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Preface 

we consider the basic problem of harmonic maps, that of finding a harmonic repre­

sentative for a given homotopy class of maps between two Riemannian manifolds. 

Given that we are unable to solve this problem for fixed metrics, we can ask whether 

there exist metrics with respect to which there exists a harmonic representative -

this is known as the •rendering problem'. In particular, we study these two problems 

for maps between spheres. We do this by considering maps where •reduction occurs•, 

that is, because the map possesses certain symmetries (equivariant), the problem of 

harmonicity reduces to solving a certain second-order nonlinear ordinary differential 

equation (the reduction equation). The origin of this method is the Thesis of R. T. 

Smith ( 1972), in which certain harmonic maps between Euclidean spheres are con­

structed. 

The symmetry which we make use of is that the map should preserve families of 

parallel hypersurfaces with constant mean curvature. It should be noted that this 

seems to be a more natural symmetry in the context of harmonic maps than the more 

commonly exploited symmetry of •equivariance with respect to group actions•. 

We prove a reduction theorem for harmonic maps between space forms, and pro­

vide many examples of maps satisfying the conditions of the theorem. In some instan­

ces the reduction equation is easily soluble, on the other hand we find examples where 

we have little idea about appropriate solutions to the corresponding reduction equa­

tion. 

Using the stress-energy tensor associated to harmonic maps we study harmonic 

morphisms, proiTing a theorem characterizing those harmonic morphisms with mini­

mal fibres. We then consider harmonic morphisms defined by homogeneous polyno­

mials, relating such maps to the construction of maps between spheres where reduc­

tion occurs. 

By allowing deformations of the metrics, first for harmonic morphisms and then 

for maps where reduction occurs, we are able to solve the rendering problem for all 



classes of the homotopy groups 1r (S0 ) = 't for all n. 
n 

Recently it has become apparent that harmonic maps have a significant role to play 

in certain problems of theoretical physics. A particular example is the description 

of solitons in terms of harmonic maps from s2 into the complex projective space 

cpll . It is to be hoped that this work will lead to a greater understanding of solu­

tions with symmetry of some of the variational problems of physics. 

I would like to express my most sincere thanks to Jim Eells who has provided 

continued support and encouragement during the preparation of this work. 

I would also like to thank L. Lemaire, J. Rawnsley, H. Sealey and J.C. Wood for 

many helpful conversations, the Science Research Council for their financial support, 

and the Institut des Hautes Etudes Scientifiques and the University of Bonn for their 

hospitality and support during 1981. 

I am also especially indebted to my parents who have provided encouragement 

throughout. 

Paul Baird 
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Introduction 

Let (M, g) denote the Riemannian manifold M together with its metric g. Let 0 be 

a map between Riemannian manifolds: 

0: (M,g)---t .. ~(N,h) 

(all manifolds, metrics and maps will be assumed smooth unless otherwise stated). 

Then the derivative of 0, d0, is a section of the bundle of 1-forms on M with values 

in the pull-back bundle 0-1 TN: 

d0 E' W (T*M s 0-1 TN). 

The bundle T*M®0-1 TN is a Riemannian vector bundle and has a Levi-Civita con­

nection V acting on sections: 

V: ~(T*M s 0-1 TN) ~S((a2 T*M s 0-1 TN). 

Call v d 0 E ·tf' ( 0 2 T* M s 0 - 1 TN) the 2nd fundamental form of the map ~ . 
Then we say that 0 is harmonic if trace V d~ = I: Vd0(X. ,X.) is zero at each 

g i 1 1 

point of M, where (X.) 1 . d" M is a local orthonormal frame field for M. 
1 < 1 < liD 

Given a map 0 as above; there are two basic problems of harmonic maps: 

(i) letting [0 I denote the homotopy class of 0, then does there exist a harmonic 
.... ..... 

representative 0 E [0 I such that 0: (M,g) ., (N,h) is harmonic? 

( ii) Do there exist metrics g and h on M and N respectively, such that there 

exists a representative 0 E [0 I with 0 : (M,g) --•.,•(N,h) harmonic? 

The first of these problems has been considered throughout the history of elliptic 

analysis and differential geometry. The first existence theorem was proved by Eells 

and Sampson in [12 1. The second problem is known as the rendering problem. This 

has been considered by Lemaire [28 I in the case when the domain is a surface. One 

of the main objectives of this work is to study these two problems for maps 

0 : S~ ~ between spheres, where the homotopy classes are represented by the 

groups TT (~). 
m 
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Up until about 1970, the only harmonic maps ft1 : Sm- Sn, m ~ n, that were 

known were a few homogeneous polynomial maps (defined by eigenfunctions of the 

Laplacian on Sm) : 

( a) the identity maps f : Sn - Sn for all n ~ 0 ; 

( b) the Hopf maps 

( c) the maps Gk : 

integer. 

n 2n-1 n 
H : S - S , for n = 2, 4 and 8; 

2 1 1 k 
S -S:z-z, where z E (J: ~ I z 1 = 1 and k is any 

In his Thesis in 1972, Smith [33 ] gave a method whereby, given two such homo­

geneous polynomial maps, and provided certain "damping conditions" are satisfied, 

one can construct another harmonic map between spheres. 

Smith's method was to construct a !-parameter family of maps all homotopic to 

the join of the two polynomial maps. This family is parametrized by a function a 

from the interval to itself. Smith then exploited the symmetry of the so constructed 

map fr1o. to reduce the problem of whether 1t1a is harmonic or not to solving a 2nd 

order non-linear ordinary differential equation in a . This procedure of reducing 

the problem of harmonicity of a certain map to solving an ordinary differential equa­

tion we shall simply call reduction . The corresponding differential equation we 

shall call the reduction equation . Smith • s equation has a simple physical interpre­

tation- that of a pendulum moving under the influence of a variable gravity force 

with variable damping. The above damping conditions are sufficient conditions for 

this equation to have a solution. 

We place Smith's method into a more general setting by viewing his maps as sending 

"wavefronts to wavefronts" in the sense of geometric optics. That is, we have a 

commutative diagram of the form: 

N 

f ~ g 
___ .,.I 

g 

where f, g are real valued functions on M, N respectively, with values in intervals 

If, Ig respectively., and a: If- Ig is a smooth function. The appropriate class 
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of functions to which f and g must belong in order to provide a good theory turns out 

to be the class of isoparametric functions as defined by Cartan in 1938 (5]. These 

objects provide a rich and beautiful geometry on spheres, and it is indeed pleasing 

to find that they should be related to constructing harmonic maps between spheres. 

After Cartan's impressive study of isoparametric functions in papers dated 1938 -

1940 [5,6, 7 ,8], the subject lay dormant until Nomizu's paper of about 1970 [32], 

surveying Cartan's work and giving some open problems. That revived interest in .. 
the subject, and Munzner proved an important classification theorem [30 ]. Also many 

new examples of isoparametric functions on spheres were found, see [32,34,40,33,17] 

In particular, examples of isoparametric functions on spheres whose level surfaces 

are non-homogeneous were found by Ozeki and Takeuchi [ 33 ] and Ferus, Karcher 

and Miinzner [ 17 ]. These examples are very important from our point of view, since 

we make essential use of them in Theorem 5.3.8, Example 8.2.2 and in Section 8.4. 

This demonstrates that isoparametric functions are more natural for our purposes 

than families of homogeneous submanifolds of space forms (from which point of view 

one could conceivably derive our theory). 

R. Wood was the first person to make a connection between isoparametric functions 

and harmonic maps [ 43 ]. One of the essential features he observed was that such 

functions satisfy an eikonal equation of the form 

ldf(x)l 2 clxi2P-2 

for some constant c , where p is an integer, p 2' 2. This remarkable fact makes the 

connection with geometric optics even more striking. 

Isoparametric functions as studied by Cartan are defined on space forms - that is, 

complete connected manifolds of constant curvature. In order to consider the con­

struction of harmonic maps between more general Riemannian manifolds, we make 

what we consider to be a suitable definition of an isoparametric function on an arbi­

trary Riemannian manifold in Section 2.4. 

In Chapter 4 we develop the general framework, and define the necessary conditions 

on ~ in order that reduction occurs. Maps ~ satisfying these conditions we call 

equivariant. We prove our main theorem (Theorem 4.1. 8) which is a reduction 

theorem for harmonic maps between space forms. 

3 



As a consequence of the above generalization, we can construct explicit harmonic 

maps from Euclidean spaces to spheres and from hyperbolic spaces to spheres - this 

is done in Sections 5.1 and 5.2. In Section 5.3 we find a very large number of 

classes n (Sn) where reduction occurs. However, many of the corresponding 
m 

reduction equations have a qualitatively different nature to those of Smith, and we are 

unable at present to solve many of them. One important class of equations does have 

similar properties to those of Smith, and the solutions yield some new and interesting 

harmonic maps between Euclidean spheres of the same dimension. This is proved in 

Theorem 5.3.8. 

Two of the most significant examples in Smith's Thesis are 

( i) the construction of harmonic representatives for all classes of IT (Sn) ~. 
n 

for all n~ 7, and 

( ii) the consideration of the classes of 

their Hopf invariant (see [26 ]). 

~, which are parametrized by 

The important point in example ( i) is that the condition n ~ 7 is a consequence of 

the damping conditions. Thus Smith's method fails to give harmonic representatives 

for the classes of lln(Sn) with n > 7. In example ( ii) the classes of TI 3(S2 ) 

are parametrised by their Hopf invariant d E ~. When d is the square of an integer, 

d = k2 for k E ~; Smith gives a harmonic representative of this class. However, 

when d = k 1, k,1 E ~, k ,1 t: 0 and k t: 1; Smith provides a representative of the 

class where reduction occurs, but demonstrates that the corresponding reduction 

equation does not have a solution. 

With the above two examples in mind we consider deformations of the metrics on 

space forms (Chapter 9) -this fits quite naturally into our general framework. We 

thus come to one of the main consequences of the reduction theorem. This is the 

solution of the rendering proble:m for all classes of n of> for all n (Theorem 
n 

9. 4. 5). The deformed spheres are familiar ellipsoids whose eccentricities depend 

only on n and the degree. Even allowing various deformations of metrics, we are 
2 still at present unable to solve the rendering problem for rr 3(s ) • 

In Chapter 7 we undertake a general study of harmonic morphisms - maps between 

Riemannian manifolds which pull back germs of harmonic functions to germs of har­

monic functions. We prove a theorem characterizing those harmonic morphisms for 
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which the fibres are minimal submanifolds. This generalizes a result of Eells and 

sampson [ 12 I stating that every Riemannian submersion which is harmonic has mini­

mal fibres. 

Harmonic morphisms were first considered in detail by Fuglede [ 19 I, and we make 

use of his ideas in Chapter 8 when we consider harmonic morphisms defined by 

homogeneous polynomials. Here we find an interesting connection with isoparametric 

functions, and we prove a theorem which associates to a certain class of harmonic 

polynomial morphis~s an interesting harmonic Riemannian submersion. By using 

this theorem we can construct more maps between spheres where reduction occurs. 

One of the important tools used in Chapters 7, 8 and 9 is the stress-energy tensor -

a divergence free symmetric 2-tensor field on M. Such objects are well-known and 

important in relativity theory, where they in some sense model the matter distri-

bution in a space-time model. For if (S . .) 1 . . are the space components 
lJ ~ 1 'J ~3 

of a symmetric 2-tensor, then S .. is the i-component of a force associated to the 
1J 

j-vector (the "stress" acting on a unit area orthogonal to j). Since force is a time 

rate of change of momentum, this represents the rate of flow of the i-component of 

momentum through a unit area orthogonal to j. We introduce the time components 

of S, to obtain the 4-tensor (S .. ) 0 . . , where now S .0 represents energy 
1) < 1. J < 3 1 

flow, and S 00 energy density. That div-S = 0 and S be symmetric corresponds to 

various conservation laws. For if X is a Killing vector field, then 

div (S(X)) = 0 , 

which corresponds to conservation of momentum if X is spacelike, and conservation of 

energy if X is time like (using the terminology of relativity theory, see [ 14)). 

See [ 18 I for more details. 

Hilbert was the first person to derive the stress-energy tensor from a variational 

principle [ 22 I, and it was following a suggestion of Taub ( 1963) that the stress­

energy tensor was used to study harmonic maps in [ 2 I. 

In chapter 3 we briefly derive and study basic properties of the stress-energy 

tensor for harmonic maps. For a much more detailed account see [2 1. 

The emphasis with this work is on examples of harmonic maps. However, in chap­

ter 4 we attempt to provide a general framework. This framework is rather unwieldy 

5 



because of (a) the large number of conditions on the map ~, and (b) the necessary 

consideration of special cases. This detracts from the underlying simplicity, and 

often it is better to consider each example individually. 

6 



1 First constructions 

1. 1 THE LAPLACIAN ON THE SPHERE 

Let M and N ~ smooth Riemannian manifolds of dimension m and n respectively. 

Henceforth we shall write (M,g) to denote M together with its metric g. 

Let 1<1: M--- N be a smooth map, then the derivative d(t1 is a section of the bundle 

of 1<1- 1 TN-valued 1-forms on M: 

Let V'M denote the Levi-Civita connection on the bundle TM --- M, then V M 

extends to a connection on the bundle of tensors e p TM e e q T* M --- M . The bundle 

0-1 TN --- M has a Riemannian structure induced from that of TN--- N, allowing 

us to define the Levi-Civita connection Von the bundle T*M ® 0-1TN-M. The 

section V ( d0) r.= ~ ( e2 T * M ® 0 - 1 TN) is called the second fundamental form 

of the map 0. 

Lemma 1.1.1 !!.._X, Y E <6' (TM), then 

Vd(t1(X,Y) 
...__ ---

M N 
= - dl'J (V X y) + V d(t1(X) d0 (Y) 

_j 
(1.1.1) 

Remark 1. 1. 2 This lemma is saying that contraction and covariant differentiation 

commute. 

We define the Laplacian ~ 0 of 1<1, to be the trace with respect to g of the second 

fundamental form V d(t1: 

~ 0(x) = 2:: V d0 (X (x) ,X (x)) , 
a x a a 

at each point x of M, where X E <6' ( TM) , a = 1, 2 , • • • , m, form a local ortho­
a 

normal frame field about x. Then 1<1 is harmonic if ~ 0 = 0. 

Example 1.1.3 H M = Em with its standard Euclidean metric, and standard 

coordinates x 1 ,x2 , .•• , xm, and 0: Em --- E is a smooth function, then 

7 



It' 0 
2 ex 
i 

m n m 
If 0 : E - R , 0 = ( 01• . . . , 0 ) , 0 : E - E , r = 1, . . . , n, then n r 
a0=(a01, ... , a0n>· 

Remark 1. 1. 4 We define the energy density of the map 0 to be the function 

e (0): M - R given by 

e(0) (x) = 1 I d0(x) 12 
2 

1 
2 

!: h(d0 (X ), d0 (X )) , 
a x a x a 

for each x E M, where (X ) is an orthonormal basis for T M and h is the metric 
a x 

of N. Suppose that M is compact; using the canonical measure associated with g, 

we define the energy of 0 to be the number 

E(0) = ( e(0) (x) dx . 
'M 

2 
Then a C map 0 : M - N is harmonic if and only if it is an extremal of the energy 

integral E [ 12 ). 

Suppose 0 : M - N and 1/J : N - P are two maps, then the second fundamental 

form of the composition is given by 

Vd(wo0) = dwoVd0 + Vd!IJ(d0,d0) (1.1.2) 

By taking traces we obtain the formula [ 12 I : 

t1 ( 1/J o 0 i = d 1/J o t1 0 + trace V d lb ( d 0, d 0 ) . (1.1.3) 

Let Sm-1 denote the standard unit sphere in Rm, and let i: sm-1- Em be 

the inclusion map. 

Lemma 1. 1. 5 If f: R m- E is a smooth function then 

m-1 m n2 s Am f _ c f ef 
A (f o i) = ( ._. - (m - 1) - ) o i 

ar2 f.'r 
(1.1.4 

where r 2 (x) I X I 2 • for all X E m m . 

8 



proof Using the formula ( 1. 1. 3) we have 
::::.- m-1 s 

A (f o i) d f (A i) + trace V' d f ( d i, d i) . 

Also 

Em r2f 
A ( f) o i = trace V' d f ( d i , d i ) + - o i 

2r2 

Sm-1 2 
A (f o i) + u_ o i 

£'r2 

m-1 
df( ,{).s i > • 

m-1 
Let x be a point of S , then at x 

sm-1 
A trace V' di(x) 

~ V' Em d i (X ) 
a d i (X ) x a 

x a 

where (X ) 1 forms an orthonormal basis for T S m- 1 and X = 'Y' ( 0), 
a <a<m x ' a a 

where 'Y (t) are geodesics in sm-1 with 'Y (0) = x. Thus 
a a 
m-1 

tls i = ~ 'Y~'<o>, 

" but 'Y (0) 
a 

Asm-1 

- 'Y ( 0) = - FIe r. Thus a 

a 
- (m- 1) -

2r 
D 

Corollary 1.1.6 If f: Em- E is a harmonic homogeneous polynomial of 

degree p, then 

m-1 
AS (foi) =- p(p+m-2) foi, 

so f o i is an eigenfunction of A 8 
m-1 

Remark 1. 1. 7 A
sm-1 

All eigenfunctions of arise from harmonic homogeneous 

polynomials on Em in this way. 

1. 2 Harmonic maps into spheres 

Let S n- 1 denote the standard sphere in Euclidean n-space, and j: S n- 1 -- En 

the inclusion map. If ~: (M,g) - sn- 1 is a map; let 4' denote the composition 

9 



Lemma 1. 2. 1 The map 0 is harmonic if and only if 

~ cf• = - 2 e ( cJ>) cJ> • (1.2.1) 

Proof From equation ( 1. 1. 3) 

A(j o 0) = dj (A0) +trace Vdj(d0, d0). 

Since j is an isometric immersion V dj (X, Y) is perpendicular to dj ( Z), for all 

X, Y, Z F <6'< T S n- 1) (so ~ 0 is the projection of A ( <J) onto T S n-1) ; in parti­

cular, 0 is harmonic if and only if A ( j o 0) is proportional to i!" • 

Now, writing < , > for the Euclidean metric on R n 

< d(j 0 0)' j 0 0 > = 0 • 

We differentiate this formula at x F M. Let (X ) be an orthonormal basis 
a 1<a<m 

for T M, with V MX X 0 at x. Then, using Lemma 1.1.1 and summing over 
x a a 

repeated indices 

0 = VXM < d(j o 0) (X ) , j o 0 > 
a a 

<~(jo0),ct> + 2e(cJ>). 0 
Corollary 1.2.2 H 0: sm-1- sn-1 is defined by harmonic homogeneous 

polynomials of common degree k, then 0 is harmonic and has constant energy 

density k(k + m- 2)/2. 

Proof Corollary 1.1.6 and I.emma 1.2.1 give the result. 0 
k 

Example 1.2.3 The map from a: to X, z - z , z F Q:, k = 1,2, ... is defined 

by harmonic homogeneous polynomials of degree k, and Jestricts to a 1map G k : 

S 1 - S 1 harmonic of degree k. 

Example 1.2.4 Let f: Rp x Rq- Rn be an orthogonal multiplication; i.e. 

f is bilinear and I f(x,y) I = I xI I y I, for all x E E p and all y F E q. Then the 

restri.ction of f produces a map 1b: gP- 1 X Sq-1 - gn-1 which is a totally geodesic 

10 



embedding in each variable separately, and hence is harmonic of constant energy 

density (p + q- 2)/2. 

If now p = q = n; the Hopf map Hn : s2n-1- sn : 

is a harmonic polynomial map with constant energy density 2n. In particular, if f 

is multiplication of complex, quaternionic or Cayley numbers, then we obtain the 

Hopf fibrations s 3 - s 2 , s 7 - s 4 or S l5- s8 respectively. For other 

examples see [33 ). 

1. 3 Joins of spheres and Smith •s construction 

TheJJoi~ sP-l * sq-l of the two Euclidean spheres sP-l and sq-l is the 

sphere sm-l, m = p + q, obtained by writing each point z E sm-l as z = (cossx, 

sins y), where x c sP-1, y E sq-1 and s E [0, n/2 ]. We can think of the join as 

introducing "polar coordinates" on the sphere sm-1 . 

If g 1: sP-l_ sr-I and g 2 : sq-l_ ss-l are two maps; we can form the 

join g * g : sP-+q-l_ S r+s-1 of g and g : 
-- 1 2 - I-- 2 

Consider the case when g 1 and g 2 are defined by harmonic polynomials with 

2e(g 1) =a 1 and 2e(g 2 ) = a 2 say, where a 1 and a 2 are constants. Smith's idea 

was to allow a "reparametrization" of s in equation ( 1. 3. 1) , by defining 

{§ : sP-+q-1_ sr+s-1 as 

~(coss x, sinsy) = (cosa(s) g 1(x),sina(s)g 2 (y)), (1.3.2) 

for some a: [O,TT/2) -[O,n/2]witha(O) =o anda(n/2)= 11/2. Wewillderive 

this map again later in Example 5.3.1. The problem of ~ being harmonic then re­

duces to solving a second order non-linear ordinary differential equation in a. To 

see this we calculate Ll ~, but in order to simplify later calculations we proceed 

differently, and by a slightly longer route to Smith [ 36 ) , and for this ~e must intro­

duce briefly the notion of harmonic morphism (much more will be said about these 

maps later in Chapter 7 ) . 

A map ~ : M - N is a harmonic morphism if it pulls back germs of harmonic 

11 



functions to germs of harmonic functions, i.e. if f: V- R is harmonic, V a domai 

in N, then f o 9J is harmonic on ~- 1 (V) in M. Consequently, if 9J is a non-constant 

harmonic morphism, then dim M > dim N, and if w: N- P is a harmonic map, 

then so is 1b o 9J : M - P. 

For x '= M, let ') · = ker d~ c T M, and let II" be the perpendicular com-
x X X X 

plement of 'f · in T M with respect to g; say that ~ is horizontally conformal if 
X X 

2 * ~(x) g(X,Y) = 9J h(X,Y), 

for all X, Y E 'f(' , where ~: M -- R is some function (not necessarily smooth). 
X 

Call ~ the dilation of 9J • 

Theorem 1.3.1 [19,27 ): A map 9J:M- N is a harmonic morphism if and only if 

9J is harmonic and horizontally conformal. 

Corollary 1. 3. 2 !!._ 9J : M - N is a harmonic morphism and w : N- P a harmonic 

map with energy density e ( w) , then w o 9J is harmonic and has energy density given 

by 

e(l/J o 9J) (x) 
2 

~(x) e (l!J)(9J(x)), ( 1.3.3) 

for all x EM. 

Proof The result follows from Theorem 1. 3. 1 and the equation ( 1. 1. 3). D 

Consider the join Sm-l Sp-l * Sq-l , p + q = m. Regard s as a function 

s: sm-1_ R, by letting s(coss 0 x, sins 0 y)) = sO' for all sO E [ 0, TI/2 ). Let 

V 1 bethesubsetof sm-l givenby v 1 = s-1(0), then v 1 is isometric to sP-l. 

1 q 1 . m-1\ Similarly, let V 2 = s- (n/2) ; V 2 is isometric to S - . Defme n1 :S V 2 - V 1 

by 

and 

TIl ( (COSSX, Sins y)) =, X , 

n . sJ;Il- 1 \V - v by 2. 1 2 

n2 ( (cossx, sins y)) = y. 

Lemma 1. 3. 3 The maps TT 1 , n2 are harmonic morphisms, with dilations ~ 1 , ~ 2 

respectivelygivenby ~ 1(z) 2 = 1/cos2s,~ 2 (z)2 = 1/sin 2 s forall z=(cossx, 

sins y). 
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~ For each x 0 <=: V 1 , the horizontal space with respect to T\ through 

( coss 0 x 0 , sins 0y 0 ), s 0 r= I 0, TI/2), y 0 r= S q- 1 , consists of the tangents to all 

curves r (u) = (coss 0 y(u), sins 0 y0 ), where 'Y (u) is a curve in sP-1 withy (0) = x 0. 

Then n1 (coss O y(u), sins 0y O )= y(u), so that, if f(u) = (coss O y(u), sins 0y 0 ) is 

another such horizontal curve, then 

n 1 • h <r 1 
( o > , Y. 1 

( o > > h ( 'Y I ( 0) , :y I ( O)) 
I -1 2 

g(I'(O),r (O))/cos s 0 

where h is the metric on sP-1 and g the metric on sm-1 . Hence n1 is horizon­

tally conformal with :>. ~ = 1/cos 2 s. 

To see that r\ is harmonic, we compute trace V' d n1 with respect to a particular 

orthonormal basis. Choose z 0 =(coss 0x 0 , sins 0y0 ) E sm-1 \V2 and curves 

through z o= 

r (u) 
1 

~ (u) (coss x 0 , sins a (u)), 
r 0 0 r 

where y.(u) is geodesic in sp-1 with 'Y· (0) = xo, and(! (u) is geodesic in sq-1 
1 1 r 

with c (0) = y 0• Let X.= r. 1 (0) and Y = ~ 1 (0). Define v(s) = (cossx0 ,sins y0), 
r 1 1 r r 

so that E = v 1 ( s ) r= '1 · . Then 
0 zo 

t::. r\ = trace V' d T\ 
= I:V'dll (X.,X.) + I:V'd111(Y ,Y) + Vdll (£ ,£). 

i 111 r rr 1 

Since y.(u) and ~ (u) are both geodesics in sP-l, sq-l respectively; both 
1 r 

sm-1 sm-1 
V'X . X. and v y Yr are proportional to E. at z 0 • Thus 

. 1 1 r 
1 

V' d n (X X ) = -1 i, i 

0 • 

Also VdTT (Y ,Y ) = 0 since dll (Y) = 0, and V'd 11 (~,0 = 0 since V~t = 0 
lrr lr 1 <:: 

and d n1 (0 = 0. Hence TT1 is harmonic. 0 
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We now rewrite Smith's map 0: sm-l_ sn-l of equation ( 1. 3. 2) as 

( 1.3.4) 

forall zESm-l\(V1 uv2 ); ifzr.=v1 wedefine0(z)= (g1(z),O),andifze:V2 

we define 0(z) = ( O,g2 (z)). 

Let t : S n-l - E be the function given by 

t( (cost 0 v, sint 0 w)) = t 0 , where v E sr-l, wE ss-l and t 0 E [0, n/2). Writing 

4f> = i o 0 , where i : S n-l - En is the inclusion, it is straightforward to compute 

a cf·, and one obtains, using Lemma 1. 3. 3 and Lemma 1. 2. 1 on the maps g1 o n 1 

and g2 o 112 , 

~.<f·(z) =- a'(s) 2 1dsl2 ~(z) + (a"(s)ldsl2 +a'(s).1s)Vt0 (z) 

+cos a(s)a(g1 o n1)(z) + sina(s)a(g2 o n2 > (z) 

= - a • ( s )2 1 d s12 4- (z) + (a "(s) ld s12 + a'( s) f1 s )V t 0 (z) 

a 1(g1o n 1)(z) a2(g2 on2)(z) 
- cos a ( s) - sin a( s) 

2 . 2 
cos s sm s 

This lies in the plane spanned by vt0 (z) and ct(z); hence 0 is harmonic if and 

only if < flcJ>(z), V t 0 (z) > = 0, for all z E sm-l • Now V t 0 (z) = 

(-sin a(s(z)) g1 o n 1 (z), cos a(s(z))g2 o n 2 (z)), hence 0 is harmonic if and 

only if 

a"(s) ldsl2 + o'(s)a s +sin a(s) cos a(s) ( : 1 

cos s 

a2\ 
- -. -2-r o. (1.3.5) 

stn s 

with o(O) = 0 and a( TT /2) = 11/2 • 

Lemma 1.3.4: The Laplacian a s ~ s is given by 

as =·(q-1) cots- (p-1) tans. 

Proof Let s0 E ( 0, 11/2), then M so s -1 (s0 ) is a hypersurface of sm-1. 

Define is : M s - S m-l to be the inclusion map. Then 
0 0 

0 = a(sois ) =ds(flis ) +trace Vds(dis , dis ) 
0 0 0 0 
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But ~ = a /e s is affine geodesic, hence Vt ~ = 0, so that V ds U, 0 

v : s(O d s (0 = 0 ( d s (t) is the unit tangent vector along R) • That is 

trace Vds( di , di ) = t::.s. Thus 
s s 

0 0 

0 = d s ( 6 is ) + !::. s . 
0 

But since 1::. i8 is proportional to ~ , we cone lude that 
0 

Thus 6 s is- (m- 2) x (mean curvature of Ms ) . 
0 

=ds(V t) + 
~ 

Choose z r= Ms0 ; z =(cos s 0 x, sins0 y), x e sP-1 , y E sQ-1 . Let r(u) = 

(coss 'Y(u), sins y) be a curve in Ms , r(O) = z, then X= r'(O) = (coss0'Y'(O),O). 
0 0 0 

Now ~r(u) = ( - sins0 'Y(u), coss0 y). So 

d 
vx ~ = du ~r < u > I u = o 

= (- sins 0 'Y ' ( 0) , 0) 

= - tans0 X . 

Thus X is a principal curvature vector of Ms in sm-1 , with principal curvature 
0 

tan s 0. Similarly, vectors tangent to curves 2: (u) = (coss0 x, sins0 c(u)) are prin-

cipal curvature vectors with principal curvature- cot s 0• The result follows by 

summing over the principal curvatures. 0 
Equation (1.3.5) now becomes 

a" ( s) ld s12 + a' ( s) ( (q - 1) cots - (p - 1) tans) 

+ sin a ( s) cos a( s) ( ~ - . a~ ) = o . (1.3.6) 
cos s sm s 

The equation has singularities at s = 0, ll/2 (that is the coefficients of a' ( s) and 

sin a ( s) cos a( s) become infinite). We can remove these by reparametrizing 

( 1. 3. 6) using the parameter u defined by e u = tan s. Then we obtain 
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a"(u) 1 -u ) u ' + ((q-2)e -( p- 2 e ) a (u) 
u -u 

e +e 

1 sino (u) cos a(u) (a e 
u -u 

(1.3.7) + -a e ) 0 
' u -u 1 2 e +e 

with a (- oo) = 0 and a(oo) = n /2. This is the equation obtained by Smith in [36). 

1. 4 Outline of the solution of Smith's equation 

Equation ( 1. 3. 7) is the equation of a pendulum with variable damping acted upon 

by a force of variable gravity. The position of the pendulum is described by the 

angle a = 2a which is measured from the upward vertical. The idea is to find an 

exceptional trajectory of the pendulum, so it stands vertically upwards at time u =- oo, 

and hangs straight down at time u = + co • 

Smith shows that such a solution exists if either 

( i) p = q and a 1 = a2 , or 

(ii) (p- 2) 2 < 4a1 and (q- 2) 2 < 4a2 . 

! gravity 

t gravity 

(1.4.1) 

We call ( ii) the damping conditions. An outline of his construction is as follows. 

Fix u0 to be the time when gravity vanishes and manipulate the initial conditions 

a0 = o ( u0 ) and a~ = 'l! ' ( u0 ). For a given a0 r.= ( 0, TT/2) , throw the pendulum just 

hardenough(a'0 = a-0 (o0 )) sothat a(u)- 0 as u-- oo. Similarly, choose 

a-0 + ( o 0 ) to get a ( u) - TJ/2 as u - + oo. Then, since the coefficients in equa­

tion (1.3. 7) are smooth; a-0 and n! ~ are continuous in a 0 [9). Further, 'l!O- 0 

as a 0 - 0 and a~- ~ as a 0 - TT/2. The idea is to find an a 0 such that 

12~ and 'l!O match. At opposite ends one requires a~ be bounded away from 0 for 

a 0 near 0, and a 0 be bounded away from 0 for a 0 near n/2. This requires the 
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use of a comparison theorem for second order equations, together with the inequali­

ties (ii) above. Smith gives a more sophisticated method of solving equation (1.3. 7) 

in [36). We give this method in Chapter 6. 

In ( 36 ) Smith gives rriany examples of harmonic maps constructed by the above 

methods. We give a few of these. 

1 b h d I P-1 .. sP-1_ sP-1 d s1 Exampe 1.4.1 Let g1 et ei entitymap , an g2 : 

be the map G k of Example 1. 2. 3 of degree k. Then for p < 7 the damping conditions 

are satisfied, and so by Smith's construction one can construct a harmonic map 

~: sP- 1 - sP-1, p < 7, of degree k, k = 1, 2, ... (in general deg(g1* g2 ) = 

deg(g1 )deg(g2 ), g1 :sP-1 - Sr-1 , g2 : sq-1_ ss- 1 ). Bycomposingwithan 

isometry of degree -1 we obtain harmonic maps of negative degrees. That is, we 

can represent '1 (Sn) = Z harmonically for n < 7. 
n -

Example 1.4.2 Let g : s 3 - s 2 be the Hopf map H 2 of Example 1.2.4. Let g 
1 2 

be the identity map I P- 1 : S P-1 - S p-1. Then for p s_ 5 the damping conditions 

are satisfied, and we can represent the non-trivial class of n (Sn) = z2 har-
n+1 

manically for n = 3 ,4, •.. , 8. 

Example 1.4.3 Let g1 : s 7 - s 4 be the Hopf map H 4 of Example 1.2.4. Let 

g2 : sP-1- sP-1 be the identity map JP- 1. Then g1 * g2 : sP+7 - sP+4 repre­

sents the generator of n . ( S p+4 ) = z . For p = 1, ... , 6 the damping conditions 
p~7 24 

are satisfied, and we can represent that generator harmonically. 

Example 1.4.4 Given an orthogonal multiplication zb: sP-1 X sq- 1 - sn- 1 as in 

Example 1.2.4; we can define a map ~: sP+Q-1- sn by 

fj (coss x, sins y) = (cos e>(s), sin a(s) 1b (x,y)) , 

where X'= sP- 1 ' y '= sq-1 ' s '= [0, '1/2], o-(0) = 0 and a(TI/2) = n. As in Section 

1. 3 we obtain an equation as a condition of harmonicity similar to equation 1. 3. 7, 

but with the gravity always having the same sign. The equation is of a pendulum whose 

position is described by a = 2 a, and one looks for a trajectory with the pendulum 

just completing a single rotation. 
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! gravity 

Similar considerations apply when dJ: S 1 x S 1 - S 1 is given by dJ ( u, v) = 

uk v1 , u. v r= a:, 1u 12 = 1v 12 = 1. Then the relevant equation is (after reparametri­

zation) 

a"( u) 
2 u 2 -u 

(k e + 1 e ) sin a(u) cos a(u) , ( 1.4.2) 
u -u 

e + e 

with CY (-co) = 0 and G'(oo) = n. This is the equation of a pendulum with no damping 

and variable gravity. If k = 1, then, due to symmetry considerations one can show 

that equation 1.4.2 has a solution. However, if k "f 1, then the gravity is either 

increasing or decreasing. If the gravity is increasing the pendulum will be unable to 

make a complete rotation. If the gravity is decreasing, the pendulum will go past 

the upward vertical after performing a complete rotation. Thus there is no solution 

of equation 1.4.2 with a (-oo) = 0 and a (oo) = n(this can be proved precisely using 

energy estimates for the pendulum). 

Now n3 ( s2 ) = z can be parametrized by the integer k 1, which is the Hopf linking 

number- the Hopf invariant of each class. 

Thus we can represent harmonically the classes of n3 (S2 ) with Hopf invariant k2 , 

but we cannot represent harmonically by the methods of Sections 1. 3 and 1. 4 the 
2 

classes of 113 (S ) with Hopf invariant k1, k "f 1. In particular it is unknown whether 

the class of 113 ( s2 ) with Hopf in variant 2 has a harmonic representative. 
2 

An alter~ative method of finding harmonic representatives for the classes of n3(S ) 

is as follows. The Hopf map H 2 :S 3 - s 2 is a harmonic morphism, and hence by 

Corollary 1. 3. 2, if f: S 2 - S 2 is harmonic; so is f o H 2 : S 3 - S 2• In parti­

cular, if f has degree k , then f o H 2 has Hopf invariant k2 [26). Since we have 

harmonic maps f: S 2 - - S 2 of all degrees; we can find harmonic maps with Hopf 

invariant k2 for all k. 
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Similarly there are harmonic maps f: S 4 - S 4 of degree k, for all k (from 

Example 1. 4. 1) ; by composing with the Hopf map H 4 : S 7 - S 4 , we can represent 

harmonically the classes of 11 (8 4 ) = z 49 z which have Hopf invariant k2 (the 
7 12 

Hopf invariant parametrizes the Z factor of Z 49 Z 12 ) . 

1. 5 Hyperbolic space 
m m 

let M denote 1R equipped with the metric <, >M given by 

< u, v > M = - u v + u v + 
1 1 2 2 

for all u = (u , ... , u ) , v = ( v1 , ..• , V ) r= R m. The space M m is called 
1 m m 

m-dimensional Minkowski space. Define (m-1 )-dimensional hyperbolic space, or 

the ( m-1)- dimensional pseudo-sphere, to be the space 

m-1 m 
H = f u <- M ; < u,u >M = -11 

together with the induced metric. 
m-1 

The pseudo-sphere is a "space like "hypersurface (if v is tangent to H , then 

< v, v >M > 0), whose unique normal vector field r: is "time like" ( < 71 , 7J >M < 0) 

in the terminology of relativity theory. There are many analogies between the Eucli­

dean sphere S m- 1 and the pseudo-sphere H m-1 , especially concerning harmonic 

maps. In particular, the usual stereographic projection sending the sphere less a 

point to Euclidean space, can be modified to give the well-known isometry between 
m-1 m-1 m-1 m-1 

H and (B , < , >), where B is the open ball of radius 2 in B , 
m-1 2 

and the metric <, > = I: dx. 49 dx./(1- ! :r x 2 ) , where (x.) are the 
i=1 1 1 j j 1 

standard coordinates on Euclidean space. 

Let i: Hm-1_ Mm be the inclusion map. 

Lemma 1. 5. 1 If f: M m- 1R is a smooth function, then 

m-1 
t:. H (f o i) + (m - 1) rr ) 0 i 

r" 
(1.5.1) 

where r/rro denotes differentiation in the normal direction to Hm-1 and 

r2 
-2 
rx 1 

+ + ••• + 
a2 

rx2 
m 

is the indefinite Laplacian. 
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Remark 1.5.2 The unit timelike normal to the pseudo-sphere at x is x itself. 

Thus, 

f' 
(x) 

()7j 

e 
X - (X) + X 

1 C'x1 2 
f' 

f'x 
2 

(x) + ••• +X 
m 

where ( x1 , • • • , x m) are standard coordinates on IR m . 

2 
rx 

m 
(x) 

nd 
Proof (of Lemma 1.5.1): Recall equation 1.2.1 for the 2 fundamental form of 

the composition :>f two maps: 

Vd(foi) = df(Vdi) + Vdf(di,di), 

this makes sense with Mm having an indefinite metric (Vis the I.evi-Civita connec-

tion with respect to the indefinite metric on the bundle T * H m-1 i -1 T M m -

Hm-1). By taking the trace of this formula with respect to the Riemannian metric 

on Hm-1 , we get 

.6Hm-1 (foi) =df(.6Hm-1 i) +trace Vdf(di,di). 

