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Introduction

Definition (Credit Default Swap (CDS))

A CDS is a contract where

the “protection buyer” “A” pays rates “R” at times Ta+1, ...,
Tb (the “premium leg”) in exchange for a single protection
payment LGD (Loss Given Default, the “protection leg”).

The buyer receives the protection leg by the protection seller
“B” at the default time τ of a reference entity “C”, provided
that Ta < τ < Tb.

The rates R paid by “A” stop in case of default.

In terms of “Term Life Insurance”:

Time of death (default) — τ (of the insured “C”)

Death benefit — LGD , payable at the moment of death

Premium — an annuity (e.g. monthly) at (leveled) rate R

Coverage period (term) — [Ta,Tb], where a < b are two ages.
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Credit Risk vs. Actuarial Problems

Credit Risk Actuarial Science

τ Default time Ruin time,

Future life time (τ = T (x))

P{τ > t} Survival Proba. Survival Probability

(tpx = P{T (x) > t})

Λ(t) = − ln tpx Hazard Process Hazard Process

λ(t) = Λ′(t) Default Intensity “Force of Mortality”

(µ(x + t) = −(tpx)
′/tpx)

Structure Ruin Problems

Reduced form Life Contingencies
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Basel II Accord
From Wikipedia, the free encyclopedia

Basel II (Bank for International Settlements Basel Accord)

Basel II is the second of the Basel Accords, which are
recommendations on banking laws and regulations issued by the
Basel Committee on Banking Supervision (Basel, Switzerland).
The purpose of Basel II, which was initially published in
tclblueJune 2004, is to create an international standard that
banking regulators can use when creating regulations about how
much capital banks need to put aside to guard against the types of
financial and operational risks banks face. ......
In practice, Basel II attempts to accomplish this by setting up
rigorous risk and capital management requirements designed to
ensure that a bank holds capital reserves appropriate to the risk
the bank exposes itself to through its lending and investment
practices......
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An Example in Risk Management

Recall that the definition of “Value at Risk” of a r.v. Z :

VaRα(Z )
4
= inf{x : P{x + Z < 0} ≤ α}.

Consider the value process V π
t = x + Qπ

t (Qπ
0 = 0) for an

investment strategy π. Then one can assess the “risk”
associated to this strategy by looking at VaRα(inft∈[0,T ] Q

π
t ).

Define

ψ(x ,T ) = P{V π
t < 0 : ∃ t ∈ [0,T ]}. (1)

Then
VaRα( inf

t≥0
Qπ

t ) = inf{x : ψ(x ,T ) ≤ α}.

Assume now that ψ(x ,T ) ∼ e−r∗x for some r∗ ∈ R, then

VaRα( inf
t≥0

Qπ
t ) ∼ − logα

r∗
!
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Some Remarks

Note

In Actuarial Sciences, the quantity ψ(x ,T ) (or
ψ(x) = P{V h

t < 0 : ∃ t > 0}) is called “Ruin Probability”.
The estimate ψ(x ,T ) ∼ e−r∗x is called the Lundberg bound,
with Lundberg exponent r∗.

Define the “Average VaR” by

ρ(Z )
4
= AVaRα(Z )

4
=

1

α

∫ α

0
VaRu(Z )du.

Then ρ is a “Coherent Risk Measure”
(Cheridito-Delbaen-Kupper, ’04).

The Lundberg bound also implies that
ρ( inf

t≥0
Qt) ∼ (1− logα)/r∗.

(The equality can hold if the Lundberg bound is sharp!)
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Basic Insurance Models

Wiener-Poisson Space

(Ω,F ,P) — a complete probability space

W = {Wt}t≥0— a d-dimensional Brownian motion

µ(dtdz) — a Poisson random measure on (0,∞)× R+, with
Lévy measure ν(dz).

FW = {FW
t : t ≥ 0}, Fµ 4

= {Fµ
t : t ≥ 0}, F = FW ⊗ Fµ

P
,

Main Elements

Claim Process

Premium Process

Reserve Process (= Premium - Claim)
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Claim and Premium Processes

Claim Process: St =

∫ t

0

∫
R+

f (s, z , ·)µ(dsdz), t ≥ 0

(may assume d ≤ f (s, z , ω) ≤ L, where d and L are the
deductible and benefit limit, respectively)

Premium Process: Ct =

∫ t

0
csds, t ≥ 0

Compound Poisson Case:

f (t, z) ≡ z

St =
∑Nt

k=1 ∆STk
, where Nt is standard Poisson.

ν(dz) = λFU1(dz), and E [St ] =
∫ t
0

∫
R+

zν(dz)ds = λE [U1]t.

ct = E{∆St |Fµ
t } =

∫
R+

zν(dz) = λE [U1], t ≥ 0,
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Risk Reserve Process

Example

Cramér-Lundberg Model: Xt = x +
∫ t
0 csds − St

Add expense loading: Xt = x +
∫ t
0 cs(1 + ρs)ds − St

Add interest income: Xt = x +
∫ t
0 [rsXs + cs(1 + ρs)]ds − St

Reserve with Investment

Xt = x +

∫ t

0

{
Xs [rs + 〈πs , µs − rs1 〉] + cs(1 + ρs)

}
ds

+

∫ t

0
Xs 〈πs , σsdWs 〉 −

∫ t

0

∫
R+

f (s, z)µ(dsdz), (2)

General
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Ruin Problems

Consider the simplest Cramér-Lundberg model:

Xt = x +

∫ t

0
csds − St , t ≥ 0. (3)

Ruin Problem

Find/estimate the “ruin probabilities”:

ψ(x ,T ) = P{Xt < 0 : ∃ t ∈ (0,T ]}; (Finite horizon)

ψ(x) = P{Xt < 0 : ∃ t > 0}. (Infinite horizon).

