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Stochastic integration
We consider

i
/ . dB..
0
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Stochastic integration

We consider .
/ . dB..
0

Here B is a fractional Brownian motion.
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Fractional Brownian motion

Definition

A Gaussian stochastic process B = {B;;t > 0} is called a fractional
Brownian motion (fBm) of Hurst parameter H € (0, 1) if it has zero
mean and covariance fuction

1
Ru(t,s) = E (B.Bs) = 5 (27 + 6 — |t — s]2).
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Properties of fBm

Definition

A Gaussian stochastic process B = {B;;t > 0} is called a fractional
Brownian motion (fBm) of Hurst parameter H € (0, 1) if it has zero
mean and covariance fuction

Ru(t,s) = E (BeB:) = 5 (£ + s — |t — s!') .

1
2

@ B is a Brownian motion for H = 1/2.
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Properties of fBm

Definition

A Gaussian stochastic process B = {B;; t > 0} is called a fractional
Brownian motion (fBm) of Hurst parameter H € (0, 1) if it has zero
mean and covariance fuction

Ru(t,s) = E (BeB:) = 5 (£ + s — |t — s!') .

N —

@ B is a Brownian motion for H = 1/2.

@ B has stationary increments.
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Properties of fBm

Definition
A Gaussian stochastic process B = {B;;t > 0} is called a fractional

Brownian motion (fBm) of Hurst parameter H € (0, 1) if it has zero
mean and covariance fuction

Ru(t,s) = E (BeB:) = 5 (£ + s — |t — s!') .

N —

e B is a Brownian motion for H = 1/2.

@ B has stationary increments :

E(|B:— Bi) = |t — s,
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Properties of fBm
Definition

A Gaussian stochastic process B = {B;;t > 0} is called a fractional

Brownian motion (fBm) of Hurst parameter H € (0, 1) if it has zero
mean and covariance fuction

Ru(t,s) = E (BeB.) = 5 (£ + s — [t — s!') .

N —

@ B is a Brownian motion for H = 1/2.
@ B has stationary increments :

E (1B — B?) = |t — s,
@ Forany e € (0,H) and T > 0, there exists G. r such that
|B: — B,| < G. 7|t —s|"=, t,se[0,T]
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Properties of fBm

Definition
A Gaussian stochastic process B = {B;;t > 0} is called a fractional

Brownian motion (fBm) of Hurst parameter H € (0, 1) if it has zero
mean and covariance fuction

Ru(t,s) = E (B:B;) = = (£ + " — |t — s|*M).

N —

@ B is a Brownian motion for H = 1/2.

@ B has stationary increments.

@ B is Holder continuous for any exponent less than H.
°

B is self-similar (with index H). That is, for any a > 0,
{a="B.:;t > 0} and {B;;t > 0} have the same distribution.
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Properties of fBm
Definition
A Gaussian stochastic process B = {B;;t > 0} is called a fractional

Brownian motion (fBm) of Hurst parameter H € (0, 1) if it has zero
mean and covariance fuction

1
Ru(t.s) = E (B:B:) = (2 + 82 — |t — s?).

@ B has stationary increments.
@ B is Holder continuous for any exponent less than H.

e B is self-similar (with index H). That is, for any a > 0,
{a="B.:;t > 0} and {B;; t > 0} have the same distribution.

@ The covariance of its increments on intervals decays
asymptotically as a negative power of the distance between the
intervals.
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Properties of fBm

@ B is a Brownian motion for H = 1/2.
@ B has stationary increments.
@ B is Holder continuous for any exponent less than H.

@ B is self-similar (with index H). That is, for any a > 0,
{a="B.;;t > 0} and {B;; t > 0} have the same distribution.

@ The covariance of its increments on intervals decays
asymptotically as a negative power of the distance between the
intervals : Let t — s = nh and

pu(n) = E[(Berh — Bi)(Bsin — Bs)]
R"H(2H — 1)n*"—2 = 0.
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Properties of fBm

B is a Brownian motion for H = 1/2.
B has stationary increments.
B is Holder continuous for any exponent less than H.

B is self-similar (with index H). That is, for any a > 0,
{a=HB.:;t > 0} and {B;; t > 0} have the same distribution.