But, 

Mm 
where .6 

r 2 f . trace V df(d i ,di) - --o 1 

e2 
-- + 

2 ex 2 

a~2 

+ 

ciao on Mm. Equations (1.5.2) and (1.5.3) give 

Now 

20 

Hm-1 
.6 (f 0 i) 

trace V di 
m-1 
~ 

k=1 

r.2 

" 2 eX 
m 

(1.5.2) 

is the indefinite Lapla-

(1.5.4) 



where we evaluate at a point x c Hm- 1 with Xk = 'Y~ (0), 'Yk (0) = x, yk(u) geo-

.. m-1- Hm-1 __ " " 
destc m H , k - 1, . • • , m - 1. Thus ~ 1 - ~ 'Y k ( 0) • But 'Yk ( 0) = 

m-1 
'Yk ( o) = a/ B17 • Thus ~- H i = (m -1) a/rr;. 0 

_c;:oro llary 1. 5. 3 
m 

If f is a pseudo-harmonic polynomial (i.e. ~M f = 0) of 

degree k on R m, then 

m-1 
~H (f o i) = k(k + m- 2) f o i; 

so f o i is an eigenfunction of L\Hm- 1 

m 1 m-1 Let (M,g) be a Riemannian manifold and ~: M- H - a map. Leti:H 

be the inclusion map, and write ct = i o ~. 

Lemma 1.5.4 The map ~ is harmonic if and only if 

L\ cJ> = 2 e (cl>) cJ> , 

where e ( •T-) = ~ <d <!(X k), d .r (X k) > M' (X k) is an orthonormal basis for M. 

Proof From equation 1. 1. 3 

~(i o ~) = d i ( ~ ~) + trace V d i ( d ~ , d ~). 

As in Lemma 1. 2.1, V d i is perpendicular to d i with respect to the Minkowski metric. 

Thus ~ is harmonic if and vnly if ~ (<I>) is proportional to <J. That <~ cJ>, <!> >M 

-2e (cJ>) is as in Lemma 1.2.1. 0 
Example 1. 5. 5 

2 
Express each w = (x,y) EM as w = x + j y. Multiply w = x +j y 

and w' =x'+ jy' using the rule w.w' =xx' +yy' +j(yx' +xy'). Then the map: 

M 2 - M 2 : w - w k is pseudo-harmonic, and induces a harmonic map ~ from 

H1 to H1 with constant energy density i k2 • If we express H1 as 

H 1 = {(coshs, sinhs); s E [0,~} c M 2 

then ~ is simply ~ ((coshs, sinh s)) = (cosh ks, sinh ks). 

Example 1.5.6 Introduce polar coordinates on M 2 by expressing each (x,y) IF M 2 

as (x,y) = (p cosh s, o sinh s). The Laplacian ~M 2 = - e2 + a22 goes over into 
ax2 ay 
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1 
2 

p 

,2 
c 

C't2 

1 _E._ H1 
(illustrating Lemma 1. 5. 1) • Thus fl. is simpl~ 

p 2p 

This means that mappings of the form 1b : H 1 - S 1 , 1b (cosh s, sinh s) = 

(cosa(s), sina(s))areharmonicifandonlyif o is linear; a-(s) =ks; sucha 

map has constant energy density k2/2. 

1.6 Polar coordinates on hyperbolic space and an analogous construction to Smith's 

Introduce "p:>lar coordinates" on H m-1 by expressing each point z e= H m-1 in 

theform z=icosh sx, sinhsy), where xe=HP- 1, y<?Sq-1 , p+q=m and 

S <? [O,co) • 

Define a map ~: HP~-1- Hr+s-1 by 

~((cosh sx,sinhs yJ = (cosho(s)g1(x), sinha(s)g2(y)), a(O) =O, 

where g1: HP-1 - Hr-1 is harmonic with ldg1 12 = a1 a constant, and g2:sq-:._ 

ss-1 is harmonic with ldg2 12 = a2 a constant. By viewing s as a function, 

s: Hm-1 - E, s ((cosh s0 x, sinh s0 y)) = s0 , we can express ~ in the form 

~ (z) =(cosh a(s(z))g1 o '\ (z), sinh a(s(z))g2 o '12 (z)), a(O) = 0, 

for all z E Hm-1 , where TI : Hm-1 - HP-1 is the harmonic morphism: (cosh s x, 
1 

sinh s y) - x, and n2 : Hm-1 \ Hp-1 - sq-1 is the harmonic morphism: 

(cosh s x, sinh s y)- y, s t- 0. The dilation~ 1 of n 1 is given by ). 1
2 = 1/cosh2s, 

and the dilation ~ 2 of n2 is given by ~ 2 2 = 1/sinh2 s (the proof of these facts is 

similar to the proof of Lemma 1. 3. 3 ) • 

We compute the Laplacians: 

fl. (cosh o(s) g o TJ ) = g on (cosh a (s) a'(s)2 1dsl2 +sinh a(s) fl(a(s)) 
1 1 1 1 

2 
+ cosh a(s) (a/cosh s)) , 

I 2 2 
g2 o n 2(sinh a(s) a (s) Ids I +cosh a (s)fl. (a (s)) 

- sinh a(s) (a2/sinh2 s)) • 

Lett: Hn-1- E, n = r + s, be the function given by t ((cosh s0 v, sinh s0 w) = s 0. 

v~Hr- 1 , wESs-1• Then, writing o~>=io~ where i: Hn-1 - Mn isthe 
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inclusion, we see that 6 4' ( z ) lies in the plane spanned by if ( z ) and V' t Cf> ( z) , for 
m-1 

all z F H . By Lemma 1. 5. 4, jiJ is harmonic if and only if < t;. cf (z), 

V' t cJ(z) > M = 0. Now V' tjlj (z) =(sinh o(s) g1 o n 1 (z), cosh o(s) g2 o n2 (z)), 

and remembering that I g 1 o '\ 12 = -1, 1 g2 o 112 1
2 = 1; the condition for harmo­

nicity of 0 becomes 

6(1!(S))- sinha(s)cosha(s) (~ + a1
2 ) 0 

sinh s cosh s 

or, 

a"(s)ldsl2 + o'(s)~s-sinha(s)cosho(s)( _a2
2 + a1 ) 

smh s cosh 2 s 

= 0, with a ( 0) = 0 ( 1.6.1) 

Lemma 1. 6. 1 The Laplacian of s, 6 s, is given by 

6 s = (p- 1) tanh s + (q - 1) coth s • 

Proof As for the spherical case, !!.. s (z) is - (m - 2) x (mean curvature of 

Ms0 = s-1 (s0 )) foreach s0 E(O,cx), zEMs0 • Acalculationsimilartothatof 

Lemma 1. 3. 4 shows that the principal curvatures of M so are - tanh s0 with 

multiplicity (p- 1), and - coth s0 with multiplicity (q - 1). 

Equation ( 1. 6. 1) now becomes 

a"(s) +((p-1)tanh s + (q- 1)coths)a' (s) 

- sinh a(s)cosh o(s) ( a~ 
sinh s 

+ - -a-=1-=--) -2 -0' 
cosh s 

with a ( 0) = 0 • (1.6.2) 

Equation ( 1. 6. 2 ) has a singularity at s = 0, we therefore reparametrize it using the 

substitution eu = sinh s. The equation then becomes 
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a"(u) + 
1 

u -u 
e + e 

u u -u 
(pe +(q-2)(e +e ))a'(u) 

sinh a ( u) cosh a ( u) 
u -u 

e +e 
( :2 

e 

1. 7 Solving the equation for hyperbolic spaces. 

0 ' 

a(-oo) 0. ( 1.6.3) 

We provide an outline only of the solution of equation ( 1.6. 3), giving a precise 

derivation in Chapter 6. 

Equation ( 1. 6. 3) can be thought of, in some sense, as the equation of a partie le 

constrained to move on a hyperbola in M 2 with a damping force, and with a variable 

"gravity" acting upon it. 

gravity ... 

The qualitative nature of the gravity and damping are illustrated by the following 

graphs: 

;\2 gravity 

u=-oo 

(q- 2) 

u="" u=-oo 

damping 
p 

u=oo 

Consider the situation when u is close to -oo, and so a(u) is close to 0. In this 

limit sinh 2 a ( u) o::: 2 a ( u) :o::: sin 2 a ( u). Thus, for large negative time, the quali­

tative behaviour of the solution of equation (1.6.3) approximates the qualitative beha­

viour of the solution to Smith's equation. 

We choose a time u0 such that the gravity is greater than 0 at u0 , and so is 

greater than 0 for all u < u0 . We choose a = a(u ) sufficiently close to 0- note 
0 0 
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that we have a !-parameter choice for a . The physical moden can now be appro-
0 

xi mated by a pendulum, and we pick a a 1 (a ) = 0! 1 ( u ) to be the velocity such that 
0 0 0 

the pendulum just reaches 0 as u --co in backward time (equations of the form 

(3 11 = G(u,(3,(3 1 
), where G, fJG/f'fJ,~G/8(1 1 are continuous, have unique solutions 

through each point (u0 , p0 ,p~), [9 )). In Chapter 6 we will demonstrate precisely 

the existence of non-trivial solutions of equation ( 1. 6. 3) which exist for all time. 

We have of course only e.stablished the existence of a non-trivial solution, and have 

not investigated the behaviour as u- co. 

We remark that there is a !-parameter family of solutions depending on the choice 

of ao. 

Remark 1. 7. 1 We can write equation ( 1. 3. 5) for the spherical case in the form 

~ (a ( s)) = g ( s) sin 2 a ( s) , (1.7.1) 

where s: sm-l- R and g(s) = i ( (a2 /sin2 s) - (a/cos2 s) ). Similarly, we can 

write equation ( 1. 6. 1) in the form 

~(a(s)) = g(s) sinh 2 a(s) , (1.7.2) 

where s: Hm-l_ E and g(s) = !((a/sinh2 s) + (a/cosh2 s)). We remark that 

equation ( 1. 7. 1) bears a resemblance to the well-known sine -Gordon equation, and 

equation ( 1. 7 .2) resembles the sinh-Gordon equation [29). 

Remark 1. 7 .2 The method of this chapter for constructing harmonic maps f'J between 

spheres and between hyperbolic spaces have a common feature, namely symmetry 

with respect to certain functions s : M - E and t: N - E, where f'J : M - N. 

That is the diagram 

M-----..N 

s ! ! t 
I s-----t~ It 

commutes, where s(M) = Is and t(N) = It are appropriate intervals. We might 

ask which functions are suitable as a symmetry of f'J , in order to reduce the problem 
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of harmonicity to solving a 2nd order ordinary differential equation. There is a 

class of functions which adapts quite beautifully to our purpose. These shall be the 

subject of the next chapter. 

2R 



2 Isoparametric functions 

~ 
2.1 Definition of isoparametric function 

let (M,g) be a space form (i.e. either the Euclidean sphere sm, Euclidean 

space R m or hyperbolic space H m ) . A smooth function f: M - R is called 

isoparametric if 

ldf(x) 12 1/! 1 (f(x)) 

w2 (f(x)) 

(2.1.1) 

A f(x) (2.1.2) 

for some smooth functions 1/! 1 ,1/1 2: R - R • 

Such functions were introduced by Cartan [51 in 1938. Their description on Eucli­

dean space and hyperbolic space is relatively trivial, but on the sphere they are rich 

in geometry. More recently isoparametric functions have been studied in (17, 30, 

32, 33, 39, 401. 

lemma 2 .1.1 let f: M - R be a function satisfying equation (2.1.1), then the 

integral curves of V f arE geodesics. 

... I>" 
Proof [32 1 let ~ = Vf/ ldf I, and let X E ~(TM) be perpendicular to~: g(X,O = 0. 
--- 1 • 

ThenXf=O so ~(Xf) =0. Also ~f=df(Vf)/ldfl= l/1 1 (f)2 isafunctionof fso 

X ( ~ f) = 0 , hence 

o [X,O f 

<vx ~- v~ X )f. 

Thus g(Vx~- v~x, 0 = o. 
Since 1 = g(~.O: g(VxLO = o, so that g(V~X,O = 0. Also g(X,O = o implies 

g(V~X,O=- g(X,V~O. sothat V~~ isproportionalto ~- Butl=g(LOimplies 

g(~ , v~~) = o. Thus v~~ = o. 
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Lemma 2.1.2 Let f:M --R satisfyequations(2.1.1) and (2.1.2); then if 

M c f -l (c) is a non-singular hyper surface of f; M c has constant curvature. 

Proof Let i : M - M be the inclusion map. Then 
c 

0 ~ (f 0 i) 

df(~i) +trace V'df(di,di) 

ldfl (mean curvature of M ) + ~f- V'df(CO, 
c 

where ~ = V'f/ ldf I (df is non-zero on M since M is a hypersurface). Now, 
c c 

using Lemma 2 . 1 . 1 , 

V'df(CE) d f ( '\7 ~ 0 + '\7 d~ ( 0 d f ( 0 

(V'f)ldfl. 

Thus the mean curvature is equal to 

~ V' f( ldf I) - ~ f 
ldf I 

which is a function of f. 

(2.1.3) 

Thus iff satisfies equations (2.1.1) and (2.1.2); the level hypersurfaces of f 

form a parallel family of hypersurfaces of constant mean curvature. Conversely, 

from equation ( 2. 1. 3) and by reversing the proof of Lemma 2. 1. 1, it is not hard to 

show that given such a family which are the level hypersurfaces of a function 

f: M -- R, then f satisfies equations (2. 1. 1) and 2. 1. 2). Furthermore, one can 

show 

Proposition 2.1.3 [5] Given a parallel family of hypersurfaces of constant mean 

curvature on M, then the principal curvatures on each level hypersurface are constant 

on that hypersurface. 

We call a hypersurface of M with constant principal curvatures an isoparametric 

hypersurface. 

Example 2.1.4 Let M = R m and let f: Rm-- R be defined by f(x 1 , .•. , xm) = 

·x12 + ... + x~ , p ~ m. Then ldfl2 = 4f and ~f = 2p. The levelhypersurface 
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2 ° 0 b 2 2 f == s0 1s g1ven y x 1 + ••• xp s~ and is isometric to the cylinder s0 .sP-l x 

~rn-P, s0 F (O,oo ). 

Example2.1.5 Let M = sm-l, anddefine F:Rm-R byF((x,y)) 

IX 12 - ly 12, where we write R m = 1R P Ell 1R q, p + q = m, x E 1R P and y E RQ • 

Let f: sm-1- 1R be the restriction F1 8m-1. Introduce polar coordinates on sm-l 

as in Section1.3; so that each z E sm- 1 is expressed as z = (coss x,sinsy), 

x E sq-l, y E sQ-l. Then f(z) = cos2s- sin2s = cos2 s, so that df =- 2 sin2 sds. 

Thus ldf 12 = 4 sin2 2 s =4 (1-f2 ). 

Now Af = f" Ids 12 + f' As, but from Lemma 1.3.4 As= (q-1) cots- (p-1)tans, 

whence 

Af 4((p-2)cos2 s-(q-2)sin2 s) 

2((p-2)(1+f) - (q-2)(1-f)) ' 

and equations ( 2. 1. 1) and (-2. 1. 2) are both satisfied. 

The level hypersurface MsO = f-1 (cos2 s0 ), s0 E (0, fl/2) is isometric to a pro­

duct of spheres cosso sP-1 X sinso sQ-1 • 

Example 2.1.6 Let M = Hm-1 • Introduce polar coordinates on Hm-l by expres­

sing each point z E Hm-1 as z = (coshs x, sinhs y), x E HP-1 , y E gQ-1, m = p + q 

and SE[O,oo). Define f:Hm-1- R by f(z) =cosh2s. Then df=2sinh2sdsso 

that ldfl2 =4 (f2 - 1). Now A f = f"(s) Ids 12 + f'(s)L\ s, and from Lemma 1.6.1 

As =(p-1) tanhs +(q-1) coths, whence 

A f 4((p-2) cosh2 s + (q-2) sinh2 s) 

2 ((p-2)(f-1) + (q-2)(f+1)) ' 

and f is isoparametric. 

The level hypersurface Ms0 = f-1 (cosh2 s0 ), s0 E(O,oo), is isometric to the pro­

duct cosh s H p-l x sinh s sQ-1 • 
0 0 

2.2 Properties of isoparametric functions andMU"nzner•s classification theorem 

Let Me be a level hypersurface of the isoparametric function f:M - R. For 

x E Me, let A be the shape operator; A : T M - T M : X - - V.X ~, X E T M , 
X C X C X C 

where ~ is the unit normal vector field to M • Then the 2nd fundamental form 
c 
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h of M , hE~ (02 T*M ) , is defined by g(AX, Y) = h(X, Y) for all X, YET M • 
- c c _x c 

The eigenvalues of A are the principal curvatures , ~ 1 (x) , • • • , ~ P (x) say; let 

81 (x) ' ••• ' sp (x) denote the corresponding eigenspaces. 

The equation of Codazzi [38 I is 

g(R(X,Y) Z, 0 = (VXh) (Y,z> - (Vyh) (X,Z), (2.2.1) 

for all X, Y,Z Ect(TM ) , where R is the curvature tensor of M, and ~ E ~(TM) 
c 

is the unit normal vector field to M . Since M has constant curvature K say, 
c 

R (X, Y) Z = K(g( Y, Z) X- g(X, Z) Y 1 is tangent to M , and equation (2.2.11 becomes 
c 

( VX hJ( Y, Z 1 = ( V y h) (X, Z ) , 

for all X, Y, Z E 'If ( T M ) • 
c 

Let X E S. and Y, Z E S., then, since the ~. are constant on M 
1 J ) c 

(VXh)(Y,Z) = X(h(Y,Z))- h(VXY,Z)- h(Y,VXZ) 

Thus 

= X(~jg(Y,Z)) - ~jg(VXY,Z) - ~jg(Y,VXZ) 

= ~j (VXg) (Y,Z) 

= 0 . 

0 (Vyh) (X,Z) 

Y(h(X,Z)) - h(VYX,Z) - h(X, VYZ) 

0 - ~jg(VYX, Z) - ~i g(X, Vy Z) 

= < ~ . - ~ .> g (X , vy z > . 
) 1 

(2.2.2) 

(2.2.3) 

Thus, for all Y,Z E Sj: TJ (VYZ) E Sj where ll: TXM -TXMc is projection. 

We therefore have 

Proposition 2.2.1 The distribution S. , j = 1, .•• , p, is integrable, and the 
. ) 

integral submanifolds are totally geodesic in M0 • Furthermore the leaves of S j 

are umbilical in M with mean curvature vector parallel to ~ • So in the case 

M = sm-1 , the leaves are small spheres in sm-1 • 
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proof -
(2.2.3) 

That the distribution is integrable and totally geodesic follows from equation 

Since, for Y, Z E S. 
J 

V'YZ = TT(VYZ) + ;\jg(Y,Z) ~ 

the leaves of S. are umbilical in M with mean curvature parallel to ~ . 0 
J 

Suppose M is sm-1 (the cases M = Rm, Hm- 1 are similar). 

Define y : M - M by 
t c 

"'t(x) = cost + sint ~ , for all x ~ M . 
' . X C 

For each i = 1,2, ... ,p, write \.(x) =cot FJ. for some FJ. depending only on the level hyper-
1 1 1 

surface M • Suppose XES., i.e. X= (3' (0), (3(0) = x, where {3(s) is a curve in M 
c J c 

Then 

dyei (X) = dds (yei o f:l(s)) Is= o 

d 
cos e. x + sin e. ~ ( 1 

1 1 ds (3s) s=O 

COSIJ. X + sin9. (V.X 0 
1 1 . 

cos 9. X + sin 9. (-cot(). X ) (2.2.4) 
1 1 J 

Thus dyt(X) = 0 if and only if t = (Ji 

Call y (M ) a focal variety of f . 
(Ji c 

and XES. (x), for some i = 1,2, ..• , p. 
1 

Theorem 2.2.2 [32] Each focal variety is a minimal submanifold of sm-1 

Remark 2.2.3 From equation (2.2.4) we see that dyt(X) is proportional to X for 

all X E Sj, j = 1, • • • , p. Thus .!£'~ X E Sj , where.!£ denotes Lie derivation on M, 

and since V'X~ = - ;\j X; we see that V' ~X = SC'~ X + V'X ~ E Sj, j = 1, ... , p, so the 

principal curvature distributions are parallel with respect to ~. 

Proposition 2. 2. 4 [ 5 ] H M is S m- 1 , there are at most two focal varieties . 

.!_ M is R m or H m- 1 there is at most one. 

Let V 1 , V 2 denote the focal varieties (if there is only one, then let V 2 = 0), and 

let TI: M \ V 2 - V 1 be the projection map down the integral curves of L then 
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Proposition 2. 2. 5 The map n : M \ V 2 - V 1 is harmonic. If the number of 

distinct principal curvatures is less than or equal to two, then n is a harmonic 

morphism (c.f. Lemma 1.3.3). 

Proof Suppose dim M = m, and let x E M \ V 2 . Choose a frame field X 1 , ••. , X m 

about x adapted to the S. spaces, in the sense that for each j , if dim S. = m. , a 
J --- J 

subset x 1. , ••• , Xj of X , ... , X forms an orthonormal basis for S. at each 
1 mi 1 m 1 

point, and let X = ~. Furthermore, since the integral submanifolds of the S. 
m J 

distributions are totally geodesic in the level hypersurfaces of f, we can suppose 

Vx. Xi is proportional to ~ for i = 1, ••• , m. 
1 

Now n = 'Y 9 for some j = 1, • . . , m, so the horizontal space through x is :Jt' = 
j X 

• S. (x), and the vertical space 1-' = S. (x) e R ~. From equation (2.2.4) we see 
i1 j 1 X J 
that TI is horizontally conformal if and only if the number of distinct principal curva-

tures p is equal to 2. 

To see that n is harmonic, we work out trace V d n. If i = 1, ••. , m - 1 then 

V d TT(X. ,X.) 
1 1 

0 ' 

from equation (2.2.4) and since Vx. Xi is proportional to ~. Clearly Vd n<L 0 = 0, 
1 

so that TT is harmonic. 0 
On Rm , the number of distinct principal curvatures on each level hypersurface 

off is 1, and on Hm-1 at most 2 [51. Cartan classified all such families of iso­

parametric hypersurfaces. He also solved the classification problem for p = 3 on 

S m-1 [ 6 I, finding that m could be only 2, 5, 8, 14 or 26. M~zner [ 30 I showed that 

every isoparametric hypersurface is algebraic, and only certain p are allowed; we 

state his remarkable theorem without proof. 

Theorem 2.2.5 [301 Let M be sm-1 and Me an isoparametric hypersurface with 

p distinct principal curvatures ~1 , ••• , ~p with multiplicities m 1, 

respectively. Then 

(i) mi+2 = mi - i.e. there are at most 2 distinct multiplicities. 

m 
p 

(ii) Me is the level surface of the restriction to sm-1 of a homogeneous 
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polynomial F on Em satisfying 

IV' F(x)l2 = p2 1x 12 p-2 

~ F (x) = d lx I p-2 

2 
~ d = p (m2 - m 1)/2 J.!. pis even and 0 J.!. p is odd. 

(2.2.5) 

(2.2.6) 

(iii) Conversely, any such F defines a family of isoparametric hypersurfaces on 

8 m-1. 

(iv) p can only be 1,2,3,4 or 6. 

Remark 2.2.6 We will call p the degree of the isoparametric function, hypersurface 

or family of hypersurfaces. 

Remark 2. 2. 7 The function f = F I sm-1 has image f(sm- 1) = [-1' 1], where F 

is as in Theorem 2. 2. 5 (ii). The sets r-1 (-1), f -1 (1) correspond to the focal va-

rieties. 

Remark 2. 2. 8 If Olle puts f = cos p s, s r-o [O, TT/p], then s represents the affine 

parameter such that ~ = Vs. 

Lemma 2. 2. 9 The Laplacian t::. s (x) is minus the mean curvature of the level hyper­

surface Mso = f- 1 (cos pso), X E Mso. 

Proof Let is0: M so- M be the inclusion map. Then 

0 t::..( s 0 is ) 
0 

= ds (Ais ) + trace Vds(dis , dis ). 
0 0 0 

But ~ = e If! s is affine geodesic , hence v ~ ~ = o; so that v d s ( L 0 = d s < v ~ 0 + 

vJ:<o ds(O = O(ds(~) istheunitvectoralong E). That is 

trace V'ds(dis0 ,dis0) = t::.s. Thus 

0 = d s (t::.. is ) + t::. s • 
0 

But since t::. i~ is proportional to ~ ; we conclude that t::. s. ~ 

33 



Remark 2.2.10 With respect to the affine parameter s, whose level hypersurfaces 

we denote by Ms0 = s-1 (s0 ), the principal curvatures are "-i =- cot(s0 + (i-1)TT/p), 

i = 1, ... , p, on Ms , and the corresponding integral small sphere of the distribu-
0 

tion Si (x), x E Ms0 , has radius sin (s0 + (i-1) n/p). Hence we get 

Remark 2.2.11 The mean curvature varies from -ce to + oo on sm-l and is con­

tinuous, thus, for each family of hypersurfaces on sm-1 , there exists one hyper­

surface with zero mean curvature, i.e. minimal. In fact the minimal hypersurface 

is M n ; 2p = f-1 (cos n/2) = f-1(o). 

2. 3 Examples of isoparametric functions 

Example 2. 3. 1 The isoparametric families of hypersurfaces of degree 1 are all 

given by the restriction of linear functions: 

(i) On R m; define f: R m - R by f(x , ... , x ) = x . The level hyper-
1 m 1 

surfaces are isometric to R m- 1 , and there is no focal variety. 

(ii) On sm-1 ; write z E sm-1 as z = (coss, sins x), x E sm-2 and s E [0, n]. 

Define f: sm-1 - R by f(z) = coss. The level hypersurfaces are (m-2)-dimen­

sional small spheres. Each focal variety is a single point r-1 (1) and f-1(-1). 

(iii) on Hm-1 there are three distinct cases. 
m-1 m 1 

(a) For each z E H , write z = (coshs, sinhs y) ,yES - and s E [O,co). Let 

f: Hm-1- R be defined by f(z) = coshs. The level hypersurfaces are (m-1)­

dimensional spheres. There is one focal variety which is a point. 
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(b) Let z E Hm-1 be written as z = (coshs x, sinhs), x E Hm-2, s E [O,oc) • 

f m-1 pefine : H - R by f(z) = sinhs. The level hypersurfaces are "equidistants" 

from the plane x = 0 in Mm, and are (m-2 )-dimensional hyperbolic spaces. There 
m 

iS no focal variety. 

(c) Express Hm-1 as the upper half plane in R m- 1 with metric d s2 

(dx 2 + ••• + dxm 12 )/x 12 , where x , •.. xm 1 are standard coordinates 
1 - m- 1 -

on Rm- 1 • Define f: Hm-1 - R by f(x 1 , ..• , xm_ 1 ) = xm_ 1• The level hyper-

surfaces are "horospheres" - that is, they are isometric to ( m-2)- dimensional 

Euclidean spaces. There is no focal variety. 

0 

xm- 1 
Example 2. 3. 2 The isoparametric families of hyper surfaces of degree 2 on R m, 

sm-1 and Hm-1 are all given in Examples 2.1.4, 2.1.5 and 2.1.6. In Example 

2. 1. 4 there is one focal variety which is isometric to R m-p. In Example 2 .1. 5 

there are two focal varieties, one is isometric to sP-1 and the other is isometric to 

sQ-1. In Example 2.1.6 there is one focal variety isometric to HP-1. 

Example 2.3.4 Define F: E 3 "+2 - R, v= 1,2,3,4 or 8 by 

F(u,v,X,Y,Z) = u3 - 3uv2 + iu(XX + YY- 2Z-Z) + 3/ 3 vCXX- YY) 

+ 3 ..[3 (XYZ + ZYX) ' 
2 

(2.3.1) 

where u, v E R, X, Y, z E F, F is one of R, 0:, quaternions or Cayley numbers, and 

is conjugation on F. Then f = F 1 8 3 11 + 1 is an isoparametric function of 
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degree 3 (all such arise in this way [6)). The focal varieties are antipodal, and are 

isometric to the projective plane P2 (F), embedded as the standard Veronese minimal 

submanifold in the sphere. 

Example 2. 3. 5 [32] Identify (n+1 )-dimensional complex space <J:n+1 with E n+1 e 

E n+1, by writing a point z E <J:n+1 , z = (z1 , .•. , z 1>, z. = x. +y., j =1, .•. ,n+1, 
n+ J J J 

asz=x+iy=(x1 , ..• ,x ) +i(y, ,y ). Weshallalsowritezas(x,y) 
n+1 1 n+1 

whenever this is convenient. 

Let F: <J:n+1 - E be defined by 

F(z) = ( lxl2 - lyl2 )2 + 4 <X,y >2 • (2.3.2) 

Then f = F I g2n+1 is isoparametric of degree 4 on s 2n+1 . 

Define is: s 1 x Sn+1,2 - s 2n+1, where Sn+1,2 is the Stiefel manifold of ortho­

normal 2-frames in R n+l, by 

i s ( e i9 , (x, y) ) = e i9 ( coss x + i sins y) , 

where s E [0, IT/4 ]. Then is is an immersion which double covers the level hyper­

surface Ms = f- 1 (sin22s). The hypersurface is obtained by the identification 

( 9, (x,y)) - (9 + IT, (-x,-y)). 

The principal curvatures of Ms are -cots, -cot( s - IT/ 4) , -cot ( s - IT/2), 

-cot(s- 3IT/4) with multiplicities n-1, 1, n-1,1 respectively. There are two focal 

varieties, one at s = 0, which corresponds to the set f e i6 .x l = s 1 xsn;s0 , and one 
"9 1 1 

at s = IT/4, which corresponds to the set fe1 (x + iy)/22}, i.e. the set{(x+iy)/221 

Sn+1 , 2 • Let us study the Riemannian geometry of Ms in more detail. 

Define s:+1 , 2 to be the analytic submanifold of En+leRn+1 given by S~+1 , 2 
I ( ) 10n+1 10n+1 2 2 2 . 2 
1 x,y E .a> • .a> ; lx I =cos s, ly I = sm sand <x,y> = o} = {(coss x, sins y) 

En+1 10n+1 ( ) J +1 E • .a>· ; x,y E Sn+1,2 • Let e 1 , ••• ,en+1 be the orthonormal basis for Rn 

such that e. = ( 0 , ••• , 0 , 1 , 0 , ••• , 0 ) , with the 1 in the i'th place. Choose p E ss 
1 n+1,2 

to be-p = (cosse1 ,sinse2 ). Consider the following curves in En+1: 

'lj(u) =cos(u/coss)e1 + sin(u/coss) e., 
- 1 
'-i(u) =cos(u/sins) e 2 + sin(u/sins) ei, i =3, ••• ,n+1. (2.3.3) 
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and define the curves through p in Sns+1 , 2 : 

1'· (u) 
1 

:>.. .(u) 
1 

(coss -yi ( u), sins e 2 ) 

(cosse 1 , sins\(u)), i = 3, ... , n+1 

p(u) = (coss(cosue1 + sinue2 ), sins(-sinue1 + cosse2 )). (2.3.4) 

s 
The tangent space to S 2 at p is given by 

n+l, 

T Ss = { ( v, w) ; < v, w > 
p n+1,2 p 

0 = < w, y > and < v, y > + < x, w > 

0 where p = (x,y) 1 , 

and the vectors 

'}'I ( 0) (e., 0) 
1 p 

I 
(O,e.) :>.. i ( 0) i = 3' n+1 

1 p 

/).I ( 0) (coss e 2 , -sins e ) , 
1 

(2.3.5) 

form an orthonormal basis at p for T Ss 1 2 p n+ ' 

Lemma 2.3.6 The curves (2.3.4) are all geodesic in Ss at p- that is, 
n+1,2 

n+1 1Rn+1 
(V~(O) E& {3 1 (0)) isperpendicularto T Ss where ,B(u) isoneof 

,.., p p n+1,2 1 

the curves (2.3.4). 

Proof A curve fl(u), f(O) = p, in Ss is geodesic at p if and only if f3 11 (0) is 
n+1,2 

perpendicular to T ss 1 2 • For example, p 11 ( 0) = (coss ( -e ) , sins (- e ) ) . 
p n+ , 1 2 

Clearly the scalar product of 1-l 11 
( 0) with the vectors of (2. 3. 5) is zero. Similarly 

for the other curves of (2.3.4). 0 
We study M , the double cover of M , which locally can be described as the set 

s s 
of points eiO (coss x + isins y), S E (0, n/4), (x,y) E Sn+l, 2 and 0 E (0,2 n). 

Fix 0, then Sn+l 2 is embedded in a;n+1 as the manifold S s 2 . Fix coss x + 
• n+l, 

isins y, then as 0 varies, we trace out a great circle of s2n+1. How does this 

eire le intersect the S s ? 
n+1,2 
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i 6o -
Fix p = e (coss x0 + isins y0 ) E M s Consider the two curves 

'Y (u) 
i9 (u) 

e (coss x0 + isins y 0 ) 

. 6 
o(u) = e 1 0 (coss x(u) + isins y(u)) ' (2.3.6) 

bothofwhicharecontainedin Ms, where x(O) = x0 ,y(O) = y0 , 9(0) = 90 and 

(x(u), y(u)) E Sn+l, 2 for all u. These are both curves through p, and without loss 

of generality 6 1 ( 0) = 1. Then 

1 I i 60 
y (0) = i~ (0) e (coss x0 + isins y0 ) 

i8 
= e 0(-sins y0 + icoss x 0 ) 

and 

I i 6o I I 
o (0) = e (coss x (0) + isins y (0)) • 

The Riemannian scalar product 

I -~-
<y (0),0 (0)> i(cossx0 + isinsy0 ). (cossx1 (0) + isinsy1 (0)) 

i(isins coss y0.x1 (0) - icoss sins x 0.y1 (0)), 

since x 0.x1(0) = y0.y1 (0) = o 

= cos (2 s- 11/2) xo. Y1 (0) 

Tbus the angle of incidence of y and o is independent of 6 0 , and is 2 s - Tl /2. Fur­

thermore, the plane of incidence at p is spanned by p. 1 
( 0) and y 1 ( 0) , where p. is as 

in (2.3.4). We therefore have 

Lemma 2.3. 7 Tbe level hypersurfaces M , locally can be described as an "angu-
s 

lar product" of s1 with S~+l, 2 , where the angle of incidence is 2 s - 11/2, and the 

plane of incidence is spanned by the tangent vectors to the curve p. ( u) of ( 2. 3. 4) and 

the curve y ( u) of ( 2. 3. 6). 

Example 2. 3. 8 [ 17 ] An n-tuple (P , .•• , P ) of symmetric endomorphisms of 
1 n 
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R 21 is called a Clifford system if 

P.P. + P.P. = 2 6 .. I, i,j = 1, .•• , n. (2.3.7) 
1 J J 1 1) 

Theorem 2.3.9 [17) GivenaCliffordsystem (P1 , ••• , Pn)~ E 21 suchthat 

m = n and m = 1-n are both positive, then 
1 - 2 

F(x) = 1x14 - 2:E <P.x,x>2 ,xER 21 , 
i 1 

defines an isoparametric function f = F 1 s21-1 on s 21- 1 of degree 4, with the 

multiplicities of the principal curvatures being (m1 ,m2 ). 

Example 2.3.5 is a special case of this example. This family of examples also 

includes many where the level hypersurfaces of f are non-homogeneous (they are not 

the orbits of a subgroup of the orthogonal group) - including the non-homogeneous 

examples of Ozeki and Takeuchi [33] (which we give explicitly in chapter 8). Fur­

thermore these examples include ones where the focal varieties are also non-homo-

geneous. 

2.4 Generalizing the notion of isoparametric families of hypersurfaces 

We wish to generalize the notion of isoparametric families of hypersurfaces to 

Riemannian manifolds whose curvature is not necessarily constant. There are various 

possible definitions, but we make one which is suitable for our purpose of constructing 

harmonic maps. 

Let (M,g) be a Riemannian manifold together with a family of hypersurfaces 

(M ) 1, where I is some indexing set, in the sense that there exists a closed no-
c CE 

where dense subset K of M such that M\K is foliated by hypersurfaces M • Suppose 
c 

that on M\K the following conditions are satisfied: 

(i) The locally defined unit normal vector field to the foliation~, satisfies V~~ = 0. 

(ii) If M is a hypersurface in the foliation, then the principal curvatures 
c 

~ 1 , • . • , A P are defined up to a sign. Suppose that for each i = 1, ••• , p; ~ i is 

constant on M • 
c 

(iii) If Sk is the distribution on Me corresponding to the principal curvature Ak' 

then projection down the integral curves of ~ , p : M - M , preserves Sk in the 
s s c 

sense that, if X E Sk(x), x EM , then p XEs_ (p (x), provided that p is a s s. -k s s 
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diffeomorphism (i.e. we don't encounter a focal variety). Then we call the family 

of hypersurfaces a generalized family of isoparametric hypersurfaces. In certain 

circumstances, it may be that the family of hypersurfaces is no longer defined by a 

function. 

, Lemma 2. 4. 1 Let (Me) eEl be a generalized family of isoparametric hypersurfaces 

on M which are the level sets of a function f: M - R, then 

ldf 12 = lb 1(f) 

M = w2(f) , 

for some functions 1b 1 and 1/J2 . Call such an f a generalized isoparametric function. 

Proof The vector field~ is defined, up to a sign, by~= Vf/ldfl. Let XE' ker df, 

then, since g(X,O = 0 and V~~ = 0; we conclude that g(VtX,O = 0, and 

V X E ker df. Also g(L~) = 1 implies VX ~ E ker df, thus 0 = [X.~ )f =X(~ f) -
~ 2 ! 2 1 

~(Xf) =X(~f). But ~f=(ldfl )2, sothatker(d(ldfl )2):::>ker df. Sincethedimen-

sions are equal and finite; we cone lude that ker ( d (ldf 12 ) ~ ) = ker d f, and that 

ldf 12 = $1 (f) for some function 1/J 1. 

Equation (2.1. 3) is still valid for non-constant curvature, giving ~f = w2 (f), for 

some function 1/J 2 . 0 

Remark 2 .4. 2 Since the curvature term in the Codazzi equation (2. 2. 1) is now no 

longer necessarily zero, it is not necessarily true that the Sk distribution on M c 

is totally geodesic or integrable. 

Example 2.4.3 All isoparametric functions f on gm-1 define a generalized iso­

parametric family of hypersurfaces on R pm-1. In the case when the degree of f 

is even; the family of isoparametric surfaces on lR pm-1 has two focal varieties. 

In the case when the degree off is odd; there is just one focal variety. 

Example 2.4.4 Express R 2m as 1R 2P e E 2q where p + q = m, and identify 

R 2P e R 2q with Q:p e Q:q in the obv'ious way. Consider F : R 2m- R, 

F (x,y) = lx 12 - ly 12 , x E R 2P, y E R2p, y E R 2q, whose restriction defines an 

isoparametric function on s 2m- 1 with focal varieties s 2P-1 and g2q-1. The 

function f factors through the action of s1 on s 2m-1 , to give a generalized iso-
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parametric function on <r Pm-l with focal varieties <r pP-1 and <r pQ-1. The level 

hypersurfaces are diffeomorphic to s 2P-l X g2Q-1 /81 . 

