Finance, Insurance, and Stochastic Control (I)

Jin Ma

USC Department of Mathematics
University of Southern California

Spring School on "Stochastic Control in Finance" Roscoff, France, March 7-17, 2010

Part I. Ruin Problems (vs. Credit Risks)
Part II. Equity-Linked Insurance Problems

Part III. Reinsurance Problems

Part IV. A New Stochastic Control Problem

Outline

(1) Introduction
(2) Basic Insurance Models
(3) Ruin Problems
(4) Lundberg Bounds
(5) Lundberg Bounds for General Reserve Models
(6) Ruin Probability and Large Deviation

Introduction

Definition (Credit Default Swap (CDS))

A CDS is a contract where

- the "protection buyer" " A " pays rates " R " at times T_{a+1}, \ldots, T_{b} (the "premium leg") in exchange for a single protection payment $L_{G D}$ (Loss Given Default, the "protection leg").
- The buyer receives the protection leg by the protection seller " B " at the default time τ of a reference entity " C ", provided that $T_{a}<\tau<T_{b}$.
- The rates R paid by " A " stop in case of default.

Introduction

Definition (Credit Default Swap (CDS))

A CDS is a contract where

- the "protection buyer" " A " pays rates " R " at times T_{a+1}, \ldots, T_{b} (the "premium leg") in exchange for a single protection payment $L_{G D}$ (Loss Given Default, the "protection leg").
- The buyer receives the protection leg by the protection seller " B " at the default time τ of a reference entity " C ", provided that $T_{a}<\tau<T_{b}$.
- The rates R paid by " A " stop in case of default.

In terms of "Term Life Insurance":

- Time of death (default) - τ (of the insured " C ")
- Death benefit - $L_{G D}$, payable at the moment of death
- Premium - an annuity (e.g. monthly) at (leveled) rate R
- Coverage period (term) - $\left[T_{a}, T_{b}\right]$, where $a<b$ are two ages.

Credit Risk vs. Actuarial Problems

	Credit Risk	Actuarial Science
τ	Default time	Ruin time, Future life time $(\tau=T(x))$
$P\{\tau>t\}$	Survival Proba.	Survival Probability $\left({ }_{t} p_{x}=P\{T(x)>t\}\right)$
$\Lambda(t)=-\ln _{t} p_{x}$	Hazard Process	Hazard Process
$\lambda(t)=\Lambda^{\prime}(t)$	Default Intensity	"Force of Mortality" $\left(\mu(x+t)=-\left({ }_{t} p_{x}\right)^{\prime} /{ }_{t} p_{x}\right)$
	Structure	Ruin Problems
	Reduced form	Life Contingencies

Basel II (Bank for International Settlements Basel Accord)

Basel II is the second of the Basel Accords, which are recommendations on banking laws and regulations issued by the Basel Committee on Banking Supervision (Basel, Switzerland). The purpose of Basel II, which was initially published in tclblueJune 2004, is to create an international standard that banking regulators can use when creating regulations about how much capital banks need to put aside to guard against the types of financial and operational risks banks face.
In practice, Basel II attempts to accomplish this by setting up rigorous risk and capital management requirements designed to ensure that a bank holds capital reserves appropriate to the risk the bank exposes itself to through its lending and investment practices......

An Example in Risk Management

- Recall that the definition of "Value at Risk" of a r.v. Z:

$$
\operatorname{VaR}_{\alpha}(Z) \triangleq \inf \{x: \mathbb{P}\{x+Z<0\} \leq \alpha\}
$$

An Example in Risk Management

- Recall that the definition of "Value at Risk" of a r.v. Z :

$$
\operatorname{VaR}_{\alpha}(Z) \triangleq \inf \{x: \mathbb{P}\{x+Z<0\} \leq \alpha\}
$$

- Consider the value process $V_{t}^{\pi}=x+Q_{t}^{\pi}\left(Q_{0}^{\pi}=0\right)$ for an investment strategy π. Then one can assess the "risk" associated to this strategy by looking at $\operatorname{VaR}_{\alpha}\left(\inf _{t \in[0, T]} Q_{t}^{\pi}\right)$.

An Example in Risk Management

- Recall that the definition of "Value at Risk" of a r.v. Z:

$$
\operatorname{VaR}_{\alpha}(Z) \triangleq \inf \{x: \mathbb{P}\{x+Z<0\} \leq \alpha\}
$$

- Consider the value process $V_{t}^{\pi}=x+Q_{t}^{\pi}\left(Q_{0}^{\pi}=0\right)$ for an investment strategy π. Then one can assess the "risk" associated to this strategy by looking at $\operatorname{VaR}_{\alpha}\left(\inf _{t \in[0, T]} Q_{t}^{\pi}\right)$.
- Define

$$
\begin{equation*}
\psi(x, T)=\mathbb{P}\left\{V_{t}^{\pi}<0: \exists t \in[0, T]\right\} \tag{1}
\end{equation*}
$$

Then

$$
\operatorname{VaR}_{\alpha}\left(\inf _{t \geq 0} Q_{t}^{\pi}\right)=\inf \{x: \psi(x, T) \leq \alpha\}
$$

An Example in Risk Management

- Recall that the definition of "Value at Risk" of a r.v. Z :

$$
\operatorname{VaR}_{\alpha}(Z) \triangleq \inf \{x: \mathbb{P}\{x+Z<0\} \leq \alpha\}
$$

- Consider the value process $V_{t}^{\pi}=x+Q_{t}^{\pi}\left(Q_{0}^{\pi}=0\right)$ for an investment strategy π. Then one can assess the "risk" associated to this strategy by looking at $\operatorname{VaR}_{\alpha}\left(\inf _{t \in[0, T]} Q_{t}^{\pi}\right)$.
- Define

$$
\begin{equation*}
\psi(x, T)=\mathbb{P}\left\{V_{t}^{\pi}<0: \exists t \in[0, T]\right\} \tag{1}
\end{equation*}
$$

Then

$$
\operatorname{VaR}_{\alpha}\left(\inf _{t \geq 0} Q_{t}^{\pi}\right)=\inf \{x: \psi(x, T) \leq \alpha\}
$$

- Assume now that $\psi(x, T) \sim e^{-r^{*} x}$ for some $r^{*} \in \mathbb{R}$, then

$$
\operatorname{VaR}_{\alpha}\left(\inf _{t \geq 0} Q_{t}^{\pi}\right) \sim-\frac{\log \alpha}{r^{*}}!
$$

Some Remarks

Note

- In Actuarial Sciences, the quantity $\psi(x, T)$ (or $\left.\psi(x)=\mathbb{P}\left\{V_{t}^{h}<0: \exists t>0\right\}\right)$ is called "Ruin Probability". The estimate $\psi(x, T) \sim e^{-r^{* x}}$ is called the Lundberg bound, with Lundberg exponent r^{*}.

Some Remarks

Note

- In Actuarial Sciences, the quantity $\psi(x, T)$ (or $\left.\psi(x)=\mathbb{P}\left\{V_{t}^{h}<0: \exists t>0\right\}\right)$ is called "Ruin Probability".
The estimate $\psi(x, T) \sim e^{-r^{*} x}$ is called the Lundberg bound, with Lundberg exponent r^{*}.
- Define the "Average VaR" by

$$
\rho(Z) \triangleq A V a R_{\alpha}(Z) \triangleq \frac{1}{\alpha} \int_{0}^{\alpha} V a R_{u}(Z) d u
$$

Then ρ is a "Coherent Risk Measure"
(Cheridito-Delbaen-Kupper, '04).

Some Remarks

Note

- In Actuarial Sciences, the quantity $\psi(x, T)$ (or $\left.\psi(x)=\mathbb{P}\left\{V_{t}^{h}<0: \exists t>0\right\}\right)$ is called "Ruin Probability".
The estimate $\psi(x, T) \sim e^{-r^{*} x}$ is called the Lundberg bound, with Lundberg exponent r^{*}.
- Define the "Average VaR" by

$$
\rho(Z) \triangleq A V a R_{\alpha}(Z) \triangleq \frac{1}{\alpha} \int_{0}^{\alpha} V a R_{u}(Z) d u
$$

Then ρ is a "Coherent Risk Measure"
(Cheridito-Delbaen-Kupper, '04).

- The Lundberg bound also implies that

$$
\rho\left(\inf _{t \geq 0} Q_{t}\right) \sim(1-\log \alpha) / r^{*} .
$$

(The equality can hold if the Lundberg bound is sharp!)

Basic Insurance Models

Wiener-Poisson Space

- (Ω, \mathscr{F}, P) - a complete probability space
- $W=\left\{W_{t}\right\}_{t \geq 0}$ - a d-dimensional Brownian motion
- $\mu(d t d z)$ - a Poisson random measure on $(0, \infty) \times \mathbb{R}_{+}$, with Lévy measure $\nu(d z)$.
- $\mathbf{F}^{W}=\left\{\mathscr{F}_{t}^{W}: t \geq 0\right\}, \mathbf{F}^{\mu} \triangleq\left\{\mathscr{F}_{t}^{\mu}: t \geq 0\right\}, \mathbf{F}=\overline{\mathbf{F}}^{W} \otimes \mathbf{F}^{\mu}{ }^{P}$,

Basic Insurance Models

Wiener-Poisson Space

- (Ω, \mathscr{F}, P) - a complete probability space
- $W=\left\{W_{t}\right\}_{t \geq 0}$ - a d-dimensional Brownian motion
- $\mu(d t d z)$ - a Poisson random measure on $(0, \infty) \times \mathbb{R}_{+}$, with Lévy measure $\nu(d z)$.
- $\mathbf{F}^{W}=\left\{\mathscr{F}_{t}^{W}: t \geq 0\right\}, \mathbf{F}^{\mu} \triangleq\left\{\mathscr{F}_{t}^{\mu}: t \geq 0\right\}, \mathbf{F}=\overline{\mathbf{F}}^{W} \otimes \mathbf{F}^{\mu}{ }^{P}$,

Main Elements

- Claim Process
- Premium Process
- Reserve Process (= Premium - Claim)

Claim and Premium Processes

- Claim Process: $S_{t}=\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z, \cdot) \mu(d s d z), t \geq 0$ (may assume $d \leq f(s, z, \omega) \leq L$, where d and L are the deductible and benefit limit, respectively)
- Premium Process: $C_{t}=\int_{0}^{t} c_{s} d s, t \geq 0$

Claim and Premium Processes

- Claim Process: $S_{t}=\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z, \cdot) \mu(d s d z), t \geq 0$
(may assume $d \leq f(s, z, \omega) \leq L$, where d and L are the deductible and benefit limit, respectively)
- Premium Process: $C_{t}=\int_{0}^{t} c_{s} d s, t \geq 0$

Compound Poisson Case:

- $f(t, z) \equiv z$
- $S_{t}=\sum_{k=1}^{N_{t}} \Delta S_{T_{k}}$, where N_{t} is standard Poisson.
- $\nu(d z)=\lambda F_{U_{1}}(d z)$, and $E\left[S_{t}\right]=\int_{0}^{t} \int_{\mathbb{R}_{+}} z \nu(d z) d s=\lambda E\left[U_{1}\right] t$.
- $c_{t}=E\left\{\Delta S_{t} \mid \mathscr{F}_{t}^{\mu}\right\}=\int_{\mathbb{R}_{+}} z \nu(d z)=\lambda E\left[U_{1}\right], t \geq 0$,

Risk Reserve Process

Example

- Cramér-Lundberg Model: $\quad X_{t}=x+\int_{0}^{t} c_{s} d s-S_{t}$

Risk Reserve Process

Example

- Cramér-Lundberg Model: $\quad X_{t}=x+\int_{0}^{t} c_{s} d s-S_{t}$
- Add expense loading: $\quad X_{t}=x+\int_{0}^{t} c_{s}\left(1+\rho_{s}\right) d s-S_{t}$

Risk Reserve Process

Example

- Cramér-Lundberg Model: $\quad X_{t}=x+\int_{0}^{t} c_{s} d s-S_{t}$
- Add expense loading: $\quad X_{t}=x+\int_{0}^{t} c_{s}\left(1+\rho_{s}\right) d s-S_{t}$
- Add interest income: $\quad X_{t}=x+\int_{0}^{t}\left[r_{s} X_{s}+c_{s}\left(1+\rho_{s}\right)\right] d s-S_{t}$

Risk Reserve Process

Example

- Cramér-Lundberg Model: $\quad X_{t}=x+\int_{0}^{t} c_{s} d s-S_{t}$
- Add expense loading: $\quad X_{t}=x+\int_{0}^{t} c_{s}\left(1+\rho_{s}\right) d s-S_{t}$
- Add interest income: $\quad X_{t}=x+\int_{0}^{t}\left[r_{s} X_{s}+c_{s}\left(1+\rho_{s}\right)\right] d s-S_{t}$
- Reserve with Investment

$$
\begin{align*}
X_{t}= & x+\int_{0}^{t}\left\{X_{s}\left[r_{s}+\left\langle\pi_{s}, \mu_{s}-r_{s} \mathbf{1}\right\rangle\right]+c_{s}\left(1+\rho_{s}\right)\right\} d s \\
& +\int_{0}^{t} X_{s}\left\langle\pi_{s}, \sigma_{s} d W_{s}\right\rangle-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) \mu(d s d z) \tag{2}
\end{align*}
$$

Ruin Problems

Consider the simplest Cramér-Lundberg model:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} c_{s} d s-S_{t}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

Ruin Problems

Consider the simplest Cramér-Lundberg model:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} c_{s} d s-S_{t}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

Ruin Problem

Find/estimate the "ruin probabilities":

$$
\begin{aligned}
\psi(x, T) & =P\left\{X_{t}<0: \exists t \in(0, T]\right\} ; & & \text { (Finite horizon) } \\
\psi(x) & =P\left\{X_{t}<0: \exists t>0\right\} . & & \text { (Infinite horizon). }
\end{aligned}
$$

Ruin Problems

Consider the simplest Cramér-Lundberg model:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} c_{s} d s-S_{t}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

Ruin Problem

Find/estimate the "ruin probabilities":

$$
\begin{aligned}
\psi(x, T) & =P\left\{X_{t}<0: \exists t \in(0, T]\right\} ; & & \text { (Finite horizon) } \\
\psi(x) & =P\left\{X_{t}<0: \exists t>0\right\} . & & \text { (Infinite horizon). }
\end{aligned}
$$

Thinking finance?

