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•1 Pursuit Games: Rabbit-Wolf.

Player I (the rabbit):

Xu
1 (s) = x1 +

∫ s

0
urdr, Xu

1 (0) = x1 ∈ R2,s ∈ [0,T ];u(·) ∈ B1(0);

Player II (the wolf):

Xv
2 (s) = x2 +

∫ s

0
vrdr, Xv

2 (0) = x2 ∈ R2,s ∈ [0,T ];v(·) ∈ B2(0).

Rabbit: U = L0
F(0,T ;B1(0)); Wolf: V = L0

F(0,T ;B2(0)).

Take: f = 0, Φ(x1,x2) = |x1− x2|. Then the cost functional is

J(0,x;u,v) = E[|Xu
1 (T )−Xv

2 (T )|].

Rabbit wants to maximize J(0,x;u,v) via his control u ∈U;

Wolf wants to minimize J(0,x;u,v) via his control v ∈ V .



We consider the following functions:

W0(0,x) := essinfv∈V esssupu∈UJ(0,x;u,v);

– Player II (Wolf) begins the match, Player I (Rabbit) reacts to the
choice of Player II.

V0(0,x) := esssupu∈Uessinfv∈V J(0,x;u,v).

– Player I (Rabbit) begins the match, Player II (Wolf) reacts to the
choice of Player I.

1) Computation for V0(0,x). i.e., Rabbit begins the match: Sup-
pose |x1− x2| ≤ T . Rabbit chooses u ∈ U, Wolf can choose v(s) =
x1−x2

T +us, s ∈ [0,T ], then v ∈V . −→ J(o,x;u,v) = 0−→V0(0,x) = 0.
Therefore,

V0(0,x) = 0,∀x = (x1,x2)with |x1− x2| ≤ T.



2) Computation for W0(0,x). i.e., Wolf begins the match: Wolf chooses
v ∈ V , Rabbit can choose

u(s) =

{
0, if E[|x1−Xv

2 (T )|]≥
(T∧1)2

2 , s ∈ [0,T ], ;

e(T ∧1), if E[|x1−Xv
2 (T )|]<

(T∧1)2

2 , |e|= 1, s ∈ [0,T ].

Then u∈U. −→ J(o,x;u,v)≥ (T∧1)2

2 −→W0(0,x)≥ (T∧1)2

2 . Therefore,

W0(0,x)>V0(0,x),∀x = (x1,x2)with |x1− x2| ≤ T.

−→ The result of the game depends on which player begins.

Special case in which the game ”control against control” doesn’t de-
pend on who begins the game: Hamadene, Lepeltier, Peng (1997).

Additional assumptions: σ(t,x,u,v) = σ(t,x), independent of (u,v) ∈
U×V , there exists σ−1 : Rd → Rd×d Lipschitz and bounded.



•2 BSDE Decoupled With Forward SDE

S.Peng, (1997)BSDE and stochastic optimizations; Topics in stochas-
tic analysis. J.Yan, S.Peng, S.Fang and L.Wu, Chapter 2, Science
Press. Beijing (in Chinese).

In this section we give an overview over basic results which are nec-
essary for us on BSDEs associated with forward SDEs. We consider
measurable functions b : [0,T ]×Ω×Rn→Rn and σ : [0,T ]×Ω×Rn→
Rn×d , which are supposed to satisfy the following conditions:

(H4.1)

(i) b(·,0) and σ(·,0) are Ft -adapted processes, and there exists
some constant C > 0 such that |b(t,x)|+ |σ(t,x)| ≤C(1+
|x|),a.s., for all 0≤ t ≤ T, x ∈ Rn;

(ii) b and σ are Lipschitz in x; i.e., there is some constant C > 0



such that

|b(t,x)−b(t,x′)|+ |σ(t,x)−σ(t,x′)| ≤C|x− x′|, a.s.,

for all 0≤ t ≤ T, x, x′ ∈ Rn.

We now consider the following SDE parameterized by the initial con-
dition (t,ζ) ∈ [0,T ]×L2(Ω,Ft ,P;Rn):{

dX t,ζ
s = b(s,X t,ζ

s )ds+σ(s,X t,ζ
s )dBs, s ∈ [t,T ],

X t,ζ
t = ζ.

(1)

Under the assumption (H4.1), SDE (1) has a unique strong solu-
tion, and, for any p ≥ 2, there exists Cp ∈ R such that, for any
t ∈ [0,T ] and ζ,ζ′ ∈ Lp(Ω,Ft ,P;Rn),

E
[

sup
t≤s≤T

|X t,ζ
s −X t,ζ′

s |p|Ft

]
≤ Cp|ζ−ζ

′|p, a.s., (2)

E
[

sup
t≤s≤T

|X t,ζ
s |p|Ft

]
≤ Cp(1+ |ζ|p), a.s.



