Finance, Insurance, and Stochastic Control (III)

Jin Ma

USC Department of Mathematics
University of Southern California

Spring School on "Stochastic Control in Finance" Roscoff, France, March 7-17, 2010

Outline

(1) Reinsurance and Stochastic Control Problems
(2) Proportional Reinsurance with Diffusion Models
(3) General Reinsurance Problems
(4) Admissibility of Strategies
(5) Existence of Admissible Strategies
(6) Utility Optimization

Reinsurance Problem

Basic Idea

An insurance company may choose to "cede" some of its risk to a reinsurer by paying a premium. Thus the reserve may look like

$$
X_{t}=x+\int_{0}^{t} c_{s}^{h}\left(1+\rho_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} h(s, x) \mu(d x d s)
$$

where h is the "retention function"

Basic Idea

An insurance company may choose to "cede" some of its risk to a reinsurer by paying a premium. Thus the reserve may look like

$$
X_{t}=x+\int_{0}^{t} c_{s}^{h}\left(1+\rho_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} h(s, x) \mu(d x d s)
$$

where h is the "retention function"

Common types of retention functions:

- $h(x)=\alpha x, 0 \leq \alpha \leq 1$ - Proportional Reinsurance
- $h(x)=\alpha \wedge x, \alpha>0$ - Stop-loss Reinsurance

Reinsurance Problem

Basic Idea

An insurance company may choose to "cede" some of its risk to a reinsurer by paying a premium. Thus the reserve may look like

$$
X_{t}=x+\int_{0}^{t} c_{s}^{h}\left(1+\rho_{s}\right) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} h(s, x) \mu(d x d s)
$$

where h is the "retention function"

Common types of retention functions:

- $h(x)=\alpha x, 0 \leq \alpha \leq 1$ - Proportional Reinsurance
- $h(x)=\alpha \wedge x, \alpha>0$ - Stop-loss Reinsurance

Purpose

Determine the "reasonable" reinsurance premium, find the "best" reinsurance policy,..., etc.

Generalized Cramér-Lundberg model

- (Ω, \mathscr{F}, P) - a complete probability space
- $W=\left\{W_{t}\right\}_{t \geq 0}$ - a d-dimensional Brownian Motion
- $p=\left\{p_{t}\right\}_{t \geq 0}$ - stationary Poisson point process, $\Perp W$
- $N_{p}(d t d z)$ - counting measure of p on $(0, \infty) \times \mathbb{R}_{+}$
- $\hat{N}_{p}(d t d z)=E\left(N_{p}(d t d z)\right)=\nu(d z) d t$
- $\mathbf{F}=\mathbf{F}^{W} \otimes \mathbf{F}^{p}$,
- $F_{p}^{q} \triangleq\left\{\varphi: \mathbf{F}^{p}\right.$-predi'ble, $\left.E \int_{0}^{T} \int_{\mathbb{R}_{+}}|\varphi|^{q} d \nu d s<\infty, q \geq 1\right\}$

Generalized Cramér-Lundberg model

- (Ω, \mathscr{F}, P) - a complete probability space
- $W=\left\{W_{t}\right\}_{t \geq 0}$ - a d-dimensional Brownian Motion
- $p=\left\{p_{t}\right\}_{t \geq 0}$ - stationary Poisson point process, $\Perp W$
- $N_{p}(d t d z)$ - counting measure of p on $(0, \infty) \times \mathbb{R}_{+}$
- $\hat{N}_{p}(d t d z)=E\left(N_{p}(d t d z)\right)=\nu(d z) d t$
- $\mathbf{F}=\mathbf{F}^{W} \otimes \mathbf{F}^{p}$,
- $F_{p}^{q} \triangleq\left\{\varphi: \mathbf{F}^{p}\right.$-predi'ble, $\left.E \int_{0}^{T} \int_{\mathbb{R}_{+}}|\varphi|^{q} d \nu d s<\infty, q \geq 1\right\}$

Claim Process

$$
\begin{equation*}
S_{t}=\int_{0}^{t+} \int_{\mathbb{R}_{+}} f(s, x, \omega) N_{p}(d s d x), \quad t \geq 0, \quad f \in F_{p} \tag{1}
\end{equation*}
$$

Compound Poisson Case: $f(t, z) \equiv z, \nu\left(\mathbb{R}_{+}\right)=\lambda$.

Profit Margin Principle

A "Counting Principle" for Reinsurance Premiums

- ρ - original safety loading of the cedent company
- ρ^{r} - safety loading of the reinsurance company
- ρ^{α} - modified safety loading of the cedent company (after reinsurance)

If the claim size is U, then the "profit margin principle" states

$$
\underbrace{(1+\rho) E[U]}_{\text {original premium }}=\underbrace{\left(1+\rho^{r}\right) E[U-h(U)]}_{\begin{array}{c}
\text { premium to the } \tag{2}\\
\text { reinsurance company }
\end{array}}+\underbrace{\left(1+\rho^{\alpha}\right) E[h(U)]}_{\text {modified premium }} .
$$

$\rho^{r}=\rho^{\alpha}=\rho$ —"Cheap" Reinsurance
$\rho^{r} \neq \rho^{\alpha}$ - "Non-cheap" Reinsurance

Existing Literature

- Stop-Loss Reinsurance (e.g., Sondermann (1991), Mnif-Sulem (2001), Azcue-Muler (2005), ...)

Existing Literature

- Stop-Loss Reinsurance (e.g., Sondermann (1991), Mnif-Sulem (2001), Azcue-Muler (2005), ...)
- Proportional Reinsurance
- Diffusion approximation: $d X_{t}=\mu \alpha_{t} d t+\sigma \alpha_{t} d W_{t}, X_{0}=x$ (e.g., Asmussen-Hojgaard-Taksar (2000), ...)

Existing Literature

- Stop-Loss Reinsurance (e.g., Sondermann (1991), Mnif-Sulem (2001), Azcue-Muler (2005), ...)
- Proportional Reinsurance
- Diffusion approximation: $d X_{t}=\mu \alpha_{t} d t+\sigma \alpha_{t} d W_{t}, X_{0}=x$ (e.g., Asmussen-Hojgaard-Taksar (2000), ...)
- General reserve models (Liu-M. 2009, ...)

Proportional Reinsurance with Diffusion Models

The following case study is based on Hojgaard-Taksar (1997).
Consider the reserve with "proportional reinsurance" :

$$
X_{t}=x+\int_{0}^{t} \alpha c\left(1+\rho_{s}\right) d s-\alpha S_{t}
$$

Proportional Reinsurance with Diffusion Models

The following case study is based on Hojgaard-Taksar (1997).
Consider the reserve with "proportional reinsurance" :

$$
X_{t}=x+\int_{0}^{t} \alpha c\left(1+\rho_{s}\right) d s-\alpha S_{t}
$$

Replacing this by the following "Diffusion Model":

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} \mu \alpha_{t} d t+\int_{0}^{t} \sigma \alpha_{t} d W_{t}, \quad t \geq 0 \tag{3}
\end{equation*}
$$

where $\mu>0, \sigma>0$, and $\alpha_{t} \in[0,1]$ is a stochastic process representing the fraction of the incoming claim that the insurance company retains to itself. We call it a "admissible reinsurance policy" if it is \mathbf{F}^{W}-adapted.