Default probability? Structure model?

Existing ways/methods of studying ruin probabilities

- Direct Calculation: (e.g, vi IDE) - Lundberg ('26), Cramér ('35), Segerdahi ('42)...
- Bounds:
- Lundberg ('26, 32, 34), Cremér ('55), Gerber ('76),

Feller ('71) ...

- Asymptotics: (e.g., $\lim _{u \rightarrow \infty} \psi(u) e^{\gamma u}=$? $\lim _{u \rightarrow \infty} \psi(u, T) e^{\gamma u}=$?)
- Teugels-Veraverbeke ('73), Djehiche ('93),

Asmussen-klüppelberg ('96)...

- Approximations (of claim size dist.):
— De Vylder ('78), Daley Rolski ('84)...

Existing ways/methods of studying ruin probabilities

One of most notable discovery in ruin theory is that the ruin probablity satisfies a differential or integro-differential equation.

Main Result (Feller (1971), Gerber (1990))

Assume classical Cramér-Lundberg model. $\mathrm{L} \psi(x)$ be the infinite horizon ruin probability with initial capital x, and $\varphi(x)=1-\psi(x)$ be the corresponding non-ruin probability. Then

$$
\begin{equation*}
\varphi(x)=\varphi(0)+\frac{\lambda}{c(1+\rho)} \int_{0}^{x} \varphi(x-z) \bar{F}_{Z}(z) d z \tag{4}
\end{equation*}
$$

where F is the jump size distribution and $\bar{F}=1-F$, and λ is the intensity of jump frequency.

Existing ways/methods of studying ruin probabilities

One of most notable discovery in ruin theory is that the ruin probablity satisfies a differential or integro-differential equation.

Main Result (Feller (1971), Gerber (1990))

Assume classical Cramér-Lundberg model. $\mathrm{L} \psi(x)$ be the infinite horizon ruin probability with initial capital x, and $\varphi(x)=1-\psi(x)$ be the corresponding non-ruin probability. Then

$$
\begin{equation*}
\varphi(x)=\varphi(0)+\frac{\lambda}{c(1+\rho)} \int_{0}^{x} \varphi(x-z) \bar{F}_{Z}(z) d z \tag{4}
\end{equation*}
$$

where F is the jump size distribution and $\bar{F}=1-F$, and λ is the intensity of jump frequency.

More general model— Reinhard (1984), Asmusson (1989) (Hidden Markovian), Asmusson-Petersen (1988) (reserve dependent premium) ...

Ruin Probility via Differential Equations

Assume that the risk reserve satisfies the following SDE:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d z d s) \tag{5}
\end{equation*}
$$

where $b:[0, \infty) \times \mathbb{R} \mapsto \mathbb{R}$ is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov.

Ruin Probility via Differential Equations

Assume that the risk reserve satisfies the following SDE:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d z d s) \tag{5}
\end{equation*}
$$

where $b:[0, \infty) \times \mathbb{R} \mapsto \mathbb{R}$ is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov. Define

$$
\tau=\inf \left\{t \geq 0: X_{t}<0\right\}
$$

Ruin Probility via Differential Equations

Assume that the risk reserve satisfies the following SDE:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d z d s) \tag{5}
\end{equation*}
$$

where $b:[0, \infty) \times \mathbb{R} \mapsto \mathbb{R}$ is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov. Define

$$
\tau=\inf \left\{t \geq 0: X_{t}<0\right\}
$$

Then, $\forall 0<t<T$,

$$
\begin{equation*}
\mathbf{1}_{\{\tau<T\}}=\mathbf{1}_{\{\tau<t\}}+\mathbf{1}_{\{t \leq \tau\}} \mathbf{1}_{\left\{\inf _{t \leq s<T} X_{s}<0\right\}} . \tag{6}
\end{equation*}
$$

Ruin Probility via Differential Equations

Assume that the risk reserve satisfies the following SDE:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d z d s) \tag{5}
\end{equation*}
$$

where $b:[0, \infty) \times \mathbb{R} \mapsto \mathbb{R}$ is some (deterministic!) measurable function (could be Lipschitz..., if you wish). Then X is (strong) Markov. Define

$$
\tau=\inf \left\{t \geq 0: X_{t}<0\right\}
$$

Then, $\forall 0<t<T$,

$$
\begin{equation*}
\mathbf{1}_{\{\tau<T\}}=\mathbf{1}_{\{\tau<t\}}+\mathbf{1}_{\{t \leq \tau\}} \mathbf{1}_{\left\{\inf _{t \leq s<T} X_{s}<0\right\}} \tag{6}
\end{equation*}
$$

Define $M_{t} \triangleq P\left\{\tau<T \mid \mathscr{F}_{t}^{X}\right\}=E\left\{\mathbf{1}_{\{\tau<T\}} \mid \mathscr{F}_{t}^{X}\right\}$; and

$$
\begin{equation*}
\Psi(t, r) \triangleq P\left\{\inf _{t \leq s<T} X_{t}<0 \mid X_{t}=r\right\} \tag{7}
\end{equation*}
$$

Ruin Probility via Differential Equations

Taking conditional expectations $E\left\{\cdot \mid \mathscr{F}_{t}^{X}\right\}$ on both sides of (6) and using the Markovian Property of X :

$$
\begin{align*}
M_{t} & =\mathbf{1}_{\{\tau \leq t\}}+\mathbf{1}_{\{\tau>t\}} P\left\{\inf _{t \leq s<T} X_{t}<0 \mid X_{t}\right\} \\
& =\mathbf{1}_{\{\tau<t\}}+\mathbf{1}_{\{\tau \geq t\}} \Psi\left(t, X_{t}\right) . \tag{8}
\end{align*}
$$

Ruin Probility via Differential Equations

Taking conditional expectations $E\left\{\cdot \mid \mathscr{F}_{t}^{X}\right\}$ on both sides of (6) and using the Markovian Property of X :

$$
\begin{align*}
M_{t} & =\mathbf{1}_{\{\tau \leq t\}}+\mathbf{1}_{\{\tau>t\}} P\left\{\inf _{t \leq s<T} X_{t}<0 \mid X_{t}\right\} \\
& =\mathbf{1}_{\{\tau<t\}}+\mathbf{1}_{\{\tau \geq t\}} \Psi\left(t, X_{t}\right) . \tag{8}
\end{align*}
$$

Setting $t=t \wedge \tau$ in (8), we obtain that

$$
\begin{equation*}
M_{t \wedge \tau}=\Psi\left(t \wedge \tau, X_{t \wedge \tau}\right) \tag{9}
\end{equation*}
$$

Thus by Optional Sampling $t \mapsto \Psi\left(t \wedge \tau, X_{t \wedge \tau}\right)$ is an (UI) $\mathbf{F}^{X}-\mathrm{mg}$!

Ruin Probility via Differential Equations

Taking conditional expectations $E\left\{\cdot \mid \mathscr{F}_{t}^{X}\right\}$ on both sides of (6) and using the Markovian Property of X :

$$
\begin{align*}
M_{t} & =\mathbf{1}_{\{\tau \leq t\}}+\mathbf{1}_{\{\tau>t\}} P\left\{\inf _{t \leq s<T} X_{t}<0 \mid X_{t}\right\} \\
& =\mathbf{1}_{\{\tau<t\}}+\mathbf{1}_{\{\tau \geq t\}} \Psi\left(t, X_{t}\right) \tag{8}
\end{align*}
$$

Setting $t=t \wedge \tau$ in (8), we obtain that

$$
\begin{equation*}
M_{t \wedge \tau}=\Psi\left(t \wedge \tau, X_{t \wedge \tau}\right) \tag{9}
\end{equation*}
$$

Thus by Optional Sampling $t \mapsto \Psi\left(t \wedge \tau, X_{t \wedge \tau}\right)$ is an (UI) $\mathbf{F}^{X}-\mathrm{mg}$!
Now denote $\Phi(t, r)=1-\Psi(t, r)$ (non-ruin probability), and assume that $\Phi(\cdot, \cdot) \in C^{1,1}$.

Ruin Probility via Differential Equations

Applying Itô (BV version) to get

$$
\begin{aligned}
& \Phi\left(t \wedge \tau, X_{t \wedge \tau}\right)-\Phi(0, x) \\
= & \int_{0}^{t \wedge \tau} \partial_{t} \Phi\left(s, X_{s}\right) d s+\int_{0}^{t \wedge \tau} \partial_{r} \Phi\left(s, X_{s}\right) b\left(s, X_{s}\right) d s \\
& +\int_{0}^{t \wedge \tau} \int_{\mathbb{R}_{+}}\left[\Phi\left(s, X_{s-}-f(s, z)\right)-\Phi\left(s, X_{s-}\right)\right] N_{p}(d z d s) \\
= & \int_{0}^{t \wedge \tau} \partial_{t} \Phi\left(s, X_{s}\right) d s+\int_{0}^{t \wedge \tau} \partial_{r} \Phi\left(s, X_{s}\right) b\left(s, X_{s}\right) d s \\
& +\int_{0}^{t \wedge \tau} \int_{\mathbb{R}_{+}}\left[\Phi\left(s, X_{s-}-f(s, z)\right)-\Phi\left(s, X_{s-}\right)\right] \nu(d z) d s+M_{t \wedge \tau}^{*}
\end{aligned}
$$

where

$$
M_{t}^{*}=\int_{0}^{t \wedge \tau} \int_{\mathbb{R}_{+}}\left[\Phi\left(s, X_{s-}-f(s, z)\right)-\Phi\left(s, X_{s-}\right)\right] \widetilde{N}_{p}(d z d s)
$$

is an martingale with zero mean.

Ruin Probility via Differential Equations

Thus

$$
\begin{aligned}
& \int_{0}^{t \wedge \tau} \partial_{t} \Phi\left(s, X_{s}\right) d s+\int_{0}^{t \wedge \tau} \partial_{r} \Phi\left(s, X_{s}\right) b\left(s, X_{s}\right) d s \\
& +\int_{0}^{t \wedge \tau} \int_{\mathbb{R}_{+}}\left[\Phi\left(s, X_{s-}-f(s, z)\right)-\Phi\left(s, X_{s-}\right)\right] \nu(d z) d s \\
= & \Phi\left(t \wedge \tau, X_{t \wedge \tau}\right)-\Phi(0, x)-M_{t \wedge \tau}^{*}
\end{aligned}
$$

Ruin Probility via Differential Equations

Thus

$$
\begin{aligned}
& \int_{0}^{t \wedge \tau} \partial_{t} \Phi\left(s, X_{s}\right) d s+\int_{0}^{t \wedge \tau} \partial_{r} \Phi\left(s, X_{s}\right) b\left(s, X_{s}\right) d s \\
& +\int_{0}^{t \wedge \tau} \int_{\mathbb{R}_{+}}\left[\Phi\left(s, X_{s-}-f(s, z)\right)-\Phi\left(s, X_{s-}\right)\right] \nu(d z) d s \\
= & \Phi\left(t \wedge \tau, X_{t \wedge \tau}\right)-\Phi(0, x)-M_{t \wedge \tau}^{*}=0 .
\end{aligned}
$$

(It is a continuous (local) martingale with zero mean and with bounded variation paths \Longrightarrow it is a zero martingale!)

Ruin Probility via Differential Equations

Thus

$$
\begin{aligned}
& \int_{0}^{t \wedge \tau} \partial_{t} \Phi\left(s, X_{s}\right) d s+\int_{0}^{t \wedge \tau} \partial_{r} \Phi\left(s, X_{s}\right) b\left(s, X_{s}\right) d s \\
& +\int_{0}^{t \wedge \tau} \int_{\mathbb{R}_{+}}\left[\Phi\left(s, X_{s-}-f(s, z)\right)-\Phi\left(s, X_{s-}\right)\right] \nu(d z) d s \\
= & \Phi\left(t \wedge \tau, X_{t \wedge \tau}\right)-\Phi(0, x)-M_{t \wedge \tau}^{*}=0 .
\end{aligned}
$$

(It is a continuous (local) martingale with zero mean and with bounded variation paths \Longrightarrow it is a zero martingale!)
Similarly, for any $t^{\prime} \in[0, T)$ and $\tau^{\prime}=\inf \left\{t \geq t^{\prime} \mid X_{t}<0\right\}$, one shows that

$$
\begin{align*}
& \int_{t^{\prime}}^{t \wedge \tau^{\prime}} \partial_{t} \Phi\left(s, X_{s}\right) d s+\int_{t^{\prime}}^{t \wedge \tau^{\prime}} \partial_{r} \Phi\left(s, X_{s}\right) b\left(s, X_{s}\right) d s \tag{10}\\
= & \int_{t^{\prime}}^{t \wedge \tau^{\prime}} \int_{\mathbb{R}_{+}}\left[\Phi\left(s, X_{s-}\right)-\Phi\left(s, X_{s-}-f(s, z)\right)\right] \nu(d z) d s .
\end{align*}
$$

Ruin Probility via Differential Equations

Since t^{\prime} is arbitrary and $\tau^{\prime} \geq t^{\prime}$, we can "differentiating" (10) to get the following IPDE:

$$
\begin{equation*}
\left[\partial_{t} \Phi+\partial_{r} \Phi b\right](t, r)=\int_{\mathbb{R}_{+}}[\Phi(t, r)-\Phi(t, r-f(t, z))] \nu(d z) \tag{11}
\end{equation*}
$$