We emphasize that the constant Cp in (2) depends only on the Lip-
schitz and the growth constants of b and σ. Let now be given two
real-valued functions f (t,x,y,z) and Φ(x) which shall satisfy the fol-
lowing conditions:

(H4.2)

(i) Φ : Ω×Rn → R is an FT ⊗ B(Rn)-measurable random
variable and f : [0,T ]×Ω×Rn×R×Rd → R is a mea-
surable process such that f (·,x,y,z) is Ft -adapted, for all
(x,y,z) ∈ Rn×R×Rd ;

(ii) There exists a constant C > 0 such that | f (t,x,y,z)−
f (t,x′,y′,z′)|+ |Φ(x)−Φ(x′)| ≤ C(|x− x′|+ |y− y′|+ |z−
z′|), a.s.,
for all 0≤ t ≤ T, x, x′ ∈ Rn, y, y′ ∈ R and z, z′ ∈ Rd ;

(iii) f and Φ satisfy a linear growth condition; i.e., there exists
some C > 0



such that, dt ×dP-a.e., for all x ∈ Rn,
| f (t,x,0,0)|+ |Φ(x)| ≤C(1+ |x|).

With the help of the above assumptions we can verify that the coeffi-

cient f (s,X t,ζ
s ,y,z) satisfies the hypotheses (1) and (2) and ξ=Φ(X t,ζ

T )
∈ L2(Ω,FT ,P;R). Therefore, the following BSDE possesses a unique
solution:{

−dY t,ζ
s = f (s,X t,ζ

s ,Y t,ζ
s ,Zt,ζ

s )ds−Zt,ζ
s dBs, s ∈ [t,T ],

Y t,ζ
T = Φ(X t,ζ

T ).
(3)

Proposition 1 We suppose that the hypotheses (H4.1) and (H4.2)
hold. Then, for any 0 ≤ t ≤ T and the associated initial conditions
ζ,ζ′ ∈ L2(Ω,Ft ,P;Rn), we have the following estimates:

(i) E
[

sup
t≤s≤T

|Y t,ζ
s |2 +

∫ T

t
|Zt,ζ

s |2ds|Ft

]
≤C(1+ |ζ|2), a.s.;



(ii) E
[

sup
t≤s≤T

|Y t,ζ
s −Y t,ζ′

s |2 +
∫ T

t
|Zt,ζ

s −Zt,ζ′
s |2ds|Ft

]
≤C|ζ−ζ′|2, a.s.

In particular,

(iii) |Y t,ζ
t | ≤C(1+ |ζ|), a.s.; (iv) |Y t,ζ

t −Y t,ζ′
t | ≤C|ζ−ζ′|, a.s.,

(4)
where the constant C > 0 depends only on the Lipschitz and the growth
constants of b, σ, f , and Φ.

For the proof the reader is referred to Proposition 4.1 of Peng (1997);
a similar result can be found in El Karoui, Peng, and Quenez (1997).

Let us now introduce the random field:

u(t,x) = Y t,x
s |s=t , (t,x) ∈ [0,T ]×Rn, (5)

where Y t,x is the solution of BSDE (3) with x ∈ Rn at the place of
ζ ∈ L2(Ω,Ft ,P;Rn).



As a consequence of Proposition 1 we have that, for all t ∈ [0,T ],
P-a.s.,

(i) |u(t,x)−u(t,y)| ≤C|x− y| for all x,y ∈ Rn;
(ii) |u(t,x)| ≤C(1+ |x|) for all x ∈ Rn.

(6)

Remark In the general situation u is an adapted random function; that
is, for any x ∈ Rn, u(·,x) is an F-adapted real-valued process. Indeed,
recall that b, σ, and f all are F-adapted random functions while Φ is
FT -measurable. On the other hand, it is well known that, under the
additional assumption that the functions

(H4.3) b,σ, f ,and Φ are deterministic,

u is also a deterministic function of (t,x).

The random field u and Y t,ζ, (t,ζ)∈ [0,T ]×L2(Ω,Ft ,P;Rn), are related
by the following theorem.

Theorem 2 Under the assumptions (H4.1) and (H4.2), for any t ∈



[0,T ] and ζ ∈ L2(Ω,Ft ,P;Rn), we have

u(t,ζ) = Y t,ζ
t , P-a.s. (7)

The proof of Theorem 2 can be found in Peng (1997); we give it for
the reader’s convenience. It makes use of the following definition.

Definition 3 For any t ∈ [0,T ], a sequence {Ai}N
i=1 ⊂ Ft (with 1 ≤

N ≤ ∞) is called a partition of (Ω,Ft) if ∪N
i=1Ai = Ω and Ai ∩A j =

φ, whenever i 6= j.

Proof of Theorem 2 . We first consider the case where ζ is a simple
random variable of the form

ζ =
N

∑
i=1

xi1Ai , (8)

where{Ai}N
i=1 is a finite partition of (Ω,Ft) and xi ∈Rn, for 1≤ i≤ N.



For each i, we put (X i
s ,Y

i
s ,Z

i
s)≡ (X t,xi

s ,Y t,xi
s ,Zt,xi

s ). Then X i is the solu-
tion of the SDE

X i
s = xi +

∫ s

t
b(r,X i

r)dr+
∫ s

t
σ(r,X i

r)dBr, s ∈ [t,T ],

and (Y i,Zi) is the solution of the associated BSDE

Y i
s = Φ(X i

T )+
∫ T

s
f (r,X i

r ,Y
i
r ,Z

i
r)dr−

∫ T

s
Zi

rdBr, s ∈ [t,T ].