Proportional Reinsurance with Diffusion Models

- "Return Function":

$$
J(x ; \alpha) \triangleq E \int_{0}^{\tau} e^{-c t} X_{t}^{x, \alpha} d t
$$

where $\tau=\tau^{x, \alpha}=\inf \left\{t \geq 0: X_{t}^{x, \alpha}=0\right\}$ is the ruin time and $c>0$ is the "discount factor".

- "Value Function":

$$
V(x)=\sup _{\alpha \in \mathscr{A}} J(x ; \alpha)
$$

Proportional Reinsurance with Diffusion Models

- "Return Function":

$$
J(x ; \alpha) \triangleq E \int_{0}^{\tau} e^{-c t} X_{t}^{x, \alpha} d t
$$

where $\tau=\tau^{x, \alpha}=\inf \left\{t \geq 0: X_{t}^{x, \alpha}=0\right\}$ is the ruin time and $c>0$ is the "discount factor".

- "Value Function":

$$
V(x)=\sup _{\alpha \in \mathscr{A}} J(x ; \alpha)
$$

Note

For any $\alpha \in \mathscr{A}$ and $x>0$, define $\hat{\alpha}_{t}=\alpha_{t} \mathbf{1}_{\left\{t \leq \tau^{x, \alpha}\right\}}$. Then $\tau^{x, \hat{\alpha}}=\tau^{x, \alpha} \Longrightarrow J(x, \hat{\alpha})=J(x, \alpha)$. we can work on

$$
\begin{aligned}
& \mathscr{A}^{\prime}(x) \triangleq\left\{\alpha \in \mathscr{A}: \alpha_{t}=0 \text { for all } t>\tau^{x, \alpha}\right\} \text { and } \\
& \qquad J^{\prime}(x ; \alpha) \triangleq E \int_{0}^{\infty} e^{-c t} X_{t}^{x, \alpha} d t, \quad \alpha \in \mathscr{A}^{\prime}(x) .
\end{aligned}
$$

The HJB Equation

1. The Concavity of V.

- For any $x^{1}, x^{2}>0$ and $\lambda \in(0,1)$, let $\alpha^{i} \in \mathscr{A}\left(x_{i}\right), i=1,2$. Define $\xi \triangleq \lambda x^{1}+(1-\lambda) x^{2}, \alpha \triangleq \lambda \alpha^{1}+(1-\lambda) \alpha^{2}$.

The HJB Equation

1. The Concavity of V.

- For any $x^{1}, x^{2}>0$ and $\lambda \in(0,1)$, let $\alpha^{i} \in \mathscr{A}\left(x_{i}\right), i=1,2$. Define $\xi \triangleq \lambda x^{1}+(1-\lambda) x^{2}, \alpha \triangleq \lambda \alpha^{1}+(1-\lambda) \alpha^{2}$.
- Denote $X^{i}=X^{x^{i}, \alpha^{i}}$ and $\tau^{i}=\tau^{x^{i}, \alpha^{i}}, i=1,2$. Then by the linearity of the reserve equation (3) one has

$$
\begin{gathered}
X_{t} \triangleq X_{t}^{\xi, \alpha}=\lambda X_{t}^{1}+(1-\lambda) X_{t}^{2}, \quad \text { and } \quad \tau \triangleq \tau^{\xi, \alpha}=\tau^{1} \vee \tau^{2} . \\
\Longrightarrow J(\xi, \alpha)=\lambda J\left(x^{1}, \alpha^{1}\right)+(1-\lambda) J\left(x^{2}, \alpha^{2}\right) .
\end{gathered}
$$

The HJB Equation

1. The Concavity of V.

- For any $x^{1}, x^{2}>0$ and $\lambda \in(0,1)$, let $\alpha^{i} \in \mathscr{A}\left(x_{i}\right), i=1,2$. Define $\xi \triangleq \lambda x^{1}+(1-\lambda) x^{2}, \alpha \triangleq \lambda \alpha^{1}+(1-\lambda) \alpha^{2}$.
- Denote $X^{i}=X^{x^{i}, \alpha^{i}}$ and $\tau^{i}=\tau^{x^{i}, \alpha^{i}}, i=1,2$. Then by the linearity of the reserve equation (3) one has

$$
\begin{gathered}
X_{t} \triangleq X_{t}^{\xi, \alpha}=\lambda X_{t}^{1}+(1-\lambda) X_{t}^{2}, \quad \text { and } \quad \tau \triangleq \tau^{\xi, \alpha}=\tau^{1} \vee \tau^{2} . \\
\Longrightarrow J(\xi, \alpha)=\lambda J\left(x^{1}, \alpha^{1}\right)+(1-\lambda) J\left(x^{2}, \alpha^{2}\right) .
\end{gathered}
$$

- $\forall \varepsilon>0$, choose α^{i}, s.t. $J\left(x^{i}, \alpha^{i}\right) \geq V\left(x^{i}\right)-\varepsilon / 2, i=1,2$.

$$
\begin{aligned}
& \Longrightarrow J(\xi, \alpha)= \lambda J\left(x^{1}, \alpha^{1}\right)+(1-\lambda) J\left(x^{2}, \alpha^{2}\right) \\
& \geq \lambda V\left(x^{1}\right)+(1-\lambda) V\left(x^{2}\right)-\varepsilon \\
& \Longrightarrow V(\xi) \geq \lambda V\left(x^{1}\right)+(1-\lambda) V\left(x^{2}\right)-\varepsilon \quad \Longrightarrow \quad \text { Done! }
\end{aligned}
$$

The HJB Equation

2. The HJB Equation.

- Let τ be any F-stopping time. By "Bellman Principle"

$$
V(x)=\sup _{\alpha \in \mathscr{A}(x)} E\left\{\int_{0}^{\tau^{\alpha} \wedge \tau} e^{-c t} X_{t}^{x, \hat{\alpha}} d t+e^{-c\left(\tau^{\alpha} \wedge \tau\right)} V\left(X_{\tau^{\alpha} \wedge \tau}^{x, \hat{\alpha}}\right)\right\} .
$$

- $\forall \alpha \in \mathscr{A}$ and $h>0$ let $\tau^{h}=\tau_{\alpha}^{h} \triangleq h \wedge \inf \left\{t:\left|X_{t}^{\alpha}-x\right|>h\right\}$. Then $\tau^{h}<\infty$, a.s. and $\tau^{h} \rightarrow 0$, as $h \rightarrow 0$, a.s.
- Assume $V \in C^{2}$. For any $a \in[0,1]$, define $\alpha \equiv a \in \mathscr{A}$. Then for any $h<x$, we have $\tau^{h}<\tau^{\alpha}$. Letting $\tau=\tau^{h}$ in (4) and applying Itô (to $F(t, x)=e^{-c t} V(x)$) we deduce

$$
0 \geq E\left\{\int_{0}^{\tau^{h}} e^{-c t} X_{t}^{x, \alpha} d t+e^{-c t}\left[\mathscr{L}^{a} V\right]\left(X_{t}^{x, \alpha}\right) d t\right\}
$$

where $\left[\mathscr{L}^{a} g\right](x) \triangleq \frac{\sigma^{2} a^{2}}{2} g^{\prime \prime}(x)+\mu a g^{\prime}(x)-c g(x)$.