Thinking finance?

Default probability? Structure model? ...
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Existing ways/methods of studying ruin probabilities

Direct Calculation: (e.g, vi IDE)
— Lundberg (’26), Cramér (’35), Segerdahi (’42)...

Bounds:
— Lundberg (’26, 32, 34), Cremér (’55), Gerber (’76),

Feller (’71) ...

Asymptotics: (e.g., lim
u→∞

ψ(u)eγu =? lim
u→∞

ψ(u,T )eγu =?)

— Teugels-Veraverbeke (’73), Djehiche (’93),
Asmussen-klüppelberg (’96)...

Approximations (of claim size dist.):
— De Vylder (’78), Daley Rolski (’84)...
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Existing ways/methods of studying ruin probabilities

One of most notable discovery in ruin theory is that the ruin
probablity satisfies a differential or integro-differential equation.

Main Result (Feller (1971), Gerber (1990))

Assume classical Cramér-Lundberg model. L ψ(x) be the infinite
horizon ruin probability with initial capital x , and ϕ(x) = 1− ψ(x)
be the corresponding non-ruin probability. Then

ϕ(x) = ϕ(0) +
λ

c(1 + ρ)

∫ x

0
ϕ(x − z)F̄Z (z)dz , (4)

where F is the jump size distribution and F̄ = 1− F , and λ is the
intensity of jump frequency.

More general model— Reinhard (1984), Asmusson (1989) (Hidden
Markovian), Asmusson-Petersen (1988) (reserve dependent
premium) ...
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Ruin Probility via Differential Equations

Assume that the risk reserve satisfies the following SDE:

Xt = x +

∫ t

0
b(s,Xs)ds −

∫ t

0

∫
IR+

f (s, z)Np(dzds), (5)

where b : [0,∞)× R 7→ R is some (deterministic!) measurable
function (could be Lipschitz..., if you wish). Then X is (strong)
Markov.

Define
τ = inf{t ≥ 0 : Xt < 0}.

Then, ∀0 < t < T ,

1{τ<T} = 1{τ<t} + 1{t≤τ}1{inft≤s<T Xs<0}. (6)

Define Mt
4
= P{τ < T |FX

t } = E{1{τ<T}|FX
t }; and

Ψ(t, r)
4
= P

{
inf

t≤s<T
Xt < 0

∣∣∣Xt = r

}
. (7)
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Ruin Probility via Differential Equations

Taking conditional expectations E{ · |FX
t } on both sides of (6)

and using the Markovian Property of X :

Mt = 1{τ≤t} + 1{τ>t}P

{
inf

t≤s<T
Xt < 0

∣∣∣Xt

}
= 1{τ<t} + 1{τ≥t}Ψ(t,Xt). (8)

Setting t = t ∧ τ in (8), we obtain that

Mt∧τ = Ψ(t ∧ τ,Xt∧τ ). (9)

Thus by Optional Sampling t 7→ Ψ(t ∧ τ,Xt∧τ ) is an (UI) FX -mg!

Now denote Φ(t, r) = 1−Ψ(t, r) (non-ruin probability), and
assume that Φ(·, ·) ∈ C 1,1.
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Ruin Probility via Differential Equations

Applying Itô (BV version) to get

Φ(t ∧ τ,Xt∧τ )− Φ(0, x)

=

∫ t∧τ

0
∂tΦ(s,Xs)ds +

∫ t∧τ

0
∂rΦ(s,Xs)b(s,Xs)ds

+

∫ t∧τ

0

∫
R+

[Φ(s,Xs− − f (s, z))− Φ(s,Xs−)]Np(dzds)

=

∫ t∧τ

0
∂tΦ(s,Xs)ds +

∫ t∧τ

0
∂rΦ(s,Xs)b(s,Xs)ds

+

∫ t∧τ

0

∫
R+

[Φ(s,Xs− − f (s, z))− Φ(s,Xs−)]ν(dz)ds + M∗
t∧τ ,

where

M∗
t =

∫ t∧τ

0

∫
R+

[Φ(s,Xs− − f (s, z))− Φ(s,Xs−)]Ñp(dzds)

is an martingale with zero mean.
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Ruin Probility via Differential Equations

Since t ′ is arbitrary and τ ′ ≥ t ′, we can “differentiating” (10) to
get the following IPDE:

[∂tΦ + ∂rΦb](t, r) =

∫
R+

[Φ(t, r)− Φ(t, r − f (t, z))]ν(dz). (11)

Remark

Since Φ(t,Xt) = 0 for Xt < 0, the RHS in (11) is actually∫
{r≥f (t,z)}

[Φ(t, r)− Φ(t, r − f (t, z))]ν(dz).

In the compound Poisson case f (t, z) ≡ z , ν(dz) = λFZ (dz),
where Z is the jump size. Thus (11) becomes

[∂tΦ + ∂rΦb](t, r) = Φ(t, r)λ− λ

∫
{r≥z}

Φ(t, r − z)FZ (dz).
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Special Cases

Infinite horizon case

Assume b(t, r) = b(r). Denote ψ(r) = limt→∞ Ψ(t, r) and
ϕ(r) = 1− ψ(r). Then

ϕ′(r)b(r) = ϕ(r)λ− λ

∫
{r≥z}

ϕ(r − z)FZ (dz). (12)

Example

If b(r) = c(1 + ρ)
4
= β and Z ∼ exp{δ} Then (12) becomes

ϕ′(r)β = λ

{
ϕ(r)− e−δr

∫ r

0
ϕ(z)δeδzdz

}
. (13)

Differentiating: ϕ′′(r)β = (λ− δβ)ϕ′(r).