Ruin Probility via Differential Equations

Since t^{\prime} is arbitrary and $\tau^{\prime} \geq t^{\prime}$, we can "differentiating" (10) to get the following IPDE:

$$
\begin{equation*}
\left[\partial_{t} \Phi+\partial_{r} \Phi b\right](t, r)=\int_{\mathbb{R}_{+}}[\Phi(t, r)-\Phi(t, r-f(t, z))] \nu(d z) \tag{11}
\end{equation*}
$$

Remark

- Since $\Phi\left(t, X_{t}\right)=0$ for $X_{t}<0$, the RHS in (11) is actually

$$
\int_{\{r \geq f(t, z)\}}[\Phi(t, r)-\Phi(t, r-f(t, z))] \nu(d z)
$$

Ruin Probility via Differential Equations

Since t^{\prime} is arbitrary and $\tau^{\prime} \geq t^{\prime}$, we can "differentiating" (10) to get the following IPDE:

$$
\begin{equation*}
\left[\partial_{t} \Phi+\partial_{r} \Phi b\right](t, r)=\int_{\mathbb{R}_{+}}[\Phi(t, r)-\Phi(t, r-f(t, z))] \nu(d z) \tag{11}
\end{equation*}
$$

Remark

- Since $\Phi\left(t, X_{t}\right)=0$ for $X_{t}<0$, the RHS in (11) is actually

$$
\int_{\{r \geq f(t, z)\}}[\Phi(t, r)-\Phi(t, r-f(t, z))] \nu(d z)
$$

- In the compound Poisson case $f(t, z) \equiv z, \nu(d z)=\lambda F_{Z}(d z)$, where Z is the jump size. Thus (11) becomes

$$
\left[\partial_{t} \Phi+\partial_{r} \Phi b\right](t, r)=\Phi(t, r) \lambda-\lambda \int_{\{r \geq z\}} \Phi(t, r-z) F_{Z}(d z)
$$

Special Cases

Infinite horizon case

Assume $b(t, r)=b(r)$. Denote $\psi(r)=\lim _{t \rightarrow \infty} \Psi(t, r)$ and $\varphi(r)=1-\psi(r)$. Then

$$
\begin{equation*}
\varphi^{\prime}(r) b(r)=\varphi(r) \lambda-\lambda \int_{\{r \geq z\}} \varphi(r-z) F_{Z}(d z) \tag{12}
\end{equation*}
$$

Special Cases

Infinite horizon case

Assume $b(t, r)=b(r)$. Denote $\psi(r)=\lim _{t \rightarrow \infty} \Psi(t, r)$ and $\varphi(r)=1-\psi(r)$. Then

$$
\begin{equation*}
\varphi^{\prime}(r) b(r)=\varphi(r) \lambda-\lambda \int_{\{r \geq z\}} \varphi(r-z) F_{Z}(d z) \tag{12}
\end{equation*}
$$

Example

If $b(r)=c(1+\rho) \triangleq \beta$ and $Z \sim \exp \{\delta\}$ Then (12) becomes

$$
\begin{equation*}
\varphi^{\prime}(r) \beta=\lambda\left\{\varphi(r)-e^{-\delta r} \int_{0}^{r} \varphi(z) \delta e^{\delta z} d z\right\} \tag{13}
\end{equation*}
$$

Special Cases

Infinite horizon case

Assume $b(t, r)=b(r)$. Denote $\psi(r)=\lim _{t \rightarrow \infty} \Psi(t, r)$ and $\varphi(r)=1-\psi(r)$. Then

$$
\begin{equation*}
\varphi^{\prime}(r) b(r)=\varphi(r) \lambda-\lambda \int_{\{r \geq z\}} \varphi(r-z) F_{Z}(d z) \tag{12}
\end{equation*}
$$

Example

If $b(r)=c(1+\rho) \triangleq \beta$ and $Z \sim \exp \{\delta\}$ Then (12) becomes

$$
\begin{equation*}
\varphi^{\prime}(r) \beta=\lambda\left\{\varphi(r)-e^{-\delta r} \int_{0}^{r} \varphi(z) \delta e^{\delta z} d z\right\} . \tag{13}
\end{equation*}
$$

- Differentiating: $\varphi^{\prime \prime}(r) \beta=(\lambda-\delta \beta) \varphi^{\prime}(r)$.
- Solving: $\varphi(r)=c_{1}-c_{2} e^{-(\delta-\lambda / \beta) r}$, where $c_{1}, c_{2} \in \mathbb{R}$.

An Integral Equation

Denoting $\beta=c(1+\rho)$ again, and integrate (13) from 0 to x :

$$
\begin{align*}
\frac{\beta}{\lambda}(\varphi(x)-\varphi(0)) & =\frac{\beta}{\lambda} \int_{0}^{x} \varphi^{\prime}(r) d r \\
& =\int_{0}^{x} \varphi(r) d r-\int_{0}^{x} \int_{0}^{u} \varphi(u-z) F_{Z}(d z) d u \\
& =\cdots \cdots \\
& =\int_{0}^{x} \varphi(r) d r-\int_{0}^{x} \int_{0}^{x-u} F_{Z}(d z) \varphi(u) d u \\
& =\int_{0}^{x}\left[1-F_{Z}(x-u)\right] \varphi(u) d u \tag{14}\\
\Longrightarrow \varphi(x) & =\varphi(0)+\frac{\lambda}{\beta} \int_{0}^{x} \varphi(x-z) \bar{F}_{Z}(z) d z
\end{align*}
$$

Lundberg bounds

An Evidence

Recall IDE (14). By Expected Value Principle $c=\frac{d E\left[S_{t}\right]}{d t}=\lambda \mu$, denoting $F_{l}(x)=\mu^{-1} \int_{0}^{x} \bar{F}(z) d z(14)$ becomes

$$
\begin{equation*}
\varphi(x)=\varphi(0)+\frac{1}{(1+\rho)} \varphi * F_{l}(x) \tag{15}
\end{equation*}
$$

where $*$ means convolution.

Lundberg bounds

An Evidence

Recall IDE (14). By Expected Value Principle $c=\frac{d E\left[S_{t}\right]}{d t}=\lambda \mu$, denoting $F_{l}(x)=\mu^{-1} \int_{0}^{x} \bar{F}(z) d z(14)$ becomes

$$
\begin{equation*}
\varphi(x)=\varphi(0)+\frac{1}{(1+\rho)} \varphi * F_{l}(x) \tag{15}
\end{equation*}
$$

where $*$ means convolution.

Solving (15) by Laplace transforms and using the initial value $\varphi(0)=\frac{\rho}{1+\rho}$ we have

$$
\begin{equation*}
\varphi(x)=\frac{\rho}{1+\rho} \sum_{n=0}^{\infty}\left(\frac{1}{1+\rho}\right)^{n} F_{l}^{n *}(x) \tag{16}
\end{equation*}
$$

Lundberg Bounds

Example

If $Z \sim \exp (\delta)$, then we see that

$$
\psi(x)=1-\varphi(x)=\frac{1}{1+\rho} \exp \left\{-\frac{\rho}{\delta(1+\rho)} x\right\} \leq e^{-R x}
$$

Lundberg Bounds

Example

If $Z \sim \exp (\delta)$, then we see that

$$
\psi(x)=1-\varphi(x)=\frac{1}{1+\rho} \exp \left\{-\frac{\rho}{\delta(1+\rho)} x\right\} \leq e^{-R x}
$$

Remark

A primitive method for the Lundberg bound is to consider $\psi_{n}(x)$, the ruin probability up to $(n+1)$-st claim. By an inductional argument one proves that, there exists an $R>0$ such that

$$
\begin{equation*}
\psi_{n}(x) \leq e^{-R x}, \quad \forall n \tag{17}
\end{equation*}
$$

Letting $n \rightarrow \infty$ one derives the (upper) bound for (infinite horizon) ruin probability $\psi(x)$. The constant R is called "Lundberg coefficient" or "adjustment coefficients".

Exponential Martingale Approach (Gerber, (1973))

- Consider the classical model $X_{t}=x+c t-S_{t}$, where $c t=E\left[S_{t}\right]=\lambda \mu t$. Denote $Q_{t}=c t-S_{t}$ (profit process).

Exponential Martingale Approach (Gerber, (1973))

- Consider the classical model $X_{t}=x+c t-S_{t}$, where $c t=E\left[S_{t}\right]=\lambda \mu t$. Denote $Q_{t}=c t-S_{t}$ (profit process).
- For any given x and $r>0$, consider the \mathbf{F}^{p}-adapted process

$$
\begin{equation*}
M_{t}^{x} \triangleq \frac{e^{-r\left(x+Q_{t}\right)}}{e^{t \theta(r)}}, \quad t \geq 0 \tag{18}
\end{equation*}
$$

where $\theta(\cdot)$ is a function to be determined.

Exponential Martingale Approach (Gerber, (1973))

- Consider the classical model $X_{t}=x+c t-S_{t}$, where $c t=E\left[S_{t}\right]=\lambda \mu t$. Denote $Q_{t}=c t-S_{t}$ (profit process).
- For any given x and $r>0$, consider the \mathbf{F}^{p}-adapted process

$$
\begin{equation*}
M_{t}^{x} \triangleq \frac{e^{-r\left(x+Q_{t}\right)}}{e^{t \theta(r)}}, \quad t \geq 0 \tag{18}
\end{equation*}
$$

where $\theta(\cdot)$ is a function to be determined.

- Suppose that $\left\{M_{t}^{x}\right\}$ is an \mathbf{F}^{p}-martingale(!) Then, by optional sampling, for any given time $t_{0}>0$ and stopping time $\tau_{X} \triangleq \inf \left\{t \geq 0: X_{t}=x+Q_{t}<0\right\}$, one has

$$
\begin{align*}
e^{-r x} & =M_{0}^{x}=E\left\{M_{t_{0} \wedge \tau_{x}}^{x} \mid \mathscr{F}_{0}^{p}\right\}=E\left\{M_{t_{0} \wedge \tau_{x}}^{x}\right\} \tag{19}\\
& \geq E\left\{M_{\tau_{x}}^{x} \mid \tau_{x} \leq t_{0}\right\} P\left\{\tau_{x} \leq t_{0}\right\}
\end{align*}
$$

Exponential Martingale Approach (Gerber, (1973))

- But on the set $\left\{\tau_{x} \leq t_{0}\right\}$ one must have $X_{\tau_{x}}=x+Q_{\tau_{x}} \leq 0$. Thus

$$
\begin{aligned}
P\left\{\tau_{x} \leq t_{0}\right\} & \leq \frac{e^{-r x}}{E\left\{M_{\tau_{x}}^{x} \mid \tau_{x} \leq t_{0}\right\}} \leq \frac{e^{-r x}}{E\left\{e^{-\tau_{x} \theta(r)} \mid \tau_{x} \leq t_{0}\right\}} \\
& \leq e^{-r x} \sup _{0 \leq t \leq t_{0}} e^{t \theta(r)}
\end{aligned}
$$

Exponential Martingale Approach (Gerber, (1973))

- But on the set $\left\{\tau_{x} \leq t_{0}\right\}$ one must have $X_{\tau_{x}}=x+Q_{\tau_{x}} \leq 0$. Thus

$$
\begin{aligned}
P\left\{\tau_{x} \leq t_{0}\right\} & \leq \frac{e^{-r x}}{E\left\{M_{\tau_{x}}^{x} \mid \tau_{x} \leq t_{0}\right\}} \leq \frac{e^{-r x}}{E\left\{e^{-\tau_{x} \theta(r)} \mid \tau_{x} \leq t_{0}\right\}} \\
& \leq e^{-r x} \sup _{0 \leq t \leq t_{0}} e^{t \theta(r)}
\end{aligned}
$$

- Letting $t_{0} \rightarrow \infty$ we obtain that

$$
\begin{equation*}
\psi(x) \leq e^{-r x} \sup _{t \geq 0} e^{t \theta(r)} \tag{20}
\end{equation*}
$$

Exponential Martingale Approach (Gerber, (1973))

- But on the set $\left\{\tau_{x} \leq t_{0}\right\}$ one must have $X_{\tau_{x}}=x+Q_{\tau_{x}} \leq 0$. Thus

$$
\begin{aligned}
P\left\{\tau_{x} \leq t_{0}\right\} & \leq \frac{e^{-r x}}{E\left\{M_{\tau_{x}}^{x} \mid \tau_{x} \leq t_{0}\right\}} \leq \frac{e^{-r x}}{E\left\{e^{-\tau_{x} \theta(r)} \mid \tau_{x} \leq t_{0}\right\}} \\
& \leq e^{-r x} \sup _{0 \leq t \leq t_{0}} e^{t \theta(r)}
\end{aligned}
$$

- Letting $t_{0} \rightarrow \infty$ we obtain that

$$
\begin{equation*}
\psi(x) \leq e^{-r x} \sup _{t \geq 0} e^{t \theta(r)} \tag{20}
\end{equation*}
$$

Question

How to determine θ ?

Exponential Martingale Approach (Gerber, (1973))

Analysis

- Denote $\hat{f}(s)=\int_{0}^{\infty} e^{-s x} d F(x)=E\left[e^{-s U_{1}}\right]$. Then

$$
\begin{aligned}
E\left[e^{s S_{t}}\right] & =\sum_{n=0}^{\infty} E\left[e^{s \sum_{k=1}^{N_{t}} U_{k}} \mid N_{t}=n\right] P\left(N_{t}=n\right) \\
& =\sum_{n=0}^{\infty} \hat{f}^{n}(-s) \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}=e^{\lambda(\hat{f}(-s)-1) t}
\end{aligned}
$$

Exponential Martingale Approach (Gerber, (1973))

Analysis

- Denote $\hat{f}(s)=\int_{0}^{\infty} e^{-s x} d F(x)=E\left[e^{-s U_{1}}\right]$. Then

$$
\begin{aligned}
E\left[e^{s S_{t}}\right] & =\sum_{n=0}^{\infty} E\left[e^{s \sum_{k=1}^{N_{t}} U_{k}} \mid N_{t}=n\right] P\left(N_{t}=n\right) \\
& =\sum_{n=0}^{\infty} \hat{f}^{n}(-s) \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}=e^{\lambda(\hat{f}(-s)-1) t}
\end{aligned}
$$

- Thus to make M^{\times}a martingale, one need only choose

$$
\begin{equation*}
E\left[e^{-s Q_{t}}\right]=e^{-s c t} E\left[e^{s S_{t}}\right]=e^{-s c t+\lambda[\hat{f}(-s)-1] t} \triangleq e^{t \theta(s)} \tag{21}
\end{equation*}
$$

where $\theta(s) \triangleq \lambda[\hat{f}(-s)-1]-s c$.