The HJB Equation

- Letting $h \rightarrow 0$, one has

$$
\begin{gathered}
0 \geq x+\left[\mathscr{L}^{a} V\right](x) . \\
\Longrightarrow \quad 0 \geq x+\max _{a \in[0,1]}\left[\mathscr{L}^{a} V\right](x) \text {, since } a \text { is arbitrary. }
\end{gathered}
$$

The HJB Equation

- Letting $h \rightarrow 0$, one has

$$
0 \geq x+\left[\mathscr{L}^{a} V\right](x)
$$

$\Longrightarrow \quad 0 \geq x+\max _{a \in[0,1]}\left[\mathscr{L}^{a} V\right](x)$, since a is arbitrary.

- On the other hand, $\forall \delta>0$, we choose $\alpha^{*} \in \mathscr{A}(x)$ s.t.

$$
V(x) \leq E\left\{\int_{0}^{\tau_{\alpha^{*}}^{h}} e^{-c t} X_{t}^{x, \alpha^{*}} d t+e^{-c \tau_{\alpha^{*}}^{h}} V\left(X_{\tau_{\alpha^{*}}^{\alpha}}^{x, \alpha^{*}}\right)\right\}+\delta .
$$

Letting $\delta=E\left[\tau_{\alpha^{*}}^{h}\right]^{2}$ and applying Itô again we have

$$
\begin{gathered}
0 \leq \frac{1}{E\left[\tau_{\alpha^{*}}^{h}\right]} E\left\{\int_{0}^{\tau_{\alpha^{*}}^{h}} e^{-c t}\left\{X_{t}^{\alpha}+\max _{a}\left[\mathscr{L}^{a} V\right]\left(X_{t}^{x, \alpha}\right)\right\} d t+\delta\right\} \\
\longrightarrow x+\max _{a \in[0,1]}\left[\mathscr{L}^{a} V\right](x), \text { as } h \rightarrow 0 .
\end{gathered}
$$

The HJB Equation

We obtain the HJB equation:

$$
\left\{\begin{array}{l}
\max _{\alpha \in[0,1]}\left\{\frac{\sigma^{2} \alpha^{2}}{2} V^{\prime \prime}(x)+\mu \alpha V^{\prime}(x)-c V(x)+x\right\}=0, \tag{4}\\
V(0)=0
\end{array}\right.
$$

We shall construct a solution to the HJB equation (4) that is concave and C^{2} by using the technique of "Principle of Smooth fit" that we used before.

- First we note that if
$\alpha(x) \in \operatorname{argmax}_{\alpha \in[0,1]}\left\{-\frac{\sigma^{2} \alpha^{2}}{2} V^{\prime \prime}+\mu \alpha V^{\prime}-c V+x\right\}$, then the first order condition tells us that

$$
\begin{equation*}
\alpha(x)=-\frac{\mu V^{\prime}(x)}{\sigma^{2} V^{\prime \prime}(x)} . \tag{5}
\end{equation*}
$$

Principle of Smooth Fit

- Plugging this into the HJB equation (4) we get

$$
\begin{equation*}
-\frac{\mu^{2}\left[V^{\prime}(x)\right]^{2}}{2 \sigma^{2} V^{\prime \prime}(x)}-c V(x)+x=0, \quad x \in[0, \infty) \tag{6}
\end{equation*}
$$

Principle of Smooth Fit

- Plugging this into the HJB equation (4) we get

$$
\begin{equation*}
-\frac{\mu^{2}\left[V^{\prime}(x)\right]^{2}}{2 \sigma^{2} V^{\prime \prime}(x)}-c V(x)+x=0, \quad x \in[0, \infty) \tag{6}
\end{equation*}
$$

Main Trick:

Find a C^{2} function $X: \mathbb{R} \mapsto[0, \infty)$, such that $V^{\prime}(X(z))=e^{-z!}$
(Note: Since V is concave, one could argue that the Implicit Function Thm applies to equation: $F(X, z)=V^{\prime}(X)-e^{-z}=0$.)

Principle of Smooth Fit

- Plugging this into the HJB equation (4) we get

$$
\begin{equation*}
-\frac{\mu^{2}\left[V^{\prime}(x)\right]^{2}}{2 \sigma^{2} V^{\prime \prime}(x)}-c V(x)+x=0, \quad x \in[0, \infty) \tag{6}
\end{equation*}
$$

Main Trick:

Find a C^{2} function $X: \mathbb{R} \mapsto[0, \infty)$, such that $V^{\prime}(X(z))=e^{-z!}$
(Note: Since V is concave, one could argue that the Implicit
Function Thm applies to equation: $F(X, z)=V^{\prime}(X)-e^{-z}=0$.)

- Since $V^{\prime}(X(z))=e^{-z}$ and $V^{\prime \prime}(X(z))=-\frac{e^{-z}}{X^{\prime}(z)}$, replacing x by $X(z)$ in (6) we obtain

$$
\begin{equation*}
\frac{\mu^{2}}{2 \sigma^{2}} X^{\prime}(z) e^{-z}-c V(X(z))+X(z)=0 \tag{7}
\end{equation*}
$$

Principle of Smooth Fit

- Differentiating (7) w.r.t. z and eliminating V :

$$
\frac{\mu^{2}}{2 \sigma^{2}} X^{\prime \prime}(z) e^{-z}-\left(\frac{\mu^{2}}{2 \sigma^{2}}+c\right) e^{-z} X^{\prime}(z)+X^{\prime}(z)=0
$$

Therefore, denoting $\gamma \triangleq 2 \sigma^{2} / \mu^{2}$, the equation becomes

$$
\begin{equation*}
X^{\prime \prime}(z)-\left(1+c \gamma-\gamma e^{z}\right) X^{\prime}(z)=0 . \tag{8}
\end{equation*}
$$

Principle of Smooth Fit

- Differentiating (7) w.r.t. z and eliminating V :

$$
\frac{\mu^{2}}{2 \sigma^{2}} X^{\prime \prime}(z) e^{-z}-\left(\frac{\mu^{2}}{2 \sigma^{2}}+c\right) e^{-z} X^{\prime}(z)+X^{\prime}(z)=0
$$

Therefore, denoting $\gamma \triangleq 2 \sigma^{2} / \mu^{2}$, the equation becomes

$$
\begin{equation*}
X^{\prime \prime}(z)-\left(1+c \gamma-\gamma e^{z}\right) X^{\prime}(z)=0 . \tag{8}
\end{equation*}
$$

- Solving (8) explicitly we have $X^{\prime}(z)=k_{1} e^{(1+c \gamma) z-\gamma e^{z}}$ or

$$
\begin{aligned}
X(z) & =k_{1} \int_{-\infty}^{z} e^{(1+c \gamma) y-\gamma e^{y}} d y+k_{2} \\
& =k_{1} \int_{0}^{e^{z}} y^{c \gamma} e^{-\gamma y} d y+k_{2}, \quad\left(y \mapsto e^{y}=y^{\prime}\right)
\end{aligned}
$$

—This is a 「-integral!