The above two equations are multiplied by 1Ai and summed up with
respect to i. Thus, taking into account that ∑i ϕ(xi)1Ai = ϕ(∑i xi1Ai),
we get

N

∑
i=1

1AiX
i
s =

N

∑
i=1

xi1Ai +
∫ s

t
b

(
r,

N

∑
i=1

1AiX
i
r

)
dr+

∫ s

t
σ

(
r,

N

∑
i=1

1AiX
i
r

)
dBr



and

N

∑
i=1

1AiY
i
s = Φ

(
N

∑
i=1

1AiX
i
T

)
+

∫ T

s
f

(
r,

N

∑
i=1

1AiX
i
r ,

N

∑
i=1

1AiY
i
r ,

N

∑
i=1

1AiZ
i
r

)
dr

−
∫ T

s

N

∑
i=1

1AiZ
i
rdBr.

Then the strong uniqueness property of the solution of the SDE and
the BSDE yields

X t,ζ
s =

N

∑
i=1

X i
s1Ai , (Y

t,ζ
s ,Zt,ζ

s ) =

(
N

∑
i=1

1AiY
i
s ,

N

∑
i=1

1AiZ
i
s

)
, s ∈ [t,T ].

Finally, from u(t,xi) = Y i
t , 1≤ i≤ N, we deduce that

Y t,ζ
t =

N

∑
i=1

Y i
t 1Ai =

N

∑
i=1

u(t,xi)1Ai = u

(
t,

N

∑
i=1

xi1Ai

)
= u(t,ζ).



Therefore, for simple random variables, we have the desired result.

Given a general ζ ∈ L2(Ω,Ft ,P;Rn) we can choose a sequence of sim-
ple random variables {ζi} which converges to ζ in L2(Ω,Ft ,P;Rn).
Consequently, from the estimates (4) and (6) and the first step of the
proof, we have

E|Y t,ζi
t −Y t,ζ

t |2 ≤ CE|ζi−ζ|2→ 0, i→ ∞,
E|u(t,ζi)−u(t,ζ)|2 ≤ CE|ζi−ζ|2→ 0, i→ ∞,

and Y t,ζi
t = u(t,ζi), i≥ 1.

Then the proof is complete.

Remark Under (H4.1), (H4.2), and (H4.3) we know u(t,x) is 1
2 -Hölder

continuous in t: There exists a constant C such that, for every x ∈
Rn, t, t ′ ∈ [0,T ],

|u(t,x)−u(t ′,x)| ≤C(1+ |x|)|t− t ′|
1
2 .

This inequality can be proved with the help of Theorem 2.



3. Proof of that the upper and lower value functions are
deterministic (main tool is a Girsanov transformation argument).

Proof. Let H denote the Cameron–Martin space of all absolutely con-
tinuous elements h ∈Ω whose derivative ḣ belongs to L2([0,T ],Rd).

For any h ∈ H, we define the mapping τhω := ω+ h, ω ∈ Ω. Obvi-
ously, τh : Ω→ Ω is a bijection, and its law is given by P ◦ [τh]

−1 =
exp{

∫ T
0 ḣsdBs − 1

2
∫ T

0 |ḣs|2ds}P. Let (t,x) ∈ [0,T ]×Rn be arbitrarily
fixed, and put Ht = {h ∈ H|h(·) = h(· ∧ t)}. We split now the proof
in the following steps:

First step: For any u ∈Ut,T , v ∈Vt,T , and h ∈Ht , J(t,x;u,v) (τh) =
J(t,x;u(τh),v(τh)), P-a.s.

Indeed, we apply the Girsanov transformation to SDE (1) (with ζ =
x) and compare the obtained equation with the SDE obtained from
(1) by substituting the transformed control processes u(τh) and v(τh)
for u and v. Then from the uniqueness of the solution of (1) we get

X t,x;u,v
s (τh) = X t,x;u(τh),v(τh)

s for any s ∈ [t,T ], P-a.s. Furthermore, by a



similar Girsanov transformation argument we get from the uniqueness
of the solution of BSDE (2)

Y t,x;u,v
s (τh) = Y t,x;u(τh),v(τh)

s for any s ∈ [t,T ], P-a.s.,

Zt,x;u,v
s (τh) = Zt,x;u(τh),v(τh)

s , dsdP-a.e. on [t,T ]×Ω.

That means

J(t,x;u,v)(τh) = J(t,x;u(τh),v(τh)), P-a.s.

Second step: For β ∈ Bt,T , h ∈ Ht , let βh(u) := β(u(τ−h))(τh), u ∈
Ut,T . Then βh ∈ Bt,T .

Obviously, βh maps Ut,T into Vt,T . Moreover, this mapping is nonan-
ticipating. Indeed, let S : Ω → [t,T ] be an F-stopping time and
u1,u2 ∈ Ut,T , with u1 ≡ u2 on [[t,S]]. Then, obviously, u1(τ−h) ≡
u2(τ−h) on [[t,S(τ−h)]] (notice that S(τ−h) is still a stopping time),
and because β∈Bt,T we have β(u1(τ−h))≡ β(u2(τ−h)) on [[t,S(τ−h)]].