Exponential Martingale Approach (Gerber, (1973))

- With this choice of θ, and using (21) and the fact that Q has independent increments, we have

$$
E\left[M_{t}^{x} \mid \mathscr{F}_{s}^{p}\right]=M_{s}^{x} E\left\{\left.\frac{e^{-r\left(Q_{t}-Q_{s}\right)}}{e^{(t-s) \theta(r)}} \right\rvert\, \mathscr{F}_{s}^{p}\right\}=M_{s}^{x} .
$$

$\Longrightarrow M^{x}$ is a \mathbf{F}^{p}-martingale!

Exponential Martingale Approach (Gerber, (1973))

- With this choice of θ, and using (21) and the fact that Q has independent increments, we have

$$
E\left[M_{t}^{x} \mid \mathscr{F}_{s}^{p}\right]=M_{s}^{x} E\left\{\left.\frac{e^{-r\left(Q_{t}-Q_{s}\right)}}{e^{(t-s) \theta(r)}} \right\rvert\, \mathscr{F}_{s}^{p}\right\}=M_{s}^{x} .
$$

$\Longrightarrow M^{x}$ is a \mathbf{F}^{p}-martingale!

- Recall (20). Clearly the sharp estimate of ruin probability is obtained by minimizing the RHS w.r.t. r. Namely, choosing $r^{*} \triangleq \sup \{r: \theta(r) \leq 0\}$ would give the best estimate

$$
\begin{equation*}
\psi(x) \leq e^{-r^{*} t} \tag{22}
\end{equation*}
$$

r^{*} is thus called Lundberg coefficient.

Another look at Exponential Martingales

Consider the more general model:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d s d z) \tag{23}
\end{equation*}
$$

Another look at Exponential Martingales

Consider the more general model:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d s d z) \tag{23}
\end{equation*}
$$

- For any $g \in C^{1,1}([0, T] \times \mathbb{R})$, applying Itô's formula to get

$$
\begin{aligned}
& g\left(t, X_{t}\right)=g(0, x)+\int_{0}^{t}\left\{\partial_{t} g+\partial_{x} g b\right\}\left(s, X_{s}\right) d s \\
& +\int_{0}^{t} \int_{\mathbb{R}_{+}}\left[g\left(s, X_{s-}-f(s, z)\right)-g\left(s, X_{s-}\right)\right] \nu(d z) d s+m g
\end{aligned}
$$

Another look at Exponential Martingales

Consider the more general model:

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d s d z) \tag{23}
\end{equation*}
$$

- For any $g \in C^{1,1}([0, T] \times \mathbb{R})$, applying Itô's formula to get

$$
\begin{aligned}
& g\left(t, X_{t}\right)=g(0, x)+\int_{0}^{t}\left\{\partial_{t} g+\partial_{x} g b\right\}\left(s, X_{s}\right) d s \\
& +\int_{0}^{t} \int_{\mathbb{R}_{+}}\left[g\left(s, X_{s-}-f(s, z)\right)-g\left(s, X_{s-}\right)\right] \nu(d z) d s+m g
\end{aligned}
$$

- Thus $M_{t} \triangleq g\left(t, X_{t}\right)$ is a mg (or local mg$) \Longleftrightarrow g$ satisfies

$$
\begin{equation*}
\partial_{t} g+\partial_{x} g b+\int_{\mathbb{R}_{+}}[g(t, x-f(t, z))-g(t, x)] \nu(d z)=0 \tag{24}
\end{equation*}
$$

Another look at Exponential Martingales

In the compound Poisson case $b(t, x)=\beta, f \equiv z$, and $\nu(d z)=\lambda F_{U}(d z)$. The equation (24) becomes

$$
\left[\partial_{t} g+\partial_{x} g\right] \beta+\lambda\left\{\int_{\mathbb{R}_{+}}[g(t, x-z)-g(t, x)] F_{U}(d z)\right\}=0
$$

If $g=g(x)$, then

$$
\begin{equation*}
g^{\prime}(x) \beta+\lambda\left\{\int_{\mathbb{R}_{+}} g(x-z) F_{U}(d z)-g(x)\right\}=0 \tag{25}
\end{equation*}
$$

Setting $g(x)=\varphi(x)$ for $x \geq 0$ and $g(x)=0$ for $x<0$ we see that the integral becomes $\int_{0}^{x} g(x-z) F_{U}(d z)$ and we recover (14) for the infinite horizon ruin probability.

Finite Horizon Case

- Assume $g(t, x)=e^{-s x-\theta t}$, where s and θ are parameters. Then (25) reads

$$
[-\theta-\beta s] g(t, x)+\lambda\left\{\int_{\mathbb{R}_{+}}\left[e^{s z} F_{U}(d z)-1\right] g(t, x)\right\}=0 .
$$

Finite Horizon Case

- Assume $g(t, x)=e^{-s x-\theta t}$, where s and θ are parameters. Then (25) reads

$$
[-\theta-\beta s] g(t, x)+\lambda\left\{\int_{\mathbb{R}_{+}}\left[e^{s z} F_{U}(d z)-1\right] g(t, x)\right\}=0 .
$$

- Denoting $\hat{m}_{U}(s)=\int_{\mathbb{R}_{+}} e^{s z} F_{U}(d z)$, then the above becomes

$$
\left\{-\theta-\beta s+\lambda\left[\hat{m}_{U}(s)-1\right]\right\} g(t, x)=0
$$

- Assume $g(t, x)=e^{-s x-\theta t}$, where s and θ are parameters. Then (25) reads

$$
[-\theta-\beta s] g(t, x)+\lambda\left\{\int_{\mathbb{R}_{+}}\left[e^{s z} F_{U}(d z)-1\right] g(t, x)\right\}=0
$$

- Denoting $\hat{m}_{U}(s)=\int_{\mathbb{R}_{+}} e^{s z} F_{U}(d z)$, then the above becomes

$$
\left\{-\theta-\beta s+\lambda\left[\hat{m}_{U}(s)-1\right]\right\} g(t, x)=0
$$

- Thus (since $g(t, x)>0$!)

$$
\begin{equation*}
\theta=\theta(s)=-\beta s+\lambda\left[\hat{m}_{U}(s)-1\right] . \tag{26}
\end{equation*}
$$

We obtain the adjustment coefficient $\theta=\theta(s)$, and

$$
M_{t}=g\left(t, X_{t}\right)=\exp \left\{-s X_{t}-\theta(s) t\right\}
$$

is a martingale!

Risk Reserve with Interests

- Consider the reserve equation with interst: $X_{0}=x$

$$
d X_{t}=\left[r_{t} X_{t}+c_{t}\left(1+\rho_{t}\right)\right] d t-\int_{\mathbb{R}_{+}} f(t, z) N_{p}(d z d t)
$$

Risk Reserve with Interests

- Consider the reserve equation with interst: $X_{0}=x$

$$
d X_{t}=\left[r_{t} X_{t}+c_{t}\left(1+\rho_{t}\right)\right] d t-\int_{\mathbb{R}_{+}} f(t, z) N_{p}(d z d t)
$$

- Denote $\Gamma_{t} \triangleq e^{-\int_{0}^{t} r_{s} d s}$, and $\widetilde{X}_{t}=\Gamma_{t} X_{t}$. Then \widetilde{X} satisfies

$$
\widetilde{X}_{t}=x+\int_{0}^{t} \Gamma_{s} c_{s}\left(1+\rho_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} \Gamma_{s} f(s, z) N_{p}(d z d s)
$$

Risk Reserve with Interests

- Consider the reserve equation with interst: $X_{0}=x$

$$
d X_{t}=\left[r_{t} X_{t}+c_{t}\left(1+\rho_{t}\right)\right] d t-\int_{\mathbb{R}_{+}} f(t, z) N_{p}(d z d t)
$$

- Denote $\Gamma_{t} \triangleq e^{-\int_{0}^{t} r_{s} d s}$, and $\widetilde{X}_{t}=\Gamma_{t} X_{t}$. Then \widetilde{X} satisfies

$$
\widetilde{X}_{t}=x+\int_{0}^{t} \Gamma_{s} c_{s}\left(1+\rho_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} \Gamma_{s} f(s, z) N_{p}(d z d s)
$$

- Assume $\beta=c(1+\rho)$ is constant, and r_{t} is deterministic, Then for $g \in C^{1,1}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$, we have

$$
\begin{array}{r}
g\left(t, \widetilde{X}_{t}\right)=g(0, x)+\int_{0}^{t}\left[\partial_{t} g+\partial_{\times} g \Gamma_{s} \beta\right]\left(s, \widetilde{X}_{s}\right) d s \\
\quad+\int_{0}^{t} \int_{\mathbb{R}_{+}}\left[g\left(\cdot, \cdot-\Gamma_{s} f\right)-g\right]\left(s, \widetilde{X}_{s-}\right) \nu(d z) d s+m g
\end{array}
$$

Risk Reserve with Interests

- Thus $M_{t}=g\left(t, \widetilde{X}_{t}\right)$ is a martingale if and only if

$$
\left[\partial_{t} g+\partial_{x} g \beta \Gamma_{t}\right]+\int_{\mathbb{R}_{+}}\left[g\left(t, x-\Gamma_{t} f\right)-g(t, x)\right] \nu(d z)=0
$$

Risk Reserve with Interests

- Thus $M_{t}=g\left(t, \widetilde{X}_{t}\right)$ is a martingale if and only if

$$
\left[\partial_{t} g+\partial_{x} g \beta \Gamma_{t}\right]+\int_{\mathbb{R}_{+}}\left[g\left(t, x-\Gamma_{t} f\right)-g(t, x)\right] \nu(d z)=0
$$

- Assume that $g(t, x)=a(t) e^{-s x}, a(t)>0$ to be determined, and $f \equiv z$ and $\nu(d z)=\lambda F_{U}(d z)$, then the above becomes

$$
\begin{aligned}
0 & =a^{\prime}(t) e^{-s x}+\left\{-\beta s \Gamma_{t}+\lambda\left[\hat{m}\left(s \Gamma_{t}\right)-1\right]\right\} g(t, x) \\
& =\left\{a^{\prime}(t)-\theta\left(s \Gamma_{t}\right) a(t)\right\} e^{-s x} .
\end{aligned}
$$

Risk Reserve with Interests

- Thus $M_{t}=g\left(t, \widetilde{X}_{t}\right)$ is a martingale if and only if

$$
\left[\partial_{t} g+\partial_{x} g \beta \Gamma_{t}\right]+\int_{\mathbb{R}_{+}}\left[g\left(t, x-\Gamma_{t} f\right)-g(t, x)\right] \nu(d z)=0
$$

- Assume that $g(t, x)=a(t) e^{-s x}, a(t)>0$ to be determined, and $f \equiv z$ and $\nu(d z)=\lambda F_{U}(d z)$, then the above becomes

$$
\begin{aligned}
0 & =a^{\prime}(t) e^{-s x}+\left\{-\beta s \Gamma_{t}+\lambda\left[\hat{m}\left(s \Gamma_{t}\right)-1\right]\right\} g(t, x) \\
& =\left\{a^{\prime}(t)-\theta\left(s \Gamma_{t}\right) a(t)\right\} e^{-s x} .
\end{aligned}
$$

- Assume $a(0)=1$. We can solve the ODE

$$
a^{\prime}(t)+\theta\left(s \Gamma_{t}\right) a(t)=0, \quad t \geq 0
$$

to get $a(t)=e^{-\int_{0}^{t} \theta\left(s \Gamma_{u}\right) d u}$.

Risk Reserve with Interests

- Thus $M_{t}=g\left(t, \widetilde{X}_{t}\right)$ is a martingale if and only if

$$
\left[\partial_{t} g+\partial_{x} g \beta \Gamma_{t}\right]+\int_{\mathbb{R}_{+}}\left[g\left(t, x-\Gamma_{t} f\right)-g(t, x)\right] \nu(d z)=0
$$

- Assume that $g(t, x)=a(t) e^{-s x}, a(t)>0$ to be determined, and $f \equiv z$ and $\nu(d z)=\lambda F_{U}(d z)$, then the above becomes

$$
\begin{aligned}
0 & =a^{\prime}(t) e^{-s x}+\left\{-\beta s \Gamma_{t}+\lambda\left[\hat{m}\left(s \Gamma_{t}\right)-1\right]\right\} g(t, x) \\
& =\left\{a^{\prime}(t)-\theta\left(s \Gamma_{t}\right) a(t)\right\} e^{-s x} .
\end{aligned}
$$

- Assume $a(0)=1$. We can solve the ODE

$$
a^{\prime}(t)+\theta\left(s \Gamma_{t}\right) a(t)=0, \quad t \geq 0
$$

to get $a(t)=e^{-\int_{0}^{t} \theta\left(s \Gamma_{u}\right) d u}$.

- Thus $\tilde{M}_{t} \triangleq g\left(t, \widetilde{X}_{t}\right)=\exp \left\{-s \widetilde{X}_{t}-\int_{0}^{t} \theta\left(s \Gamma_{u}\right) d u\right\}$ is a mg.

Lundberg Bounds for General Models

Question:
Can we find an exponential martingale that leads to the Lundberg bound for the general reserve model (2)?

Lundberg Bounds for General Models

Question:

Can we find an exponential martingale that leads to the Lundberg bound for the general reserve model (2)?