. 2n+1 Remark 2. 4. 5 The function f: S - R of Example 2. 3. 5 factors through the 

action of s 1 on s2n+1 to give a well-defined function g on <r pn, with focal varieties 

Rpll and S 1 2 ;s1. The level hypersurfaces are diffeomorphic to S 1 2;s0 . 
n+ , n+ , 

Then g is a generalized isoparametric function. 

Remark 2.4.6 Let TT: <r P 3 - s4 be the Hopf map, and let f: s 4 - 1R be the iso­

parametric function of degree 3 of Example 2.3.4. Define g: <r P 3 - R by 

g(x) = f( Tl(x)), for all x E <rP. Then g is a generalized isoparametric function. For 

example, if TT: M - N is a harmonic Riemannian submersion, and N is a hyper-
c 

surface of constant mean curvature in N, then n-1 (N ) has constant mean curvature 
c 

in M [ 15). 

Example 2. 4. 7 Consider the tangent bundle TM of a Riemannian manifold ( M,g). 

Let n be the projection map TI: TM - M. Define the metric G on TM to be the 

Sasaki metric [ 35 ) , and write D for the Levi-Ci vita connection on TM • The metric 

G and connection D have the properties that 

(i) the horizontal lift of any geodesic ofM is a geodesic of TM. 

(ii) Every straight line in the fibre of ll: TM- M is a geodesic of TM. 

(iii) Every fibre of TI: 'l'M- M is totally geodesic in TM. 

Define f: TM- R by f(x,v) = lvl2, where x EM and vET M. Then~ =Vf 
X 

is a geodesic vector field in TM. Let M = f- 1 (c) be a hypersurface of TM, c "f 0. 
c 

Then for x E M ; let X E T M be horizontal with respect to n. Then DX~ = 0, 
C X C 

so X is a principal curvature vector with principal curvature 0 of multiplicity equal 

to m =dim M. If X ~ T M is vertical with respect to n, then DX~ = X/c, and X 
X C 

is a principal curvature vector with principal curvature -1/c of multiplicity m - 1. 

Clearly the principal curvature eigenspaces are preserved under projection down the 

integral curves of ~. Hence f: TM - m is a generalized isoparametric function. 

Since the horizontal distribution of TI: TM - M is integrable if and only if M is 

flat; the eigenspace distribution corresponding to the principal curvature 0 will not 

in general be integrable. 
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3 The stress-energy tensor 

3.1 Derivation of the stress-energy tensor 

Let lM,g) be a compact Riemannian manifold, and consider an action which, for 

simplicity, we suppose has the form 

(3.1.1) 

where ~ is a section of a Riemannian fibre bundle 11: E - M, and L is a function 

on the bundle of 1-jets of sections of 11: E - M; L: J1 (E) - R, with L possibly 

depending on the metric of E. 

Example 3.1.1 Let ~: ( M,g) - (N ,h) be a smooth map, E = M x N. Then ~can 

be regarded as a section of E. Let L(j 1 ( ~) ) = ld ~ 12 be the square of the Hilbert­

Schmidt norm of d ~ • 

In general one looks for extremals of the action ( 3. 1. 1) with respect to variations 

of the section~. and one finds that~ is an extremal if and only if ~ satisfies the 

Euler-Lagrange equations 

'iff!/(~) = 0 ' (3.1.2) 

where 'iff!/(~) E <jf(~-l TE) (we write'jff,.Sffor the Euler-Lagrange operator on sec­

tions) . In Example 3. 1. 1 , the extrema ls are the harmonic maps and the Euler­

Lagrange equation for ~ is 

{:,~=0. (3.1.3) 

Suppose now we vary the metric g. If g(u) is a smooth !-parameter family of 

metrics, g(O) =g, then c5g=Pg/aulu= 0 liesin't<02 T*M). 

Proposition 3. 1. 2 For a fixed section ~ , 
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r£1 2 * ~ s0 E~ ((!) T M), called the stress-energy tensor of 0, is given by 

84 ;;;: ~ L + !gL, and <, > is the metric induced on ®2 T*M from g (by a L we 
1'1 g - -- g 

mean the section of 0 2 T*M, which is given in components by (ll L) b 
g a 

~ g gbd (summing over repeated indices), where g = g bdxa dxb with respect 
2gcd ac a 

to a local coordinate system (xa) on M). 

Proof Suppose g has a local representation in the form g = g bdxa dxb (summing 
- a 
over repeated indices) with respect to local coordinates (xa) on M. Then 

di I =J a L 0 g dx + r 
d u u = 0 M ll gab ab . M 

The volume element dx can be written in the form dx = (det g)ldx1 " ••• "dxm. 

Then 

1 ab d 
2 g x. D 

Corollary 3. 1. 3 !!:_ 0 and L are as in Example 3. 1. 1 , then 

s0 = e ( 0) g - 0 * h _ 

Proof Let (xa, ya) ·be a local coordinate system onE= MxN. These induce co­

ordinates (xa ,y'l,y a) on J1 (E) with respect to which L(xa ,l , y:a) = 
a a 

ab a {3 a b h a {3 g y yb h , where g = g bdx dx and h = Rdy dy are local represen-
a a{3 a a~ 

tatives of the metrics g,h respectively (summing over repeated indices). Then 

. ( a gii ) a fJ 
"' y, Y. h Q 
vgab 1 J a~ 

0 
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Whence 

egii 
= -

Pgab 

= -

il tglk 
g 

eg 
ab 

gil oa ob 
k 1 

'b gia gJ 

'k gJ 

'k gJ 

Thus t L/ e g = - y a a y pb h 
ab a~ 

Or in coordinate free notation t LHO =- ~*h. 
g 

0 
Proposition 3. 1. 4 .!!_X is a smooth vector field on M, then 

( <7ff.9'i~), d~(X)>dx- 2 ( V*Sa(X)dx = 0, 
'M 'M P 

where v*s~ denotes the divergence of S~; v*s~(X) 

is an orthonormal frame field. 

2:: VX Sa(X.,X), where(X.) 
i i p 1 ---- 1 

Proof Let w be the family of diffeomorphisms associated to the vector field X, 
--- u 
then for each u 

I = f. L dx 
'M 

= J 1/J *(Ldx). 
M u 

Therefore ( ( L dx- w *< L dx)) = 0, and so 
•'M u 

( ffx(L dx) = 0, 
.M 

where !f'X denotes Lie derivation with respect to X. Also 

( .!?_X(L dx) = ( <if2t~), d0 (X)> dx + ( < Sa,Sf.xg > dx . 
• M .M . M P 

Now, in coordinates, letting ";"denote covariant differentiation; ~g)ab = 2X(a;b) 
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(the bracket ( , ) means symmetrization of the indices) ,so that 

) 
r ab 

= - 2 . S "' b X dx. 
'M ,; a 0 

Corollary 3.1.5 If ~ is an extremal of I, and so satisfies the Euler-Lagrange 

equations ( 3. 1. 2 ) , then 

v* s = o 
~ 

Proof The statement follows immediately from Proposition 3.1.4, since X was 

arbitrarily chosen. 0 

Proposition 3.1.6 Suppose (M,g) is any Riemannian manifold (i.e. not necessarily 

compact), and ~: (M,g)- (N ,h) a map. Let S~ E~(02 T *M) be given by 

S~ = e(~) g- fl•h, then for all X E~(TM) , 

< Afl, d~(X) :> = - ~*Sfi(X). 

Proof In coordinates, as in Corollary 3 .1. 3, 

Thus 

(S ) ;b 
~ ab 

( ij~. (Jl~~ 
g 1 J; a 

0 
~Corollary 3.1.7 .!!_~:(M,g) -(N,h) is harmonic, and s 0 E~(02 T*M) is given 

by s0 = e(~) g- ~ *h, then 

* - 0 v 80 - • 

~Conversely, if 0 is a submersion almost everywhere, and v*s0 0, then 0 g; 
harmonic. 
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3. 2 Examples 

,Example 3.2.1 Suppose 0: (M,g) -(N,h) isconformalwith 0*h 

smooth function p: M-R. Then Corollary 3. 1. 3 gives 

s 0 = !p(m-2)g 

pg for some 

(3.2.1) 

Thus if m = 2,s0 = 0; and if m > 2 and 0 is harmonic, Corollary 3.1.7 implies 

p is constant, i.e. 0 is homothetic. This generalizes a result of Hoffman and Osser­

man [24]. 

Conversely, if s 0 = 0, then 0 =trace s 0 = ! (m - 2) e ( 0>, whence, if 0 is non­

constant; m = 2 and 0 *h = e(0) g, i.e. 0 is conformal. Thus 

Proposition 3.2.2 .!!.._0 :(M,g)- (N,h), then s 0 = 0 if and only if dim M = 2 

and 0 is conformal. 

Corollary 3.2.3 Suppose 0: (S2 , g) - (N,h) is a harmonic map of the 2-sphere 

into a Riemannian manifold N, then 0 is conformal. 

Proof Choose local isothermal coordinates z on s 2 , so that g = p(z) dz dz. Then 

a tensor T E ~(0 2 T* M) has a type decomposition of the form T = T (2 ' 0 ) + T ( 1 •1 ) + 

T(0, 2 ), where T(i,j) is spanned by dzi dzj locally. A calculation shows that 

(0*h)(1, 1) =e(0)g. Thus ~0 =s/2 •0) + s~0,2), where sJ 0•2) = s/2,0). 

That the divergence, v *s0 = 0, amounts to s~ 2 • 0 ) being a quadratic holomorphic 

differential on s2. But it is well-known that there are no non-trivial quadratic holo­

morphic differentials on s2. Thus s 0 = 0, and Proposition 3.2.2 shows that 0 is 

conformal. 

-;iExample 3.2.4 Suppose 0: (M,g)- (N,h) is a Riemannian submersion, i.e. 0 is 

a submersion, and the differential is an isometry on the horizontal space. Then 

.: Proposition 3.~.5 (See [12) for a different proof): the map 0 is harmonic if and 

only if the fibres are minimal. 

Proof Locally, about a point x EM, choose an orthonormal frame field for 

TM, X , ••• , X , X , ••• , X , where the first n vectors are horizontal and the 
1 n n+1 m 

last n - m vectors are vertical. Choose indices i ,j, • • • to run from 1 to n;r, s, ••• 
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to run from n + 1 to m and a, b, • • • to run from 1 to m, and use the usual summa­

tion convention for rJeated indices. 

Suppose ~ is harmonic, and Y E 'tf(TM) is arbitrary, then 

0 ('i7Xa S~) (Y,Xa) 

- (VX ~"'h) (Y,Xa) 
a 

- X ((~"'h) (Y,X )) - ~ *h(V.X Y,X ) - ~ "'h(Y, V.X X ), (3.2.2) 
a a a a 

Choose Y = X. to be horizontal, then 
) 

o = xi g(Xi ,xi> 

g(V.X X. ,X.) + g(X., V.X X.) 
i ) 1 ) i 1 

a a 

g(1{V.X X. ,X.) + g(X., J{ V.X X.) 
i J 1 ) i 1 

= ~*h<v.x x .• x.> + ~*h<x.,v.x x.>. 
i ) 1 J i 1 

where ,7(' denotes projection onto the horizontal space. So that 

0 = ~*h(Y,V.X X), 
r r 

and the fibre is minimal. 

Conversely, if the fibres are minimal, then 'i7 * S~ = o. 0 

3.3 The eigenvalue decomposition of the stress-energy tensor 

I..et ~: (M,g) - (N,h) be a smooth map, and let m = dimM, n = dimN. Suppose 

~ *h has eigenvalues v1 , ••• , v with respect to g, where v1 > ••• > v > 0. 
m - - m-

l.et X , ••• X be an orthonormal basis on a domain of M adapted to this eigen-
1 m 

value decomposition, i.e. if T. is the eigenspace of "·• then a subset of x 1 , ••• X 
J J m 

forms an orthonormal basis of T.. The energy density of the map ~ is given by 
. m 
e(fl) = 2: "k/2 • 

k=1 

J 

H P E ~(02 T• M), then let P .. 
1) 

respect to X1 , ••• , Xm. Then 

(3.3.1) 

P(X. ,X.) denote the components of P with 
1 J 
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s .. eO~)gij -u~*h) .. 
1J 1J 

1(0)-v.)o .. 
1 1J 

Now 

e(0) - IJ. ~ 
( 1 - 2 oiq) 

IJ 
1 q 2 q 

therefore 

(1-26.) 
s .. 

1q 
o .. (3.3.2) = ~ IJ 

1J q 2 q 1J 

Example 3.3.1 In Example 3.2.4, when 0 is a Riemannian submersion; v1 , .•. ,l'n=l 

and v 1 , • • • , v = 0. 
n+, m 

Example 3. 3. 2 1f 0 is a harmonic morphism, as in Section 1. 3, with dilation 

- 2 A : M - E , then v1 , ••• , v - A , and v 1 , .•• , v = 0. 
n n+ m 

Example 3. 3. 3 In Proposition 2. 2. 5, the eigenspace of S corresponding to non­
n 

zero eigenvalues, correspond with the principal curvature spaces S., i = 1, .•• p, 
1 

i t- j, where n = "Y e. . The eigenspace Tk of s11 with "k = 0 corresponds to the 
J 

kernel of d 11, i.e. the direct sum of S. with E ~, where t is the unit normal vector 
J 

field to the i soparametric family. 
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4 Equivariant theory 

4. 1 Maps which are equivariant with respect to isoparametric functions. 

Let M be a space form upon which is defined an isoparametric function f: M - R. 

Let M * be the union of non-singular hypersurfaces of f with the induced topology, 

and let Tlf: M * - M* /f be the canonical projection. Then M* /f inherits a topology 

from M* with respect to which it becomes an open interval. H x E M*f; define a 

metric g at x as follows. H X E Tx (M* /f) and x E n;1 (x), then there exists a 

unique normal X to x at x such that d Tlf(X) =X; define g (X, Y) = g(X, Y) . 
.. 

Lemma 4.1.1 The metric g defined above is well-defined. 

Proof We must check that g , as defined above, is independent of the choice of 
-1 - - * -1 -x E Tlf (x), for all x E M /f. Let x,y E Tlf (x), o(u) a curve d~ining the unique 

normal X to x at x, and 6(u) be a curve defining the unique normal X to x at y, 

such !_hat d TTf(X) = d ~f(X) =X. Then d nf (X) = (d/du) ( nf o o(u)) 1 u= 0 and 

d nf(X) = (d/d u) ( nf o o (u)) 1 u = 0 • Since the level surfaces are parallel; we can 

choose o an~ ~-so that 11foo (u) = nf o '6(u), for all u E(-e, e) for some e > 0. Thus 

g(X,X) = g(X,X) and the result now follows. 0 
With respect to the metric g , Tlf: (M* ,g) - (M* /f,g) becomes a Riemannian 

submersion. We add in appropriate end points to the interval M* /f corresponding to 

the focal varieties of f, to obtain a closed, half-open or open interval If, depending 

on whether there are two, one or no focal varieties respectively. We extend Tlf to 

a map Tlf: M - If. Similarly if g is an isoparametric function on a space form N, 

we can define n : N - I • 
g g 

Reparametrize f, g to become unit affine parameters s, t respectively (see Remark 

2.2.8) ; so ~ = Vs and 7J = Vt both have norm 1. 
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Suppose ~: M - N is a smooth map such that 

s 

M 

I 
I 

s 

N 

I , 

(]! 

is commutative for some o: Is- It. If, in addition, 

d ~ ( 0 x = u (x) 71 ~ (x) , for all x E M , 

(4.1.1) 

(4.1.2) 

where u: M - R is some function, then we shall call ~ wavefront preserving (WFP) 

with respect to the isoparametric functions s and t. 

Lemma 4. 1. 2 .!!.._ ~: M - N is WFP with respect to the isoparametric functions 

s : M - I and t : N - I , then s- s --

where ~ = Vs, 71 = Vt and o is as in Diagram (4.1.1). 

Proof From equation (4.1.2), d~(Ox = u(x)71~ (x). Since t: N - It is a Rieman­

nian submersion and d ~ ( ~) is horizontal with respect to t 

But 

d t o d fl ( 0 = d o o d s ( 0 , from diagram ( 4. 1. 1) 

d o(a/as) 

o' ( s) , 

writing a/as for the unit tangent vector to Is. D 
Suppose ~ : M - N is WFP with respect to sand t; choose a particular hyper­

surface Ms0 of M * for some fixed s 0 , and let ~s = ~ 1 M : M -N ( ) • Define 
0 so so 0' so 

projections p: M• - Ms0 , a: N* - N0 (so) to be the maps which project onto 
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Mso• Na(so) respectively along the integral curves of ~, r; respectively. Then 

os = P IM~Ms-Mso•at =a INt: Nt Na (s 0 ) are both diffeomorphisms. Thus 

we can aefine a map ~ : Ms - Nt by 
s,t 

-1 
~s.t (x) = <'t o l:ls0 o os (x), for all x F Ms (4.1.3) 

The map ~s.t is not necessarily independent of the choice of s 0 ; however 

Lemma 4.1.3 Provi(led that ~(M*) c N* (i.e. there is nos in the interior of I 
s 

~ a (s) E a It- the end points of It), then ~ s, t is well-defined and independent of 

the choice of s 0 • 

Proof Choose a hypersurface Ms1 of M* for some fixed s , and definep :M - Ms 
1 s s 1 

to be the projection down the normal geodesics, and similarly for a: N - N ( )" 
t t a s 1 

Define 0 t : M - N by s, s t 

'""J --1 
~s.t(x) = ct o ~s1 o ps (x), for all x EMs. 

Let x E Ms ; then the unique normal geodesic y to M through x intersects Ms 
s 0 

at x0 say, and Ms at x 1• Suppose ~s (x0 ) = y and ~s (x ) = y1• Since, for 
* 1 0 0 1 1 

all z EM , d~(Oz = u(z)r>~(z); then ~(y) = o, where o is the unique normal geo-

desic passing through y 0 and y 1 • Thus, 

--1 -
~s.t(x) = rt o ~s1 o ps(x) 

rt- 1 <yo) 

-1 
rt o 0s o p (x) 

0 s 

~ t (x) • s, 
0 

If ~ is WFP with respect to s and t and satisfies the conditions of Lemma 4.1. 3, 

then we shall call ~ simply wavefront preserving (S-WFP) with respect to s and t. 

Lemma 4.1. 4 Suppose that ~ is S-WFP with respect to the isoparametric functions 
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Proof Let x e: Ms1 , then the unique normal geodesic 'Y to Ms1 at x intersects Ms0 

at x0 say. Also y = 0 (x) '=: No( S· ) , and there exists a unique normal geodesic o 
.L 

to No(s ) at 0(x) intersecting N ( ) at y0 say (6 is unique since we do not pass 
1 0 so 

through a focal variety). 

SinceforallzEM*, d0(~) = u(z)7j11 ( ); 0(y) =6, and 0(x) =y. Thus 
Z JJZ 0 0 

0sl•a(sl)(x) = ca(sl)-lo 0soopsl(x) 

= y. 

Thus 0 (x) = 0s1 ,a(sl) (x) for all x E Ms1 • D 

Let the hypersurface Ms have distinct principal curvatures ~ 1 ( s), • • • , ~p ( s), 

and Nt have distinct principal curvatures p. 1 (t), ••• , J.lq (t). Let Sk (x) be the 

eigenspace of ~k(s) at x EMs, k = 1, ••• ,p, and T.(y) the eigenspace of p. (t) at 
J J 

y ENt, j = 1, ••• , q. Denote the integral submanifolds of Sk(x), Tj(y) by•/k(x), 

. ::1 j (y) respectively. 

Let 0: M - N be S-WFP with respect to s and t. Suppose in addition there is 

a ik with 

(i) d0s (Sk (x)) c T1·k <0s (x)), for all x EMs and for all k. 
0 0 0 

Lemma 4.1. 5 ]! 0: M - N is S-WFP with respect to s and t, and satisfies 

condition (i) above, then dfjs,t(Sk(x) c Tik(tfs,t(x)), for all x EMs and for all 

k, for some \ = 1, •••• , q. 

Proof Consider the map 'Y u : Ms - M of Section 2. 2; for all x E Ms 

'Y (x) = cosu x + sinu E 
u ·x 
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(we assume that M is a sphere - the other cases are similar). Then p and 'Ys -s 
s 0 

are identical, and equation (2.2.4) shows that dp (X) is proportional to X. The 
s 

unit normal at 'Y u (x) , x E Ms, is given by 

~'Yu (x) = - sinu x + cosu ~x , 

and it is now straightforward to compute Vdps(X) ~ps(x)' whence we conclude that 

dps (Sk(x)) = Sk( ps(x)). Similarly dat-1 (Tjk <~so o ps (x))) 

-1 
T.1. ('1 o ~s o p (x)). Hence d~ t(Sk(x)) C T 1. (~ t (x)). 

k 0 s s, k s, 

Corollary 4.1.6 For all x EM* and for all k; 

for some jk = 1, ••• , q. 

If~: M - N is S-WFP with respect to sand t; let 'Yk(s,t):Ms - R be de­

fined by 

'Yk(s,t)(x) =traces ( ) h(d~ t' d~ t) , 
k X S, S, 

for all x EM , k = 1, ••• , p, where h is the metric on N. Suppose 
s 

(i) d~s (Sk(x)) c Tj <~s (x)), for all x EMs • 
0 k 0 0 

(ii) ~ t: M - Nt is harmonic for all s and t, and s, s 

(iii) for each k, 'Yk ( s, t) (x) depends only on s and t. 

Then call ~ S-equivariant with respect to the isoparametric functions s and t. 
p 

Write 'Y(s,t) = 2: 'Yk (s,t) for such a ~. 
k=1 

Example 4.1. 7 Let ~: Sm-1 - sn-1 be one of Smith's maps defined in Section 

1. 3. Clearly ~ is S-equi variant with respect to isoparametric functions s, t of 

degree 2 on sm-1 , sn-1 respectively. Indeed, each level hypersurface Ms is 

isometric to coss sp-1 x sins sq-1 , and each level hypersurface Nt is isometric 
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to cost S r- 1 >< sint S s-1. The map 9J t : M s, s 
Nt is defined by 

9Js,t (coss x, sinsy) =(cost g1 (x), sint g2 (y)), 

where x E sP-1 , y E Sq-1 , g1 : sP-1 - gr-l is harmonic with ldg1 12 = a 1 con­

stant and g2 : sCI- 1 - ss-1 is harmonic with ldg2 12 = a2 constant. Thus 9J is 
s,t 

harmonic, and 'Y ( s, t) = cos2t a I cos2 s, 'Y ( s, t) = sin2 t a I sin2 s depend only on 
1 1 2 2 

s and t, and 9J is S-equivariant. 

Similarly the maps between hyperbolic spaces defined in Section 1. 6 are S-equi­

variant with respect to isoparametric functions of degree two. 

Theorem 4.1. 8 J!. 9J: M - N is S-equivariantwith respect to isoparametric 

functions s and t, then f/J is harmonic if and only if 

p 
cr"(s) + ~s cr'(s) + I: p.. 'Yk 

k=1 Jk 

~r all s E int Is, if and only if 

cr"(s) + ~s cr'(s) - ~dt 'Y (s,cr(s)) 

for all s E int I • 
s 

0 ' (4.1.4) 

0 ' (4.1.5) 

Remark 4. 1. 9 If the condition that a map 9J be harmonic reduces to solving a second 

order ordinary differential equation; we will say that reduction occurs. 

Remark 4.1.10 A reduction theorem for maps equivariant with respect to group 

actions is proved by Smith [ 36 I (see [ 36 I for the definition of such maps). We re­

mark that when f/J is both equivariant with respect to the action of G on M and H on 

N, G and H are Lie groups, and harmonically r-equivariant in the sense that we have 

described, then the reduction equation of [361 and equation (4.1.5) above both agree. 

Remark 4.1. 11 We will give two proofs of Theorem 4. 1. 8, one direct proof and one 

using the stress-energy tensor and obtain equations ( 4. 1. 4) and ( 4. 1. 5) respectively. 

Afterwards we will show more directly that equations (4.1. 4) and (4.1. 5) are in fact 

the same. 

First proof of Theorem 4. 1. 8 \\e first of all show that there exists a smooth function 
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1b: M* - IR, such that 

~~(x) = 1b(x) l;~(x) 

.. 
for all x E: M . 

For each level hypersurface Ms of s, let is : Ms M denote the inclusion 
0 0 0 

map. Then ~ o is is harmonic onto its image N ( ) , thus 
0 0 so 

ffi is some function. Now 

~(~ o is ) = d~ (~is ) + trace V'd~(dis , dis ). 
0 0 0 0 

Since .1 is is proportional to ~ ; equation ( 4.1. 2) implies 
0 

d~(~is0 )(x) = w2 (X)TJ~(x)' 

for all x E Ms and for some function 1b : Ms - R. Therefore 
0 2 0 

for all x E: Ms0 and for some function 1/!3 : Ms0 - m. 

Furthermore, from lemma 1. 1. 1, 

N I v '< ) n (S)TJ 
0 s TJ 

w 4 TJ • 

for some function 1/J 4 : M* - R. Thus 
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6. fl trace V d fl 

trace Vdfl (dis , dis ) + Vdfl (CO 
0 0 

d!TI , 

for some function dJ: M* R. We must now work out h (!:! fl, 71). 

Let (X ) . be an orthonormal frame field on a domain in M, which 
a 1< a <dimM-1 

is tangent to the hypersurfaces Ms; thus (X , ~) 1 d" M 1forrns an orthonormal 
a ~a :::_ 1m -

frame field on a domain of M. Then 

and 

Now 

But 

~fl trace Vdfl 

:r v dfl (X ,X ) + V dfl (LO , 
a a a 

N I 
V 1( ) 0' (S)71 

a s 71 

0' I ( s) ( d ( 0' I ( s) H71 ) 71 ) 

o 1(s).a"(s). 1 71 
o 1 (s) 

o"(s)1J • 

I: Vdfl(X ,X) 
a a a 

0 ~(sois) 
0 

ds(~is) +trace Vds(dis ,dis) 
0 0 0 

= d s ( 6. is ) + 6. s , 
0 

since V d s ( ~ , ~ ) = 0 ( s being a R iernannian submersion) • Thus 
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and 

- t:,. s ~ on Ms 
0 

by Lemma 4.1.2. 

(4.1.8) 

Finally, let (X ) 1 d' M 1 denote the orthonormal basis on Ms such that 
a ~a~ 1m - o 

dis (X ) =X for each a. For simplicity of notation write <X, Y> = h(X, Y) for 
0 a a 

all X, Y EctC( TN). Then, for each a, 

0 = < d(~ o is ) (X ) , 11 > ; 
0 a 

therefore, taking the covariant derivative with respect to d ~s (X ) , where we write 
0 a 

= < t:. ~s , 1J > + I: < d ~s CX ) , - f.1. J. d ~s (X ):> , 
o a oa k oa 

a 

summing over the a, where we suppose X E Sk for each a. Thus 
a a 

< t:. ~s • 11 > = I: f.lj 'Yk • 
0 k k 

and from equation ( 4. 1. 6 ) 

<t:.~,'T) > = a"(s) + a'(s)t:,.s +I: /-1· 'Yk. 
k Jk 

(4.1.9) 

Therefore the map ~ is harmonic if and only if equation (4.1.4) holds. 0 

Second proof of Theorem 4. 1. 8 Write the metric g on M * in the form g = d s 2 + g , 
s 

where g is the induced metric on M . Similarly express h on N* as h = dt2 + ht, 
s s 

where ht is the induced metric on Nt • Then 
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(4.1.10) 

where t = a(s). H (X ) 1 is the orthonormal basis chosen as in the 
a < a < dimM-1 

first proof, then for each b 

=- v*<fl *ht) <Xb> 

= -Xa(fJ*ht(Xa,Xb)) + fJ*ht(~ Xa,Xb) + fJ*ht(Xa,VX Xb) 
a a 

(4.1.11) 
summing over repeated indices. On the other hand, fls is harmonic onto its image, 

0 
so 

where V is the connection on Ms • Now 
0 

* sfls = ~'Y<s0 ,t0 )gs0 - fls0 h, where t 0 = o(s0), 

0 

Thus 

0 - -
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where CX ) 1 d" M 1 is the frame field of the first proof. Also 
a <a< 1m -

V dis (X ,Xd) =-dis (V- X ) + VXM Xd, for all c,d, 
0 c 0 XC d c 

from Lemma 1.1.1. Since is is an isometric immersion; V dis (X,Y) is 
0 0 

perpendicular to d i ( Z) for all X , Y , Z El{ ( T M ) , so that so so 

Substituting this into equation ( 4. 1. 12) shows that the right hand side of equation 

(4.1.11) is zero, and v* s 0 is zero on vectors tangent to the level hypersurfaces of 

s . It remains to evaluate V *s0 on ~ • 

We work out v*<0 *dt2 )(~ ). Consider v*(ds2 ); for any X E~(TM); 

v* (ds2 )(X) = (Vxads2 )(xa,X) + (V~ds2 )(CX) 

d s 2 (X , V.X X) 
a a 

(4.1.13) 

ds(VX Xa). ds(X) + ~(ds(~ ). ds(X))- ds(~ ).ds(VtX) • 
a .,. 

On the other hand 

~s v* (ds) 

(Vx ds)(X ) + (Vtds)(O 
a a ., 
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~ (d s (~ )) - d s (Vx Xa) 
a 

= - d s ( Vx Xa) • 
a 

Therefore v*(ds2)(0 =~sand v*(ds2 )(X) =O foreach a, sothat 
a 

v*(ds2 ) = ~s ds. 

Now 0 * d t2 = a' (s) 2 ds2 ; therefore 

v* ldat2 ds2 ) = VX (a 1(s) 2 ds2 )(X ) + Vt(o'(s) 2 ds2 )(0 
a a ., 

+ o' (s) 2 ~s ds 

= 2 o"(s)o'(s)ds + o'(s)2 ~s ds. 

We now evaluate - v* (0 *ht)(O: 

- v* ( 0 * ht )( 0 = 0 * ht (X a, vxa 0 

-I:~k 0*ht(X,X) 
a a a a 

- I: ~k 'Yk • 
k 

Thus equation ( 4.1. 13) becomes 

!_ d 'Y + ~ d 'Y • ( d t/ d S) - Q' II ( S) Q' I ( S) 
2 s s 

I 2 
- ~ s(o (s)) - ~ Ak'Yk· 

We therefore obtain the equation 

II I 1 1 (d ) 
a(s)+~sa(s)-2dty- 2 a(s) sy-2~~'Yk =0, 

(4.1.14) 

(4.1.15) 

as a condition of harmonicity. Proposition 4.1.12 below will show that the last term 

in equation 4.1.15 is zero, and that we have indeed established that 0 is harmonic 

if and only if equation ( 4. 1. 5 ) holds. 0 
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Proposition 4.1. 12 If 0: M -- N is S-equivariant with respect to isoparametric 

functions s and t, then 

(ii) dtyk + 2p. y = 0, 
Jk k 

for each k = 1 , ••. , p . 

Proof From Corollary 4.1.6, we see that for all x E"M*, 01 ( )· .'/< )--.<f<0<x)) 
•jk X • k X • 

Jk 

has constant energy density. Without loss of generality assume that M is Sm-1 and 

N is sn-1, sothat '/k and.'fj aresmallspheres(theothercasesaresimilar). 

Fix a level hypersurface Ms , and fix x E" Ms , and consider 01 ( ) : 
0 0 0 .'/k xo 

/k (x ) -- . 'f-_ <0 (x0 )). Rescale the map to obtain a map 1/J :Sk 
0 Jk 

n· 
-- S 1k , where 

mk is the multiplicity of ;>.. k, and nj the multiplicity of p.j. Then ld 1/i 12 = ak 

constant. 

From Remark 2.2.10, '/k(x) is a small sphere of radius sin(s -(k-1)Tl/p)for 

x E Ms, and '1 jk (y) is a small sphere of radius sin (t- (jk -1) TI/q) for y E Nt. 

We therefo:>:e find that 

Therefore 

and 

2sin(s- (k-1)1Vp)cos(s-(k-1)W'p) 

sin4 (s- (k-1 )TI/p) 

. sin2 (t- (jk -1) TJ/q) ak 

2cot(s-(k-1)Tl /p)yk(s,t) 
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2 sin(t -(jk-1) TI/q) cos(t-(jk -1)TI/q. 'Yk 

sin2 (t- (jk -1) TI/q 

2cot(t-(jk -1) n/q) 'Yk 

0 

Remark 4.1. 13 In fact condition (iii) can be removed in the definition of S-equi­

variance on account of Proposition 4.1. 14 below. However, we retain it in the 

statement of Theorem 4.1. 8 in order to simplify the exposition. 

Proposition 4.1.14 ..!!. ~: M - N is S-WFP, harmonic and satisfies conditions 

(i) and (ii), then ~ #ljk'Yk ( = dt 'Y 1 t= a (s)) depends only on s. 

Proof By the conditions on ~ , 

Let (X ) be a local orthonormal basis on M , adapted to the principal curvature spa-
a s 

spaces. Then, for each a, 

o = Vx <d(jto ~ t) (X ) , 11 > a s, a 

N 
+ <d(jto~ t)(X ),Vd(" o~ )(X) 11 ::> 

s, a 1t s, t a 

<Vdjt(d~ t(X),d~ t(X)),tJ:> s, a s, a 

+ <d(jto~ t)(X ), - J.lj d(jto~s t) (Xa) > 
s, a k(a) ' 

where Xa E Sk(a) say. 

62 
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0 = 11Jf 
=trace Vdlf(di ,di) + Vdlf(~.~), s s 

(4.1.16) 



and since Vd0<LO =A(s,t)7), where Adependsonlyon sand t (t= o(s)) (c.f. 

Lemma 4.1.2), then 

trace V d 0 ( d i , d i ) = B ( s , t) 7) , ( t = a( s ) ) 
s s 

with B depending only on s and t. Now 

A(0 o i ) = d0(Ai ) + trace V d0(di , di ) 
s s s s 

= C ( s, t) 17 , ( t = o( s)) 

where C depends only on sand t (since d0 (A i ) = D(s,t) 71 (t = a(s)), with D 
s 

dependingonlyon sand t). Since 0ois- jto0s,t(t=a(s)); 

A(jt o 0s,t) = E(s,t)Ti, (t = a(s)), 

with E depending only on s and t , i.e. 

d jt (A0 t) + trace V d jt (d 0 t' d 0 t) s, s, s, 

But 0 t is harmonic , so that s, 

trace djt (d 0 t ,d 0 t) = E(s,t) 1J. s, s, 

E(s,t)Tj. 

Whence, from equation ( 4.1. 16) , we see that I: llJ· 'Yk depends only on s and t, 
k k 

with t = a(s). 0 
We now wish to remove the "S" condition on 0; i.e. we want to allow a with 

a ( s) E 8 It for s E int Is. Furthermore, we want to allow the possibility that 0 

covers N several times. 

Suppose N is sn-1 , and t: sn-1 - R is an isoparametric function of degree q. 

Let f: S n-1 - [-1, 1 ] be the restriction of the standard homogeneous polynomial F 

of Miinzner•s theorem (Theorem 2.2.5) giving s. Call 0 :M - sn-1 wavefront 

preserving (WFP) if 

0 
sn-1 (i) M 

s I I I 
0' 

Is R [-1, 1] ,commutes, 
cosq 
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and (ii) d~(Vs)x = u(x)Vt~(x)' for some u: M - R, for all x EM, where 

cosq: R - [-1, 11 is given by cosq (t) = cosq t, for all t E R. Then Lemma 4.1. 2 

is still valid. If N is Rn or Hn-1 we remove the function cosq, and Diagram (4.1.1) 

applies. We may also wish to restrict a: I - R to have fixed boundary conditions, 
s 

and to have values in a certain domain D c R (for example, we may wish to find har-

monic maps covering the sphere twice using isoparametric functions of degree 2, in 

which case we would suppose a: [O, TI/2 I - [O, n)) • 

Suppose in addition, that we can define a map ~ t: M - Nf-1 ( t), for all s, s cosq 
s E int I , and for all t E D\a (a I ) , such that ~ ( ) = ~ 1M d th curves s s s,a s s' an e 

6 (t) (x) = ~ t(x), for each s E int I and for each x EM , satisfy 
s s, s s 

(d/dt) 6s(t)(x) = vs(t)TJ~(x) , 

for some function v : M* - 1R depending only on s. 
s 

Suppose for all x E M*, (i) d ~(Sk (x)) c Tjk (~(x)), for all k, and for some jk. 

Lemma 4.1.14 ..!!. ~: M - sn-1 is WFP with respect to s and t, and satisfies 

condition (i) above, then d~ t(Sk(x)) CTj (~ t(x)) for all xE M andforall 
s, k s, s 

k = 1' ••• ' p. 

Proof From the proof of Lemma 4.1. 5; it is clear that projection along the integral 

curves of ~ ,TJ preserves the eigenspaces Sk, Tj respectively, provided that we do 

not project through a focal variety. However, for all s E int I , and for all 
s 

t E D\a(al ), there exists as E intI with a well-defined projectionp :M - M-
s s s s s 

along integral curves of ~, and a well-defined projection CT : N - N (-) along 
t t as 

integral curves of 11. This is because all s E int I are allowed, and there exists at 
s 

least one such s with Na(s) close enough to Nt. Hence the map ~s,t preserves 

the principal curvature eigenspaces. 0 
If furthermore ( ii) ~ is harmonic for all s E I and for all tED \ (a( a I ) ) , 

s,t s s 
and (iii) 'Yk (s, t) (x) = trace ~ (x) h(d~ s, t , d~ s, t) depends only on s and t, for 

each k = 1, ••• , p ; we call ~ equivariant with respect to s and t. 

Now locally, we can consider an equivariant map ~ as being S-equivariant, by 

considering t as varying in an interval of the form [1 ll/q, ( 1 + 1 ) ll/q I (in the case N 
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is a sphere), for some 1 = 0, .•. , q - 1. Since the proofs of Theorem 4.1. 8 are 

local in nature (one works in a sufficiently small domain about each point); it is clear 

that Theorem 4.1.8 is also true for equivariant maps. Thus 

Theorem 4. 1. 15 _.!!_ ~: M -- N is equivariant with respect to isoparametric functions 

s and t, then ~ is harmonic if and only if 

I p 
a"( s) + A s a ( s) + :E #JJ· 'Yk = 0 , 

k=1 k 

for all s F int I , if and only if 
s 

a"(s) + ~s a'(s) - ! dt 'Y(s,a(s)) 

for all s E int I • 
s 

(4.1.4) 

0 ' (4.1.5) 

Remark 4. 1. 16 Equations ( 4. 1. 4) and ( 4. 1. 5) are valid for s E int I ; it is con­
s 

cei vable (and often the case) that the equations become singular for s E a I , that is 
s 

fun" 1 Ll s and lim .., (I: l'j 'Yk ) are infinite. In this case, one looks for a re-
s c s s -c Is k 

parametrization of the equations so as to remove the singularities. 