Solving: ϕ(r) = c1 − c2e
−(δ−λ/β)r , where c1, c2 ∈ R.
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An Integral Equation

Denoting β = c(1 + ρ) again, and integrate (13) from 0 to x :

β

λ
(ϕ(x)− ϕ(0)) =

β

λ

∫ x

0
ϕ′(r)dr

=

∫ x

0
ϕ(r)dr −

∫ x

0

∫ u

0
ϕ(u − z)FZ (dz)du

= · · · · · ·

=

∫ x

0
ϕ(r)dr −

∫ x

0

∫ x−u

0
FZ (dz)ϕ(u)du

=

∫ x

0
[1− FZ (x − u)]ϕ(u)du.

=⇒ ϕ(x) = ϕ(0) +
λ

β

∫ x

0
ϕ(x − z)F̄Z (z)dz . (14)
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Lundberg bounds

An Evidence

Recall IDE (14). By Expected Value Principle c = dE [St ]
dt = λµ,

denoting FI (x) = µ−1

∫ x

0
F̄ (z)dz (14) becomes

ϕ(x) = ϕ(0) +
1

(1 + ρ)
ϕ ∗ FI (x), (15)

where ∗ means convolution.

Solving (15) by Laplace transforms and using the initial value
ϕ(0) = ρ

1+ρ we have

ϕ(x) =
ρ

1 + ρ

∞∑
n=0

(
1

1 + ρ

)n

F n∗
I (x). (16)

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 22/ 57



Lundberg bounds

An Evidence

Recall IDE (14). By Expected Value Principle c = dE [St ]
dt = λµ,

denoting FI (x) = µ−1

∫ x

0
F̄ (z)dz (14) becomes

ϕ(x) = ϕ(0) +
1

(1 + ρ)
ϕ ∗ FI (x), (15)

where ∗ means convolution.

Solving (15) by Laplace transforms and using the initial value
ϕ(0) = ρ

1+ρ we have

ϕ(x) =
ρ

1 + ρ

∞∑
n=0

(
1

1 + ρ

)n

F n∗
I (x). (16)

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 22/ 57



Lundberg Bounds

Example

If Z ∼ exp(δ), then we see that

ψ(x) = 1− ϕ(x) =
1

1 + ρ
exp

{
− ρ

δ(1 + ρ)
x

}
≤ e−Rx .

Remark

A primitive method for the Lundberg bound is to consider ψn(x),
the ruin probability up to (n + 1)-st claim. By an inductional
argument one proves that, there exists an R > 0 such that

ψn(x) ≤ e−Rx , ∀n. (17)

Letting n →∞ one derives the (upper) bound for (infinite horizon)
ruin probability ψ(x). The constant R is called “Lundberg
coefficient” or “adjustment coefficients”.
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Exponential Martingale Approach (Gerber, (1973))

Consider the classical model Xt = x + ct − St , where
ct = E [St ] = λµt. Denote Qt = ct − St (profit process).

For any given x and r > 0, consider the Fp-adapted process

Mx
t
4
=

e−r(x+Qt)

etθ(r)
, t ≥ 0, (18)

where θ(·) is a function to be determined.

Suppose that {Mx
t } is an Fp-martingale(!) Then, by

optional sampling, for any given time t0 > 0 and stopping

time τx
4
= inf{t ≥ 0 : Xt = x + Qt < 0}, one has

e−rx = Mx
0 = E

{
Mx

t0∧τx

∣∣∣F p
0

}
= E

{
Mx

t0∧τx

}
(19)

≥ E
{

Mx
τx

∣∣∣τx ≤ t0
}

P{τx ≤ t0}.
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Exponential Martingale Approach (Gerber, (1973))

But on the set {τx ≤ t0} one must have Xτx = x + Qτx ≤ 0.
Thus

P{τx ≤ t0} ≤ e−rx

E{Mx
τx
|τx ≤ t0}

≤ e−rx

E{e−τxθ(r)|τx ≤ t0}
≤ e−rx sup

0≤t≤t0

etθ(r).

Letting t0 →∞ we obtain that

ψ(x) ≤ e−rx sup
t≥0

etθ(r). (20)

Question

How to determine θ?
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Exponential Martingale Approach (Gerber, (1973))

Analysis

Denote f̂ (s) =
∫∞
0 e−sxdF (x) = E [e−sU1 ]. Then

E
[
esSt

]
=

∞∑
n=0

E
[
es

∑Nt
k=1 Uk

∣∣∣Nt = n
]
P(Nt = n)

=
∞∑

n=0

f̂ n(−s)
(λt)n

n!
e−λt = eλ(f̂ (−s)−1)t

Thus to make Mx a martingale, one need only choose

E
[
e−sQt

]
= e−sctE

[
esSt

]
= e−sct+λ[f̂ (−s)−1]t 4

= etθ(s), (21)

where θ(s)
4
= λ[f̂ (−s)− 1]− sc .
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Exponential Martingale Approach (Gerber, (1973))

With this choice of θ, and using (21) and the fact that Q has
independent increments, we have

E [Mx
t |F p

s ] = Mx
s E

{
e−r(Qt−Qs)

e(t−s)θ(r)

∣∣∣∣∣ F p
s

}
= Mx

s .

