ABDULRAHMAN AL-HUSSEIN

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK and Department of Mathematics, Qassim University, Buraydah, Saudi Arabia

Backward stochastic partial differential equations driven by infinite dimensional martingales and applications

Abstract: This talk addresses on a complete filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$ a result of the existence and uniqueness of the solution to a backward stochastic partial differential equation of the following type:

$$(BSPDE) \begin{cases} -dY(t) = (A(t) Y(t) + F(t, Y(t), Z(t)Q^{1/2}(t))) dt - Z(t) dM(t) - dN(t), \\ Y(T) = \xi. \end{cases}$$

Here ξ is given as the terminal value, $A(t, \omega)$ is a predictable linear operator on a separable Hilbert space H, M is a continuous martingale in H and Q is its local covariation operator.

Assuming that $A(t, \omega)$ is coercive for a.a. $(t, \omega) \in [0, T] \times \Omega$ and $F : [0, T] \times \Omega \times H \times L_2(H) \to H$ satisfies a global Lipschitz condition, we show that this BSPDE admits a unique solution (Y, Z, N) of predictable processes taking values in $V \times L_2(H) \times \mathcal{M}^{2,c}(H)$ such that N(0) = 0 and N is very strongly orthogonal to M in the sense of Métivier [3], where $V \subset H$. This space $\mathcal{M}^{2,c}(H)$ consists of square integrable continuous martingales which take values in H, while $L_2(H)$ denotes the space of Hilbert-Schmidt operators from H into itself.

We apply this result for instance in studying the maximum principle for a controlled stochastic evolution system as in [2]. The references [1] and [4] are related to this work.

References

- [1] AL-HUSSEIN, A.: Backward stochastic partial differential equations driven by infinite dimensional martingales and applications. *Warwick-2009 preprint, submitted.*, (2009).
- [2] AL-HUSSEIN, A.: Maximum Principle for Controlled Stochastic Evolution Equations. *Warwick-2009 preprint, submitted.*, (2009).
- [3] MÉTIVIER, M.: Semimartingales. A course on stochastic processes, de Gruyter Studies in Mathematics, 2, Walter de Gruyter & Co, Berlin-New York. (1982).
- [4] ØKSENDAL, B.; PROSKE, F.; ZHANG, T.: Backward stochastic partial differential equations with jumps and application to optimal control of random jump fields. *Stochastics*, 77, no. 5, 381–399, (2005).