II:Bl — RP(p =dim V). We can form a tube Te(Bl)about Bl’
which through each point of B1 consists of the union of geodesics subtended by a
certain small sphere. More precisely, recalling the notation of Chapter 4, let

M_,;.'0 = s'l(so) , SO V= MO. Let T: M"* —~ V be the projection down normal geodesics.
€
Then T (B_) =B U(l‘l’l(B )ﬁ(é}_ M )). We can choose coordinates for T (B_)
€ 1 1 1 =0"'s € 1

by defining a map v_ from T (B )to the set E_ = {(x,sy)ix € §,(B,),y € sa-1
s €[0,e)! ¢ R™, Indeed Mg is a sphere bundle over V (s # 0), and we choose B1

sufficiently small such that the induced bundle over B, is a product bundle :
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Mg = B1 x 88971, This defines the diffeomorphism d)l: Te (Bl) — E1 , giving the
desired chart (wl,El). Note that zbl is equivariant with respect to isoparametric
functions. Similarly we can construct a chart (zbz,Ez) about #(x), where E2 =
{(u,tv); ue RT , VE Ss'l, t e [0, 6)). With respect to these charts the equivariant

map @ induces an equivariant map ¢ : E1 — E2 of the form
b (x,sy) = (gz(x), a(s)gl(y)) ,
where s = [0,¢€¢) and a (0) = 0. Also g, is a smooth map and g, is a homogeneous
polynomial map of degree 1. We must check that the map ¢ between Euclidean spaces
is C2 when o satisfies the estimates of Section 6.2 .
Rewrite ¥ as
b(x,y) = (g,(x), o (log Iyl)gl(y/ ly)) ,
where x & ]Rp, y = RY9(m = p+4d), and we have changed the parametrization from s
to u where e = 5. Then it is sufficient to check that the map H defined by
H(y) = a(log lyl)gl(y/lyl) ,
extends over ly| =0 toa c? map.
Write H as
1
H(y) = Rz(y)gl(y) ,
where R(y) = a(log |y|)2/ |y|21 . Furthermore write
R=rop ,

12 =

where p(y) = ly v say, and r(v) = a(3 logv)2 /vl.

Lemma 6.3.2 For v near 0, the first derivative of r is uniformly bounded whilst

dr /dv2 is at worst of 0(1/v).

Proof The derivative

dr/dv = ala - loz)/v”zl .

(1+2)u

1
From Theorem 6.2.1 we see that o' - 1a = 0(e ) and a=0 (e u), hence

2(1+1)u

ala'-1a) =0(e ) = 0(v1+1) as required. The second derivative

Er/av? = (aa"-1a") +(a' -2(1+1)a) (a' - 1a))/2v* T2 .
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+
Now o' - 2(1+1)a= O(elu) and o' - 1a= O(e(l 2)u), hence (a' - 2(1+1)a)(a-1a)=

0(e21+)uy 0(v1*1l) as required. For the first term on the right hand side we

note that
" = -ba'+101 +b)oz+0(e(1+2)u) .
Hence
ala'-1a") = al-ba'- 11 +b)a) + o T
= o(l+b)(-a' +1a) + 0(e2(1+1)u)
_ 0(ez(lﬂ)u)
= o™ .
as required. D

Lemma 6.3.3 (a) Asy —0, 4':,‘R/'o‘yi -0 (y=(y1, ees ,yq)), whilst all second

derivatives remain bounded.

1
2

(b) Similarly for R®,

Proof (a) R(y) =ro p(y), where p(y) = ly |2 , hence
SR/EJyi = 2y, ar/ov ,

r

o

2 2
9”R 9 r
= . 4y .y, + ce
oy. ey. avz yly] 2 61] v

[s>]

The conclusion now follows from Lemma 6.3.2 .

1
(b) It suffices to show that R? is bounded away from 0 as y — 0. But by
1
Theorem 6.2.1 (i) RZ = g(u)/ lyl1 > b1 elu/ Iyll =b1 . U]

Lemma 6.3.4 H extends to a 02 function .

1
Proof H(y) = Rz(y)gl(y), so that

1 ag
BH _ BRE L 1
ayi Eyi 1 ayi

is continuous at y = 0 by Lemma 6.3.3 . Also
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1 1
?un_ _ R’ g + OB %8, R 1
= . . .
°yi ayj E)yi 8yj 1 Iayi E‘yj ayj Eyi
2
PR -
+R2 ,
i)yia‘yj

is again continuous at y = 0 by Lemma 6.3.3 and by the fact that g 1 is homogeneous

and hence gl(O) = 0. Indeed the first three terms tendto 0 as y — 0. U
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7 The general theory of harmonic
morphisms

7.1 General theory

We were briefly introduced to harmonic morphisms in Section 1.3 . Now we will give
a much more detailed treatment.

Harmonic morphisms have been extensively studied by Fuglede and Ishihara [19,27],
and we will now describe some of their results.

Let §:(M,g) — (N,h)be a map of Riemannian manifolds. If x € M is such that
dﬂx # 0, then TxM can be decomposed into 7/’; = ker d¢x and{% the orthogonal

complement with respect to g. The map # is called horizontally conformal if, for

= H o A —- T N i 3 3
all x € M where d¢x £ 0; d¢x I%f; g(x) is conformal and surjective.
X

That is, for all X,Y E% , h(dﬂx(X), dﬂx(Y)) = Az(x).g(X,Y), for some function
A: M — R, called the dilation of ¢ .

Theorem 7.1.1 [19,27] A map #:(M,g) — (N,h)is a harmonic morphism if and

only if @ is harmonic and horizontally conformal.

Thus, for each x € M, d¢x either has maximal rank or dﬂx = 0. Denote the cri-

2

tical setof # by C_. ={x € M; dﬂx =0!. The function A“: M — R is smooth and

g

C¢ = (7\2)"1(0). The critical set C¢ is a polar set; see [19]. Roughly speaking this

means that codim C, > 2 in M. We remark also that § is an operi'iriapping.

g
Remark 7.1.2 If C¢ is non-empty; one can easily see from the condition that
dﬂx =0 on Cg , that each connected component of C¢ is mapped under # to a single
point of N.
For maps into R, where R has the standard metric <,> , the condition of har-

monicity and horizontal conformality become the following.

Theorem 7.1.3 [19] I ¢:(M,g) — (IR® , <,>), then @ is a harmonic morphism

if and only if the components @ ORI ,ﬂn of § are harmonic on M, and their gra-

dients are mutually orthogonal and of equal length A (x) at each point x € M:
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g(ve, V6 = xzakl, forall k,1=1, ... ,n. (7.1.1)

Example 7,1.4 Any Riemannian submersion is horizontally conformal with xz =1.

By a result of Eells and Sampson [12 ], a Riemannian submersion is harmonic if and

only if the fibres are minimal submanifolds.

Example 7.1.5 Define #: R®\{0} — s%1 by g(x) =x/Ix|, for all x e R®\Jo}.

Then ¢ is a harmonic morphism with dilation A given by 7\2 (x)=1/1x12.

Example 7.1.6 Let # be multiplication of real, complex, quaternionic or Cayley

numbers; #: R2M _ Bl} @#(u,v) = uv, where n = 1,2,4 or 8 respectively. Then §
is a harmonic morphism from Theorem 7.1.3 with dilation A given by 7\2(x) = |x |2.

The critical set C, consists of the point 0 in R .

]
Example 7.1.7 Let ¢1 :M — N and ¢2: N — P be harmonic morphisms with dila-

tions Al and 7\2 respectively. Then, from equation (1.1.3), ¢2 o ¢1 :M — P isa

harmonic morphism with dilation A given by 7\2(x) = 7\2 (ﬂl (x)). 7\21 (x), for all x= M.
In view of Example 7.1.4 we might expect to find conditions when the fibres of a

harmonic morphism are minimal submanifolds. This is what we consider in the next

theorem.

Theorem 7.1.8 Let §#:(M,g) — (N,h) be a submersion which is a harmonic mor-

phism. Then (setting r = dim N)

(a) I n =2, the fibres are minimal submanifolds

(b) if n+# 2, the following properties are equivalent:

(i) the fibres are minimal submanifolds ;

(ii) v A2 is vertical, where A is the dilation of §;

(iii) the horizontal distribution has mean curvature va2 /2 )\2 .

Proof First of all we have e(@) =n A2/2 , consequently the stress-energy tensor

S¢ is given by

s, = tn2%.g-¢"n. (7.1.2)

[
Take a point x € M and an orthonormal frame field (Xa)a= 1 m near x with

Xy eeey Xn horizontal and Xn y eees Xm vertical. Use the following ranges of

1 ’
indices:

+1

¢
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l<a,b,...<m;1<1i,j, ... <n;n+l <r,s,...<m,

The map # is harmonic so V*Sﬂ = 0 ; therefore, summing over repeated indices,

0 = (an Sﬂ) (Xb,Xa)

=1 2y _ * - g*
2nxb(x ) (Xa(¢ h(xb,xa)) a h(vxx

. b’xa)

*
-g h(xb,vxaxa) . (7.1.3)
Since the frame is orthonormal
0 = Xig(Xj,Xi)

= V +
g ( X, X].,Xi) g(Xj,VXiXi)

g Vg XX, + g<xj,%vxixi)
= /A% (B h(vg X,X) + 6 h(X, v, X)), (7.1.4)
i ] 1 ) Xi 1 ‘
where % denotes horizontal projection.
Choose X, =X, then X_ (¢‘h(xj,xa)) = xj(;\z), and using equation (7.1.4);

equation (7.1.3) becomes

- L(n_ 2 * *
0 = Hn-2)X,08) + 97h(Ty XX g7 R,V X))

= l(n- 2 2
z(n 2)X].(A ) + A g(x],,vxrxr)

= %(n-Z)X]. (7\2) - 22(m-n) (mean curvature of fibre in the X], direction) .

(7.1.5)
Thus we have proved (a), and (i) if and only if (ii) in (b).
Now choose Xb =Xr. Equation (7.1.3) becomes
0 &nxr(x ) - 8 h(VXin’Xi)
=1 2y _ %23
FnX _(A%) -2 g(fvxixr,xi)
2 2
= v/ .
X %) + 2 7e(Vy X X)) (7.1.6)

= %an(Az) - 12 n (mean curvature of horizontal distribution in X, direction).
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We now choose Xr to be in the direction of the vertical projection of VAZ, and we
obtain ( ii) if and only if ( iii) in(b). L]
To what extent can we regard Theorem 7.1.8 as being valid for arbitrary harmo-

nic morphisms (i.e. allowing C_ to be non-empty) ? In fact we can remove the '"sub-

g

mersion ' condition in the statement of Theorem 7.1.8 on account of the following

recent result of Fuglede.

rheorem 7.1.9 [20] If va? is vertical, where A: M — R is the dilation of a

harmonic morphism #:(M,g) — (N,h), then C_ is the empty set.

g

7.2 Examples and non-examples of harmonic morphisms

Example 7.2.1 The Hopf maps defined as follows are all harmonic morphisms.

Let F denote either the real, complex, quaternionic or Cayley numbers, and let

n=dim F. Define §: R>® — RP*1 by

g(x,y) = (lx|2- Iylz, 2xy) , (7.2.1)

for all x,y € F. Then @ is a harmonic morphism with dilation A given by Az((x,y))
1(x,y) Iz, for all x,y € F. Also #(z) |2 = |z 14 , for z € R2n’ so the fibres are all
compact, and being in R2™ cannot be minimal. Thus the condition (b) of Theorem

7.1.8 is indeed restrictive.

Example 7.2.2 Isoparametric families of hypersurfaces with 2 distinct principal

curvatures give rise to harmonic morphisms.

Let M be R™, and express z € R™ in the form z = (x,s.y), where x € Rp,
yesd, p+q=m and s € [0,s). Then the level surfaces s = constant form an iso-
parametric family (c.f. Example 2.1.4). The map #: R™ — RP; ¢(z) = x defines
a harmonic Riemannian submersion.