Principle of Smooth Fit

- Let G be the c.d.f. of a Gamma distribution with parameter $(c \gamma+1,1 / \gamma)$. Then

$$
X(z)=k_{1} \frac{\Gamma(c \gamma+1)}{\gamma^{c \gamma+1}} G\left(e^{z}\right)+k_{2}=k_{1} G\left(e^{z}\right)+k_{2} .
$$

Principle of Smooth Fit

- Let G be the c.d.f. of a Gamma distribution with parameter $(c \gamma+1,1 / \gamma)$. Then

$$
X(z)=k_{1} \frac{\Gamma(c \gamma+1)}{\gamma^{c \gamma+1}} G\left(e^{z}\right)+k_{2}=k_{1} G\left(e^{z}\right)+k_{2} .
$$

- Clearly $k_{2}=X(-\infty) \geq 0$. By definition of X we see that

$$
\begin{aligned}
& -\ln \left(V^{\prime}(x)\right)=\ln \left(G^{-1}\left(\frac{x-k_{2}}{k_{1}}\right)\right) \quad \text { or } \quad V^{\prime}(x)=\frac{1}{G^{-1}\left(\frac{x-k_{2}}{k_{1}}\right)} . \\
& \Longrightarrow \alpha(x)=\frac{\mu}{\sigma^{2}} k_{1} G^{-1}\left(\frac{x-k_{2}}{k_{1}}\right) g\left(G^{-1}\left(\frac{x-k_{2}}{k_{1}}\right)\right), x \geq k_{2},
\end{aligned}
$$

where g is the density function of G.

Principle of Smooth Fit

- Change variable: $y=G^{-1}\left(\left(x-k_{2}\right) / k_{1}\right)$, we have

$$
\alpha(x)=\hat{\alpha}(y)=\frac{\mu k_{1}}{\sigma^{2}} y g(y), \quad y \geq 0
$$

- Since $\hat{\alpha}(0)=0$ and $\hat{\alpha}(\infty)=\infty$, we can find a $y_{1} \in(0, \infty)$ such that $\hat{\alpha}\left(y_{1}\right)=1$. Also, since

$$
\begin{aligned}
\hat{\alpha}^{\prime}(y)=K y^{c \gamma} e^{-\gamma y} & (c \gamma+1-\gamma y)>0, \\
& k_{2}<x<k_{1} G\left(y_{1}\right)+k_{2} \triangleq x_{1},
\end{aligned}
$$

$\hat{\alpha}$ is strictly increasing on $\left(k_{2}, x_{1}\right)$, and $\hat{\alpha}\left(y_{1}\right)=\alpha\left(x_{1}\right)=1$.

Principle of Smooth Fit

- Change variable: $y=G^{-1}\left(\left(x-k_{2}\right) / k_{1}\right)$, we have

$$
\alpha(x)=\hat{\alpha}(y)=\frac{\mu k_{1}}{\sigma^{2}} y g(y), \quad y \geq 0
$$

- Since $\hat{\alpha}(0)=0$ and $\hat{\alpha}(\infty)=\infty$, we can find a $y_{1} \in(0, \infty)$ such that $\hat{\alpha}\left(y_{1}\right)=1$. Also, since

$$
\begin{aligned}
\hat{\alpha}^{\prime}(y)=K y^{c \gamma} e^{-\gamma y} & (c \gamma+1-\gamma y)>0, \\
& k_{2}<x<k_{1} G\left(y_{1}\right)+k_{2} \triangleq x_{1},
\end{aligned}
$$

$\hat{\alpha}$ is strictly increasing on $\left(k_{2}, x_{1}\right)$, and $\hat{\alpha}\left(y_{1}\right)=\alpha\left(x_{1}\right)=1$.

Claim: $k_{2}=0$!

For otherwise extending $G^{-1} \equiv 0$ on $(-\infty, 0]$ we have $\alpha(x)=0$ for $x \leq k_{2}$. Then HJB equation implies $V(x)=-x / c$, for $x \leq k_{2}$. But for such V the maximizer of (7) cannot be zero, whenever $\mu>0$, a contradiction.

Principle of Smooth Fit

- Thus

$$
\begin{equation*}
V(x)=\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{u}{k_{1}}\right)} d u+k_{3}, \quad 0 \leq x<x_{1} \tag{9}
\end{equation*}
$$

Principle of Smooth Fit

- Thus

$$
\begin{equation*}
V(x)=\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{u}{k_{1}}\right)} d u+k_{3}, \quad 0 \leq x<x_{1} \tag{9}
\end{equation*}
$$

- Also, since $\alpha(x) \uparrow 1$ as $x \uparrow x_{1}$, we define $\alpha(x)=1$ for $x>x_{1}$. But with $\alpha \equiv 1$ (4) becomes an ODE:

$$
\frac{\sigma^{2}}{2} V^{\prime \prime}(x)+\mu V^{\prime}(x)-c V(x)+x=0, \quad x \in[0, \infty)
$$

Principle of Smooth Fit

- Thus

$$
\begin{equation*}
V(x)=\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{u}{k_{1}}\right)} d u+k_{3}, \quad 0 \leq x<x_{1} \tag{9}
\end{equation*}
$$

- Also, since $\alpha(x) \uparrow 1$ as $x \uparrow x_{1}$, we define $\alpha(x)=1$ for $x>x_{1}$. But with $\alpha \equiv 1$ (4) becomes an ODE:

$$
\frac{\sigma^{2}}{2} V^{\prime \prime}(x)+\mu V^{\prime}(x)-c V(x)+x=0, \quad x \in[0, \infty)
$$

- Solving the non-homogeneous ODE we get

$$
V(x)=\frac{x}{c}+\frac{\mu}{c^{2}}+K_{4} e^{r-x}+k_{5} e^{r+x}
$$

where $r_{ \pm}=\frac{-\frac{\mu}{\sigma} \pm \sqrt{\frac{\mu^{2}}{\sigma^{2}}+2 c}}{\sigma}$.

Principle of Smooth Fit

- Note that by concavity of V we have $V^{\prime}(x)=\mathscr{O}(1)$ or $V(x)=\mathscr{O}(x)$, as $x \rightarrow \infty$ Thus $k_{5}=0$. Renaming the constants we have

$$
V(x)= \begin{cases}\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{z}{k_{1}}\right)} d z, & 0 \leq x<x_{1} \tag{10}\\ \frac{x}{c}+\frac{\mu}{c^{2}}+k_{2} e^{r-x} & x>x_{1}\end{cases}
$$

Principle of Smooth Fit

- Note that by concavity of V we have $V^{\prime}(x)=\mathscr{O}(1)$ or $V(x)=\mathscr{O}(x)$, as $x \rightarrow \infty$ Thus $k_{5}=0$. Renaming the constants we have

$$
V(x)= \begin{cases}\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{z}{k_{1}}\right)} d z, & 0 \leq x<x_{1} \tag{10}\\ \frac{x}{c}+\frac{\mu}{c^{2}}+k_{2} e^{r-x} & x>x_{1}\end{cases}
$$

Principle of Smooth Fit

Find k_{1} and k_{2} so that V is C^{2} at $x=x_{1}$.