=⇒ Mx is a Fp-martingale!

Recall (20). Clearly the sharp estimate of ruin probability is
obtained by minimizing the RHS w.r.t. r . Namely, choosing

r∗
4
= sup{r : θ(r) ≤ 0} would give the best estimate

ψ(x) ≤ e−r∗t . (22)

r∗ is thus called Lundberg coefficient.
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Another look at Exponential Martingales

Consider the more general model:

Xt = x +

∫ t

0
b(s,Xs)ds −

∫ t

0

∫
R+

f (s, z)Np(dsdz). (23)

For any g ∈ C 1,1([0,T ]× R), applying Itô’s formula to get

g(t,Xt) = g(0, x) +

∫ t

0
{∂tg + ∂xgb} (s,Xs)ds

. +

∫ t

0

∫
R+

[g(s,Xs− − f (s, z))− g(s,Xs−)]ν(dz)ds + mg

Thus Mt
4
= g(t,Xt) is a mg (or local mg) ⇐⇒ g satisfies

∂tg + ∂xgb +

∫
R+

[g(t, x−f (t, z))−g(t, x)]ν(dz) = 0. (24)
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Another look at Exponential Martingales

In the compound Poisson case b(t, x) = β, f ≡ z , and
ν(dz) = λFU(dz). The equation (24) becomes

[∂tg + ∂xg ]β + λ

{∫
R+

[g(t, x − z)− g(t, x)]FU(dz)

}
= 0.

If g = g(x), then

g ′(x)β + λ

{∫
R+

g(x − z)FU(dz)− g(x)

}
= 0. (25)

Setting g(x) = ϕ(x) for x ≥ 0 and g(x) = 0 for x < 0 we see that
the integral becomes

∫ x
0 g(x − z)FU(dz) and we recover (14) for

the infinite horizon ruin probability.
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Finite Horizon Case

Assume g(t, x) = e−sx−θt , where s and θ are parameters.
Then (25) reads

[−θ − βs]g(t, x) + λ

{∫
R+

[eszFU(dz)− 1]g(t, x)

}
= 0.

Denoting m̂U(s) =
∫

R+
eszFU(dz), then the above becomes

{−θ − βs + λ [m̂U(s)− 1]} g(t, x) = 0.

Thus (since g(t, x) > 0!)

θ = θ(s) = −βs + λ [m̂U(s)− 1] . (26)

We obtain the adjustment coefficient θ = θ(s), and

Mt = g(t,Xt) = exp{−sXt − θ(s)t}

is a martingale!
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Risk Reserve with Interests

Consider the reserve equation with interst: X0 = x

dXt = [rtXt + ct(1 + ρt)]dt −
∫

R+

f (t, z)Np(dzdt).

Denote Γt
4
= e−

∫ t
0 rsds , and X̃t = ΓtXt . Then X̃ satisfies

X̃t = x +

∫ t

0
Γscs(1 + ρs)ds −

∫ t

0

∫
R+

Γs f (s, z)Np(dzds).

Assume β = c(1 + ρ) is constant, and rt is deterministic,
Then for g ∈ C 1,1(R+ × R), we have

g(t, X̃t) = g(0, x) +

∫ t

0
[∂tg + ∂xgΓsβ](s, X̃s)ds

. +

∫ t

0

∫
R+

[g(·, · −Γs f )− g ](s, X̃s−)ν(dz)ds + mg
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Risk Reserve with Interests

Thus Mt = g(t, X̃t) is a martingale if and only if

[∂tg + ∂xgβΓt ] +

∫
R+

[g(t, x − Γt f )− g(t, x)]ν(dz) = 0.

Assume that g(t, x) = a(t)e−sx , a(t) > 0 to be determined,
and f ≡ z and ν(dz) = λFU(dz), then the above becomes

0 = a′(t)e−sx + {−βsΓt + λ [m̂(sΓt)− 1]} g(t, x)

=
{
a′(t)− θ(sΓt)a(t)

}
e−sx .

Assume a(0) = 1. We can solve the ODE

a′(t) + θ(sΓt)a(t) = 0, t ≥ 0

to get a(t) = e−
∫ t
0 θ(sΓu)du.

Thus M̃t
4
= g(t, X̃t) = exp{−sX̃t −

∫ t
0 θ(sΓu)du} is a mg.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57



Risk Reserve with Interests

Thus Mt = g(t, X̃t) is a martingale if and only if

[∂tg + ∂xgβΓt ] +

∫
R+

[g(t, x − Γt f )− g(t, x)]ν(dz) = 0.

Assume that g(t, x) = a(t)e−sx , a(t) > 0 to be determined,
and f ≡ z and ν(dz) = λFU(dz), then the above becomes

0 = a′(t)e−sx + {−βsΓt + λ [m̂(sΓt)− 1]} g(t, x)

=
{
a′(t)− θ(sΓt)a(t)

}
e−sx .

Assume a(0) = 1. We can solve the ODE

a′(t) + θ(sΓt)a(t) = 0, t ≥ 0

to get a(t) = e−
∫ t
0 θ(sΓu)du.

Thus M̃t
4
= g(t, X̃t) = exp{−sX̃t −

∫ t
0 θ(sΓu)du} is a mg.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57



Risk Reserve with Interests

Thus Mt = g(t, X̃t) is a martingale if and only if

[∂tg + ∂xgβΓt ] +

∫
R+

[g(t, x − Γt f )− g(t, x)]ν(dz) = 0.