Let M be Sm'l, and express z € sm-1 55 z=(coss.x, sins.y) where x € Sp'l,
y € Sq'l, p+q=m and s € [0,T/2]. The level surfaces s = constant form the iso-
parametric family of Example 2.1.5. Define #:S™\ S9 — SP by #(z) =x. Then
¢ is a harmonic morphism with dilation A given by 7\2(2) = 1/coszs. Here VA2 is
vertical and the fibres are minimal.

m-1

Let M be H™"1 , and express each z € H as z = (coshs.x,sinhs.y), where

x€HP-1 yes¥l p+qg=m ands € [0,). The level surfaces s = constant form
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the isoparametric family of Example 2.1.6 . Define §: -1 . Pl by #(z) = x.
"Then ¢ is a harmonic morphism with dilation given by )\z(z) = l/coshzs. Also the
map ¥ : HP-1\ HP~1 _. s9-1 defined by ¥(z) =y is a harmonic morphism with
dilation p given byu2 (z) = l/sinhzs .

All the above harmonic morphisms are applications of Proposition 2.2.5 .

Example 7.2.3 Isoparametric families of hypersurfaces on a space form M with 1

distinct principal curvature give rise to the following harmonic morphisms.

Let Mc be a particular hypersurface in the family, and let V be the focal variety;
then M\V is connected. Define §: M\V — Mc to be projection down the normal
geodesics. Then @ is a harmonic morphism with geodesics as fibres. Conversely

we have the following.

Example 7.2.4 Suppose #:(M,g) — (N,h),dim M =dim N+1, is a harmonic mor-

phism, and vaZ is vertical, where A is the dilation of §. Then from Theorem 7.1.8,
the integral curves of V7\2 are geodesics, and so IV?\2 I2 is a function of A2 (one
can see this by reversing the proof of Lemma 2.1.1). The horizontal distribution
is integrable in this case, the integral submanifolds being the level surfaces of A2,
Thus property (b) (iii) of Theorem 7.1.8 implies the mean curvature of these level
surfaces is a function of A2 - otherwise said, A2 isa generalized isoparametric

function.

Example 7.2,5 Consider the tangent bundle (TM,G) of some Riemannian manifold

(M,g), where G is the Sasaki metric of Example 2.4.7 . Let TlM be the unit sphere
bundle:

TIM = {(x,v) e T™M; IvIZ = 1],

endowed with the metric induced from G. Then, as a consequence of Example 2.4.7
and Example 7.2.3, §: TM \(zero section) — TIM; @(x,v) = (x, v/Ivl) is a har-
monic morphism. The dilation A of § is given by 7\2(x,v) =1/ M2 .

Example 7.2.6 In Example 7.1.6 we saw that real, complex, quaternionic and

Cayley multiplication are all examples of harmonic morphisms. Such multiplications

are all orthogonal multiplications; i.e. a bilinear map §: RP x RY — R" such that

16(x,y) 1= IxI. lyl, for all x € RP, y € R9. Which orthogonal multiplications are
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harmonic morphisms ? It turns out that the multiplications of Example 7.1.6 are

the only ones:

Theorem 7.2.7 If ¢: RPx RY — R" isan orthogonal multiplication, then § is

a harmonic morphism if and onlyif p=q=n and n=1,2,4 or 8.

Proof Suppose § is a harmonic morphism. Since # is an orthogonal multiplication
1gx,y) 1 = Ixl.lyl, (7.2.2)

for all x © RP and y ¢ R4, Fix Xo € RP and Vo € RY, then ﬂy : RP — RMgiven
0
by 8. (x) = #(x,y ) and @, :RY —~ R"given by #, (y) = #(x_,y) are bdth linear.
Yo 0 0 X0 0

Therefore

Ay dx) @) = By u (7.2.3)

for all u € RP, and has norm

|d(¢y0)x0(u1)| = Iull IyOI . (7.2.4)
Similarly
ld(ﬂxo)yo(uz)l = lu, | |x0| , (7.2.5)

for all u2 € RP .
Now

dg (v.,v,) =d(g_ ) (v,)) +dg ) (v)) , (7.2.6)
(xo,yo) 1’72 yo X, 1 Xy Yo 2

for all (v ,v,) € RP x RY. Thus
= -] - P q .
ker d ¢ ker (d!iiy )x ker(d¢X )y ® {(vl,vz) € RPx R

(x 0 %o 050

O.YO)
dg ) (v.) =dg ) (v)!. (7.2.7)
yo x0 1 x0 y0 2

From equations (7.2.4) and (7.2.5) we see thatker (df ) ={0] and ker(dg_)_ =
Yo %o *0 Y0

{01 whenever x_ and yo are non-zero, and so p,q> n. Henceforth assume

0
X020 # 0.
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From equation (7.2.7)

ker dg

= c RP q. = -
(%403, {(vl,vz)c RP x R7; d(ﬂy )x V3 dg, )

vz} . (7.2.8)
0% 0 y0

let L= d(fify )x RPN d(ﬂxo)yoqu. Since dﬂ(x ) is surjective; dim L =
00 070
dim ker(dﬂ)( =p+q-n. Let MmR™ — L be the projection map, and define

% »Y,)

0
L = (ker(Mog ))* .
Yo Yo
1
Lx = (ker(Tlo ﬂx ))
0 0

If both Lyo"' = Lx;‘ = {0}, then p =q and L has maximum dimension p. In which
case, L, = RP and L, = RY. But then dﬂ(xo,y , cannot be onto R" unless p =

q = n, which is the required result. So without loss of generality, assume Ly'(L) ={o0).

From equation (7.2.8), ker d4 )C Lyo X L, . Thus the horizontal subspace
0

(x49:¥¢
%(xo,yo) consists of

(i) the orthogonal complement of ker d g ( ) in Lyo X on , and

*0Yo
1 1
(ii) X .
1 1
Choose (u,,0) € X , then
10 €Ly X Ixg

dg (u,0) =dg ) u_ ,
(xo,yo) 1 Yo %o 1
and
2 2
ld(g_ ) u | = g u_l
Yo %o 1 Vo 1
Iull Iyol ,

and since |(u1,0)sl2 = lul |2; we conciude that the dilation A is given by
2 - 2
= . .2,
A (xo,yo) 1y, ! (7.2.9)
On the other hand, choose (u 1,u2) as lying in that part of the horizontal space given
by (i). For ue LYO, ¢y(;1€ L, sothat TWo ¢Y0(u) = ﬂyo(u), and
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o ﬂy (w)| = HJy () |

0 0
= u .
ful Iyol
Thus Mo #_ | is homothetic, and so
y. L
0 yO
g )1 =A. A, (7.2.10)
Yo on %o %o

for some Axo € R, and some matrix Axo with Ay * Ay = identity. Similarly
0 0

b

dg_) =A_ B
X0 Ly0 Yo Yo
for some A y € IR, and some matrix Byo with B, * B, = identity. From equa-

Yo Yo
tion (7.2.8)

- ~ nP q. = -
ker dﬂ( {(vl,vz) ER"X R A, Ay (vl) xyoByo(vz),]

xo’yo) 0 0
= * ) -
= {((-Ayo/xxo).Axo Byovz,vz), v, € Lyo} .

, then (ul,u2) € (ker d ¢ )l if and only if, for

Thus, if (u_,u ) & X L,
12 LYO xo (xosyo)
all v2 € Lyo,
*
0 = <(—7\yo/7\xo). &0 ByO Vgr U > *<v,u, >
*
= (- +
( hyo/Mo).< v2,By0 %‘oul > <Vgilly >
*
= - . u + s
<v2.( xyo/hxo) Byo A%(o 1Y
if and only if
u, ={(xy0/>5( ).Byo’ Ax U - (7.2.11)
0

Thus, that part of the horizontal space given by (i) is spanned by
®
fogu, ,A B A u)s;u el }.
0! Yo Yo X! 1 %

Now
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* 2 2 2 2
, A = + A u .
I(Axo u, Ayo Byo xOul)l (XXO Yo ) ful

Also, for all ul S on s

*
dg ( u ,\, B u_ )
(xo,yo) 7\"0 1Y, Yo AXO 1

1
>
ke
i [\
(=]
=
[o—y
+
>
<
N
o]
o]
»
»>
=1

2 2
(xxo AT Ay u

and the square of the norm of this vector is equal to (A 2 4 Ayoz ). Thus the dila-
0
tion A is given by
2 - 2 2
A (xo,yo) (Axo + xyo ).
But

’

— 2
d(!?Iy ) (AX u_) xx Ax u

0% *o o %o !

and equation (7.2.4) implies

4 2 _ 2 2 2
A lu_ I = A a_1° ly, 1I© ,
x0 1 x0 1 0
that is
2 - 2
Ax (yo) lyol
0
Similarly
2 _ 2
)‘y (xo) |x0| ,
0
and so

2 (7.2.12)

2 _ 2
A (fo’yo) = |x0| + Iyol
On account of equation (7.2.9) we see that § is horizontally conformal only when
Lyol = Lx(';" = {0}, i.e. only whenp =q =n. It is well known [10] that in this

case §§ must be one of the standard multiplications of Example 7.1.6 . ]

Example 7.2.8 Example 7.1.5 is a special case of the following.
Let Vn,k k

k-frames in R™ at 0. The Gram-Schmidt orthonor]t(alization process defines a na-

be the space of k-frames in R™ at 0, and 0n the space of orthonormal

tural deformation retract g: Vn Kk 0n We might ask whether this retraction

’ k*
is a harmonic morphism,
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*

Let ]Rn denote ]Rn \0. Then Vn can be regarded as an open subset of the

,k
Euclidean space Rn§< cee X Bn*(k times), from where it inherits its metric. Simi-

larly 0n can be regarded as an open subset of SP~1x ,  x sn-1 (k times) with

,k
the induced metric. Let T: R®" — SP~1 pe the natural retraction nx) =x/1x1.
The Gram-Schmidt orthonormalization process can be described as follows.

Let (vl, ,vk)f:' Vn,k’
jection I'I‘,1 :Sn'l\{ + 1 (v1 N - 31;11—2 which maps down normal geodesics to the

equator Sl‘l‘“2 subtended by the two po]les * I‘I(vl). Let u, =T, (m (vz)). Define

then u 1- ﬂ(vl) e S™1 There exists a natural pro-

2
1 1
the projection ﬂv2: S:'z \{+ uz} - S:ll'3 , which maps down normal geodesics to
1 2
the equator SP~3 subtended by the poles + u_. Let u_ = 1. (T_(T(v,))), and so on.
uy - 2 3 V9 V9 3

In this way we obtain the desired orthonormal basis (ul, e s uk) S 0n K*

-
R"

.V2

The fibre over a point (ul, ces s uk) S 0n Kk consists of products of various open

at each point

half-spaces, and hence is minimal in V The tangent space to Vn

n,k’ Jk
can be identified with the Euclidean space R%x ... x R™(k times), and the horizontal
space to the fibre over (ul, oo s uk) S 0n K consists of k-tuples (w

’

R ,wk)e

R™ ... xRP such that
<u1,W1> =0
<u_,w_> = <u_,w_> =0

172 . 22

<u_,w, > U, W) > = eenennene = <WLW > S 0. (7.2.13)
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We can identify the tangent space to 0n at (ul, cees uk) with a subspace of

,k
Euclidean space, and the map #, sends (wl, ”"wk)(v " )G T(v N )Vn,k
1 k 1 k
to
( w1 w2 / v2.u2 wk / vk.uk )
Ivll |v2l lv2I |vkl Ivkl
- Y2 e
vl.u1 v2.u2 Vie Y
Thus
, tw 12 |wkI2
11 k' k
and the dilation A of ¢ is given by
2 2
w_ 1| lw, |
2
A(v,...,v)=(—l—+...+——k—) (w2+...+w2).
1 k Iv..u I2 v 12 1 k
1 k"
(7.2.14)

This is independent of the choice of (w_ , ..., wk) only in the following cases

1
(i) k = 1; in which case we have #: R?' — s™ 1 agin Example 6.1.5 .

(ii) k =n = 2; for then equation (7.2.13) implies that w_ = 0, and equation (7.2.14)

2
shows that @ is horizontally conformal.

In case (ii); #:GL(2) — 0(2) . By choosing appropriate geodesics through

(v URLEE vk) one can see that § is hgmonic, and so is a harmonic morphism (since

dim 0(2) =1 the map @ is obviously horizontally conformal).
Of course the above retraction may be a harmonic morphism with respect to some

more natural metric on 0n K’ such as the left invariant metric which arises from
’

regarding 0n as a homogeneous space.