Therefore,

β
h(u1) = β(u1(τ−h))(τh)≡ β(u2(τ−h))(τh) = β

h(u2) on [[t,S]].

Third step: For all h ∈ Ht and β ∈ Bt,T we have

{esssupu∈Ut,T
J(t,x;u,β(u))}(τh)= esssupu∈Ut,T

{J(t,x;u,β(u))(τh)}, P-a.s.

Indeed, with the notation I(t,x,β) := esssupu∈Ut,T
J(t,x;u,β(u)), β ∈

Bt,T , we have I(t,x,β) ≥ J(t,x;u,β(u)), and thus I(t,x,β)(τh) ≥
J(t,x;u,β(u))(τh), P-a.s., for all u ∈Ut,T . On the other hand, for any
random variable ζ satisfying ζ ≥ J(t,x;u,β(u))(τh), and hence also
ζ(τ−h) ≥ J(t,x;u,β(u)), P-a.s., for all u ∈ Ut,T , we have ζ(τ−h) ≥
I(t,x,β), P-a.s., i.e., ζ≥ I(t,x,β)(τh),P-a.s. Consequently,

I(t,x,β)(τh) = esssupu∈Ut,T
{J(t,x;u,β(u))(τh)}, P-a.s.

Fourth step: W (t,x) is invariant with respect to the Girsanov trans-
formation τh, i.e.,

W (t,x)(τh) =W (t,x), P-a.s., for any h ∈ H.



Indeed, similarly to the third step we can show that for all h ∈ Ht

{essinfβ∈Bt,T I(t,x;β)}(τh) = essinfβ∈Bt,T {I(t,x;β)(τh)}, P-a.s.

Then, from the first step to the third step we have, for any h ∈ Ht ,

W (t,x)(τh) = essinfβ∈Bt,T esssupu∈Ut,T
{J(t,x;u,β(u))(τh)}

= essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u(τh),β

h(u(τh))

= essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u,βh(u))

= essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u,β(u))

= W (t,x), P-a.s.,

where we have used {u(τh)|u(·) ∈ Ut,T} = Ut,T and {βh|β ∈ Bt,T} =
Bt,T in order to obtain both latter equalities. Therefore, for any h ∈
Ht , W (t,x) (τh) =W (t,x), P-a.s., and since W (t,x) is Ft -measurable,
we have this relation even for all h ∈ H. Indeed, recall that our un-
derlying fundamental space is Ω = C0([0,T ];Rd) and that, due to
the definition of the filtration, the Ft -measurable random variable



W (t,x)(ω), ω ∈ Ω, depends only on the restriction of ω to the time
interval [0, t].

The result of the fourth step combined with the following auxiliary
Lemma 1 completes the proof.

Lemma 1. Let ζ be a random variable defined over our classical Wiener
space (Ω,FT ,P), such that ζ(τh) = ζ, P-a.s., for any h ∈ H. Then
ζ = Eζ, P-a.s.

Proof. Let h ∈ H and A ∈ B(R). Then

E
[

1{ζ∈A} exp
{∫ T

0
ḣsdBs−

1
2

∫ T

0
|ḣs|2ds

}]
= E

[
1{ζ(τ−h)∈A} exp

{∫ T

0
ḣsdBs−

1
2

∫ T

0
|ḣs|2ds

}]
= E[1{ζ∈A}],



from which we deduce that

E
[

1{ζ∈A} exp
{∫ T

0
ḣsdBs

}]
= E[1{ζ∈A}]E

[
exp
{∫ T

0
ḣsdBs

}]
,

i.e., for any ϕ ∈ L2([0,T ];Rd),

E
[

1{ζ∈A} exp
{∫ T

0
ϕsdBs

}]
= E[1{ζ∈A}]E

[
exp
{∫ T

0
ϕsdBs

}]
.

Consequently, taking into consideration the arbitrariness of A ∈ B(R)
and of ϕ ∈ L2([0,T ];Rd), the independence of ζ of B and hence of FT
follows, but this is possible only for deterministic ζ.



4 Proof of DPP

Theorem 1 The lower value function W (t,x) obeys the following
DPP: For any 0≤ t < t +δ≤ T, x ∈ Rn,

W (t,x) = essinfβ∈Bt,t+δ
esssupu∈Ut,t+δ

Gt,x;u,β(u)
t,t+δ

[W (t +δ,X t,x;u,β(u)
t+δ

)]. (9)

Proof. To simplify notations we put

Wδ(t,x) = essinfβ∈Bt,t+δ
esssupu∈Ut,t+δ

Gt,x;u,β(u)
t,t+δ

[W (t +δ,X t,x;u,β(u)
t+δ

)].

The proof that Wδ(t,x) coincides with W (t,x) will be split into the
following lemmas.

Lemma 1 Wδ(t,x) is deterministic.