Recall the exponential martingale

$$
\widetilde{M}_{t}=\exp \left\{-s \Gamma_{t} X_{t}-\int_{\mathbb{R}_{+}} \theta\left(s \Gamma_{u}\right) d u\right\} \triangleq \exp \left\{-I_{s}\left(t, X_{t}\right)-K_{t}^{s}\right\}
$$

where $I_{s}(t, x) \triangleq s x \Gamma_{t}$ and $K_{t}^{s}=\int_{\mathbb{R}_{+}} \theta\left(s \Gamma_{u}\right) d u$. Define

- $\beta_{t}=-\int_{0}^{t} r_{s} d s, t \geq 0$
- $I_{\delta}(t, x) \triangleq \delta x e^{-\int_{0}^{t} r_{s} d s}=\delta x \Gamma_{t}=\delta x e^{\beta_{t}}, \delta \in \mathbb{R}$.
- $\widetilde{X}_{t}=e^{\beta_{t}} X_{t}=\Gamma_{t} X_{t}$ (discounted risk reserve).

Lundberg Bounds for General Models

- In general, we replace s by a parameter δ, and look for a possible exponential $\mathrm{mg} M^{\delta}=\exp \left\{I_{\delta}+K^{\delta}\right\}$, where $I_{\delta}\left(t, X_{t}\right)=\delta \widetilde{X}_{t}$, and \widetilde{X} satisfies:

$$
\begin{aligned}
d \tilde{X}_{t}= & \Gamma_{t}\left(\widetilde{b}\left(t, \beta_{t}, \widetilde{X}_{t}\right)+\eta_{t}\right) d t+\left\langle\hat{\sigma}_{t}, d W_{t}\right\rangle \\
& -\int_{\mathbb{R}^{+}} \Gamma_{t} f(t, x) N_{p}(d t d x),
\end{aligned}
$$

where $\left.\widetilde{b}\left(t, \beta_{t}, \widetilde{X}_{t}\right)=b\left(t, e^{-\beta_{t}} \widetilde{X}_{t}\right)\right)=b\left(t, X_{t}\right)$.

Lundberg Bounds for General Models

- In general, we replace s by a parameter δ, and look for a possible exponential $\mathrm{mg} M^{\delta}=\exp \left\{I_{\delta}+K^{\delta}\right\}$, where $I_{\delta}\left(t, X_{t}\right)=\delta \widetilde{X}_{t}$, and \widetilde{X} satisfies:

$$
\begin{aligned}
d \tilde{X}_{t}= & \Gamma_{t}\left(\widetilde{b}\left(t, \beta_{t}, \widetilde{X}_{t}\right)+\eta_{t}\right) d t+\left\langle\hat{\sigma}_{t}, d W_{t}\right\rangle \\
& -\int_{\mathbb{R}^{+}} \Gamma_{t} f(t, x) N_{p}(d t d x),
\end{aligned}
$$

where $\left.\widetilde{b}\left(t, \beta_{t}, \widetilde{X}_{t}\right)=b\left(t, e^{-\beta_{t}} \widetilde{X}_{t}\right)\right)=b\left(t, X_{t}\right)$.

- To "decompose K^{δ}, define $m_{t}^{f}(\gamma) \triangleq \int_{\mathbb{R}_{+}}\left[e^{\gamma f(t, z)}-1\right] \nu(d z)$. Then $m^{f}(\gamma)$ is increasing in γ and integrable for all $\gamma \leq \delta_{0}$.

Lundberg Bounds for General Models

- In general, we replace s by a parameter δ, and look for a possible exponential $\mathrm{mg} M^{\delta}=\exp \left\{I_{\delta}+K^{\delta}\right\}$, where $I_{\delta}\left(t, X_{t}\right)=\delta \widetilde{X}_{t}$, and \widetilde{X} satisfies:

$$
\begin{aligned}
d \tilde{X}_{t}= & \Gamma_{t}\left(\widetilde{b}\left(t, \beta_{t}, \widetilde{X}_{t}\right)+\eta_{t}\right) d t+\left\langle\hat{\sigma}_{t}, d W_{t}\right\rangle \\
& -\int_{\mathbb{R}^{+}} \Gamma_{t} f(t, x) N_{p}(d t d x),
\end{aligned}
$$

where $\left.\widetilde{b}\left(t, \beta_{t}, \widetilde{X}_{t}\right)=b\left(t, e^{-\beta_{t}} \widetilde{X}_{t}\right)\right)=b\left(t, X_{t}\right)$.

- To "decompose K^{δ}, define $m_{t}^{f}(\gamma) \triangleq \int_{\mathbb{R}_{+}}\left[e^{\gamma f(t, z)}-1\right] \nu(d z)$. Then $m^{f}(\gamma)$ is increasing in γ and integrable for all $\gamma \leq \delta_{0}$.
- In compound Poisson case, $f \equiv z$ and $\nu(d z)=\lambda F_{U}(d z)$, then $m_{t}^{f}(\gamma) \triangleq \lambda \int_{\mathbb{R}_{+}}\left[e^{\gamma z}-1\right] F_{U}(d z)=\lambda\left(\hat{m}_{U}(\gamma)-1\right)$, again .

Lundberg Bounds for General Models

- Now define $K_{t}^{\delta}=-V_{t}^{\delta}+\frac{1}{2} Y_{t}^{\delta}+Z_{t}^{\delta}$, where

$$
\begin{aligned}
& V_{t}^{\delta}=\delta \int_{0}^{t} e^{\beta_{s}}\left[\widetilde{b}\left(s, \beta_{s}, \widetilde{X}_{s}\right)+\eta_{s}\right] d s \\
& Y_{t}^{\delta}=\delta^{2} \int_{0}^{t} e^{2 \beta_{s}}\left|\hat{\sigma}_{s}\right|^{2} d s ; \quad Z_{t}^{\delta} \triangleq \int_{0}^{t} m_{s}^{f}\left(\delta e^{\beta_{s}}\right) d s
\end{aligned}
$$

- Define also $Z_{t}^{\delta, 0} \triangleq \int_{0}^{t} m_{s}^{f}(\delta) d s$, and

$$
\left\{\begin{array}{l}
\mathscr{D}=\left\{\delta \geq 0: Z_{t}^{\delta}<\infty, P \text {-a.s., } \forall t \geq 0\right\} \\
\mathscr{D}_{0}=\left\{\delta \geq 0: Z_{t}^{\delta, 0}<\infty, P \text {-a.s. }, \forall t \geq 0\right\} .
\end{array}\right.
$$

- Since $\gamma \geq 0$ and $\beta_{s} \leq 0$, the monotonicity of $m^{f}(\cdot)$ shows that $\mathscr{D}_{0} \subseteq \mathscr{D}$.

Main Results

Theorem (M. Sun (02))

The process $M_{t}^{\delta} \triangleq \exp \left\{-\delta \widetilde{X}_{t}-K_{t}^{\delta}\right\}, t \geq 0$, enjoys the following properties:

- For every $\delta \in \mathscr{D},\left\{M_{t}^{\delta}: t \geq 0\right\}$ is an \mathbf{F}-local martingale.
- If the processes π, σ, μ, and r are all bounded and \mathbf{F}^{W}-adapted, and that $f(\cdot, \cdot, \cdot)$ is deterministic, then for every $\delta \in \mathscr{D}_{0},\left\{M_{t}^{\delta}: t \geq 0\right\}$ is an \mathbf{F}-martingale.
- If r is also deterministic, then (ii) holds for all $\delta \in \mathscr{D}$.
- If π is allowed to be \mathbf{F}-adapted, then (ii) and (iii) hold for all δ such that $2 \delta \in \mathscr{D}$ and \mathscr{D}_{0}, respectively.

Main Results

Theorem (M. Sun (02))

The process $M_{t}^{\delta} \triangleq \exp \left\{-\delta \widetilde{X}_{t}-K_{t}^{\delta}\right\}, t \geq 0$, enjoys the following properties:

- For every $\delta \in \mathscr{D},\left\{M_{t}^{\delta}: t \geq 0\right\}$ is an \mathbf{F}-local martingale.
- If the processes π, σ, μ, and r are all bounded and \mathbf{F}^{W}-adapted, and that $f(\cdot, \cdot, \cdot)$ is deterministic, then for every $\delta \in \mathscr{D}_{0},\left\{M_{t}^{\delta}: t \geq 0\right\}$ is an \mathbf{F}-martingale.
- If r is also deterministic, then (ii) holds for all $\delta \in \mathscr{D}$.
- If π is allowed to be \mathbf{F}-adapted, then (ii) and (iii) hold for all δ such that $2 \delta \in \mathscr{D}$ and \mathscr{D}_{0}, respectively.

> Proof: Define $F^{\delta}(x, v, y, z) \triangleq \exp \left(-\delta x+v-\frac{1}{2} y-z\right)$, and applying Itô's formula to $F^{\delta}\left(\widetilde{X}_{t}, V_{t}^{\delta}, Y_{t}^{\delta}, Z_{t}^{\delta}\right) \ldots$

Main Results

Example

- Classical Model $\pi_{t} \equiv 0, r_{t} \equiv 0, \rho \equiv 0, \mu_{t} \equiv 0, \sigma_{t} \equiv 0$,
- S_{t} is Compound Poisson
- $K_{t}^{\delta}=t\left(\int_{0}^{\infty}\left(e^{\delta x}-1\right) \lambda F(d x)-c \delta\right)(=\theta(\delta) t!)$
- $\widetilde{\delta}=\sup \{\delta: \theta(\delta) \leq 0\}=r^{*}$

Main Results

Example

- Classical Model $\pi_{t} \equiv 0, r_{t} \equiv 0, \rho \equiv 0, \mu_{t} \equiv 0, \sigma_{t} \equiv 0$,
- S_{t} is Compound Poisson
- $K_{t}^{\delta}=t\left(\int_{0}^{\infty}\left(e^{\delta x}-1\right) \lambda F(d x)-c \delta\right)(=\theta(\delta) t!)$
- $\widetilde{\delta}=\sup \{\delta: \theta(\delta) \leq 0\}=r^{*}$
- Discounted Risk Reserve $\pi_{t}=\rho_{t}=\mu_{t}=\sigma_{t} \equiv 0, r>0$
- S_{t} is Compound Poisson
- $K_{t}^{\delta}=\int_{0}^{t}\left\{\int_{0}^{\infty}\left[\exp \left(\delta e^{-r s} x\right)-1\right] \lambda F(d x)-c e^{-r_{s}}\right\} d s$
- $\widetilde{\delta}=\sup \left\{\delta \geq 0: \sup _{t \geq 0} K_{t}^{\delta}<\infty\right\}$

Main Results

Example

- Classical Model $\pi_{t} \equiv 0, r_{t} \equiv 0, \rho \equiv 0, \mu_{t} \equiv 0, \sigma_{t} \equiv 0$,
- S_{t} is Compound Poisson
- $K_{t}^{\delta}=t\left(\int_{0}^{\infty}\left(e^{\delta x}-1\right) \lambda F(d x)-c \delta\right)(=\theta(\delta) t!)$
- $\widetilde{\delta}=\sup \{\delta: \theta(\delta) \leq 0\}=r^{*}$
- Discounted Risk Reserve $\pi_{t}=\rho_{t}=\mu_{t}=\sigma_{t} \equiv 0, r>0$
- S_{t} is Compound Poisson
- $K_{t}^{\delta}=\int_{0}^{t}\left\{\int_{0}^{\infty}\left[\exp \left(\delta e^{-r s} x\right)-1\right] \lambda F(d x)-c e^{-r_{s}}\right\} d s$
- $\widetilde{\delta}=\sup \left\{\delta \geq 0: \sup _{t \geq 0} K_{t}^{\delta}<\infty\right\}$
- Perturbed risk reserve $\pi_{t} \equiv 1, \rho_{t}=r_{t}=\mu_{t} \equiv 0, \sigma_{t} \equiv \varepsilon$,
- $X_{t}=x+c t+\varepsilon W_{t}-S_{t}$
- $K_{t}^{\delta}=t\left(-c \delta+\frac{1}{2} \delta^{2} \varepsilon^{2}+\int_{0}^{\infty}\left(e^{\delta x}-1\right) \lambda F(d x)\right) \triangleq k(\delta) t$
- $\widetilde{\delta} \triangleq \sup \{\delta>0: k(\delta)=0\}$ (Delbaen-Haezendonck (1987), ...)

Ruin Probability via "Rate Functions"

Extending the idea of the function $I_{\delta}(t, x)=\delta x \beta_{t}$, we can consider a more general "rate function": $I \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$. Define

- $M_{t}^{\prime} \triangleq \exp \left\{-I\left(t, X_{t}\right)-K_{t}^{\prime}\right\}, K_{t}^{\prime} \triangleq-V_{t}^{\prime}+\frac{1}{2} Y_{t}^{\prime}+Z_{t}^{\prime}$, and
- $Z_{t}^{\prime} \triangleq \int_{0}^{t} \int_{\mathbb{R}^{+}}\left[\exp \left\{I\left(s, X_{s}\right)-I\left(s, X_{s}-f(s, x)\right)\right\}-1\right] v(d x) d s$
- $V_{t}^{\prime} \triangleq \int_{0}^{t}\left\{\partial_{x} I\left(s, X_{s}\right) b\left(s, X_{s}\right)+\partial_{t} I\left(s, X_{s}\right)\right\} d s$
- $Y_{t}^{\prime} \triangleq \int_{0}^{t}\left\{\left(\partial_{x} I\left(s, X_{s}\right)\right)^{2}-\partial_{x x}^{2} I\left(s, X_{s}\right)\right\}\left|\hat{\sigma}_{s}\right|^{2} d s$

Ruin Probability via "Rate Functions"

Extending the idea of the function $I_{\delta}(t, x)=\delta x \beta_{t}$, we can consider a more general "rate function": $I \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$. Define

$$
\begin{aligned}
& \text { - } M_{t}^{\prime} \triangleq \exp \left\{-I\left(t, X_{t}\right)-K_{t}^{\prime}\right\}, K_{t}^{\prime} \triangleq-V_{t}^{\prime}+\frac{1}{2} Y_{t}^{\prime}+Z_{t}^{\prime} \text {, and } \\
& \text { - } Z_{t}^{\prime} \triangleq \int_{0}^{t} \int_{\mathbb{R}^{+}}\left[\exp \left\{I\left(s, X_{s}\right)-I\left(s, X_{s}-f(s, x)\right)\right\}-1\right] v(d x) d s \\
& \text { - } V_{t}^{\prime} \triangleq \int_{0}^{t}\left\{\partial_{x} I\left(s, X_{s}\right) b\left(s, X_{s}\right)+\partial_{t} I\left(s, X_{s}\right)\right\} d s \\
& \text { - } Y_{t}^{\prime} \triangleq \int_{0}^{t}\left\{\left(\partial_{x} I\left(s, X_{s}\right)\right)^{2}-\partial_{x x}^{2} I\left(s, X_{s}\right)\right\}\left|\hat{\sigma}_{s}\right|^{2} d s
\end{aligned}
$$

Definition

A function $I \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ is called a "rate function" if $Z_{t}^{\prime}<\infty, \forall t \geq 0, P$-almost surely.