,k

Remark 7.2.9 Although the map §: Vn of Example 7.2.8 is not in general

—-0
,k n,k
a harmonic morphism, it is harmonic and has minimalfibres. In fact it is an example
*
of a more general kind of map than a harmonic morphism, where § h(g:( M,g) - (N,h))

has several distinct eigenvalues instead of just one (c.f. Example 3.3.2) (in Example
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7.2.8 $*h has min (k,n - 1) distinct eigenvalues). In the next section we shall

briefly consider maps with ¢ *h having more than one distinct eigenvalue.

7.3 Maps #:(M,g) — (N,h)where ¢ *h has two distinct non-zero eigenvalues.

Suppose #:(M,g) — (N,h) is a submersion almost everywhere, with ¢‘h having
at most two distinct eigenvalues. Denote these by A 1 and Az , and let U be an open

set in M on which 7«1 and 7\2 are non-zero.

Let Si denote the eigenspace of Ai, with ri = dim Si’ i=1,2. Choose a frame
field Xl’ ey Xm on U such that Xl’ oo ,Xp span Sl,xp+1,
Xm are vertical, Choose the following ranges of indices:

ey Xn span 82 and

Xn+1’ oo

l<ab,..<m;1<1i,j,..<p;ptl<r,s,.. <n;ntl<o,B, ... <m,.

The energy density of ¢ is given by

=1 *h = +
e(f) = ztrace § h (rA rzxz)/z , (7.3.1)
and the stress-energy tensor S p is given by
=1 + _a*
sﬂ z(rlx1 rzxz).g g h. (7.3.2)

Suppose @ is harmonic; then calculations similar tothose in the proof of Theorem

7.1.8 establish the following two equations (summing over repeated indices)

B(r - 2)dn +r2dA2)(Xj) Q- Az)g<xj,vxrxr) + xlg(xj,vxaxa)= 0,
(7.3.3)

%(rldxl *lry, - 2da, ) (X)) + (A, - xl)g(xs,vxixi) + Azg(xs,vxaxa) =0.
(7.3.4)

We therefore have

Theorem 7.3.1 Let #:(M,g) — (N,h) be defined as above. If ¢ is harmonic

and the mean curvature of each eigenspace Si is vertical, i = 1,2, then the fibre is

minimal if and only if

1]
(=}

((r1 - 2)d7x:l + r2d7\2) (X]_) (7.3.5)

and

(rldx1 + (r2 - 2)d7\2) (Xs)

1
(=]

(7.3.6)
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foreach i=1,...,p,s=p+1, ..., n. Inparticularif dim N=2 and

' rl = r2 =1, then equations (7.3.5) and (7.3.6) imply V()\l - 7\2) is vertical.

Example 7.3.2 Let M= gm-1 , and f: s™-1 __ R be an isoparametric function of

Let T; M\V2 — V1 be defined as in Pro-

degree 3, with focal varieties V1 and V2.
position 2.2.5, then from that proposition T is harmonic. Also #*h has two distinct
eigenvalues (c.f. Example 3.3.3), where h is the induced metric on Vl; the cor-

responding eigenspaces are precisely the principal curvature spaces. The mean cur-
vature of these spaces is vertical, and so Theorem 7.3.1 applies. Since A 1 and 7\2
are both vertical; equations (7.3.5) and (7.3.6) are satisfied and so the fibres are

minimal.
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8 Harmonic morphisms defined by
homogeneous polynomials

8.1 Properties of harmonic polynomial morphisms

Suppose #: R™ — R™ is a harmonic morphism defined by harmonic homogeneous

polynomials ¢1, cees ¢n, each of degree p. Normalize § such that sup |f(x) |2 =1.
Ix =1
Following Fuglede [19], we define the set

r'={xes™l; 1gx)2 = 17.

Then Ix |2p - 1B(x)12 > 0 in Bm\{o‘, with equality on the cone R" r\fol. Thus on
R r\{o}

0= +v(xi®P - 1gx)1%)
=p Ix 12P-2 x-g g (x) v (x) (8.1.1)
x-Z () .1.

From Theorem 7.1.3 , this implies

4p-2

2 Ix1 = a2 g, (8.1.2)

where A: R™ — R is the dilation of §. Thus on R*r'\{0}

A2(x) = pZIx1*P2 / | g(x) 12

p? x|2P-2 | (8.1.3)

By the smoothness of 7\2, we see that 7\2(0) =0, and }\z(x) = p2 Ix IZP‘2 on B+I‘.
Consider the Laplacian
2

ACIX1ZP - 18(x)1%) = p(2p - 2) x1ZP"2 + mp |x(2P-2 _ pp (8.1.4)

This is > 0 on R+l", thus p(2p - 2) + mp > npz, that is

(m -2) >(n-2).p .
Equality is obtained when A( Ix12P - 1g(x)12) = 0, that is when IxI2P - |g(x)(Z =0

on SM-1  we therefore have
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Proposition 8.1.1 If g: R™ — R" is a harmonic morphism defined by homo-

geneous polynomials of degree p , then

m-2 > (n-2).p , (8.1.5)

with equality if and only if |#(x)12 = constant, for all x eS™-1,

Example 8.1.2 Let ¢: R* — R3 be the Hopf map

gx,y)) = (Ix12 - 1yi2, 2xy) ,

where we regard x,y as being complex numbers. Then ¢ is a harmonic morphism
defined by homogeneous polynomials of degree 2. The map ¢ | gm-1 .sm-1__gn-1
is a harmonic Riemannian fibration.

From now on we will assume that the dilation A: R™® — R is given by

Az(x) = p2 Ix|2p'2 R (8.1.6)

for all x ecR™. Let F: R™ — R be defined by F(x) = |#(x)12, for all x ¢ R™,
then F is homogeneous of degree 2p. let f=F lSm'l: sm-1 | g,

Iemma 8.1.3 If f is as above then

2 = =
1dafr- = z,bl(f) » Af l,bz(f) ,

for some smooth functions zbl and zpz. In particular f is an isoparametric function

(c.f. Chapter 2).

Proof First of all

1agl? = 1dF % - (9F/or)>

n n
2
4 <k2:=1 ¢kV¢k,k§1 Gk V¢k> - (2pF)

= 422 1912 - (2pF)2

= 4p2(1 - F).F, using equation (8.1.6) . (8.1.7)
n 52
Write F as F _kzil K ° then
R™p - 55 ve .ve
A Z V- Vi
= 2n lz .
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Also

or = (1/r). 2pF ,
and
&F _ -2pF . 1p°F
2 2
er r r

where r2 = Ix I2 . Therefore from Lemma 1.1.5
m-1 2 2
AS f = 2nA% - 4p°F - (m - 2) 2pf . ] (8.1.8)

Theorem 8.1.4 If @: R™ — R" is a harmonic morphism defined by homogeneous

polynomials of degree p, with dilation A given by 7\2 (x) = p2 Ix 12P-2 | then I'is

a_smooth submanifold of S™~1, and both R* I' and the fibre over the origin in R"

are minimal cones through the origin in R™ ,

Proof Let £ = {x<c R™; f#(x) =01 denote the fibre over the origin. Then
F 2= 0, where F = HZH2 ,and so I'and ZN S™M-1 are both critical sets of f= F Sm_l
From Lemma 8.1.3 f is isoparametric, and hence from Theorem 2.2.2 I' and

2N s™ 1 are minimal submanifolds of S™M-1,

Consider the map ¢ I r:l" —gh-1 , then by a result of Fuglede [19 ] this map is

surjective. We prove the following theorem.

Theorem 8.1.5 The map § | I‘:F — 8™ 1 defined above is a harmonic Riemannian

submersion.

Proof Claim 1: The set I' is precisely the set of x € s™-1 guch that Tx (fibre of
¢ through x) C TS m-1,

Proof of Claim 1: Let y & sl be such that §(x) =y, x € I, and write ¢_1(y)
for the fibre over y. Let y(u) C §~1(y) be a curve with y(0) =x. Then #(y(u)) =y.
Let p(u) =y(u)/ly(w)l € S™7 1. Then

gp)) = y/ )P ,

by the homogeneity of §. Thus
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dg(u'(0)) = (d/du)(y/ (W I®) | _ g

-p<y'(0),y(0)>.y; (8.1.9)

so that y(u) is tangent to s™-1at u=0 if and only if < y'(0),y(0)> = 0 if and only
if dg(u '(0) = 0. But we know that 1#(x)12 = 1 is maximum on the sphere, i.e.

16(u(u))1?< 1 and =1 at s = 0. Therefore

0 = (d/du) I #(uiu))’ Iy

=0

n 2
(d/du)k2=31 ¢k(u(u)) |u=0

n 1
= 2k2=21 ﬂk(u(O))dﬂk(u (0))

2 <g(u(0)), dg(p'(0)) >

2<y,-p <y '(0),y(0)>y>

-2p <y ' (0), y(0)> . (8.1.10)

Thus vy is tangent to S™M-1 3¢t y =0 and Claim 1 is proved. In particular w2 is
horizontal over I', and equation (7.1.5) of Theorem 7.1.8 implies that the mean cur-
vature of the fibre is proportional to the horizontal projection of V>\2 , i.e. to VA

(in particular if the fibre were contained in S™"1 then it would be minimal in S™"1),
Claim 2: The set §~1(y) N I’ is minimal in I.

Proof of Claim 2 : Suppose we are given a curve «(u) on Sm"1 such that

g(a(u)) = a(u).y . (8.1.11)

Then, since F(p(u).a(u)) = p(u)p.a (u).y, if we let p(u) = a(u)nl/p whenever
a(u) # 0; the curve y(u) = oz(u)/a(u)l/p is a curve in the fibre §~1(y) whenever

a(u) # 0.
Consider the particular case when «(u) is an integral curve of V{ through a point

X € I'. Then we find that
(a) B(al0)) = y

2
(b) dg(vf) = 2p g.(1 -1) .
Both the conditions (a) and (b) imply that either (i) o (u) satisfies equation (8.1.11),
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or (ii) #(a(u)) c s 1,
Consider case (i). Since «(u)is a geodesic in Sm'l; Va'(O) a'(O) is perpendicular

to Sm-l’ which implies that Vy. y'(O) is perpendicular to sm-1

(0)
Consider case (ii). Then o(u) is horizontal, and so o'(u) is perpendicular to
g1y .
We can now perform the following construction.
Consider the set ﬂ—l(y) N I'. Locally we can choose an orthonormal basis of
yeeos X

+1 r
arise as the tangent vectors to integral curves of Vf (this is always possible since

T(¢'1<y);xl, ..., X, such thatX_, ...,X _ span T 1(y)N 1) and X_

I' is the focal variety of an isoparametric function) as above, so that VX. Xj is per-
pendicular to Sm—l, forj=s+1, ..., r. We therefore find that the me]an curvature
vector of ¢'1(y) N I is perpendicular to sm-1 , and in particular that ﬂ'l(y) nr
is minimal in I,

Furthermore, since 7\2 I r = constant and V)\z (which is horizontal) is perpendi-
cular to I', then the map # is a Riemannian submersion. The minimality of the

fibres now imply that § | r is a harmonic Riemannian submersion. D

8.2. Some examples

'/Example 8.2.1 Let #: R8 — R® be the Hopf map defined by

g(x,y) = (|x|2- IyI2,2(x1y1-xy -X -X ),

2¥2 " *3Y3 T *4Y,

+ -
2(X 1Yy ¥XoY ) *XoY, = XyY5)s

+ + -
2(X Vg +XaY, XYy =XV,

20X,y FRY PRV =gV,
Then ¢ is a harmonic morphism defined by homogeneous polynomials of degree 2.
Write § = (_ﬂxl\, cees ¢5). Then
B, = (X XXX 0o 0¥y =Yg Y,)

8, = (¥ 5Ygr=Ygs=V,» X s Ko =Xg,=X,)
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V¢3=2(y2,y],y4,-y3,x2,x], 4,x3)
VB, =230 Y 5V p0Kg 0Ky X 57Ky
V¢5 =2 (y4,y3,-Y2,Y1,X4,“x3,xz,xl) 1)

from which we see that Az(z)=4 1z |2 for all z € R8. We also note that there exists

an A e OS(R), such that ¢i+1 = ¢i 0A;

- 10001000 7
0001000-1
A = 00-100010
01000-100
01000100
00100010
00010001
1000-10 OOJ

|~

[\V]
[N

Let x : R® — RO, n < 5, be defined by a subset of {ﬂl, cees ¢5‘, . Let I =

7
{xes ; |x(x)|2 =11, F=1Ix 12 the associated isoparametric function and Z the

fibre over the origin in R™. We consider the different cases in turn.
7 7
Case 0 x(z) =0, z=(x,y)€E R8. Then I is empty, NS =S and F = 0.

