Fractional Brownian motion

Jorge A. León

Departamento de Control Automático Cinvestav del IPN

Spring School "Stochastic Control in Finance", Roscoff 2010

Contents

- Introduction
- PBM and Some Properties
- Integral Representation
- Wiener Integrals
- Malliavin Calculus

Contents

- Introduction
- PBM and Some Properties
- Integral Representation
- Wiener Integrals
- Malliavin Calculus

Stochastic integration

We consider

$$\int_0^T \cdot dB_s$$
.

Stochastic integration

We consider

$$\int_0^T \cdot dB_s.$$

Here B is a fractional Brownian motion.

Contents

- Introduction
- PBM and Some Properties
- Integral Representation
- Wiener Integrals
- Malliavin Calculus

Fractional Brownian motion

Definition

A Gaussian stochastic process $B = \{B_t; t \geq 0\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ if it has zero mean and covariance fuction

$$R_H(t,s) = E(B_t B_s) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).$$

Definition

A Gaussian stochastic process $B = \{B_t; t \geq 0\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ if it has zero mean and covariance fuction

$$R_H(t,s) = E(B_t B_s) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).$$

• B is a Brownian motion for H = 1/2.

Definition

A Gaussian stochastic process $B = \{B_t; t \geq 0\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ if it has zero mean and covariance fuction

$$R_H(t,s) = E(B_t B_s) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).$$

- B is a Brownian motion for H = 1/2.
- B has stationary increments.

Definition

A Gaussian stochastic process $B = \{B_t; t \geq 0\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ if it has zero mean and covariance fuction

$$R_H(t,s) = E(B_t B_s) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).$$

- B is a Brownian motion for H = 1/2.
- B has stationary increments :

$$E\left(|B_t-B_s|^2\right)=|t-s|^{2H}.$$

Definition

A Gaussian stochastic process $B = \{B_t; t \geq 0\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ if it has zero mean and covariance fuction

$$R_H(t,s) = E(B_t B_s) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).$$

- B is a Brownian motion for H = 1/2.
- B has stationary increments :

$$E\left(|B_t-B_s|^2\right)=|t-s|^{2H}.$$

• For any $\varepsilon \in (0, H)$ and T > 0, there exists $G_{\varepsilon, T}$ such that

$$|B_t - B_s| \le G_{\varepsilon,T}|t-s|^{H-\varepsilon}, \quad t,s \in [0,T].$$

Definition

A Gaussian stochastic process $B = \{B_t; t \geq 0\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ if it has zero mean and covariance fuction

$$R_H(t,s) = E(B_t B_s) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).$$

- B is a Brownian motion for H = 1/2.
- B has stationary increments.
- ullet B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any a>0, $\{a^{-H}B_{at}; t\geq 0\}$ and $\{B_t; t\geq 0\}$ have the same distribution.

Definition

A Gaussian stochastic process $B = \{B_t; t \geq 0\}$ is called a fractional Brownian motion (fBm) of Hurst parameter $H \in (0,1)$ if it has zero mean and covariance fuction

$$R_H(t,s) = E(B_t B_s) = \frac{1}{2} (t^{2H} + s^{2H} - |t-s|^{2H}).$$

- *B* has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any a>0, $\{a^{-H}B_{at}; t\geq 0\}$ and $\{B_t; t\geq 0\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals.

- B is a Brownian motion for H = 1/2.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any a>0, $\{a^{-H}B_{at}; t\geq 0\}$ and $\{B_t; t\geq 0\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let t-s=nh and

$$\rho_{H}(n) = E[(B_{t+h} - B_{t})(B_{s+h} - B_{s})]$$

$$\approx h^{2H}H(2H - 1)n^{2H-2} \to 0.$$

- B is a Brownian motion for H = 1/2.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any a>0, $\{a^{-H}B_{at}; t\geq 0\}$ and $\{B_t; t\geq 0\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let t-s=nh and

$$\rho_H(n) = E[(B_{t+h} - B_t)(B_{s+h} - B_s)]$$
 $\approx h^{2H}H(2H - 1)n^{2H-2} \to 0.$

i) If H > 1/2, $\rho_H(n) > 0$ and $\sum_{n=1}^{\infty} \rho(n) = \infty$.