Principle of Smooth Fit

- Note that by concavity of V we have $V^{\prime}(x)=\mathscr{O}(1)$ or $V(x)=\mathscr{O}(x)$, as $x \rightarrow \infty$ Thus $k_{5}=0$. Renaming the constants we have

$$
V(x)= \begin{cases}\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{z}{k_{1}}\right)} d z, & 0 \leq x<x_{1} \tag{10}\\ \frac{x}{c}+\frac{\mu}{c^{2}}+k_{2} e^{r-x} & x>x_{1}\end{cases}
$$

Principle of Smooth Fit

Find k_{1} and k_{2} so that V is C^{2} at $x=x_{1}$.

- First note that

$$
V^{\prime}\left(x_{1}+\right)=\frac{1}{c}+k_{2} r_{-} e^{r_{-} x_{1}}, \quad V^{\prime \prime}\left(x_{1}+\right)=k_{2} r_{-} e^{r_{-} x_{1}}
$$

Principle of Smooth Fit

- Denoting $\beta=K_{2} e^{r-x_{1}}$ and noting that $V^{\prime}\left(x_{1}\right)=1 / y_{1}$, we derive from the HJB equation that $V^{\prime \prime}\left(x_{1}\right)=-\mu / \sigma^{2} V^{\prime}\left(x_{1}\right)$.

$$
\Longrightarrow \frac{1}{y_{1}}=\frac{1}{c}+\beta r_{-} ; \quad-\frac{\mu}{\sigma^{2}} \frac{1}{y_{1}}=\beta r_{-}^{2} .
$$

Principle of Smooth Fit

- Denoting $\beta=K_{2} e^{r-x_{1}}$ and noting that $V^{\prime}\left(x_{1}\right)=1 / y_{1}$, we derive from the HJB equation that $V^{\prime \prime}\left(x_{1}\right)=-\mu / \sigma^{2} V^{\prime}\left(x_{1}\right)$.

$$
\Longrightarrow \frac{1}{y_{1}}=\frac{1}{c}+\beta r_{-} ; \quad-\frac{\mu}{\sigma^{2}} \frac{1}{y_{1}}=\beta r_{-}^{2} .
$$

- Solving for $\left(y_{1}, \beta\right)$ we obtain

$$
\left(y_{1}, \beta\right)=\left(c\left(1+\frac{\mu}{\sigma^{2} r_{-}}\right), \frac{-\mu}{c\left(\sigma^{2} r_{-}^{2}+\mu r_{-}\right)}\right) .
$$

Principle of Smooth Fit

- Denoting $\beta=K_{2} e^{r-x_{1}}$ and noting that $V^{\prime}\left(x_{1}\right)=1 / y_{1}$, we derive from the HJB equation that $V^{\prime \prime}\left(x_{1}\right)=-\mu / \sigma^{2} V^{\prime}\left(x_{1}\right)$.

$$
\Longrightarrow \frac{1}{y_{1}}=\frac{1}{c}+\beta r_{-} ; \quad-\frac{\mu}{\sigma^{2}} \frac{1}{y_{1}}=\beta r_{-}^{2} .
$$

- Solving for $\left(y_{1}, \beta\right)$ we obtain

$$
\left(y_{1}, \beta\right)=\left(c\left(1+\frac{\mu}{\sigma^{2} r_{-}}\right), \frac{-\mu}{c\left(\sigma^{2} r_{-}^{2}+\mu r_{-}\right)}\right) .
$$

- by definition of r_{-}we see that $\left(y_{1}, \beta\right) \in(0, c) \times(-\infty, 0)$. Recall that $y_{1}=G^{-1}\left(x_{1} / k_{1}\right)$ we have

$$
\begin{aligned}
\frac{x_{1}}{k_{1}} & =G\left(y_{1}\right), \quad \frac{\mu}{\sigma^{2}} k_{1} y_{1} g\left(y_{1}\right)=1 . \\
\Longrightarrow \quad\left(k_{1}, x_{1}\right) & =\left(\frac{\sigma^{2}}{\mu y_{1} g\left(y_{1}\right)}, \frac{\sigma^{2} G\left(y_{1}\right)}{\mu y_{1} g\left(y_{1}\right)}\right) .
\end{aligned}
$$

Theorem

The function

$$
V(x)= \begin{cases}\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{z}{k_{1}}\right)} d z, & 0 \leq x<x_{1} \tag{11}\\ \frac{x}{c}+\frac{\mu}{c^{2}}+\beta e^{r-x} & x>x_{1}\end{cases}
$$

where $\beta=\frac{-\mu}{c\left(\sigma^{2} r_{-}^{2}+\mu r_{-}\right)}, x_{1}=\frac{\sigma^{2} G\left(y_{1}\right)}{\mu y_{1} g\left(y_{1}\right)}, k_{1}=\frac{\sigma^{2}}{\mu y_{1} g\left(y_{1}\right)}$,
$y_{1}=c\left(1+\frac{\mu}{\sigma^{2} r_{-}}\right)$is a concave solution to the HJB equation (4).

Proof. Plug in and check!

Theorem

The function

$$
V(x)= \begin{cases}\int_{0}^{x} \frac{1}{G^{-1}\left(\frac{z}{k_{1}}\right)} d z, & 0 \leq x<x_{1} \tag{11}\\ \frac{x}{c}+\frac{\mu}{c^{2}}+\beta e^{r-x} & x>x_{1}\end{cases}
$$

where $\beta=\frac{-\mu}{c\left(\sigma^{2} r_{-}^{2}+\mu r_{-}\right)}, x_{1}=\frac{\sigma^{2} G\left(y_{1}\right)}{\mu y_{1} g\left(y_{1}\right)}, k_{1}=\frac{\sigma^{2}}{\mu y_{1} g\left(y_{1}\right)}$,
$y_{1}=c\left(1+\frac{\mu}{\sigma^{2} r_{-}}\right)$is a concave solution to the HJB equation (4).

Proof. Plug in and check!

Warning:

This theorem does not give the solution to the optimization problem. In other words: the function V may not be the value function!

A Verification Theorem

In order to check that the C^{2} function V that we worked so hard to get is indeed the value function, and the function $a(x)$ we have obtained is the optimal policy.

Theorem

Let V be the function given by (11), and define a process $a_{t}^{*} \triangleq a\left(X_{t}^{*}\right)$, where

$$
a(x)= \begin{cases}\frac{G^{-1}\left(\frac{x}{k_{1}}\right) g\left(G^{-1}\left(\frac{x}{k_{1}}\right)\right)}{y_{1} g\left(y_{1}\right)} & x<x_{1} \\ 1 & x>x_{1}\end{cases}
$$

Then $V(x)$ is the value function and α^{*} is an optimal strategy.