Proof. The proof of this lemma uses the same ideas as that of Propo-
sition 1, so it can be omitted here.

Lemma 2 Wδ(t,x)≤W (t,x).



Proof. Let β ∈ Bt,T be arbitrarily fixed. Then, given a u2(·) ∈Ut+δ,T ,
we define as follows the restriction β1 of β to Ut,t+δ :

β1(u1) := β(u1⊕u2)|[t,t+δ], u1(·) ∈Ut,t+δ,

where u1⊕ u2 := u11[t,t+δ]+ u21(t+δ,T ] extends u1(·) to an element of
Ut,T . It is easy to check that β1 ∈Bt,t+δ. Moreover, from the nonantic-
ipativity property of β we deduce that β1 is independent of the special
choice of u2(·) ∈Ut+δ,T . Consequently, from the definition of Wδ(t,x),

Wδ(t,x)≤ esssupu1∈Ut,t+δ
Gt,x;u1,β1(u1)

t,t+δ
[W (t +δ,X t,x;u1,β1(u1)

t+δ
)], P-a.s.

(10)
We use the notation Iδ(t,x,u,v) := Gt,x;u,v

t,t+δ
[W (t +δ,X t,x;u,v

t+δ
)] and notice

that there exists a sequence {u1
i , i≥ 1} ⊂Ut,t+δ such that

Iδ(t,x,β1) := esssupu1∈Ut,t+δ
Iδ(t,x,u1,β1(u1))= sup

i≥1
Iδ(t,x,u

1
i ,β1(u1

i )), P-a.s.

For any ε > 0, we put Γ̃i := {Iδ(t,x,β1) ≤ Iδ(t,x,u1
i ,β1(u1

i )) + ε} ∈
Ft , i ≥ 1. Then Γ1 := Γ̃1, Γi := Γ̃i\(∪i−1

l=1Γ̃l) ∈ Ft , i ≥ 2, form an



(Ω,Ft)-partition, and uε
1 := ∑i≥1 1Γiu

1
i belongs obviously to Ut,t+δ.

Moreover, from the nonanticipativity of β1 we have β1(uε
1) =

∑i≥1 1Γiβ1(u1
i ), and from the uniqueness of the solution of the

forward-backward SDE (FBSDE), we deduce that Iδ(t,x,uε
1,β1(uε

1)) =

∑i≥1 1ΓiIδ(t,x,u1
i ,β1(u1

i )), P-a.s. Hence,

Wδ(t,x) ≤ Iδ(t,x,β1)≤∑
i≥1

1Γi Iδ(t,x,u
1
i ,β1(u1

i ))+ ε (11)

= Iδ(t,x,u
ε
1,β1(uε

1))+ ε

= G
t,x;uε

1,β1(uε
1)

t,t+δ
[W (t +δ,X

t,x;uε
1,β1(uε

1)

t+δ
)]+ ε, P-a.s.

On the other hand, using the fact that β1(·) := β(· ⊕ u2) ∈ Bt,t+δ

does not depend on u2(·) ∈ Ut+δ,T , we can define β2(u2) := β(uε
1⊕

u2)|[t+δ,T ], for all u2(·) ∈ Ut+δ,T . The such defined β2 : Ut+δ,T →
Vt+δ,T belongs to Bt+δ,T since β ∈ Bt,T . Therefore, from the defini-
tion of W (t +δ,y) we have, for any y ∈ Rn,

W (t +δ,y)≤ esssupu2∈Ut+δ,T
J(t +δ,y;u2,β2(u2)), P-a.s.



Finally, because there exists a constant C ∈ R such that

(i) |W (t +δ,y)−W (t +δ,y′)| ≤C|y− y′| for any y, y′ ∈ Rn;
(ii) |J(t +δ,y,u2,β2(u2))− J(t +δ,y′,u2,β2(u2))| ≤C|y− y′|, P-a.s.,

for any u2 ∈Ut+δ,T ,
(12)

we can show by approximating X
t,x;uε

1,β1(uε
1)

t+δ
that

W (t+δ,X
t,x;uε

1,β1(uε
1)

t+δ
)≤ esssupu2∈Ut+δ,T

J(t+δ,X
t,x;uε

1,β1(uε
1)

t+δ
;u2,β2(u2)), P-a.s.

To estimate the right side of the latter inequality we note that there
exists some sequence {u2

j , j ≥ 1} ⊂Ut+δ,T such that

esssupu2∈Ut+δ,T
J(t +δ,X

t,x;uε
1,β1(uε

1)

t+δ
;u2,β2(u2))

= sup
j≥1

J(t +δ,X
t,x;uε

1,β1(uε
1)

t+δ
;u2

j ,β2(u2
j)), P-a.s.

