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Backward stochastic partial differential equations driven by infinite
dimensional martingales and applications

Abstract: This talk addresses on a complete filtered probability space (Ω,F , {Ft}t≥0 ,P)
a result of the existence and uniqueness of the solution to a backward stochastic partial
differential equation of the following type:

(BSPDE)

{ − dY (t) = ( A(t) Y (t) + F (t, Y (t), Z(t)Q1/2(t)) ) dt− Z(t) dM(t)− dN(t),
Y (T ) = ξ.

Here ξ is given as the terminal value, A(t, ω) is a predictable linear operator on a separable
Hilbert space H, M is a continuous martingale in H and Q is its local covariation operator.

Assuming that A(t, ω) is coercive for a.a. (t, ω) ∈ [0, T ] × Ω and F : [0, T ] × Ω × H ×
L2(H) → H satisfies a global Lipschitz condition, we show that this BSPDE admits a unique
solution (Y, Z,N) of predictable processes taking values in V ×L2(H)×M2,c(H) such that
N(0) = 0 and N is very strongly orthogonal to M in the sense of Métivier [3], where V ⊂ H.
This space M2,c(H) consists of square integrable continuous martingales which take values
in H, while L2(H) denotes the space of Hilbert-Schmidt operators from H into itself.

We apply this result for instance in studying the maximum principle for a controlled
stochastic evolution system as in [2]. The references [1] and [4] are related to this work.
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