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Equity Linked Life Insurance

An Equity-Linked Life insurance is one that

allows a separate account with cash/investment options

links the death benefits to the cash/investment performance

Examples of such insurance include

“ELEPAVG” (Equity-Linked Endowment Policy with Asset
Value Guarantee)

“UVL” (Universal Variable Life)

Literature:

Brennan-Schwartz (’76), Boyle-Schwartz (’77), Delbaen (’86),
Aase-Persson (’94), Nielson-Sandmann (1995), Kurz (’96), ...

Also, Young (with Bayraktar, Jaimungal, Ludkovski,
Zariphopoulou, ...), Schweizer, Frittelli, Rouge-El Karoui, ...
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Basic elements involved in an UVL insurance

A Life Model

Single life

Multiple life

A Market Model

Tradable assets vs. Non-tradable assets, ...

Benefit Specifications

Guaranteed benefit/return

“Multiple decrements” (including death, retirement, long term
disability, ...)

... ...
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The Single Life Case

Basic Elements

T (x) — Future Life-time r.v., where x is the current age

Gx(t)
4
= P{T (x) > t} 4

= tpx , t ≥ 0 — survival function

hqx+t
4
= P{T (x) ≤ t + h|T (x) > t} = 1− hpx+t .

λx(t) = lim
h→0

hqx+t

h
= − fx(t)

Gx(t)
— force of mortality

Xt ∈ {0, 1, ...,m} — State Process (finite state Markov,
representing “multiple decreements”, e.g. short/long term
disabilities, withdrawal, retirement, death, etc. X0 = 0, and
the state “1” is cemetery/absorbing, representing “death”.)

dS0
t = rtS

0
t ; S0

0 = s0 —money market

dSt = St{µtdt + σtdBt}, S0 = s, — tradable

dZt = Z 0
t {µZ

t dt + σZ
t dBt + σtdB̃t}, Z0 = z —non-tradable
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Principle of Equivalent Utility

The original form of “Principle of Equivalent Utility” states that
the premium Π of a claim X should be determined by the equation

u(x) = E [u(x + Π−X )],

where u is a utility function, and x is the initial wealth.

If x = 0, then it is called Zero Utility Principle.

If furthermore u(x) = x , then is often referred to as
“Equivalence Principle”.)

Dynamically, assume that Xt = x +
∫ t
0 csds − St , t ≥ s ≥ 0,

and X = ST , then at any time t ∈ [0,T ] the premium ct can
be determined by solving the equation

u(x) = E{u(XT )|Xt = x}.
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Principle of Equivalent Utility

If we use the risk reserve with investment, that is, the
dynamic of the risk reserve X follows the following SDE:

Xt = x +

∫ t

0
[rsXs + cs(1+ρs)]ds +

∫ t

0
〈πs , σsdBs 〉−St , (1)

then we can require that the premium is determined so that
the expected utility maximized. In other words, one solves

u(x) = sup
π∈A

E {u(Xπ
T )|Xt = x} ,

(Note: This is almost like an optimal control problem for
maximizing the expected terminal utility by Merton (1969,
1971). But determing the premium process is rather difficult.)

A more practical version of the “premium” is that it is paid as
a lump-sum at the time of the contract. Although it is still
priced “dynamically”, it is paid only once at the initial time t.
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A Stochastic Control Point of View

Assume we are in a “risk neutral world”. Rewrite (1) as

Xπ
t = X0 + p +

∫ t

0
rsX

π
s ds +

∫ t

0
〈πs , σsdBs 〉−Yt = Wt − Yt ,

where

p is the (lump-sum) premium paid at t = 0,

W π
t
4
= X0 + p +

∫ t

0
rsXsds +

∫ t

0
〈πs , σsdBs 〉,

Y is a general “Loss process” (e.g., Yt = St)

Note

If the insurer does not sell the insurance, then Y = 0, and
therefore p = 0. The utility maximization problem becomes a usual
stochastic control problme, and we denote its value function by

V 0(x , t)
4
= sup

π∈A
E {u(W π

T )|Wt = x} . (2)
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The Indifference Pricing Problem

If the insurance is sold, and the liability cannot be traded after its
transfer and before the expiration. Then the value function of the
insurer should be

U(t, x + p, y) = sup
π∈A

E {u(WT − YT )|Wt = x + p,Yt = y} . (3)

Definition

Let y
4
= Yt . A premium p ≥ 0 is said to be “y-acceptable” if

V 0(t, x) ≤ U(t, x + p, y), ∀(t, x). (4)

Denote Py = {all y -acceptable premium}. Define the universal
write price, p∗(t, y) by

p∗(t, y)
4
= inf{p ≥ 0 : V 0(t, x) ≤ U(t, x + p, y),∀(t, x)} = inf Py .
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Existence of the Fair Price

Theorem

Suppose that Ps,z 6= ∅, and let p∗
4
= inf Py . Then it holds that

V 0(t, x) = U(t, x + p∗, y), ∀(t, x).

Sketch of the proof

By Comparison Theorem, W0 ≥ W̃0 =⇒ W π
T ≥ W̃ π

T

=⇒ U(t, x + p, y) is increasing in p.

Since YT ≥ 0 =⇒ u(W π
T − YT ) ≤ u(W π

T ) =⇒

U(t, x , y) ≤ V 0(t, x) ≤ U(t, x + p∗, y).

If U(t, ·, y) is continuous, then ∃p∗∗ ∈ [0, p∗] s.t.

V 0(t, x) = U(t, x + p∗∗, y)

But p∗∗ ∈ Ps,z =⇒ p∗ ≤ p∗∗ =⇒ p∗ = p∗∗.
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Indifference Pricing in Finance/Insurance

First introduced by Hodges and Neuberger (1989), as a pricing
principle for contingent claims in an incomplete market.

The value is within the interval of arbitrage prices[
inf
Q

EQ{X e−rT}, sup
Q

EQ{X e−rT}
]
,

where Q runs over the set of all EMMs.

Existing works for similar problems

Cvitanić et al.(’01), Delbaen et al.(’02)... (martingale, duality)

Rouge & El Karoui(’00) (BSDEs)

M. Davis (’00), M. Musiela & Zariphopoulou(’02); Young and
Zariphopoulou(’02) (PDE solutions, power/exponential utility)

Bielecki, Jeanblanc and Rutkowski (’05) (defaultable claims)
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A Universal Variable Life Insurance Problem

The Universal Variable Life (UVL for short) is an insurance product
that offers

a separate cash account besides a death benefit

various investment options

different risk/return relationships (may include money market,
bond, common stocks, or even non-tradable equities.)