Remark 4.1. 17 Given ~: M * -- N* which is S-equivariant with a satisfying equation 

(4.1.4); it is sometimes possible to extend ~ to a smooth map ~ :M -- N. For 

example, this is the case for the Smith maps of Section 1. 3. 

4.2 Generalized equivariant maps between Riemannian manifolds. 

Let M, N be connected Riemannian manifolds each admitting a generalized family 

of isoparametric hypersurfaces (M ) 1 , (Nd)d J respectively. Let M* be the 
c c E t= 

union of the hypersurfaces of M; M* = U M , then M* has a topology induced from 
eEl c 

that of M. Let TT:M* -- I be the projection, then I inherits a topology from M* 

with respect to which it becomes a set of open intervals. As before we can define a 

metric on I with respect to which TI becomes a Riemannian submersion (M* has the 

metric induced from M). We can add in appropriate end points to the intervals I 

corresponding to focal varieties, to obtain a closed, half-closed or open interval (or 

possibly a circle in the case that M is a torus or Klein bottle c.f. Section 5.1 (iii)). 

Similarly we can define N* and the projection map u:N• -- J. 
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Suppose that the generalized family of isoparametric hypersurfaces (M ) I is 
c CE 

defined by a function f on M, and furthermore, that f admits a reparametrization 

s = s(f) such that IVs 12 = 1, then we say that the generalized family of isopara­

metric hypersurfaces admits a unit speed reparametrization. 

Let 0: M - N be a map between Riemannian manifolds which admit generalized 

families of isoparametric hypersurfaces (M ) I, (Nd) d J respectively, both of 
CCE E 

which admit unit speed reparametrizations. The notions of 0 being wavefront pre­

serving and equivariant can be defined as in Section 4.1 (by making the definitions 

locally). Lemmas 4.1. 2, 4.1. 3, 4.1. 4 and 4.1. 5 all remain valid. Similarly the 

proofs of Theorem 4.1. 8 (replacing equation (4.1. 5) with equation (4. 1. 15)) remain 

valid, and we obtain 

Theorem 4.2.1 .!!_ 0: M - N is equivariant with respect to the generalized iso­

parametric functions f : M - R and g : N - R, where f and g admit unit speed 

reparametrizations s and t respectively, then 0 is harmonic if and only if 

I p 
a"( s) + .11 s a ( s) + :E p.1· 'Yk = 0 , ( 4. 2. 1 ) 

k=1 k 

for all s E int I , if and only if 
s 

a"(s) + .11 s a'(s)- idt 'Y(s,a(s)) 

for all s E int I • 
s 

1 
2a'(s) 

p 
(d 'Y- 2 :E "k'Yk) s k=1 

0 , (4.2.2) 

Remark 4. 2. 2 Proposition 4.1. 12 is no longer necessarily valid; however it can 

be proved directly that equations (4. 2. 1) and (4.2.2) are equivalent. 

Proposition 4. 2. 3 With the notations defined above and in Section 4.1; if 0 is 

equivariant; 

(4.2.3) 

for each k = 1, •••• , p. 

Proof Let (Xa) 1< a< dimM-1 be a local orthonormal frame field on M, and suppose 
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that (Xk.) 1 . forms an orthonormal basis for Sk at each point (mk = dim s. ) . 
1 ~1 ~mk -k 

Then, for each k, 

o'(s) "ik "Yk + ~ <dfi(Xki >, VdfiHXk.•O >. 
1 1 

But 

Since the functions are isoparametric, projection down the integral curves of~ 

preserves the Sk spaces. Thus, if <'>(u) is an integral curve of ~, then we can choose 

our frame field (Xk.). _ such that 6 ( u) .Xk· is proportional to Xk·. Thus 
1 1 - 1, ••• , mk * 1 1 

Y~ Xki is proportional to Xki for each i; but VXk. f = '-kXki , therefore VE Xki is 
1 . 

proportional to xki. 

0 

Since d-yk(O =ds-yk + dt -yk(dt/ds); we seethatequations(4.2.1) and(4.2.2) 

are indeed equivalent. 

Remark 4. 2. 4 Remark 4.1. 17 applies equally for maps 0 satisfying equation ( 4. 2. 1). 

The theory of this chapter is best illustrated when applied to specific examples. 

With each example, the qualitative features of the above theory can be very different. 

We shall see how to adapt Theorem 4.1.8 in the next chapter. We shall leave the 
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application of Theorem 4. 2. 1 until Chapter 9, where we consider deformations of 

metrics. 
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5 Examples of equivariant maps 

5. 1 Maps from Euclidean space to the sphere 

First of all we prove a lemma which will be useful throughout this chapter. 

Lemma 5. 1. 1 Suppose f: M - R is a smooth function on a Riemannian manifold M 

~ ldf 12 = w1 (f), af = w2 (f) for some smooth functions 1b 1 and w2 • Then, 

given an equation of the form 

(5.1.1) 

for some smooth function lb; under reparametrization u = u(f), u 1(f) f- 0, equation 

(5.1.1) remains invariant- that is, writing 13(u) = adf(u)); equation(5.1.1)becomes 

II 2 I 13 ( u) ld u I + {3 ( u) D. u = 1/J ( u) , 

where 1/l(u) = w(f(u)). 

Proof We can write f as a function of u,f = f(u): 

13 II( u) Ql 11(f) f 1 (u) 2 + Ql 1(f)f 11(U) • 

Also 

f 11(U) ldul2 + f 1 (U)D.u. 

Therefore 

1 II I fll(u) ) fl(u)2 ldul2 ( 13 ( u ) - 13 ( u ) ....::,-"'-"-'-
fl (u)2 f (u) 

B 1 (u) 11 2 1 
+ f'(u} (f (u) ldu I + f (u) au). 

D 
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Example 5.1.2 Let 0 : lRm - sm be defined by 

0 (s.x) = (cos o(s), sin o(s).x) , 

where x r=: sm-1 , s E [O,oo ) and o(O) = 0. The map 0 is equivariant with respect to 

the isoparametric functions s and t, where s(s0 .x) = s 0 , for all s0 E [O,oo) and 

x E sm-1 , and t( (cost0 , sint0 .x) = t 0 , for all t 0 E [0, n) and x E sm-1. The square 

of the norm of the derivative of s and the Laplacian of s are given by 

and y(s,t) 

1, .1.s = (m-1)/s , 

I d0 t 12 is given by s, 

'Y ( s, t) = ( m- 1) • sin 2 t/ s 2 • 

From Theorem 4.1. 8; 0 is harmonic if and only if 

" (m- 1). ' ( m- 1) . 
o (s) + s o (s)- - 2-. sm o(s)cos o(s) 

s 

(5.1.2) 

(5.1.3) 

0. (5.1.4) 

This equation is singular at s = 0, and we remove the singularity with a suitable sub­

stitution. Using Lemma 5.1.1 we make the substitution u = u(s), where u is given 

by eu = s. Then 

2 2u 
ldul = 1/e , 

and 

2u 
~ u = (m -2 )/e , 

whence equation (5.1.4) becomes 

o"(u) + (m-2 )o'(u)- !<m-1). sin2 o(u) 0 ' (5.1.5) 

where u E(-oo,oo), and as u - - oo; o(u) - 0. 

Equation 5.1. 5 is a well-known equation- namely the equation of a pendulum with 

constant gravity and constant damping. The variable u measures time, and a= 2 a 

is the angle the pendulum makes with the upward vertical. 
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j grnvlty 

We require an exceptional trajectory satisfying equation (5.1. 5), such that the 

pendulum is just standing vertically upwards at time u = - oe • 

The solutions of the pendulum equation are well-known, see for example [23, 

p.183&p.196 I. Consider first the exceptional case; m = 2. Then the damping is 

zero - a good treatment of this case is to be found in [ 4, Section 6. 3 I. For each 

u0 ~(- oo,oo), there is a unique solution to equation (5.1.5) with initial conditions 
I 1 I 

a(u0 ) = a 0 and a (u0 ) =a 0 , for all a 0 E [0,2 n] and for all a 0 E E. Choose 

a0 = ll/2 , then if 

(i) a' = 1; the solution a:E -
0 

lim a(u) = n and lim a(u) = 0. 
u-oo u--oo 

E is strictly monotonic and has image ( 0, ll)with 

In fact a(u) = sin-1 tanh(u-u0)- this solution 

is called critical. 

(ii) a~< 1, then a: E - E is oscillatory with image contained in a closed sub­

interval of(O, TI). 

(iii) a~ > 1, then the solution a is strictly monotonic increasing and surjective 

onto E. 

In order to obtain a smooth harmonic map we choose the critical solution ( i) , giving 

a map ~ : E2 - s2 , covering s 2 except for the one point ( -1, 0) . Note in fact that 

we have a !-parameter family of maps corresponding to the choice of a0 . That the 

map ~ so constructed is smooth at 0 E E 2 is demonstrated in Chapter 6. 

In the case when m :> 2; the damping is non-zero. For each u0 ~ (-oo, oo), and for 

each a ( u0 ) = a0 ; there is again a critical solution with lim a( u) = 0. However, 
u--oo 

in this case lim a(u) = TI/2, corresponding to the pendulum hanging straight down. 
u-oo 

In fact the pendulum does not reach the upward vertical on its first upward swing, 

and performs decreasing oscillations about the downward vertical position. As in the 

case when m = 2, the map ~ is smooth across the point 0 E E m • 
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Such solutions have been considered by J.C. Wood [42], in connection with the 

Dirichlet problem for the Euclidean disc, where he shows that there is no map from 

the Euclidean disc to the sphere of the above form with o > TI/2 + sin-1 tanh (K ) , 
1 0- m 

where K = (m- 1)2/(m- 2). 
m 

Similar considerations apply to the map ~: Rm - sn given by 

~(s.x) = (cosa(s), sino(s).g(x)), a(O) =0 

for all x E sm-1 , s c= [O,oo), and where g: sm-1 - sn-1 is harmonic of constant 

energy density. The corresponding reduction equation has the same form as equation 

(5.1.5) but with a different value for the gravity. The qualitative behaviour of the 

solutions is the same as for the case when g is the identity map. 

Example 5.1. 3 Let ~: Rm - sm be defined, for each integer k, by 

~((x, sy)) = (cos o(s).eikx, sino(s).y) , (5.1.6) 

with a(O) = 0, where x E R, y ESm-2 ,m2:3andsE(O,oo), Then~ isequivariantwith 

respect to the isoparametric functions s and t, where s ( (x, s 0 y) ) = s 0 , for all 

s0 E[O,oo), xER and yEsm-2 , andt((cost0.u,sint0.v»=t0 , forant0 e:[O,TI/2], 

u E s 1 and v E sm- 2• The square of the norm of the derivative of s and the Laplacian 

of s are given by 

~s (m-2)/s, (5.1.7) 

and 'Y (s,t) is given by 

'Y(s,t) = k2 cos2 t + (m- 2) sin2t;s2 • (5.1.8) 

From Theorem 4. 1. 8, ~ is harmonic if and only if 

,., "< s) + (m - 2) '< ) ( (m - 2)- k2). . ( ) ( ) ... s a s - 2 sm a s cos o s = 0. (5.1.9) 
s 

This equation is singular when s = 0, and so, using Lemma 5. 1. 1, we make the sub­

stitution u = u ( s) where e u = s, to give the equation 

II I 
o (u) + (m - 3 )o (u) 0 • (5.1.10) 

where u E(-ao,oo) and lim a(u) = 0. 
u--oo 
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Equation (5.1.10) is that of a pendulum with constant damping and variable gravity. 

As in Example 5.1. 2, u measures time and a= 2a is the angle the pendulum makes 

with the upward vertical. 

-
Cl l 

t 
gravity 

gravity 

For each u0 F(-oo,oo), there exists a unique solution a(a0 ,a~) to equation (5.1.10) 

with prescribed initial conditions a(u0 ) = a0 and a 1(u0 ) =a~, for all a0 E(O, ll/2) 
I 

and for all a0 E R. We look for exceptional solutions such that the pendulum is just 

standing vertically upwards at time u =- ""· We demonstrate the existence of such 

non-trivial solutions in Chapter 6. 

Note that we have a !-parameter family of solutions depending on our choice of a0 • 

Different choices of a0 lead to qualitatively different solutions. To see this we first 

of all state a comparison theorem for second order equations. 

Theorem 5. 1. 4 [ 9 I 
I 

Let p, and k. be continuous on [a, b I, i = 1, 2, and let 
- 1- 1 

u E [a,bl. 

Let L. be the operator L. v = (p. v 1 ) 
1 + k. v. If f. is a solution of L. f. = 0, let 

1 1 1 1 -I 11 -

w. = tan-1 (f./p.f.'). H w2 (a) > w1(a), then w2 (u) > w1 (u) for all u E [a,bl. 
1 1 11 - - -- -

Moreover, if k2 (u) > k1(u) on (a,b), then w2 (u) > w1 (u) for a <U <b. 

To apply this, write equation ( 1. 3. 7) in the form 

a"(u) +h(u) a 1 (u) + g(u) sin 2 a(u) = 0 • 

We can write this in divergence form: 

L ()! = (p 0' I) I + k 0' = 0 , 
()! 

where 
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p(u) 
u 

exp ( r (h(s) ds) 
• uo 

k (u) = g(u) sin 2 a(u) p(u) /a(u) • 
a 

Proposition 5.1. 5 ..!!. a0 is chosen close enough to 0; the solution a never 

covers the sphere. 

Proof Let u1 be the time such that 

2 2 2u 2 
(m-3) = 4(k .e 1 - (m-2)) -A , 

for some fixed A > 0 (such a u1 always exists), and let a-1 = a( u1 ). Then a1 de-

' I pendscontinuouslyon a-0 and a0 (c.f. [9)). As a0 - 0; a0 - 0 anda1 - 0, 

since in the limit a0 = 0, a~ = 0 the solution is trivial. Thus there exists a0 such 

that a1 < TI/4. Consider the equation 

0 11 (U) +bo'(u) + co(u) = 0. (5.1.11) 

with b = ( m- 3) and c = k2 • e2u 1 - (m- 2). Given the initial conditions o (u1) = a(u1 ) 

and o '(u1 ) =a' (u1 ), this has a periodic solution with period I'= 211/(4c- b2 ) = 2TI/A. 

Choose a0 such that there exists u with u > u , 1 < u - u and a:... = 2 2 1 2 1-'.:;:: 
a ( u2 ) < 11/2. Then over the interval [ u1 , u2 ), we can use the comparison theorem 

(Theorem 5. 1. 4) • Since the gravity of the equation ( 5. 1. 10) dominates that of equa­

tion (5.1.11) over the interval [u ,u2 ); Theorem 5.1.4 shows that w1(u) > w (u) 
1 - 2 

for uE[u1 ,u2 ), where w1 =tan-1(a/p1a') and w2 =tan-1(o/p2 o'), where p1 and 

p2 are defined as in Theorem 5. 1.4. In particular w1 passes through TI/2 if w2 
I 

does; i.e. a has become zero and the solution turns. Since the gravity is now in-

creasing, the solution a will make decreasing oscillations, and lim a(u) = 0. 0 
u--oo 

In contrast to Example 5. 1. 2 we can show that 

Proposition 5. 1. 6 
2 1!._ (m-3) < 4(m-2), i.e. m=3, ••• , 7; thenthereexist 

solutions covering the whole sphere. 

Proof We take it as given that for each a0 E(O, n/2), there is an a~ witha(a0 ,a~) 
asymptotic to 0 as u--- oo. This will be shown in Lemma 6.1.4 and Lemma 6.1.5. 

Furthermore, the solution a is strictly decreasing as u decreases from u0• We 
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show that a~ is bounded away from 0 as a0 -+ TI/2. For in this case, the solution 

cr(a0 , a~) will continue past TI/2 as u increases from u0 if a0 is chosen close 

enough to TI/2. 
n 1n 

Suppose there is a sequence a0 ... TT/2 such that a0 - 0. Since in the limit 
I 

a0 = TT/2, cr 0 = 0 the solution is trivial; we can assume u0 to be arbitrarily small, 
n 1n n 

i.e. for any u1 , cr( a0 , a0 ) ( u1 ) - TJ/2 as a0 - TT/2 (the solution depends con-

tinuously on the initial conditions). Let a= a( cr~ , a~ n) be a solution of equation 

( 5. 1. 10), where n is chosen sufficiently large. Make two substitutions into equation 

(5.1.10): firstly let o = TI/2- a, and secondly let v = - u. Equation (5.1.10) then 

becomes 

II I l 2 -2V . 6 (v) = (m-3)c5 (v)- 2((m-2)- k e ).sm2c5(v) 

Consider the equation of the harmonic oscillator: 

II I 
(3 (v) = (m-3) (3 (v) - M (3(v) , 

where M ischosensuchthat((m-2)-k2 e2u)sin2c5/2c5- M:>O onasuitable 

interval [v0 ,v1 ]with the period of fJ < v1 - v0 (v0 = u0 ). Let (3 have the same initial 
~ I I ta as c5 at v 0 , and let w = c5 fJ - c5 fJ • Then 

1 [ o 1 

w = cSfJ (m-3)( 6 R 1 -2v sin 2 c5 J t> + (M- ((m-2)- e ) 26 ) 

Provided c5 1 /c5 ~ {3 1 /(3 (i.e. w ~ 0) with cS.fJ > 0, we have w 1 < 0. Also as long 

as w 1 < 0 we have w ~ 0. Now look at the first zero of fJ on [v0 ,v1 ]. We must 
I 

have fJ c5 > 0 here since w < 0, which implies c5 has a zero on [v0 ,v1 ). This is 

impossible since c5 is strictly increasing and > 0. 0 
H we continue following the qualitative behaviour of the solution considered in the 

proof of Proposition 5.1. 6, we see that since the gravity changes for u > u0 , the 

pendulum now moves under the influence of an upward gravity force past a = TT • 

The gravity now increases and continues to have the same sign. H a~ is small 

enough, the pendulum will perform ever decreasing oscillations about a= n. 
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I 
Conceivably, there may be a certain a0 such that the trajectory is exceptions l and 

reaches 3 ftl2 as u -oo. If a~ is large enough the pendulum could make several ro­

tations before tending to its equilibrium position. 

Similar conditions apply to maps 0 : R m .... Sn of the form 

ff((x, s.y)) = (cos a(s).eikx' sina(s).g(x)), a(O) = 0, 

where k is an integer, s E (O,oo), x E R, y E gm-2 and g: gm-2 ..,. gn-2 is har­

monic of constant energy density. 

Again all the above constructed harmonic maps are smooth across the focal varie­

ties(c.f. Chapter 6). 

Example 5.1. 7 [ 11 I Consider the map 0 : R 2 .... s2 given by 

0((x,s)) = (cosa(s).eikx, sina(s)),a(O) = 0, (5.1. 12) 

where k is a non-zero integer, s E(-oo,ao) and x E JR. Then 0 is equivariant with 

Ids 12 = 1 , ~ s = 0' 

and 

-y(s,t) 2 2 
k • cos t. 

Equation (4.1.5) becomes 

" 2 . a ( s ) = k • sm a ( s ) • cos a ( s ) • (5.1.13) 

This equation has a periodic solution in terms of elliptic functions, and the map 0 

factors to produce a harmonic map from the torus to the sphere. 

5. 2 Maps from hyperbolic space to the sphere 

Example 5.2.1 Let 0 : Hm .... sm be defined by 
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~ ((coshs, sinhs.x)) = (cOSO!(S), sinO!(s).x), 0!(0) = 0. (5.2.1) 

m-1 where xES and s E [O,ao). Then J'j is equivariant with respect to the isopara-

metric functions sand t, where s: Hm - R is given by s((coshs0 ,sinhs0.x)) =s0 , 

and t: sm- R is given by t((cos t0 , sint0.x)) = t0• From Lemma 1.6.1, we 

obtain 

Ids 12 = 1 , ~s ( m- 1). coth s , 

and 'Y (s,t) is given by 

'Y(s,t)= (m-1). sin2 t/sinh2 s. 

From Theorem 4.1.8, J'j is harmonic if and only if 

O!"(s) + (m-1).coths.0! 1 (s)- (m-;). sinO!(S)coSO!(S) 
sinh s 

0. (5.2.2) 

This equation has a singularity at s = 0, and so we make the substitution u = u(s), 

where e u = sinh s. Then 

2 u -u u 
ldul = (e +e )/e , 

and 

u u -u u 
~u = (e + (m-2)(e + e ))/e , 

whence, from Lemma 5.1.1 the reduction equation becomes 

1 (eu + (m-2)(eu + e-u))0! 1 (u)- (m- 1 ) sinO!(U)cosO!(U) 
u -u u u -u 

e + e e (e + e ) 

0 ' (5.2.3) 

where u E(-ao,ao) and lim O!(U) = 0. 
u~-oo 

Equation (5.2.3) is that of a pendulum with variable gravity and variable damping. 

The graph of the damping has the form : 
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(m -1) 

(m-2) 

u=-oo u 00 

and the graph of the gravity has the form 

(m -1) 

u=-oo u= oo 

We look for an exceptional solution with the pendulum just standing up on end at 

time u=- ""· As for the Euclidean case; we have a 1-parameter family of such solu­

tions with the resulting map smooth across the point s = 0. However, the asymptotic 

development of these solutions as u - oo is not known. 

Similar considerations apply to maps 0: Hm - sn of the form 

0((coshs,sinhs.x)) = (cosa(s), sina(s).g(x)),a(O) = 0, (5.2.4) 

where s E [O,oo), x ESm-1 and g:sm-1 - sn-1 is harmonic of constant energy 

density. 

Example 5. 2. 2 Let 0 : Hm - sm be defined, for each integer k, by 

0((coshs.x, sinhs.y)) = (cosa(s).eikx' sina(s).y) , (5.2.5) 

a ( 0) = 0, where x ~ H1, y E sm-2 and s E [O, oo). Then 0 is equi variant with respect 

to the isoparametric functions s and t, where s: Hm - B is given by 

s((coshs0 .x, sinhs0 .y)) = s 0 , forall s 0 E[O,oo),xEH1 , yEsm-2 , and 

t:sm - B is given by t(cost0 u, sint0 .v)) = t0 • for all t 0 E [0, n/2], u ES1 and 

v E sm-2 • From Lemma 1.6.1 we obtain 

Ids 12 = 1 , !:!. s = tanh s + ( m- 1 1 coth s 

also 'Y (s,t) is given by 
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y(s, t) = k2 cos2 t/cosh2 s + (m- 2) sin2 t/sinh2 s. 

From Theorem 4. 1. 8, 0 is harmonic if and only if 

" 1 • (m-1 k2 ) a (s) + (tanhs + (m-2)coths)a (s)- sma(s)cosa(s --2-- --2 = 0. 
inh s cosh s 

(5.2.6) 

This equation has a singularity at s = 0, and so we make the substitution u = u(s) 

where eu = sinh s, to give the equation 

a" ( u) + 
1 

u -u e + e 

u u -u 1 • (2e + (m-3)(e + e )) a (u) 

-sina(u)cosa(u). (m-1 - _.;;:;k2 __ 
u -u 

e + e 
u 

e 
u -u e + e 

where u E(-oo,oo) and lim a (u) = 0 • 
u ....... -ao 

0 • (5.2.7) 

Equation ( 5. 2. 7) is the equation of a pendulum with variable gravity and damping. 

The damping is given by the following graph: 

(m- 1) 

(m- 3) 

u=- oo u= ao 

and the gravity by the graph 

u=- oo u=., 
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As in Example 5.1. 3, we have an interesting 1-parameter family of non-trivial 

solutions with the pendulum just standing up on end at time u =- oo, and smooth across 

the point s = o. By similar arguments to those of Proposition 5.1. 5 we can show 

that, provided k is large enough, there exist solutions which turn before a(u) = n/4 

is reached. However, the qualitative aspect of the various solutions as u -- oo is not 

yet known. 

5. 3 Maps from sphere to sphere. 

Example 5. 3. 1 The maps of Smith described in Section 1. 3 are examples of equi­

variant maps between spheres. Then 0: sm-1 - sn-1 is given by 

0 ((coss.x, sins.y)) = (cosa(s).g1(x), sina(s).g2 (y)) , (5.3.1) 

with a(O) =O and a(n/l>=n/2, where xEsP-1 , yESq-1 , p+q=m, sE'[O,n/2] 

and g1: sP-1 - sr- 1 , g2: Sq- 1 - ss- 1 are both harmonic with ldgi 12 = ai con­

stant, i = 1, 2. Using Lemma 1. 3. 4 we obtain 

Ids 12 = 1 , 

Also 

1' (s,t) 
2 

cos t 
2 

cos s 

As = (q - 1) cots - (p - 1) tans • 

. 2 
sm t 
--2-. a 

. 2 
s1n s 

From Theorem 4.1.8 we conclude that 0 is harmonic if and only if equation (1.3.5) 

is satisfied. A more detailed consideration of this example is to be found in Sections 

1.3 and 1.4. 

Example 5.3.2 Let f: s 2n+1 - :R be the isoparametric function of Example 2.3.5. 

Recall that the level surfaces M are parametrized by the sets {ei£1 (cos s.x + 

isins.y) E¢n+1 ; 6E[0,2n], (x:y)ES 121, foreach sE[O,U/4]; infact M is 
n+ , s 

isometric to s 1 X s:+ 1 , 2 /SO, where Ss is the analytic submanifold of 
n+1,2 

n+1 n+1 
:R • :R defined by the set 

ss 
n+1,2 

n+1 n+1 
{(coss.x, sins.y)E:R • :R ; (x,y)ESn+1 , 2 }. 
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2n+l 2 
Define ~ : S - S by 

i9 . 2ik9 
~:(e (coss.x + isins.y)) = (cosa(s), smo(s).e ) , (5.3.2) 

where k is some non-zero integer, o(O) = 0 and o(IT/4) =IT. Then~ is S-equi­

variant with respect to the isoparametric functions s and t, where s: s2n+l - R 

is given by s(ei9 (cos s0.x + isin s0.y)) = s 0 , for all s 0 E [0, IT/4 ), fJ E [0,2IT) and 

(x,y) E Sn+l, 2 , and t: s2 - R is given by t ( (cost0 , sint0.u)) = t 0 , for all 

t €[O,Tl]and uES1• Theprincipalcurvature; of M are -cots, -cot(s- IT/4), 
0 s 

-cot ( s - IT/2), -cot ( s - 3 IT/ 4) with multiplicities n- 1, 1, n- 1, 1 respectively, hence 

1-tans l+tans 
~s = -(n- l)tans + (n -l)cots + -

l+tans 1-tans 

Also 

'Y (s,t) = 4k2 • sin2t • 

From Theorem 4.1.8 we conclude that ~ is harmonic if and only if 

o"(s) + (-(n-l)tans + (n-l)cots + 1-tans 
l+tans 

l+tans )o'(s) 
1- tans 

- 4k 2 sin a ( s) cos a ( s) = 0 , 

(5.3.3) 

(5.3.4) 

with o(O) = 0, and o(Tl/4) = TI. This is singular at s = 0, TI/4, and so make the 

substitution u = u ( s) , where e u = tans/( 1 - tans). Then 

2 u 2u 2u I d u I = ( 1 + 2e + 2e ) I e , and (5.3.5) 

~u 

(1 +eu) 
+ (n-1) + 

u 
1 (5.3.6) 

e 
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Using Lemma 5.1.1, equation(5.3.4) becomes 

eu [ u 1 +2eu a"(u) + 2(1+e) 
( 1 +2e u + 2e2u) - ---;u-

(n-1)eu (1 U.. +(n-1) +e J 
1 +eu eu 

+ 1 
0 • 

(5.3.7) 

where u E(-ao,co), lim a(u) = 0 and lim a(u) = TI. 
u~- CIO u--ao 

Equation (5.3.7) is that of a pendulum with variable gravity and damping. 

Damping. Gravity. 

u=-ao 

As before a = 2 a measures the angle the pendulum makes with the upward vertical. 

! gravity 

We look for an exceptional trajectory such that the pendulum starts at the top at 

time u=- co; makes one circuit, and just reaches the top again at time u = ""· It is 

not known whether or not the equation has such a solution - we would certainly expect 

a solution in the case n = 2 due to the symmetric appearance of the gravity and dam­

ping. It has been pointed out by R. Wood that these maps are all homotopically trivial. 

Example 5.3.3 Let f: s2n+1 -- :R be the isoparametric function of Example 5.3.2. 
s s 2 

Consider the case when n = 3 , and define a map 0 : S 4 2 -- S by 
• 
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s 0 ( (x, y)) 
2 

sin2s 

where x= (x1 , .•. ,x4 ), y=(y1 , 

< x,y.,.. = 0. Then 

10s12 = (4/sin2 2s)( 1x12 lyl2 - <x,y >2 ), 

s s 2 s 
so that 0 ( S 4 2 ) c S . Furthermore, one can show that 0 is onto (see Example 

' 
8.2.1). 

Consider the point p = (cos s (1, 0, 0, 0) , sins ( 0, 1, 0, 0)) E S~ 2 , and consider the 
' following curves through p in s: 2 (see Example 2. 3. 5): 

' 
{31 (u) = (coss (cosu,O,O, sinu), sins(O,cosu,sinu,O)) 

(coa s(cos u,O, sin u, 0), sin s(O, cos u, 0, sin u)) 

(cos s(cos u, 0, 0, sin u), sin s(O,cos u, -sin u, 0)) 

(cos s(cos u. 0, sin u, 0), sins (0 ,cos u, 0 ,-sin u)) 

11 (u) = (cos s(cos u, sin u, 0, 0), sin s(-sin u, cos u, 0, 0)) , (5.3.9) 

The tangent vectors to these curves at u = 0 span T S~ 2 and are all orthonormal. 

The acceleration vectors at u = 0 are all perpendicularpto ~ S~ 2 in T (R4 $ R 4 ), 
s p ' p 

i.e. the curves are geodesic at p (that is v 84 •2 {3'( 0) = o when {3 is one of the 
{3 '( 0) 

curves ( 5. 3. 9)). Under 0s the curves map to 

a1(u) = 0s o ~1(u) (-cos2u, -sin2u, 0) 

s 0 o ~2(u) (-1,0,0) 

fis o {33(u) (-1,0,0) 

aiu> fis o {34(u) ( -cos2u, 0, sin2u) 

0s o p(u) (-1,0,0) . (5.3.10) 

From this we deduce that 0s is a harmonic Riemannian submersion, and in particular 
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~s has constant energy density equal to 4. 

Define a map ~: s7 -- s3 by 

~ (ei9 (cos s.x + isin s.y)) (cosa(s),sinc:ds>.f< (cossx, sinsy)) 

(5.3.11) 

with a(O) = 0 and a(TI/4) = n. Then ~ is S-equivariant with respect to the isopara­

metric functions s and t, where s: s7 -- E is given by s(ei9 (cos s0 .x + isin s0.y)) 

= s , for all s E= [0, TI/4], tJ ~ [0,211] and (x,y) E s 4 2 , and t: s3 -- E is given by 
0 0 • 

t((cost , sint .u)) = t , for all t E [0, n]and u ES2 • The function 'Y (s,t) is given 
0 0 0 0 

by 

'Y ( s, t) = 8 sin 2 t • 

From Theorem 4.1.8 we conclude that~ is harmonic if and only if equation (4.1.5) 

is satisfied; this equation is precisely the same as equation (5.3.7) with n=3 and 
!. 

k = (2) 2 • It is not known whether this equation has a solution or not. Neither do we 

know which homotopy class of rr7 (83 ) = ~, ~ would represent. 

Similarly we can define submersions from S~ 2 to s4 and from s~5 2 to s8, to 

give maps representing a class in nl5 (85 ) = z~ and n29 (89 ) respecti~ely 

Example 5.3.4 Let f: s 2n+l -- E be the isoparametric function of Example 5.3.2. 

Consider S~ 2 and the map ~s: S~ 2 -- E of Example 5. 3. 3. Define ~ :S 7 -- s 4 , 
• • 

for each integer k. by 

~ (e itJ (cos s.x + isin s. y)) 2ik9 (cosa(s).e , sina(s). ~s(coss.x,sinsy)) , 

(5.1.12) 

where a ( 0) = 0 and a ( TI/ 4) = n/2. Then ~ is S-equi variant with respect to the 

isoparametric functions sand t, where s: s 7 -- E is as in Example 5.3.3, and 

t: s 4 -- R is given by t( cost0• u,sint0• v) = t0 , for all t 0 E [O, n/2], u E s 1 and 

v E s2 • 

Let p E s 7 be the point p = eiO (cos se + isin se2 ), where (e.). _ 1 are 
1 11- •••• ,4 

the standard orthonormal vectors in E 4 • Consider the geodesic curve 11 in s7 ; 

11(u) = eiu (cosse + isinse ). Then, in Example 2.3.5, we saw that 11(u) inter-
1 2 

sects S~ 2 at an angle of 2 s- TI/2 and in the plane spanned by 11 '(0) and 1.1 1 (0), 
• 

where p. is defi:red as in Example 2. 3. 5 (c. f. Lemma 2. 3. 7 ) • By choosing an 
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orthonormal basis to M at p defined by tangent vectors to the curves ( 5. 3. 9) ; we s 
find 

'Y (s,t) 
2 2 

cos t.4k 
2 

cos 2s 

From Theorem 4.1.8; 0 is harmonic if and only if 

(5.3.13) 

a"(s) + (-(n-l)tans +(n-1)cots + 1 - tans 
1+tans 

1 +tans) a' (s) 
1- tans 

( 4k2 ) - sin a ( s) cos a ( s) • 8 - 2 , 
cos 2s 

(5.3.14) 

where n=3, sE [O,n/4), a(O) =o and a<n/4) =n/2. Thisequationhassingula­

rities at s = 0, n/4, and we reparametrize it using the parameter u = u(s) where 

e u = tans/ (1-tan s). Using lemma 5 .1. 1 we obtain the equation 

" a (u) + 

+ 

u 
e 

u 2u (1 +2e +2e ) 

1 - ( 1 + 2e u) ] a' ( u) - sin a ( u) cos a ( u) x 
1 +2eu 

where u E ( -oo, oo) , lim a(u) = 0 and lim o(u) = n/2. 
u--ao 

+ (n-1) 1 +eu 
u 

e 

(5.3.15) 

Equation (5.3.15) is that of a pendulum with variable gravity and damping (o = 2a 

measures the angle the pendulum makes with the upward vertical). 

Damping Gravity 

u=-oo ~I u=oo u=- oo u=oo 
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The gravity has a negative component only if k = -1, 1. We would require an ex­

ceptional solution with the pendulum just standing up on end when u = - oo, and hanging 

straight down when u = ""· We would expect such a solution for k = -1, 1, since then 

the gravity has a balancing effect. 

Example 5.3.5 (This example was suggested to me by H. Karcher): 

Let f: sm-1 - (-1 , 1 ] be an i soparametric function on sm-1 , defined as the 

restriction of a homogeneous polynomial F of degree p on 1Rm (c.f. Theorem 2.2.5). 

H the multiplicities of the distinct principal curvatures are equal; the polynomial is 

harmonic. Then we can normalize F such that 

IVF(x)l2 = lxi2P- 2 , for all x E Rm , (5.3.16, 

In this case the map ~ = VF lsm- 1 defines a harmonic polynomial map from sm- 1 

to sm-1• That discovery was made by R. Wood [ 43 ]. Suppose now that the multi­

plicities of the distinct principal curvatures are not necessarily equal. 

Proposition 5. 3. 6 Let ~ be defined as above, where F is now any polynomial 

satisfying the conditions of Theorem 2.2.5, then ~ is equivariant with respect to 

the isoparametric functions f on the domain sphere and f on the range sphere. 

Proof (due to H. Karcher) We can express each point x E 1Rm in the form 

x = r.e , 

where rE[O,oo) and eEsm-1• Then F(r.e) =rpf(e), and so 

(1/p)VF(e)= f(e).e +(1/p)Vf(e). (5.3.17) 

Let M 0 = f- 1 (0) be the minimal hypersurface (any choice of hypersurfaces will do). 

Let e(s) = e.coss + ~ sins, where e EM , ~ is the unit normal to M ate, and 
e 0 e o 

s E [- n/2p, IT/2p ). Then 

and 

Also 
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f(e(s)) = sinps , 

V f(e(s)) pcosps.e'(s) • 

e' (s) - e. sin s + ~ • cos s 
e 

(5.3.18) 

(5.3.19) 

(5.3.20) 



so 

and 

<Vf,e 1 > p.cosps • 

(1/p) V F(e(s)) sinps.e(s) + cosps.e' (s) 

sin(p- 1 )s.e + cos(p-1 )s. ~ 
e 

The result now follows from equation (5.3.22). 

(5.3.21) 

(5.3.22) 

0 

Remark 5. 3. 7 H we let s E 1- IT/2p, IT/2p 1 represent the affine geodesic parameter, 

so that f = cos p ( s + IT/2p) • Then s = - IT/2p and s = IT/2p correspond to the focal 

varieties, and s = 0 corresponds to the minimal hypersurface. Now 

~(e(s)) sin (p- 1 )s.e + cos(p- 1 )s. ~ 
e 

cos(-(p-1)s + TI/2).e + sin(-(p-1)s+ IT/2. ~ 
·e 

(5.3.23) 

So that under the map ~, the minimal hypersurface is mapped onto a focal variety 

and (a) if p is odd, both focal varieties are mapped onto a single focal variety, and 

(b) if p is even, both focal varieties are mapped to themselves. H we allow are 

parametrization of the map as in Theorem 4. 1. 15, then the function a is such that 

a: I-IT/2p,TI/2p1-- IIT/2p, (2p-1) TI/2p1with a (-IT/2p) = (2p-1)TI/2p and 

a ( TT/2p) = TT/2p • 

From Theorem 4.1.15, ~ is harmonic if and only if the corresponding reduction 

equation is satisfied. In the case when the multiplicities of the distinct principal 

curvatures are equal and F is harmonic, then ~ is harmonic and equation ( 4. 1. 5) 

is satisfied. In fact from equation (5.3.23) one sees that a(s) =- (p-1)s + TI/2 is 

the solution. More generally, suppose p=4. We will try to find ana: 1-TT/8, n/81 

[n/8, 7 TT/8 1 with a (-TI/8) = 7 n/8 and a (n/8) = TI/8 satisfying equation ( 4. 1. 5). We 

remark that equation (4.1.5) is no longer that of a simple pendulum. 