- B is a Brownian motion for H = 1/2.
- B has stationary increments.
- B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any a>0, $\{a^{-H}B_{at}; t\geq 0\}$ and $\{B_t; t\geq 0\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let t-s=nh and

$$\rho_H(n) = E[(B_{t+h} - B_t)(B_{s+h} - B_s)]$$
 $\approx h^{2H}H(2H - 1)n^{2H-2} \to 0.$

- i) If H > 1/2, $\rho_H(n) > 0$ and $\sum_{n=1}^{\infty} \rho(n) = \infty$.
- ii) If H < 1/2, $\rho_H(n) < 0$ and $\sum_{n=1}^{\infty} \rho(n) < \infty$.

- B is a Brownian motion for H = 1/2.
- *B* has stationary increments.
- ullet B is Hölder continuous for any exponent less than H.
- B is self-similar (with index H). That is, for any a>0, $\{a^{-H}B_{at}; t\geq 0\}$ and $\{B_t; t\geq 0\}$ have the same distribution.
- The covariance of its increments on intervals decays asymptotically as a negative power of the distance between the intervals: Let t s = nh and

$$\rho_H(n) = E[(B_{t+h} - B_t)(B_{s+h} - B_s)]$$
 $\approx h^{2H}H(2H - 1)n^{2H-2} \to 0.$

- i) If H > 1/2, $\rho_H(n) > 0$ and $\sum_{n=1}^{\infty} \rho(n) = \infty$.
- ii) If H < 1/2, $\rho_H(n) < 0$ and $\sum_{n=1}^{\infty} \rho(n) < \infty$.
- B has no bounded variation paths.

Theorem

B is not a semimartingale for $H \neq 1/2$.

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H > 1/2.

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H > 1/2. Let $\Pi_t = \{0 = t_0 < t_1 < ... < t_n = t\}$ be a partition of [0, t].

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H > 1/2. Let $\Pi_t = \{0 = t_0 < t_1 < ... < t_n = t\}$ be a partition of [0, t]. Then,

$$E\left(\sum_{i=1}^{n}|B_{t_{i}}-B_{t_{i-1}}|^{2}\right) = \sum_{i=1}^{n}|t_{i}-t_{i-1}|^{2H}$$

$$\leq |\Pi|^{2H-1}\sum_{i=1}^{n}|t_{i}-t_{i-1}|$$

$$= t|\Pi|^{2H-1} \to 0$$

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H > 1/2. Let $\Pi_t = \{0 = t_0 < t_1 < \ldots < t_n = t\}$ be a partition of [0, t]. Then,

$$E\left(\sum_{i=1}^{n}|B_{t_{i}}-B_{t_{i-1}}|^{2}\right) = \sum_{i=1}^{n}|t_{i}-t_{i-1}|^{2H}$$

$$\leq |\Pi|^{2H-1}\sum_{i=1}^{n}|t_{i}-t_{i-1}|$$

$$= t|\Pi|^{2H-1} \to 0$$

If B were a semimartingale. Then, B = M + V.

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H > 1/2. Let $\Pi_t = \{0 = t_0 < t_1 < \ldots < t_n = t\}$ be a partition of [0, t]. Then,

$$E\left(\sum_{i=1}^{n}|B_{t_{i}}-B_{t_{i-1}}|^{2}\right) = \sum_{i=1}^{n}|t_{i}-t_{i-1}|^{2H}$$

$$\leq |\Pi|^{2H-1}\sum_{i=1}^{n}|t_{i}-t_{i-1}|$$

$$= t|\Pi|^{2H-1} \to 0$$

If B were a semimartingale. Then, B = M + V. Thus

$$0=[B]=[M].$$

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H > 1/2. Let $\Pi_t = \{0 = t_0 < t_1 < \ldots < t_n\}$ be a partition of [0, t]. Then,

$$E\left(\sum_{i=1}^{n}|B_{t_{i}}-B_{t_{i-1}}|^{2}\right) = \sum_{i=1}^{n}|t_{i}-t_{i-1}|^{2H}$$

$$\leq |\Pi|^{2H-1}\sum_{i=1}^{n}|t_{i}-t_{i-1}|$$

$$= t|\Pi|^{2H-1} \to 0$$

If B were a semimartingale. Then, B = M + V. Thus

$$0=[B]=[M].$$

Consequently B = V.

ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H < 1/2.