Then, putting ∆̃ j := {esssupu2∈Ut+δ,T
J(t + δ,X

t,x;uε
1,β1(uε

1)

t+δ
;u2,β2(u2)) ≤



J(t +δ,X
t,x;uε

1,β1(uε
1)

t+δ
;u2

j ,β2(u2
j))+ε} ∈ Ft+δ, j ≥ 1; we have with ∆1 :=

∆̃1, ∆ j := ∆̃ j\(∪ j−1
l=1 ∆̃l) ∈ Ft+δ, j ≥ 2, an (Ω,Ft+δ)-partition and

uε
2 := ∑ j≥1 1∆ j u

2
j ∈Ut+δ,T . From the nonanticipativity of β2 we have

β2(uε
2) = ∑ j≥1 1∆ j β2(u2

j), and from the definition of β1, β2 we know
that β(uε

1⊕uε
2) = β1(uε

1)⊕β2(uε
2). Thus, again from the uniqueness of

the solution of our FBSDE, we get

J(t +δ,X
t,x;uε

1,β1(uε
1)

t+δ
;uε

2,β2(uε
2)) = Y

t+δ,X
t,x;uε

1 ,β1(u
ε
1)

t+δ
;uε

2,β2(uε
2)

t+δ

= ∑
j≥1

1∆ jY
t+δ,X

t,x;uε
1 ,β1(u

ε
1)

t+δ
;u2

j ,β2(u2
j )

t+δ

= ∑
j≥1

1∆ j J(t +δ,X
t,x;uε

1,β1(uε
1)

t+δ
;u2

j ,β2(u2
j)), P-a.s.



Consequently,

(13)

W (t +δ,X
t,x;uε

1,β1(uε
1)

t+δ
) ≤ esssupu2∈Ut+δ,T

J(t +δ,X
t,x;uε

1,β1(uε
1)

t+δ
;u2,β2(u2))

≤ ∑
j≥1

1∆ jY
t,x;uε

1⊕u2
j ,β(u

ε
1⊕u2

j )

t+δ
+ ε

= Y
t,x;uε

1⊕uε
2,β(u

ε
1⊕uε

2)

t+δ
+ ε

= Y t,x;uε,β(uε)
t+δ

+ ε, P-a.s.,

where uε := uε
1⊕uε

2 ∈Ut,T . From (11) and (13) and Comparison The-



orem for BSDEs, we have

Wδ(t,x) ≤ G
t,x;uε

1,β1(uε
1)

t,t+δ
[Y t,x;uε,β(uε)

t+δ
+ ε]+ ε

≤ G
t,x;uε

1,β1(uε
1)

t,t+δ
[Y t,x;uε,β(uε)

t+δ
]+ (C+1)ε

= Gt,x;uε,β(uε)
t,t+δ

[Y t,x;uε,β(uε)
t+δ

]+ (C+1)ε

= Y t,x;uε,β(uε)
t +(C+1)ε

≤ esssupu∈Ut,T
Y t,x;u,β(u)

t +(C+1)ε, P-a.s.

(14)

Since β∈Bt,T has been arbitrarily chosen we have (14) for all β∈Bt,T .
Therefore,

Wδ(t,x)≤ essinfβ∈Bt,T esssupu∈Ut,T
Y t,x;u,β(u)

t +(C+1)ε=W (t,x)+(C+1)ε.
(15)

Finally, letting ε ↓ 0, we get Wδ(t,x)≤W (t,x).

Lemma 3 W (t,x)≤Wδ(t,x).

Proof. We continue to use the notations introduced above, and from



the definition of Wδ(t,x) we have

Wδ(t,x) = essinfβ1∈Bt,t+δ
esssupu1∈Ut,t+δ

Gt,x;u1,β1(u1)
t,t+δ

[W (t +δ,X t,x;u1,β1(u1)
t+δ

)]

= essinfβ1∈Bt,t+δ
Iδ(t,x,β1),

and, for some sequence {β1
i , i≥ 1} ⊂ Bt,t+δ,

Wδ(t,x) = inf
i≥1

Iδ(t,x,β
1
i ), P-a.s.

For any ε > 0, we let Λ̃i := {Iδ(t,x,β1
i )− ε ≤ Wδ(t,x)} ∈ Ft , i ≥

1, Λ1 := Λ̃1 and Λi := Λ̃i\(∪i−1
l=1Λ̃l) ∈ Ft , i ≥ 2. Then {Λi, i ≥

1} is an (Ω,Ft)-partition, βε
1 := ∑i≥1 1Λiβ

1
i belongs to Bt,t+δ, and

from the uniqueness of the solution of our FBSDE we conclude
that Iδ(t,x,u1,β

ε
1(u1)) =∑i≥1 1ΛiIδ(t,x,u1,β

1
i (u1)), P-a.s., for all u1(·)



∈Ut,t+δ. Hence,

Wδ(t,x) ≥ ∑
i≥1

1Λi Iδ(t,x,β
1
i )− ε

≥ ∑
i≥1

1Λi Iδ(t,x,u1,β
1
i (u1))− ε

= Iδ(t,x,u1,β
ε
1(u1))− ε

= G
t,x;u1,β

ε
1(u1)

t,t+δ
[W (t +δ,X

t,x;u1,β
ε
1(u1)

t+δ
)]− ε,

P-a.s., for all u1 ∈Ut,t+δ. (16)