General Reinsurance Problems

We now consider the following more general dynamics of a risk reserve:

$$
X_{t}=x+\int_{0}^{t}\left(1+\rho_{s}^{\alpha}\right) c^{\alpha}(s) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)
$$

where c^{α} is the adjusted premium rate after reinsurance.

General Reinsurance Problems

We now consider the following more general dynamics of a risk reserve:

$$
X_{t}=x+\int_{0}^{t}\left(1+\rho_{s}^{\alpha}\right) c^{\alpha}(s) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)
$$

where c^{α} is the adjusted premium rate after reinsurance.

Question

What is the general form of the reinsurance policy and the reasonable form of c^{α} ?

General Reinsurance Problems

We now consider the following more general dynamics of a risk reserve:

$$
X_{t}=x+\int_{0}^{t}\left(1+\rho_{s}^{\alpha}\right) c^{\alpha}(s) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)
$$

where c^{α} is the adjusted premium rate after reinsurance.

Question

What is the general form of the reinsurance policy and the reasonable form of c^{α} ?

Definition

A (proportional) reinsurance policy is a random field $\alpha:[0, \infty) \times \mathbb{R}_{+} \times \Omega \mapsto[0,1]$ such that for each fixed $z \in \mathbb{R}_{+}$, the process $\alpha(\cdot, z, \cdot)$ is predictable.

Remarks

- The dependence of a reinsurance policy α on the variable z amounts to saying that the proportion can depend on the sizes of the claims.
- One can define a reinsurance policy as a predictable process α_{t}, but in general one may not be able to find an optimal strategy, unless S_{t} has fixed size jumps. The similar issue also occurs in utility optimization problems in finance involving jump-diffusion models (See, e.g, X. X. Xue (1992).)
- Given a reinsurance policy α, during time period $[t, t+\Delta t]$ the insurance company retains to itself

$$
[\alpha * S]_{t}^{t+\Delta t} \triangleq \int_{t}^{t+\Delta t} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d z d s)
$$

and cedes to the reinsurer

$$
[(1-\alpha) * S]_{t}^{t+\Delta t} \triangleq \int_{t}^{t+\Delta t} \int_{\mathbb{R}_{+}}[1-\alpha(s, z)] f(s, z) N_{p}(d z d s)
$$

Dynamics for the Reserve with Reinsurance

- By "Profit Margin Principle", one has:

$$
\begin{aligned}
& \underbrace{\left(1+\rho_{t}\right) E_{t}^{p}\left\{[1 * S]_{t}^{t+\Delta t}\right\}}_{\text {original premium }} \\
= & \underbrace{\left(1+\rho_{t}^{r}\right) E_{t}^{p}\left\{[(1-\alpha) * S]_{t}^{t+\Delta t}\right\}}_{\text {premium to the reinsurance company }}+\underbrace{\left(1+\rho_{t}^{\alpha}\right) E_{t}^{p}\left\{[\alpha *]_{t}^{t+\Delta t}\right\}}_{\text {modified premium }}
\end{aligned}
$$

- $\Delta t \rightarrow 0 \Longrightarrow$

$$
\begin{aligned}
\left(1+\rho_{t}\right) c_{t}= & \left(1+\rho_{t}^{r}\right) \int_{\mathbb{R}_{+}}(1-\alpha(t, z)) f(t, z) \nu(d z) \\
& +\left(1+\rho_{t}^{\alpha}\right) \int_{\mathbb{R}_{+}} \alpha(t, z) f(t, z) \nu(d z)
\end{aligned}
$$

- Denote $S_{t}^{\alpha}=\int_{0}^{t} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d z d s)$, and

$$
m(t, \alpha)=\int_{\mathbb{R}_{+}} \alpha(t, z) f(t, z) \nu(d z),
$$

Dynamics for the Reserve with Reinsurance

We see that a general dynamics of risk reserve

$$
X_{t}=x+\int_{0}^{t}\left(1+\rho_{s}^{\alpha}\right) m(s, \alpha) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)
$$

Dynamics for the Reserve with Reinsurance

We see that a general dynamics of risk reserve

$$
X_{t}=x+\int_{0}^{t}\left(1+\rho_{s}^{\alpha}\right) m(s, \alpha) d s-\int_{0}^{t} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)
$$

Note

- Whether a reinsurance is cheap or non-cheap does not change the form of the reserve equation. We will not distinguish them in the future.
- If the reinsurance policy α is independent of claim size z, then

$$
S_{t}^{\alpha}=\int_{0}^{t} \alpha(s) \int_{\mathbb{R}_{+}} f(s, z) N_{p}(d z d s)=\int_{0}^{t} \alpha(s) d S_{s}
$$

and $m(t, \alpha)=\alpha(s) c_{s}$, as we often see in the standard reinsurance framework.

Reinsurance and Investment

- The Market:

$$
\left\{\begin{array}{lr}
d P_{t}^{0}=r_{t} P_{t}^{0} d t ; & \quad \text { (money market) } \\
d P_{t}^{i}=P_{t}^{i}\left[\mu_{t}^{i} d t+\sum_{j=1}^{n} \sigma_{t}^{i j} d W_{t}^{j}\right], \quad i=1, \cdots, n . \quad \text { (stocks) }
\end{array}\right.
$$

- Portfolio Process:
- $\pi_{t}(\cdot)=\left(\pi_{t}^{1}, \cdots, \pi_{t}^{k}\right)-\pi_{t}^{i}$ is the fraction of its reserve X_{t} allocated to the $i^{\text {th }}$ stock.
- $X_{t}-\sum_{i=1}^{k} \pi_{t}^{i} X_{t}=\left(1-\sum_{i=1}^{k} \pi_{t}^{i}\right) X_{t}$ - money market account.
- Consumption (Rate) Process:
$D=\left\{D_{t}: t \geq 0\right\}-\mathscr{F}$-predictable nonnegative process satisfying $D \in L_{\mathscr{F}}^{1}\left([0, T] \times \mathbb{R}_{+}\right)$(may include dividend/bonus, etc.).

Dynamics of Reserve with Reinsurance and Investment

$$
\begin{aligned}
d X_{t}= & \left\{X_{t}\left[r_{t}+\left\langle\pi_{t}, \mu_{t}-r_{t} \mathbf{1}\right\rangle\right]+\left(1+\rho_{t}\right) m(t, \alpha)-D_{t}\right\} d t \\
& +X_{t}\left\langle\pi_{t}, \sigma_{t} d W_{t}\right\rangle-\int_{\mathbb{R}_{+}} \alpha(t, z) f(t, z, \cdot) N_{p}(d t d z)
\end{aligned}
$$

where $\mathbf{1}=(1, \cdots, 1)^{T}$. We call the pair $(\pi, \alpha) D$-financing" .