Assume that g(t, x) = a(t)e−sx , a(t) > 0 to be determined,
and f ≡ z and ν(dz) = λFU(dz), then the above becomes

0 = a′(t)e−sx + {−βsΓt + λ [m̂(sΓt)− 1]} g(t, x)

=
{
a′(t)− θ(sΓt)a(t)

}
e−sx .

Assume a(0) = 1. We can solve the ODE

a′(t) + θ(sΓt)a(t) = 0, t ≥ 0

to get a(t) = e−
∫ t
0 θ(sΓu)du.

Thus M̃t
4
= g(t, X̃t) = exp{−sX̃t −

∫ t
0 θ(sΓu)du} is a mg.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57



Risk Reserve with Interests

Thus Mt = g(t, X̃t) is a martingale if and only if

[∂tg + ∂xgβΓt ] +

∫
R+

[g(t, x − Γt f )− g(t, x)]ν(dz) = 0.

Assume that g(t, x) = a(t)e−sx , a(t) > 0 to be determined,
and f ≡ z and ν(dz) = λFU(dz), then the above becomes

0 = a′(t)e−sx + {−βsΓt + λ [m̂(sΓt)− 1]} g(t, x)

=
{
a′(t)− θ(sΓt)a(t)

}
e−sx .

Assume a(0) = 1. We can solve the ODE

a′(t) + θ(sΓt)a(t) = 0, t ≥ 0

to get a(t) = e−
∫ t
0 θ(sΓu)du.

Thus M̃t
4
= g(t, X̃t) = exp{−sX̃t −

∫ t
0 θ(sΓu)du} is a mg.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 32/ 57



Lundberg Bounds for General Models

Question:

Can we find an exponential martingale that leads to the Lundberg
bound for the general reserve model (2)?

Recall the exponential martingale

M̃t = exp

{
−sΓtXt −

∫
R+

θ(sΓu)du

}
4
= exp{−Is(t,Xt)− K s

t }.

where Is(t, x)
4
= sxΓt and K s

t =
∫

R+
θ(sΓu)du. Define

βt = −
∫ t
0 rsds, t ≥ 0

Iδ(t, x)
4
= δxe−

∫ t
0 rsds = δxΓt = δxeβt , δ ∈ R.

X̃t = eβtXt = ΓtXt (discounted risk reserve).
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Lundberg Bounds for General Models

In general, we replace s by a parameter δ, and look for a
possible exponential mg Mδ = exp{Iδ + K δ}, where
Iδ(t,Xt) = δX̃t , and X̃ satisfies:

dX̃t = Γt(b̃(t, βt , X̃t) + ηt)dt + 〈 σ̂t , dWt 〉

−
∫

R+

Γt f (t, x)Np(dtdx),

where b̃(t, βt , X̃t) = b(t, e−βt X̃t)) = b(t,Xt).

To “decompose K δ, define mf
t (γ)

4
=

∫
R+

[eγf (t,z) − 1]ν(dz).

Then mf (γ) is increasing in γ and integrable for all γ ≤ δ0.

In compound Poisson case, f ≡ z and ν(dz) = λFU(dz), then

mf
t (γ)

4
= λ

∫
R+

[eγz − 1]FU(dz) = λ(m̂U(γ)− 1), again.
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Lundberg Bounds for General Models

Now define K δ
t = −V δ

t + 1
2Y δ

t + Z δ
t , where

V δ
t = δ

∫ t

0
eβs [b̃(s, βs , X̃s) + ηs ]ds;

Y δ
t = δ2

∫ t

0
e2βs |σ̂s |2ds; Z δ

t
4
=

∫ t

0
mf

s (δe
βs )ds.

Define also Z δ,0
t

4
=

∫ t

0
mf

s (δ)ds, and

{
D = {δ ≥ 0 : Z δ

t <∞,P-a.s., ∀t ≥ 0};
D0 = {δ ≥ 0 : Z δ,0

t <∞,P-a.s.,∀t ≥ 0}.

Since γ ≥ 0 and βs ≤ 0, the monotonicity of mf (·) shows that
D0 ⊆ D .
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Main Results

Theorem (M. Sun (02))

The process Mδ
t
4
= exp{−δX̃t − K δ

t }, t ≥ 0, enjoys the following
properties:

For every δ ∈ D , {Mδ
t : t ≥ 0} is an F-local martingale.

If the processes π, σ, µ, and r are all bounded and
FW -adapted, and that f (·, ·, ·) is deterministic, then for every
δ ∈ D0, {Mδ

t : t ≥ 0} is an F-martingale.

If r is also deterministic, then (ii) holds for all δ ∈ D .

If π is allowed to be F-adapted, then (ii) and (iii) hold for all
δ such that 2δ ∈ D and D0, respectively.

Proof: Define F δ(x , v , y , z)
4
= exp(−δx + v − 1

2y − z), and

applying Itô’s formula to F δ(X̃t ,V
δ
t ,Y

δ
t ,Z

δ
t )...
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Main Results

Example

Classical Model πt ≡ 0, rt ≡ 0, ρ ≡ 0, µt ≡ 0, σt ≡ 0,

St is Compound Poisson

K δ
t = t(

∫∞
0

(eδx − 1)λF (dx)− cδ) (= θ(δ)t!)