On the other hand, from the definition of W (t + δ,y), with the same
technique as before, we deduce that, for any y ∈ Rn, there exists βε

y ∈
Bt+δ,T such that

W (t +δ,y)≥ esssupu2∈Ut+δ,T
J(t +δ,y;u2,β

ε
y(u2))− ε, P-a.s. (17)

Let {Oi}i≥1 ⊂ B(Rn) be a decomposition of Rn such that ∑i≥1 Oi =
Rn and diam(Oi) ≤ ε, i ≥ 1. Let yi be an arbitrarily fixed element of



Oi, i≥ 1. Defining [X
t,x;u1,β

ε
1(u1)

t+δ
] := ∑i≥1 yi1

{X
t,x;u1 ,β

ε
1(u1)

t+δ
∈Oi}

, we have

|X t,x;u1,β
ε
1(u1)

t+δ
− [X

t,x;u1,β
ε
1(u1)

t+δ
]| ≤ ε, everywhere on Ω, for all u1 ∈Ut,t+δ.

(18)
Moreover, for each yi, there exists some βε

yi
∈ Bt+δ,T such that (17)

holds, and, clearly, βε
u1

:= ∑i≥1 1
{X

t,x;u1 ,β
ε
1(u1)

t+δ
∈Oi}

βε
yi
∈ Bt+δ,T .

Now we can define the new strategy βε(u) := βε
1(u1)⊕ βε

u1
(u2), u ∈

Ut,T ,where u1 = u|[t,t+δ], u2 = u|(t+δ,T ] (restriction of u to [t, t+δ]×Ω

and (t+δ,T ]×Ω, resp.). Obviously, βε maps Ut,T into Vt,T . Moreover,
βε is nonanticipating: Indeed, let S : Ω−→ [t,T ] be an F-stopping time
and u,u′ ∈Ut,T be such that u≡ u′ on [[t,S]]. Decomposing u, u′ into
u1,u′1 ∈Ut,t+δ, u2,u′2 ∈Ut+δ,T such that u = u1⊕u2 and u′ = u′1⊕u′2.
We have u1 ≡ u′1 on [[t,S∧ (t +δ)]] from which we get βε

1(u1)≡ βε
1(u
′
1)

on [[t,S∧ (t + δ)]] (recall that βε
1 is nonanticipating). On the other

hand, u2 ≡ u′2 on ]]t + δ,S∨ (t + δ)]](⊂ (t + δ,T ]×{S > t + δ}), and

on {S > t +δ} we have X
t,x;u1,β

ε
1(u1)

t+δ
= X

t,x;u′1,β
ε
1(u
′
1)

t+δ
. Consequently, from



our definition, βε
u1
= βε

u′1
on {S > t +δ} and βε

u1
(u2)≡ βε

u′1
(u′2) on ]]t +

δ,S∨(t+δ)]]. This yields βε(u)= βε
1(u1)⊕βε

u1
(u2)≡ βε

1(u
′
1)⊕βε

u′1
(u′2)=

βε(u′) on [[t,S]], from which it follows that βε ∈ Bt,T .

Let now u ∈ Ut,T be arbitrarily chosen and decomposed into u1 =
u|[t,t+δ] ∈Ut,t+δ and u2 = u|(t+δ,T ] ∈Ut+δ,T . Then, from (16), (12)(i),
(18), and Comparison Theorem, we obtain

(19)

Wδ(t,x) ≥ G
t,x;u1,β

ε
1(u1)

t,t+δ
[W (t +δ,X

t,x;u1,β
ε
1(u1)

t+δ
)]− ε

≥ G
t,x;u1,β

ε
1(u1)

t,t+δ
[W (t +δ, [X

t,x;u1,β
ε
1(u1)

t+δ
])−Cε]− ε

≥ G
t,x;u1,β

ε
1(u1)

t,t+δ
[W (t +δ, [X

t,x;u1,β
ε
1(u1)

t+δ
])]−Cε

= G
t,x;u1,β

ε
1(u1)

t,t+δ

[
∑
i≥1

1
{X

t,x;u1 ,β
ε
1(u1)

t+δ
∈Oi}

W (t +δ,yi)

]
−Cε, P-a.s.



Furthermore, from (17), (12)(ii), (18), we have

Wδ(t,x) (20)

≥ G
t,x;u1,β

ε
1(u1)

t,t+δ

[
∑
i≥1

1
{X

t,x;u1 ,β
ε
1(u1)

t+δ
∈Oi}

J(t +δ,yi;u2,β
ε
yi
(u2))− ε

]
−Cε

≥ G
t,x;u1,β

ε
1(u1)

t,t+δ

[
∑
i≥1

1
{X

t,x;u1 ,β
ε
1(u1)

t+δ
∈Oi}

J(t +δ,yi;u2,β
ε
yi
(u2))

]
−Cε

= G
t,x;u1,β

ε
1(u1)

t,t+δ

[
J(t +δ, [X

t,x;u1,β
ε
1(u1)

t+δ

]
;u2,β

ε
u1
(u2))]−Cε

≥ G
t,x;u1,β

ε
1(u1)

t,t+δ
[J(t +δ,X

t,x;u1,β
ε
1(u1)

t+δ
;u2,β

ε
u1
(u2))−Cε]−Cε

≥ G
t,x;u1,β

ε
1(u1)

t,t+δ
[J(t +δ,X

t,x;u1,β
ε
1(u1)

t+δ
;u2,β

ε
u1
(u2))]−Cε

= Gt,x;u,βε(u)
t,t+δ

[Y t,x,u,βε(u)
t+δ

]−Cε

= Y t,x;u,βε(u)
t −Cε, P-a.s., for any u ∈Ut,T .