Dynamics of Reserve with Reinsurance and Investment

$$
\begin{aligned}
d X_{t}= & \left\{X_{t}\left[r_{t}+\left\langle\pi_{t}, \mu_{t}-r_{t} \mathbf{1}\right\rangle\right]+\left(1+\rho_{t}\right) m(t, \alpha)-D_{t}\right\} d t \\
& +X_{t}\left\langle\pi_{t}, \sigma_{t} d W_{t}\right\rangle-\int_{\mathbb{R}_{+}} \alpha(t, z) f(t, z, \cdot) N_{p}(d t d z)
\end{aligned}
$$

where $\mathbf{1}=(1, \cdots, 1)^{T}$. We call the pair $(\pi, \alpha) D$-financing" .

Example

- Classical Model:

$$
-r=0, \rho=0, \pi=0, f(t, x, \cdot)=x, \nu(d x)=\lambda F(d x)
$$

- Discounted Risk Reserve:
$-\rho=0, \pi=0, f(t, x, \cdot)=x, \nu(d x)=\lambda F(d x)$, but $r>0$ is deterministic
- Perturbed Risk Reserve:

$$
-r=0, \rho=0, \pi=\varepsilon, f(t, x, \cdot)=x, \nu(d x)=\lambda F(d x)
$$

Standing Assumptions

(H1) $f \in F_{p}$, continuous in t, and piecewise continuous in z.
Furthermore, $\exists 0<d<L$ such that

$$
d \leq f(s, z, \omega) \leq L, \quad \forall(s, z) \in[0, \infty) \times \mathbb{R}_{+}, \quad P \text {-a.s. }
$$

Remark

The bounds d and L in (H1) could be understood as the deductible and benefit limit. They can be relaxed to certain integrability assumptions on both f and f^{-1}.
(H2) The safety loading ρ and the premium c are both bounded, non-negative \mathbf{F}^{p}-adapted processes,
(H3) The processes r, μ, and σ are \mathbf{F}^{W}-adapted and bounded. Furthermore, $\exists \delta>0$, such that $\sigma_{t} \sigma_{t}^{*} \geq \delta I, \forall t \in[0, T], P$-a.s.

Admissibility of Strategies

Main Features

- $\alpha \in[0,1]$ is intrinsic, cannot be relaxed.
- α CANNOT be assumed a priori to be proportional to the reserve X_{t}
- by nature of a reinsurance problem, (or by regulation) we require that the reserve be aloft. That is, at any time $t \geq 0$, $X_{t}^{x, \pi, \alpha, D} \geq C$ for some constant $C>0$. We will set $C=0$.

Admissibility of Strategies

Main Features

- $\alpha \in[0,1]$ is intrinsic, cannot be relaxed.
- α CANNOT be assumed a priori to be proportional to the reserve X_{t}
- by nature of a reinsurance problem, (or by regulation) we require that the reserve be aloft. That is, at any time $t \geq 0$, $X_{t}^{\times, \pi, \alpha, D} \geq C$ for some constant $C>0$. We will set $C=0$.

Definition (Admissible strategies)

For any $x \geq 0$, a portfolio/reinsurance/consumption (PRC for short) triplet (π, α, D) is called "admissible at x ", if

$$
X_{t}^{x, \pi, \alpha, D} \geq 0, \quad \forall t \in[0, T], \quad P \text {-a.s. }
$$

We denote the totality of all strategies admissible at x by $\mathscr{A}(x)$.

A Necessary Condition

Define

- $\theta_{t} \triangleq \sigma_{t}^{-1}\left(\mu_{t}-r_{t} \mathbf{1}\right)-($ risk premium $)$
- $\gamma_{t} \triangleq \exp \left\{-\int_{0}^{t} r_{s} d s\right\}, t \geq 0-$ (discount factor)
- $W_{t}^{0} \triangleq W_{t}+\int_{0}^{t} \theta_{s} d s$
- $Z_{t} \triangleq \exp \left\{-\int_{0}^{t}\left\langle\theta_{s}, d W_{s}\right\rangle-\frac{1}{2} \int_{0}^{t}\left\|\theta_{s}\right\|^{2} d s\right\}$
- $Y_{t} \triangleq \exp \left\{\int_{0}^{t} \int_{\mathbb{R}_{+}} \ln \left(1+\rho_{s}\right) N_{p}(d s d z)-\nu\left(\mathbb{R}^{+}\right) \int_{0}^{t} \rho_{s} d s\right\}$
- $H_{t} \triangleq \gamma_{t} Y_{t} Z_{t}$ - state-price-density

Girsanov-Meyer Transformations

$$
d Q_{Z}=Z_{T} d P ; d Q_{Y}=Y_{T} d P ; d Q=Y_{T} d Q_{Z}=Y_{T} Z_{T} d P
$$

A Necessary Condition

The following facts are easy to check:

- The process Y is a square-integrable P-martingale;
- The process Z is a square-integrable Q_{Y}-martingale;
- For any reinsurance policy α, the process

$$
N_{t}^{\alpha} \triangleq \int_{0}^{t}\left(1+\rho_{s}\right) m(s, \alpha) d s-\int_{0}^{t+} \int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)
$$

is a Q_{Y}-local martingale.

- The process $Z N^{\alpha}$ is a Q_{Y}-local martingale.

In the " Q "-world:

- the process W^{0} is also a Q-Brownian motion,
- N^{α} is a Q-local martingale.
- $N^{\alpha} W^{0}$ is a Q-local martingale.

A Necessary Condition (Budget Constraint)

Under the probability Q the reserve process reads

$$
\tilde{X}_{t}+\int_{0}^{t} \gamma_{s} D_{s} d s=x+\int_{0}^{t} \tilde{X}_{s}\left\langle\pi, \sigma_{s} d W_{s}^{0}\right\rangle-\int_{0}^{t} \gamma_{s} d N_{s}^{\alpha}
$$

The admissibility of (π, α, D) implies that the right hand side is a positive local martingale, whence a supermartingale under Q !

A Necessary Condition (Budget Constraint)

Under the probability Q the reserve process reads

$$
\tilde{X}_{t}+\int_{0}^{t} \gamma_{s} D_{s} d s=x+\int_{0}^{t} \tilde{X}_{s}\left\langle\pi, \sigma_{s} d W_{s}^{0}\right\rangle-\int_{0}^{t} \gamma_{s} d N_{s}^{\alpha}
$$

The admissibility of (π, α, D) implies that the right hand side is a positive local martingale, whence a supermartingale under Q !

Theorem

Assume (H2) and (H3). Then for any PRC triplet $(\pi, \alpha, D) \in \mathscr{A}(x)$, the following ("budget constraint") holds

$$
E\left\{\int_{0}^{T} H_{s} D_{s} d s+H_{T} X_{T}^{x, \alpha, \pi, D}\right\} \leq x
$$

where $H_{t}=\gamma_{t} Y_{t} Z_{t}$, and $\gamma_{t}=\exp \left\{-\int_{0}^{t} r_{s} d s\right\}$.

Wider-sense Strategies

Definition (wider-sense strategies)

A triplet of \mathbf{F}-adapted processes (π, α, D) is called a wider-sense strategy if π and D are admissible, but $\alpha \in F_{p}^{2}$. Denote all wider-sense strategies by $\mathscr{A}^{w}(x)$. We call the process α in a wider-sense strategy a pseudo-reinsurance policy.