2
Case 1 x(z)“ﬂ(z) lx|2-lyl2 ThenF—(lsz—Iylz) 1‘=S3LJS3

X lI‘: r— s%is the obvious map, and Z NS’ = s®x &3 /22

Case2 X = (¢1,¢2). Let BGOS(R) be the matrix

10000000 7]
01000000
00100000
00010000
00001000
00000-100
00000010
.L0000000G1 J ,

then B preserves ¢1, while taking ﬂz into the function 2<x,y >. Then F =
(Ix |2 ly I2)2 + 4<x,y >2, which is the isoparametric function of Example 2.3.5 .

Theset I isgiven by I'= S xS/S —{e X3 xCS3}—{cosaxsme x);
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X € s3} ,and x |I‘: (cosf.x,sinf.x) — (cos26,sin26), i.e. x| .:(6,x) — 26,
n/4
4,2°
fold of orthonormal 2-frames in 4-space (defined in Example 5.3.3).
= . = . the isoparametric function cor-

responding to w,Fw , is given by Fw(x,y) =4 1x12 ly 12 = (1x12 + lylz)2 -

Ir

which is clearly a Riemannian submersion. Also Z N s’=s the Stiefel mani-

(1x 12 - Iy|2)2 =1-(Ix 12 - |y|2)2. Thus the level sets of X coincide, (i.e. up

to orthogonal transformation) with the level sets of xo A2 , which coincide with the
2
1
we can transform ¢2 into 2 <x,y> while preserving ﬂl. Thus

level sets of | I2 - ¢2 , i.e. with the level setsof 1 - . - ﬂg . Using the matrix B,

F(x,y) = 1—(|x|2 - Iylz)2 —4<x,y>2 s

2

1
and T = sU/4 and =5 x S3/SO. We now perform a computation of x| ,:I'— S .

4,2 2 r
The map Xxo Bo A“ is given by

xoBoAz(x ) = 2(-x +X b4 +x X +x X +Xx
24 Vo T XY 17X gV T Xy Yy X Y3 TRV T XYy T XYy o

Xy +x.y.).

mxyY 17 %2¥3 T %Y,

+

Ve "Xy

Then | X0 B oAz(x,y)l2 = 4(Ix I2 lsz— <X,y >2), which is equal to 1 when Ix 12 =
1

ly I2,= 4 and <x,y >=0, i.e. on the focal variety 82/24 = {(x+ iy)/22 1(x,y) €S, 2}.

We are thus precisely in the situation of Example 5.3.’3, and the map x l F:I‘ —~s2is

given by the map ¢ n/4. Sf{?‘ 4 . 52 of that example.

’

Similarly, if X = (¢1,¢2, ¢4) say, then x 0 A = (¢2,¢3,¢5). The level sets of

I X0 A |2 coincide with the level sets of | l2 - 1642, which coincide with the level sets

ofl-ﬂlz-ﬂf. Ich—’OS(R)isthematrix

10000000 ]
01000000
c = 00100000
00010000
00000010
00000001
00001000
| 00000100 ,

then C takes the function ¢ 4 into the function 2 < x,y >, while preserving ¢ 1’ i.e.

we have the same case as above.
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4o8,:8,). Then X0A=w,sothat F=1-(Ix(2- 1y2)2.

: 3, 4 3 5 3

The set 1'is isometric to 83><S /2%, and x | o I— S ;¥ II‘((x,y)/2 %) =xy <S
i . 3 3

multiplication of unit quarternions). The set 2NS is isometricto S US .

Case4 X =(¢],¢

Case 5 X =¢. Then F=1, I'=s S7, =N s7 is the empty set and x '1‘: r— stis
the Hopf fibration.
We remark on the duality between Case i and Case (5-i),i=1, ..., 5 - that

is, the set I'of case i is identical with the set Z N S7 of case (5-1).

Example 8.2.2 Consider the example of an isoparametric function given by Ozeki

and Takeuchi in [33 ], and defined as follows. Let H denote the space of quaternions,
and write u = (uo,ul), vV = (vO,vl), ui,vi € H; let u — U denote the canonical invo-

lution. Define a function F: IR 16 — R by

t

F((u,v)) = 4( uv - <u,v 52) + (Iu1 2

2 N 2
| 2<u0,v0 >)° .

- Ivll
Then f = F |S 15 is isoparametric.

Let ¢: R16 — lR4 be defined in the following way. Write ui = (uil, uiz,u?,u?),
i=1,2, and let ¢=(¢1, cees ¢4) be given by

= 2_ 2 + e

ﬂl Iull Ivll 2 <ug,v, >

PR WS OB B35 RS2 NS O S S SR -

2 00 00 00 00 11 11 11 11

PR 0 S U5 - TR T N 6 B N0 a2 4 2

3 00 00 00 00 11 11 11 11

P IS u2v3+u3v2+u4vl-1;1v4—u2v3+u3v2

4 00 00 00 0O 11 11 11 11°

Then the square of the norm of the gradients of the ﬂi’ i=1, ..., 4, are all equal
and mutually perpendicular. Since each ﬂi is harmonic we see that @ is a harmonic
morphism. Furthermore F = |§ I2 . Thus from Theorem 8.1.5 there exists an

interesting harmonic Riemannian submersion from the set I’ onto s3.

8.3. Harmonic morphisms defined b{ homogeneous polynomials of degree bigger

than two.

We can easily construct harmonic morphisms defined by homogeneous polynomials
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of degree bigger than 2, simply by composing two harmonic polynomial morphisms of
degree 2. Since we recall from Example 7.1.7 that the composition of two harmonic

morphisms is again a harmonic morphism.

Example 8.3.1 Let ¢#: R — R* be defined by fi(x,y) = 2xy, where x and y are
quaternions, and let ¥ : RY —~ R3 by the Hopf map; #(u,v) =(lu 12 - v 2 ,2uv),

where u and v are complex numbers. Then X =d o §: RS — B3 is a harmonic mor-
phism defined by homogeneous polynomials of degree 4. The critical set Cx = §~ o)
is a minimal cone in R8.

However, we ask whether there exist harmonic polynomial morphisms defined by
homogeneous polynomials of degree bigger than 2, which do not arise in this way as
the composition of two harmonic morphisms. In particular, do there exist harmonic
morbhisms defined by homogeneous polynomials of degree 3 ?

Recall the theorem of Munzner; Theorem 2.2.5. This states that an isoparametric
Sm-l

function f: — R arises as the restriction of a homogeneous polynomial

F: R™ — R of degree p with

1]

2 _
(i) IVFI2 = p” |x2P-2

(i) AF ci1xP2 |
where the constant ¢ is zero when the multiplicities of the distinct principal curva-
tures are equal.

Suppose we are given such a polynomial F: R™ — R with ¢ = 0. Given any matrix
A Eom(B); define G; R™ — R by G =F o A. Then, forall x e R™ and for all

vectors v € Tme s

<v,VG_ > = dG_ (v)
X X
= dFA(x)o dAx(v)
= dFA(X)(Av)
= <AV’VFA(x)>
- *
= <v,A VFA(x)>'
Thus
*
_ . .3.1
VG, A VFA(X) (8 )
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_ Therefore, from (i), IVGX I2 = p2 |x|2p'2 . Since A: R™ — ij is an isometry;
G is also harmonic, so that G satisfies condition (ii) also. In particular, if there
exists an A €0_(R) such that < VG _,VF_>=0, for all x € R™, then § = (F,G)
gives a non-trivial harmonic morphism ¢§: R™ — R2, defined by homogeneous poly-
nomials of degree p. This would give a method of constructing harmonic morphisms

of various degrees.

Remark 8.3.2 All known harmonic morphisms defined by homogeneous polynomials
of degree 2 arise from a single polynomial in this way. We now demonstrate that
this procedure will now always work.

Let F,G be as above, and write f = F gm-1 and g =G gm-1 *

Lemma 8.3.3 Let V(f) denote the focal varieties of f, and Mo(f) the minimal
hypersurface f’l(o). Then

@) V) = {xes™1;vF 1 szm’l}

(b) M(f)={x es™-1,vF e T sm1

0 X X

Proof The statement follows immediately from the equation

VFx = fo + pf. (8/8r) (x) , (8.3.2)
for all x € SM-1  where r2(x) = x12, ]

Proposition 8.3.4 If

<VF ,VvVG >=10,'
x x
for all x € R™, then
V() C Mo(g)
and
Vig) C Mo(f)
Proof From Lemma 8.3.3. (a) we see that
x € V(f) implies x & Mo(g) ,

and similarly
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x € V(g) implies x¢€ Mo(f) . 0

Theorem 8.3.5 Let F: R® — R be the standard homogeneous polynomial of degree

4 of Theorem 2.2.5, defining the family of isoparametric hypersurfaces of Example

2.3.5 with n =2 (so the multiplicities of the principal curvatures are equal and F

is harmonic). Then there exists no A & 06(R) such that A(V(f)) C Mo(f), where
f=F l gm-1 (hence from equation (8.3.1) the above method of constructing a harmonic

morphism fails in this case).
Proof The polynomial F is given by
Flx,y) =2((1x12- 1y1®)2 + 4 <x,y5%) - 1x,m 1%,

where x,y € R3. Asin Example 2.3.5 the level surfaces of f can be parametrized

by the sets

{ ele(coss.x + isins.y); 6 € [0,21] and (x,y) &€ 83 2] R

for each s [0,71/4].
1
Consider the focal variety V1 corresponding to s = T/4. Then V1 = {(x+iy)/23;

(x,y) €S8 The minimal hypersurface of f is given by

.' .
3,2

MO(f) = {eio(cos(n/S).u+isin(l‘l/8).v);0 e [0,21],(u,v) € S

3,2} :

1
Suppose the point z = (x +iy)/2% of Vl is mapped under A to the point w =

ew(cos(H/B).u+isin(n/8).v)eMo(f). Then
w = (cos ¥ cos(T/ 8).u - siny sin (11/8).v)

+i(sin® cos (1/8).u + cos ¥ sin(11/8).v) .

Now, since 03 (R) acts transitively on 83 9 there existsa B & OS(R) with u = Bx

and v = By. Thus the matrix A has the form

A = cos Y cos(T/8).B I - sin ¥ sin (1/8).B

sin ¥ cos (T1/8).B | cos ¥ sin (11/8).B /

We must check that this is indeed orthogonal.
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We compute AA* and obtain

n n
AA*Y = coszzl)cos2 gBB*+sin2wsin2 -§BB‘| $sin2ycos Z.BB*

isin2dcos g .BB* sin2 ] cos2 gBB*+coszw sin2 %'BB* .

This can only be the identity matrix if sin2¢ =0, i.e. ¥ = 0,7/2, T or 3 11/2. But
in this case the non-zero diagonal entries are not all equal, and certainly do not

equal 1, e.g. if ¥ = 0, then

A.AT = [‘cosz(ﬂ/S) T
. 0
cosz(n/s)

sin2 (11/8)

] ’ sinz(l'l/S)J. ]

8.4 Harmonic polynomial morphisms and equivariant maps between spheres

Recall Example 2.3.8 and Theorem 2.3.9 of}hapter 2. In that example we were

given ann-tuple (Pl, oo Pn) of symmetric endomorphisms of R21 with

PP +PP =26_1,i,j=1,...,n ,
ij joi ij
called a Clifford system. To such a Clifford system, with m =n and m, = 1-n
both positive, is associated the isoparametric function f = F §21-1> where

F: R2! — R is defined by
Fx) = x1-2 2 <Px,x>?
i
We could equally well write F as

F(x) = Z<P, x,x52 , (8.4.1)
i 1

and then, in view of Lemma 8.1.3 it is natural to ask whether such an isoparametric

function arises from a harmonic polynomial morphism.