@ The covariance of its increments on intervals decays
asymptotically as a negative power of the distance between the
intervals : Let t — s = nh and

pr(n) = E[(Berh — Bi)(Bsin — Bs)]
hHH(2H — 1)n*"—2 - 0.

i) If H>1/2, py(n) >0 and Y372 p(n) = oo.
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Properties of fBm

e B is a Brownian motion for H = 1/2.
@ B has stationary increments.
@ B is Holder continuous for any exponent less than H.

@ B is self-similar (with index H). That is, for any a > 0,
{a=""B.;;t > 0} and {B;;t > 0} have the same distribution.

@ The covariance of its increments on intervals decays
asymptotically as a negative power of the distance between the
intervals : Let t — s = nh and

pr(n) = E[(Berh — Be)(Bssn — Bs)]
~ h"H(Q2H - 1)n*"2 0.

i) If H>1/2, py(n) >0 and 372 p(n) =
i) If H<1/2, pu(n) <0and > 72 p(n) <
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Properties of fBm

B is a Brownian motion for H = 1/2.

B has stationary increments.

B is Holder continuous for any exponent less than H.

B is self-similar (with index H). That is, for any a > 0,
{a=""B,;;t > 0} and {B;;t > 0} have the same distribution.

@ The covariance of its increments on intervals decays
asymptotically as a negative power of the distance between the
intervals : Let t — s = nh and

pu(n) = E[(Bern = Be)(Bsin — Bi)l
"H(Q2H — 1)n*"2 = 0.

i) If H>1/2, py(n) >0 and >p2 p(n) =
i) If H<1/2, puy(n) <0and > 72 p(n) <
@ B has no bounded variation paths.

Q.
oQ.
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FBM is not a semimartingale

Theorem

B is not a semimartingale for H # 1/2.
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FBM is not a semimartingale

Theorem

B is not a semimartingale for H # 1/2.
Proof : (i) Case H > 1/2.
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FBM is not a semimartingale

Theorem
B is not a semimartingale for H # 1/2. J

Proof : (i) Case H > 1/2. Let N, ={0=ty <ty <...<t, =t} be
a partition of [0, t].
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FBM is not a semimartingale

Theorem
B is not a semimartingale for H # 1/2. J

Proof : (i) Case H > 1/2. Let M, ={0=ty <ty <...<t,=t} be
a partition of [0, t]. Then,

E (Z By, — Bti_1|2> = Z |t — tia[*
i=1 i=1

n
L > |t — tial
i—1

= tnP"t =0

IA
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FBM is not a semimartingale

Theorem
B is not a semimartingale for H # 1/2. J

Proof : (i) Case H > 1/2. Let M, ={0=ty <ty <...<t,=t} be
a partition of [0, t]. Then,

E (Z |Bti - Bti—1|2> = Z |ti - ti—1|2H

i=1 i=1

IA

n
PPNt — iy
i=1
= NPt =0

If B were a semimartingale. Then, B= M + V.
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FBM is not a semimartingale

Theorem
B is not a semimartingale for H # 1/2.

J

Proof : (i) Case H > 1/2. Let M, ={0=ty <ty <...<t,=t} be

a partition of [0, t]. Then,

E (Z ’Bti - Bti—1|2> = Z ’ti - ti—1|2H

i—1
< NP — i
i=1
= tn* 1t -0
If B were a semimartingale. Then, B= M + V. Thus

0=[B] = [M].
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FBM is not a semimartingale

Theorem
B is not a semimartingale for H # 1/2. J

Proof : (i) Case H > 1/2. Let M, ={0=ty <ty <...< t,} bea
partition of [0, t]. Then,

E (Z |Bti - Bti—1|2> = Z |ti - ti—1|2H
i=1 i=1

< NP — e
i=1
= NPt >0
If B were a semimartingale. Then, B= M + V. Thus
0=[B]=[M].
Consequently B = V.
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FBM is not a semimartingale

Theorem

B is not a semimartingale for H # 1/2.
Proof : (i) Case H < 1/2.
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FBM is not a semimartingale

Theorem

B is not a semimartingale for H # 1/2.
Proof : (i) Case H < 1/2. We have
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FBM is not a semimartingale

Theorem
B is not a semimartingale for H # 1/2.

