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Stochastic transport equation


∂u
∂t (t, x) = ∆u(t, x) +∇BH(x) · ∇u(t, x), t ∈ (0,T ], x ∈ D
u(0, x) = u0(x), x ∈ D
u(t, x) = 0, t ∈ (0,T ], x ∈ ∂D

I u(t, x): unknown concentration of the substance at time t
and position x

I D ⊂ Rd : bounded domain with smooth boundary

I BH(x) = BH(x , ω): suitable stochastic noise

—> In this session BH(x) will be a fractional Brownian field with
Hurs index 0 < H < 1.

Elena Issoglio The pathwise solution of an SPDE with fractal noise



Introduction of the problem
Interpretation of the involved objects

The theorem of existence and uniqueness

The Cauchy problem with Dirichlet conditions
The abstract Cauchy problem

Fractional Brownian motion (d = 1)

{BH(x), x ∈ R+} is a fractional Brownian motion with Hurst
parameter H ∈ (0, 1) if it is a centred Gaussian process with
covariance function given by

E(BH
x BH

y ) =
1

2

(
x2H + y2H − |x − y |2H

)

I homogeneous increments but not indipendent (negatively
correlated if H < 1/2, positively if H > 1/2)

I there exists a version of BH with α-Hölder continuous
trajectories, for α < H

I if H 6= 1/2 then BH is not a semimartingale: Itô-type theory
can not be used
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The abstract Cauchy problem

I X Banach space

I A linear operator on X

I A generates a semigroup (T (t), t ≥ 0)

I f : [0,T )→ X given function

The abstract Cauchy problem is{
du(t)
dt = Au(t) + f (t) , t > 0

u(0) = h
(1)

where u is a X -valued function.
We define the mild solution as the function

u(t) = T (t)h +

∫ t

0
T (t − s)f (s) ds.
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The stochastic transport equation as abstract Cauchy problem

I X infinite dimensional Banach space

I h ∈ X function depending on x ∈ D ⊂ Rd : h(x)

The function u(t, x) is now interpreted only as function of time
and takes values in X .

u : [0,T ] → X
t 7→ u(t)

where u(t) is a function of x defined by

u(t) : D → R
x 7→ u(t)(x)

where u(t)(x) := u(t, x).
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The Cauchy problem with Dirichlet conditions is now rewritten as{
ut = ∆Du +∇BH · ∇u, t ∈ (0,T ]
u(0) = u0

where

I ut indicates the derivative of u with respect to time

I u0(x) := u(0, x) = u0(x)

I ∆D is the Dirichlet laplacian on D: it encodes the condition
u(t)(x) ≡ 0 for x ∈ ∂D

I ∇BH · ∇u has still to be defined since ∇BH is a distribution

I pathwise interpretation: fix ω ∈ Ω and study the equation
for almost every ω
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∆ e ∆D : probabilistic interpretation

I Laplacian ∆ on Rd .
generates a semigroup {Tt}t≥0

Ttu(x) =

∫
Rd

p(t, x , y)u(y) dy

where p(t, x , y) is the heat kernel

p(t, x , y) =
1

(2πt)d/2
exp

{
−|x − y |2

2t

}
<—> Brownian motion on Rd where
p(t, x , y) = Px(Bt ∈ dy) is the transition probability density
function of a Brownian motion {Bt}t≥0.
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I Laplacian ∆D .
generates a semigroup {Pt}t≥0

Ptu(x) =

∫
D

pD(t, x , y)u(y) dy

where pD(t, x , y) = p(t, x , y)− r(t, x , y) with

r(t, x , y) = Ex [p(t − τD ,BτD , y); τD < t]

and τD is the first exit time from D.
<—> killed Brownian motion (killed at exiting D)

B̄t =

{
Bt if t < τD
ζ if t > τD .
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∆ e ∆D : analytical interpretation

I The semigroup Tt acts (for instance) on L2(Rd).
In this case we have
dom(∆) = W 2(Rd) ⊂W 0(Rd) = L2(Rd).

Property: λ−∆ : Hγ(Rd)→ Hγ−2(Rd), for every γ ∈ R,
λ > 0.