δ̃ = sup{δ : θ(δ) ≤ 0} = r∗ Lundberg Exponent

Discounted Risk Reserve πt = ρt = µt = σt ≡ 0, r > 0

St is Compound Poisson

K δ
t =

∫ t

0
{
∫∞
0

[exp(δe−rsx)− 1]λF (dx)− ce−rs}ds

δ̃ = sup{δ ≥ 0 : supt≥0 K δ
t <∞}

Perturbed risk reserve πt ≡ 1, ρt = rt = µt ≡ 0, σt ≡ ε,

Xt = x + ct + εWt − St

K δ
t = t(−cδ + 1

2δ
2ε2 +

∫∞
0

(eδx − 1)λF (dx))
4
= k(δ)t

δ̃
4
= sup{δ > 0 : k(δ) = 0} (Delbaen-Haezendonck (1987), ...)
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Ruin Probability via “Rate Functions”

Extending the idea of the function Iδ(t, x) = δxβt , we can consider
a more general “rate function”: I ∈ C 1,2(R+ × R). Define

M I
t
4
= exp{−I (t,Xt)− K I

t }, K I
t
4
= −V I

t +
1

2
Y I

t + Z I
t , and

Z I
t
4
=

∫ t

0

∫
R+

[exp{I (s,Xs)−I (s,Xs−f (s, x))} − 1]v(dx)ds

V I
t
4
=

∫ t

0
{∂x I (s,Xs)b(s,Xs) + ∂t I (s,Xs)}ds

Y I
t
4
=

∫ t

0
{(∂x I (s,Xs))

2 − ∂2
xx I (s,Xs)}|σ̂s |2ds

Definition

A function I ∈ C 1,2(R+ × R) is called a “rate function” if
Z I

t <∞, ∀t ≥ 0, P-almost surely.
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Analysis

Suppose that we can find I such that M I is a local martingale, and
that I (t, x) ≤ 0, for all t and x ≤ 0.

Let τ
4
= inf{t,Xt < 0}, and apply Optional Sampling to

supermartingale (nonnegative loc mg) M I
t :

e−I (0,x) ≥ E{e−I (τ,Xτ )−K I
τ |τ < T}P{τ < T}

≥ E
{

inf
0≤t≤T

e−K I
t

}
ψ(x ,T ).

Applying Jensen’s inequality we have

ψ(x ,T ) ≤ e−I (0,x)

E
{

inf
0≤t≤T

e−K I
t

} ≤ e−I (0,x)E
{

sup
0≤t≤T

eK I
t

}
.

One can let T →∞ to obtain the bound for ψ(x).
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Ruin Probability via “Rate Functions”

Theorem

For any rate function I , {M I
t : t ≥ 0} is an F-local martingale.

(Lundberg Bounds) If the rate function I satisfies I (t, x) ≤ 0,
for all t and x ≤ 0. Then, it holds that

ψ(x ,T ) ≤ e−I (0,x)E sup
0≤t≤T

exp(K I
t ),

ψ(x) ≤ e−I (0,x)E sup
t≥0

exp(K I
t ).

In the Lundberg bounds above the process K I (X ) can be

replaced by K I (X+), where X+
s

4
= Xs ∨ 0.

Question:

How to find a rate function?
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Asmussen-Nielsen Bound

Assume Compound Poisson (f (t, x) = x , and v(dx) = λF (dx)),
and π ≡ 0, µ ≡ 0, σ ≡ 0, rt = r (constant), ρ(t, x) ≡ ρ(x) is an
increasing function in x . Then

Xt = x +

∫ t

0
p(Xs)ds +

∫ t

0

∫
R+

xµ(dxds), t ≥ 0,

where p(x)
4
= rx + c(1 + ρ(x)).

Consider the Rate function of the form: I (x) =

∫ x

0
γ(y)dy ,

x ≥ 0, γ(·) > 0, increasing. Then

K I
t =

∫ t

0

{
−[γp](X+

s ) +

∫
R+

[
e

∫ X+
s

X+
s −x

γ(y)dy
− 1

]
λF (dx)

}
ds

≤
∫ t

0

{
−[γp](X+

s ) +

∫
R+

[eγ(X+
s )x − 1]λF (dx)

}
ds.
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Asmussen-Nielsen Bound

Let γ be the non-decreasing solution to the Lundberg
equation:

−γp(y) +

∫
R+

[eγx − 1]λF (dx) = 0, y ≥ 0.

(such solution exists if the so-called net profit condition:
infx≥0 p(x) > λE [U1] holds and ρ is monotone.)

One can show that if p(·) ∈ C 1, then I can be extended so
that I (·) ∈ C 2(R), I (0) = 0, and I (x) ≤ 0 for x < 0.

Thus K I
t (X

+) ≤ 0, ∀t ≥ 0, and we have

ψ(x ,T ) ≤ e−I (x) and ψ(x) ≤ e−I (x).

This is the Asmussen and Nielsen bound (1995).
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Can We Do Better?

Assume now ρ(x) ≡ 0, and F (x) = 1− e−θx , x ≥ 0. Then the
Asmussen-Nielsen bound tells us:

ψ(x) ≤ e−θx
(
1 +

r

c
x
)λ

r
, x ≥ 0.

Let us consider a new rate function: for b ∈ C 2,

I (y) = − log b(y)1[0,∞)(y),

Denote K I (X+) =
∫ t
0 L [I ](X+

s )ds, where L is an ID operator:

L [I ](y)
4
= −I ′(y)[ry + c] +

∫ ∞

0
[e I (y)−I (y−x) − 1]λθe−θxdx .

Setting L [I ](y) = 0, we see that b must satisfy

eθy [ry + c]b′(y) +

∫ y

0
b(z)λθe−θzdz +

∫ ∞

y
λθe−θxdx = λeθyb(y).
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Can We Do Better?