Proof : (i) Case H < 1/2. We have

n n
(@) 1
b= > 1By = Byyml” = =7 2 1B = Bl
1 n
= nl_zH — Z |B_, — BJ'_1|2 — OQ.
ni=
Jorge A. Ledn (Cinvestav—IPN) FBM

Roscoff 2010

27 / 62



FBM is not a semimartingale
Theorem

B is not a semimartingale for H # 1/2.

Proof : (i) Case H < 1/2. We have

ZIBJ/,,—B(, 1)/nl® < 2HZ|B Bi_1|?
j=1

nt~ 2”( Z|B Bj_1|2) — 00,

Due to, the ergodic theorem implies that

E Z |Bj — BJ'_1|2 — E((Bl)2) a.s
j=1

Jorge A. Ledn (Cinvestav—IPN)
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Mandelbrot-van Ness representation

0 t
B, = Cy / {(t — )12 — (=) 12y aw, + /0 (t — s)"-12dw, | .

Jorge A. Ledn (Cinvestav—IPN) FBM Roscoff 2010 30 / 62



Mandelbrot-van Ness representation

Bt:CH

[ A= sy 12 — (ot ipaw, + (= s 2aws] .

Here W is a Brownian motion.
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Representation of fBm on an finite interval

Fix a time interval [0, T] and consider the fBm B = {B;; t € [0, T]}.
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Representation of fBm on an finite interval

Fix a time interval [0, T] and consider the fBm B = {B;; t € [0, T]}.
Then there exists a Bm {W;; t € [0, T]} such that

t
B, :/ Ki(t, s)dW,,
0
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Representation of fBm on an finite interval

Fix a time interval [0, T] and consider the fBm B = {B;; t € [0, T]}.
Then there exists a Bm {W;; t € [0, T]} such that

t
B, :/ Ku(t, s)dW,,
0

where
e For H>1/2,

t
Ku(t,s) = CHS%_H/ (u— s)H_%uH_%du s<t.

S
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Representation of fBm on an finite interval

Fix a time interval [0, T] and consider the fBm B = {B;; t € [0, T]}.
Then there exists a Bm {W;;t € [0, T]} such that

t
B, :/ Ki(t,s)dW,,
0

where
e For H>1/2,
1y t H-3 H-1
Ku(t,s) = cys2 /(u—s) 2y 2du, s <t.
@ For H<1/2,
t\H-3
Ki(t, s) = cu l(-> (¢ — )P
s
1 1_H t H-—3 H—1
—(H—E)s2 / u'"2(u—s)""2du|, s<t.
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Wiener integrals

Let £ be the family of the step functions of the form

f= Z ail(tjﬂfj+1]'
i=0
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Wiener integrals

Let £ be the family of the step functions of the form

f — Z a,'/(tj7tj+1].
i=0

The Wiener integral with respect to B

I(f) = Z ai(Bti+1 - Bti)
i=0
and the space

L(B)={Xc *(Q): X =L3Q) - lim I(f,), for some {f,} C £}.

Jorge A. Ledn (Cinvestav—IPN) FBM Roscoff 2010 38 / 62



Wiener integrals

L(B) = {X € L}(Q) : X = L*(Q) — lim_I(f,), for some {f,} C £}.

Proposition (Pipiras and Taqqu)
Suppose that H is a inner product space with inner product (-, -)
such that :
i) ECH and (f,g) = E(I(f)I(g)), for f,g € &.
ii) € is dense in H.
Then H is isometric to L(B) if and only if H is complete. )

Jorge A. Ledn (Cinvestav—IPN) Roscoff 2010 39 / 62



Wiener integrals

L(B)={X € %) : X =L*Q) — lim I(f,), for some {f,} C £}.

n—oo

Proposition (Pipiras and Taqqu)
Suppose that H is a inner product space with inner product (-, -)
such that :

i) ECH and (f,g) =E(I(F)(g)), forf,g €&.

ii) & is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,
the isometry is an extension of I.
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Wiener integrals
Proposition (Pipiras and Taqqu)
Suppose that H is a inner product space with inner product (-, -)
such that :
i) ECH and (f,g)=E(I(f)I(g)), for f,g €€&.
ii) £ is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,
the isometry is an extension of .