Recall from: Remark 2. 2. 10 that the principal curvatures are - cot ( s + n/8) , 

-cot (s- n/8), -cot(s- 3IT/8) and -cot(s- 5 TT/8) (remembering that s is now para­

metrized in the interval 1- n/8, n/8 1 instead of 10, n/ 4 1) , with multiplicities m 1 , m2 , 

m 1 ,m2 respectively. Thus 
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-y(s,t) 
sin2 (t+ U/8) 

+ m 
sin2 (t- n/8) 

m1 
sin2(s + U/8) 

2 
sin2 (s- U/8) 

+ m1 
sin2 (t- 3n/8) 

+ m 
sin2 (t- 5ll/8) 

sin2 (s- 3TI/8) 
2 

sin2 (s-5TI/8) 
(5.2.24) 

and equation (4.1. 5) becomes 

a"(s) + (-m1 tan(s+U/8 + m 1 cot(s+ TI/8) 

+ 1-tan(s+TI/8) _ 1+tan(s+n/8 ) n' (s) 
1+tan( s+n/8) 1-tan(s+n/8) 

- m sin(a(s) + U/8)cos(a(s) + TI/8) [ 2 
1 - 1 ] 

1 sin (s + TI/8) cos2(s + TI/8) 

- m 2 sin(n(s)- ll/8)cos(a(s)-U/8) [--2-=1~-­
sin (s-TI/8) 

= 0 • 

with s E [- TI/8, TI/8 ) , a (-TI/8) = 7 n/8 and a ( TI/8) = U/8 • 

(5.3.25) 

u 
We now reparametrize this equation, using the parameter u defined by e 

tan (s + ll/8) I (1- tan( s + TI/8)) , so u E (-«>,«>). A computation shows that 

and, 

I du 12 = (1 + 2eu + 2e2u> 2 /e2u 

~u 
((1 +euJ2 + e2u) [ 1 +2eu 

2(1+eu) -
u u 

e e 

+ m 
1 

u 
(1 +e ) 

u 
e 

+ m 
2 

Using Lemma 5.1.1, equation (5.3.25) becomes, 
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- m1. 

1 

u 
e 

1 + eu 



u 
a" ( u) + _ __;;;e ___ _ 

( (1 +eu)2 +e2u) 

+m 
(1+eu) 

+ 
m2 

- m 2 (1 +2eu)] a' (u) 
1 u 1 +2eu e 

sin(a(u) + TI/8) cos (a(u~ + TT/8) [ e -u 
u 

- m 
- (1 +eeu)2] 1 -u 

e + 2 + 2e 

sin(a(u)- TT/8)cos(a(u)- TI/8) 
m2 -u u 

e + 2 + 2e 
0 . 

(5.3.26) 

At first sight this equation looks decidedly unpleasant, but if we look at the quali­

tative features, we find it has much in common with the Smith equation described in 

Section 1. 3 • 

Express the equation in the form 

II I 
a (u) = h(u)a (u) + g1 (u) sin(a(u) + TT/8)cos (a(u) + TT/8) 

+ ~ (u) sin(a(u) - TT/8)cos(a(u) - TT/8) (5.3.27) 

Then, for u near - oo, 

u 2u 
h(u) = -(m1 -1)- (m1 -2)0(e) + (m1 +m2 )0(e ) 

u 
g1 (u) = m 1 - 0 (e ) 

g2 (u) = 0 (e3u) • 

" II where by 0 (f(u)) near u =- oo , for some smooth non-zero function f, we mean 

that 0 (f ( u) ) /f( u) is bounded and positive for u near - oo • Also for u near + "" , 

h(u) 
. -u -2u 
(m2 - 1) + (m2 - 2) 0 (e ) - (m1 + m 2 ) 0 (e ) 

O(e -3u) 

-u 
m 2 - O(e ) 
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Equation (5.3.27) can be thought of as that of a compound pendulum consisting of 

two penduli fixed at right angles. Each pendulum is acted on by a different varying 

gravity force (g1 and g2 ), and the system has a varying damping force acting upon it. 

The position of the system is described by the angle a = 2 0!, located between the two 

penduli. 

Label the two penduli 1 and 2 as in the above diagram. Then one wishes to find an 

exceptional trajectory of the system with a just starting off at time - oo at the angle 

7 IT/ 4, and just reaching the angle TT I 4 at time u = + oo • 

Note that at time u = -oo, the mass of the system lies entirely in pendulum 1. Then 

the mass transfers to pendulum 2 as time progresses, and then finally at time u=oo, 

the mass of the system lies entirely in pendulum 2. 

One can attempt to solve the equation in a way similar to the one Smith uses for 

equation ( 1. 3. 7) in [ 36 ] - this was described at the beginning of Section 1. 4. One 

fixes the time u0 when g1 ( u0 ) = g2 ( u0 ) , and then the idea is to manipulate the initial 

conditions 0! 0 = O!(u0 ) and 0!~ = O!'(u0 ). However, the method is very long-winded 
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and involves several comparisons with other equations. The more elegant method 

used by Smith to solve equation (1.3.7) in [37] adapts to solve equation (5.3.26), 

and in Chapter 6 we show that equation (5.3.26) has a solution asymptotic to 7P/8, 

n/8 as u tends to -co,"" respectively, if either 

or 
(5.3.28) 

As for Smith's equation we call (ii) the damping conditions. Note how conditions 

( i) and ( ii) compare with the damping conditions described at the beginning of Section 

1.4. Furthermore, in Chapter 6, we show that such a solution to equation (5.3.26) 

yields a smooth harmonic map between spheres. We therefore have 

Theorem 5.3.8 Let F: Rm - R be a homogeneous polynomial defining an iso­

parametric function of degree 4 on sm-1 , then 0 = VF 1 sm-1 : sm-1 - sm-1 is 

homotopic to a harmonic map, provided either of the above conditions (i) or (ii) are 

satisfied. 

Remark 5. 3. 9 There are several examples of inhomogeneous families of isopara­

metric hypersurfaces of degree 4 with m 1 and m2 satisfying the damping conditions 

(see, for example, [16 ]). Theorem 5.3.8 then gives us examples of harmonic maps 

equivariant with respect to inhomogeneous isoparametric functions. This illustrates 

that equivariance with respect to isoparametric functions is of some importance in 

the context of harmonic maps, i.e. we have generalized from the context of homo­

geneous hypersurfaces. 

Remark 5. 3.10 Similar considerations apply when p = 6. Indeed one can again 

show that if m 1 and m2 satisfy (5.3.28), then the equivariant map described in Pro­

position 5.3.6 is homotopic to a harmonic map. However, we leave the details of 

this calculation to be described elsewhere. 

We briefly consider an alternative way of describing the physical motion represen­

ted by equation ( 5. 3. 27) . Transform the function a to a new function 'Y which re­

presents the centre of mass of the compound pendulum represented by equation 

(5. 3. 27) : 
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2 

Referring to the diagram, we see that 

1 ! 
9 = tan- (x/( 2 2 -x)). 

Taking moments about pendulum 1 we obtain 

Le. 

X = 
g1 +g2 

So 9 = tan- 1 (g2 I g1 ), and 

(5.3.29) 

Furthermore, a computation shows that 

I I 

!< 'Y I + 
gl g2 - g2 g1 

2 2 
g1 + g2 

and 01
11 = ! ( 'Y " + 

Whence equation ( 5. 3. 27) becomes 

II I 2 2 .! 
'Y (u) = h(u)'Y (u) + (g1(u) + g2 (u) ) 2 siny(u) + p(u), (5.3.30) 
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where, 

This is the equation of a simple pendulum with varying damping, acted upon by a 

variable gravity force, and with a force p of varying modulus acting tangentially to 

the circular motion. One can check that lim p(u) = lim p(u) = o. Further-
u __ .., U ~ -oo 

more, if u is sufficiently large p(u) > 0 and p(u) = O(e-3u). A smooth. harmonic 

map will be given by a solution of equation (5.3.30) which is asymptotic to 2TT, I) as 

u -- - oo, oo respectively. 
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6 On certain ordinary differential 
equations of the pendulum type 

6. 1 Existence of solutions 

The equations that arise in the various examples of Chapter 1 and Chapter 5 behave 

in a similar way to equation ( 1. 3. 7 ) of Smith close to the asymptotic limit u = - oo • 

We adopt the methods used by Smith in [36) to investigate these equations. Equation 

(5.3.26) is dealt with separately using results of Hartman [21). These results were 

used by Smith to solve equation ( 1. 3. 7) in [37 ). We use this method to solve both 

equation (1.3.7) and equation (5.3.26). 

First of all we list the equations to be considered, illustrating the various qualitative 

features of each one. 

(i) "< ) a u + 
1 

u -u e +e 

+ 

-u 
( (q- 2) e 

1 
u -u 

e + e 

U I - (p-2)e ) a (u) 

u -u 
sina(u)cosa(u) (a1 e - a2 e ) = 0, 

where u E(-oo,oo), a(-oo) = 0 and a(oo) = TI/2. 

(6.1.1) 

This equation arises with the Smith construction for harmonic maps from sphere to 

sphere. The constants a 1 and a2 are given by a 1 = k(k + p- 2) and a 2 = 1 ( 1 +q -2), 

where k is the degree of a homogeneous polynomial map g1: sp-1 - sr-1 and 1 is 

the degree of a homogeneous polynomial :rr.ap g2 : sq-1 - ss-1 (c.f. Corollary 1.1.6 

and Section 1. 3), However, in Chapter 9 we will consider deformations of metrics, 

and then the special relationship between the values of the gravity and damping need 

no longer hold. We will therefore suppose simply that a 1 and a2 are positive num­

bers. 

Equation (6.1.1) is that of a pendulum with variable damping acted upon by a force 

of variable gravity as was described in Section 1. 4. Write the equation in the form 

If I a ( u) = h ( u) a ( u) + g ( u) sin a ( u) cos a ( u) , (6.1.2) 
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where, near u =- oo, 

and 

2u 
h(u) = - (q-2) +- 0 (e ) 

g(u) = + a 
2 

By "0 (f ( u) ) near u = - GO", for some smooth non-zero function f, we mean that 

O(f(u)), f(u) is bounded and positive for u near- GO. Also near u = +GO, 

h(u) = (p-2) - O(e-2u) 

and 

g(u) 

( ii) 

a" (u) + 
1 

u -u 
e + e 

u u -u 
(pe + (q-2) (e + e )) a'(u) 

sinh a ( u) cosh a ( u) 
u -u 

e + e 

where u E (-oo,oo) and a (-oo) = 0. 

( 
a 1 

u -u e + e 
+ :~ ) 0 ' (6.1.3) 

This is the hyperbolic analogue of case (i) (c. f. Section 1. 6). Here we assume 

that a1 ~ 0, and a2 > 0. Write this equation in the form 

a"(u) = h(u)a 1 (u) + g(u)sinha(u)cosh.a(u), 

where, near u =- oo, 

and 

(iii) 

2u 
h(u) = - (q-2)- O(e ) 

g(u) 
2u + o (e ) • 

a"(u) + (m-2) a' (u) - (m-1) sina(u) cosa(u) = 0, 

a"(u) + (m-3) a'(u) -((m-2)-k2e2u)sina(u)cosa(u) =o, 

(6.1.4) 

(6.1.5) 

(6.1.6) 

where u E (-oo,oo) and a(-oo) = 0. Both these equations arise in the construction of 
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harmonic maps from Euclidean space to sphere. The first has been well studied 

(see, for example , [ 23 ) ) , representing a pendulum with constant damping acted upon 

by a force of constant gravity. lf we write the second of these equations in the form 

a"(u) = h(u)a 1 (u) +g(u)sina(u)cosa(u), 

then, for u near- ""; 

and 

(i v) 

h(u) = - (m-3) 

g(u) 

" a (u) + 

" a (u) + 

2u 
(m-2) - O(e ) • 

1 u u -u 
(e + (m- 2) (e + e )) 

u -u 
e + e 

(m-1) 
sin a (u) cos a (u) 

u u -u 
e (e + e ) 

a 

1 (2eu u -u 
+ (m- 3) (e + e )) 

u -u 
e + e 

I 
(u) 

0 • 

I 
a (u) 

sin a ( u) cos a ( u) 
u -u 

e + e 
[ m~1 

e 
u k2 -u J ' 

E' + e 

(6.1.7) 

(6.1.8) 

(6.1. 9) 

where u E(-oo,oo) and a(-oo) = 0. These equations arise in the construction of har­

monic maps from hyperbolic space to sphere. We can express them both in the form 

II I 
a (u) = h(u)a (u) + g(u)sina(u)cosa(u), 

where, for u near - oo ; 

and 

2u 
h(u) = -b - O(e ) 

2u 
g(u) = (m-1)- O(e ) • 

with b equal to (m- 2) in the first case, and (m- 3) in the second. 
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(v) 

u [ 1 +2eu e 2(1 +eu) -
m eu m (1 +eu) 
_1_ + _.:.,1 __ _ II 

a (u) + 
u 2 2u u u u 

(1 +e ) + e e 1+e e 

- m 
1 

+ 
m2 

1 +2eu 

sin(a(u) + TI/8)cos(a(u) + 11/8) 

e -u + 2 + 2eu 

a' (u) 

[ e-u 

sin(a(u)- TI/8)cos(a(u)-D/8) [ u 2eu J 
m2 -u u 2e - 2 

e + 2 + 2e (1 + 2e u) 
0. 

(6.1.11) 

where u E ( -oo, oo) , a ( -oo) = 7 D/8 and a ( oo) = D/8 • This equation arises in Example 

5.3.5 for harmonic maps from sphere to sphere. It is now no longer the equation of 

a simple pendulum, but a compound pendulum, consisting of two penduli fixed to­

gether, separated by an angle of n/2 - the system having a variable damping and 

variable gravities acting on each pendulum distinctly. 

Write this equation in the form 

a"(u) = h(u)a'(u) + g1 (u)sin(u(u) + D/8)cos(a(u) + 11/8) 

+ g2 (u)sin(a(u)- D/8)cos(a(u)- D/8) 

Then for u near - oo: 

(6.1.12) 
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and 

u 
m 1 - 0 (e ) 

3u 
g2 ( u) = 0 (e ) , 

and for u near GO ; 

-u -2u 
h(u) = (m2 -1) + (m2 -2)0(e ) - (m 1 + m 2 )0(e ) 

-u 
g2 (u) = m 2 - O(e ) 

and 

-3u 
g1(u) = O(e ) • 

Notealsothat g1 (u),g2 (u) > 0, for all ur-(-oo,oo). 

Consider a general equation which includes (i) - (iv) as special cases: 

" ' ' G (u) = h(u)G (u)- g(u)f(G(u))f (G(U)), (6.1.13) 

3 
where f is an analytic function with the property that f(x)- x = + O(x ). Also h(u) 

and g ( u) are smooth functions on ( -oo, ..,) and for u near -GO ; 

and 

h(u) - b + O(e2u) 

g(u) 2u 
a ~ O(e ) 

for some constants a and b. 
I 2 

Now f (x) = 1 ~ 0 (x ) , so that as x increases from 0, so does f(x) ; let x0 be 

the first x greater than 0 such that f(x0 ) f 1 (x0 ) = 0, or if no such x exists; let x0 

be an arbitrary positive number. Choose a time u0 such that g(u) > 0 for all 

u < u • By the uniqueness theorem for ordinary differential equations the above 
- 0 

equation has a unique solution through (u0 ,G0 ,G~) which we denote by G(G0 ,G~)-
this exists for all time. The following parallels closely the methods of Smith [36 ). 

let A ( G 0 ) = { G ~ 'E R ; G ( G 0 , G ~) decreases monotonically to zero in finite time 

as u decreases from u0 }·Then this set is bounded below by 0. Choose G~ (G0 ) = 

inf A(GQ) • 
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' a 0 (x) is a well defined function on ( 0, x 0 ). Lemma 6.1.1 

Proof Since A(a0 ) is bounded below by 0; it suffices to show that A(a 0 ) is non­

empty, i.e. given a 0 E (O,x0 ); wewishtofindan a~ suchthat a(a 0 ,a~)decreases 
monotonically to 0 in finite time as u decreases from u . 

0 
As long as a' (v) ~ 0 on [u,u0 I for some u < u0 , we see from equation (6.1.13) 

that, provided also a~ 0; 

a"(v) < c + c a' (v) 
- 1 2 

on [u, u0 I for some positive constants c 1 and c 2 • Integrating this inequality over 

[u,u0 I yields 

i.e. 

< c (u - u) , 
1 0 

Choose a 0 such that 

' - a 0 + c (u - u) < 
1 0 -

Then, for all v, u < v .s_ u0 : 

-a'(v)<-a' +c(u-v)<-a' +c(u-u) 
- 0 10-0 10 

_::: - a /(u - u) 
0 0 

Integrating again over [ u, u0 I yie Ids 

i.e. a ( u) _::: 0, and a has decreased monotonically to 0 in finite time as required. 0 

Lemma 6.1.2 a'0 is strictly positive on (0, x 0 ) • 

Proof Given a 0 E (0 ,x0 ), suppose a 0 ( a 0 ) = 0, then at u0 , 
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and so a"(u) > 0 for u sufficiently close to u0• Thus a(u) initially increases as 
I 

u both increases and decreases from u0• Therefore there cannot be elements a 0 

in A (a 0 ) arbitrarily close to zero, whence a~ (a 0 ) :> 0 . 0 

Lemma 6.1.3 A(a0 ) is open for all a 0 E (O,x0 ). 

Proof Suppose a~ E A(a0 ) and a(a0 ,a~) arrives at 0 (as time travels backwards) 

for the first time at time u. Then a'(u) > 0. For a' (u) ~ 0 and if a'(u) = 0 with 

a (u) ~= 0, it follows from the uniqueness theorem for ordinary differential equations 

that a= o. Hence a decreases through 0 with positive derivative. Also a'(v)> 0 

for u < v < u0 , since if a'(v) = 0, then a"(v) > 0 and a would not be monotonic. 

Again from the proof of Lemma 6. 1. 2 we see that a' (u0 ) > o. Hence a' > 0 on 

[u- E, u0 ] for some E >·0, and so any function which is close enough to a in the c1 

norm will decrease monotonically to 0 on this interval in backward time. Therefore 

points near a~ are in A (a0 ) and A(a0 ) is open. 0 

Lemma 6.1.4 For all a 0 E(O,x0 ), a(a0 ,a~ (a0 )) is strictly decreasing as u 

decreases from u0 and is asymptotic to 0 as u - - ao • 

Proof We show that a'> 0 on (-ao,u0 ], and that 0 < o on (-ao, u0 ). For this will 

show that a decreases to some asymptotic value a , with 0 < a < x • But then 
-ao - -ao 0 

as u - - ao, a'< u), a"< u) - 0, so equation ( 6. 1. 13) implies that the only possible value 

for a is o. 
-ao 

Assume that one of these two conditions is violated. One must go wrong first, for 

if both are violated simultaneously, the uniqueness tht:orem implies that we have the 

trivial solution. On the other hand neither goes wrong at u0 from Lemma 6. 1. 2. 

Suppose a' (u) = 0 for u < u0 (for the first time), and 0 <a (u) < x0 , then a'\u)> 0 

and a increases as time decreases from u. But, by the definition of a~, there 

are functions arbitrarily close to a on [u- E, u0 I which are strictly decreasing or 

go past 0 on this interval- a contradiction. 

Suppose now that a(u) = 0, and a'> 0 on [u,u0 ). Then a~ (a0 ) E A(a0)- this 
I 

is mt possible since A(a0) is open and a 0 <a0 > = inf A <a0 >. 0 

We now demonstrate a local uniqueness result. 
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Lemma 6.1.5 Provided that u0 is chosen sufficiently close to - oo that h(u) < 0 

forall u~ u0 , and (11 0 ischosensufficientlycloseto 0 thatif O<x<y~ (11 0 , 

then f(x)f'(x)< f(y)f 1 (y) (i.e. ff' isanincreasingfunction), then (11 1 ((11) is 
-- -- oo-
the unique initial derivative for which we get a solution of the desired form in backward 

time. Specifically, if 0 < p~ < (11~ (Q0 ) then the associated solution (11((110 , fJ~) 

must eventually start to increase before reaching 0, and if p0' > (11 0' ( (11 ) , then 
---- 0 ---

p~ E A(QO) • 

Remark 6. 1. 6 The conditions of the above Lemma are always satisfied for any u0 

and (11 0 in the case of equation (6.1.3), thus we have a global uniqueness result in 

that case. 

Proof (of Lemma 6.1.5) Let p~ < (11~ ((11 0 ) and write (11 1 = (11((11 0 ,(11~ ((11 0 )) and 

(11 2 = (ll((ll 0 ,p~). Then (11 1 (u0 > = (ll2 <u0 ) and (11~ (u0 ) > (ll;(u0 ). Suppose that 

(11 1
1 (u0 ) - (ll;<u0 ) = £ > o. Define the function e(u) = ((11 1 - (112 >' (u). Thene(u0 ) =£, 

and 

I If If 

e (uo) = (111 (uo)- (ll2(uo) 

h(u0 )((ll~ (u0 > - (11; (u0 )) + g(u0 )(f((ll 1 )f 1 ((11 1 >- f((ll2 )f 1 ((11 2 )) (u0 ) 

I I 

h(uo)((ll1 (uo>- (112 (uo)) < o • 

Suppose there exists a u < u0 , with e '(u) = 0 • Then 

h( u) (11~ (u) + g(u) f (Q1(u)) f '((111 (u)) 

h(u) (11; (u) + g(u)f(Q2 (u)) f' ((112 (u)) 

i.e. 
I I I I 

h(u) ((11 1 (u) - (112 (u)) = g(u) (f(Q2 (u)) f ((112 (u))-f(Q1 (u)) f ((11 1 (u))) • 

But (11~ (u) > Q 1
2 (u) and a 1 (u) < a 2 (u), so that the left hand sideof this expression 

is less than 0, and the right hand side is greater than 0 as ff' is an increasing 

function - a contradiction; so e ' ( u) < 0 for all u < u , which implies that e ( u) > £ 
- 0 

for all u < u • But lim e (u) = 0- lim (11; (u) > £. Thus (11 1 has become 
- 0 u---oo u--coo 2 

negative in finite time, and a 2 starts to increase (for decreasing time) before 

reaching 0. 
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If on the other hand ~' > a' (a ) , then clearly on "" c,(a , {3' ) cannot turn be-
0 0 0 ,, 0 0 

fore reaching 0, since then the trajectories of a 1 = a(a0 ,a~ (Q0 )) and a 2 in phase 

space R 2 (the curves u - (a(u), Q1 (u)) c JR 2 ) would cross- an impossibility. 

Hence the only possibility is that {3~ r-= A(a 0 ) or Q2 is asymptotic to o. But the 

above arguments show that if Q2 is asymptotic to 0, then Q1 must turn in finite 

time, i.e. Q~ (a0 ) F A(Q 0 )- a contradiction. Hence ~~ E A (a0 ). 0 

corollary 6.1. 7 If the conditions of Lemma 6. 1. 5 are satisfied then a~ (Q0 ) is a 

continuous function of a 0 • 

Proof 

E > 0. 

n , n , 
Suppose we have a sequence QO - a 0 but Q 0 (a0 )~ a 0 (a0)- E for some 

Let {3~ = Q~ (Q0 )- E/2. Then from Lemma 6.1.5 we see that 

( i) a ( Q~ , p ~) decreases monotonically to 0 in finite time for all n (since 

a~ ( a~ ) < p0' ) , and 

(ii) Q(a 0 ,p~) eventually begins to increase (as time decreases) before reaching 0. 

Letting Q~ - QO this yields a contradiction. 0 

Corollary 6.1.8 

a~ (a0 ) - o as a 0 - o • 

In case ( i) the problem is to find a solution asymptotic to n/2 as u - co • In his 

Thesis Smith's method was to derive the unique velocity Q1 - (a ) such that 
0 0 

a( Q 0 , Q~- ( Q 0 ) ) is asymptotic to 0 as u - - co as above, and similarly to derive 

the unique velocity Q~+(a0 ) suchthat a(a0 ,a'+<a0 )) is asymptotic to n/2 as 

u-..,. The damping conditions ensure a~ -(Q0 ) and a~+ ( QO) are bounded away from 

0 as a 0 tends to TI/2, 0 respectively. Then Corollary 6.1.7 and Corollary 6.1.8 

show there exists an QO with a~- (a0 ) = Q1 + (Q 0 ) yielding the required solution. 

Later, in [34], Smith gave a more sophisticated method of solving case (i) by 

applying results of Hartman [21). This method can be applied to solve equation 

(6.1,11) of case (v) and we use it now to solve both case (i) and case (v). 

Suppose we are given an equation of the form 

a"= F(u,a,a') , (6.1.14) 

where F(u,a,a') isacontinuousfunctiononthe set E(p,R) ={ (u,a,a'); 
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0 :;_ u :;_ p, Ia I:;_ R, a' arbitrary 1 . 

Theorem 6.1.9 [211, [311 Suppose F isasabove, and 

(i) F(u,R,0)_2: 0, F(u, -R, 0):;_ 0, for 0 :;_ u:;_ p, and 

( ii) IF I < cf> ( I a' I) where cf>( s) , 0 :;_ s < oc is a positive continuous function satisfying 

(co s ds = oo. Let a 0 , a be such that la0 I, Ia I < R. Then equation 
• 0 cf>(s) - p p -

(6.1.14)hasatleastonesolutionin E(p,R) satisfying a(O)=a0 ,a(p)=a. Fur-
' p 

thermore, I a I :;_ C, where C is a constant depending only on cfl, R and p. 

Write equation ( 6. 1. 1) in the form 

II I 
a = F(u,a,a) , 

then IF 1:;_ C0 (1 + Ia' I) for some constant c0 and F(u,O,O) = F(u,TI/2,0) = 0. 

Adjusting the range of a (to [ 0, n/2 I instead of [ -R ,R I) and the time scale (to [ -T, T 1 

instead of [ 0, p I) , we can apply Theorem 6. 1. 9 to yield 

Lemma 6.1. 10 Given T > 0 there is a solution aT of equation (6.1.1) satisfying 

aT (-T) = 0, aT(T) = fl/2, 

0 < aT(u) < n/2 and 1~1:;_ C on(-T,T), (6.1.15) 

with C depending only on C 0 • 

Proof It suffices to show that 0 < aT(u) < IT/2 on (-T, T). We know from Theo­

rem6.1.9that0< aT(u)<n/2on(-T,T). Ifu E(-T,T)hasa (u )=O,in 
- - 0 T 0 

order that aT remains in [0, IT/21 (before or after u0 ); a~ (u0 ) = 0. But equation 

" 6. 1. 1 now implies aT (u0 ) = 0. The uniqueness theorem then implies that aT= 0-

a contradiction. 0 
We now consider a sequence T = T(n) - oo. From standard equicontinuity argt<­

ments (c. f. Hartman [211, Chapter 1, Section 2) aT(n) converges in c2 on compact 

sets to a solution a of equation ( 6. 1. 1) with 0 < a < IT/2, and with Ia' I bounded. 
0 - 0- 0 

Lemma 6.1.11 Provided the damping conditions(l.4.1) hold, the solution a 0 

of equation (6.1. 1) described above is non-trivial. 

Proof Suppose a 0 (u) = 0 for all u E R. Writing equation (6.1.1) in the form 
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a"(u) = h(u)a'(u) + g(u)sina(u)cosa(u), 

we see that there is a solution a= OIT(n) of equation (6.1.1) satisfying conditions 

(6.1.15)which is very small out to a large value of u, say u1 < T(n). Then g(u1) 

is close to -a1. Choose a; near a 1 so that a; + g sin acos otl a < 0 on a suitable 

interval [ u0 , u1 I and also that the equation 

~" = (p- 2) (3' - a1- /3 ' 

has non-real roots and period less than u1 - u0. Let f3 have the same initial data as 
I I 

a at u0 , and let w = a f3 - a f3 • Then 

w' = a/3 [h(u)a'/a - (p-2)f3 1/fl) 

+ (a1- + g(u) sinacos a/a) I , 

and 

Provided a'!a,.::: p'/p(i.e.w,.::: O)with a,f3 >0 wehave w' <0. Alsoaslongas 
I 

w < 0 we have w,.::: 0. Now look at the first zero of fl on [u0 ,u1 1. We must have 

p' a > 0 here since w < 0 - this is impossible if a> 0 on [u0 , u I. Hence a has a 
- 1 

zero on this interval, contradicting ( 6. 1. 15). Therefore a 0 = 0 is impossible. 

Similarly 010 = TI/2 is impossible. 0 

Lemma 6. 1. 12 .!!._ a is a non-trivial solution of equation ( 6. 1. 1) with 0 ,.::: a ,.::: TI/2 

and I a' 1,.::: C, then a'(u) > 0 whenever luI is sufficiently large, and a has the 

asymptotic limits 0, TI/2 as u - -co,ao respectively. 

Proof Suppose u0 is close to + fl and p-2 > 0, then we can assume h(u) > 0 and 
I tr 

g(u) < 0 for all u :> u • Then if a (u ) < 0 a (u ) < 0. Thus there exists a sub-
- 0 0 - 0 

sequent time u1 > u0 such that a' ( u1 ) = - E < 0. Then 01" remains negative as long 

as a' remains negative, so that a' ,.::: - e until a has decreased to 0 and become ne­

gative - a contradiction. Hence a' (u0 ) :> o. 
I fl I 

Suppose p- 2 = 0. Then if a ( u) ,.::: 0 ( u large ) , a must become negative before a 

changes sign. Hence a' < 0 for all subsequent u. In fact, since a' is bounded, it 

follows that a" must become negative and remain so at least until a decreases to 

some small value. However, using the same comparison which showed that a was 

non-trivial leads to a contradiction. 
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Thus a 1 
( u) :> 0 for u sufficiently large, and a has an asymptotic limit ~ TI/2. 

The same argument used in the proof of I.emma 6. 1. 4 now shows the limit must in 

fact equal TI/2. The case when u is close to -oo is similar. 0 
We now study case ( v). Consider equation (6.1.12); express this in the form 

a" = F ( u, a, a 1 ) • 

Then IF I~ C 0 ( 1 + I a 1 I) for some C 0 and 

F(u, 7TI/8,0) 

F(u, TI/8,0) 

g2 (u)/2 < 0, 

g1 (u)/2 :> 0 • 

Applying Theorem 6. 1. 9, adjusting the ranges of a and time (remembering that 

7 TI/8 corresponds to -R and TI/8 corresponds to R), we have 

I.emma 6. 1. 13 Given T :> 0, there is a solution aT of equation (6.1.11) with 

aT(-T) = 7 TI/8, aT(T) = TI/8 , 

7 TI/8 :> aT(u) :> IT/8 and I a~ I~ C on (-T, T) , (6.1.16) 

with C depending only on C 0• 

Proof It suffices to show that 7 1r/8 :>a T( u) :> 1r/8 on (-T, T). We know from Theorem 6. 1. 9 

that 77r/8 ~aT(u)~ 1r/8 on(-T, T). Suppose u0 E(-T, T) is such that a T(u0) = 7 1r/8; in order 

that aT remains in [ 7 1r/8 , 1r I 8 ] ( before and after u0 ) we must have a 1T( u0) = 0. Then 

equation (6.1.11) implies that a 1~(u0) = -g2(u0)/2 <0, and a decreases past 77r/8 as u 

increases from u0 - a contradiction. Similarly we cannot have aT(u0) = 1r/8. 0 
As before we consider a sequence T = T (n) - oo, and by equicontinuity arguments 

aT(n) converges in c2 on compact sets to a solution a 0 of equation (6.1.11) with 

7 IT/8 :> a :> TI/8 with a 1 bounded. Clearly a cannot be constant since sin(2a -11"'4) 
- 0- 0 0 

and sin(2a +lr/4) cannot be 0 simultaneously. 

Lemma 6. 1. 14 I.et a be the non-trivial solution of equation ( 6 .1. 12) described 

above. Then provided the damping conditions (5.3.28) hold; as u -oo,a0(u) -TI/8 

and as u -- ""• a 0 (u) - 7TI/8. 

Proof Unlike case ( i), overdamping in this case could cause the solution to be 

asymptotic to TI/2. 
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Consider the case when u - oo. We claim there are three possibilities: 

(a) lim a 0 (u) 5 U/8 
u-oo 

(b) lim 01 0 (u) = D/8 
u _.., 

(c) 2 (a - TT/8) continually oscillates about the downward vertical 1l. 
0 

Of course (b) and (c) could both happen. Case (c) could conceivably occur if 

lim h ( u) = 0 (m = 1). We will show that the damping conditions ensure that (b) 
u-ao 2 
is the only possible case. 

Make the substitution 'Yo= 2o0 - TI/4, then equation (6.1.12) becomes 

-y~'(u) = h(u)-y~(u) +g1 (u)cos-y0 (u) + g2 sin-y0 (u) (6.1.17) 

where 31l/2 ~'Yo~ 0. Suppose 31l/2 ~'Yo (u) ~ 1l for all u ~ u0 , for some large u0• 

Then -y' (u) >0 for u >U , since if-y '(u) <0 ,together with the fact that sin-y ~ 0 and cos 'Yo< 0, 
0 - 0 0 - v- -

equation ( 6. 1. 17) shows that 'Y ~· < 0 at least until 'Y 0 has passed through 1l. But if 

'Y ' ( u) > 0 ; lim 'Y ( u) exists and lies between 31l/2 and n; equation ( 6. 1. 7) shows 
0 u _.., 0 

this is impossible. Hence 'Yo must pass through T1 and continue to do so every time 

'Y 0 enters the range (IT, 31l/2). 

Similarly if TI/2 ~ 'Y 0 ( u) ~ 0 for all u ~ u0 for some large u0• Then 'Y ~ ( u) < 0 

" for u ~ u0 , since if 'Y ~ (u) ~ 0 ; equation (6.1. 17) shows that 'Y 0 > 0 at least until 

'Yo passes through 11/2. But if-y~ (u) < 0 for u~ u0 ; lim -y0 (u) exists andequa-
u-oo 

tion (6.1.17) shows that this limit must equal 0. 

H on the other hand 1l ~ 'Y 0 ( u) ~ TI/2 for all u ~ u0 for some large u0• Then since 

g1 (u) -0 as u _..,,the only possibility is that lim -y0 (u) = n. For, if 'Y~ > 0 
u-oo 

for u ~ u0 ; 'Y ~ cannot become negative until 'Y ~· has become negative. And 'Y 0 must 

become increasingly close to n for this to occur. Inspection of equation (6.1.17) 

then shows 'Y 0 must remain close to n, or pass outside of [ TI/2, n ]. 
The only other possibility is that 'Y 0 continually oscillates about the downward 

vertical 1l, showing that one of (a), (b) or (c) hold. 

H we assume either (a) or (c) holds, then there is a solution 'Y = 'YT of equation 

(6.1.17) which passes close to n for large u ~ T. The idea is to compare 'Y with the 

solution of the equation with constant gravity and constant damping, to show that 'Y 
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cannot possibly equal 0 at time T. 

Let us briefly consider the pendulum equation. 

f3 11 (u) = Mf3 1 (u)- msinf3(u) , (6.1.18) 

where M and m are constant, and we measure the angle {3 in a clockwise direction 

from the downward vertical. Suppose M < 0 and m > 0, then the damping resists the 

motion, and a generic solution performs decreasing oscillations about the downward 

vertical. Indeed, comparison with the equation of a harmonic oscillator: 

W 11 (u) = Mw1 (u)- mw(u) , 

for small (3, shows that {3 must oscillate continually about the downward vertical if 

M2 - 4m < 0. H on the other hand M > 0 and m > 0, then the damping increases the 

acceleration in the direction of the motion. By making the substitution u --- u, 

equation (6. 1. 18) becomes 

II I 
{3 (u) =- Mf3 (u)- msinf3(u) , 

so that a generic solution {3 performs decreasing oscillations in backward time, i.e. 

{3 performs increasing oscillations as u increases. In this case {3 is either asympto­

tic to the position of unstable equilibrium Tl', or {3 eventually moves around the circle 

in a single direction. 

Now consider the equation 

II I 
{3 (u) = M{3 (u) - msinf3(u)- E' , (6.1.19) 

where M,m,E' are all constant greater than 0, and we assume E' to be small. This 

represents the motion of a pendulum with constant gravity and damping and with a 

force of constant modulus tangent to the circular trajectory. A particular solution of 

equation (6.1.19) (which is approximately linear for small (3) is f3(u) =sin - 1 (-E'/m). 

And a generic solution performs decreasing oscillations about the equilibrium position 

{3 = sin-1(-E'/m) in backward time. So as u progresses a generic solution performs 

increasing oscillations about sin -1 (-E'/m), and either tends to a position of unstable 

equilibrium at TT + sin-1(-E'/m), or eventually moves around the circle in a single 

direction. 
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sin-1 (-£/m) 

For a detailed account of equation ( 6. 1. 19) see [ 34, Ch. 6 , Sec. 2 ] • 

Perform the substitution v = 'Y - TJ + (J 0 in equation ( 6. 1. 17) , where 6 0 =sin - 1( £ /m), 

and the constants in equation (6.1.19) have yet to be chosen. Then equation (6.1.17) 

becomes 

Similarly put 11 = ~ + (J 0 into equation ( 6. 1. 19) , which then becomes 

1: " ( u ) = M r, 1 
( u) - m sin ( f1 - 8 0 ) - £ • 

(6 .1. 20) 

(6.1.21) 

First of all assume that m2 = 1 lifO that lim h(u) = 0. Assume also that v passes 
u-oo 

through 0 for large u, say u0• Let u1 be the last tin•e this occurs (since v ( T) = 

- n + e0 this must exist). Let v and 'I have the same initial conditions at u1• De­

fine the Wronskian w = v 111 - v 11 1
• Then 

I 
w " " V1J-V1) 

V1J ( ( .bJL. 
v 

Also, at u1 , 
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M.!l)+ 
7J 

(- g 
2 

sin ( v- e0> 

v 

+ m sin(fi-Bo> ) 1 
fl 



" 1(11 "> w 1)11-T; 

We now make careful choices of the constants M, m and £ • Remembering that u0 

can be chosen arbitrarily large, we choose M to be small so that h ( u) - M < 0, 

m so that - g2 (u) + m < 0 and £ = g1 (u0 ), where u0 is chosen sufficiently large 

that g (u) < g (u0 ), forall u> u0• Then, since 1) 1 (u )< 0, wemusthavew"(u)>O. 
1 1 - 1 I 

Therefore w 1 becomes < 0 immediately after u1• Also, since (v "- r, "> ( u1) > 0 ; 

v 1 - r: 1 > 0 and v - r. > 0 immediately after u1• That is 0 > v > 11 • Now the function 

x --sinx/x isincreasingon [-11,0), sox --sinx/(x+a) isincreasingon [-TI,O), 

i.e. x --sin(x-a)/x isincreasingon [-n+a,a). Thus 

immediately after u1• Whence 

sin(v- 9o) 
+ m 

Jl 

sin('IJ- e0 > 

1} 
< 0 • 

Now if v 1 I v < 11 1 /1} with 11 1 
, 1J 1 < 0 and 0 > v > 1J , then 11 1 < 1J 1

• So 0 > 11 > 1J 

continues, and w1 continues to be < 0 at least until 1J 1 becomes zero for the first 

time. This must occur before 11 reaches - n + e0 , since " is bounded above by 

TI/2 + d on the previous swing, for some small constant d, and £ and M can be made 

arbitrarily small. 

Then w < 0 here, so that V 1 1J < 0, i.e.v 1 > 0 since 11 < o. So JJ 1 has become zero. 

But then equation (6.1. 19) gives 

" ) v - - g1 cos ( v - 6 0 ) - g2 sin ( 11 - 8 0 

> - £ cos ( v - B 0 ) - m sin ( v - B 0 ) 

> 0 ' 
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provided 0 > 11 > - TT/2 - 26 • So that 11 1 then becomes positive. Now 11 1 cannot change 
0 

sign before 11 11
, but 11 11 remains positive at least until 11 has passed through 0 again. 