Theorem 8.4.1 Given a Clifford system (Pl, oo Pn) on Rzl; define
fi: Rzl — R by fi(x) =< Pix,x>, for all x € R21, and foreach i =1, ..., n.
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Then ¢: R21 . RD given by g = (fl, cees fn) , is a harmonic morphism defined by

homogeneous polynomials of degree 2, with dilation A given by A2 (x) = 4 Ix 12 , for

each x € ]R21 .

Proof Let (xi)i= 1 m=21 be the standard coordinates on R™. Then, for each
x € R™M
< VI (x),¢&e/8x > = df (x) (8/&x.)
i 1 i 1
= (d/du)(fi(x +u(1,0, ... ,0))|u -0

= (d/du)<P.(x+u(1,0,...,0)),x+u(1,0,...,0)>| _
i u=20

= (d/du)(<Pi(x),x> + <Pi(x),u(1,0,... ,0)>
¥ <UP.(1,0,...,0),% >+ 0(u2)) la -
i u=90

= <Pi(x),(1,0, cee,0)> + <Pi(l’0’ cees0),x> .

Thus
m .
vi(x) = P(x) + T <P (8/ex,),x>.8/€x, . (8.4.2)
i i i k k

But Pi is symmetric, i.e. < Pi(x),y > = < Pi(y),x > . Thus, from equation (8.4.2),
Vfi(x) = 2Pi(X) , (8.4.3)

foreach i =1, ..., n. Then

<Vfi(x), ij(x)> 4<Pi(x),Pj(x)>

2 < PjPi(X)’x > + 2<x,Pin(x)>
= 4<x,x>6_..
1)

Thus # is horizontally conformal with dilation A given by A2 (x) =4Ix I2, for all
x e R™® .
Write P, in matrix form as (P?b) _ , foreachi=1, ..., n.. Then
: i ’a,b=1,...,m

f(x) =2 P X X .
1 a

T
-
®
o

Thus
Af, = = p*® |
i a 1
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Since Pi2 = 1, the eigenvalues of Pi are +1 and -1. If the eigenspaces of +1,-1
are E+(Pi) and E‘(Pi) respectively, then since Pin + PjPi =0,1i# j, we see that
Pj interchanges the eigenspaces E+(Pi) and E_(Pi) of Pi' Thus dim E+(Pi) =

dim E-(Pi) =1, whence

P = o,
a 1
and fi is harmonic foreach i 21, ..., n. u

Examples of harmonic morphisms defined by Clifford systems, include as special
cases Examples 8.2.1. and 8.2.2. From Theorem 8.1.5, to each such example we
can associate a harmonic Riemannian submersion onto a sphere.

Amongst the family of isoparametric functions (8.4.1), some are inhomogeneous ;
furthermore in some cases the focal varieties are inhomogeneous [17 ]. Thus we can
associate harmonic Riemannian submersions from compact inhomogeneous spaces
onto spheres.

We can modify the proof of Theorem 8.1.5 to obtain the following.

7
Theorem 8.4.2 Let #: R™ — R" be a harmonic morphism defined by homo-

geneous polynomials of degree p, with dilation A given by 7\2 (x) = p2 Ix 12P-2, Let

F: R™ — R be defined by F(x) 3 [#(x)I?, and write f=F |gn_; . then

1
] IM : Mc —¢2 s0-1 js a harmonic homothetic submersion, where Mc = f"l(c)
c
and ¢ # 0.

Proof Since ¢ # 0, the projection Po Mc — I', which maps down normal geodesics,

. . 1
is well-defined. Therefore @ IM :M_ —~c2, s™1is onto, since it factors through

Po ﬂlr:[‘ — 881 and the profection map ¢ 1t czgn-1 — sh-1; i.e. the fol-
2
c
lowing diagram commutes:

3 1
M, —_— 2,8
¢|Mc K
pc 002
r —  SPh-1 .
an

148



In order to prove the theorem, the crucial point to observe is that the proof of

Theorem 8.1.5 will go through provided that the following claim is true.

Claim 8.4.3 For x & M_,%#(vx%(x)) lies in the plane spanned by Vx®(x) and

{x, where ¢ is the unit normal vector field to Mc .
For then the mean curvature of the fibre of § over @(x) would be perpendicular

to Mc at x, and the rest of the proof goes through as before.

Proof of Claim 8.4.3 Write § = (¢l, cees ﬂn), then the horizontal space through

. Now

i=1,...,n

X e Mc is spanned by {Vﬂi(x)}

SO

therefore
_ 2
<VF,V!2!i > = 2¢i7\ .

Also A% (x) = p2 1x12P-2 | therefore

2

vaA% = 2p2(p-1) Ix 12P-% | z X, VX

K
Now

i <kaxk, V¢i> = p.ﬂi s

by the homogeneity of ﬂi. Thus

<va?, vg > - 2p3(p-1)¢zfi

on s™-1

. Hence the horizontal projection of va2 is pfoportional to the horizontal
projectiop of VF. Since ¢ is proportional to the projection of VF onto TS m-1.
the claim is proved. O

Example 8.4.4 Consider Example 8.2.1 , Case (2). Here §: B8 — Rz,

g = (¢1,¢2) is given by

x12 - 1y 12

¢l(x,y)
¢2(x,y) = 2<X,y> ,

149



where x,y are quaternions. The level hypersurfaces are parametrized by the sets

'MS = {eie (coss. x +isins.y); 8 € [0,21],(x,y)E S where s € [0,T1/4].

1
3 ,2 [
Ifze MS,then z can be expressed in the form

z = elf(coss.x + isins.y)

= (cosfcoss.x - sing sins.y) + i(sinfcoss.x +cos@sins.y) .

Then
g (2) = x 1% - 1y12
2 2 L2 .2 .2 2 2 L2
= cos fcos s+sin #Sin s - sin fcos s - cos @sin s
= cos20.cos2s ,
and

ﬂz (z) =~\§(cos @ coss singcoss - sinf sins cos @ sins)

sin20. cos 2s .

Thus ¢| . M ——kosZs. Sl; g(z) =coszs.e219 :
Ms ]
Theorem 8.4.2 allows us to construct many equivariant maps X .sm-1 __ gn
associated to a harmonic polynomial morphism §: R™ — R™ with dilation A given

by A2(x) = p2 Ix 12P-2 | we simply define X by
X (z) = (cosZa(s)(ﬂ'I‘o p(z)), sin2 a(s)) ,

where F = | ¢ |2 is parametrized such that F = cosps, I'= s'l(o), p is the projec-
tion down normal geodesics onto I’ and «(0) =0, o(T/p) = T/2 .

In particular all the harmonic morphisms associated to a Clifford system give such
equivariant maps, and hence we have examples of equivariant maps between spheres
with respect to isoparametric functions, where one of the isoparametric functions has
non-homogeneous hypersurfaces. This then justifies our use of isoparametric hyper-
surfaces as opposed to homogeneous hypersurfaces.

Furthermore, when the same isoparametric function gives rise to two distinct
harmonic Riemannian submersions via Theorem 8.1.5, we expect tq be able to con-
struct examples of equivariant maps similar to Example 5.3.4. Indeed the two Rie-

mannian submersions of Example 8.2.1 given by Cases (2) and (3) give rise to
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Example 5.3.4. Similarly Cases (1) and (4) of Example 8.2.1 generate the Hopf
map from s’ to S4.

In fact, suppose #: R™ — RP is a harmonic polynomial morphism, satisfying
m - 2 = p(n-2)

where p is the degree of the homogeneous polynomials defining §. Then from Pro-

position 8.1.1 we see that
16 (x)12 = 1xI2P

forall xc R™. Let § = (¢1, cens ﬂn) , and define harmonic polynomial morphisms

p and o by
p = (!61, cees ¢p)
o = (¢p+1’ ...,ﬁn) .

Call such p and ¢ complementary.

Let Ms be a level hypersurface of the isoparametric function f defined by
£(x) = lp(x) 12| , for each x € SM-1, Then since
Sm-l

1= 1pl2 + |02

Ms must also be a level hypersurface of the isoparametric function g defined by
g(x) = Ic*(x)l2 Ism_l , forall x € Sm-l. From Theorem 8.4.2, we obtain harmo-

nic homothetic submersions p |M : Mg —al(s) sp-1 — b(s)sq! s
s

, olMs: Ms
p +4 = n, for some functions a(s) and b(s). Since 1= Ip 12 + lol2 , we have

a(s)2 +b(s)2 = 1, so we can choose a(s) = cos ps and b(s) = sin ps (by writing

M, = t‘l(coszps)).

Given two harmonic polynomial maps g : SP-1 . gTr1 a3nd g,: s9-1 L g5-1 we
can now define an equivariant map from S™M-1¢o ST+S-1 35 follows. Let x € S™-1,
then( p(x), o(x)) € SP~1+ s9-1 . ye then compose with g,* €, to obtain the point
g,* 8, (p(x),e(x) € ST-1 4 g8-1 = gT*S-1  The map so defined is clearly equi-
variant since the map of level hypersurfaces is harmonic of constant energy density
by Theorem 8.4.2.

The Smith maps of Section 1.3 can be seen to arise in this way as follows. Consider
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the harmonic polynomial morphism §: R™ — RDM given by

ﬂ(xl,...,xm) = (xl, ...,xm) .

Define the?)mplementary maps p and o by

p(xl, -..,xm) = (xl, ...,xp)

and

Then f(x) = lp(x) I2 |Sm‘1 is isoparametric of degree 2. Let Ms be the level hy-

persurface given by f(x) = cos?

s. Then g(x) = le (x)12 |Sm‘1 is given by g(x) =
sin®s on Ms' For x €S™M-1; (p (x),c(x) sP-1s5a-1 , P+d=m. We now compose
with harmonic polynomial maps g : sP-1 .71 gpnq g, sd-1 _. s8-1 as above,

to obtain the Smith map from SM-1¢o SP-1 r +g=n,
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9 Deformations of metrics

9.1 Deformations of the metric for harmonic morphisms

Let #:(M,g) — (N,h) be a horizontally conformal map between Riemannian mani-
folds with dilation A. Let U C M be an open set Lipon which d§ is non-zero. Let

x € U, then for horizontal vectors X,Y G%; , we have
2 *
A gX,Y) = 4 h(X,Y) .
Thus we can decompose g as
g = (1/2%).6 "h+k , (9.1.1)

over U, where (]/7\2)(6 *h represents the horizontal part of the metric, and k the
vertical part.
The stress-energy tensor of # is given by

S¢ = e(@g-08"h

= in xz.g - Az(g- k)

= sn-2)2%.g+a%.x , (9.1.2)
where n = dim N. Thus

v's, = $(n-2).d2%) + v*2k) . (9.1.3)

We therefore have

Lemma 9.1.1 If #:(M,g) — (N.h) is horizontally conformal with dilation A,

and # is a submersion almost everywhere, then @ is harmonic (and so a harmonic

morphism) if and only if

i2-n).d22 = v'%k) , (9.1.4)

where k represents the fibre metric (where defined) (assume both sides of (9.1.4)

are zero when A =0).
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Define a new metric § on M by
g = 128"+ (1/6%).k (9.1.5)

where 02, pz : M — R are smooth functions. The new metric g may not be well-
defined everywhere if 02 , p2 have zeros, and we remove such points to obtain the
Riemannian manifold (M, ). Denote by ¥V the associated Levi-Civita connection.
The map #:(M,g) — (N,h) induces a new map §: (M,g) — (N,h). If B is a sub-
mersion almost everywhere then, from Lemma 9.1.1, @ is a harmonic morphism

if and only if
12 -n).d0202) = 9 (202 k/p%) . (9.1.6)

Our aim is to reformulate and solve equation (9.1.6), given that equation (9.1.4) is

satisfied.

