Persitent random walks. Convergence and application to insurance

Pierre VALLOIS

Institut Elie Cartan, Nancy-Université, CNRS, INRIA, Boulevard des Aiguillettes, B.P. 239, F54506 Vandoeuvre les Nancy Cedex
e.m. : vallois@iecn.u-nancy.fr

Joint work with S. Herrmann (Nancy), R. Keinj (Nancy) and C. Tapiero (NewYork University, Polytechnic Institute)

Let $\left(Y_{n}\right)_{n \geq 0}$ be a Markov chain valued in $\{-1,1\}$. The associated persitent random walk is the process : $X_{n}:=Y_{0}+Y_{1}+\cdots+Y_{n}$.

1) An application of persistent random walks to insurance is given. We also consider the validity of the model with real data.
2) Set $\alpha:=P\left(Y_{1}=1 \mid Y_{0}=-1\right)$ and $\beta:=P\left(Y_{1}=-1 \mid Y_{0}=1\right)$. Suppose :

$$
\alpha=\alpha_{0}+c_{0} \Delta_{x}, \quad \beta=\beta_{0}+c_{1} \Delta_{x}
$$

with $\alpha_{0}, \beta_{0} \in[0,1], c_{0}, c_{1} \in \mathbb{R}$ et Δ_{x} is a small parameter $\left(\Delta_{x} \rightarrow 0\right)$.
We are interested in the linear interpolation $\left(\widetilde{Z}_{s}^{\Delta}\right)_{s \geq 0}$ of $Z_{s}^{\Delta}:=\Delta_{x} X_{s / \Delta_{t}}$ for any $s \in \Delta_{t} \mathbb{N}$.
Let $\rho_{0}:=1-\alpha_{0}-\beta_{0}$. When $\rho_{0} \neq 1$ and $\Delta_{t}=\left(\Delta_{x}\right)^{2}$, it is shown that there exists a renormalization of $\left(\widetilde{Z}_{s}^{\Delta}\right)_{s \geq 0}$ which converges in distribution to a Brownian motion with drift, as $\Delta_{x} \rightarrow 0$. In the case where $\rho_{0}=1$, we choose $\Delta_{x}=\Delta_{t}$, then $\left(\widetilde{Z}_{s}^{\Delta}\right)_{s \geq 0}$ converges to the zig-zag process.