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H < 1/2. We have

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H < 1/2. We have

$$I_n: = \sum_{j=1}^n |B_{j/n} - B_{(j-1)/n}|^2 \stackrel{(d)}{=} \frac{1}{n^{2H}} \sum_{j=1}^n |B_j - B_{j-1}|^2$$
$$= n^{1-2H} \left(\frac{1}{n} \sum_{j=1}^n |B_j - B_{j-1}|^2 \right) \to \infty.$$

Theorem

B is not a semimartingale for $H \neq 1/2$.

Proof : (i) Case H < 1/2. We have

$$I_n: = \sum_{j=1}^n |B_{j/n} - B_{(j-1)/n}|^2 \stackrel{(d)}{=} \frac{1}{n^{2H}} \sum_{j=1}^n |B_j - B_{j-1}|^2$$
$$= n^{1-2H} \left(\frac{1}{n} \sum_{j=1}^n |B_j - B_{j-1}|^2 \right) \to \infty.$$

Due to, the ergodic theorem implies that

$$\frac{1}{n} \sum_{i=1}^{n} |B_j - B_{j-1}|^2 \to E((B_1)^2) \quad \text{a.s.}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Contents

- Introduction
- PBM and Some Properties
- Integral Representation
- Wiener Integrals
- Malliavin Calculus

Mandelbrot-van Ness representation

$$B_t = C_H \left[\int_{\infty}^0 \{ (t-s)^{H-1/2} - (-s)^{H-1/2} \} dW_s + \int_0^t (t-s)^{H-1/2} dW_s \right].$$

Mandelbrot-van Ness representation

$$B_t = C_H \left[\int_{\infty}^t \{ (t-s)^{H-1/2} - (-s)^{H-1/2} \} dW_s + \int_0^t (t-s)^{H-1/2} dW_s \right].$$

Here W is a Brownian motion.

Fix a time interval [0, T] and consider the fBm $B = \{B_t; t \in [0, T]\}$.

Fix a time interval [0, T] and consider the fBm $B = \{B_t; t \in [0, T]\}$. Then there exists a Bm $\{W_t; t \in [0, T]\}$ such that

$$B_t = \int_0^t K_H(t,s) dW_s,$$

Fix a time interval [0, T] and consider the fBm $B = \{B_t; t \in [0, T]\}$. Then there exists a Bm $\{W_t; t \in [0, T]\}$ such that

$$B_t = \int_0^t \frac{\mathsf{K}_{\mathsf{H}}(t,s)dW_s}{},$$

where

• For H > 1/2,

$$K_H(t,s) = c_H s^{\frac{1}{2}-H} \int_s^t (u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} du \quad s < t.$$

Fix a time interval [0, T] and consider the fBm $B = \{B_t; t \in [0, T]\}$. Then there exists a Bm $\{W_t; t \in [0, T]\}$ such that

$$B_t = \int_0^t K_H(t,s) dW_s,$$

where

• For H > 1/2,

$$K_H(t,s) = c_H s^{\frac{1}{2}-H} \int_s^t (u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} du, \quad s < t.$$

• For H < 1/2,

$$K_{H}(t,s) = c_{H} \left[\left(\frac{t}{s} \right)^{H-\frac{1}{2}} (t-s)^{H-\frac{1}{2}} - (H-\frac{1}{2})s^{\frac{1}{2}-H} \int_{s}^{t} u^{H-\frac{3}{2}} (u-s)^{H-\frac{1}{2}} du \right], \quad s < t.$$

Contents

- Introduction
- PBM and Some Properties
- Integral Representation
- Wiener Integrals
- Malliavin Calculus

Let ${\mathcal E}$ be the family of the step functions of the form

$$f = \sum_{i=0}^{n} a_i I_{(t_j, t_{j+1}]}.$$

Let ${\mathcal E}$ be the family of the step functions of the form

$$f = \sum_{i=0}^{n} a_i I_{(t_j, t_{j+1}]}.$$

The Wiener integral with respect to B

$$I(f) = \sum_{i=0}^{n} a_i (B_{t_{i+1}} - B_{t_i})$$

and the space

$$\mathcal{L}(B) = \{X \in L^2(\Omega) : X = L^2(\Omega) - \lim_{n \to \infty} I(f_n), \text{ for some } \{f_n\} \subset \mathcal{E}\}.$$

$$\mathcal{L}(B) = \{X \in L^2(\Omega) : X = L^2(\Omega) - \lim_{n \to \infty} I(f_n), \text{ for some } \{f_n\} \subset \mathcal{E}\}.$$

Proposition (Pipiras and Taqqu)

Suppose that ${\cal H}$ is a inner product space with inner product (\cdot,\cdot) such that :

- i) $\mathcal{E} \subset \mathcal{H}$ and (f,g) = E(I(f)I(g)), for $f,g \in \mathcal{E}$.
- ii) \mathcal{E} is dense in \mathcal{H} .