Proposition 9.1.2 The connection coefficients of ¥ are described in terms of

those of V by the following formulae. Use the following ranges of indices:

1<i,j, ... <n=dimN;n+¥l<r,s, ... <m=dimM;l<a,b,... <m;

and let (e ) = (e,, e ) denote a local orthonormal basis with respect
E— a'lca<m i r

to g over a subset U of M where d¢ # 0, and e,,e are horizontal, vertical,

for each i,r respectively. Let (E‘a) = (§i,Er) = (oei, per) denote the corresponding

orthonormal basis with respect to g over U . Then

- _ . _ 2 . !
g(et’vares) = pg(et’veres) + 2p(g(et,dp(er)es) + g(es,dp(et)er)

-g(er,dp(es)et ) ; (9.1.7)

S_ 5 ) = o2 2 .
gle.,Vv—¢ ) = ¢ g(ei,Veres) + (o /2p)g(es,dp(ei)er) ; (9.1.8)

— . 2 N
g(ekﬁgie,) o g(ek,Veiej) + zo(g(ek.dO(ei)ej) + g(ej,do(ek)ei)

-g(ei,do(e],)ek)); (9.1.9)

S =\ - 1 2 2 2_ 2
g(er,vaiej) z(g(er,(o +p )Veiej) - g(er,(o p )Vejei)

" (oz/o)g(ej,do(er)ei)); (9.1.10)
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g(er’6§-—és) = pcg(er,Ve es) + éog(er,dp(ei)es) ; (9.1.11)
1 i

S = o 1 2
g(ej’vﬁrei) oog(e],,verei) *20(1-(a%/p))gle , [ei,ej])
+ (p/o)gle,,dole Je.)); (9.1.12)

j ri

g(es,v_e.rei) = —(p/o)g(ei,v.éres) . (9.1.13)

Proof We use the fundamental formula for an orthonormal frame X,Y,Z € g ™

(see for example [14]) :
g(2,vY) = :(g(Z, X, YD + g(Y, [2,X]) - g(X, [Y,2]) . (9.1.14)
Similarly

E(iﬁi?) = 3E&(Z, X,YD) +EX,[Z,X]D) -EX,I[Y,Z]) . (9.1.15)

Let / denote Lie derivation. First of all we prove equation (9.1.7).

From equatior. (9.1.15), letting k, k denote the vertical part of the metric g,g

respectively,

g (3, V_sfs’ = 4k (et,:/gras> + k(as,,(/atér> - k@r’g%set”

-1
= z(pk(et,%res) + k(et,dp(er)es) +...)

= 1 q
2<pg(et,.{;res) +gle,dple de, +...) .

On the other hand

g(et, VE es) = k(et, VE es)
r r
= (l/p)k(et,V-é es)
r
= (l/p)g(et,vares)
Therefore

— - _ 2 1
g(et’VEres) p g(et,veres) + zp(g(et,do(er)es) + .. ).

The ppoof of equation (9.1.9 ) is similar. We prove one more, say equation (9.1.10);
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the others use similar arguments.
From equation (9.1.15), and writing H,H for the horizontal part of the metrics

g,g respectively

2(E_,V-%.) ke , % s)+HE Y 8)-THeE.,Z 58))
r'oe] r ei] i, erl i eir

(Mg

1((1/p)kle , L oe) +(o/o)H(e, ? (oe,)
r oei ] j er i

- H(e.,% pe))

i ej r

= 1 2 19
z ((o /D)k(er, ,Y;iej) + pH(ej,,/erei)
-pH(e,, e ) + (0/o)H(e,,dole )e.)) .

i e]. r j r i

Now

H(ej,ge

e) - He,, Y e)=ge,Ve-vVe)-gle,Ve -V e)
i i’7e, r j’e i ‘e, r i’e, r, e j
r j r i j o r

= g(ej.Ve.er) - g(ei,Ve.er)

- 1 ]
Thus - g(er’veiej * Vejei)'

__— = - -1 2 _
g(er,Vgiej) z(gle , (o /p)(veiej vejei» +g(er,p(veiej +vejei ))

gl e; ,do(er)ei)) .
But
g(er,v.e..ej) = k(er, V_%e.)

e.
1 l]

(1/p) ke , V_©.)
r ei j
(1/0)g(er,vgi e].) )

giving equation (9.1.10) .
—%
We now compare V k with V*k .

Lemma 9.1.3 Using the notations of Proposition 9.1.2 ;
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— %
v ke - 02 v’k(e].) " %p(m—n)dp(ej) , (9.1.16)

forall j=1, ..., n.
Proof The divergence with respect to g is given by (summing over repeated in-
dices)

—_— —_— -—
vV k =€ k(e - _e - k(e v—
(e].) e (ea,e].) k(Veaea,e].) k(ea,veaej)
= - k(ea, ‘73 ej)
a
- (1/0)(k(e ,V=8.) - 3 e
(1/0)( (ea,Veaej) ok(ea,da(ea)ej))

- (p/o) k(ea, Vaaej)

= - (p/a)g(er, Vg e].)
2,2 2 2
= ’V ’
(0" /0 ) (o g(ej erer) + (0 /Zp)g(er dp(ej)er)) R
from equations (9.1.11) and (9.1.13),

_ 2
=p g(e]. ,Verer) +ép(m-n)dp(ej) .

On the other hand

v*k(e,) = -k(e ,V e,)
) a e_)

= g(ej, Ve er) [__—l
r
Lemma 9.1.4 Using the notations of Proposition 9.1.2;
= 2
V'kle,) = pldnle) - inlofc) dole)) + o’V kie,) , (9.1.17)

for all s =n+1, ..., m.

Proof The divergence with respect to g is given by (summing over repeated indices)
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V'k(e) —s k(e ,e) - k(V_ 2 ,e ) - k(@ ,V_ e )
S a a S e a S a e S

a a

per(ok(er,es)) - g(VEiei,eS) - g(VErer,es)
- pg(er ,Vé.res)

2 2
pdp(es) -p g(es,V"aiei) -(p"/2 o)g(ei,da(es)ei)

2
- )y - 1
p g(es,Verer, ng(er,dp(es)er)

- p((l/p)g(er,VgrES) - g(er,dp(er)es)) ,

where we have used equations (9.1.7) and (9.1.10);

-~

_ 2 2 2
pdp(es) -p g(es,Veiei) -n(p /2 o)do(es) -p g(es,verer)

2
-i(m - - v -
2(m -n)pdp(e ) -p gle_ ,Vv e )-pdp(e)

+ 3(m - n)pdole ) + pzdp(es) ,
using equation (9.1.7) again;

- 2 a2 _ 2
= 0 dp(es) zn(p /o)do(es) p (g(es,veiei)

+
+ g(es,verer) g(er,Veres)) - O

Theorem 9.1.5 Assume equation (9.1.4) is satisfied, i.e. # is a harmonic

morphism. Then B: (M ,€) — (N,h) is a harmonic morphism if and only if,

using the notations of Proposition 9.1.2,

- n)d(oz)(e].) = $(c%/p%) (m - n)d (02)(e].) (9.1.18)

(2 - n)d(Azoz)(eS) = 2p2d(027\2/p2)(es) + 02)\2 (2 dp(es)

- én(l/oz)d(az)(es) - n(1/7\2)dx2(es)) (9.1.19)
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if and only if
2 - n)d(logoz)(ei) = Ym - n)d(logpz)(ej) (9.1.20)

(2 - n)d(logxzo%(es) = 2d(log(027\2/p2)(es) + 2dp(es)
. 2 2
- 3nd(log o )(es) - nd(logA™) (es) , (9.1.21)

forall j=1, ...,n andall s=n+1, ..., m,

Remark 9.1.6 It may be more natural to write p2 = 02>\2 , whence equations
(9.1.18) and (9.1.19) become

(2 - n) (d(log) - d(logxz))(ej) = (m - n)do(e)) (9.1.22)
@ - n)d(logyz)(es) - 2d(log(u2/p2))(es) +2dple )
- nd(log/A)) (e ) - nd(loga®)(e)) ,  (9.1.23)
forallj=1, ..., nand s=n+1, ..., m.

Proof of Theorem 9.1.5 First note that (summing over repeated indices)
2

v*(xzk) = dxz(er)k(er) +2°v*k (9.1.24)

(022 /0% k) = d(ozxz/pz)(é'r)k('ér) A A (9.1.25)
Let equation (9.1.6) act on ei;

12 - n)d(?\zoz)(ej) = (A28 ¥ "ke))

22,2 2
(e A /p )(p V*k(ej) + 30 (m - n)dp(e].))
from Lemma 9.1.3,

o232 - n)dxz(ej) + (6222 /p) 4 (m - n)dple;)

from equation (9.1.4),
giving equation (9.1.18) .

Now let equation (9.1.6) act on es, to give

L2 - n)d(hzoz)(es) = d(ozxz/pz)(ar)k@r,es) + (622202 vke,)

= 2™ /o)) + (PA7/0%) (bdpie )

in(p2/0)do(€s) + p2V*k (eg)) .
159



Now

1]

v“k(es) (1/7\2)v"(x2k)(es) - (1/>\2)dA2(es)

- %(Z—n)(]/xz)dkz(es) - (1/7\2)d7\2(es)

= snanBdrlie )

= 32n esl y D
giving equation (9.1.19) .

2
Remark 9.1.7 If we put 02 =p =1, then equations (9.1.18) and (9.1.19) are sa-
tisfied - similarly, if 02 and p2 are both constant then the equations are also satis-

fied.

Remark 9.1.18 There is a striking analogy of the above methods with the classical

notion of a Backlund transformation. There one has a hyperbolic surface M in R3,
which is parametrized by a function o: M — R. This function is in fact the angle
between the asymptotic coordinates, and the Codazzi equation for M is equivalent to
o satisfying a certain second order equation called the Sine-Gordon equation. Con-
versely to each solution of the Sine-Gordon equation one can construct a hyperbolic
surface. The idea of Backlund was to write down a first order equation in two va-
riables o and ;, such that if « is a solution of the Sine-Gordon equation, and ;
satisfies the first order equation, then a is also a solution of the Sine-Gordon equa-
tion.
We view Backlund's idea in a more general context as the following fundamental

principal:

(i) we are given a second order problem parametrized by a set of functions
(a@,B, «c.)

(ii) there is a set of first order equations in two sets of parameters; (a,8,... )
and (3,?& s «.. ), which associates to a solution (&,8, ... ) of (i) another solution
(@, By ... ) of (i) .

In the context of harmonic morphisms, the parameter is the dilation A .

9.2 Examples
Given a particular harmonic morphism §: (M,g) — (N,h), we attempt to find

non-trivial solutions to equations (2.1.18) and (9.1.19). We also consider instances
when there are no non-trivial solutions.
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Example 9.2.1 If n>2 and p is constant, then equation (9. 1. 18) implies that

V02 is vertical.

Example 9.2.2 If p is constant and V?\z, V02 are both vertical, then equation

(9.1.18) is satisfied. Equation (9.1.19) now becomes
d()\zoz)(e ) = ohzdo(e ) + ozdlz(e )
s s s
for all s=n+1, ..., m. This is satisfied if and only if
2do(e ) = do(e ) .
s s
forall s=n+1, ..., m; if and only if
do =0 ,
i.e. the function ¢ is constant.

Example 9.2.3 Ifono =1,n=2, Voz is horizontal and V)\z is vertical, then equa-
tions (9.1.18) and (9.1.19) are both satisfied. For example, let @ : R3\{0} - 82

be defined by @(x) =x/Ix1, for all x € ]R3\{0‘ . Then if 7. 82 — R is any smooth
function which does not take on the value 0 € R; o: R3\{0} — R, c(x) =9(#(x)) has

the property that ¥V 02 is horizontal. We thus obtain a new harmonic morphism

2
Example 9.2.4 Let ¢: S3 — S be the Hopf fibration; so 7\2 =1. Put p =1, then

equation (9. 1. 19) is satisfied if ch is horizontal. For example, if ©: S2 — R is
smooth and does not take on the value zero; define o: 83 — R by o(x) =0 (#(x)),
for all x € 83, then Vaz is horizontal.

Example 9.2.5 Let §: B4 — R3 be the Hopf map of Example 7.2.1. Then § is

a harmonic morphism with dilation A given by 7\2 (x) =4Ix 12 , forall x € R%. The
2
fibres of @ consist of great circles of Euclidean spheres of ]R4, and hence VA is

perpendicular to the fibres and hence horizontal. Equation (9.1.20) becomes
2 _ 1 2
-d(log o )(ej) = zd(log p )(e].) ,

2
forall j=1, ...,n. This is solved if 0'2 = constant x p . If we choose p such

that sz is horizontal - for example p2 (x) =9(Ix |2 ) for some function ¥, then

161



equation (9.1.21) is also satisfied. More generally we have the following.