I The semigroup Pt and its generator act on a space restricted
to D which contains information on ∂D.
—> fractional Sobolev spaces on D.
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Fractional Sobolev spaces on Rd

I Sobolev spaces. Let m ∈ N

W m
p (Rd) :=

{
f ∈ S ′(Rd) : ∂γf ∈ Lp(Rd) for every |γ| ≤ m

}
endowed with the norm ‖f |W m

p ‖ :=
(∑

|γ|≤m ‖∂γf | Lp‖p
)1/p

I Fractional Sobolev Spaces. Let α ∈ R

Hα
p (Rd) :=

{
f ∈ S ′(Rd) : ((1 + |ξ|2)α/2f̂ )∨ ∈ Lp(Rd)

}
endowed with the norm ‖f |Hα

p (Rd)‖ = ‖((1 + |ξ|2)α/2f̂ )∨‖Lp

Property: if α = m ∈ N then Hm
p (Rd) = W m

p (Rd).
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Fractional Sobolev spaces on D

Let α ∈ R
I define

Hα
p (D) :=

{
f ∈ S ′(D) : ∃g ∈ Hα

p (Rd) s.t. g |D = f
}

endowed with the norm

‖f |Hα
p (D)‖ = inf

{
‖g |Hα

p (Rd)‖ s.t. g ∈ Hα
p (Rd) and g |D = f

}
I define H̃α

p (D) :=
{
f ∈ Hα

p (Rd) : supp(f ) ⊂ D̄
}

endowed with the norm ‖ · |Hα
p (Rd)‖
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—> right space for Pt and ∆D :

H̄α(D) :=

{
H̃α(D), if α ≥ 0
Hα(D), if α < 0

Scale of spaces with good properties for −3/2 < α < 3/2.

I Pt : H̄γ(D)→ H̄γ+2(D)

I ∆α
D : H̄γ(D)→ H̄γ−2α(D)
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The noise ∇BH and the term ∇BH · ∇u(s)

I let consider a version of BH with α-Hölder continuous paths,
for α < H.

I Property: if h is α-Hölder continuous on Rd with compact
support for 0 < α < 1, then for any α′ < α < 1 we have
h ∈ Hα′

q (Rd) for any 1 < q <∞.

I let ψ(x) ∈ C∞c such that ψ(x) ≡ 1 for any x ∈ D.
Apply Property to ψ(x)BH(ω)(x) with a fixed ω ∈ Ω:

ψBH ∈ H1−β
q (Rd) for any 1− β < H < 1.

I substitute BH with a deterministic function Z ∈ H1−β
q (Rd).

I we have ∇Z ∈ H−βq (Rd) with β > 0: it is a distribution –>
problems while defining ∇Z · ∇u(s).
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The pointwise product in S ′(Rd)

given f , g ∈ S ′(Rd) we define the product

fg := lim
j→∞

S j fS jg

if the limit exists in S ′(Rd), where

S j f (x) := (φ(
ξ

2j
)f̂ )∨(x)

with

I φ(ξ) ∈ C∞, 0 ≤ φ(ξ) ≤ 1 for any ξ ∈ Rd

I φ(ξ) = 1 if |ξ| ≤ 1

I φ(ξ) = 0 if |ξ| ≥ 3/2
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Property

Let 1 < p, q <∞, 0 < β < δ and assume q > max(p, d/δ).

Then for any f ∈ Hδ
p(Rd) and g ∈ H−βq (Rd) we have

fg ∈ H−βp (Rd)

‖fg |H−βp (Rd)‖ ≤ c‖f |Hδ
p(Rd)‖ · ‖g |H−βq (Rd)‖.

Application:

I g = ∇Z ∈ H−βq (Rd)

I f = ∇u(s) ∈ H̄δ
p(D) ⊂ Hδ

p(Rd) (since δ > 0)

I notation: 〈·, ·〉 for the scalar product in Rd combined with the
poitwise product just defined.

I 〈∇Z ,∇u(s)〉 ∈ H−βp (Rd)
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Property: Let f , g ∈ S ′(Rd), supp(f ) ⊂ D̄ then supp(fg) ⊂ D̄.