Remarks
a) For H<1/2,

M= {F e 20, T]): F(s) = cust M (2= uP=36(u))(s)
for some ¢f € L?}
with (1£_g)(s) = s ST (x = s)°Lg(x)dx.
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Wiener integrals
Proposition (Pipiras and Taqqu)
Suppose that H is a inner product space with inner product (-, -)
such that :
i) EC H and (f,g)=E(I(f)I(g)), for f,g €.
ii) £ is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,
the isometry is an extension of I.

Remarks
a) For H<1/2,

1

H = {f € [2([0, T]) : £(s) = cusz "(12-"ur 2 ¢ (u))(s)
for some ¢f € L2}
with the inner product (f, g) = (¢f, ¢g)12(0, 1))-
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Wiener integrals
Proposition (Pipiras and Taqqu)

Suppose that H is a inner product space with inner product (-, -)
such that :

i) £EC H and (f,g)=E(I(f)I(g)), for f,g € &.

ii) £ is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,
the isometry is an extension of I.

Remarks
b) For H>1/2,

H={feD :3f € W"H2(R) with supp(f) C [0, T]
such that f = f*|o 1}
with the inner product (f,g) = cy [x FF*(x)Fg*(x)|x|* 2" dx.
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Wiener integrals
a) For H<1/2,

H={f € 120, T]) : £(s) = cust 112" 3 oe(u)) ()
for some ¢f € L2}

with the inner product (f, g) = (¢r, dg)2(0,7))-
b) For H >1/2,

H={fecD 3 ¢ W?H2(R) with supp(f) C [0, T]

such that f = f*|o 1}

with the inner product (f,g) = cu [r FF*(x)Fg*(x)|x|* =2 dx.
) WS2(R) = {f € S: (1+ |x])"2Ff(x) € [A(R)}.
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Representation of Wiener integrals

Moreover, there exists an isometry K}, : H — L?([0, T]) and a
Brownian motion W such that :

Q I(f) = J (Kif)(s)dW.
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Representation of Wiener integrals

Moreover, there exists an isometry K}, : H — L?(]0, T]) and a
Brownian motion W such that :

@ I(f) = Jy' (Kisf)(s)dW.
Q K;fll[o,t] = KH(t, ) with
t
Ku(t,s) = CHS%_H/ (u—s)"'_%u"’_%du7 s<t and H>1/2
and
t H_% H_1
Ku(ts) = cn|(Z) (e =)

1 1y t H—3 H-—L1
—(H—>)s? /u Hu—s)"tdul, H<1/2.
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Representation of Wiener integrals

Moreover, there exists an isometry K}, : H — L?([0, T]) and a
Brownian motion W such that :

I(¢) = Jo' (Kyd)(s)dW.
Q Kijhon = Kn(t, ") -
@ For H<1)/2,
Kiaf = ¢r,

with £(s) = cus3 M2 uH 3 66(u))(s), s € [0, T].
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Representation of Wiener integrals

Moreover, there exists an isometry K}, : H — L?(]0, T]) and a
Brownian motion W such that :

0 1(9) = Jy (Kio)(s)dWs.
Q Koy = Ku(t,-) .
© For H < 1/2,
Kyf = ¢,

with £(s) = cusi (12 uH264(u))(s), s € [0, T].
Q@ For H>1/2and ¢ € €&,

1
H—3

(Ki0)(s) = cus> (172 u"2¢(u))(s), s € [0, T].
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Derivative operator

Let S be the set of smooth functional of the form

F = f(B(¢1)7 R B(an))7
where n > 1, f € C2°(R") and ¢; € H.

Jorge A. Ledn (Cinvestav—IPN) FBM

Roscoff 2010
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Derivative operator

Let S be the set of smooth functional of the form

F — f(B(¢1)7 ceey B(an))7

where n > 1, f € C;°(R") and ¢; € H. The derivative operator is

given by
1. of
i=1 OXi
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Derivative operator

Let S be the set of smooth functional of the form

F=f(B(¢1),.-.,B(¢n)),
where n > 1, f € Cg°(R") and ¢; € H. The derivative operator is
given by

DF = Z S (B(0n). . B

The operator D is closable from L2(2) into L?(Q; H).