Main Features

The changes in the policy’s cash values and death benefits will
be related directly to the investment performance of its
underlying assets.

The death benefit will not fall below a minimum amount
(usually the initial face amount) even if the invested assets
depreciate in value by a substantial amount. Although there is
no similar “floor” to protect the cash values.
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The Death Benefit

Consider a term life insurance with expiration date T > 0 and
death benefit

bt = g(S1
t , · · · ,Sd

t ,Zt) = g(St ,Zt), (5)

where g : Rd+1 7→ (0,∞) is some measurable function.

Example

g(St ,Zt) = S i
t ∨ s i , for some i ,

g(St ,Zt) = Zt ∨ z .

If Z is the retirement fund, one can set g(Zt) = Zt ∨ e r̄ tz ,
t ≥ 0, where r̄ is a certain growth rate (such as the interest
rate or any contractually pre-determined rate.

Note:

In this case the loss process is Yt = g(ST ,ZT )1{T (x)≤t}, t ≥ 0.
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Some Optimization Problems

We denote

A = {π : E
∫ T
0 |πt |2dt <∞}

Et,w ,s,z{ · } = E{ · |Wt = w ,St = s,Zt = z}.

J(t,w , s, z ;π)
4
= Et,w ,s,z{u(W π

T − YT )},

J0(t,w ;π)
4
= Et,w{u(W π

T )}. (T (x) > T , =⇒ YT = 0.)

Ĵ(t,w , s;π)
4
= Et,w ,s{u(W π

T − g(ST )YT )}. (g = g(ST ))

The Value Functions

V 0(t,w) = supπ∈A J0(t,w ;π)

V (t,w , s) = supπ∈A Ĵ(t,w , s;π)

U(t,w , s, z) = supπ∈A J(t,w , s, z ;π).
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Solution for g = g(ST )

First recall the Bellman Principle: for any h > 0,

V (t,w , s) = sup
π∈A

Et,w ,s{V (t + h,W π
t+h,St+h)}. (6)

Since g(ST ) involves all tradeable assets, and the benefit is
paid at a fixed terminal time T , one can consider g(ST ) as a
contingent claim, and determine its present value by

c(t, s) = EQ{e−r(T−t)g(ST )|St = s}.

If the death occurs during [t, t + h], then one can set aside
the amount of c(t + h,St+h) at time t + h to hedge the
potential claim lost g(ST ), and consider the remaining
optimization problem on [t + h,T ] as if there were no
insurance involved. Thus,

Et,w ,s{V (t + h,W π
t+h,St+h)}

= Et,w ,s{V 0(t + h,W π
t+h − c(t + h,St+h))}.
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Solution for g = g(ST )

Now for any π on [t, t + h],

V (t,w , s) ≥ Et,w ,s{V (t + h,W π
t+h,St+h)}hpx+t

+Et,w ,s{V 0(t + h,W π
t+h − c(t + h,St+h))}hqx+t .

Assume that c(·, ·) ∈ C 1,2 and satisfies the Black-Scholes
PDE, we can apply Itô to both V (Wt , t,St) and
V 0(Wt − c(t,St), t) from t to t + h, and then take
conditional expectations and rearrange terms to obtain

V (w , t, s)
hqx+t

h
≥ V 0(w − c(t, s), t)

hqx+t

h

+E

{
1

h

∫ t+h

t
{Vt + L [V ](u,Wu,Su)

∣∣∣Wt = w

}
hpx+t

+E

{
1

h

∫ t+h

t
{V 0

t + L [V 0](r ,Wu,Su)
∣∣∣Wt = w

}
hqx+t .
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Solution for g = g(ST )

Letting h → 0, noting that

lim
h→0

hqx+t/h = λx(t), lim
h→0

hpx+t = 1, lim
h→0

hqx+t = 0,

and using the fact that c satisfies the Black-Scholes PDE, we
obtain the HJB Equation for V :

0=Vt +max
π
{(µ−r)πVw +

1

2
σ2π2Vww +sσ2πVws}+rwVw

+sµVs +
1

2
σ2s2Vss +λx(t)(V

0(w − c , t)−V (w , t, s)),

V (T ,w , s) = u(w).

Note: In the Black-Scholes world, the HJB equation for V 0 isV 0
t + max

π∈R+

{
1

2
|σπ|2V 0

ww +〈π, µ−r〉V 0
w

}
+rwV 0

w = 0,

V 0(T ,w) = u(w).
(7)
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The Case of Exponential Utility

Consider now the case of exponential utility. I.e., u(w) = − 1
αe−αw .

V 0 has the close form solution:

V 0(t,w) = − 1

α
exp{−αwer(T−t) − (µ− r)2

2σ2
(T − t)} (8)

Assume V (t,w , s) = V 0(t,w)Φ(t, s), then

Φt + rSΦs +
σ2s2Φss

2
− s2σ2Φ2

s

2Φ
+ λx(e

{cαer(T−t)}−Φ) = 0

Φ(T , s) = 1.

Define h(t, s) = c(t, s)αer(T−t) − ln Φ. Then one shows that{
ht + srhs +

1

2
σ2s2hss − λx(t)(e

h − 1) = 0

h(T , s) = αg(s)
(9)

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 18/ 63



The Case of Exponential Utility

Consider now the case of exponential utility. I.e., u(w) = − 1
αe−αw .

V 0 has the close form solution:

V 0(t,w) = − 1

α
exp{−αwer(T−t) − (µ− r)2

2σ2
(T − t)} (8)

Assume V (t,w , s) = V 0(t,w)Φ(t, s), then

Φt + rSΦs +
σ2s2Φss

2
− s2σ2Φ2

s

2Φ
+ λx(e

{cαer(T−t)}−Φ) = 0

Φ(T , s) = 1.

Define h(t, s) = c(t, s)αer(T−t) − ln Φ. Then one shows that{
ht + srhs +

1

2
σ2s2hss − λx(t)(e

h − 1) = 0

h(T , s) = αg(s)
(9)

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 18/ 63



The Case of Exponential Utility

Consider now the case of exponential utility. I.e., u(w) = − 1
αe−αw .

V 0 has the close form solution:
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α
exp{−αwer(T−t) − (µ− r)2

2σ2
(T − t)} (8)
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2
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The Case of Exponential Utility

If we change the variable: v = log s, τ = T − t, (9) becomes:{
hτ = (r − 1

2
σ2)hv +

1

2
σ2hvv − λx(T − τ)(eh − 1)

h(0, v) = αg(ev )
(10)

Note: The reaction-diffusion PDE (10) has a exponential
growth, and we must show that it does not blow-up in finite
time!