This contradicts the definition of u1• 

Suppose now that m2 > 1, and (c) occurs. let 110 = y0 - TT + e0 , so 110 satisfies 

equation (6,1.20). Then a comparison of 110 with 11 similar to the above shows that 

either ~~oo 110 =- TT+ 60 , i.e. case (b) holds, or 110 passes through TT/2 + 60 or 

- n + 9 0 in finite time (since 11 performs increasing oscillations) - contradiction. 

There remains the possibility that 11 remains close to 0, but always remains < 0 

for large u. In this case, comparison with the equation 

II I 
(3 = M(3 -m(3, 

exactly as for lemma 6. 1. 11 1 shows that 11 must subsequently pass through 0. Thus 

(a) and (c) are impossible, and case (b) holds. Similarly, when u- - ""• 010(u) -7TT/8. 

0 
Remark 6.1. 15 If the damping conditions do not hold, then it is conceivable that the 

above methods of solving equation (6.1. 2) and equation (6.1.12) lead in the first case 

to a trivial solution and in the second case to a solution asymptotic to 5 IT/8. In the 

first case the graph of 01T for large T has the form 

]1/2 

0 
u=- T 

And in the second case the graph has the form 

u=T 

It is clear that if 010 = ~~oo OIT(n), then 01 0 = 0 in the first case and 
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lim a (u) = 5 TI/8 in the second case. 
u _.., 0 

6. 2 Asymptotic estimates 

In this section we prove the following. 

Theorem 6. 2. 1 let a be a solution of any of the equations of cases ( ii) - ( i v) of 

Section 6. 1, which we express in the form 

a" (u) = h(u) o'(u) + g(u) f(o(u)) f'(o(u)) 

If a=lim g(u)and-b=lim h(u),a,b> 0; let 1 bethenumbersuchthat 
U --oo U --oo 

a = 1 (1 +b), and assume that 1 > 1. Then for u close to -"", 

(i) o(u) 

(ii) o(u) 

and 
(iii )o'(u) - 1 a (u) 

We demonstrate the theorem by proving a series of lemmas, dealing with each case 

separately. Again we follow closely the methods used by Smith in [ 36 ] for case (i). 

lemma 6.2.2 .!!:_ a is a solution of equation (6.1.3 ) , then eventually (u close to -oo) 

o'(u)~ (1-0(e2u))sinho(u), 

where 1 is the positive number satisfying a2 = 1( 1 + q - 2). 

Proof Choose u < u such that h(u ) and g(u ) are close to their asymptotic va-
l- 0 1 1 

lues of -(q- 2) and a2 respectively. For u < u , let l(u) be the solution near 1 of 
- 1 

the equation 

2 h (l(u) -l(l+q-2))/l(u)=h(u)=-(q-2)-0(e ). 

Then l(u) = 1- O(e2~. We wish to show o'(u)~ l(u) sinho(u). 

let {:J be the solution of the equation 

I {:J '(v) = l(u) sinh (:J(v) 

{:J (u) = o(u) 

Then {:J is asymptotic to 0 as v - - ""· For v < u ; 
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" {3 ( v) 1(u)2 sinh {3(v)cosh {3(v) 

h(u)cosh {3(v) {3 1 (v) + a2 sinh {3(v)cosh f3(v) 

< h(v) {3 1 (v) + a2 sinh {3(v) cosh (3(v) • (6.2.8) 

·Now, suppose a 1 (u) < {3 1 (u), thenequation(6.2.8) shows that a"(u)>{3 11(u). Let 

u2 < u be the first time for which either a(u2 ) = {3(u2 ) ,a' (u2 ) = {3 1 (u2 ) or a'' (u2 ) = 
" . " " ' ' . ' ' {3 (u2 ). But 1f a :> {3 and a < {3 on (u2 ,u) w1th a(u) = {3(u), then a (u2 ) < {3 (u2 ) 

and a(u2 ) > {3(u2 ). Hence the only possibility is a''(u2 ) = {3 11 (u2 ). However, 

a( u2 ) > {3( u2 ) implies sinh a cosh a > sinh (3 cosh {3 at u2 • Equation ( 6. 2. 8) shows 

this is impossible. Hence u2 = ao, Thus {3 1 - a' is non-decreasing on(- ao,u)- a 

contradiction, since both a'< u) and {3 1 
( u) tend to 0 as u -- - GO • 0 

Lemma 6.2.3 Eventually (u close to -GO) 

a'(u) 5. (1 + 0 (e2u)) sinh a(u)cosh a(u) • 

Proof Choose u1 as in the previous lemma. For u < u1 , let 1 ( u) be the solution 

near 1 of the equation, 

(1 (u)2 - g(u))/1(u) =- (q- 2). 

2u , 
Then 1(u) = 1 + O(e ). We wish to show that a (u)5_ 1(u) sinha(u)cosh a(u) for 

u < u • 
- 1 
Let {3 ( v) be the solution of the equation 

! (3'(v) 

{3 (u) 

1 (u) sinh (3( v) cosh (3( v) 

a(u) • 

Then {3 is asymptotic to 0 as v -- - GO • 

For v 5. u, 
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{3 "<v> = 1 (u)2 (cosh2 {3(v) + sinh2 {3(v)) sinh {3( v) cosh ( v) 

~ l(u)2 sinh(3(v)cosh(3(v) 

(l(u)2- g(u)) , . 
.:.=~ _ _,a..:.;;~ (3 (v) + g(u) s1nh (3(v) cosh {3(v) 

1(u) 
= - ( q - 2 ) (3 ' ( v ) + g ( u) sinh (3 ( v) cosh (3 ( v) 

> h(v) {3 1 (v) + g(u) sinh (3(v) cosh(3(v) • (6.2.9) 



' ' It ' Now suppose a (u) > (3 (u), then equation (6.2.9) shows that a (u) < (3 '(u). This 

yields a contradiction as in the previous proof. 0 

Lemma 6.2.4 There exist positive constants b and h2 such thai for u sufficiently 
1--

close to - oo • 

b e 1u < sinha(u) _:::: b2 e 1u 
1 -

Proof We know eventually that 

' -a ( u) ~ 1 ( u) sinh a ( u) , 

- 2u 
where 1 (u) = 1- O(e ) • Then for v _:::: u , 

a • ( v) ~ 1- ( v) sinh Cl' ( v) 

~ (u) sinh CI'(V) , 

so Cl' lies below the solution of 

jf3'(v) 

l {3 (u) 

C (u) sinh (3(v) 

a(u) 

giving sinh a ( v) ~ sinh (3 ( v) for v ~ u • 

The explicit solution of equation (6.2.10) is given by 

(6.2.10) 

cosec h {3 ( v) + coth {3 ( v) = ( cosec h Cl'( u) + coth a ( u) ) exp ( C ( u) ( u - v) ) 

Now the left-hand side is equal to sinh fl(v)/(1 +cosh {3(v) ). We can assume u is 

sufficiently small that cosh a ( u) < 2 say. 

Then 

sinh (3( v) ( 1 + cosh {3 ( v) ) c exp ( C ( u) v) 
u 

< 3 c exp ( C ( u ) v) , 
u 

where c is a constant depending on u . 
u 

Hence 

sinh CI'(V) ~ d exp (C (u) v) , 
u 

(6.1.11) 
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for some constant d depending on u . 
u 

Let f(u) = sinh a (u). 

Then 

f 1 (u) sinh a ( u) a 1 
( u ) 

< l + ( u) sinh a ( u) cosh 2 a ( u) 

= ( 1 + sinh2 a ( u)) l + f 

< (] + sinh a ( u)) l + f 

1 + f + 1 + f 2 • 

where 1 +(u) = 1 + O(e2~, and we assume that u is sufficiently small that sinh o(u) < 1, 

From equation (6. 2.11) we have that 

sinh2 a (u) ~ b0 eplu , 

where b0 and p are constants with p. > 1. Hence 

f 1 (u) ~ 1+f + b0 eplu 

We estimate a solution of the equation 

l g'(v) = 1+g(v) + 

g (u) = f(u) , 

so that g(v) ~ f(v), for v ~ u. The solution of the homogeneous part is given by 

- rv + cexp( 1 (s)ds) 
·o 

- v 2s 
c exp 1 v exp ( r 0 ( e ) ds ) 

"' 1v 
~ c e 

·o 

since the integral is uniformly bounded, where we assume cis a negative constant. 

A particular solution of the inhomogeneous equation is 

rv Js + g1(v) = gH(v) exp(- 1 (x) t'.x)exp(ll1s) ds • 
~0 0 

(Note that in order that g1(u} = f(u) > 0, we must choose c above to be negative). 
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"' 1v > - c e 

( ) d 1v f d S f( ) b 1v ~ Hence g1 v .?: e , or some constant • o v .?: 1 e , 1or v < u. 

For the other half of the inequality, we have that 

I I 
f (u) =cosh a(u) a (u) 

>cosh a(u) r (u) sinh a(u) 

If g is a solution of 

then 

~ g '(v) 

? g (u) 

1- (v) g(v) 

f(u) , 

g ( v) = c exp J v 1- (x) dx 
0 

rv . 2x 
= c exp ( 1 - 0 (e ) ) dx 

·o 

c e 1v exp(lv- O(e2x) dx) 
0 

where c and dare constants. Hence f(v) 5:. g(v) 5:. b2 e 1v, for v 5:. u. 0 
The equations of cases ( iii) and ( i v) are very similar. We prove the results for 

equation ( 6. 1. 9) and similar considerations apply to equations ( 6. 1. 5) , ( 6. 1. 6) and 

(6.1.8). 

Lemma 6. 2. 5 ..!!. a is a solution of equation ( 6. 1. 9) , then eventually ( u close to -oo) 

·a' (u) 5:. (1- 0 ( e 2u )) sina(u) , 

where 1 is defined as for Theorem 6. 2. 1. 

Proof Choose u < u such that h(u ) and g(u ) are close to their asymptotic values 
1- 0 1 1 

of -band (m- 3) respectively. For u < u1 , let 1 (u) be the solution near 1 of the 

equation, 
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2 
(l(u) - g(u) )/1(u) = -b. 

Then 1(u) = 1- O(e2u ). We wish to show that a'(u) ~ 1(u) sina(u) • 

Let IH v) be the solution of the equation 

I p ' ( v) = 1 ( u) sin 11 ( v) 

p (u) = a(u) • 

Then p is asymptotic to 0 as v-- oo. For v ~ u, 

II 2 
{3 (v) = 1(u) sin{3(v)cosp(v) 

1(u)2 -g(u) , . 
1(u) • cosp(v) {3 (v) + g(u) sm{3(v)cosf3(v) 

-b cosf3(v)f3 1 (v) + g(u)sin{3(v)cos{3(v) 

> h(v) f3 1 (v) + g(u) sinp(v)cosf3(v). (6.1.12) 

Now suppose a' ( u) > p' (u), then equation ( 6 .1. 12) shows that a 11(u) < {3 11 (u). The 

proof now concludes as for Lemma 6.2.2. 

Lemma 6.2.6 Eventually ( u close to - oo) , 

a' (u) ~ (1- 0 (e2u)) sina(u)cosa(u) • 

c 

Proof Choose u1 as before. For u < u , let 1 ( u) be the solution near 1 of the 
- 1 

equation 

(l(u)2 - g(u) )/1(u) = h(u) • 

Then l(u) = 1- O(e2u) (there being two contributions to - O(e2u), one from g(u) 

and the other from h(u)). We wish to show that a'(u)z 1(u) sina(u)cosa(u). 

Let {3 be the solution of the equation 

l p'(v) = 1(u)cosp(v)sinp(v) 

{3 (u) = a(u) • 

Then fJ is asymptotic to 0 as v-- oo • For v ~ u, 
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II 

p (v) 1 (u)2 (cos2 p(v) - sin2 {3( v)) cos {3( v) sin p(v) 

~ 1(u)2 cosp(v) sinj9(v) 

(l(u)2 - g(u)) 1 • 
-'--'--'-1 -( U_)...,'-'--"'-" {j ( V) + g ( U) COS {j ( V) SID {3( V) 

h(u) p 1 ( v) + g(u) cos {3(v) sin (j(v) 

~ h(v) {3 1(v) + g(u)cosp(v) sinp(v) • (6.1.13) 

I f • If It 
Now suppose G (u) < {3 (u), then equation (6: 1. 13) shows that G > p ( u). The 

proof concludes as before. 0 

Lemma 6.2.7 

ciently close to 

There exist positive constants b1 and b such that for u suffi­
- 2 --=--~-'--

- 00 ; 

b1 e 1u ~ sinG(u)~ b2 e 1u. 

Proof The proof is similar to that for Lemma 6.2.4, using the estimates for G1 

obtained in Lemma 6. 2. 5 and Lemma 6. 2. 6. 0 
This concludes the proof of Theorem 6.2.1. 

6.3. Smoothness of certain equivariant harmonic maps 

Recall that a solution to the reduction equation gives a smooth harmonic map from 

M * to N* • In the case when this map extends to a map from M to N, we need to 

know this extension is smooth at points of M\M • • 

Theorem 6.3.1 The harmonic maps which arise from solutions of the equations of 

cases ( i) - ( v) all extend to smooth harmonic maps across M\M*, where M is 

the appropriate domain depending on which case is being considered. 

In cases ( i) and ( iv), this theorem can most readily be derived from the following. 

Suppose M and N are compact, and let i: N -- V be an isometric immersion of N 

into a Euclidean space V. The completion of the space of smooth maps C): M -- V 

with norm 

JC)J = <J ( JC)(x)J2 + JVC)(x)J2 ) dx)i , 
M 

is a Banach space, denoted by L~ (M, V). 
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The subset I{<M,N) = { Cf>E L21 (M, V); if> (M) c N1 is a smooth manifold. The energy 

integral (c.f. Remark 1.1.4) defines a function E: L21 (M,N) - R. There are ex­

trema of E which are not c 0 ( 10 1. However, Hildebrandt has shown that any extremal 

of E which is in L 21 n c 0 is smooth. Since the Laplacian is the Euler-Lagrange 

operator associated to the energy integral E, it is clear that the maps constructed in 

cases ( i) and ( v) are extrema of E. Also these maps lie in L~ n cO, and hence 

they are smooth. 

In cases ( ii), (iii) and ( iv) the domain is no longer compact, and in general the 

energy is no longer finite. However, we can now appeal to the regularity theorem of 

Eells and Sampson [ 12 I, which states that any c2- map between smooth manifolds which 

is harmonic is smooth. It suffices therefore to show the maps are c 2 at points of 

M\M* • We demonstrate this by proving a series of lemmas , using the estimates of 

the last section. We remark that we are again adapting the programme of Smith [36 I 

which he used for the maps of case ( i) (Hildebrandt's result was not known at that 

time). 

Using the notations of Chapter 4, let V = M\M"' be the focal variety of the isopara­

metric function s: M - R corresponding to s = O(or u =- oo), and let W c N be the 

focal variety or isoparametric hypersurface of N onto which V is mapped under fl. 

For a point x E V we pick suitable c2 charts about x and fl(x). These charts can be 

thought of as generalized Fermi coordinates (see for example [ 1 I), and they will be 

chosen in such a way as to induce an equivariant map between subsets of Euclidean 

spaces. 

Since V is a smooth submanifold (Theorem 2. 2. 2) , there is a smooth chart ((31 , B 1> 

about x inV, with {3 :B - RP(p =dim V). We can form a tube T (B1 )about B , 
1 1 £ 1 

which through each point of B1 consists of the union of geodesics subtended by a 

certain small sphere. More precisely, recalling the notation of Chapter 4, let 

Ms0 = s- 1 <s0 ), so V = M0 • Let n: M*- V be the projection down normal geodesics. 

E 
Then T (B ) = B U ( n-1 (B ) n ( LJ 0 M ) ) • We can choose coordinates for T (B1) 

E1 1 1 !J"= S E 

by defining a map lb 1 from T£ (B 1) to the set E 1 = {(x, sy); x E {31 (B1 ), y E g'l-1 , 

sE[O,e)1 cRm. Indeed Ms isaspherebundleover V(s"f 0), andwechoose B1 

sufficiently small such that the induced bundle over B1 is a product bundle: 
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M = B x s Sq- 1 . This defines the diffeomorphism 1/J : T (B ) - E , giving the 
s 1 1 € 1 1 

desired chart (w , E ) . Note that 1/J is equivariant with respect to isoparametric 
1 1 1 

functions. Similarly we can construct a chart (1b2 ,E2 ) about 0(x), where E2 = 

{ (u,tv); u ERr, v E ss- 1, t E [0, 6}1. With respect to these charts the equivariant 

map 0 induces an equivariant map 1/J: E 1 - E2 of the form 

where s r-: [0,€) and o (0) = 0. Also g2 is a smooth map and g1 is a homogeneous 

polynomial map of degree 1. We must check that the map 1/J between Euclidean spaces 

is c2 when o satisfies the estimates of Section 6. 2 

Rewrite w as 

1b(x,y) = (g2 (x), o(log lyl)g1(yllyl)) , 

where x E rnP, y E 1Rq (m = p +q), and we have changed the parametrization from s 

to u where eu = s. Then it is sufficient to check that the map H defined by 

H(y) = o(log lyl)g1(yllyl), 

extends over ly I = 0 to a c2 map. 

Write H as 

1 

H(y) = R2 (y) g1 (y) , 

where R (y) = o(log ly I )2 I ly 121 • Furthermore write 

R=rop, 

where p(y) = ly 12 = v say, and r(v) =a(! logv) 2 ;} • 

Lemma 6. 3. 2 For v near 0 , the first derivative of r is uniformly bounded whilst 

d2r ld y2 is at worst of 0 ( 1lv). 

Proof The derivative 

' 1+1 drldv = ·a( a - 1 a)lv 

' (1+2)u lu 
From Theorem 6.2.1 we see that a - 1o = O(e ) and a= 0 (e ), hence 

, 2(1+1)u 1+1 . · · 
a(o - 1a) = 0 (e ) = O(v ) as required. The second derivative 

2 2 " , , , I 1 +2 d rldv = (o(a - lo) +(a - 2(1+1)a) (o - 1o)) 2v • 
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I lU I (1 +2 )U I I 
Now a -2(1+1)a= O(e )and a -la=O(e ), hence(a -2(1+l)a)(a-la)= 

O(e2 ( 1+1 )u) = O(vl+l), as required. For the first term on the right hand side we 

note that 

II 
0/ - b a' + 1(1 +b) a+ O(e(l+2 )u) • 

Hence 

II I 

0/(0/ - lOt ) a(-b a' - 1 ( 1 +b) a) + o ( e 2 ( 1 + 1 ) u ) 

a(l+b)(-a' +la) + O(e2 (l+l)u) 

O(e2(l+l)u) 

O(vl+l) • 

as required. 0 

Lemma 6.3.3 (a) As y-o, 8R/8y. -o (y=(y1, ••• ,y )), whilstallsecond 
- 1 q 

derivatives remain bounded. 
.! 

(b) Similarly for R 2 • 

Proof (a) R(y) =ro p(y), where p(y) = ly12 , hence 

aR/ay. = 2y. ar/av, 
1 1 

a2 r 
--2- . 4y.y. 

av 1 J 

+ er 2 o .. -8 • 
1] v 

The conclusion now follows from Lemma 6.3.2 • 

.! 
(b) It suffices to show that R 2 is bounded away from 0 as y- 0. But by 

1 

Theorem 6.2.1 ( i) R 2 = a (u)/ ly 11 > b e 1u I ly 11 = b • 0 
- 1 1 

Lemma 6. 3. 4 H extends to a c2 function • 

.! 
Proof H(y) = R 2 (y)g1 (y), so that 

is continuous at y = 0 by Lemma 6.3.3 • Also 
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is again continuous at y = 0 by Lemma 6.3.3 and by the fact that g1 is homogeneous 

and hence g1 ( 0) = 0. Indeed the first three terms tend to 0 as y -- 0 • 0 
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7 The general theory of harmonic 
morphisms 

7. 1 General theory 

We were briefly introduced to harmonic morphisms in Section 1. 3 . Now we will give 

a much more detailed treatment. 

Harmonic morphisms have been extensively studied by Fuglede and Ishihara [19,27), 

and we will now describe some of their results. 

Let 0: (M,g) - (N ,h) be a map of Riemannian manifolds. If x EM is such that 

d0 f 0, then T M can be decomposed into J; = ker d0 and,~ the orthogonal 
X X X X , X 

complement with respect to g. The map 0 is called horizontally conformal if, for 

allxEMwhered0 i'O;d01 -~ -T"( )N isconformalandsurjective. 
X X~· X lt1 X 

X 
Thatis, forall X,YE~, h(d0 (X), d0 (Y)) = A2 (x).g(X,Y), for some function 

X X X 

A : M - R , called the dilation of 0 . 

Theorem 7 .1.1 [ 19,27] A map 0: (M,g) - (N ,h) is a harmonic morphism if and 

only if 0 is harmonic and horizontally conformal. 

Thus, for each x EM, d0 either has maximal rank or d0 = 0. Denote the cri-
x X --

tical set of 0 by c0 = f x EM; d0x = 01. The function A2: M - R is smooth and 

c0 =(A2 )- 1(0). Thecriticalset c0 isapolarset; see (19]. Rou~hlyspeakingthis 

means that codim c0 ~ 2 in M. We remark also that 0 is an open mapping. 

Remark 7. 1. 2 If c0 is non-empty; one can easily see from the condition that 

d 0x = 0 on c0 , that each connected component of c0 is mapped under 0 to a single 

point of N. 

For maps into Rn, where Rn has the standard metric <, > , the condition of har­

monicity and horizontal conformality become the following. 

Theorem 7 .1.3 [ 19] .!!._ 0: (M,g) - (IRn, <, >), then 0 is a harmonic morphism 

if and only if the components 01, ••• ,0n of 0 are harmonic on M, and their gra­

dients are mutually orthogonal and of equal length A (x) at each point x E M: 
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(7.1.1) 

Example 7 .1. 4 Any Riemannian submersion is horizontally conformal with "A2 = 1. 

By a result of Eells and Sampson [ 12 I, a Riemannian submersion is harmonic if and 

only if the fibres are minimal submanifolds. 

Example 7.1.5 Define ~:Rn\{01- sn-1 by ~(x) =x/lxl, forall XE'Rn\{0). 

Then ~ is a harmonic morphism with dilation "A given by "A 2 (x) = 1/lx 12 • 

Example 7 .1.6 Let ~ be multiplication of real, complex, quaternionic or Cayley 

numbers; ~: R 2n - R~ ~(u, v) = uv, where n = 1,2,4 or 8 respectively. Then ~ 

is a harmonic morphism from Theorem 7 .1. 3 with dilation "A given by "A2 (x) = lx 12. 

The critical set C~ consists of the point 0 in Rn . 

Example 7. 1. 7 Let ~ 1 : M - N and ~2 : N - P be harmonic morphisms with dila­

tions "A1 and "A2 respectively. Then, from equation ( 1.1. 3), 02 o 01 : M - P is a 

harmonicmorphismwithdilation "A given by "A2 (x) ="A~ <01 (x))."A; (x), forallxEM. 

In view of Example 7 .1.4 we might expect to find conditions when the fibres of a 

harmonic morphism are minimal submanifolds. This is what we consider in the next 

theorem. 

Theorem 7 .1.8 Let 0: (M,g) - (N,h) be a submersion which is a harmonic mor­

phism. Then (setting r. = dim N) 

( a) .!!_ n = 2, the fibres are minimal submanifolds 

(b) if n 7 2, the following properties are equivalent: 

( i) the fibres are minimal submanifolds ; 

( ii) V "A2 is vertical, where "A is the dilation of ~; 

(iii) the horizontal distribution has mean curvature V"A2 /2 "A2 • 

Proof First of all we have e(0) = n"A2/2, consequently the stress-energy tensor 

s 0 is given by 

1·2 n.*h s~ = 2nj"A .g- 'f.l • (7.1.2) 

Take a point x E M and an orthonormal frame field (X ) _1 near x with a a- , ••• ,m 
X , ••• , X horizontal and X , ••• , X vertical. Use the following ranges of 

1 n n+1 m 
indices: 
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1~ a,b, ••• ~m; 1~ i,j, ••• ~ n; n+l ~ r,s, ••• ~ m. 

The map 0 is harmonic so V * s0 = 0; therefore, summing over repeated indices, 

(X <0 "'h<xb,x » - 0"'h<vx xb,x > 
a a a a 

* - 0 h (Xb' ~ X ) • 
a a 

(7.1.3) 

Since the frame is orthonormal 

0 = X.g(X. ,X.) 
1 J 1 

g (V.X X. ,X.) + g(X., V.X X.) 
i J 1 J i 1 

g(~VX X.,X.) + g(X.,~V.X X.) 
i J 1 J i 1 

2 * * (1/;>.. )(0 h(Vx X.,X.) + 0 h(X.,VX X.)) 
i J 1 J i 1 

(7.1.4) 

where 1( denotes horizontal projection. 

• Choose Xb =X., then X (0 h(X. ,X ) ) = 
J a J a 

X.(;>.. 2 ), and using equation t 7. 1. 4); 
J 

equation ( 7. 1. 3 ) becomes 

0 = !(n-2)X.(X2 ) + 0*h(VX X.,X) + 0* h(X.,V.X X) 
J rJ r J rr 

!<n-2)X.(X2 ) + X2 g(X.,VX X) 
J J r r 

t(n- 2 )X. (;>..2 ) - x2 (m- n) (mean curvature of fibre in the X. direction) • 
J J 

(7 .1.5) 

Thus we have proved ( a), and ( i) if and only if ( ii) in ( b). 

Now choose Xb = X r. Equation ( 7. 1. 3 ) becomes 

0 inX (X2 ) - 0 *h (V.x X ,X.) 
r i r 1 

!nX (;>..2 ) - "A.2 g(lf{VX X ,X.) 
r i r 1 

2 2 
inx ("A> +x g(Vx xi,x > 

r i r (7.1.6) 

!nXr("A.2 ) "A.2 n (mean curvature of horizontal distribution in Xrdirection). 
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We now choose X to be in the direction of the vertical projection of V"A.2 , and we 
r 

obtain ( ii) if and only if ( iii) in (b) • 0 
To what extent can we regard Theorem 7. 1. 8 as being valid for arbitrary harmo­

nic morphisms (i.e. allowing C 0 to be non-empty) ? In fact we can remove the "sub­

mersion "condition in the statement of Theorem 7. 1. 8 on account of the following 

recent result of Fuglede. 

"rheorem 7 .1. 9 [20) H V.).2 is vertical, where .). : M - R is the dilation of a 

harmonic morphism 0: (M,g) - (N,h), then c0 is the empty set. 

7. 2 Examples and non-examples of harmonic morphisms 

Example 7. 2. 1 The Hopf maps defined as follows are all harmonic morphisms. 

Let F denote either the real, complex, quaternionic or Cayley numbers, and let 

n = dim F. Define 0 : R 2n - 1Rn+1 by 

0tx,y) = ( 1x12 - lyl2 , 2xy) , (7.2.1) 

for all x,y E F. Then 0 is a harmonic morphism with dilation .). given by "A.2((x,y)) = 

I (x,y) 12 , for all x,y E F. Also 10(z) 12 = lz 14 , for z E R2n, so the fibres are all 

compact, and being in R 2n cannot be minimal. Thus the condition (b) of Theorem 

7 .1.8 is indeed restrictive. 

Example 7. 2. 2 Isoparametric families of hyper surfaces wth 2 distinct principal 

curvatures give rise to harmonic morphisms. 

Let M be Rm, and express z E Rm in the form z = (x,s.y), where x E RP, 

y E ffl, p +q = m and s E [O,co). Then the level surfaces s =constant form an iso­

parametricfamily(c.f. Example 2.1.4). The map 0:Rm -RP; 0(z) =x defines 

a harmonic Riemannian submersion. 

Let M be sm-1 , and express z E sm- 1 as z=(coss.x, sins.y) where x E sp-1, 

y E sq-1, p+q = m and s E [0, n/2 ]. The level surfaces s =constant form the iso­

parametric fap1ily of Example 2.1.5. Define 0: sm \ Sq - sP by 0(z) = x. Then 

0 is a harmonic morphism with dilation "A given by "A.2 (z) = 1/cos2s. Here V.).2 is 

vertical and the fibres are minimal. 

Let M be Hm- 1 , and express each z E Hm-1 as z = (coshs.x,sinhs.y), where 

x E Hp-1, y E S q-1, p +q = m and s E [ 0, ..,) • The level surfaces s = constant form 
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the isoparametric family of Example 2. 1. 6 . Define ~ : Hm- 1 - HP- 1 by ~ ( z) = x. 

·Then~ is a harmonic morphism with dilation given by :>..2 (z) = 1/cosh2s. Also the 

map 1/J: Hm-1 \ HP- 1 - sq-1 defined by 1/J(z) = y is a harmonic morphism with 

dilation~· given byp2 (z) = 1/sinh2s. 

All the above harmonic morphisms are applications of Proposition 2. 2. 5 . 

Example 7. 2. 3 Isoparametric families of hypersurfaces on a space form M with 1 

distinct principal curvature give rise to the following harmonic morphisms. 

Let M be a particular hyper surface in the family, and let V be the focal variety; 
c 

then M\ V is connected. Define ~: M\V - M to be projection down the normal 
c 

geodesics. Then ~ is a harmonic morphism with geodesics as fibres. Conversely 

we have the following. 

Example 7. 2. 4 Suppose 0: (M ,g) - (N ,h), dim M =dim N + 1, is a harmonic mor­

phism, and V :>..2 is vertical, where :>.. is the dilation of ~. Then from Theorem 7. 1. 8, 

the integral curves of V:>..2 are geodesics, and so IV\2 12 is a function of \ 2 (one 

can see this by reversing the proof of Lemma 2. I. I). The horizontal distribution 

is integrable in this case, the integral submanifolds being the level surfaces of :>..2. 

Thus property (b) (iii) of Theorem 7 .1.8 implies the mean curvature of these level 

surfaces is a function of x2 - otherwise said, x2 is a generalized isoparametric 

function. 

Example 7. 2. 5 Consider the tangent bundle ( TM, G) of some Riemannian manifold 

(M,g), where G is the Sasaki metric of Example 2.4.7. Let TIM be the unit sphere 

bundle: 

endowed with the metric induced from G. Then, as a consequence of Example 2.4.7 

andExample 7.2.3, 0:TM\(zerosection)- TIM; 0(x,v) =(x, v/lvl) isahar­

monic morphism. The dilation \ of 0 is given by x2 (x, v) =I/ rvr. 
Example 7. 2. 6 In Example 7. 1. 6 we saw that real, complex, quaternionic and 

Cayley multiplication are all examples of harmonic morphisms. Such multiplications 

are all orthogonal multiplications; i.e. a bilinear map 0: RP x Rq - Rn such that 

I 0 (x, y) I = lx 1. ly I , for all x E R P, y E Rq. Which orthogonal multiplications are 
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harmonic morphisms? It turns out that the multiplications of Example 7. 1. 6 are 

the only ones: 

Theorem 7. 2. 7 ..!!_ 0 : RP x IRq - Rn is an orthogonal multiplication, then 0 is 

a harmonic morphism if and only if p = q = n and n = 1, 2, 4 or 8 • 

Proof Suppose 0 is a harmonic morphism. Since 0 is an orthogonal multiplication 

10(x,y) I = lxl. lyl, (7.2.2) 

for all x E JRP and y E Rq. Fix x0 E RP and y 0 E IRq, then 0y0 : JRP Rn given 

by 0Y0(x) = 0(x,y0 ) and 0x0: Rq - Rn given by f'1x0(y) = (J(x0 ,y) are bOth linear. 

Therefore 

for all u 1 E RP, and has norm 

Similarly 

ld((Jx )y (u2 ) I 
0 0 

for all u2 E IRP • 

Now 

for all ( v 1 , v 2 ) E RP x Rq. Thus 

kerd(J( )=ker(d(J) e ker(d(J) s{(v1 ,v2 )ERPxRq; 
xO,yO Yo xo xo Yo 

(7.2.3) 

(7.2.4) 

(7.2.5) 

(7.2.6) 

(7.2.7) 

Fromequations(7.2.4)and(7.2.5)weseethatker(d(J) ={01andker(d(J) = 
Yo xo xo Yo 

f01 whenever x0 and y0 are non-zero, and so p,qz n. Henceforth assume 

xo,yo " 0. 
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From equation (7. 2. 7) 

Let L = d(0 ) Ep n d(0x >y Eq. 
Yo xo o o 

Since d 0 ( . ) is surjective; dim L = 
xo,yo 

dim ker(d0)( ) = p + q- n. Let 
11() ,yo 

n: Rn - L be the projection map, and define 

L (ker(no 0 ) )J. 

Yo Yo 

L (ker(no 0 ))J. 
xo xo 

H both Ly0J. Lx~ = {01, then p = q and L has maximum dimension p. In which 

case, Ly = RP and Lx = Rq. But then df,l( ) cannot be onto En unless p = 
o o xo.Yo .1. 

q = n, which is the required result. So without loss of generality, assume Ly = {01. 
0 

From equation ( 7. 2. 8) , ker d 0( ) c Ly x 1-x • Thus the horizontal subspace 
xo,Yo 0 0 

~ (x0 ,y0 ) consists of 

( i ) the orthogonal complement of ker d 0 ( ) in 1-y x 1-x , and 
xo,Yo 0 0 

( ii) Ly J. X Lx.l. 
0 0 

Choose ( u1 , 0) E 1-y J. x LxJ. , then 
0 0 

and 

10 u1 12 
Yo 

1u1 12 ly0 12 

and since l(u1 ,0hl2 = 1u1 12 ; we conclude that the dilation A is given by 

A2 (x0 ,y0 > = ly0 12 • (7.2.9) 

On the other hand, choose ( u1 , u2 ) as lying in that part of the horizontal space given 

by (i). For u E Ly-0 • 0yg E L, so that 11 o flly0 (u) = 0y0 (u), and 
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ITiofif (u)l 
Yo 

I~ (u) I 
Yo 

luI ly0 I 

Thus IT o ~ I L is homothetic , and so 
Yo Yo 

(7.2.10) 

• for some Ax E 1R, and some matrix A,c with A,c A,c =identity. Similarly 
0 0 0 0 

for some ~ y c== 1R , and some matrix By with By * By = identity. From equa-
0 0 0 0 

tion ( 7 • 2. 8 ) 

all v2 E ~..y0 , 

• o = <(-~Y/~o). A,co Byo v2, u1 > + < v2,u2 > 

• ( -~ /"Ax_ ) • < v2,BY A,c u1 > + < v2,u2 > 
0 0 0 0 

< v2,(-~ /"Ax_). By* A,c u1 + u2> • 
0 0 0 0 

if and only if 

u2 =/( "-y I "Ax_ ) • By * Ax u1 • 
0 0 0 0 

(7.2.11) 

Thus, that part of the horizontal space given by ( i) is spanned by 

Now 

129 



I( >. " B • A u ) t2 
·-xo u1' "yo Yo xO 1 

( l 2 + " 2 ) tu1 12 • 
·-xo Yo 

Also, for all u1 E Lx0 , 

~ 2 ~u +~ 2 B B •A u 
xo o 1 Yo Yo Yo xo 1 

(~ 2 + ~y 2) Ax u 
0 0 0 1 

and the square of the norm of this vector is equal to(~ 2 + ~Y 2 ) • Thus the dila-
0 0 

tion " is given by 

But 

d(fJ ) (~ u ) = ~ 2 A u 
y 0 xo xo 1 xo xo 1 

and equation ( 7. 2. 4) implies 

~ 4 tu 12 ~ 2 tu 12 ty t2 
xo 1 xo 1 0 

that is 

" (yo>2 
xo 

ty t2 
0 

Similarly 

~ (xo>2 tx 12 
Yo 0 

and so 

(7. 2. 12) 

On account of equation ( 7. 2. 9) we see that fJ is horizontally conformal only when 

L_ J. = 1.x J. = {0 J , i.e. only when p = q = n. It is well known [ 10] that in this -yo o 
case fJ must be one of the standard multiplications of Example 7. 1. 6 • D 

Example 7. 2. 8 Example 7. 1. 5 is a special case of the following. 

Let V k be the space of k-frames in Rn at 0, and 0 k the space of orthonormal n, n, 
k-frames in Bn at 0. The Gram-Schmidt orthonorf{alization process defines a na-

tural deformation retract fJ : V k n, 
is a harmonic morphism. 
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* Let lRn denote Rn \0. Then V n k can be regarded as an open subset of the 

* * ' Euclidean space Rnx... x Rn (k times), from where it inherits its metric. Simi-

larly 0 k can be regarded as an open subset of sn-1x ••• x sn- 1 (k times) with 
n, 

the induced metric. Let TT: Rn * - S n- 1 be the natural retraction TT(x) = x/ lx 1 • 

The Gram-Schmidt orthonormalization process can be described as follows. 

Let ( v1 , • • • , vk) ~ V k , then u = TT( v ) E S n- 1• There exists a natural pro-n, 1 1 
jection nv1 : sn- 1 \ { _:: TT (v 1 >1 - s~-2 which maps down normal geodesics to the 

equator S n-2 subtended by the two poles + l1 ( v ) • Let u = TT ( l1 ( v ) ) • Define 
u 1 - 1 2 v 1 2 

the projection TTv2: sn-2 \ { + u J - sn-3 , which maps down normal geodesics to 
u1 - 2 u2 

the equator sn-3 subtended by the poles _:: u2 • Let u = rrv ( TTv( n<v3))), and so on. 
~ . 3 2 1 

In this way we obtain the desired orthonormal basis (u1 , ••• , ~) E on,k • 

The fibre over a point (u , ••• , uk) E 0 k consists of products of various open 
1 n, 

half-spaces, and hence is minimal in V k" The tangent space to V k at each point n, n, 
can be identified with the Euclidean space Rnx ••• x Rn(k times), and the horizontal 

space to the fibre over (u , ••• , u.) E 0 k consists of k-tuples (w , ••• ,wk)E 
1 k: n, 1 

mnx_ ••• x Rn such that 

0 

< u2 'wk > = • • •• • • • • • 0 • (7.2.13) 

131 



We can identify the tangent space to 0 kat (u , ••• , uk) with a subspace of n, 1 
·Euclidean space, and the map ~.sends (w , ••• , wk) ( ) E T( )V k 

1 v1, ... , vk v1 , ••• ,vk n, 

to 

I ' . . . ' 

' . . . ' ) . 

Thus 

and the dilation ~ of ~ is given by 

+ • • • + 

I 

+ ••• + 

I (w 2 + 
1 

(7.2.14) 

This is independent of the choice of (w 1 , ••• , wk) only in the following cases 

( i ) k = 1 ; in which case we have ~ : En 4 -- S n- 1 as in Example 6. 1. 5 • 

(ii) k = n = 2; for then equation (7. 2.13) implies that w2 = 0, and equation (7. 2.l4) 

shows that ~ is horizontally conformal. 