Analysis

Suppose that we can find I such that M^{I} is a local martingale, and that $I(t, x) \leq 0$, for all t and $x \leq 0$.

- Let $\tau \triangleq \inf \left\{t, X_{t}<0\right\}$, and apply Optional Sampling to supermartingale (nonnegative loc mg) M_{t}^{l} :

$$
\begin{aligned}
e^{-l(0, x)} & \geq E\left\{e^{-l\left(\tau, X_{\tau}\right)-K_{\tau}^{\prime}} \mid \tau<T\right\} P\{\tau<T\} \\
& \geq E\left\{\inf _{0 \leq t \leq T} e^{-K_{t}^{\prime}}\right\} \psi(x, T)
\end{aligned}
$$

- Applying Jensen's inequality we have

$$
\psi(x, T) \leq \frac{e^{-l(0, x)}}{E\left\{\inf _{0 \leq t \leq T} e^{-K_{t}^{\prime}}\right\}} \leq e^{-l(0, x)} E\left\{\sup _{0 \leq t \leq T} e^{K_{t}^{\prime}}\right\}
$$

- One can let $T \rightarrow \infty$ to obtain the bound for $\psi(x)$.

Ruin Probability via "Rate Functions"

Theorem

- For any rate function $I,\left\{M_{t}^{\prime}: t \geq 0\right\}$ is an \mathbf{F}-local martingale.

Ruin Probability via "Rate Functions"

Theorem

- For any rate function $I,\left\{M_{t}^{l}: t \geq 0\right\}$ is an \mathbf{F}-local martingale.
- (Lundberg Bounds) If the rate function I satisfies $I(t, x) \leq 0$, for all t and $x \leq 0$. Then, it holds that

$$
\begin{aligned}
\psi(x, T) & \leq e^{-l(0, x)} E \sup _{0 \leq t \leq T} \exp \left(K_{t}^{l}\right) \\
\psi(x) & \leq e^{-l(0, x)} E \sup _{t \geq 0} \exp \left(K_{t}^{l}\right) .
\end{aligned}
$$

Ruin Probability via "Rate Functions"

Theorem

- For any rate function $I,\left\{M_{t}^{l}: t \geq 0\right\}$ is an \mathbf{F}-local martingale.
- (Lundberg Bounds) If the rate function I satisfies $I(t, x) \leq 0$, for all t and $x \leq 0$. Then, it holds that

$$
\begin{aligned}
\psi(x, T) & \leq e^{-l(0, x)} E \sup _{0 \leq t \leq T} \exp \left(K_{t}^{l}\right) \\
\psi(x) & \leq e^{-l(0, x)} E \sup _{t \geq 0} \exp \left(K_{t}^{l}\right) .
\end{aligned}
$$

- In the Lundberg bounds above the process $K^{\prime}(X)$ can be replaced by $K^{\prime}\left(X^{+}\right)$, where $X_{s}^{+} \triangleq X_{s} \vee 0$.

Ruin Probability via "Rate Functions"

Theorem

- For any rate function I, $\left\{M_{t}^{\prime}: t \geq 0\right\}$ is an \mathbf{F}-local martingale.
- (Lundberg Bounds) If the rate function I satisfies $I(t, x) \leq 0$, for all t and $x \leq 0$. Then, it holds that

$$
\begin{aligned}
\psi(x, T) & \leq e^{-l(0, x)} E \sup _{0 \leq t \leq T} \exp \left(K_{t}^{l}\right), \\
\psi(x) & \leq e^{-l(0, x)} E \sup _{t \geq 0} \exp \left(K_{t}^{l}\right) .
\end{aligned}
$$

- In the Lundberg bounds above the process $K^{\prime}(X)$ can be replaced by $K^{\prime}\left(X^{+}\right)$, where $X_{s}^{+} \triangleq X_{s} \vee 0$.

Question:

How to find a rate function?

Asmussen-Nielsen Bound

Assume Compound Poisson $(f(t, x)=x$, and $v(d x)=\lambda F(d x)$), and $\pi \equiv 0, \mu \equiv 0, \sigma \equiv 0, r_{t}=r$ (constant), $\rho(t, x) \equiv \rho(x)$ is an increasing function in x. Then

$$
\begin{aligned}
& \text { - } X_{t}=x+\int_{0}^{t} p\left(X_{s}\right) d s+\int_{0}^{t} \int_{\mathbb{R}^{+}} x \mu(d x d s), t \geq 0 \\
& \quad \text { where } p(x) \triangleq r x+c(1+\rho(x))
\end{aligned}
$$

Asmussen-Nielsen Bound

Assume Compound Poisson $(f(t, x)=x$, and $v(d x)=\lambda F(d x)$), and $\pi \equiv 0, \mu \equiv 0, \sigma \equiv 0, r_{t}=r$ (constant), $\rho(t, x) \equiv \rho(x)$ is an increasing function in x. Then

- $X_{t}=x+\int_{0}^{t} p\left(X_{s}\right) d s+\int_{0}^{t} \int_{\mathbb{R}^{+}} x \mu(d x d s), t \geq 0$,
where $p(x) \triangleq r x+c(1+\rho(x))$.
- Consider the Rate function of the form: $I(x)=\int_{0}^{x} \gamma(y) d y$, $x \geq 0, \gamma(\cdot)>0$, increasing. Then

$$
\begin{aligned}
K_{t}^{\prime} & =\int_{0}^{t}\left\{-[\gamma p]\left(X_{s}^{+}\right)+\int_{\mathbb{R}^{+}}\left[e^{\int_{X_{s}^{+}-x}^{x_{s}^{+}} \gamma(y) d y}-1\right] \lambda F(d x)\right\} d s \\
& \leq \int_{0}^{t}\left\{-[\gamma p]\left(X_{s}^{+}\right)+\int_{\mathbb{R}^{+}}\left[e^{\gamma\left(X_{s}^{+}\right) x}-1\right] \lambda F(d x)\right\} d s .
\end{aligned}
$$

Asmussen-Nielsen Bound

- Let γ be the non-decreasing solution to the Lundberg equation:

$$
-\gamma p(y)+\int_{\mathbb{R}^{+}}\left[e^{\gamma x}-1\right] \lambda F(d x)=0, \quad y \geq 0
$$

(such solution exists if the so-called net profit condition: $\inf _{x \geq 0} p(x)>\lambda E\left[U_{1}\right]$ holds and ρ is monotone.)

Asmussen-Nielsen Bound

- Let γ be the non-decreasing solution to the Lundberg equation:

$$
-\gamma p(y)+\int_{\mathbb{R}^{+}}\left[e^{\gamma x}-1\right] \lambda F(d x)=0, \quad y \geq 0
$$

(such solution exists if the so-called net profit condition: $\inf _{x \geq 0} p(x)>\lambda E\left[U_{1}\right]$ holds and ρ is monotone.)

- One can show that if $p(\cdot) \in C^{1}$, then I can be extended so that $I(\cdot) \in C^{2}(\mathbb{R}), I(0)=0$, and $I(x) \leq 0$ for $x<0$.

Asmussen-Nielsen Bound

- Let γ be the non-decreasing solution to the Lundberg equation:

$$
-\gamma p(y)+\int_{\mathbb{R}^{+}}\left[e^{\gamma x}-1\right] \lambda F(d x)=0, \quad y \geq 0
$$

(such solution exists if the so-called net profit condition: $\inf _{x \geq 0} p(x)>\lambda E\left[U_{1}\right]$ holds and ρ is monotone.)

- One can show that if $p(\cdot) \in C^{1}$, then I can be extended so that $I(\cdot) \in C^{2}(\mathbb{R}), I(0)=0$, and $I(x) \leq 0$ for $x<0$.
- Thus $K_{t}^{\prime}\left(X^{+}\right) \leq 0, \forall t \geq 0$, and we have

$$
\psi(x, T) \leq e^{-l(x)} \quad \text { and } \quad \psi(x) \leq e^{-l(x)} .
$$

This is the Asmussen and Nielsen bound (1995).

Can We Do Better?

Assume now $\rho(x) \equiv 0$, and $F(x)=1-e^{-\theta x}, x \geq 0$. Then the Asmussen-Nielsen bound tells us:

$$
\psi(x) \leq e^{-\theta x}\left(1+\frac{r}{c} x\right)^{\frac{\lambda}{r}}, \quad x \geq 0
$$

Can We Do Better?

Assume now $\rho(x) \equiv 0$, and $F(x)=1-e^{-\theta x}, x \geq 0$. Then the Asmussen-Nielsen bound tells us:

$$
\psi(x) \leq e^{-\theta x}\left(1+\frac{r}{c} x\right)^{\frac{\lambda}{r}}, \quad x \geq 0 .
$$

Let us consider a new rate function: for $b \in C^{2}$,

$$
I(y)=-\log b(y) 1_{[0, \infty)}(y)
$$

Can We Do Better?

Assume now $\rho(x) \equiv 0$, and $F(x)=1-e^{-\theta x}, x \geq 0$. Then the Asmussen-Nielsen bound tells us:

$$
\psi(x) \leq e^{-\theta x}\left(1+\frac{r}{c} x\right)^{\frac{\lambda}{r}}, \quad x \geq 0
$$

Let us consider a new rate function: for $b \in C^{2}$,

$$
I(y)=-\log b(y) 1_{[0, \infty)}(y)
$$

Denote $K^{\prime}\left(X^{+}\right)=\int_{0}^{t} \mathscr{L}[I]\left(X_{s}^{+}\right) d s$, where \mathscr{L} is an ID operator:

$$
\mathscr{L}[I](y) \triangleq-I^{\prime}(y)[r y+c]+\int_{0}^{\infty}\left[e^{\prime(y)-I(y-x)}-1\right] \lambda \theta e^{-\theta x} d x
$$

Can We Do Better?

Assume now $\rho(x) \equiv 0$, and $F(x)=1-e^{-\theta x}, x \geq 0$. Then the Asmussen-Nielsen bound tells us:

$$
\psi(x) \leq e^{-\theta x}\left(1+\frac{r}{c} x\right)^{\frac{\lambda}{r}}, \quad x \geq 0
$$

Let us consider a new rate function: for $b \in C^{2}$,

$$
I(y)=-\log b(y) 1_{[0, \infty)}(y)
$$

Denote $K^{\prime}\left(X^{+}\right)=\int_{0}^{t} \mathscr{L}[I]\left(X_{s}^{+}\right) d s$, where \mathscr{L} is an ID operator:

$$
\mathscr{L}[I](y) \triangleq-I^{\prime}(y)[r y+c]+\int_{0}^{\infty}\left[e^{I(y)-I(y-x)}-1\right] \lambda \theta e^{-\theta x} d x
$$

Setting $\mathscr{L}[I](y)=0$, we see that b must satisfy

$$
e^{\theta y}[r y+c] b^{\prime}(y)+\int_{0}^{y} b(z) \lambda \theta e^{-\theta z} d z+\int_{y}^{\infty} \lambda \theta e^{-\theta x} d x=\lambda e^{\theta y} b(y)
$$

Can We Do Better?

Solving this equation to get

$$
b(y)=C_{1} \int_{0}^{y} e^{-\theta z}\left(\frac{r z}{c}+1\right)^{\frac{\lambda}{r}-1} d z+C_{2} .
$$

Can We Do Better?

Solving this equation to get

$$
b(y)=C_{1} \int_{0}^{y} e^{-\theta z}\left(\frac{r z}{c}+1\right)^{\frac{\lambda}{r}-1} d z+C_{2} .
$$

Determining the constant C_{1} and C_{2}, and working a little more to get

$$
I(y)=-\log \left(\frac{\int_{y}^{\infty} e^{-\theta z}\left(1+\frac{r z}{c}\right)^{\left(\frac{\lambda}{r}\right)-1} d z}{\frac{c}{\lambda}+\int_{0}^{\infty} e^{-\theta z}\left(1+\frac{r z}{c}\right)^{\left(\frac{\lambda}{r}\right)-1} d z}\right)
$$

Extend I carefully for $x<0$, one has

$$
\psi(x, T) \leq e^{-l(x)}, \quad \psi(x) \leq e^{-l(x)}
$$

Can We Do Better?

Solving this equation to get

$$
b(y)=C_{1} \int_{0}^{y} e^{-\theta z}\left(\frac{r z}{c}+1\right)^{\frac{\lambda}{r}-1} d z+C_{2}
$$

Determining the constant C_{1} and C_{2}, and working a little more to get

$$
I(y)=-\log \left(\frac{\int_{y}^{\infty} e^{-\theta z}\left(1+\frac{r z}{c}\right)^{\left(\frac{\lambda}{r}\right)-1} d z}{\frac{c}{\lambda}+\int_{0}^{\infty} e^{-\theta z}\left(1+\frac{r z}{c}\right)^{\left(\frac{\lambda}{r}\right)-1} d z}\right)
$$

Extend I carefully for $x<0$, one has

$$
\psi(x, T) \leq e^{-l(x)}, \quad \psi(x) \leq e^{-l(x)}
$$

But it is known that in this case $\psi(x)=e^{-l(x)}, x \geq 0$ (Segerdahi (1942)), we have obtained the SHARPEST bound!