Example 9.2.6 Let §: ]R4 — R3 be the Hopf map of Example 9.2.5, and let

ni: RP — R? , P> 4, be the projection map. Define xP:RP —~ R3, by xP =

g o ni .
4 Iﬂ‘i(x)lz, for all x € RP., Thus sz is horizontal. Equation (9.1.20) becomes

2
Then x P is a harmonic morphism with dilation A given by A (x) =

- d(log 02)(ej) = %(p-3)d(logp2)(ei) ,

for all j =1, ..., n. This is satisfied if

o2 = constantxp(p_m

If we choose 02 such that V02 is horizontal, for instance oz(x) is a function of

Il'lfl’(x)l2 , then equation (9.1.21) is also satisfied.

Remark 9.2.7 When V02 is horizontal, then 02 |¢ = constant, for all

-1
(y)

y € N, Thus 02 can be thought of as a function on N, and we can view the change

from the map ¢ to the map § as changing the metric hon N to h = h/a2 . Thatis,

equation (9.1.5) can be seen as
g = (1A +(1/00)k = 8 h(eAD) +(1/00)k .

In this way, by suitable choices of the functions p2 and 02, it may be possible, by
removing and adding certain points, to change the topology of both M and N.

9.3. Deformations of metrics for equivariant maps

Suppose §: M — N is equivariant with respect to the isoparametric functions
s:M — R and t: N — R, where we suppose M and N are space forms. Using the

notations of Chapter 4, we consider the map

[/ M —N

s,t s t
between level hypersurfaces of s and t. Away from the focal varieties we can express

the metric g of M as
2
= +
g =ds +g ,
where gg is the induced metric on Ms’ Similarly on N, we can write h as
2
h = dt” + ht s
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where ht is the induced metric on Nt .
There exist four reasonable kinds of deformations of the metrics g and h which
we can consider.

(i) Define the new metric g on M* by

I ==(1/u(s)9‘)ds2 * gy o (9.3.1)

where p(s) is smooth and positive and such that the resulting metric g extends
smoothly across the focal varieties.

(ii) Define the new metric h on N’ by
Bo= /uwFal o (9.3.2)

where v(t) is smooth and positive and such that the resulting metric h extends
smoothly across the focal varieties.
(iii) If Ms has principal curvatures )‘l(S) s sees Ap(s) with corresponding eigen-

spaces Sl’ ooy Sp, then we can express gs as

8 ~ gl(s) + gz(s) + ... +gp(s) ,

where, for each x € Ms’ and for all X,Y € I;cMs’ then

g.(s) (X,Y) = g (X,Y), if X,YE S.(x)
1 X S 1
0 , ifeitherXeSj(x),j% i
or Ye%mhi#i

Define a new metric g on m* by g = d52 +'§S, where

- 2 2
gg ~ (l/ol(s) )gl(S) ol + (1/op(s) )gp(s) , (9.3.3)

where Op s eee s op are smooth functions, which are chosen such that the resulting
metric g extends smoothly across the focal varieties. Essentially, if M is a sphere,
we are changing the sizes of the principal curvature small spheres of MS by a factor
depending on s.

(iv) We perform a similar construction to case (iii) for the level hypersurface Nt’

by expressing ht in its principal curvature components as

=h + ... +h ,
l'lt 1 q

163



and defining

_ 2 2
= (l/vl(t) )h1 + ... +(1/vq(t) )hq, (9.3.4)

for some suitably chosen functions vl(t) y eee vq(t) .

(v) We can perform various combinations of (i) ... (iv) always in such a way
that the resulting metric extends smoothly over all of M(N) .

We consider each case in turn.
(i) We first of all work out the connection coefficients for the new metric. Let
xeMm* , and locally about x choose an orthonormalbasis (X ,£&) with respect to g,
such that if y € M_ for some s, then (X (y)) is an orthonormal basis for TyM

Now g —(1/u(s?) ds? +g , and so (X , g) = (X ,u &) is an orthonormal basis with

respect to g .

Proposition 9.3.1 K V is the Levi-Civita connection with respect to g, then

£ = p Vet (9.3.5)
for all X(—:TMs,fo_r s € int I

Proof We can adapt Proposition 9.1.2 to apply to our present situation, and if we
write 02 =1 and p2 = pz, then equation (9. 1. 10) tells us that
= 1 v.X) -

u
therefore

- g(Vx§ ,X) = g(¢ ,VXX)
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In the new metric g, Vs no longer has unit length. We therefore reparametrize
s into S = S(s), such that §(VS, VS)=1. Clearly the new map@: (M,g) — (N,h)
(we assume that g extends smoothly to M) is harmonically equivariant with respect
to s and t. We must therefore compute the equations (4.1.4) and (4.1.5) in the
new variable s, Note we are using Theorem 4.2.1, since § is now a generalized
isoparametric function.

Suppose Al(so) s cees Ap(so) are the principal curvatures of Mg with respect to
the isoparametric function s, for some s 0 € int Is. Then from Proposition 9.3.1,
the principal curvatures of MSO with respect to the generalized isoparametric func-

tion s are given by 7\1(80), e s )\p(so), where

Ak(so) = u(so)hk(so) , (9.3.6)
for k=1, ..., p. Therefore

AS = pAs , (9.3.7)

where A is the Laplacian with respectto g .

Since ”j (t) and yk(s,t) remain unchanged, equation (4.1.4) becomes
k p
0"(8) + Asa'® + Z_ p v, = 0; (9.3.8)
k=1 ", 'k
this is the reduction equation in the new metric g . Alternatively this equation can

be written in terms of the variable s (from Lemma 5.1.1) as

, _ P
a"(s)1dsi® + Bsa'(s) + 2 p vy, = 0. (9.3.9)
2 2
Now Ids |_ =p(s)”. Whilst
g
— "o_ —2 Vo — —
As =5 (s)IdsSI_ +s (8)As . (9.3.10)

g

But without loss of generality assume inf Is =0, then S is given by

- S
s(s) = [ (1/p(w)du.
0

Therefore s'(s) = w(s) and s"(—s)~= p'(s)p(s). Thus equation (9.3.12) becomes

comes
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p(8)2a"(s) +(u'(s)u(s) +pu(s) A5 )a'(s)

P
+ 2 poy = 0. (9.3.11)
21 4,

We therefore have, substituting equation (9.3.7) into equation (9.3.11);

Theorem 9.3.2 If @:(M,g) — (N.h) is equivariant with respect to isoparametric

functions s and t. Then @ is harmonic with respect to the metric g of (i) if

and only if

" ! 1 p
a'(s) + (ﬁ%}f + as)a'(s) +(1/p(s)2) Zow =0, (9.3.12)
= k

for all s € int IS .

(ii) Such a change in the metric h still preserves the fact that § is equivariant,

for we are simply reparametrizing the isoparametric function t. We therefore have

Theorem 9.3.3 If @:(M,g) — (N,h) is equivariant with respect to the isopara-

metric functions s and t. Then @ is harmonic with respect to the metric h of

(ii) on N, if and only if

P
o''(s) + Asa(s) + v 2 pu vy, =0. (9.3.13)
k=1 ]k k

for all s < int IS .

Proof We have simply changed the principal curvatures Pir eees "q on the level

hypersurfaces Nt by an amount given by equation (9.3.9), that is

u].(t) = u(t)u].(t) .

Since t is a generalized isoparametric function on (N,h ), the result now follows from
equation (4.2.1). Cl
(iii) First of all assume p = 2. Let mi =dim Si’ i = 1,2, and consider a local frame

ield inci . -
field adapted to the principal curvature spaces; (Xa, 3 )a=1 ....m-1

(XX .8, .

ceey = +1,..., +m_=m-
1, m, r=m, 1 m, +m,=m 1

Proposition 9.3.4 If (Xa,'i) is the frame field defined above, then ()—(a,-g_) =
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)_(.l }Z ,E€) = o X o X ,£) is an orthonormal frame field with respectto g . I

V is the Levi-Civita connection for g then the following formulae hold:

-— -— _ 2 _
g(Xi, Vz ¢) = cr1 g(Xi,Vgﬁ) =0 (9.3.14)
= - 2 _
gt 53 €)= g(£,9,8) =0 (9.3.16)
= =, _ 2
g(X,, Vg X) = 0,8(X,% X)) (9.3.17)
r r
p— — _ 2
=z, _ 2
g(Xi,V)—( Xs) = olg(Xi,VX XS) (9.3.19)
r r
=z, _ 2
g(Xr,V)—(in) =0, (Xr,VXiX].) (9.3.20)
g(Xr,V)—(-iXs) =00, g(Xr,VXiXS) (9.3.21)
g(Xj,V)—( Xi) =00, g(Xj,VX Xi) (9.3.22)
r r
g(Xi,V)—(-jﬁ ) = g(Xi,ijﬁ) - dol(ﬁ)g(xj,xi)/zo1 (9.3.23)
g(Xr,ViSE) = g(Xr,VXSfﬁ) - d0(§)g(Xr,Xs)/202 (9.3.24)
gX ., Vg &) =0, (9.3.25)

etc., forall i,j,k=1,..., m1 and r,s,t=m1+1, ...,m1+m2 .

Similar formulae hold for any p, and we now assume p is arbitrary, and the prin-

cipal curvatures are A O Ap with multiplicities ml’ ceos mp respectively.

Corollary 9.3.5 The integral curves of % are affinely parametrized geodesics

with respectto g .

Proof This follows from equations (9.3.14), (9.3.15) and (9.3.16). D
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Corollary 9.3.6 If X, is a principal curvature vector of Ms’ with principal
= ¥ A praebel

curvature )\ki , then in the metric g ,Xi is still a principal curvature vector of Ms

with principal curvature

-— 1
Ak, = }‘k, + o (s)/2ok. ,
i i i i
where X € S
— i k.
i
Proof This follows from equations (9.3.23), (9.3.24) and (9.3.25). ]

Corollary 9.3.7 With respect to the meiric g, s is a generalized isoparametric

function.
Corollary 9.3.8 If A is the Laplacian with respect to g, then
- p .
As = As -k‘zl m o (s)/2ok .
Proof This follows from Corollary 9.3.6 and Lemma 2.2.9 . J

Let S g denote the stress-energy tensor of @ in the metric g . Assume p =2
again, and use the ranges of indices 1 < i,j, ... g_ml; m1 +l<r,s, "'iml +m2;
1< a,b,... <m, *m, =m-1.

We make the following further assumption on the equivariant map # . One of the
conditions for equivariance is that d ¢(Sk) C Tik , for each k=1, ..., p and some
jk= 1, ..., q . If whenever k # 1, then jk # jl; call 4 p - equivariant. For
example, the map @: sm-1 _, sh-1. g(coss.x, sins.y)) = (cos o (s) g, (x),
sina(S)gz(y)), xesPl yes89-1 p+q-= m,g sp-1 _ gr-1 gy:
sa-1 Ss"l, harmonic of constant energy, is p- equivariant. On the other hand
the map ¢ : s3 g2 ; # (coss.x, sins y)) = (cos a(s), sina(s).xkyl), X,y € Sl, is

not p- equivariant.

Proposition 9.3.9 In the above notation, and provided ¢ is p- equivariant, then

— — ok — —
v S¢(Xk) =0, v Sﬂ(Xr) =0,

= = + + .
for all k 1,...,m1 and all r ml 1,...,m1 m2

Proof The divergence is given by (summing over repeated indices)
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— = = —x 4 _
v7's (X)) -V (g ht)(xk)

Z (st (T 2 * S 3 % T S 3
-Xa(¢ h (X X )+ [ ht(viaxa, X )+ g ht(xa,viaxk)

X (' X, X)) - X (8 0 (X_X,)

i t ik T T t r'’k
+ P h (VX X L (v— X X

b (Vg XX + 670 (Vg X LX)

i r
+ ' (X, Vo X ) + fh (X_, V< X )
ti’)_(ik tr’irk'

Now the 219 term vanishes since g preserves the orthogonality of the principal cur-
vature spaces. The 4t term vanishes from equation (9.3.19) and the fact that the

mean curvature of the small sphere .‘/2 is proportional to £ (Proposition 2.2.1).

th . 2 *
The 6 = term is equal to 9, 9, [ ht(Xr,erXk) . Now
g(XS,VXer) - - g(Vers’Xk) :

But %( Xs points in the ¢ direction, since by Proposition 2.2.1, .‘/2 is totally
r

geodesic in Ms, and so g(VX XS,Xk) = 0. Thus VX X, is either in Sl space or

k
proportional to ¢£. Both are gerpendicular to 82 spalée, and since @ preserves this
orthogonality; the Gt—l-l term vanishes also.