Jorge A. Ledn (Cinvestav—IPN) FBM Roscoff 2010
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Divergence operator

The divergence operator ¢ is the adjoint of D. It is defined by the
duality relation

E(F5(u)) = E((DF,u)y), F€S, ue [2(Q,H).
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Transfer principle

Let W be the Brownian motion such that
t
B, — / Ku(t,s)dW, te o, T].
0

Then,
© DomD=DomDW and

K} ,DF = DVF.
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Transfer principle

Let W be the Brownian motion such that
t
B, = / Ku(t.s)dW, te[o,T].
0

Then,
© DomD=DomDW and

K;;DF = DVF.
@ ¢ €Dom¢ if and only if K};¢ €Domd" and

8(¢) = 0" (Kiy).
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Transfer principle

@ DomD=DomD" and
K;,DF = D"F.
@ ¢ €Domé if and only if K};¢ €Domd" and
8(¢) = 6" (Kio).

The divergence operator ¢ is the adjoint of D. It is defined by the
duality relation

E(Fo(u)) = E((DF,u)y), F€S, ue [2(QH).

Remark For H =1/2, H = L?([0, T]).
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Transfer principle

©@ DomD=DomD" and K, DF = D"F.
@ ¢ €Dom{ if and only if K};¢ €Domd" and

(¢) = 6" (Ki).

The divergence operator ¢ is the adjoint of D. It is defined by the
duality relation

E(Fo(u)) = E((DF,u)y), FeS, uel?*Q,%H).

Remark For H =1/2, H = L*([0, T]). So

E(F"(v)) =E (/OT(DSWF)usds> . FedS, uel?)(Qx]o,T)).
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Divergence operator

The divergence operator ¢ is the adjoint of D. It is defined by the
duality relation

E(Fo(u)) = E((DF,u)y), FeS, uel?*Q,%H).

Proposition

Let u €Dom$ and F € Dom D such that (Fu) € L>(Q;H) and
(Fé(u) — (DF, u)y) € L*(Q). Then

Fé(u) = o(Fu)
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Divergence operator

The divergence operator ¢ is the adjoint of D. It is defined by the
duality relation

E(Fo(u)) = E((DF,u)y), FeS, uel?*Q,%H).

Proposition

Let u €Dom$ and F € Dom D such that (Fu) € L>(Q;H) and
(Fé(u) — (DF, u)y) € L*(Q). Then

Fo(u) = 6(Fu) + (DF, u).
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Divergence operator

The divergence operator ¢ is the adjoint of D. It is defined by the
duality relation

E(Fo(u)) = E((DF,u)y), FES, ue [2(QH).

Proposition

Let u €Dom§ and F € Dom D such that (Fu) € L?(Q2; H) and
(Fé(u) — (DF, u)y,) € L*(Q2). Then

Fo(u) = 6(Fu) + (DF, u)y.
Proof : Let G € S, then
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Divergence operator

The divergence operator ¢ is the adjoint of D. It is defined by the
duality relation

E(Fo(u)) = E((DF,u)y), FeS, uel?*Q,H).

Proposition
Let u €Domd and F € Dom D such that (Fu) € L?(Q2; H) and
(Fé(u) — (DF, u)y) € L>(Q). Then
Fo(u) = 6(Fu) + (DF, u).
Proof : Let G € S, then

E((DG, Fu),,) = E ({D(GF), u),, — G (DF, u),/)
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Divergence operator

The divergence operator ¢ is the adjoint of D.
E(Fo(u)) = E((DF,u)y), FeS, uel?*Q,%H).

Proposition

Let u €Dom$ and F € Dom D such that (Fu) € L>(Q;H) and
(Fé(u) — (DF, u)y) € L*(Q). Then

Fé(u) = 6(Fu) — (DF, u)y.

Proof : Let G € S, then

E((DG, Fu),,) = E((D(GF),u)y — G(DF,u);)
= E(G(Fo(u)—(DF,u),,)).
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