Large Claim Case

It is known that in the models where large claims occur with high probability, the local adjustment coefficient method may fail.

Large Claim Case

It is known that in the models where large claims occur with high probability, the local adjustment coefficient method may fail.

Example

Assume that the claim sizes U_{k} are of Pareto (a, b) distribution:

$$
F(z)=\frac{b}{a} \int_{0}^{z}\left(\frac{a}{z}\right)^{b+1} \mathbf{1}_{[a, \infty)}(z) d z .
$$

Then one has $\hat{m}_{U}(\gamma)=\int_{0}^{\infty} e^{\gamma z} F(d z)=\infty$!

Large Claim Case

It is known that in the models where large claims occur with high probability, the local adjustment coefficient method may fail.

Example

Assume that the claim sizes U_{k} are of Pareto (a, b) distribution:

$$
F(z)=\frac{b}{a} \int_{0}^{z}\left(\frac{a}{z}\right)^{b+1} \mathbf{1}_{[a, \infty)}(z) d z .
$$

Then one has $\hat{m}_{U}(\gamma)=\int_{0}^{\infty} e^{\gamma z} F(d z)=\infty$!

We show that the rate function technique still works in this case!

Large Claim Case

It is known that in the models where large claims occur with high probability, the local adjustment coefficient method may fail.

Example

Assume that the claim sizes U_{k} are of Pareto (a, b) distribution:

$$
F(z)=\frac{b}{a} \int_{0}^{z}\left(\frac{a}{z}\right)^{b+1} \mathbf{1}_{[a, \infty)}(z) d z .
$$

Then one has $\hat{m}_{U}(\gamma)=\int_{0}^{\infty} e^{\gamma z} F(d z)=\infty$!

We show that the rate function technique still works in this case!
Assume that $X_{t}=x+c t-\sum_{k=1}^{N_{t}} U_{k}$, where $U_{k} \sim \operatorname{Pareto}(1,2)$ and $\lambda=1$. (i.e., $F_{U}(d z)=2 z^{-3} \mathbf{1}_{[1, \infty)}(z)$.) Note that the Net Profit Condition implies that $c-E\left[U_{1}\right]=c-2>0$.

Large Claim Case

We assume that the rate function $I \in C^{2}$ takes the following form:

$$
I(y)= \begin{cases}\ln (y+\beta)-\ln \beta & y \geq 0 \\ 0 & y \leq-1\end{cases}
$$

Then the process $K^{\prime}\left(X^{+}\right)$takes the form:

$$
K_{t}^{\prime}=\int_{0}^{t}\{\underbrace{-\frac{c}{X_{s}^{+}+\beta}+\int_{0}^{\infty}\left\{e^{I\left(X_{s}^{+}\right)-I\left(X_{s}^{+}-x\right)}-1\right\} F(d x)}_{\Gamma^{\prime}\left(X_{s}^{+}\right)}\} d s
$$

Large Claim Case

We assume that the rate function $I \in C^{2}$ takes the following form:

$$
I(y)= \begin{cases}\ln (y+\beta)-\ln \beta & y \geq 0 \\ 0 & y \leq-1\end{cases}
$$

Then the process $K^{\prime}\left(X^{+}\right)$takes the form:

$$
K_{t}^{\prime}=\int_{0}^{t}\{\underbrace{-\frac{c}{X_{s}^{+}+\beta}+\int_{0}^{\infty}\left\{e^{I\left(X_{s}^{+}\right)-I\left(X_{s}^{+}-x\right)}-1\right\} F(d x)}_{\Gamma^{\prime}\left(X_{s}^{+}\right)}\} d s
$$

Question

Can we find I such that $\Gamma^{\prime}(y) \leq 0, y \geq 0$, (Hence $K^{\prime} \leq 0!$)?

Large Claim Case

We assume that the rate function $I \in C^{2}$ takes the following form:

$$
I(y)= \begin{cases}\ln (y+\beta)-\ln \beta & y \geq 0 \\ 0 & y \leq-1\end{cases}
$$

Then the process $K^{\prime}\left(X^{+}\right)$takes the form:

$$
K_{t}^{\prime}=\int_{0}^{t}\{\underbrace{-\frac{c}{X_{s}^{+}+\beta}+\int_{0}^{\infty}\left\{e^{\prime\left(X_{s}^{+}\right)-I\left(X_{s}^{+}-x\right)}-1\right\} F(d x)}_{\Gamma^{\prime}\left(X_{s}^{+}\right)}\} d s
$$

Question

Can we find I such that $\Gamma^{\prime}(y) \leq 0, y \geq 0$, (Hence $K^{\prime} \leq 0!$)?

- First choosing $Y>0$ such that $\frac{\ln y}{y} \leq \frac{(c-1)}{8}, \forall y \geq Y$.
- Then define $\beta \triangleq \max \left\{Y, \frac{4}{c-1}, 2\right\}$ and $\varepsilon \triangleq(\beta+1)^{2}$, such that $I(y) \geq-\ln (1+\varepsilon)$, for $y \in[-1,0]$

Proportional Investments

The idea if finding $\Gamma^{/}$can be developed further. Consider

$$
\begin{aligned}
& X_{t}=x+\int_{0}^{t} p\left(X_{s}\right) d s+\int_{0}^{t}\left\langle\alpha X_{s}, \sigma d W_{s}\right\rangle-\sum_{k=1}^{N_{t}} U_{k}, t \geq 0 \\
& \text { where } p(x)=r x+c, U_{k} \sim \exp (\theta), \text { and } \alpha=\left(\alpha^{1}, \alpha^{2}, \ldots, \alpha^{n}\right)^{T}
\end{aligned}
$$

Proportional Investments

The idea if finding Γ^{\prime} can be developed further. Consider

$$
\begin{aligned}
& \quad X_{t}=x+\int_{0}^{t} p\left(X_{s}\right) d s+\int_{0}^{t}\left\langle\alpha X_{s}, \sigma d W_{s}\right\rangle-\sum_{k=1}^{N_{t}} U_{k}, t \geq 0 \\
& \text { where } p(x)=r x+c, U_{k} \sim \exp (\theta) \text {, and } \alpha=\left(\alpha^{1}, \alpha^{2}, \ldots, \alpha^{n}\right)^{T}
\end{aligned}
$$

Purpose

Find $I \in C^{2}(\mathbb{R})$, such that

$$
\begin{aligned}
\Gamma^{\prime}(y) \triangleq & -I^{\prime}(y)\{r y+C\}+\frac{1}{2}\left(I^{\prime}(y)^{2}-I^{\prime \prime}(y)\right) y^{2}\left|\sigma^{T} \alpha\right|^{2} \\
& +\int_{\mathbb{R}_{+}}\left[e^{\prime(y)-I(y-x)}-1\right] \lambda \theta e^{-\theta x} d x \leq 0
\end{aligned}
$$

and $I(y) \sim k \ln y+C$ for some constant k, C, as $y \rightarrow \infty$.

Principle of Smooth-fit

Consider the following two-parameter family:

$$
I_{\beta, k}(y)=k(\ln (y+\beta)-\ln 2 \beta) 1_{[\beta, \infty)}(y) .
$$

Suppose that $r>\left|\sigma^{T} \alpha\right|^{2} / 2>0$. Then, for $k=2 \frac{r}{\left|\sigma^{\top} \alpha\right|^{2}}-1>0$, one can find $\beta=\frac{k}{\delta}$ large enough, such that

$$
\begin{aligned}
\Gamma^{\prime}(y)= & -I^{\prime}(y)\{r y+C\}+\frac{1}{2}\left(I^{\prime}(y)^{2}-I^{\prime \prime}(y)\right) y^{2}\left|\sigma^{T} \alpha\right|^{2} \\
& +\int_{\mathbb{R}_{+}}\left[e^{\prime(y)-I(y-x)}-1\right] \lambda \theta e^{-\theta x} d x \leq 0, \quad \forall y \geq \beta
\end{aligned}
$$

Consequently, $\psi(x) \leq e^{-I(x)}=K(x+\beta)^{-k}$, for x large.

Principle of Smooth-fit

Consider the following two-parameter family:

$$
I_{\beta, k}(y)=k(\ln (y+\beta)-\ln 2 \beta) 1_{[\beta, \infty)}(y) .
$$

Suppose that $r>\left|\sigma^{T} \alpha\right|^{2} / 2>0$. Then, for $k=2 \frac{r}{\left|\sigma^{\top} \alpha\right|^{2}}-1>0$, one can find $\beta=\frac{k}{\delta}$ large enough, such that

$$
\begin{aligned}
\Gamma^{\prime}(y)= & -I^{\prime}(y)\{r y+C\}+\frac{1}{2}\left(I^{\prime}(y)^{2}-I^{\prime \prime}(y)\right) y^{2}\left|\sigma^{T} \alpha\right|^{2} \\
& +\int_{\mathbb{R}_{+}}\left[e^{\prime(y)-I(y-x)}-1\right] \lambda \theta e^{-\theta x} d x \leq 0, \quad \forall y \geq \beta
\end{aligned}
$$

Consequently, $\psi(x) \leq e^{-I(x)}=K(x+\beta)^{-k}$, for x large.
Note: This result coincides with those of Nyrhinen (1999) and Kalashnikov-Norberg (2000).

Ruin Problem via Storage Processes

An important observation made by Asmussen-Petersen (1988) is that the ruin probability of the risk process:

$$
X_{t}=x+\int_{0}^{t} b\left(X_{s}\right) d s-S_{t}
$$

where S is a compound Poisson, and $b(\cdot)$ is deterministic. Then the following relation hold:

$$
P\{\tau<T\}=\psi(x, T)=P\left\{Y_{T}>x\right\}
$$

where $Y_{t} \triangleq-\int_{0}^{t} b\left(Y_{s}\right) d s+S_{T}-S_{T-t}$ is called a "storage process'.
Such a relation has proved to be very useful when Large Deviation method is used to study the asymptotics of ruin probabilities.

A Natural Extension

Consider the risk reserve process

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, \cdot, X_{s}\right) d s+\Lambda_{t}^{\pi}-S_{t}, \quad 0 \leq t \leq T \tag{27}
\end{equation*}
$$

where $b(t, \omega, x)=c(1+\rho(t, x))+r_{t}(\omega) x$, and

$$
\Lambda_{t}^{\pi}=\int_{0}^{t}\left\langle\pi_{s}, \mu_{s}-r_{s} \mathbf{1}\right\rangle d s+\int_{0}^{t}\left\langle\pi_{s}, \sigma_{s} d w_{s}\right\rangle
$$

A Natural Extension

Consider the risk reserve process

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, \cdot, X_{s}\right) d s+\Lambda_{t}^{\pi}-S_{t}, \quad 0 \leq t \leq T \tag{27}
\end{equation*}
$$

where $b(t, \omega, x)=c(1+\rho(t, x))+r_{t}(\omega) x$, and

$$
\Lambda_{t}^{\pi}=\int_{0}^{t}\left\langle\pi_{s}, \mu_{s}-r_{s} \mathbf{1}\right\rangle d s+\int_{0}^{t}\left\langle\pi_{s}, \sigma_{s} d w_{s}\right\rangle
$$

Assume $b(t, x)$ is uniform Lipschitz in x, uniformly in (t, ω), then (27) has a unique solution.

A Natural Extension

Consider the risk reserve process

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(s, \cdot, X_{s}\right) d s+\Lambda_{t}^{\pi}-S_{t}, \quad 0 \leq t \leq T \tag{27}
\end{equation*}
$$

where $b(t, \omega, x)=c(1+\rho(t, x))+r_{t}(\omega) x$, and

$$
\Lambda_{t}^{\pi}=\int_{0}^{t}\left\langle\pi_{s}, \mu_{s}-r_{s} \mathbf{1}\right\rangle d s+\int_{0}^{t}\left\langle\pi_{s}, \sigma_{s} d w_{s}\right\rangle
$$

Assume $b(t, x)$ is uniform Lipschitz in x, uniformly in (t, ω), then (27) has a unique solution.

Need

A "storage" process that solves a "reflected SDE":

$$
\begin{equation*}
Y_{t}=-\int_{0}^{t} b\left(T-s, \cdot, Y_{s}\right) d s+\xi_{t}^{\pi}+K_{t} \geq 0 \tag{28}
\end{equation*}
$$

where $\xi_{t}^{\pi} \triangleq-\Lambda_{T}^{\pi}+\Lambda_{T-t}^{\pi}+S_{T}-S_{T-t}, K \nearrow$, and $\int_{0}^{\infty} Y_{t} d K_{s}=0$.

A "Reflected SDE"

Definition

A pair of processes (Y, K) is the solution of (28) if
i) $(Y, K) \in \mathbb{D}^{2}$ and (Y, K) satisfies (28);
ii) $Y_{t} \geq 0, \forall t \geq 0$;
iii) K is increasing, with "jump set" $\mathscr{S}_{K}=\left\{t: \Delta K_{t} \neq 0\right\}$;
iv) $\int_{0}^{\infty} Y_{s} d K_{s}=0$;
v) $\Delta K_{t}=\left|Y_{t}+\Delta \xi_{t}^{\pi}\right|, \forall t \in \mathscr{S}_{K}=\left\{t \geq 0: Y_{t}+\Delta \xi_{t}^{\pi}<0\right\}$.