Solving this equation to get

b(y) = C1

∫ y

0
e−θz

( rz

c
+ 1

)λ
r
−1

dz + C2.

Determining the constant C1 and C2, and working a little more to
get

I (y) = − log

 ∫∞
y e−θz(1 + rz

c )(
λ
r
)−1dz

c
λ +

∫∞
0 e−θz(1 + rz

c )(
λ
r
)−1dz

 .

Extend I carefully for x < 0, one has

ψ(x ,T ) ≤ e−I (x), ψ(x) ≤ e−I (x).

But it is known that in this case ψ(x) = e−I (x), x ≥ 0 (Segerdahi
(1942)), we have obtained the SHARPEST bound!
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Large Claim Case

It is known that in the models where large claims occur with high
probability, the local adjustment coefficient method may fail.

Example

Assume that the claim sizes Uk are of Pareto (a, b) distribution:

F (z) =
b

a

∫ z

0

(a

z

)b+1
1[a,∞)(z)dz .

Then one has m̂U(γ) =
∫∞
0 eγzF (dz) = ∞!

We show that the rate function technique still works in this case!

Assume that Xt = x + ct −
∑Nt

k=1 Uk , where Uk ∼ Pareto(1, 2)
and λ = 1. (i.e., FU(dz) = 2z−31[1,∞)(z).) Note that the Net
Profit Condition implies that c − E [U1] = c − 2 > 0.
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Large Claim Case

We assume that the rate function I ∈ C 2 takes the following form:

I (y) =

{
ln(y + β)− lnβ y ≥ 0,
0 y ≤ −1,

Then the process K I (X+) takes the form:

K I
t =

∫ t

0

{
− c

X+
s + β

+

∫ ∞

0
{e I (X+

s )−I (X+
s −x) − 1}F (dx)︸ ︷︷ ︸

ΓI (X+
s )

}
ds.

Question

Can we find I such that ΓI (y) ≤ 0, y ≥ 0, (Hence K I ≤ 0!)?

First choosing Y > 0 such that ln y
y ≤ (c−1)

8 , ∀y ≥ Y .

Then define β
4
= max{Y , 4

c−1 , 2} and ε
4
= (β + 1)2, such that

I (y) ≥ − ln(1 + ε), for y ∈ [−1, 0]
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Proportional Investments

The idea if finding ΓI can be developed further. Consider

Xt = x +

∫ t

0
p(Xs)ds +

∫ t

0
〈αXs , σdWs 〉−

Nt∑
k=1

Uk , t ≥ 0,

where p(x) = rx + c , Uk ∼ exp(θ), and α = (α1, α2, ..., αn)T .

Purpose

Find I ∈ C 2(R), such that

ΓI (y)
4
= −I ′(y){ry + C}+

1

2
(I ′(y)

2 − I ′′(y))y2|σTα|2

+

∫
R+

[e I (y)−I (y−x) − 1]λθe−θxdx ≤ 0,

and I (y) ∼ k ln y + C for some constant k,C , as y →∞.
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Principle of Smooth-fit

Consider the following two-parameter family:

Iβ,k(y) = k(ln(y + β)− ln 2β)1[β,∞)(y).

Suppose that r > |σTα|2/2 > 0. Then, for k = 2 r
|σT α|2 − 1 > 0,

one can find β =
k

δ
large enough, such that

ΓI (y) = −I ′(y){ry + C}+
1

2
(I ′(y)

2 − I ′′(y))y2|σTα|2

+

∫
R+

[e I (y)−I (y−x) − 1]λθe−θxdx ≤ 0, ∀y ≥ β.

Consequently, ψ(x) ≤ e−I (x) = K (x + β)−k , for x large.

Note: This result coincides with those of Nyrhinen (1999) and
Kalashnikov-Norberg (2000).
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Ruin Problem via Storage Processes

An important observation made by Asmussen-Petersen (1988) is
that the ruin probability of the risk process:

Xt = x +

∫ t

0
b(Xs)ds − St ,

where S is a compound Poisson, and b(·) is deterministic. Then
the following relation hold:

P{τ < T} = ψ(x ,T ) = P{YT > x},

where Yt
4
= −

∫ t
0 b(Ys)ds + ST − ST−t is called a “storage

process”.
Such a relation has proved to be very useful when Large Deviation
method is used to study the asymptotics of ruin probabilities.
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A Natural Extension

Consider the risk reserve process

Xt = x +

∫ t

0
b(s, ·,Xs)ds + Λπ

t − St , 0 ≤ t ≤ T , (27)

where b(t, ω, x) = c(1 + ρ(t, x)) + rt(ω)x , and

Λπ
t =

∫ t

0
〈πs , µs − rs1 〉 ds +

∫ t

0
〈πs , σsdws 〉 .

Assume b(t, x) is uniform Lipschitz in x , uniformly in (t, ω), then
(27) has a unique solution.

Need

A “storage” process that solves a “reflected SDE”:

Yt = −
∫ t

0
b(T − s, ·,Ys)ds + ξπ

t + Kt ≥ 0, (28)

where ξπ
t
4
= −Λπ

T + Λπ
T−t + ST − ST−t , K ↗, and

∫∞
0 YtdKs = 0.
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Need

A “storage” process that solves a “reflected SDE”:

Yt = −
∫ t

0
b(T − s, ·,Ys)ds + ξπ

t + Kt ≥ 0, (28)

where ξπ
t
4
= −Λπ

T + Λπ
T−t + ST − ST−t , K ↗, and

∫∞
0 YtdKs = 0.
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A “Reflected SDE”

Definition

A pair of processes (Y ,K ) is the solution of (28) if

i) (Y ,K ) ∈ D2 and (Y ,K ) satisfies (28);

ii) Yt ≥ 0, ∀t ≥ 0;

iii) K is increasing, with “jump set” SK = {t : ∆Kt 6= 0};

iv)

∫ ∞

0
YsdKs = 0;

v) ∆Kt = |Yt + ∆ξπ
t |, ∀t ∈ SK = {t ≥ 0 : Yt + ∆ξπ

t < 0}.