Now consider the Initial-Boundary value version of (10) with

h(0, x) = αg(x), h(t,±N) = αg(±N).

and denote its solution by hN(t, x).

Define K̃ = |α|‖g‖∞, and let

K
4
= − log(1− (1− e−K̃ )e

∫ T
0 λ(u)du).
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The Case of Exponential Utility

Consider the function

βK (t)
4
= − log{1− (1− e−K )e−

∫ t
0 λ(u)du}, t ≥ 0.

Since βK (t) is decreasing in t, we have

K̃ = βK (T ) ≤ βK (t) ≤ βK (0) = K , ∀t ∈ [0,T ].

It can be easily checked that h(t, x)
4
= βK (t), solves (10) with

the Initial-Boundary value:

h(0, x) = K , h(t,±N) = βK (t). (11)

Thus by Comparison Theorem of PDE hN(·, ·) is bounded by
βK̃ (·).
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The Case of Exponential Utility

Similarly, denote vN(τ, x) = ∂xh
N(τ, x), and apply the

Comparison Theorem to vN one sees that vN(·, ·) is bounded

by the function ṽ(t, x) = K ′e
∫ T
t λ(t)dt , with K ′ = |α|‖g ′‖∞.

We can now apply the Arzela-Ascoli Theorem to obtain a
uniformly bounded solution of the Cauchy problem by letting
N →∞!

The indifference price of the UVL insurance is given by

p = c(0, s)− h(0, s)

α
e−rT ,
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The General Case: g = g(ST , ZT )

Note:

Since Z is non-tradable, this is an “incomplete market” case and
the arbitrage free price for the payoff g(ST ,ZT ) cannot be
determined as in the previous case.

A Dynamic Strategy

We consider the following more aggressive (or adventurous)
strategy:

Assuming that the death of the insured occurs before t + h

Instead of putting aside a certain amount of money at the
t + h to hedge the future claim, the insurer simply continue to
invest all of his current wealth freely, but knowing that he is
liable to pay g(ST ,ZT ) at time T .
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The General Case: g = g(ST , ZT )

Consider an auxiliary control problem assuming death happens
before T

J̃(t, x , s, z ;π)
4
= Et,x ,s,z{u(Xπ

T )− g(ST ,ZT )},

with the corresponding value function Ũ(t, x , s, z).

Then U satisfies a HJB equation: (assuming µ = r)

0 = Ut + max
π

{
1

2
σ2π2Uww + (UwsSσ

2 + UwzZσ
Zσ)π

}
+rwUw + UsSµ+ UzZµ

Z +
1

2
σ2UssS

2

+
1

2
UzzZ

2(σ̃2 + σZ 2
) + UszSZσσZ + λx(t)(Ũ − U),

U(w ,T , s, z) = u(w),

where Ũ satisfies a similar HJB equation with λx ≡ 0.
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The General Case: g = g(ST , ZT )

Using the similar techniques as before, modulo the technicalities of
showing the no blow-ups, we can derive the indifference price in
this case:

The premium p(t, s, z) = 1
αe−r(T−t)h(T − t, log s, log z),

h is a bounded, classical solution to the PDE
hτ − 1

2 σ̃
2h2

y2
− 1

2σ
2hy1y1 − 1

2(σ̃2 + σz2)hy2y2 − σσzhy1y2

−
(
r − 1

2σ
2
)
hy1 −

(
µz − µ−r

σ σz − σ̃2+σz 2

2

)
hy2

−λx(T − τ)(e h̃−h − 1) = 0;

h(0, y1, y2) = 0,

and h̃ is a bounded, classical solution to a similar PDE as
above, with λx ≡ 0, and h̃(0, y1, y2) = αg(ey1 , ey2).
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Multiple-decrement Case

Main Features

Allowing “multiple decrement”: such as short/long term
disabilities, withdrawl, retirement, death, etc.

benefit payable at a random time, e.g., “moment of death”.

the payments may depend on the different status as well as
the transitions between them.

The State/Status Process {Xt}t≥0

A Markov chain with finite state space {0, 1, ...,m},
representing the numerical code of the “status”.

i = 1 to be the “cemetary state” (death), and X0 = 0

denote I i
t = 1{Xt=i} to be the “status indicator” and define

the counting process

N ij
t
4
= #{transitions of X from state i to j during [0, t]}.
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Multiple-decrement Case

Some Important Quantities

for each t, denote τt = inf{s ≥ t : Xs 6= Xt}; and for
i = 0, ...,m, define τ i

t = τt , if Xτt = i and ∞ otherwise.

t p̄
i
s
4
= P{τs > t|Xs = i};

t q̄
ij
s
4
= P{τ j

s = τs ≤ t|Xs = i}, s ≤ t, i , j ∈ {0, ...,m}.
Clearly, t p̄

1
s = 1; t q̄

1j
s = 0, for all j 6= 1; and

t p̄
i
s +

∑
j 6=i

t q̄
ij
s = 1, ∀i = 0, 1, · · · ,m, 0 ≤ s < t. (12)

“force of decrement of status i due to cause j” as

λ̄ij
t
4
= lim

h→0

t+hq̄
ij
t

h
, i , j = 0, 1, · · ·m. (13)
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Some Remarks

If m = 1, then the state process X becomes the one as in the
simple life model, and τ1

0 = T (x). In that case we should have

t p̄
0
s = t−spx+s , tq

01
s = t−sqx+s .

Being a Markov chain, the process X has its transition
probability and the corresponding transition intensity

tq
ij
s = P{Xt = j |Xs = i}; λij

t
4
= lim

h ↓ 0

t+hq
ij
t

h
, i 6= j .

There are natural links between pij ’s and p̄ij ’s. For example:
λ̄ij

t = λij
t , for all t ≥ 0, i , j = 0, 1, · · · ,m;

t+hp̄
i
t = exp{−

∫ t+h

t

∑
j 6=i

λij
s ds}; t+hp

ij
t =

∫ t+h

t
τ p̄i

tλ
ij
τdτ ,

∀h > 0, i , j = 0, · · · ,m.
... ... ... ...
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The Payment Process At :

Two types of payments will be considered: “life-annuity” and
“life-insurance”.

Since the non-tradability of the asset Z will not make
significant difference in the optimization problem, we will not
distinguish Z from S .

