Persitent random walks. Convergence and application to insurance

Pierre VALLOIS

Institut Elie Cartan, Nancy-Université, CNRS, INRIA, Boulevard des Aiguillettes, B.P. 239, F54506 Vandoeuvre les Nancy Cedex

e.m. : vallois@iecn.u-nancy.fr

Joint work with S. Herrmann (Nancy), R. Keinj (Nancy) and C. Tapiero (New-York University, Polytechnic Institute)

Let $(Y_n)_{n\geq 0}$ be a Markov chain valued in $\{-1,1\}$. The associated persitent random walk is the process : $X_n := Y_0 + Y_1 + \cdots + Y_n$.

1) An application of persistent random walks to insurance is given. We also consider the validity of the model with real data.

2) Set $\alpha := P(Y_1 = 1 | Y_0 = -1)$ and $\beta := P(Y_1 = -1 | Y_0 = 1)$. Suppose :

 $\alpha = \alpha_0 + c_0 \Delta_x, \quad \beta = \beta_0 + c_1 \Delta_x,$

with $\alpha_0, \beta_0 \in [0, 1], c_0, c_1 \in \mathbb{R}$ et Δ_x is a small parameter $(\Delta_x \to 0)$. We are interested in the linear interpolation $(\widetilde{Z}_s^{\Delta})_{s\geq 0}$ of $Z_s^{\Delta} := \Delta_x X_{s/\Delta_t}$ for any $s \in \Delta_t \mathbb{N}$.

Let $\rho_0 := 1 - \alpha_0 - \beta_0$. When $\rho_0 \neq 1$ and $\Delta_t = (\Delta_x)^2$, it is shown that there exists a renormalization of $(\widetilde{Z}_s^{\Delta})_{s\geq 0}$ which converges in distribution to a Brownian motion with drift, as $\Delta_x \to 0$. In the case where $\rho_0 = 1$, we choose $\Delta_x = \Delta_t$, then $(\widetilde{Z}_s^{\Delta})_{s\geq 0}$ converges to the zig-zag process.