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete.

$$\mathcal{L}(B) = \{X \in L^2(\Omega) : X = L^2(\Omega) - \lim_{n \to \infty} I(f_n), \text{ for some } \{f_n\} \subset \mathcal{E}\}.$$

Proposition (Pipiras and Taqqu)

Suppose that $\mathcal H$ is a inner product space with inner product (\cdot,\cdot) such that :

- i) $\mathcal{E} \subset \mathcal{H}$ and (f,g) = E(I(f)I(g)), for $f,g \in \mathcal{E}$.
- ii) \mathcal{E} is dense in \mathcal{H} .

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of I.

Proposition (Pipiras and Taqqu)

Suppose that ${\cal H}$ is a inner product space with inner product (\cdot,\cdot) such that :

- i) $\mathcal{E} \subset \mathcal{H}$ and (f,g) = E(I(f)I(g)), for $f,g \in \mathcal{E}$.
- ii) \mathcal{E} is dense in \mathcal{H} .

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of I.

Remarks

a) For H < 1/2,

$$\mathcal{H} = \{ f \in L^2([0, T]) : f(s) = c_H s^{\frac{1}{2} - H} (I_{T_-}^{\frac{1}{2} - H} u^{H - \frac{1}{2}} \phi_f(u))(s)$$
 for some $\phi_f \in L^2 \}$

with
$$(I_{T-g}^{\alpha})(s) = \frac{1}{\Gamma(\alpha)} \int_{s}^{T} (x-s)^{\alpha-1} g(x) dx$$
.

Proposition (Pipiras and Taqqu)

Suppose that ${\cal H}$ is a inner product space with inner product (\cdot,\cdot) such that :

- i) $\mathcal{E} \subset \mathcal{H}$ and (f,g) = E(I(f)I(g)), for $f,g \in \mathcal{E}$.
- ii) \mathcal{E} is dense in \mathcal{H} .

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of I.

Remarks

a) For H < 1/2,

$$\mathcal{H} = \{ f \in L^2([0, T]) : f(s) = c_H s^{\frac{1}{2} - H} (I_{T_-}^{\frac{1}{2} - H} u^{H - \frac{1}{2}} \phi_f(u))(s)$$
 for some $\phi_f \in L^2 \}$

with the inner product $(f,g) = (\phi_f,\phi_g)_{L^2([0,T])}$.

Proposition (Pipiras and Taqqu)

Suppose that ${\cal H}$ is a inner product space with inner product (\cdot,\cdot) such that :

- i) $\mathcal{E} \subset \mathcal{H}$ and (f,g) = E(I(f)I(g)), for $f,g \in \mathcal{E}$.
- ii) \mathcal{E} is dense in \mathcal{H} .

Then \mathcal{H} is isometric to $\mathcal{L}(B)$ if and only if \mathcal{H} is complete. Moreover, the isometry is an extension of I.

Remarks

b) For
$$H > 1/2$$
,

$$\mathcal{H} = \{ f \in \mathcal{D}' : \exists f^* \in W^{1/2-H,2}(\mathbb{R}) \text{ with } \operatorname{supp}(f) \subset [0,T] \}$$

such that
$$f = f^*|_{[0,T]}$$

with the inner product $(f,g) = c_H \int_R \mathcal{F} f^*(x) \overline{\mathcal{F}_g^*(x)} |x|^{1-2H} dx$.

a) For H < 1/2,

$$\mathcal{H} = \{ f \in L^2([0, T]) : f(s) = c_H s^{\frac{1}{2} - H} (I_{T_-}^{\frac{1}{2} - H} u^{H - \frac{1}{2}} \phi_f(u))(s)$$
for some $\phi_f \in L^2 \}$

with the inner product $(f,g) = (\phi_f, \phi_g)_{L^2([0,T])}$.

b) For H > 1/2,

$$\mathcal{H} = \{ f \in \mathcal{D}' : \exists f^* \in W^{1/2-H,2}(\mathbb{R}) \text{ with } \operatorname{supp}(f) \subset [0, T] \}$$

such that
$$f = f^*|_{[0,T]}$$

with the inner product $(f,g) = c_H \int_R \mathcal{F} f^*(x) \overline{\mathcal{F} g^*(x)} |x|^{1-2H} dx$.