The cumulative payment process is defined by

At =

∫ t

0

∑
i

I i
ua

i (u,Su)du +
∑
i 6=j

aij(u,Su)dN ij
u , t ≥ 0,

(14)
— an F-adapted, càdlàg , non-decreasing process in which

ai (t, s) — rate of payments of annuity at state i , given St = s;

aij(t, s) — rate of payments of insurance when transit from
state i to j , given St = s.
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Dynamics of General Reserve

Dynamics of general reserve

dŴ π
t = [rtŴ

π
t + πt(µt − rt)]dt + πtσtdBt − dAt ,

where

dAt =
∑

i

Ii (t)a
i (t,St)dt +

∑
i 6=j

aij(t,St)dN ij
t

I i
t = 1{Xt=i}, N ij

t
4
= #{jumps of X from i to j during [0, t]}

Hamiltonian
H k 4

=
1

2
|σtπ|2ψ + [〈π, µt − rt1 〉+rtw − ak(t, s)]ϕ

+ 〈π, σtσ
T
t trD[s]p 〉, k = 0, 1, · · · ,m,

Hk(t,w , s, ϕ, ψ, p)
4
= supπ H k(t,w , s, ϕ, ψ, p;π).
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The HJB Equation

Theorem (Yu, ’07; M.-Yu, ’10)

Under suitable conditions, the value function U = (U0,U1, ...,Um)
is the unique viscosity solution to the system of PDDE’s:{

Uk
t + Fk(t,w , s,DUk ,D2Uk) + (HkU) = 0,

Uk(T ,w , s) = u(w), k = 0, · · · ,m, (15)

where

Fk(· · · ) = sup
π∈Π

{
π(µt − rt)U

k
w +

1

2
|σtπ|2Uk

ww + πσ2
t sU

k
ws

}
+µtsU

k
s +

1

2
σ2

t s
2Uk

ss + (rtw − ak(t, s))Uk
w

(HkU) =
∑
j 6=k

λkj
t (U j(t,w − akj(t, s), s)− Uk(t,w , s)).
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Viscosity Solution for System of PDDEs

Main Difficulties

Definition of viscosity solution for the system of PDDE.

Uniqueness

Different from Ishii et al.’s results: Parabolic PDDE vs. Elliptic
PDEs
Different from Pardoux et al.’s results: Fully Nonlinear System
vs. Semilinear System

Main idea:

Taking the index vector of the value function as an additional
“spatial” variable with values in a finite set: the system of
PDDEs becomes a single PDDE!

The abstract framework of viscosity solutions (e.g., Fleming &
Soner book) applies!
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Abstract Dynamic Programming Principle Revisited

Recall Fleming-Soner (II.3)

Σ — a closed subset of a Banach space

C — a collection of functions on Σ

Ttr , 0 ≤ t ≤ r ≤ T — a family of operators on C , s.t.,

(i) Tttϕ = ϕ;
(iia) Ttrϕ ≤ Ttsψ, if ϕ ≤ (Trsψ), ∀ 0 ≤ t ≤ r ≤ s;
(iib) Ttrϕ ≥ Ttsψ, if ϕ ≥ (Trsψ), ∀ 0 ≤ t ≤ r ≤ s.

Note

r = s in (ii) =⇒ monotonicity: Ttrϕ ≤ Ttrψ, if ϕ ≤ ψ,

(iia) ⊕ (iib) =⇒ semigroup property:

Ttsϕ = Ttr (Trsϕ), t ≤ r ≤ s ≤ T , if Ttrϕ ∈ C , ∀ϕ ∈ C .

Of course, the fact that Ttrϕ ∈ C must be verified!
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Abstract Bellman (Dynamic Programming) Principle

Σ ⊆ O, where O is an open set in IRn, and C = M (Σ),

Tt,r ;uψ(x)
4
= J(t, r ; u) = Et,x

{∫ r

t
L(s,Xs , us)ds + ψ(Xr )

}
.

Tt,rψ(x)
4
= infu∈Uad

Tt,r ;uψ(x) (Thus, Tt,Tψ(x) = V (t, x)!).

Note

Semigroup Property = (Abstract) Bellman Principle(!)

Let {Gt}t≥0 be the “infinitesimal generator” of the semigroup
T , that is, for all ϕ ∈ D , y ∈ Σ,

lim
h↓0

1

h
{(Ttt+hϕ(t + h, ·))(y)− ϕ(t, y)} = [

∂

∂t
+ Gt ]ϕ(t, y),

where D ⊂ C ([0,T )× Σ) is the set of “test functions” [i.e.,
∀ϕ ∈ D , ∂

∂tϕ(t, y) and (Gtϕ(t, ·))(y) are continuous.]
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Abstract form of HJB Equation

Assume V ∈ C 1,2 ⊂ D . Then use the semigroup property one
derives the HJB equation:

0 = lim
h↓0

1

h
{(Ttt+hV (t + h, ·))(y)− V (t, y)}

= [
∂

∂t
+ Gt ]V (t, y), ∀y ∈ Σ,

V (T , y) = ψ(y).

(16)

Theorem (Fleming-Soner, Theorem II.5.1)

If the value function of a control problem V ∈ C [0,T ]× Σ), then
V is a viscosity solution to the (abstract) HJB equation (16).

Question:

What are G , D ,..., etc. in our case?
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Back to UVL Model

Σ = {(w , s, k) : w , s ∈ R, k ∈ {0, 1, ...,m}},
C = C (Σ).

(Ttrϕ)(w , s, k)
4
= sup

π∈A
Ew ,s,k{ϕ(Ŵ π

r ,Sr ,Xr )}, t ≥ r

(TtTu)(w , s, k) = Uk(t,w , s), ∀(t,w , s) and k

Note

It is easy to check that the family {Ttr} satisfies (i), (ii).

Since Uk(t,w , s)’s are all continuous, the function
(t,w , s, k) 7→ Uk(t,w , s) (on Σ) should satisfy an abstract
HJB equation!

Problems:

Identify the infinitesimal generator of the semigroup T .

Define the “viscosity solutions” to the corresponding abstract
HJB equation (vs. the system of the HJB equations!)
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r ,Sr ,Xr )}, t ≥ r

(TtTu)(w , s, k) = Uk(t,w , s), ∀(t,w , s) and k

Note

It is easy to check that the family {Ttr} satisfies (i), (ii).

Since Uk(t,w , s)’s are all continuous, the function
(t,w , s, k) 7→ Uk(t,w , s) (on Σ) should satisfy an abstract
HJB equation!