Consequently,

Wδ(t,x) ≥ esssupu∈Ut,T
J(t,x;u,βε(u))−Cε

≥ essinfβ∈Bt,T esssupu∈Ut,T
J(t,x;u,β(u))−Cε

= W (t,x)−Cε, P-a.s.

(21)

Finally, letting ε ↓ 0 we get Wδ(t,x)≥W (t,x). The proof is complete.



5. Proof of Theorem 3

We have already seen that the lower value function W (t,x) is Lipschitz
continuous in x, uniformly in t. With the help of Theorem 2 we can
now also study the continuity property of W (t,x) in t.

Theorem 3 The lower value function W (t,x) is 1
2 -Hölder continuous

in t: There exists a constant C such that, for every x∈Rn, t, t ′ ∈ [0,T ],

|W (t,x)−W (t ′,x)| ≤C(1+ |x|)|t− t ′|
1
2 .

Proof. Let (t,x) ∈ [0,T ]×Rn and δ > 0 be arbitrarily given such that
0 < δ ≤ T − t. Our objective is to prove the following inequality by
using Remarks (a) and (b):

−C(1+ |x|)δ
1
2 ≤W (t,x)−W (t +δ,x)≤C(1+ |x|)δ

1
2 . (22)

From it we obtain immediately that W is 1
2 -Hölder continuous in t.

We will check only the second inequality in (22); the first one can be



shown in a similar way. To this end we note that due to Remark (a),
for an arbitrarily small ε > 0,

W (t,x)−W (t +δ,x)≤ I1
δ
+ I2

δ
+ ε, (23)

where

I1
δ

:= Gt,x;uε,β(uε)
t,t+δ

[W (t +δ,X t,x;uε,β(uε)
t+δ

)]−Gt,x;uε,β(uε)
t,t+δ

[W (t +δ,x)],

I2
δ

:= Gt,x;uε,β(uε)
t,t+δ

[W (t +δ,x)]−W (t +δ,x)

for arbitrarily chosen β ∈ Bt,t+δ and uε ∈Ut,t+δ such that Remark (a)
holds. On the other hand, we obtain that, for some constant C inde-
pendent of the controls uε and β(uε),

|I1
δ
| ≤ [CE(|W (t +δ,X t,x;uε,β(uε)

t+δ
)−W (t +δ,x)|2|Ft)]

1
2

≤ [CE(|X t,x;uε,β(uε)
t+δ

− x|2|Ft)]
1
2 ,

and since E[|X t,x;uε,β(uε)
t+δ

− x|2|Ft ]≤C(1+ |x|2)δ we deduce that |I1
δ
| ≤

C(1+ |x|)δ 1
2 . From the definition of Gt,x;uε,β(uε)

t,t+δ
[·] we know that the



second term I2
δ

can be written as

I2
δ

= E
[
W (t +δ,x)+

∫ t+δ

t
f (s,X t,x;uε,β(uε)

s ,Ỹ t,x;uε,β(uε)
s , Z̃t,x;uε,β(uε)

s ,uε
s ,βs(uε

. ))ds

−
∫ t+δ

t
Z̃t,x;uε,β(uε)

s dBs|Ft

]
−W (t +δ,x)

= E
[∫ t+δ

t
f (s,X t,x;uε,β(uε)

s ,Ỹ t,x;uε,β(uε)
s , Z̃t,x;uε,β(uε)

s ,uε
s ,βs(uε

. ))ds|Ft

]
.

With the help of the Schwartz inequality we then have

|I2
δ
|

≤ δ
1
2 E
[∫ t+δ

t
| f (s,X t,x;uε,β(uε)

s ,Ỹ t,x;uε,β(uε)
s , Z̃t,x;uε,β(uε)

s ,uε
s ,βs(uε

. ))|2ds|Ft

] 1
2



≤ δ
1
2 E
[∫ t+δ

t
(| f (s,X t,x;uε,β(uε)

s ,0,0,uε
s ,βs(uε

. ))|+C|Ỹ t,x;uε,β(uε)
s |

+ C|Z̃t,x;uε,β(uε)
s |)2ds|Ft

] 1
2

≤ Cδ
1
2 E
[∫ t+δ

t
(|1+ |X t,x;uε,β(uε)

s |+ |Ỹ t,x;uε,β(uε)
s |+ |Z̃t,x;uε,β(uε)

s |)2ds|Ft

] 1
2

≤ C(1+ |x|)δ
1
2 .

Hence, from (23),

W (t,x)−W (t +δ,x)≤C(1+ |x|)δ
1
2 + ε,

and letting ε ↓ 0 we get the second inequality of (22). The proof is
complete.