A "Reflected SDE"

Definition

A pair of processes (Y, K) is the solution of (28) if
i) $(Y, K) \in \mathbb{D}^{2}$ and (Y, K) satisfies (28);
ii) $Y_{t} \geq 0, \forall t \geq 0$;
iii) K is increasing, with "jump set" $\mathscr{S}_{K}=\left\{t: \Delta K_{t} \neq 0\right\}$;
iv) $\int_{0}^{\infty} Y_{s} d K_{s}=0$;
v) $\Delta K_{t}=\left|Y_{t}+\Delta \xi_{t}^{\pi}\right|, \forall t \in \mathscr{S}_{K}=\left\{t \geq 0: Y_{t}+\Delta \xi_{t}^{\pi}<0\right\}$.

Warning:

The solution of SDEDR (28) is not adapted! It is solved pathwisely as an ODE with reflection. Further, since ξ_{t}^{π} has only upward jump by definition, K is always continuous!

Remark

The reflected SDE is solved by using the solution to the "Discontinuous Skorohod Problem (DSP)" (cf. e.g., Dupuis-Ishii (90) or Ma (92)).

An important property of DSP (Dupuis-Ishii (90))

For any $Y \in D$, the solution mapping of $\operatorname{DRP}(Y)$, as a mapping $\Gamma: D \rightarrow D$ such that $\Gamma(Y)=X$, where (X, K) is the solution to $\operatorname{DRP}(\mathrm{Y})$, is Lipschitz under the uniform topology in \mathbb{D}, that is, there exists a constant $C>0$, such that, for any $Y^{1}, Y^{2} \in D$, it holds that

$$
\begin{equation*}
\sup _{0 \leq s \leq t}\left|\Gamma\left(Y^{1}\right)_{s}-\Gamma\left(Y^{2}\right)_{s}\right| \leq C \sup _{0 \leq s \leq t}\left|Y_{s}^{1}-Y_{s}^{2}\right|, \quad \forall t \geq 0 \tag{29}
\end{equation*}
$$

Remark

The reflected SDE is solved by using the solution to the "Discontinuous Skorohod Problem (DSP)" (cf. e.g., Dupuis-Ishii (90) or Ma (92)).

An important property of DSP (Dupuis-Ishii (90))

For any $Y \in D$, the solution mapping of $\operatorname{DRP}(Y)$, as a mapping $\Gamma: D \rightarrow D$ such that $\Gamma(Y)=X$, where (X, K) is the solution to $\operatorname{DRP}(\mathrm{Y})$, is Lipschitz under the uniform topology in \mathbb{D}, that is, there exists a constant $C>0$, such that, for any $Y^{1}, Y^{2} \in D$, it holds that

$$
\begin{equation*}
\sup _{0 \leq s \leq t}\left|\Gamma\left(Y^{1}\right)_{s}-\Gamma\left(Y^{2}\right)_{s}\right| \leq C \sup _{0 \leq s \leq t}\left|Y_{s}^{1}-Y_{s}^{2}\right|, \quad \forall t \geq 0 \tag{29}
\end{equation*}
$$

The reflected SDE is then $Y_{t}=\Gamma(Z)_{t}=Z_{t}+K_{t}$, and Z satisfies

$$
Z_{t}=-\int_{0}^{t} b\left(s, \Gamma(Z)_{s}, \cdot\right) d s+\xi_{t}, \quad t \geq 0
$$

Ruin Probability via Storage Process

Let Y be the storage proc. Set $\widetilde{Y}_{t}=Y_{T-t}, J_{t}=K_{T}-K_{T-t}$, then

$$
\begin{array}{cc}
& \widetilde{Y}_{t}=Y_{T}+\int_{0}^{t} b\left(s, \widetilde{Y}_{s}, \cdot\right) d s+\Lambda_{t}-S_{t}-J_{t} \\
\Longrightarrow \quad & X_{t}-\widetilde{Y}_{t}=x-Y_{T}+\int_{0}^{t} \alpha_{s}\left(X_{s}-Y_{s}\right) d s+J_{t}
\end{array}
$$

where $\alpha_{s} \triangleq \frac{b\left(s, X_{s}, \cdot\right)-b\left(s, \widetilde{Y}_{s},\right)}{\left(X_{s}-\widetilde{Y}_{s}\right)} \mathbf{1}_{\left\{X_{s}-\widetilde{Y}_{s} \neq 0\right\}}$.

Ruin Probability via Storage Process

Let Y be the storage proc. Set $\widetilde{Y}_{t}=Y_{T-t}, J_{t}=K_{T}-K_{T-t}$, then

$$
\begin{gathered}
\widetilde{Y}_{t}=Y_{T}+\int_{0}^{t} b\left(s, \widetilde{Y}_{s}, \cdot\right) d s+\Lambda_{t}-S_{t}-J_{t} \\
\Longrightarrow \quad \\
X_{t}-\widetilde{Y}_{t}=x-Y_{T}+\int_{0}^{t} \alpha_{s}\left(X_{s}-Y_{s}\right) d s+J_{t}
\end{gathered}
$$

where $\alpha_{s} \triangleq \frac{b\left(s, X_{s},\right)-b\left(s, \widetilde{r}_{s}, \cdot\right)}{\left(X_{s}-\widetilde{Y}_{s}\right)} \mathbf{1}_{\left\{X_{s}-\widetilde{Y}_{s} \neq 0\right\}}$. Since J_{t} is nondecreasing, $X_{t}-\widetilde{Y}_{t}=\left(x-Y_{T}\right) e^{\int_{0}^{t} \alpha_{s} d s}+\int_{0}^{t} e^{\int_{v}^{t} \alpha_{s} d s} d J_{v} \geq\left(x-Y_{T}\right) e^{\int_{0}^{t} \alpha_{s} d s}$.

Ruin Probability via Storage Process

Let Y be the storage proc. Set $\widetilde{Y}_{t}=Y_{T-t}, J_{t}=K_{T}-K_{T-t}$, then

$$
\begin{gathered}
\widetilde{Y}_{t}=Y_{T}+\int_{0}^{t} b\left(s, \widetilde{Y}_{s}, \cdot\right) d s+\Lambda_{t}-S_{t}-J_{t} \\
\Longrightarrow \quad X_{t}-\widetilde{Y}_{t}=x-Y_{T}+\int_{0}^{t} \alpha_{s}\left(X_{s}-Y_{s}\right) d s+J_{t}
\end{gathered}
$$

where $\alpha_{s} \triangleq \frac{b\left(s, X_{s}, \cdot\right)-b\left(s, \widetilde{r}_{s}, \cdot\right)}{\left(X_{s}-\widetilde{Y}_{s}\right)} \mathbf{1}_{\left\{X_{s}-\widetilde{Y}_{s} \neq 0\right\}}$. Since J_{t} is nondecreasing, $X_{t}-\widetilde{Y}_{t}=\left(x-Y_{T}\right) e^{\int_{0}^{t} \alpha_{s} d s}+\int_{0}^{t} e^{\int_{v}^{t} \alpha_{s} d s} d J_{v} \geq\left(x-Y_{T}\right) e^{\int_{0}^{t} \alpha_{s} d s}$.
Thus $x \geq Y_{T} \Longrightarrow X_{t} \geq \widetilde{Y}_{t} \geq 0, \forall t \Longrightarrow \tau \geq T$

$$
\Longrightarrow \quad P\{\tau<T\} \leq P\left\{Y_{T}>x\right\} .
$$

Ruin Probability via Storage Process

Let Y be the storage proc. Set $\widetilde{Y}_{t}=Y_{T-t}, J_{t}=K_{T}-K_{T-t}$, then

$$
\begin{gathered}
\widetilde{Y}_{t}=Y_{T}+\int_{0}^{t} b\left(s, \widetilde{Y}_{s}, \cdot\right) d s+\Lambda_{t}-S_{t}-J_{t} \\
\Longrightarrow \quad X_{t}-\widetilde{Y}_{t}=x-Y_{T}+\int_{0}^{t} \alpha_{s}\left(X_{s}-Y_{s}\right) d s+J_{t}
\end{gathered}
$$

where $\alpha_{s} \triangleq \frac{b\left(s, X_{s}, \cdot\right)-b\left(s, \widetilde{r}_{s,} \cdot\right)}{\left(X_{s}-\widetilde{Y}_{s}\right)} \mathbf{1}_{\left\{X_{s}-\widetilde{Y}_{s} \neq 0\right\}}$. Since J_{t} is nondecreasing, $X_{t}-\widetilde{Y}_{t}=\left(x-Y_{T}\right) e^{\int_{0}^{t} \alpha_{s} d s}+\int_{0}^{t} e^{\int_{v}^{t} \alpha_{s} d s} d J_{v} \geq\left(x-Y_{T}\right) e^{\int_{0}^{t} \alpha_{s} d s}$.
Thus $x \geq Y_{T} \Longrightarrow X_{t} \geq \widetilde{Y}_{t} \geq 0, \forall t \Longrightarrow \tau \geq T$

$$
\Longrightarrow \quad P\{\tau<T\} \leq P\left\{Y_{T}>x\right\} .
$$

With some more work, one can show that the equality holds.

Ruin Probability via Storage Process

To consider the Large Deviation problem, we now emphasize the dependence of the coefficients on the initial reserve x :

$$
\begin{equation*}
d X_{t}=b\left(t, x, X_{t}\right) d s+d \Lambda_{t}(x)-d S_{t}, \quad X_{0}=x \tag{30}
\end{equation*}
$$

where S_{t} is compound Poisson, and $d \Lambda_{t}(x)=\sigma_{t}(x) d W_{t}$.

Ruin Probability via Storage Process

To consider the Large Deviation problem, we now emphasize the dependence of the coefficients on the initial reserve x :

$$
\begin{equation*}
d X_{t}=b\left(t, x, X_{t}\right) d s+d \Lambda_{t}(x)-d S_{t}, \quad X_{0}=x \tag{30}
\end{equation*}
$$

where S_{t} is compound Poisson, and $d \Lambda_{t}(x)=\sigma_{t}(x) d W_{t}$.

Example

- ("perturbed risk reserve") $b\left(t, x, X_{t}\right)=r_{t} X_{t}+c_{t}$ and $\sigma_{t}(x)=\varepsilon$.
- (Buy-and-hold) $\pi_{t} \equiv f(x)$. That is,

$$
\begin{aligned}
& b\left(t, x, X_{t}\right)=r_{t} X_{t}+c\left(1+\rho\left(t, X_{t}\right)\right) \\
& \sigma_{t}(x)=\sigma_{t}^{T} f(x)
\end{aligned}
$$

Relation with Large Deviation

Recall the Lundberg bounds

$$
\begin{align*}
\psi(x, T) & \leq e^{-\delta x} E \sup _{0 \leq t \leq T} \exp \left(\widetilde{K}_{t}^{\delta}\right), \tag{31}\\
\psi(x) & \leq e^{-\delta x} E \sup _{t>0} \exp \left(\widetilde{K}_{t}^{\delta}\right) . \tag{32}
\end{align*}
$$

Relation with Large Deviation

Recall the Lundberg bounds

$$
\begin{align*}
\psi(x, T) & \leq e^{-\delta x} E \sup _{0 \leq t \leq T} \exp \left(\widetilde{K}_{t}^{\delta}\right), \tag{31}\\
\psi(x) & \leq e^{-\delta x} E \sup _{t>0} \exp \left(\widetilde{K}_{t}^{\delta}\right) . \tag{32}
\end{align*}
$$

Denote the adjustment coefficient by

$$
\begin{aligned}
& \widetilde{\delta}=\sup \left\{\delta \in \mathscr{D}: E \sup _{t \geq 0} \exp \left(\widetilde{K}_{t}^{\delta}\right)<\infty\right\} \\
& \widetilde{\delta}_{T}=\sup \left\{\delta \in \mathscr{D}: E \sup _{0 \leq t \leq T} \exp \left(K_{t}^{\delta}\right)<\infty\right\} .
\end{aligned}
$$

Then for all $\varepsilon>0$ it holds that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \psi(x) e^{(\tilde{\delta}-\varepsilon) x} & =0, \quad \lim _{x \rightarrow \infty} \psi(x, T) e^{\left(\tilde{\delta}_{T}-\varepsilon\right) x}=0 \\
\lim _{x \rightarrow \infty} \psi(x) e^{(\tilde{\delta}+\varepsilon) x} & =\infty, \quad \lim _{x \rightarrow \infty} \psi(x, T) e^{\left(\tilde{\delta}_{T}+\varepsilon\right) x}=\infty
\end{aligned}
$$

Asymptotics via Large Deviation

- Consider the reflected "random" DE

$$
\begin{equation*}
Y_{t}(x)=-\int_{0}^{t} b\left(T-s, x, Y_{s}(x)\right) d s+\xi_{t}(x)+K_{t}(x) \tag{33}
\end{equation*}
$$

where $\xi_{t}(x) \triangleq-\Lambda_{T}(x)+\Lambda_{T-t}(x)+S_{T}-S_{T-t}$, and $K_{t}(x)$ is the reflecting process.

- By definition of the storage process we have

$$
\psi(1 / \varepsilon, T)=P\left\{Y_{T}(1 / \varepsilon)>1 / \varepsilon\right\}=P\left\{\varepsilon Y_{T}(1 / \varepsilon)>1\right\}
$$

Thus the asymptotic ruin is

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \log P\left\{\varepsilon Y_{T}(1 / \varepsilon)>1\right\}=-\tilde{\delta}_{T}
$$

- A problem of (Sample-Path) Large Deviation for the (perturbed) storage process $Y_{t}^{\varepsilon} \triangleq \varepsilon Y_{t}(1 / \varepsilon)$!

Ma, J. (1993), Discontinuous Reflection, and a Class of Singular Stochastic Control Problems for Diffusions. Stochastic and Stochastics Reports, Vol.44, 225-252.

圊 Ma, J. \& Sun, X. (2003) Ruin probabilities for insurance models involving investments, Scand. Actuarial J. Vol. 3, 217-237.
Run, X. (2001) Ruin Probabilities for General Insurance Models. Ph.D Thesis, Purdue University.
R- Tomasz, R. \& et al. (1999) Stochastic processes for insurance and finance, J. Wiley, New York.