Problems:

Identify the infinitesimal generator of the semigroup T .

Define the “viscosity solutions” to the corresponding abstract
HJB equation (vs. the system of the HJB equations!)

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 35/ 63



Abstract HJB Equation vs. System of PDDEs

Denote U(t,w , s, k) = Uk(t,w , s), and recall the PDDEs (15):
∂

∂t
Uk + Fk(t,w , s,DUk ,D2Uk) + (HkU)(t,w , s) = 0,

Uk(T ,w , s) = u(w), k = 0, · · · ,m.
(17)

Theorem

The viscosity solutions of the abstract HJB equation (16) with
respect to the operator T and that of the system of PDDEs (17)
are equivalent if and only if

(Gtϕ(t, ·))(w , s, k) = [Fk(·, ·, ·,Dϕ,D2ϕ) + (Hkϕ)](t,w , s). (18)
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The Case of Bereaved Partner

Main Rationales

The usual “Multi-Life Contingency” (e.g., pension plans)
assumes independent mortality, even for married couples

Empirical evidence of the bereaved spouse (Hu-Goldman (’90)
Mariikainen-Valkonen (’96), and Valkonen et al. (’04))
indicated the possible correlated mortality.

Tx1 , Tx2 , · · · ,Txn — future life time random variables,

Tm = Tx1,··· ,xn

4
= min{Tx1 , · · · ,Txn} — (Joint-life)

TM = Tx1,··· ,xn

4
= max{Tx1 , · · · ,Txn} — (Last-survivor)

If n = 2, one has TM + Tm = Tx1 + Tx2 , TMTm = Tx1Tx2 .

FM(t) + Fm(t) = FTx1
(t) + FTx2

(t), t ≥ 0 where FT is the
distribution function of T .

If Tx1 ⊥ Tx2 , then FM(t) = FTx1
(t)FTx2

(t)...
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The Case of Bereaved Partner

Assume n = 2, and that the individual force of mortalities take the
form:{

µx1(t) = λx1(t) + 1{Tx2≤t}γx1(t − Tx2)

µx2(t) = λx2(t) + 1{Tx1≤t}γx2(t − Tx1),
t ≥ 0, (19)

where λxi ’s are the (marginal) force of mortality and

γxi (t) =
ni

riet + 1
, i = 1, 2, r1, r2, n1, n2 > 0.

Note:

This essentially becomes a problem of “Counter-Party Risk”, a
well-know topic in “Contagion Models” of correlated default!
Existing literature include

King-Wadhwani, Kodres-Pritsker, Collin-Dufresne, ...

Jarrow-Yu, Yu (2001, counterparty, two firms)

.........

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 38/ 63



The Case of Bereaved Partner

Assume n = 2, and that the individual force of mortalities take the
form:{

µx1(t) = λx1(t) + 1{Tx2≤t}γx1(t − Tx2)

µx2(t) = λx2(t) + 1{Tx1≤t}γx2(t − Tx1),
t ≥ 0, (19)

where λxi ’s are the (marginal) force of mortality and

γxi (t) =
ni

riet + 1
, i = 1, 2, r1, r2, n1, n2 > 0.

Note:

This essentially becomes a problem of “Counter-Party Risk”, a
well-know topic in “Contagion Models” of correlated default!
Existing literature include

King-Wadhwani, Kodres-Pritsker, Collin-Dufresne, ...

Jarrow-Yu, Yu (2001, counterparty, two firms)

.........

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 38/ 63



Basic Setup

Let (Ω,F , {Ft},P) be a given filtered probability space.

P is risk neutral (in a default free bond market)

∃ a factor process X = {Xt : t ≥ 0}
There are I firms, with default times τ i , i = 1, · · · , I

Denote

N i
t
4
= 1{τ i≤t} — default process with respect to τ i ,

Ft
4
= FX

t ∨F 1
t ∨ ...∨F I

t , where F i
t = σ{N i

s : 0 ≤ s ≤ t}, ∀i
H i

t = FX
t ∨F 1

t ∨ ... ∨F i−1
t ∨F i+1

t ∨ ... ∨F I
t ,

=⇒ Ft = H i
t ∨F i

t .
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Basic Setup

Define

S i
t = P{τ i > t|H i

t } > 0 (=⇒ S i is an H i -supermg)

H i
t
4
= − ln(S i

t), t ≥ 0 — Hazard Process

Note:

S i
t > 0 implies that τ i cannot be an H i -stopping time!

If ∃λi
t ∈ H i

t , such that H i
t =

∫ t
0 λi

s ds, t ≥ 0, then

S i
t = P{τ i > t|H i

t } = exp
{
−

∫ t

0
λi

s ds
}
. (20)

— λi is called the (conditional) intensity process of τ i , and it
holds that λi

t = −dS i
t/S

i
t , t ≥ 0.
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A Useful Lemma

Lemma

For any F -measurable random variable Z we have, for any t ≥ 0,

1{τ i>t}E{Z |Ft} = 1{τ i>t}
E{1{τ i>t}Z |H i

t }
E{1{τ i>t}|H i

t }
(21)

Idea: Define

F ∗
t
4
= {A ∈ F |∃B ∈ H i

t , A ∩ {τ i > t} = B ∩ {τ i > t}}.

Then one can check that Ft = F ∗
t , t ≥ 0.

Applying “Monotone Class”, one shows that, ∀Z ∈ F , ∃X ∈ H i
t ,

s.t.
E{1{τ i>t}Z |Ft} = 1{τ i>t}E{Z |Ft} = 1{τ i>t}X .

Taking E{· |H i
t } on both sides and solve for X .
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The Conditional Survival Probability

Note that P{τ i > T |Ft} = 1{τ i>t}E{1{τ i>T}|Ft}. Applying
Lemma we have

P{τ i > T |Ft} = 1{τ i>t}
E[1{τ i>T}|H i

t }
E{1{τ i>t}|H i

t }
. (22)

Since

E{1{τ i>T}|H i
t } = E{P{τ i >T |H i

T}|H i
t } =

E
{

e−
∫ T
0 λi

sds
∣∣∣H i

t

}
.

E{1{τ i>t}|H i
t } = e−

∫ t
0 λi

sds

Consequently:

P{τ i > T |Ft} = 1{τ i>t}E
{

e−
∫ T
t λi

sds
∣∣∣H i

t

}
.

M i
t
4
= N i

t − H i
t∧τ i = 1{τ i≤t} −

∫ t
0 1{τ i>s}λ

i
sds, i = 1, ..., I , are

{Ft}-martingales.
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Standing Assumptions

(H1) λi
t satisfy the following condition:

E
{

exp
(
2

∫ t

0

I∑
i=1

λi
sds

)}
<∞, ∀t <∞.