c)
$$W^{s,2}(\mathbb{R}) = \{ f \in \mathcal{S} : (1+|x|^2)^{s/2} \mathcal{F} f(x) \in L^2(\mathbb{R}) \}.$$

Moreover, there exists an isometry $K_H^*: \mathcal{H} \to L^2([0, T])$ and a Brownian motion W such that :

$$I(f) = \int_0^T (K_H^* f)(s) dW_s.$$

Moreover, there exists an isometry $K_H^*: \mathcal{H} \to L^2([0, T])$ and a Brownian motion W such that :

- $I(f) = \int_0^T (K_H^* f)(s) dW_s.$
- $K_H^*I_{[0,t]} = K_H(t,\cdot)$ with

$$K_H(t,s) = c_H s^{\frac{1}{2}-H} \int_s^t (u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} du, \quad s < t \text{ and } H > 1/2$$

and

$$egin{aligned} \mathcal{K}_{H}(t,s) &= c_{H} \left[\left(rac{t}{s}
ight)^{H-rac{1}{2}} (t-s)^{H-rac{1}{2}}
ight. \ &- (H-rac{1}{2}) s^{rac{1}{2}-H} \int_{s}^{t} u^{H-rac{3}{2}} (u-s)^{H-rac{1}{2}} du
ight], \quad H < 1/2. \end{aligned}$$

Moreover, there exists an isometry $K_H^*:\mathcal{H}\to L^2([0,T])$ and a Brownian motion W such that :

- **o** For H < 1/2,

$$K_H^* f = \phi_f,$$

with $f(s) = c_H s^{\frac{1}{2}-H} (I_{T-}^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \phi_f(u))(s), \ s \in [0, T].$

Moreover, there exists an isometry $K_H^*: \mathcal{H} \to L^2([0, T])$ and a Brownian motion W such that :

- $I(\phi) = \int_0^T (K_H^* \phi)(s) dW_s.$
- **3** For H < 1/2,

$$K_H^* f = \phi_f,$$

with
$$f(s) = c_H s^{\frac{1}{2}-H} (I_{T-}^{\frac{1}{2}-H} u^{H-\frac{1}{2}} \phi_f(u))(s), \ s \in [0, T].$$

 $\bullet \quad \mathsf{For} \ H > 1/2 \ \mathsf{and} \ \phi \in \mathcal{E},$

$$(K_H^*\phi)(s) = c_H s^{1/2-H} (I_{T-}^{H-\frac{1}{2}} u^{h-\frac{1}{2}} \phi(u))(s), \ s \in [0, T].$$

Contents

- Introduction
- PBM and Some Properties
- Integral Representation
- Wiener Integrals
- Malliavin Calculus

Derivative operator

Let ${\mathcal S}$ be the set of smooth functional of the form

$$F = f(B(\phi_1), \ldots, B(\phi_n)),$$

where $n \geq 1$, $f \in C_b^{\infty}(\mathbb{R}^n)$ and $\phi_i \in \mathcal{H}$.

Derivative operator

Let $\mathcal S$ be the set of smooth functional of the form

$$F = f(B(\phi_1), \ldots, B(\phi_n)),$$

where $n \geq 1$, $f \in C_b^{\infty}(\mathbb{R}^n)$ and $\phi_i \in \mathcal{H}$. The derivative operator is given by

$$DF = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (B(\phi_1), \dots, B(\phi_n)) \phi_i.$$

Derivative operator

Let $\mathcal S$ be the set of smooth functional of the form

$$F = f(B(\phi_1), \ldots, B(\phi_n)),$$

where $n \geq 1$, $f \in C_b^{\infty}(\mathbb{R}^n)$ and $\phi_i \in \mathcal{H}$. The derivative operator is given by

$$DF = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (B(\phi_1), \dots, B(\phi_n)) \phi_i.$$

The operator D is closable from $L^2(\Omega)$ into $L^2(\Omega; \mathcal{H})$.