Warning:

The solution of SDEDR (28) is not adapted! It is solved
pathwisely as an ODE with reflection. Further, since ξπ

t has only
upward jump by definition, K is always continuous!
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Remark

The reflected SDE is solved by using the solution to the
“Discontinuous Skorohod Problem (DSP)” (cf. e.g., Dupuis-Ishii
(90) or Ma (92)).

An important property of DSP (Dupuis-Ishii (90))

For any Y ∈ D, the solution mapping of DRP(Y ), as a mapping
Γ : D → D such that Γ(Y ) = X , where (X ,K ) is the solution to
DRP(Y), is Lipschitz under the uniform topology in D, that is,
there exists a constant C > 0, such that, for any Y 1,Y 2 ∈ D, it
holds that

sup
0≤s≤t

|Γ(Y 1)s − Γ(Y 2)s | ≤ C sup
0≤s≤t

|Y 1
s − Y 2

s |, ∀t ≥ 0. (29)

The reflected SDE is then Yt = Γ(Z )t = Zt + Kt , and Z satisfies

Zt = −
∫ t

0
b(s, Γ(Z )s , ·)ds + ξt , t ≥ 0,
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Ruin Probability via Storage Process

Let Y be the storage proc. Set Ỹt = YT−t , Jt = KT −KT−t , then

Ỹt = YT +

∫ t

0
b(s, Ỹs , ·)ds + Λt − St − Jt .

=⇒ Xt − Ỹt = x − YT +

∫ t

0
αs(Xs − Ys)ds + Jt .

where αs
4
= b(s,Xs ,·)−b(s,Ỹs ,·)

(Xs−Ỹs)
1{Xs−Ỹs 6=0}.

Since Jt is nondecreasing,

Xt − Ỹt = (x − YT )e
∫ t
0 αsds +

∫ t

0
e

∫ t
v αsdsdJv ≥ (x − YT )e

∫ t
0 αsds .

Thus x ≥ YT =⇒ Xt ≥ Ỹt ≥ 0,∀t =⇒ τ ≥ T

=⇒ P{τ < T} ≤ P{YT > x}.

With some more work, one can show that the equality holds.
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Xt − Ỹt = (x − YT )e
∫ t
0 αsds +

∫ t

0
e

∫ t
v αsdsdJv ≥ (x − YT )e

∫ t
0 αsds .

Thus x ≥ YT =⇒ Xt ≥ Ỹt ≥ 0,∀t =⇒ τ ≥ T
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=⇒ Xt − Ỹt = x − YT +

∫ t

0
αs(Xs − Ys)ds + Jt .

where αs
4
= b(s,Xs ,·)−b(s,Ỹs ,·)

(Xs−Ỹs)
1{Xs−Ỹs 6=0}. Since Jt is nondecreasing,
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Ruin Probability via Storage Process

To consider the Large Deviation problem, we now emphasize the
dependence of the coefficients on the initial reserve x :

dXt = b(t, x ,Xt)ds + dΛt(x)− dSt , X0 = x , (30)

where St is compound Poisson, and dΛt(x) = σt(x)dWt .

Example

(“perturbed risk reserve”) b(t, x ,Xt) = rtXt + ct and
σt(x) = ε.

(Buy-and-hold) πt ≡ f (x). That is,

b(t, x ,Xt) = rtXt + c(1 + ρ(t,Xt)),

σt(x) = σT
t f (x).
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Relation with Large Deviation

Recall the Lundberg bounds

ψ(x ,T ) ≤ e−δxE sup
0≤t≤T

exp(K̃ δ
t ), (31)

ψ(x) ≤ e−δxE sup
t≥0

exp(K̃ δ
t ). (32)

Denote the adjustment coefficient by

δ̃ = sup{δ ∈ D : E sup
t≥0

exp(K̃ δ
t ) <∞},

δ̃T = sup{δ ∈ D : E sup
0≤t≤T

exp(K δ
t ) <∞}.

Then for all ε > 0 it holds that

lim
x→∞

ψ(x)e(δ̃−ε)x = 0, lim
x→∞

ψ(x ,T )e(δ̃T−ε)x = 0,

lim
x→∞

ψ(x)e(δ̃+ε)x = ∞, lim
x→∞

ψ(x ,T )e(δ̃T +ε)x = ∞.
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Asymptotics via Large Deviation

Consider the reflected “random” DE

Yt(x) = −
∫ t

0
b(T − s, x ,Ys(x))ds + ξt(x) + Kt(x), (33)

where ξt(x)
4
= −ΛT (x) + ΛT−t(x) + ST − ST−t , and Kt(x) is

the reflecting process.

By definition of the storage process we have

ψ(1/ε,T ) = P{YT (1/ε) > 1/ε} = P{εYT (1/ε) > 1}.

Thus the asymptotic ruin is

lim
ε→0

ε log P{εYT (1/ε) > 1} = −δ̃T .

— A problem of (Sample-Path) Large Deviation for the

(perturbed) storage process Y ε
t
4
= εYt(1/ε)!
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