(H2) For each i , P{τ i > 0} = 1. Furthermore, there are no
simultaneous defaults among the I firms. In other words, it
holds that P{τ i 6= τ j} = 1, whenever i 6= j .

Main Task

Find effective, tractable way to calculate the joint distribution
(survival probability):

P{τ1 ≤ t1, · · · , τ I ≤ tI}, and/or P{τ1 > t1, · · · , τ I > tI},

given the conditional intensities.
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Representation of Joint Survival Probability

Define, for i = 1, ..., I , Γi
t
4
= exp{

∫ t
0 λ

i
sds}, and

Z i
t
4
= 1{τ i>t}Γ

i
t = 1{τ i>t} exp

{∫ t

0
λi

sds
}
. (23)

Then

Z i
t ≥ 0; and Z i

0 = 1, ∀i .
Z i ’s are {Ft}-adapted, and E{Z i

t} = 1.

Proposition

Assume (H1) and (H2). Then, for k = 1, ..., I , the processes

k∏
i=1

Z i
t
4
=

k∏
i=1

1{τ i>t}Γ
i
t , t ≥ 0 (24)

are all {Ft}-martingales.
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Representation of Joint Survival Probability

[Sketch of the proof.] (i) Z i
t ’s are martingales.

E{Z i
t |Fs} = E{1{τ i>t}Γ

i
t |Fs} = 1{τ i>s}E{1{τ i>t}Γ

i
t |Fs}

= 1{τ i>s}
E{1{τ i>t}Γ

i
t |H i

t }
E{1{τ i>s}|H i

s }
(Lemma)

= 1{τ i>s}
E{1{τ i>t}Γ

i
t |H i

s }
(Γi

t)
−1

= Z i
sE{1{τ i>t}Γ

i
t |H i

s }

= Z i
sE{E{1{τ i>t}|H i

t }Γi
t |H i

s } = Z i
s .

(ii) If Z̃ k
t
4
=

∏k
i=1 Z i

t is an mg, then so is
∏k+1

i=1 Z i
t = Z̃ k

t Z k+1
t .

Z̃ k
t Z k+1

t =

∫ t

0+

Z̃ k
s−dZ k+1

s +

∫ t

0+

Z k+1
s− dZ̃ k

s + [Z̃ k ,Z k+1]t .

Since both Z̃ k and Z k+1 are FV and quadratic pure jump,

[Z̃ k ,Z k+1]t = Z̃ k
0 Z k+1

0 +
∑

0<s≤t

∆Z̃ k
s ∆Z k+1

s = Z̃ k
0 Z k+1

0 .
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Representation of Joint Survival Probability

Define

dPi

dP

∣∣∣∣
FT

4
= Z i

T ;
dP1,··· ,k

dP

∣∣∣∣
FT

4
= Z̃ k

T =
k∏

i=1

Z i
T . (25)

and E1,··· ,k{X} 4
= EP1,··· ,k{X} = E{Z 1

TZ 2
T ...Z

k
TX}.

Then,for each k and A ∈ Ft , it holds that

E{1AZ̃ k
t E1,··· ,k{X |Ft}} = E{1AE{Z̃ k

T |Ft}E1,··· ,k{X |Ft}}
= E1,··· ,k{1AE1,··· ,k{X |Ft}}
= E1,··· ,k{1AX} = E{1AE{Z̃ k

TX |Ft}}.

This leads to

E{Z 1
TZ 2

T ...Z
k
TX |Ft} = Z 1

t Z 2
t ...Z

k
t E1,··· ,k{X |Ft}, P− a.s. (26)
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Representation of Joint Survival Probability

Assume I = 2, and t1 ≤ t2. Apply (26) we get

P{τ1 > t1, τ
2 > t2} = E

{
1{τ1>t1}E

{
Z 2

t2(Γ
2
t2)

−1
}∣∣∣Ft1

}}
= E

{
1{τ1>t1}Z

2
t1E

P2
{

(Γ2
t2)

−1
}∣∣∣Ft1

}}
= E

{
Z 1

t1Z
2
t1E

P2
{

(Γ1
t1)

−1(Γ2
t2)

−1
}∣∣∣Ft1

}}
= E1,2

{
EP2

{
(Γ1

t1)
−1(Γ2

t2)
−1

}∣∣∣Ft1

}}
.

In particular, if t1 = t2 = t, then we have

P{τ1 > t, τ2 > t} = E1,2
{

exp
{
−

∫ t

0
(λ1

s + λ2
s )ds

}}
.
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Representation of Joint Survival Probability

Theorem

Assume (H1) and (H2). Then,
(i) For any 0 ≤ t1 ≤ t2 ≤ ... ≤ tI <∞, it holds that

P{τ1 > t1, τ
2 > t2, ..., τ

I > tI}

= E1,··· ,I
{
· · ·

{
EPI

{ I∏
i=1

(Γi
ti
)−1

}∣∣∣FtI−1

}
· · ·

∣∣∣Ft1

}
;

(ii) Denote τ∗ = min{τ1, · · · , τ I}, then for any 0 ≤ t ≤ T

a) P{τ∗ > t} = E1,··· ,I
{

e−
∫ t
0

∑I
i=1 λi

sds
}

;

b) P{τ∗ > T |Ft} =
I∏

i=1

1{τ i>t}E1,··· ,I
{

e−
∫ T
t

∑I
i=1 λi

sds
∣∣∣Ft

}
.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 48/ 63



Representation of Joint Survival Probability

Theorem

Assume (H1) and (H2). Then,
(i) For any 0 ≤ t1 ≤ t2 ≤ ... ≤ tI <∞, it holds that

P{τ1 > t1, τ
2 > t2, ..., τ

I > tI}

= E1,··· ,I
{
· · ·

{
EPI

{ I∏
i=1

(Γi
ti
)−1

}∣∣∣FtI−1

}
· · ·

∣∣∣Ft1

}
;