In case (ii); ~: GL(2) -- 0(2) • By choosing appropriate geodesics through 

(v 1 , ••• , vk) one can see that ~ is h(rmonic, and so is a harmonic morphism (since 

dim 0 ( 2 ) = 1 the map ~ is obviously horizontally conformal). 

Of course the above retraction may be a harmonic morphism with respect to some 

more natural metric on 0 k , such as the left invariant metric which arises from 
n, 

regarding 0 k as a homogeneous space. 
n, 

Remark 7. 2. 9 Although the map ~ : V k -- 0 kof Example 7. 2. 8 is not in general n, n, 
a harmonic morphism, it is harmonic and has minimalfibres. In fact it is an example 

* of a more general kind of map than a harmonic morphism, where ~ h( ~ : ( M, g) - ( N, h)) 

has several distinct eigenvalues instead of just one (c.f. Example 3.3.2) (in Example 
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7.2.8 0*h hasmin(k,n- 1) distincteigenvalues). Inthenextsectionwe shall 

• briefly consider maps with 0 h having more than one distinct eigenvalue. 

7.3 Maps 0: (M,g) - (N,h) where 0 *h has two distinct non-zero eigenvalues. 

Suppose 0: (M,g) - (N,h) is a submersion almost everywhere, with 0*h having 

at most two distinct eigenvalues. Denote these by l\.1 and ll.2 , and let U be an open 

set in M on which ll.1 and ll.2 are non-zero. 

Let S. denote the eigenspace of ll.., with r. =dim S., i = 1,2 • Choose a frame 
1 1 1 1 

field X , ••• , X on U such that X , •.• , X span S ,X 1 , ••• , X span s2 and 
1 m 1 p 1 p+ n 

X , .•• , X are vertical. Choose the following ranges of indices: 
n+1 m 

1 ~ a, b, •• ~ m ; 1 ~ i , j , •• ~ p; p+ 1 ~ r, s, .. ~ n; n + 1 ~ a , {3 , • • • < m • 

The energy density of 0 is given by 

(7.3.1) 

and the stress-energy tensor s0 is given by 

- 1 nl* S0 - z(r1ll.1 + r2ll.2).g- f.l h. (7.3.2) 

Suppose 0 is harmonic; then calculations similar to those in the proof of Theorem 

7 .1. 8 establish the following two equations (summing over repeated indices) 

(7.3.3) 

~(r1d\ +(r2 - 2)dX2 )(Xs) +(l\.2 - ll.1 )g(Xs,VX.Xi) +ll.2g(Xs,VX XO!) = 0. 
1 0! 

(7.3.4) 
We therefore have 

Theorem 7. 3. 1 Let 0 : ( M, g) - ( N, h) be defined as above. _!!_ 0 is harmonic 

and the mean curvature of each eigenspace S. is vertical, i = 1,2, then the fibre is 
1 

minimal if and only if 

0 

and 

0 ' 

(7.3.5) 

(7.3.6) 
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for each i = 1, .•• , p, s = p + 1 , .•• , n. In particular if dim N = 2 and 

r 1 = r 2 = 1, then equations (7.3.5) and (7.3.6) imply V(A1 - A2 ) is vertical. 

Example 7 .3.2 Let M= Sm-1 , and f: sm-1 - R be an isoparametric function of 

degree 3, with focal varieties V 1 and V 2 . Let IT: M \ V 2 - V 1 be defined as in Pro­

position 2.2.5, then from that proposition TT is harmonic. Also ~·h has two distinct 

eigenvalues (c.f. Example 3.3.3), where h is the induced metric on V 1 ; the cor­

responding eigenspaces are precisely the principal curvature spaces. The mean cur­

vature of these spaces is vertical, and so Theorem 7 .3.1 applies. Since '-1 and }.2 

are both vertical; equations ( 7. 3. 5) and ( 7. 3. 6) are satisfied and so the fibres are 

minimal. 
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8 Harmonic morphisms defined by 
homogeneous polynomials 

8. 1 Properties of harmonic polynomial morphisms 

Suppose 0: Rm - Rn is a harmonic morphism defined by harmonic homogeneous 

polynomials 01, ••• , llln' each of degree p. Normalize 0 such that sup 10(x) 12 = 1. 
lx 1=1 

Following Fuglede [ 19 I, we define the set 

r = {xEsm-1 ; 10<x>l2 = 11. 

Then lx 12P- 10(x)l2 ~ 0 in Em\{01 with equality on the cone R+ I'\{01. Thus on 

R+ I'\{0 l 

0 !V(Ixi2P- 10(x)l2 ) 
n 

p lx r2P-2 .x- l: 0k(x) V0k(x) • 
k=1 

From Theorem 7. 1. 3 , this implies 

p2 lx 14p-2 = ~(x)2 10(x)l2 , 

where ~: Rm - R is the dilation of 0. Thus on R+I'\{01 

~2 (x) p2 1xi4P-2 /10(x)l2 

P2 lx 12p-2 • 

(8.1.1) 

(8.1.2) 

(8.1.3) 

Bythe smoothness of ~2 • we see that ~2 (0) =0, and ~2 (x) =p2 1xl2p-2 on R+r. 

Consider the Laplacian 

~( lx r2P - lfHx>r2 > = p(2p- 2) IX r2p-2 + mp lx r2P-2 - n~2 • 

This is~ 0 on R+r, thus p(2p- 2) + mp ~ np2 , that is 

(m -2) ~ (n-2).p. 

(8.1.4) 

Equality is obtained when ~( lx 12P - 10 (x) 12 ) = 0, that is when lx r2P - 10 (x) 12 =' 0 

on gm-1. We therefore have 
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Proposition 8.1.1 ..!!_ f/.1: rnm - Rn is a harmonic morphism defined by homo­

geneous polynomials of degree p , then 

m-2 z (n-2).p, (8.1.5) 

with equality if and only if I f/.1 (x) 12 = constant, for all x E S m- 1 • 

Example 8. 1. 2 Let ~ : R 4 -- R 3 be the Hopf map 

f/.1( (x,y)) = ( lx 12 - ly 12 , 2xy) , 

where we regard x,y as being complex numbers. Then f/.1 is a harmonic morphism 

defined by homogeneous polynomials of degree 2. The map 0 I sm-1 : sm-1 -sn-1 

is a harmonic Riemannian fibration. 

From now on we will assume that the dilation ;\: Rm -- R is given by 

(8.1.6) 

for all x ERm. Let F: Rm -- R be defined by F(x) = I f/.l(x)l 2 , for all x E Rm , 

then F is homogeneous of degree 2p. Let f = F lsm- 1 : sm-1 -- R. 

Lemma 8.1.3 If f is as above then 

for some smooth functions ¢1 and ¢2 • In particular f is an isoparametric function 

( c • f. Chapter 2 ) • 

Proof First of all 

ldF 12 - (BF/Br)2 

n n 2 
4 < l: f/.lk V f/.lk, l: ~k V f/.lk > - ( 2p F ) 

k=1 k=1 

4 ;\2 19.112 - (2pF )2 

4 p2 (1 - F). F , using equation (8.1. 6) 

n 2 
Write F as F = k~1 fl.lk , then 

m 
t:..R F 2~ Vf/.lk.Vf/.lk 
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Also 

and 

(1/r). 2pF, 

-2pF 
2 

r 
+ 

Therefore from Lemma 1. 1. 5 

sm-1 2 2..2 
D. f = 2n ~ - 4p I - ( m - 2) 2pf • D (8.1.8) 

Theorem 8.1.4 ..!!_ f/.1: Rm - Rn is a harmonic morphism defined by homogeneous 

polynomials of degree p, with dilation ~ given by ~ 2 (x) = p 2 lx 12p-2 , then r is 

a smooth submanifold of S m- 1 , and both R + r and the fibre over the origin in Rn 

are minimal cones through the origin in Rm • 

Proof Let :E = { x E Rm; f/.1 (x) = 0 l denote the fibre over the origin. Then 

F 1:E= o, where F = 1012 , and so rand :En sm- 1 are both critical sets off= F 1~:1 

From Lemma 8.1.3 f is isoparametric, and hence from Theorem 2.2.2 I' and 

:En sm-1 are minimal submanifolds of gm-1. 

Consider the map f/.1 1 r= r - S n- 1 , then by a result of Fuglede [ 19] this map is 

surjective. We prove the following theorem. 

Theorem 8. 1. 5 The map flll r: r - S n- 1 defined above is a harmonic Riemannian 

submersion. 

Proof Claim 1: The set r is precisely the set of x E sm- 1 such that T (fibre of 
X 

f/.1 through x) c T sm-1. 
x n-1 -1 

Proof of Claim 1 : Let y E S be such that fJ (x) = y, x E r, and write f/.1 (y) 

for the fibre over y. Let y(u) c fll- 1 (y) be a curve with -y(O) = x. Then f/.1(-y(u)) =y. 

Let p(u) = y(u)/ 1-y(u)l E Sm-1 • Then 

fll(~t(u)) = y/ 1-y(u)IP , 

by the homogeneity of f/.1 • Thus 
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d0(p I (0)) (d/du)(y/1-y(u)IP) lu= 0 

-p <-y 1 (0),-y(O)>.y; (8.1.9) 

so that -y(u) is tangent to sm- 1 at u = 0 if and only if< 'Y 1 (0) ,-y(O)> = 0 if and only 

if d0(p 1 (0) = 0. But we know that 10(x)l2 = 1 is maximum on the sphere, i.e. 

10(Jt(U) )12 ~ 1 and = 1 at s = 0. Therefore 

2 
0 = (d/du) 10(J.du))l 1 u=O 

n 2 
(d/du)k~1 0k(p(u)) lu=O 

n I 

2k~1 0k(p(O))d0klp (O)) 

2 < 0 (p ( 0)) , d 0 (p I ( 0)) > 

2<y,-p <-y 1(0),-y(O)>Y> 

- 2p <-y I ( 0) , 'Y ( 0) > o (8.1.10) 

Thus 'Y is tangent to sm-1 at u = 0 and Claim 1 is proved. In particular ~2 is 

horizontal over r, and equation ( 7. 1. 5) of Theorem 7. 1. 8 implies that the mean cur­

vature of the fibre is proportional to the horizontal projection of v~2 , i.e. to v~2 

(in particular if the fibre were contained in sm- 1 then it would be minimal in sm- 1). 

Claim 2: The set 0-1 (y) n r is minimal in r. 
Proof of Claim 2 : Suppose we are given a curve a (u) on sm-1 such that 

0(a(u)) = a(u).y • (8.1.11) 

Then, since 0(p (u). a (u)) = p (u)p .a (u). y, if we let p (u) = a(u) - 1/p whenever 

a(u) t- 0; the curve -y(u) = a(u)/alu) 1/P is a curve in the fibre 0-1 (y) whenever 

a(u) t- 0. 

Consider the particular case when a ( u) is an integral curve of V f through a point 

x E r. Then we find that 

(a) 0(a(O)) = y 

(b) d0(Vf) = 2p20.(1- f) 

Both the conditions (a) and (b) imply that either (i) a (u) satisfies equation (8. 1.11), 
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or ( ii) J:'l ( o ( u) ) c S n-1 • 

Consider case ( i). Since o (u) is a geodesic in sm- 1; V 0 \o) o 1(0) is perpendicular 

to sm-1, which implies that Vy'(O) y 1(0) is perpendicular to sm-1 • 

Consider case ( ii). Then o(u) is horizontal, and so o'(u) is perpendicular to 

J:'l-1 (y) . 

We can now perform the following construction. 

Consider the set J:'l- 1 (y) n r. Locally we can choose an orthonormal basis of 

T(J:'l-1(y);X , ••• ,X , suchthatX, ••• ,X span T(0-1(y)n I') andX 1 , ••• ,X 
1 r 1 s s+ r 

arise as the tangent vectors to integral curves of Vf (this is always possible since 

1' is the focal variety of an isoparametric function) as above, so that VX X. is per-
j J 

pendicular to S m- 1, for j = s + 1, ••• , r. We therefore find that the mean curvature 

vector of 111- 1 (y) n r is perpendicular to s m- 1 • and in particular that 111- 1 (y) n I' 

is minimal in r. 
Furthermore, since ">..2 1r = constant and V'>..2 (which is horizontal) is perpendi­

cular to I', then the map J:'l is a Riemannian submersion. The minimality of the 

fibres now imply that l'll I' is a harmonic Riemannian submersion. 0 

8.2. Some examples 

/Example 8.2.1 Let J:'l: R8 - E 5 be the Hopf map defined by 

J:'l (x,y) = ( lxl2- lyl2, 2(x1y1- x2y2- x3y3- x4y4), 

2 (x1y2 +x2y 1 +x3y 4- x4y3)' 

Then 111 is a harmonic morphism defined by homogeneous polynomials of degree 2. 

Write J:'l = (~~ ••• , J:'l5 ). Then 
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from which \\El see that ;\ 2 ( z )= 4 lz 12 for all z E E 8 . We also note that there exists 

an A E o8 (E), such that ~- 1 = ~- o A ; 
t+ 1 

A 

10001000 
0 0 0 1 0 0 0-1 
0 0-1 0 0 0 1 0 
01000-100 
01000100 
00100010 
00010001 
1 0 0 0-1 0 0 0 

Let x: E 8 -En, n < 5, be defined by a subset of{~ , ••• , ~5 1. Let r = 
- 1 

{x rc s1 ; 1 x(x) 12 = 11 , F = 1 x 12 the associated isoparametric function and I: the 

fibre over the origin in En. We consider the different cases in turn. 

Case 0 X (z) = 0, z = (x,y) E E8. Then I' is empty, I: n S7 = s 7 and F = 0. 

easel x(z)=~ (z)= 1x12 - lyl2• ThenF=(Ixl2 - lyl2 )2 ,l·=s3 us3 , 
0 1 3 !. 

X I I': I' - s is the obvious map' and I: n s 7 = s X s3 /2 2 • 

Case 2 x = <~ 1 , ~2 ). Let B ~ o8 (R) be the matrix 

B 

1 0 0 0 0 0 0 0 
01000000 
00100000 
00010000 
0 0 0 0 1 0 0 0 
0 0 0 0 0-1 0 0 
0 0 0 0 0 0-1 0 
0 0 0 0 0 0 0-1 

then B preserves ~1 , while taking ~2 into the function 2 < x,y > • Then F = 

( lx 12 - ly 12 )2 + 4 < x,y >2 , which is the isoparametric function of Example 2.3.5. 

The set r is given by r = s 1 x s 2 ;s0 = { ei& .x; x E s31 = {cos6.x,sin9.x); 
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X E S3 J, and X lr: (cosl9.x,sinf).x) - (cos26,sin 26), i.e. X lr :(9,x) - 29, 

which is clearly a Riemannian submersion. Also ~ n s7 = S ~~: , the Stiefel mani-
• 

fold of orthonormal 2-frames in 4-space (defined in Example 5. 3. 3). 

Case 3 x = (d n 0 ) Let w = (rl. n n n ) Then the isoparametric function cor-p1,P2' 3 • p2,p3,p4,p5 • 

responding to w, F w , is given by F w (x,y) = 4 lx 12 ly 12 = ( lx 12 + ly 12 )2 

( lx 12 - ly12 )2 = 1- ( lx 12 - lyl 2 )2 . Thus the level sets of X coincide, (i.e. up 

to orthogonal transformation) with the level sets of x o A2 , which coincide with the 

level sets of lw 12 - 0; , i.e. with the level sets of 1- 0: - 0; . Using the matrix B, 

we can transform 02 into 2 < x,y > while preserving 01. Thus 

F(x,y) = 1- ( lx12 - lyl2 >2 -4 <x,y >2 , 

/4 130 2 
and r = s n and ~ = s X s /S . We now perform a computation of X I r: r - s . 

4,2 2 
The map xo BoA is given by 

- x1y4 +x4y1- x2y3 +x3y2). 

Then I X o B o A2 (x,y) 12 = 4( lx 12 ly J2- < x,y >2 ), which is equal to 1 when lx 12 = 

ly 12 ,= ~ and< x,y > = 0, i.e. on the focal variety S n/4 = {(x+ iy)/2!; (x,y) E s4 21. 
4,2 , 

We are thus precisely in the situation of Example 5. 3. 3, and the map x 1 r= r - s2 is 

given by the map 0 TI/4 : S TI/4 - s2 of that example. 
4,2 

Similarly, if X = (01,02 , 04 ) say, then X o A= (02 ,03 ,05 ). The level sets of 

1 x o A 12 coincide with the level sets of lw 12 - 042 , which coincide with the level sets 

of 1- 0;- 0~. If C E o8 ( R) is the matrix 

1 0 0 0 0 0 0 0 
01000000 

c 00100000 
00010000 
00000010 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0-1 0 0 

then C takes the function 0 4 into the function 2 < x, y > , while preserving 01 , i.e. 

we have the same case as above. 
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Case 4 X =(01,02 ,03 ,04 ). Then 

The set l'is isometric to s 3 x s 3 I 2 ~, 
multiplication of unit quarternions). 

X o A = 1b , so that F = 1 - ( lx 12 - ly 12 )2 . 
3 ! 3 

and X I I': I'- S; X II'((x,y)/2 2 ) =xy<-S 

The set 2: n s 7 is isometric to s3 u s 3 

Case 5 X = 0. Then F = 1, I'= s 7 ' 1: n s7 is the empty set and X II': l'- s 4 is 

the Hopf fibration. 

We remark on the duality between Case i and Case (5- i), i = 1, .•. , 5 - that 

is, the set I' of case i is identical with the set 1: n s 7 of case ( 5- i). 

Example 8. 2. 2 Consider the example of an isoparametric function given by Ozeki 

and Takeuchi in [33), and defined as follows. Let H denote the space of quaternions, 

and write u = (u0 , u1 ), v = ( v 0 , v 1 ), ui, vi IE H; let u - u denote the canonical invo­

lution. Define a function F: IR 16 - R by 

Then f = F 1 8 15 is isoparametric. 

Let 0: E 16 - R 4 be defined in the following way. Write u. = (u~, u~, u~, u~), 
1 1 1 1 1 

i = 1,2, and let 0 = (01 , ... , 0 4 ) be given by 

0 = 
4 

1u1 12- 1v1 12 + 2 <u0 ,v0 > 

21 12 34 43 ·21 12 34 43 
uv -uv -uv +uv +uv -uv -uv +uv 
00 00 00 00 11 11 11 11 

31 13 42 24 31 13 42 24 
u v - u v - u v +u v + u v - u v - u v + u v 
00 00 00 00 11 11 11 11 

4 1 1 4 2 3 3 2 4 1 '1 4 2 3 3 2 
uv -uv -uv +uv +uv -uv -uv +uv. 
00 00 00 00 11 11 11 11 

Then the square of the norm of the gradients of the 0., i = 1, ••• , 4, are all equal 
1 

and mutually perpendicular. Since each 0. is harmonic we see that 0 is a harmonic 
1 

morphism. Furthermore F = 1012 . Thus from Theorem 8.1.5 there exists an 

interesting harmonic Riemannian submersion from the set r onto s3. 

8. 3. Harmonic morphisms defined bt homogeneous polynomials of degree bigger 

than two. 

We can easily construct harmonic morphisms defined by homogeneous polynomials 

142 



~f degree bigger than 2, simply by composing two harmonic polynomial morphisms of 

degree 2. Since we recall from Example 7. 1. 7 that the composition of two harmonic 

morphisms is again a harmonic morphism. 

Example 8.3.1 Let 0: E 8 - E 4 be defined by 0(x,y) = 2xy, where x andy are 

quaternions, and let 1/1: R 4 - 1t3 by the Hopf map; l/l(u, v) = ( lu 12 - lv 12 ,2 uv), 

where u and v are complex nwnbers. Then X = w o 0 : E8 - E 3 is a harmonic mor­

phism defined by homogeneous polynomials of degree 4. The critical set C x = 0- 1( 0) 

is a minimal cone in E8 . 

However, we ask whether there exist harmonic polynomial morphisms defined by 

homogeneous polynomials of degree bigger than 2, which do not arise in this way as 

the composition of two harmonic morphisms. In particular, do there exist harmonic 

morphisms defined by homogeneous polynomials of degree 3? 

Recall the theorem of Munzner; Theorem 2. 2. 5. This states that an isoparametric 

function f: sm-1 - E arises as the restriction of a homogeneous polynomial 

F : Em - E of degree p with 

(i) 

( ii) ~F 

p2 IX 12p-2 

clxiP-2 , 

where the constant c is zero when the multiplicities of the distinct principal curva­

ture~ equal. 

Suppose we are given such a polynomial F:Rm - E with c = 0. Given any matrix 

A EO (E); define G: Em - E by G = F o A. Then, for all x E Rm and for all 
m 

vectors v E T Em , 
X 

< v, VG > 
X 

Thus 

dG (v) 
X 

dF A(x)o dAx(v) 

dF A(x)(Av) 

< Av, VF A(x)> 

* < v, A V FA (x) > • 

VG 
X 

* A VF A(x) (8.3.1) 
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Therefore, from (i), IVG 12 = p2 lx 12P-2 • Since A: Rm -- mm is an isometry; 
X 

G is also harmonic, so that G satisfies condition ( ii) also. In particular, if there 

existsan AEO (:R) suchthat <VG ,VF :>=0, forallxERm, then f)= (F,G) 
m X X 

gives a non-trivial harmonic morphism fJ : Rm -- R2, defined by homogeneous poly-

nomials of degree p. This would give a method of constructing harmonic morphisms 

of various degrees. 

Remark 8. 3. 2 All known harmonic morphisms defined by homogeneous polynomials 

of degree 2 arise from a single polynomial in this way. We now demonstrate that 

this procedure will now always work. 

Let F ,G be as above, and write f = F lsm-1 and g = G lsm-1 • 

Lemma 8. 3. 3 Let V (f) denote the focal varieties of f, and M0 (f) the minimal 

hyper surface C 1 ( 0) • Then 

(a) V(f) = { x E gm- 1 · V F J. T Sm- 1 1 
' X X I 

(b) M (f)= { x ESm-1 · V F E T gm-11 
0 ' X X 

Proof The statement follows immediately from the equation 

VF = Vf + pf. (8/Fr) (x) , 
X X 

for all X E gm-1 , where r 2 (x) = IX 12 

Proposition 8. 3. 4 If 

< VF , VG > = 0 , 
X X 

for all X E :Rm, then 

and 

V(g) C M(}(f) . 

Proof From Lemma 8.3.3. (a) we see that 

x E V(f) implies X E: M0 (g) , 

and similarly 
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x E V(g) implies X E M0 (f) • u 
Theorem 8.3.5 let F: R 6 -- R be the standard homogeneous polynomial of degree 

4 of Theorem 2. 2. 5, defining the family of i soparametric hyper surfaces of Example 

2. 3. 5 with n = 2 (so the multiplicities of the principal curvatures are equal and F 

is harmonic). Then there exists no A E 0 6 ( R) such that A (V (f) ) c M0 (f) , where 

f = F lsm-1 (hence from equation (8.3.1) the above method of constructing a harmonic 

morphism fails in this case). 

Proof The polynomial F is given by 

F(x,y) = 2(( 1x12 - lyl2 )2 + 4 <x,y >2 ) - I (x,y) 14 , 

where x, y E lR3. As in Example 2. 3. 5 the level surfaces of f can be parametrized 

by the sets 

i6 { e (coss.x + isins.y); 9 E [0,2TT] and (x,y) E s3 , 2 1 , 

for each s E [0, TI/4] • 
!. 

Consider the focal variety v1 corresponding to s = TI/4. Then V 1 = {(x+iy)/2 2 ; 

(x,y) E 83 , 2 1 . The minimal hypersurface off is given by 

M0 (f) = { ei9 (cos(TI/8).u+isin(TI/8).v);9 E[0,2U],(u,v)ES3 , 2 1. 
!. 

Suppose the point z = (x + iy)/2 2 of V 1 is mapped under A to the point w = 

eii/J(cos( TI/8).u+isin( TI/8). v) E M0(f). Then 

w = (cos 1/J cos(TI/ 8).u- sini/J sin <n/8).v) 

+ i( sin 1/1 cos ( TI/8). u + cos 1/J sin ( U/8). v) • 

Now, since o3 (R) acts transitively on s 3 , 2 , there exists a BE o3 (R) with u = Bx 

and v = By. Thus the matrix A has the form 

A = ( sin 1/J cos ( TI/8). B 

- sin 1/J sin ( TI/8) • B ) 

cos 1/J sin <n/8). B • 

cos 1/J cos<n/8).B 

We must check that this is indeed orthogonal. 
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We compute AA *and obtain 

2 2 n BB"' . 2,,, . 2 TIBB* 
=( cos I}Jcos 8 +sm "'sm 8 1 . " * asm21}Jcos 4.BB ) 

1 n BB* 
2 sin 2 lb cos 4 • 

.2 2n * 2 .2n * 
sm 1/Jcos 8BB +cos lb sm 8BB • 

This can only be the identity matrix if sin21/J = 0, i.e. lb = 0, TI/2, nor 3 n/2. But 

in this case the non-zero diagonal entries are not all equal, and certainly do not 

equal 1, e.g. if 1/J = 0, then 

* 2 A. A = cos <n/8) 

0 
2 

cos < n/8) 

sin2 ( n/8) 

0 
• 2 

sin (TI/8) • 0 

8.4 Harmonic pol omial morphisms and equivariant maps between spheres 

Recall Example 2. 3. 8 and Theorem 2. 3. 9 of apter 2. In that example we were 

given ann-tuple (P , ••• , P ) of symmetric endomorphisms of R21 with 
1 n 

P.P. + P.P. = 2 o ..• I, i,j = 1, ••• , n , 
1 J J 1 1) 

called a Clifford system. To such a Clifford system, with m = n and m = 1-n 
1 2 

both positive, is associated the isoparamett"ic function f = F ls2 1_1 , where 

F: R 21 - R is defined by 

F(x) = lx 14 - 2 ~ < P.x,x >2 
i 1 

We could equally well write F as 

2 F(x) = ~<P. x,x>, 
i 1 

I (8,4.1) 

and then, in view of Lemma 8. 1. 3 it is natural to ask whether such an isoparametric 

function arises from a harmonic polynomial morphism. 

Theorem 8.4.1 Given a Clifford system (P , ••• , P ) on R 21; define 
1 n -

f.:R21 -REx f.(x)=<P.x,x>,forall xER21 ,andforeach i=l, .•• ,n. 
1 1 1 
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Then 0: R21 - Rn given by 0 = (f1 , .•. , fn), is a harmonic morphism defined by 

homogeneous polynomials of degree 2, with dilation ;\. given by ;\. 2 (x) = 4 lx 12 , for 

each x E m21 • 

Proof Let (x1. ) 1.=1 , _2 be the standard coordinates on Rm. Then, for each 
••• , m- 1 

xEmm 

dfi (x) < a/rx1 ) 

(d/du)(fi(x + u(l,O, .•• ,O))Iu = 0 

(d/du)< P.(x +u(l,O, ••• , O)), x +u(1, 0, ••• ,0)> 1 0 1 u = 

(d/du)(<P.(x),x> + <P.(x),u(1,0, ••• ,0)> 
1 1 

2 
+ <UP.(1,0, ••• ,O),x > + O(u )) 1 0 1 u = 

<P.(x),(1,0, .•• ,0)> + <P.(1,0, ••• ,O),x >. 
1 1 

Thus 
m 

Vf.(x) = P.(x) + ~ < P.(B/Fxk), x >. a/exk. 
1 1 k=l 1 

(8.4.2) 

But P. is symmetric, i.e. < P.(x),y > = < P.(y),x > • Thus, from equation (8.4.2), 
1 1 1 

Vf.(x) = 2P.(x), 
1 1 

(8.4.3) 

for each i = 1, ••• , n. Then 

< Vf. (x), Vf. (X)> 
1 J 

4 < P.(x), P.(x) > 
1 J 

2 < P.P.(x),x > + 2 <X, P.P.(x) > 
J 1 1 J 

4 <X,X> 0 .. • 
1] 

Thus 0 is horizontally conformal with dilation 71. given by 71.2 (x) = 41x 12 , for all 

x E Rm. 

Write P. in.matrix form as (Pab) , for each i = 1, ••• , n •. Then 
1 i a,b=l, ••• ,m 
~ 

f.(x) = ~ 
1 a,b 

Thus 

~f. ~ P.1:w-
1 a 
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Since P.2 = 1, the eigenvalues of P. are +1 and -1. H the eigenspaces of +1,-1 
1 1 

are E+ (P.) and E (P.) respectively, then since P.P. + P.P. = 0, i f. j, we see that 
1 -1 1) )1 

P. interchanges the eigenspaces E+(P.) and E (P.) of P .• Thus dimE (P.) = 
) 1 -1 1 +1 

dimE (P.) = 1, whence 
- 1 

:E Paa = 0 , 
a i 

and f. is harmonic for each i a 1, .•• , n • 0 
1 

Examples of harmonic morphisms defined by Clifford systems, include as special 

cases Examples 8.2.1. and 8.2.2. From Theorem 8.1. 5, to each such example we 

can associate a harmonic Riemannian submersion onto a sphere. 

Amongst the family of isoparametric functions (8. 4.1), some are inhomogeneous; 

furthermore in some cases the focal varieties are inhomogeneous [ 17 ). Thus we can 

associate harmonic Riemannian submefSrons from compact inhomogeneous spaces 

onto spheres. 

We can modify the proof of Theorem 8.1.5 to obtain the following. 

/_ 
Theorem 8.4.2 Let 0: Rm - Rn be a harmonic morphism defined by homo-

geneous polynomials of degree p, with dilation 71. given by 71.2 (x) = p2 Jx J2P-2 . Let 

F: Rm - R be.! defined by F (x) \ 10(x) 12 , and write f = F lsm- 1 , then 

01M : M0 - c 2 sn-1 is a harmomc homothetic submersion, where M0 = 1 1(c) 
c 

and c f. 0. 

Proof Since c f. 0, the projection p : M - I', which maps down normal geodesics, 
c c 1 

is well-defined. Therefore 01M : M -c2• sn- 1 is onto, since it factors through 
c ~ 1 

pc' 01r:I'- sn- 1 and the prOJeCtion map c .! : c2 sn-1 - sn-1 ; i.e. the fol­
c2 

lowing diagram commutes: 

M 

PC r 
I' sn-1 
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In order to prove the theorem, the crucial point to observe is that the proof of 

Theorem 8.1. 5 will go through provided that the following claim is true. 

Claim 8.4.3 For x E" Mc,'Jt'<vx2(x)) lies in the plane spanned by vx2 (x) and 

~ , where ~ is the unit normal vector field to M . 
X-- C 

For then the mean curvature of the fibre of 0 over 0 (x) would be perpendicular 

to M at x, and the rest of the proof goes through as before. 
c 

Proof of Claim 8. 4. 3 Write 0 = <0 , ••• , 0 ) , then the horizontal space through 
1 n 

x E" M is spanned by {V0. (x)} ._1 • Now 
c 1 1- , ••• ,n 

so 

F = ~ 0 2 
k=1 k 

n 
V'F = 2 ~ 0 V' 0 

k=1 k k ' 

therefore 

<V'F,V'0.> = 20.x2 • 
1 1 

Also -,..2 (x) = p2 lx 12P-2 , therefore 

V'"A.2 = 2p2 (p-1) lx !2P-4 ~ xk V'xk. 

Now 

by the homogeneity of 0.. Thus 
1 

< V'"A.2 ' V' 0. > = 2 p3 (p- 1) 0. 
1 1 

on S m- 1 • Hence the horizontal projection of V' x2 is proportional to the horizontal 

projectiOQ of V'F. Since ~is proportional to the projection of V'F onto Tsm-1; 

the claim is proved. 0 
Example 8.4.4 Consider Example 8.2.1 , Case (2). Here 0: E 8 R 2 , 

0 =(01 ,02 )isgivenby 

01 (x,y) 

02 (x,y) 2<X,y>, 
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where x,y are quaternions. The level hypersurfaces are parametrized by the sets 

Ms = { ei8 (coss. x + isins.y); e E (0,2 TT), (x,y) E s3 , 2 1 , where s E (0, TT/4 ). 

If z E M , then z can be expressed in the form 
s 

z ei6(coss.x + isins.y) 

(cosecoss.x- sin9sins.y) + i(sin()coss.x +cos6sins.y). 

Then 

IX 12 - ly"l2 

2 2 2 .2 .2 2 2 .2 
cos 8 cos s +sin 6 sm s - sm () cos s - cos 6 sm s 

cos 2 6 • cos 2 s • 

and 

02 (z) -2(cos 6 coss sin 6 coss - sin 8 sins cos 8 sins) 

sin 2 6 • cos 2 s . 

d b 1 d ) 2i6 • 
Thus "'IMs: Ms - \os2s. S ; 17 (z = cos2s.e 

Theorem 8. 4. 2 allows us to construct many equi variant maps x : S m- 1 - sn 

associated to a harmonic polynomial morphism 0: Em - En with dilation A given 

by A2 (x) = p2 lx 12P-2 . We simply define X by 

X (z) = (cos 2 a(s H01ro p(z)), sin 2 a (s)) , 

where F = I 0 12 is parametrized such that F = cosps, r= s- 1 ( 0), p is the projec­

tion down normal geodesics onto rand a(O) = 0, aln/p) = n/2. 

In particular all the harmonic morphisms associated to a Clifford system give such 

equivariant maps, and hence we have examples of equivariant maps between spheres 

with respect to isoparametric functions, where one of the isoparametric functions has 

non-homogeneous hypersurfaces. This then justifies our use of isoparametric hyper­

surfaces as opposed to homogeneous hypersurfaces. 

Furthermore, when the same isoparametric function gives rise to two distinct 

harmonic Riemannian submersions via Theorem 8.1.5, we expect tq be able to con­

struct examples of equivariant maps similar to Example 5.3.4. Indeed the two Rie­

mannian submersions of Example 8.2.1 given by Cases (2) and (3) give rise to 
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Example 5.3.4. Similarly Cases (1) and (4) of Example 8.2.1 generate the Hopf 

map from s7 to s 4• 

In fact, suppose 0: Rm - Rn is a harmonic polynomial morphism, satisfying 

m - 2 = p(n- 2) 

where p is the degree of the homogeneous polynomials defining ~ • Then from Pro­

position 8. 1. 1 we see that 

for all x E Rm. Let 0 = (~ 1 •••• , 0n), and define harmonic polynomial morphisms 

p and o by 

p <01 ••••• flp) 

0 (~p+l' • • ·' ~n) 

Call such p and cr complementary. 

Let M be a level hypersurface of the isoparametric function f defined by 
s 

f(x) = lp(x) 12 1 1 , for each x E sm-1. Then since 
sm-

1 = lp 12 + lo 12 , 

M must also be a level hypersurface of the isoparametric function g defined by 
s 

g(x) = ldx)l2 lsm-1• for all x E sm-l. From Theorem 8.4.2, we obtain harmo-

nic homothetic submersions p IMs: Ms - a(s) sp-1, (] IMS: Ms - b(S) sq-l. 

p +q = n, for some functions a(s) and b(s). Since 1 = IP 12 + lol2 , we have 

a(s) 2 + b(s)2 = 1, so we can choose a(s) =cos ps and b(s) =sin ps (by writing 

Ms = r-I(cos2 ps)). 

Given two harmonic polynomial maps g1: Sp-1 -sr-I and g2 : s<J-l - ss-l, we 

can now define an equivariant map from sm-1 to sr+s-1 as follows. Let x Esm-1, 

then( p(x), c(x)) E Sp-1 * Sq-1 ; we then compose with g * g , to obtain the point 
1 2 

g 1 * g2 (p(x), c+(x)) E sr-I * ss-1 = sr+s-1. The map so defined is clearly equi-

variant since the map of level hypersurfaces is harmonic of constant energy density 

by Theorem 8.4.2. 

The Smith maps of Section 1. 3 can be seen to arise in this way as follows. Consider 
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the harmonic polynomial morphism ~: Rm - Rm given by 

~ (x , o o o , x ) = (x , o o o , x ) o 
1 m 1 m 

Define the -complementary maps o and o by 

p (x , o 0 o ,x ) = (x1, o o o , x ) 
1 m p 

and 

c(x , o o o ,x ) = (x , o o o , x ) o 
) 1 m p+1 m 

Then f(x) = lp(x) 12 lsm- 1 is isoparametric of degree 2o Let Ms be the level hy­

persurface given by f(x) =cos2 so Then g(x) = lc-(x)l2 lsm- 1 is given by g(x) = 

sin2s on M 0 For x Esm-1; (p (x), c-(x) E sp- 1 •sQ-1, p + q = mo We now compose 
s 

with harmonic polynomial maps g1: S p-1 - S r- 1 and g2: gQ-1 - S s-1 as above, 

to obtain the Smith map from sm-1 to sn-1 , r + s = no 
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9 Deformations of metrics 

9. 1 Deformations of the metric for harmonic morphisms 

Let 0: (M,g) -- (N,h) be a horizontally conformal map between Riemannian mani­

folds with dilation ;\.. Let U c M be an open set upon which d0 is non-zero. Let 

x E U, then for horizontal vectors X, Y e=7(,, we have 
X 

2 * ;\. g(X, Y) = 0 h(X, Y) • 

Thus we can decompose g as 

(9.1.1) 

2 "'* over U, where ( 1/;\. )v h represents the horizontal part of the metric, and k the 

vertical part. 

The stress-energy tensor of 0 is given by 

s0 e(0)g- 0*h 

!n;\2.g- A2 (g-k) 

!<n- 2) A2 .g + A2.k 

where n = dim N. Thus 

We therefore have 

(9.1.2) 

(9.1.3) 

Lemma 9.1.1 If 0: (M,g) -- (N.h) is horizontally conformal with dilation A , 

and 0 is a submersion almost everywhere, then 0 is harmonic (and so a harmonic 

morphism) if and only if 

(9.1.4) 

where k represents the fibre metric (where defined) (assume both sides of (9.1.4) 

are zero when A= 0). 
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Define a new metric g on M by 

(9.1.5) 

where c/- , p2 : M - R are smooth functions. The new metric g may not be we 11-

defined everywhere if c 2 , l have zeros, and we remove such points to obtain the 

Riemannian manifold (M, g). Denote by V the associated Levi-Civita connection. 

The map ff: (M,g) - (N,h) induces a new map 0: (M,g) - (N,h). If 0 is a sub­

mersion almost everywhere then, from Lemma 9. 1. 1, ~ is a harmonic morphism 

if and only if 

2 2 -~ 2 2 2 
~ ( 2 - n). d ( ~ o ) = V (). o • k/ p ) • (9.1.6) 

Our aim is to reformulate and solve equation ( 9. 1. 6), given that equation ( 9. 1. 4) is 

satisfied. 