I by definition of H̄δ
p(D) with δ > 0 we have supp(∇u(s)) ⊂ D̄

I can apply the property: supp(〈∇Z ,∇u(s)〉) ⊂ D̄

I notice that 〈∇Z ,∇u(s)〉 ∈ H−βp (Rd) ⊂ S ′(Rd) so that
〈∇Z ,∇u(s)〉 ∈ S ′(D)

I by definition of H̄−βp (D) with β > 0 (functions in S ′(D) s.t.

there exists an extension in H−βp (Rd) ) we have

〈∇Z ,∇u(s)〉 ∈ H̄−βp (D)

————–
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The mild solution{
ut = ∆Du +∇Z · ∇u for t ∈ (0,T ]
u = u0

I Pt semigroup generated by −∆D

I the boundary conditions are included in the choise of the
domain of ∆D

We say that a function u : [0,T ]→ X is a mild solution of the
problem if

u(t) = Ptu0 +

∫ t

0
Pt−r 〈∇u(r),∇Z 〉dr

for all t ∈ [0,T ].
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The operator on which we concentrate is then the following

It(u) :=

∫ t

0
Pt−r 〈∇u(r),∇Z 〉 dr .

for any fixed u.

Which is the time regularity?

Let us introduce the space of all γ-Hölder continuous functions on
[0,T ] taking values in an (infinite dimensional) Banach space
(X , ‖ · ‖X ):

Cγ([0,T ]; X ) := {h : [0,T ]→ X s.t. ‖h‖γ,X <∞}

where

‖h‖γ,X := sup
t∈[0,T ]

‖h(t)‖X + sup
s<t∈[0,T ]

‖h(t)− h(s)‖X
(t − s)γ
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Local mapping property of It (I., 2009)

Let X = H̄1+δ
2 (D) for some 0 < β < δ, δ + β < 1/2 with

Z ∈ H̄1−β
q (D). Then we have

I(·) : Cγ([0,T ]; X )→ Cγ([0,T ]; X )

for all 0 < γ < 1/4, and moreover for any u ∈ Cγ([0,T ]; X )

‖I(·)(u)‖γ,1+δ ≤ c(T )‖u‖γ,1+δ

where c(T ) is a function not depending on u and such that
limT→0 c(T ) = 0. 2

=⇒ by contraction theorem it is easy to obtain existence and
uniqueness of the solution u ∈ Cγ([0, ε]; X ) with ε sufficiently
small. (local solution)
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How to extend the theorem to any T <∞?

I Let us introduce a family of equivalent norms on Cγ([0,T ]; X )
parametrized by a real parameter ρ > 1:

‖f ‖(ρ)
γ,X := sup

0≤t≤T
e−ρt

(
‖f (t)‖X + sup

0≤s<t

‖f (t)− f (s)‖X
(t − s)γ

)
.

I it is easy to prove that for any ρ > 1

‖ · ‖(ρ)
γ,X ∼ ‖ · ‖γ,X

I Idea: work in the space Cγ([0,T ]; X ) endowed with the
ρ-norm and prove that It is a contraction for some suitable ρ
which does not depend on T .
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Theorem 1 (I., 2009)

Let X = H̄1+δ
2 (D) for some 0 < β < δ, δ + β < 1/2. Fix

Z ∈ H1−β
q (Rd). Then

I(·) : Cγ([0,T ]; X )→ Cγ([0,T ]; X )

for every 0 < 2γ < 1− δ − β, and moreover for any
u ∈ Cγ([0,T ]; X ) we have

‖I(·)(u)‖(ρ)
γ,1+δ ≤ c(ρ)‖u‖(ρ)

γ,1+δ

where c(ρ) is a function of ρ not depending on u and T and such
that

lim
ρ→∞

c(ρ) = 0.

2
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Theorem 2 (I., 2009)

Let 0 < β < δ, δ + β < 1/2 and 0 < 2γ < 1− δ − β. Moreover fix

Z ∈ H−βq (Rd) for some q < 2 ∨ d/δ.

Then for every initial condition u0 ∈ H̄1+δ+2γ
2 (D), with

1 + δ + 2γ < 3/2, there exists a unique mild solution u(t, x) for
the abstract Cauchy problem{

ut = ∆Du +∇u · ∇Z for t ∈ (0,T ]
u = u0

given by u(t, ·) = Ptu0 + It(u).
Moreover this solution belongs to the Hölder space
C γ([0,T ]; H̄1+δ

2 (D)) for any finite positive time T . 2
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Grazie.
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