(ii) Denote τ∗ = min{τ1, · · · , τ I}, then for any 0 ≤ t ≤ T

a) P{τ∗ > t} = E1,··· ,I
{

e−
∫ t
0

∑I
i=1 λi

sds
}

;

b) P{τ∗ > T |Ft} =
I∏

i=1

1{τ i>t}E1,··· ,I
{

e−
∫ T
t

∑I
i=1 λi

sds
∣∣∣Ft

}
.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 48/ 63



Representation of Joint Survival Probability

Theorem

Assume (H1) and (H2). Then,
(i) For any 0 ≤ t1 ≤ t2 ≤ ... ≤ tI <∞, it holds that

P{τ1 > t1, τ
2 > t2, ..., τ

I > tI}

= E1,··· ,I
{
· · ·

{
EPI

{ I∏
i=1

(Γi
ti
)−1

}∣∣∣FtI−1

}
· · ·

∣∣∣Ft1

}
;

(ii) Denote τ∗ = min{τ1, · · · , τ I}, then for any 0 ≤ t ≤ T

a) P{τ∗ > t} = E1,··· ,I
{

e−
∫ t
0

∑I
i=1 λi

sds
}

;

b) P{τ∗ > T |Ft} =
I∏

i=1

1{τ i>t}E1,··· ,I
{

e−
∫ T
t

∑I
i=1 λi

sds
∣∣∣Ft

}
.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 48/ 63



Counter-Party Risk Models

Two firm case:{
λA

t = a0(t) + 1{τB≤t}a1(t − τB),

λB
t = b0(t) + 1{τA≤t}b1(t − τA),

(27)

where a0, a1, b0, and b1 are deterministic functions.

Jarrow-Yu (2004) — a1, b1 constants.

(H3) (i) a0 and b0 are positive functions;

(ii) a1 and b1 are either positive and decreasing or negative
and increasing, such that

lim
t→∞

a1(t) = 0 lim
t→∞

b1(t) = 0; (28)

and such that both λA
t and λB

t are positive functions.
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Counter-Party Risk Models

Proposition

Assume (H1)–(H3). Then the joint survival probability
P{τA > t1, τ

B > t2} is given by

P{τA > t1, τ
B > t2}

=



c(t1, t2)
( ∫ t2

t1

a0(x) e
−

∫ t2
x b1(s−x)ds−

∫ x
t1

a0(s)ds
dx

+

∫ ∞

t2

a0(x)e
−

∫ x
t1

a0(s)ds
dx

)
t1 ≤ t2;

c(t1, t2)
( ∫ t1

t2

b0(x) e
−

∫ t1
x a1(s−x)ds−

∫ x
t2

b0(s)ds
dx

+

∫ ∞

t1

b0(x)e
−

∫ x
t2

b0(s)ds
dx

)
t1 > t2.

where c(t1, t2) = exp
{
−

∫ t1
0 a0(s)ds −

∫ t2
0 b0(s)ds

}
.
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Counter-Party Risk Models

Main Observation: λA
s = a0(s), λ

B
s = b0(s), PA,B -a.s.

=⇒ 1− FB
τA(x) = PB(τA > x) = PA,B((ΓA

x )−1) = e−
∫ x
0 a0(s)ds .

Applying the change of measure, we have

P{τA > t1, τ
B > t2} = E

[
1{τA>t1}1{τB>t2}Γ

B
t2(Γ

B
t2)

−1
}]

= EB
[
1{τA>t1} exp

(
−

∫ t2

0

(
b0(s) + 1{τA≤s}b1(s − τA)

)
ds

)]
= c(t2)

{∫ t2

t1

e−
∫ t2
x b1(s−x)dsFB

τA(dx) +

∫ ∞

t2

FB
τA(dx)

}
= c(t2)

{∫ t2

t1

e−
∫ t2
x b1(s−x)ds fτA(x)dx +

∫ ∞

t2

fτA(x)dx
}

= RHS (t1 ≤ t2)
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Multiple Firm Case

Assume that I > 2, and that the default intensities are given by

λi
t = ai

0(t) +
∑
j=1
j 6=i

1{τ j≤t}a
i
j−1(t − τ j), i = 1, · · · , I , (29)

where ai
j ’s are deterministic functions satisfying (H3).

For 1 ≤ m ≤ I , denote fm(t1, t2, · · · , tm) to be the joint
density function of the default times τ1, τ2, · · · , τm.

For example, f1(t1) = fτ1(t1) = a1,0(t1)e
−

∫ t1
0 a1,0(s)ds .

Proposition

For 0 = t0 < t1 < t2 < ... < tm+1.

fm+1(t1, t2, · · · , tm+1)

=
{ m∑

j=0

am+1
j (tm+1 − tj)

}
e
−

∑
j

∫ tm+1
tj

am+1
j (s−tj )ds

fm(t1, · · · , tm).
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Multiple Firm Case (General)

Let P(I ) be all the permutations p = p(1, · · · , I ), then
|P(I )| = I !.

∀p ∈ P(I ), permute (t1, · · · , tI ) to (t
(p)
1 , · · · , t(p)

I ), and

D (p) 4= {(t1, · · · , tI ) ∈ RI
+ : t

(p)
1 < · · · < t

(p)
I }.

RI
+ =

⋃
i∈P(I ) D (p); D (p) ∩D (p) = ∅.

∀p ∈ P(I ), define (τ
(p)
1 , · · · , τ (p)

I ) accordingly, and

λ
i ,(p)
t = a

i ,(p)
0 (t) +

∑
j=1
j 6=i

1{τ (p)
j ≤t}b

i
j−1(t − τ

(p)
j ),

where bj ,0(t) = aj(p),0(t), j = 1, · · · , I , j (p) is the image

position of j after the permutation p ∈ P(I ), and bi
j are

appropriately defined functions from ai
j ’s.
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j 6=i

1{τ (p)
j ≤t}b

i
j−1(t − τ

(p)
j ),

where bj ,0(t) = aj(p),0(t), j = 1, · · · , I , j (p) is the image

position of j after the permutation p ∈ P(I ), and bi
j are

appropriately defined functions from ai
j ’s.
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Multiple Firm Case (General)

∀p ∈ P(I ) apply the Proposition on the region D(i), with

(λ1, · · · , λI ) being replaced by (λ
(p)
1 , · · ·λ(p)

I ), to obtain the joint

density function on D(p), denoted by f
(p)
I . We can then define

gI (t1, · · · , tI ) = f
(p)
I (t

(p)
1 , · · · , t(p)

I ), (t1, · · · , tI ) ∈ D(p).

Theorem

Assume (H1)–(H3). The joint distribution of τ1, τ2, · · · , τI can be
expressed as

P{τ1 ≤ t1, · · · , τ I ≤ tI} =

∫ t1

0
...