We have now established that

TEEY = o) (X, W h (XX )+ ﬂ*ht(g(ixi,xk> + ¢”ht<xi,vxixk)) .
But this is zero since the right hand side of equation (4.1.11) is zero.
Similarly
v's ¢6‘r’ =0 .
Similarly for arbitrary p, and provided § is p-equivariant, one can
show v* §¢ is proportional to £. O

Theorem 9.3.10 K @:(M,g) — (N,h) is p- equivariant with respect to isopara-

metric functions s and t. Then § is harmonic with respect to the metric g of

( iii) if and only if

169



1
P 0, (s) P 9

" k ' 1
- — -4d (z
o (s) +(As l§=1 m, 20k(s) ) a'(s) Zdt(k=1 % ‘Yk)

p
-(1/2a) = o o'y, =0,
e k% Yk

for seint I .
—_— s

Proof As before

— —

V'S8 = %(d87+dt7.a'(s))—a"(s)a’(s)

-as(a'(s)?- V@) @),
P

wherey = Z -
k=1

= o= 2
with Y T % Yy Then

- p ' g 2
= +
(d/ds)y 2k2=1 % % Y K % ds Yy

Also
= - X —_—
v(g ht)(E) z [/ ht(Xa,anE)
=- 3o ¢*h(x ,-A, X ), where (X, ). span S ;
k iy k L K i i k
= zz okzxk #h (X X )
Ik 'k 'k
= z 02)\7 +2020'(s)y/20
Lk MKk k K %
Thus
3d 7-9T @D = 2 02Gd v -Ay)+d o dy
2dg7 ¢ S A N R M A

1

=1 ﬁo o Y > from Proposition 4.1.12 (i) .

0O

The result now follows from Corollary 9.3.8 .

Remark 9.3.11 We have defined the notion of §# being p-equivariant in order to

carry out the deformation. We can replace this condition by another condition.

If §: (M,g) — (N,h) is equivariant (M,N are space forms ) and ﬂl‘/i{:“/k -"Zk
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is harmonic of constant energy density, for each k =1, ..., p, then call ¢ S -

equivariant with respect to s and t. We remark that all the examples of equivariant

maps which we have considered are also ./ - equivariant.

If § is '/ - equivariantand i : '/, — M is the inclusion map, then

k' "k
A(ﬂoik) = dﬂ(/_\ik) + trace Vdﬂ(dik,dik)

is proportional to 5, and since Ai

K is proportional to ¢ ; trace Vdﬂ(dik,dik) is

proportional to n.

The new metric g has simply changed the sizes of the small spheres ./ K’ and we
conclude that ¢ s, ¢ Ms — Nt is still harmonic and of constant energy density in the
metric g. Thus @ is equivariant with respect to the generalized isoparametric func-
tions s and t, and Theorem 9.3.10 is true with '"p-equivariant' replaced by " /-
equivariant' as a consequence of Theorem 4.2.1 .

(iv) As in case (i), the integral curves of n = Vt are geodesics in the metric h,
and the function t: N — R is a generalized isoparametric function.

If we assume that #: (M,g) — (N,h) is ¥ -harmonically equivariant, then in the

metric h, ¢s : Ms — Nt is harmonic of constant energy density. Thus #:(M,g) —

,t
(N,h) is equivariant with respect to the generalized isoparametric functions s and t.

Theorem 4.2.1 applies, and we have

Theorem 9.3.12 K §:(M,g) — (N,h) is. . -equivariant with respect to the iso-

parametric functions s and t. Then §:(M,g) —-(N,T1) is harmonic, where h

is defined in (iv),if and only if

1
o'(s) +Asa'(s)+ Z (u, + v, /2v, Vv, /v, 2 =9,
k e Ik N

for all s € int Is'
Proof Foreach k=1, ..., p, we have

_ 2
(Xi ,Xi ) = (l/vj (t) )yk(S,t) ,

v (s.t) = = g7 h
i k

k- x 'k

where Ej = hi/ v]. (t)2 ). In the metric h the principal curvatures become

- + ' / 2
s = s vc V. ’
# ] ﬂ] ] ]
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for each j =1, ..., q. The result now follows from equation (4.2.1). O
9.4 Examples

Example 9.4.1 Consider a deformation of the kind given by case (i) of Section 9.3.
The problem here is to define p(s) in such a way that g is a smooth metric. For
example, suppose p (s) = K, where K is some constant not equal to 1. Consider the
join 82 = Sl* So . Then, with respect to the metric g, 82 still has constant positive

curvature [38, vol.2, chapter 7, addendum 1 ] equal to Kz, and so has the appea-

~ 4
N7

rance of a rugby ball [13 ]. . .

The metric g is no longer C]. However, we can use bump functions as follows.

Define
p(s) =1+¢(s), ¢> -1,

where ¢ : Is — R is smooth, and ng C int IS. Then (M, g) is a smooth mani-
fold, since the question of smoothness only arises across the focal varieties of s,
and g = g in a neighbourhood of these focal varieties.

Suppose we are given one of Smith's maps between two spheres. Consider the re-
duction equation (equation (1.3.7)) - we use the reparametrized equation to avoid
singularities. Use the same reparametrization for equation (9.3.12), so that time
varies between - « and + «. Then the asymptotic form of the equation as time

u — * « will be the same in the deformed case as in the undeformed case. Theo-

rem 6.1.9 and Lemma 6.1.11 will still apply to yield a non-trivial solution. There-
fore for the maps of Example 5.3.1, the existence of solutions will be unaffected
provided |¢ 12 is small enough. For maps from Euclidean space to sphere and from
hyperbolic space to sphere, the existence of solutions will again be unaffected. How-
ever, we would expect the asymptotic behaviour as time u — + « to change substan-

tially with such deformations of the metric.
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Example 9.4.2 Consider the join of two harmonic polynomial maps as described in

Section 1.3 and Example 5.3.1 . We thus consider a map §: sm-1 _ gn-1 ,f the

form
@(coss x, sinsy) = (cos a(s)gl(x) , sin a(s)gz(y)) ,

where x @ sP~1 | yesd-1, g sP-1 . gr-1,4p9 g2:S':1"1 — $5-1 are harmonic
polynomial maps with Idgi I2 = Ai constant, p+q =m and r + s =n. Express the

Euclidean metric on S™"1 in the form
g = ds2 + coszsdx2 + sinzs.dy2 ,

where dx’ is the Euclidean metric for SP~1 and dy2 that for S9-1, We now per-
form a deformation of the metric incorporating deformations of types (i) and (iv) in
order to make S™-1 ellipsoidal. The deformed metric has the form

2
g = (a sinzs + bzcoszs) d52 + azcoszs dx2 + bzsinzsdy2 .
The sphere has now become ellipsoidal with one set of axes of length a having mul-
tiplicity (p - 1), one set of length b with multiplicity (q - 1), and the other axis
retaining its original length of 1.

Using the notations of equation (9.3.1) and equation (9.3.3) we have

2
p(s) = 1/(a2sin2s +b2cos2s) s 012 = 1/a2, 022 = 1/b2 . (9.4.1)
The reduction equation before the deformation has the form
2
7" 1
a (s) + Asa(s) + Z s
2 2 .2 .2
where As =(q - 1)cots - (p - 1) tans, YT x]cos (s)/cos’ s, Yy = Az sin (s)/sin" s,
"j = tan a(s) and uj = - cota(s). Using Theorem 9.3.2 and Theorem 9.3.10,
1 2 )
after the deformation the reduction equation becomes
2
'(s) 2 2
' + (B2EL ' + > . (9.4.2)
a'(s) (#(S) As)a'(s) + (1/p(s)) k=1“jk°kyk

u
We reparametrize equation (9.4.2) as before, defining a new variable u by e =tan s.
Note that care must be taken since equation (9.4.2) no longer has the form of equatica

(5.1.1) and so Lemma 5.1.1 no longer applies.
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A computation shows that

pl(s) = -(a2 - b2) sins coss/(azsin2 s + bzcoszs) 3/2 ,
or
ala)) = - (a2- b2) (azeu +b2e-u) 3/2
# u, -u u_ -u :
e +e e +e

This tends to 0 as u tends to both - « and + ., Also
2 eu +e—u

p(s(u)) = T 2 —u
ae +tbe

which tends to 1/b2, 1/a2 as u tends to -«, + © respectively. Equation (9.4.2)

becomes, in the variable u ,

a'(u) + 1 -~ (& +q-2)e " - (p—2)eu] o' (u)
e + e H
u -u
2 Ae A e
+ (1/p%) sin a(u)cos a(u)( 1 -2 ) = 0.
u  -u 2 2
e +e a b

If we abbreviate this in the form
a"(u) + h(u) a'(u) + g (u) sina(u) cosa(u) = 0 ,
thenas u — - o,

h(u) — q-2

g(u) - —7\2
andas u — + o,

h(u) — -(p-2)

gu) — 7\1.

The damping conditions become
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Thus the damping conditions are as for the Smith maps, given by equations (1.4.1).
The methods of Section 6.1 (in particular Theorem 6.1.9 and Lemma 6.1.10) show
that, provided the damping conditions are satisfied, equation (9.4.3 ) has a solution
yielding a smooth harmonic map §: sm-1 _ s™-1 where S™-1 has the ellip-

soidal metric described above. We therefore have

Theorem 9.4.3 The join of two harmonic polynomial maps between spheres for

which the damping conditions are satisfied, can be deformed into a harmonic map

from the ellipsoid described above into the sphere. The ellipsoid has distinct eccen-

tricities given by a, b and 1, for any a, b > 0.

Theorem 9.4.4. The join of two harmonic polynomial maps between spheres for

which the damping conditions are not satisfied, cannot be rendered harmonic by an

ellipsoidal deformation of the above kind on the domain sphere.

In contrast, however, we see in the next example that such ellipsoidal deformations

on the range sphere do yield harmonic maps.

Example 9.4.5 Again consider the join of two harmonic polynomial maps as in the

last example. We can deform the range sphere into an ellipsoid, by using deforma-
tions of types (ii) and (iv). That is, we express the Euclidean metric on S-1 jn the

form
h = dt2 + coszt du2 + sin2t dv‘2 ,

where duz, dv2 are the Euclidean metrics for Sr"l, SS"1 respectively, then the
deformed metric has the form

h = (a2 sin2t + bzcoszt) dt2 + azcoszt du2 + b2 sinzt dv2.
In the notations of equation (9.3.2) and the equation (9.3.4), we have

21 - 1/a%, vi = 1/b2 . (9.4.5)

From Theorem 9.3.3 and Theorem 9.3.12, the reduction equation becomes

2
v(t)2 = 1/(azsin2t + bzcos t), v

2
' k
o"(s) + Asa'(s) + via(s)) Z g, 7—2 =0.
k=1 ]k v
Ik
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Using the parameter u defined by eu = tan s, we obtain

—u_l—I (@-2)" -(p-2)eHa' @)

e +e

o' (u) +

N sin ¢ (u) cos a(u) . (aleeu _ bzxze-u) =90.

(eu + e-u) (azsin2 a(u) + bzcos2 a(u))

Nl=

(9.4.5)
This equation fits into the category of equations described in Theorem 6.1.9. The
arguments of that section apply, and we are assured of a solution provided the dam-
ping conditions are satisfied. These damping conditions are that
2
(q-2) < 4b Ay
(p-2)2 < 4a 7\1. (9.4.6)
Given the join of two harmonic polynomial maps, we can always find a and b such

that (9.4.6) are satisfied. We therefore have

Theorem 9.4.6 The join of any two harmonic polynomial maps can always be ren-

dered harmonic by a suitable deformation on the range sphere.

In particular we can apply Theorem 9.4.6 to Example 1.4.1 to yield

Theorem 9.4.7 For each n=1,2, ... , there exists a smooth metric on the

range sphere S" (depending on n), such that each class of 1, (S") = Z contains

a harmonic representative. The deformed spheres are familiar ellipsoids whose

eccentricities depend only on n and the degres.
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