Proposition 9.1. 2 The connection coefficients of V are described in terms of 

~ose of V by the following formulae. Use the following ranges of indices: 

1~i,j, ••• ~n=dimN;n+1~r,s, ••• ~m=dimM;1~a,b, ••• ~m; 

and let ( e ) = (e., e ) denote a local orthonormal basis with,respect 
a 1< a< m 1 r 

to g over a subset U of M where d~ t- Q\., and e.,e are horizontal, vertical, 
- --- -1r 
for each i , r respectively. Let (~ ) = (e. , e ) = ( oe. , p e ) denote the corresponding 

- a 1 r 1 r 
orthonormal basis with respect to g over U • Then 
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g(et' v_ e ) e s 
r 

g(e., V- e > 
1 er s 

g(e , V- ej > 
r ei 

2 I 
pg(et,V e ) + !p(g(et,dp(e )e ) + g(e ,dp(et)e ) 

e s r s s r 
r 

- g(e ,dp(e )et)) ; 
r s 

o 2g(e., v e ) + (a2/2p)g(e ,dp(e. )e ) 
1 er s s 1 r 

2 
a g(ek' V e.) + i a(g(ek, d a(e. )e.) + g(e., d a(ek)e.) 

ei J 1 1 1 1 

- g(e. ,d o(e. )ek)); 
1 J 

2 2 2 2 !(g(e ,(a +p )V e.) - g(e ,(o - p )Ve e.) 
r ei J r j 1 

2 + (o I a)g(e. ,d a(e )ei)); 
J r 

(9.1.7) 

(9.1.8) 

(9.1.9) 

(9.1.10) 



g(e ,V- es) = pcg(e ,V e ) + ~ag(e ,dp(e.)e ) ; 
r ei r ei s r 1 s 

(9.1.11) 

g(e.,Veei)= oag(e.,V e.)+ ~o(1-(a 2/p))g(e ,[e.,e.)) 
) r ) er 1 r 1 1 

+ (Q/ a) g(e. ,d a(e )e.)); 
J r 1 

( 9. 1. 12) 

(9.1.13) 

Proof We use the fundamental formula for an orthonormal frame X, Y, Z E 't TM 

(see for example [ 14)): 

g(Z,VXY) = ~(g(Z,[X,Y)) +g(Y,[Z,X))-g(X,[Y,Z))). (9.1.14) 

Similarly 

(9.1.15) 

Let !.1' denote Lie derivation. First of all we prove equation (9.1.7). 

From equatior. (9.1.15), letting k, k denote the vertical part of the metric g,g 

respectively, 

g ("et, ve es> 
r 

On the other hand 

g<et, v- e > e s 
r 

Therefore 

g(et, \7_ e ) e s 
r 

1 (-k - (P - ) -k (- (il - ) -k - < £) - ) 2 (P~, .J- e + e ,.;:z._ e - (e ,.;z- et ) 
• er s s et r r es 

~(pk(et,!/_ e ) + k(et,dp(e )e ) + ... ) e s · r s 
r 

~(pg(et,.ff e ) + g(et,dp(e )e + ... ) 
e s r s 

r 

"k (et, v_ e > e s 
r 

(1/p)k(e , \7_ e > 
t e s 

r 

(1/p)g(et, v_ e ) 
e s 

r 

2 
p g(et, V e ) + ~p(g(et,dp(e )e ) + ... ) • 

e s r s 
r 

The p~oof of equation (9.1.9 ) is similar. We prove one more, say equation (9.1.10); 
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the others use similar arguments. 

From equation ( 9. 1. 15), and writing H, H for the horizontal part of the metrics 

g ,g respectively 

Now 

hi<(e , !f_ e.) + ilce. y_ e.) - li<e., ..'l'_ e ) ) 
r e 1. J J , e 1 1 e. r 

r l 

~((1/p)k(e ,Sf' ae.) +(o/a)H(e.,Y (a e.) 
r CTe i 1 J e r 1 

- H(e.,Y' pe )) 
1 e. r 

J 
2 

~((a /p)k(e, Sf'. e.)+ pH(e.,Y e.) 
r ei J J er 1 

-pH(e.,Y e)+ (o/a)H(e.,da(e )e.)) 
1 e. r 1 r 1 

J 

H(e.,.!f e.) - H(e.,.!f e ) = g(e.,V e.- V e ) - g(e.,V' e - V' e.) 
J er 1 1 e. r J e 1 e. r 1 e. r 1 e J 

J r 1 J r 

Thus 

But 

= g(e.,V' e ) - g(e.,V' e ) 
J e. r 1 e. r 

1 J 
= g(e ,V e. + V' e.). 

r ei J ej 1 

2 
~(g(e ,(a /p)(V' e.-V' e.))+g(e ,p(V' e. 

r e. J e. 1 r e. J 
1 J 1 

"k <e , v_ e. ) 
r ei J 

0/p)k(e, v_ e.) 
r ei J 

(1/p )g(e 'v_ e.) 
r ei 1 

g( e 1. , d a(e )e.)) . 
r 1 

giving equation ( 9.1. 10) • 

-. * We now compare V k with V k • 

Lemma 9.1.3 Using the notations of Proposition 9. 1. 2 
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+ V e ) ) 
e. i 

J 
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- * 2 * V k(e.) = p V k(e.) + ~p(m-n)dp(e.) 
J J J 

(9.1.16) 

for all j = 1, ... , n. 

Proof The divergence with respect to g is given by (summing over repeated in­

dices) 

( 1/a)(k(e , v- e.) 
a e J 

a 

(p/a) k(e • 'V- e.) 
a ea J 

- (p/a)g(e • v_ e.) 
r er J 

a k ('e • d a (e ) e . ) ) 
a a J 

2 2 2 2 
(p Ia ) (a g(e., V e ) + (a /2p)g(e ,dp(e.) e ) ) , 

J er r r J r 

from equations ( 9. 1. 11) and ( 9.1.13), 

2 
P g ( e. , 'V e ) + ~ p ( m - n) d p( e.) . 

J err 1 

On the other hand 

Lemma 9,1.4 

-· V k(e ) 
s 

- k (e , 'V e. ) 
a ea J 

- g(e , 'V e.) 
r er J 

g(e., 'V e ) • 
J e r 

r 

Using the notations of Proposition 9. 1. 2; 

p2 dp(e ) - ~n(pJd (da(e ) + p2v*k(e ) 
s s s 

for all s = n+l, ••• , m. 

0 

(9.1.17) 

Proof The divergence with respect to :g is given by (summing over repeated indices) 
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-· V' k(e ) 
s 

e k(e ,e ) - k(V'_ e ,e ) - k(e • v_ e ) 
a as eas a es 

a a 

pe (ok(e ,e )) g(V'_ e.,e ) - g(V'_ e ,e ) 
r r s e. 1 s e r s 

pdp (e ) 
s 

1 r 

- pg(e ,V'_ e ) 
r e s 

r 
2 

- p g(e , V' e.) 
s e. 1 

2 
- (p /2 a) g(e. ,d a(e )e.) 

1 s 1 
1 

2 
- p g(e V' e ) -

s' e r 
r 

~pg(e ,dp(e )e ) 
r s r 

- o<<1lo>g<e ,v- e >- g(e ,dp(e >e >>, 
r e s r r s 

r 

where we have used equations ( 9. 1. 7 ) and ( 9. 1. 10) ; 

2 2 2 
= pdp(e) -p g(e ,V' e.)-n(p /2a)da(e )-p g(e ,V' e) 

s s e. 1 s s e r 
1 r 

2 
-~(m-n)pdp(e )-p g(e ,V' e )-pdp(e) 

s r e s s 
r 

2 
+ ~(m- n)pdo(e ) + p dp(e ) 

s s 

using equation ( 9.1. 7) again; 

o2dp(e ) - ~n(p2/a)da(e ) - p2 (g(e , V' e.) 
s s s e. 1 

1 

+ g(e , V' e ) + g(e , V' e ) ) • 0 
s e r r e s 

r r 

Theorem 9. 1. 5 Assume equation ( 9. 1. 4) is satisfied, i.e. ~ is a harmonic 

morphism. Then ~: (:M ,g) - (N,h) is a harmonic morphism if and only if, 

using the notations of Proposition 9. 1. 2, 
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2 2 2 2 
(2-n)d(a )(e.)= ~(a/p )(m-n)d(o )(e.) 

J J 

2 2 
(2- n)d(~ a )(e ) 

s 
2 22 2 22 

2p d(a ~ /p )(e) +a~ (2dp(e) 
s s 

2 2 2 2 
- ko(l/a )d(a )(e ) - n(1/~ )d~ (e )) 

s s 

(9.1.18) 

(9.1.19) 



if and only if 

(2- n)d(loga2 He.) = !<m- n)d(logp2 )(e.) 
J J 

(9.1.20) 

2 2 2 2 2 
(2- n)d(log~ o) (e ) = 2d(log(a ~ /p ) (e ) + 2dp(e ) 

s s s 

2 2 
- !nd(log o )(e ) - nd(log;\ ) (e ) , 

s s 
(9.1.21) 

for all j = 1, ••• , n and all s = n + 1, ••• , m. 

Remark 9. 1. 6 It may be more natural to write p 2 = o2~ 2 , whence equations 

( 9.1.18) and ( 9.1.19) become 

2 2 
J J 

2 2 2 
(2 - n) d(logp ) (e ) = 2 d(log(J.t /p )) (e ) + 2 dp(e ) 

s s s 
l (2- n) (d(logJ.t ) - d(log~ ) ) (e.) = (m- n) dp(e.) 

2 
- nd(log(r.t/~))(e ) - nd(log~ )(e ) , 

s s 

for all j = 1 , ••• , n and s = n + 1 , ••• , m • 

Proof of Theorem 9. 1. 5 First note that (summing over repeated indices) 

v*<~2k) = d~2 <e )k(e ) + ~2 v*k , 
r r 

v*«~2 o2/p2 )k) = d(o2~2/p2 )Ce )k(e > +(a\2;p2 >v*k. 
r r 

Let equation (9.1.6) act on e.; 
J 

22 22 2-. l (2- n)d(~ a )(e.) (a ~ /p ) V k(e.) 
J J 

(a2~2;p2 )(p2 v*k(e.) + lo (m- n)dp(e.)) 
J J 

from Lemma 9. 1. 3, 

a2!<2- n)d~2 (e.) + (a2~2/p)!(m- n)dp(e.) 
J J 

from equation ( 9. 1. 4) , 

giving equation (9.1.18) • 

Now let equation (9.1.6) act one , to give 
s 

2 2 2 2 2 - - 2 2 2 -. !<2- n)d(~ a ) (e ) = d(a ;\ /p ) (e )k(e ,e ) + (a ~ /p ) V k(e ) 
s r r s s 

2 22 2 22 2 2 
= p d(a ~ /p )(e ) +(a ~ /p ) (p dp(e ) 

s s 
in(p2/a)da(es) + p2v* k <es)) • 

(9.1.22) 

(9.1.23) 

(9.1.24) 

(9.1.25) 
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Now 

v*k(e ) 
s 

(1/X2 )V*(X2k)(e ) - (1/X2 )dX2 (e ) 
s s 

~(2- n) ( 1/X2 )dX2 (e ) ( 1/X2 )d~2 (e ) 
s s 

2 2 
~n (1/X )d X (e ) 

s 

giving equation (9.1. 19) • 

0 

2 2 
Remark 9.1.7 Ifweput o =p 1,thenequations(9.1.18)and(9.1.19)aresa-

tisfied- similarly, if o2 and p2 are both constant then the equations are also satis­

fied. 

Remark 9. 1. 18 There is a striking analogy of the above methods with the classical 

notion of a Backlund transformation. There one has a hyperbolic surface M in R 3 , 

which is parametrized by a function a-: M - R. This function is in fact the angle 

between the asymptotic coordinates, and the Codazzi equation for M is equivalent to 

a- satisfying a certain second order equation called the Sine-Gordon equation. Con­

versely to each solution of the Sine-Gordon equation one can construct a hyperbolic 

surface. The idea of Backlund was to write down a first order equation in two va­

riables a- and a-, such that if a- is a solution of the Sine-Gordon equation, and a­

satisfies the first order equation, then ~is also a solution of the Sine-Gordon equa­

tion. 

We view Backlund's idea in a more general context as the following fundamental 

principal: 

( i) we are given a second order problem parametrized by a set of functions 

(a-,{3, ••• ), 

( ii) there is a set of first order equations in two sets of parameters; (a-, {3, ••• 

and (~,/3, ... ), which associates to a solution(a-,(3, ••• ) of(i) another solution 

( ~. {3, ••• ) of ( i) • 

In the context of harmonic morphisms, the parameter is the dilation X . 

9.2 Examples 

Given a particular harmonic morphism l1: (M,g) - (N,h), we attempt to find 

non-trivial solutions to equations ( 9. 1. 18) and ( 9. 1. 19). We also consider instances 

when there are no non-trivial solutions. 
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Example 9.2.1 If n >2 and pis constant, thenequation(9.1.18) implies that 

V c? is vertical. 

Example 9.2.2 If p is constant and V")..2 , v(J2 are both vertical, then equation 

( 9. 1. 18) is satisfied. Equation (9. 1. 19) now becomes 

2 2 2 2 2 d(").. (] ) (e ) = (] ").. d (J(e ) + (] d ").. (e ) , 
s s s 

for all s = n + 1, ••• , m. This is satisfied if and only if 

2d(J(e ) = do(e ) • 
s s 

for all s = n + 1 , ••• , m ; if and only if 

d(J = 0 ' 

i.e. the function o is constant. 

Example 9.2.3 If o = 1, n = 2, v(J2 is horizontal and V")..2 is vertical, then equa­

tions (9.1.18) and (9.1.19) are both satisfied. For example, let ff: :R3\{01 .... 82 

be defined by ff(x) = x/ lx I, for all x E 1R3 \{0). Then if 11: 82 .... E is any smooth 

function \\him does not take on the value 0 E E ; o : E3 \ { 01 .... E , C'(x) = 11 ( 0 (x) ) has 
2 

the property that V (] is horizontal. We thus obtain a new harmonic morphism 

"i : E 3 \ { o1 .... 82 • 

Example 9.2.4 Let 0: 83 .... 82 be the Hopf fibration; so ")..2 = 1. Put p = 1, then 

equation (9.1.19) is satisfied if Vc2 is horizontal. For example, if o: 82 .... E is 

smooth and does not take on the value zero; define (] : 83 .... E by (J(X) = a ( 0 (x) ) , 

for all x E 83 , then V (]2 is horizontal. 

Example 9.2.5 Let ff:E4 --E3 betheHopfmapofExample 7.2.1. Then ff is 

a harmonic morphism with dilation ").. given by ").. 2 (x) = 4 lx 12 , for all x E m4 . The 

fibres of 0 consist of great circles of Euclidean spheres of m4 , and hence V")..2 is 

perpendicular to the fibres and hence horizontal. Equation ( 9. 1. 20) becomes 

- d(log (]2 ) (e.) = !d(log p2) (e.) , 
J J 

for all j = 1, ••• ,n • This is solved if (J-2 = constant x o • If we choose p2 such 

that Vp2 is horizontal- for example p2 (x) = 1/J( lx 12 ) for some function 1/J, then 
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equation ( 9. 1. 21) is also satisfied. More generally we have the following. 

Example 9.2.6 Let fj: :JR4 - R 3 be the Hopf map of Example 9.2.5, and let 

nP: Rp - R 4 , p > 4, be t't>.e projection map. Define X p: :JRP - R 3 , by X p = 
4 - . 2 

fj o n~ . Then x P is a harmonic morphism with dilation :>.. given by :>.. (x) = 

4 In~ (x)J2 , for all x E :JRP. Thus V':>..~ is horizontal. Equation (9.1.20) becomes 

- d(log o2 )(e.) = i<p-3)d(logp2 )(e.) , 
J J 

for all j = 1, ••• , n. This is satisfied if 

-2 (p-3) 
o = constant x p 

If we choose o2 such that V'o2 is horizontal, for instance a2 (x) is a function of 

ITT~(x)J2 , thenequation(9.1.21) is also satisfied. 

Remark 9. 2. 7 
2 

When V' a2 is horizontal, then o 2 1 fj- 1 ( y) = constant, for all 

y E N. Thus a can be thought of as a function on N, and we can view the change 
- - 2 from the map 0 to the map 0 as changing the metric h on N to h = h/ o • That is, 

equation ( 9. 1. 5) can be seen as 

In this way, by suitable choices of the functions p2 and a2 , it may be possible, by 

removing and adding certain points, to change the topology of both M and N. 

9.3. Deformations of metrics for equivariant maps 

Suppose 0: M - N is equivariant with respect to the isoparametric functions 

s: M - R and t: N - R, where we suppose M and N are space forms. Using the 

notations of Chapter 4, we consider the map 

0 t:M -Nt s, s 

between level hypersurfaces of s and t. Away from the focal varieties we can express 

the metric g of M as 

g 
2 

ds + g , 
8 

where g is the induced metric on M • Similarly on N, we can write h as 
s s 

h = dt2 + ht ' 
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where ht is the induced metric on Nt . 

There exist four reasonable kinds of deformations of the metrics g and h which 

we can consider. 

(i) Define the new metric g on M* by 

(9.3.1) 

where11(s) is smooth and positive and such that the resulting metric g extends 

smoothly across the focal varieties. 

- * ( ii ) Define the new metric h on N by 

(9.3.2) 

where v(t) is smooth and positive and such that the resulting metric h extends 

smoothly across the focal varieties. 

(iii) If Ms has principal curvatures ;>..1 (s), ••• , ;>..p(s) with corresponding eigen­

spaces s1 , ••• , S , then we can express g as 
p s 

gs = g1 (s) + g2(s) + .•. + gp(s) , 

where, for each x E M , and for all X, Y E T M , then 
S X S 

g.(s) (X,Y) = 
l X 

g (X,Y), if X,YE S.(x) 
s l 

0 if either X E S. (x) , j "f 
J 

or Y E S. (x) , j "f 
J 

Define a new metric g on M • by g = ds2 +g , where 
s 

2 2 
gs = (1/o1 (s) )g1 (s) + ••• + (1/op(s) )gp(s), (9.3.3) 

where (\ , ••• , op are smooth functions, which are chosen such that the resulting 

metric g extends smoothly across the focal varieties. Essentially, if M is a sphere, 

we are changing the sizes of the principal curvature small spheres of M by a factor 
s 

depending on s. 

( i v) We perform a similar construction to case (iii) for the level hyper surface Nt, 

by expressing ht in its principal curvature components as 

h=h+ ••. +h' 
t 1 q 
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and defining 

(9.3.4) 

for some suitably chosen functions v1 ( t) , . . . , v q ( t) • 

(v) We can perform various combinations of (i) ••• (iv) always in such a way 

that the resulting metric extends smoothly over all of M(N) • 

We consider each case in turn. 

(i) We first of all work out the connection coefficients for the new metric. I..et 

x E M* , and locally about x choose an orthonormal basis (X , ~) with respect to g, 
a 

such that if y EM for some s, then (X (y)) is an orthonormal basis for T M • 
s a y s 

Now g = (1/J.L(Sj\ ds2 + g , and so (X , ~) =(X ,J.L 0 is an orthonormal basis with 
s a a 

respect to g . 

Proposition 9. 3 • 1 If V is the I..evi-Civita connection with respect to g , then 

(9.3.5) 

for all X E TM , for s E int I • s - s 

Proof We can adapt Proposition 9. 1.2 to apply to our present situation, and if we 

write a2 = 1 and p2 = i, then equation (9.1.10) tells us that 

therefore 
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In the new metric g, V s no longer has unit length. We therefore reparametrize 

s into s = s(s), such that g(Vs, vs) =1. Clearly the new mapfJ: ( M,g) - (N,h) 

(we assume that g extends smoothly to M) is harmonically equivariant with respect 

to s and t. We must therefore compute the equations ( 4. 1. 4) and ( 4. 1. 5) in the 

new variable s. Note we are using Theorem 4.2.1, since s is now a generalized 

isoparametric function. 

Suppose ~ 1 (s0 ), .•• , ~P(s0 ) aretheprincipalcurvaturesof Ms0 withrespectto 

the isoparametric function s, for some s E int I . Then from Proposition 9.3.1, 
0 s 

the principal curvatures of Ms with respect to the generalized isoparametric func-
- 0 -

tion s are given by ~ 1 (s0 ), ••. , ~p (s0 ), where 

(9.3.6) 

for k = 1, ••. , p. Therefore 

~ s = p. ~s , (9.3.7) 

where 6 is the Laplacian with respect to g . 

Since p.. (t) and 'Yk (s,t) remain unchanged, equation (4.1.4) becomes 
Jk p 

o"(s) +~so'(s)+ 1; IJ.. 'Yk=O; 
k=1 Jk 

(9.3.8) 

this is the reduction equation in the new metric g • Alternatively this equation can 

be written in terms of the variable s (from Lemma 5. 1. 1) as 

" 2 p 
a (s)ldsl + Liso'(s) + 1.: IJ.. 'Yk = 0. 

g k=1 Jk 

2 2 
Now I ds I _ = p. ( s) • Whilst 

g 

x s = s" < s> 1 d~ 1.: + s' < s) x s • 
g 

But without loss of generality assume inf I = 0, then s is given by 
s 

s 
s(s) = f (1/p.(u))du. 

0 

(9.3.9) 

(9.3.10) 

Therefore s•(s) =p.(s) and s"(s).=p.•(s)p.(s). Thusequation(9.3.12) becomes 

comes 
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( )2 "< ) ( I ) - - I f..l s a s + p. (s)p.(s) + 11<s ~ s )a (s) 

p 
+ l: ll· 'Yk = o. 

k=l Jk 

We therefore have, substituting equation ( 9.3. 7) into equation (9. 3. 11); 

(9.3.11) 

Theorem 9. 3. 2 .!!_ ~: (M,g) - (N.h) is equivariant with respect to isoparametric 

functions s and t. Then ~ is harmonic with respect to the metric g of (i) if 

and only if 

for all s E int I • 
s 

(9.3.12) 

(ii) Such a change in the metric h still preserves the fact that ~ is equivariant, 

for we are simply reparametrizing the isoparametric function t. We therefore have 

Theorem 9.3.3 .!!_ ~: (M,g) - (N,h) is equivariant with respect to the isopara-

metric functions s and t. Then ~ is harmonic with respect to the metric h of 

(ii) on N, if and only if 
p 

a" (s) + ~sa' (s) + v l: p.. yk 
k=l Jk 

for all s E int I • 
s 

0 • (9.3.13) 

Proof We have simply changed the principal curvatures p 1, ••• , p.q on the level 

hypersurfaces Nt by an amount given by equation ( 9. 3. 9) , that is 

ji.(t) = v(t)p..(t) • 
J J 

Since t is a generalized isoparametric function on (N ,h), the result now follows from 

equation (4.2.1). D 
(iii) First of all assume p = 2. Let m. =dim S., i = 1,2, and consider a local frame 

1 1 

field adapted to the principal curvature spaces; (X , ~) _1 1 a a- , •.• ,m-

Proposition 9. 3. 4 
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(Xi,xr.~) = ( u1 Xi ,u2xr.~) is an orthonormal frame field with respect to g. If 

V is the Levi-Civitaconnection for g then the following formulae hold: 

g(Xi' v~ 0 

g(Xr' Vff> 

g(LVT 0 

0 

0 

0 

g (X V- X) = 
t' X s 

~ g(LV~O 

2 
o2g(Xt,VX Xs) 

r 

g(X., VX- X ) 
1 s 

r 

g(X.,Vx- X.) 
J 1 r 

g(X.,VX"f) 
1 j 

g(X , V- 0 
r X 

s 

g(X , VX 0 
r i 

r 

= o1o2 g(Xj'~ Xi) 
r 

= g(X., ~X 0 - d o1 (~) g(X. ,X. )/2a1 1 • J 1 
J 

= g(X , ~- 0- do(O g(X ,X )/2u2 r X r s 
s 

= 0 ' 

etc • , for all i , j , k = 1 , ••• , m 1 and r , s, t = m + 1 , ••• , m + m 2 . 
- 1 1 

(9.3.14) 

(9.3.15) 

(9.3.16) 

(9.3.17) 

(9.3.18) 

(9.3.19) 

(9.3.20) 

(9.3.21) 

(9.3.22) 

(9.3.23) 

(9.3.24) 

\ 9 •. 3.25) 

Similar formulae hold for any p, and we now assume p is arbitrary, and the prin­

cipal curvatures are A , ••• , A with multiplicities m , ••• , m respectively. 
1 p 1 p 

Corollary 9.3.5 The integral curves of ~ are affinely parametrized geodesics 

with respect to g . 

Proof This follows from equations ( 9. 3. 14), ( 9. 3. 15) and ( 9. 3.16). 0 
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Corollary 9.3.6 H X. is a principal curvature vector of M , with principal 
- - 1 s 

curvature ~k. , then in the metric g ,X. is still a principal curvature vector of M 
1 1 . s 

with principal curvature 

~kl. = ~k. + ok. (s)/2 ok. , 
1 1 1 

Proof This follows from equations (9.3.23), (9.3.24) and (9.3.25). 0 

Corollary 9. 3. 7 With respect to the metric g , s is a generalized isoparametri c 

function. 

Corollary 9. 3. 8 .!L ~ is the Laplacian with respect to g , then 

p I 

.6. s = .6os - k~1 mk ok (s)/2 ok • 

Proof This follows from Corollary 9.3.6 and Lemma 2.2. 9 • 0 
Let S 0 denote the stress-energy tensor of 0 in the metric g . Assume p = 2 

again, and use the ranges of indices 1 ~ i , j , • • . < m ; m + 1 < r, s, ••• < m + m2 ; - 1 1 - - 1 
1 < a,b, ••• < m +m2 =m-1. 

- - 1 

We make the following further assumption on the equivariant map 0 • One of the 

conditions for equivariance is that dti(Sk) c Tjk, for each k = 1, ••• , p and some 

jk = 1, ••• , q • H whenever k t- 1, then jk t- j 1; call 0 p- equivariant. For 

example, the map 0: sm- 1 - sn-1; 0(coss.x, sins.y)) =(cos a (s)g1 (x), 

sina(s)g2 (y)), xESp-1, yEsQ-1, p+q=m,g1: gp-1 -sr-1, g2 : 

S q-1 - ss·-1, harmonic of constant energy, is p- equi variant. On the other hand 

the map 0: S3 - S2 ; 0 (coss.x, sins y)) = (cos a(s), sina(s) .xki), x,y E s\ is 

not p- equivariant. 

Proposition 9. 3. 9 In the above notation, and provided 0 is p- equi variant, then 

forall k= 1, ••• , m 1 andall r=m1 +1, ••• , m 1 +m2 • 

Proof The divergence is given by (summing over repeated indices) 
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= -xa<l:1*ht<xa,xk» + 1:1*ht<v:x xa,xk>+ 1:1*h/xa,vxxk> 
a a 

- * -- -.--
= -Xi(0 ht(Xi,Xk))- Xr(0 ht(Xr,Xk)) 

+ 0*ht<v:x_xi,xk> + 0*ht<v:x xr,xk> 
1 r 

+ 1:1*ht(xi, vx_xk> + (ht<xr, vx xk> 
1 r 

Now the 2nd term vanishes since 1:1 preserves the orthogonality of the principal cur­

vature spaces. The 4th term vanishes from equation (9.3.19) and the fact that the 

mean curvature of the small sphere .'/2 is proportional to ~ (Proposition 2.2.1). 

The 6~ term is equal to a~ a1 0*ht(Xr, VX Xk) • Now 
r 

g(Xs' vx Xk) = - g(Vx xs,Xk) • 
r r 

But~ Xs points in the ~ direction, since by Proposition 2.2.1, .'/2 is totally 
r 

geodesic in Ms' and so g(VX Xs,Xk) = 0. Thus VX Xk is either in s1 space or 

proportional to ~ • Both are ~rpendicular to s2 spa~e, and since 0 preserves this 

orthogonality; the 6 ~ term vanishes also. 

We have now established that 

But this is zero since the right hand side of equation ( 4. 1. 11) is zero. 

Similarly -·- -V s 0(Xr) = 0 • 

Similarly for arbitrary p, and provided 0 is p-equivartant, one can -.-show v S 0 is proportional to ~. O 

Theorem 9.3.10 _!L 0: (M,g) -- (N,h) is p- equivariant with respect to isopara­

metric functions s and t. Then 0 is harmonic with respect to the metric g of 

( iii ) if and only if 
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p a~ (s) ' p 2 
a"(s) + (6.s - l: m ) a (s)- ~dt( l: ak -yk) 

k=l k 2 ak(s) k=l 

for s E int I • 
s 

Proof As before 

p 
where 1i = l: yk, with 

k=l 
p 

(d/ds) 1i 2 l: 
k=l 

Also 

Thus 

* -l: l: ak0 ht(X. ,-;\kX. ), where (X. ). span Sk; 
k ik lk lk lk lk 

= l f ak ak 'Yk , from Proposition 4.1.12 (i) • 

The result now follows from Corollary 9.3.8 • 
0 

Remark 9.3.11 We have defined the notion of 0 being p-equivariant in order to 

carry out the deformation. We can replace this condition by another condition. 

If 0: (M,g) -- (N,h) isequivariant (M,N are space forms )and01.'fk:.'/k-.:tjk 
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is harmonic of constant energy density, for each k = 1, ... , p, then call 0 . 'f­

equivariant with respect to s and t. We remark that all the examples of equivariant 

maps which we have considered are also . 'I- equivariant. 

If ~ is . '1- equivariant and ik: '/ k - M is the inclusion map, then 

is proportional to 'I, and since llik is proportional to ~; trace Vd0(dik,dik) is 

proportional to 17 • 

The new metric g has simply changed the sizes of the small spheres . '/k, and we 

conclude that¢ : M - Nt is still harmonic and of constant energy density in the 
s, t s 

metric g. Thus 0 is equivariant with respect to the generalized isoparametric func-

tions sand t, and Theorem 9.3.10 is true with "p-equivariant" replaced by"'/­

equivariant"as a consequence of Theorem 4.2.1. 

(iv) As in case (i), the integral curves of 'I = Vt are geodesics in the metric h, 

and the function t: N - E is a generalized isoparametric function. 

If we assume that 0: (M,g) - (N,h) is.'/- harmonically equivariant, then in the 

metric ii, 0 t: M - Nt is harmonic of constant energy density. Thus 0: (M,g)-
- s, s 

(N, h) is equivariant with respect to the generalized isoparametric functions s and t. 

Theorem 4.2.1 applies, and we have 

Theorem 9.3.12 ..!f. 0:(M,g) -(N,h) is.Y-equivariantwithrespecttotheiso­

parametric functions s and t. Then 0: (M,g) - (N,h) is harmonic, where ii 
is defined in (iv), if and only if 

I 

a"(s) +As a'(s) + :2; (#l. + 11. /211. )'Yk/11. 2 0 , 
k 1k 1k 1k 1k 

for all s E int I . 
s 

Proof For each k = 1, ••• , p, we have 

where h. 
J 

2 
h./11. ( t) ) • In the metric h the principal curvatures become 

J J 

;rj + 11. 1 /2 11. 
IJ.j J J 
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for each j = 1, ... , q. The result now follows from equation ( 4. 2. 1). 0 

9. 4 Examples 

Example 9.4.1 Consider a deformation of the kind given by case (i) of Section 9.3. 

The problem here is to define p.(s) in such a way that g is a smooth metric. For 

example, suppose p. (s) = K, where K is some constant not equal to 1. Consider the 

join s2 = s1• s0 Then, with respect to the metric g, s2 still has constant positive 
2 

curvature [38, vol.2, chapter 7, addendum 1] equal to K , and so has the appea-

ranee of a rugby ball [ 13 ]. , ... , ... , 

The metric g is no longer C 1• However, we can use bump functions as follows. 

Define 

/l(s) 1 + t;(s), t: > -1, 

where t;: I - R is smooth, and supp 1; c int I • Then (M, g) is a smooth mani-
s s 

fold, since the question of smoothness only arises across the focal varieties of s, 

and g = g in a neighbourhood of these focal varieties. 

Suppose we are given one of Smith's maps between two spheres. Consider the re­

duction equation (equation (1.3. 7)) - we use the reparametrized equation to avoid 

singularities. Use the same reparametrization for equation (9.3.12), so that time 

varies between - oo and + oo. Then the asymptotic form of the equation as time 

u - ~ oo will be the same in the deformed case as in the undeformed case. Theo­

rem 6. 1. 9 and Lemma 6. 1. 11 will still apply to yield a non-trivial solution. There­

fore for the maps of Example 5.3.1, the existence of solutions will be unaffected 

provided It; !2 is small enough. For maps from Euclidean space to sphere and from 

hyperbolic space to sphere, the existence of solutions will again be unaffected. How­

ever, we would expect the asymptotic behaviour as time u - + oo to change substan­

tially with such deformations of the metric. 
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Example 9. 4. 2 Consider the join of two harmonic polynomial maps as described in 

Section 1.3 and Example 5.3.1 • We thus consider a map 0: sm-1 - sn-1 of the 

form 

fj(coss x, sins y) = (cos a(s) g1 (x) , sin o(s) g2 (y)) , 

where X~ gP- 1 , yESq- 1 , g1: Sp-1 - gr- 1 and g2 :sq-1 - gS- 1 are harmonic 

polynomial maps with I dg. 12 = ~. constant, p + q = m and r + s = n. Express the 
1 1 

Euclidean metric on sm-l in the form 

2 2 2 .2 2 
g = d S + COS S dx + SID S. d y 

where dx2 is the Euclidean metric for sp- 1 and dl that for sq- 1• We now per­

form a deformation of the metric incorporating deformations of types (i) and (iv) in 

order to make sm-1 ellipsoidal. The deformed metric has the form 

- ( 2. 2 2 2 )d 2 2 2 d 2 b2. 2 d 2 g = a SID S + b COS S S + a COS S X + SID S y 

The sphere has now become ellipsoidal with one set of axes of length a having mul­

tiplicity (p - 1) , one set of length b with multiplicity (q - 1), and the other axis 

retaining its original length of 1. 

Using the notations of equation ( 9. 3. 1) and equation ( 9. 3. 3) we have 

2 2.2 2 2 2 2 2 2 
~(s) = 1/(a SID s +b cos s), u1 = 1/a , u2 = 1/b • 

The reduction equation before the deformation has the form 
2 

a"(s) + .6S a'(s) + ~ ~- 'Yk , 
k=1 Jk 

(9.4.1) 

where As = (q - 1) cots - (p- 1) tans, 'Y 1 = ~1 cos2 (s )/cos2s, 'Y2 = ~2 sin2(s )/sin2s, 

~. = tana(s) and p.. = - cota(s). Using Theorem 9.3.2 and Theorem 9.3.10, 
J 1 12 • 

after the deformation the reduction equation becomes 

o''(s) + ( d& 
~( s) 

(9.4.2) 

u 
We reparametrize equation (9.4.2) as before, defining a new variable u bye =tans. 

Note that care must be taken since equation (9.4.2) no longer has the form of equatic:n 

(5.1.1) and so Lemma 5.1.1 no longer applies. 
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A computation shows that 

or 

' 2 2 2 . 2 2 2 3/2 
p (s) = -(a - b ) sins coss/(a sm s + b cos s) 

p.' (s(u)) 
( 2 u b2 -u ) 3/2 a e + e 

u -u 
e +e 

This tends to 0 as u tends to both - oo and + oo. Also 

2 
p.(s(u)) 

u -u 
e +e 

2 u b2 -u a e + e 

which tends to 1/b2 , 1/a2 as u tends to -oo, + oo respectively. Equation (9.4.2) 

becomes, in the variable u , 

a"(u) + 
u 

e 

1 

-u 
+ e 

I!_ -u u , 
[ +(q-2)e - (p-2)e I a (u) 

fJ. 

u 
( l/ 2) ( A1e 

+ ~ sin a( u )cos a( u) ----:o2::--­u -u 
e +e a 

If we abbreviate this in the form 

" ' a ( u) + h ( u) a ( u) + g ( u) sin a( u) cos a( u) 0 , 

then as u 

~ h(u) 

l g(u) 

and as u 

~ h( u) 

- 00 ' 

q - 2 

--A 
2 

- + 00, 

-(p-2) 

l g(u) - Al. 

The damping conditions become 
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Thus the damping conditions are as for the Smith maps, given by equations (1.4.1). 

The methods of Section 6. 1 (in particular Theorem 6. 1. 9 and lemma 6. 1. 10) show 

that, provided the damping conditions are satisfied, equation ( 9. 4. 3 ) has a solution 

yielding a smooth harmonic map fj: sm- 1 - gn-1, where sm- 1 has the ellip­

soidal metric described above. We therefore have 

Theorem 9.4.3 The join of two harmonic polynomial maps between spheres for 

which the damping conditions are satisfied, can be deformed into a harmonic map 

from the ellipsoid described above into the sphere. The ellipsoid has distinct eccen­

tricities given by a, b and 1, for any a, b ,. 0. 

Theorem 9.4.4. The join of two harmonic polynomial maps between spheres for 

which the damping conditions are not satisfied, cannot be rendered harmonic by an 

ellipsoidal deformation of the above kind on the domain sphere. 

In contrast, however, we see in the next example that such ellipsoidal deformations 

on the range sphere do yield harmonic maps. 

Example 9.4.5 Again consider the join of two harmonic polynomial maps as in the 

last example. We can deform the range sphere into an ellipsoid, by using deforma­

tions of types ( ii) and ( i v). That is, we express the Euclidean metric on S n- 1 in the 

form 

h = d t 2 + cos 2 t d u 2 + sin 2 t d v'?- , 

where du2 ,dv2 aretheEuclideanmetricsfor sr- 1, Ss- 1 respectively, thenthe 

deformed metric has the form 

- 2.2 2 2 2 2 2 2 2.2 2 
h = (a sm t + b cos t) d t + a cos t d u + b sm t d v . 

In the notations of equation (9.3.2) and the equation (9.3.4), we have 

2 2.2 2 2 2 2 2 2 
v(t) = 1/(a smt +b cost), v 1 = 1/a, v 2 = 1/b. 

From Theorem 9.3.3 and Theorem 9.3.12, the reduction equation becomes 

2 
a" ( s) + .6 s a' ( s) + v (a( s) ) E 

k=1 
0 . 

(9.4.5) 
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Using the parameter u defined by eu =tans, we obtain 

a" (u) + -....;:1;..._­
u -u 

e +e 

-u u , 
((q- 2 )e - (p -2 )e ) a (u) 

sin a (u) cos a (u) 
+ u -u 2 2 2 2 .! 

(e + e ) (a sin a (u) + b cos o(u)) 2 

(9.4.5) 

This equation fits into the category of equations described in Theorem 6.1. 9. The 

arguments of that section apply, and we are assured of a solution provided the dam­

ping conditions are satisfied. These damping conditions are that 

2 
~ (q - 2) < 4b A2 

~ (p- 2 >2 < 4a A1 • (9.4.6) 

Given the join of two harmonic polynomial maps, we can always find a and b such 

that ( 9. 4. 6) are satisfied. We therefore have 

Theorem 9.4.6 The join of any two harmonic polynomial maps can always be ren­

dered harmonic by a suitable deformation on the range sphere. 

In particular we can apply Theorem 9.4.6 to Example 1.4.1 to yield 

Theorem 9. 4. 7 For each n = 1, 2, • • • , there exists a smooth metric on the 

range sphere sn (depending on n), such that each ~lass of Tin (Sn) = z contains 

a harmonic representative. The deformed spheres are familiar ellipsoids whose 

eccentricities depend only on n and the degree. 
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