∫ tI

0
gI (u1, · · · , uI )du1du2 · · · duI .

where gI ’s are defined above.
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Joint-life vs. Last-survivor

Let Tx1 , Tx2 , · · · ,Txn be n future life time random variables, then
their and are given by, respectively:

Tm = Tx1,··· ,xn

4
= min{Tx1 ,Tx2 , · · · ,Txn},

— (Joint-life = first default)

TM = Tx1,··· ,xn

4
= max{Tx1 ,Tx2 , · · · ,Txn},

— (Last-survivor = last default)

If n = 2, one has

TM + Tm = Tx1 + Tx2 , TMTm = Tx1Tx2 .

{Tx1 ≤ t} ∩ {Tx2 ≤ t} = {TM ≤ t},
{Tx1 ≤ t} ∪ {Tx2 ≤ t} = {Tm ≤ t},
FM(t) + Fm(t) = FTx1

(t) + FTx2
(t), t ≥ 0 where FT is the

distribution function of T .
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First Default in Multi-firm Case

Assume for i = 1, · · · , I ,

λi
t = ai

0(t) +
∑
k 6=i

ai
k(t)1{τk≤t} = ai

0(t) +
∑
k 6=i

ai
k(t)N i

s ,

Then

P{τm > t} = P{τ1 > t, τ2 > t, · · · , τ I > t}

= E1,2,··· ,I
{

e−
∫ t
0 (λ1

s +λ2
s +...+λI

s)ds
}

= E1,2,··· ,I
{

e−
∫ t
0 [a1

0(s)+a2
0(s)+...+aI

0(s)]ds
}
.

If all ai
0’s are deterministic, then

P{τm > t} = exp
{
−

∫ t

0
[a1

0(s) + a2
0(s) + ...+ aI

0(s)]ds
}
.
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First Default in Multi-firm Case

Similarly one can obtain the conditional survival probability of τm:

P{τm > T |Ft} = P{τ1 > T , τ2 > T , · · · , τ I > T |Ft}

=
I∏

i=1

1{τ i
t >t}E

1,2,··· ,I
{

exp
{
−

∫ T

t
[

I∑
i=1

λi
s ]ds

}∣∣∣Ft

}
= 1{τm>t}E1,2,··· ,I

{
exp

{
−

∫ T

t
[

I∑
i=1

ai
0(s)]ds

}∣∣∣Ft

}
.

If ai
0’s are all deterministic, then

P{τm > T |Ft} = 1{τm>t} exp
{
−

∫ T

t

∑
ai
0(s)ds

}
.
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Flight to Quality

The term “flight to quality” refers to the phenomenon that
investors move their capital away from riskier investments to
the safest possible investment vehicles, e.g., treasury bonds.

One firm model (Collins-Dufresne et al. (03,04)):

rt = r0 + J1{τ≤t} ≥ 0, t ≥ 0, (30)

We will consider multi-firm model:

rt = r0(Xt) + J 1{τM≤t}, t ≥ 0, (31)

where τM
4
= max{τ1, · · · , τ I} is the last-to-default time, X is

a factor process.

Main purpose: pricing defaultable zero-coupon bonds.
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Pricing of UVL Insurance Involving Married Couples

Let Tx1 and Tx2 be two future life time r.v.’s. Denote
N i

t = 1{Txi
≤t}, i = 1, 2, and

Ft = FX
t ∨F 1

t ∨F 2
t , t ≥ 0,

where F i
t = σ{N i

s , 0 ≤ s ≤ t}, t ≥ 0, i = 1, 2, and X is a
factor process, assumed to be a diffusion process

Death benefit is a lump-sum (e.g., $1) payable at a terminal
time T , contingent on the survivorship of a married couple.

Let Kt be a generic status process, e.g., K could be one of
the following:

JLIt = 1{Tx1x2≤t}, SLIt = 1{Tx1x2
≤t}, t ≥ 0,
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Bereaved Partner Case (M.-Yun ’10)

Assume that the individual Txi ’s follow the Gompertz’s law (1825):
λx1(t) = h1e

g1(x1+t), λx2(t) = h2e
g2(x2+t), hi > 0, gi > 0. Then

P{Tx1 > t1,Tx2 > t2}

=



c(t1,t2)
(r2+1)n2

∑n2
k=0

(n2
k

)
h1
g1

rn2−k
2 B1

(
D̃1

k(t2)− D̃1
k(t1)

)
+c(t2, t2) t1 ≤ t2;

c(t1,t2)
(r1+1)n1

∑n1
k=0

(n1
k

)
h2
g2

rn1−k
1 B2

(
D̃2

k(t1)
)
− D̃2

k(t2)
)

+c(t1, t1) t1 > t2,

where

∆i
k(t) =

∫ t
0 y

k
gi e

− hi
gi

y
dy , D̃i

k(t) = Di
k

(
λxi

(t)

hi

)
, i = 1, 2,

B1 = e
−k(t2+x1)+

h1
g1

eg1(x1+t1)

, B2 = e
−k(t1+x2)+

h2
g2

eg2(x2+t2)

,

c(t1, t2) = exp
{
− h1

g1
[eg1(x1+t1)−eg1x1 ]− h2

g2
[eg2(x2+t2)−eg2x2 ]

}
.
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Back to UVL Insurance Pricing

Let Tx1 and Tx2 be two future life time r.v.’s and let Kt be a
generic status process, e.g., K could be one of the following:

JLIt = 1{Tx1x2≤t}, SLIt = 1{Tx1x2
≤t}, t ≥ 0,

[Then the pdf of KT could be computable!]

Let u be an exponential utility function:

u(w) = − 1

α
e−αw , w ∈ R. (32)

Define J(t,w ;π) , Et,w{u(W π
T − KT )}, where W is the

wealth process with investment portfolio π.

If KT ≡ 0, then denote J0(t,w ;π)
4
= Et,w{u(W π

T )}, π ∈ A .

U(t,w)
4
= supπ∈A J(t,w ;π), V (t,w)

4
= supπ∈A J0(t,w ;π).
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Back to UVL Insurance Pricing

Recall the “separation of variable”: U(t,w) = V (t,w)Φ(t,w),
where

V (t,w) = − 1

α
exp

(
− αwer(T−t) − (µ− r)2

2σ2
(T − t)

)
.

Question

What is Φ?

Theorem (M.-Yun ’10)

Φ(t,w) = Et,w{eαKT }.
[Note that J(t,w ;π) = J0(t,w ;π)Et,w{eαKT }!]
The indifference (selling) price is

p∗t =
1

α
e−r(T−t) log Φ(t,w) =

1

α
e−r(T−t)log Et,w [eαKT ].
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