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Let W be the Brownian motion such that

$$B_t = \int_0^t K_H(t,s) dW_s \quad t \in [0,T].$$

Then,

 \bigcirc DomD=Dom D^W and

$$K_H^*DF = D^W F.$$

Let W be the Brownian motion such that

$$B_t = \int_0^t K_H(t,s)dW_s \quad t \in [0,T].$$

Then,

 \bigcirc DomD=Dom D^W and

$$K_H^*DF = D^W F.$$

 $\qquad \qquad \bullet \in \mathsf{Dom} \delta \text{ if and only if } K_{\mathsf{H}}^* \phi \in \mathsf{Dom} \delta^W \text{ and }$

$$\delta(\phi) = \delta^W(K_H^*\phi).$$

 \bigcirc DomD=Dom D^W and

$$K_H^*DF = D^W F$$
.

 $\bullet \phi \in \mathsf{Dom} \delta \text{ if and only if } K_H^* \phi \in \mathsf{Dom} \delta^W \text{ and }$

$$\delta(\phi) = \delta^W(K_H^*\phi).$$

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Remark For H = 1/2, $\mathcal{H} = L^2([0, T])$.

- ① DomD=Dom D^W and $K_H^*DF = D^WF$.
- $② \ \phi \in \mathsf{Dom} \delta \text{ if and only if } K_H^* \phi \in \mathsf{Dom} \delta^W \text{ and }$

$$\delta(\phi) = \delta^W(K_H^*\phi).$$

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Remark For H = 1/2, $H = L^2([0, T])$. So

$$E\left(F\delta^{W}(u)\right)=E\left(\int_{0}^{T}(D_{s}^{W}F)u_{s}ds\right), \quad F\in\mathcal{S}, \ u\in L^{2}(\Omega\times[0,T]).$$

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Proposition

Let $u \in Dom \delta$ and $F \in Dom D$ such that $(Fu) \in L^2(\Omega; \mathcal{H})$ and $(F\delta(u) - \langle DF, u \rangle_{\mathcal{H}}) \in L^2(\Omega)$. Then

$$F\delta(u) = \delta(Fu)$$

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Proposition

Let $u \in Dom \delta$ and $F \in Dom D$ such that $(Fu) \in L^2(\Omega; \mathcal{H})$ and $(F\delta(u) - \langle DF, u \rangle_{\mathcal{H}}) \in L^2(\Omega)$. Then

$$F\delta(u) = \delta(Fu) + \langle DF, u \rangle_{\mathcal{H}}.$$

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Proposition

Let $u \in Dom \delta$ and $F \in Dom D$ such that $(Fu) \in L^2(\Omega; \mathcal{H})$ and $(F\delta(u) - \langle DF, u \rangle_{\mathcal{H}}) \in L^2(\Omega)$. Then

$$F\delta(u) = \delta(Fu) + \langle DF, u \rangle_{\mathcal{H}}.$$

Proof : Let $G \in \mathcal{S}$, then

The divergence operator δ is the adjoint of D. It is defined by the duality relation

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Proposition

Let $u \in Dom \delta$ and $F \in Dom D$ such that $(Fu) \in L^2(\Omega; \mathcal{H})$ and $(F\delta(u) - \langle DF, u \rangle_{\mathcal{H}}) \in L^2(\Omega)$. Then

$$F\delta(u) = \delta(Fu) + \langle DF, u \rangle_{\mathcal{H}}.$$

Proof : Let $G \in \mathcal{S}$, then

$$E\left(\langle DG, Fu \rangle_{\mathcal{H}}\right) = E\left(\langle D(GF), u \rangle_{\mathcal{H}} - G\langle DF, u \rangle_{\mathcal{H}}\right)$$

The divergence operator δ is the adjoint of D.

$$E(F\delta(u)) = E(\langle DF, u \rangle_{\mathcal{H}}), \quad F \in \mathcal{S}, \ u \in L^2(\Omega, \mathcal{H}).$$

Proposition

Let $u \in Dom \delta$ and $F \in Dom D$ such that $(Fu) \in L^2(\Omega; \mathcal{H})$ and $(F\delta(u) - \langle DF, u \rangle_{\mathcal{H}}) \in L^2(\Omega)$. Then

$$F\delta(u) = \delta(Fu) - \langle DF, u \rangle_{\mathcal{H}}.$$

Proof : Let $G \in \mathcal{S}$, then

$$E(\langle DG, Fu \rangle_{\mathcal{H}}) = E(\langle D(GF), u \rangle_{\mathcal{H}} - G \langle DF, u \rangle_{\mathcal{H}})$$

= $E(G(F\delta(u) - \langle DF, u \rangle_{\mathcal{H}})).$