Lemma (Existence of wider-sense strategies)

Assume (H1)- (H3). For any consumption process D and any $B \in \mathscr{F}_{T}$ such that $E(B)>0$ and

$$
\begin{equation*}
E\left\{\int_{0}^{T} H_{s} D_{s} d s+H_{T} B\right\}=x \tag{12}
\end{equation*}
$$

$\exists(\pi, \alpha)$ such that $(D, \pi, \alpha) \in \mathscr{A}^{w}(x)$, and that

$$
X_{t}^{x, \pi, \alpha, D}>0, \forall 0 \leq t \leq T ; \quad \text { and } \quad X_{T}^{\chi, \pi, \alpha, D}=B, P \text {-a.s. }
$$

Wider-sense Strategies

Sketch of the Proof.

- Given a consumption rate process D, consider the BSDE:

$$
\begin{align*}
& X_{t}=B-\int_{t}^{T}\left\{r_{s} X_{s}+\left\langle\varphi_{s}, \theta_{s}\right\rangle-D_{s}+\rho_{s} \int_{\mathbb{R}_{+}} \psi(s, z) \nu(d z)\right\} d s \\
& \quad-\int_{t}^{T}\left\langle\varphi_{s}, d W_{s}\right\rangle+\int_{t}^{T} \int_{\mathbb{R}_{+}} \psi(s, z) \tilde{N}_{p}(d s d z) \tag{13}\\
& -(\operatorname{Tang}-\operatorname{Li}(1994), \operatorname{Situ}(2000))
\end{align*}
$$

- Define $\alpha(t, z) \triangleq \frac{\psi(t, z)}{f(t, z)}$ - a pseudo-reinsurance policy \Longrightarrow

$$
\begin{aligned}
& -\int_{t}^{T}\left\{\rho_{s} \int_{\mathbb{R}_{+}} \psi(s, z) \nu(d z) d s+\int_{\mathbb{R}_{+}} \psi(s, z) \tilde{N}_{p}(d s d z)\right\} \\
= & -\int_{t}^{T}\left\{\left(1+\rho_{s}\right) m(s, \alpha) d s+\int_{\mathbb{R}_{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)\right\},
\end{aligned}
$$

Wider-sense Strategies

- The BSDE (13) becomes

$$
\begin{equation*}
d X_{t}=\left\{r_{t} X_{t}-D_{t}\right\} d t+\left\langle\varphi_{t}, d W_{t}^{0}\right\rangle-d N_{t}^{\alpha}, \tag{14}
\end{equation*}
$$

where W^{0} is a Q-B.M. and N^{α} is a Q-local martingale.

- "Localizing" \oplus "Monotone Convergence" \oplus "Exponentiating" $\oplus E(B)>0$ and D is non-negative:

$$
\begin{aligned}
& \gamma_{t} X_{t}=E^{Q}\left\{\gamma_{T} B+\int_{t}^{T} \gamma_{s} D_{s} d s \mid \mathscr{F}_{t}\right\} \geq E^{Q}\left\{\gamma_{T} B \mid \mathscr{F}_{t}\right\}>0 . \\
& \Longrightarrow P\left\{X_{t}>0, \forall t \geq 0 ; X_{T}=B\right\}=1 .
\end{aligned}
$$

- Define $\pi_{t} \triangleq\left[\sigma_{t}^{*}\right]^{-1} \varphi_{t} / X_{t}$ and note that

$$
\begin{aligned}
& X_{0}=E^{Q}\left\{\gamma_{T} X_{T}+\int_{0}^{T} \gamma_{s} D_{s} d s\right\}=E\left\{H_{T} X_{T}+\int_{0}^{T} H_{s} D_{s} d s\right\}=x \\
& \Longrightarrow(\pi, \alpha, D) \in \mathscr{A}^{w}(x)!
\end{aligned}
$$

A Duality Method

Question

When will $(\pi, \alpha, D) \in \mathscr{A}^{W}(x)$?

A Duality Method

Question

When will $(\pi, \alpha, D) \in \mathscr{A}^{W}(x)$?
Following the idea of "Duality Method" (Cvitanic-Karatzas (1993)), we begin by recalling the support function of $[0,1]$

$$
\delta(x) \triangleq \delta(x \mid[0,1]) \triangleq \begin{cases}0, & x \geq 0 \\ -x, & x<0\end{cases}
$$

A Duality Method

Question

When will $(\pi, \alpha, D) \in \mathscr{A}^{W}(x)$?
Following the idea of "Duality Method" (Cvitanic-Karatzas (1993)), we begin by recalling the support function of $[0,1]$

$$
\delta(x) \triangleq \delta(x \mid[0,1]) \triangleq \begin{cases}0, & x \geq 0 \\ -x, & x<0\end{cases}
$$

Define a subspace of F_{p}^{2} :

$$
\mathscr{D} \triangleq\left\{v \in F_{p}^{2}: \sup _{t \in[0, R]} \int_{\mathbb{R}^{+}}|v(t, z)| \nu(d z)<C_{R}, \forall R>0\right\} .
$$

For each $v \in \mathscr{D}$, recall that

$$
m(t, \delta(v))=\int_{\mathbb{R}+} \delta(v(t, z)) f(t, z) \nu(d z), t \geq 0
$$

An Auxiliary (Fictitious) Market

The Fictitious Market

For $v \in \mathscr{D}$, consider a market in which the interest rate and appreciation rate are perturbed:

$$
\left\{\begin{aligned}
d P_{t}^{v, 0} & =P_{t}^{v, 0}\left\{r_{t}+m(t, \delta(v))\right\} d t \\
d P_{t}^{v, i} & =P_{t}^{v, i}\left\{\left(\mu_{t}^{i}+m(t, \delta(v)) d t+\sum_{j=1}^{k} \sigma_{t}^{i j} d W_{t}^{j}\right\}, i=1, \cdots, k\right.
\end{aligned}\right.
$$

Consider also a (fictitious) expense loading and interest rate

$$
\rho^{v}(s, z, x) \triangleq \rho_{s}+v(s, z) x, \quad r_{t}^{\alpha, v}=r_{t}+m(t, \alpha v+\delta(v)) .
$$

Under the fictitious market, the reserve equation becomes

$$
X_{t}^{v}=x+\int_{0}^{t} X_{s}^{v} r_{s}^{\alpha, v} d s+\int_{0}^{t} X_{s}^{v}\left\langle\pi_{s}, \sigma_{s} d W_{s}^{0}\right\rangle+N_{t}^{\alpha}-\int_{0}^{t} D_{s} d s
$$

Some Remarks

- for $\alpha \in F_{p}^{2}$,

$$
\left\{\begin{array}{l}
\alpha v+\delta(v)=|v|\left\{\alpha \mathbf{1}_{\{v \geq 0\}}+(1-\alpha) \mathbf{1}_{\{v<0\}}\right\} \tag{15}\\
r^{\alpha, v}=r \Longleftrightarrow m(t, \alpha v+\delta(v))=0 .
\end{array}\right.
$$

- If α is a (true) reinsurance policy (hence $0 \leq \alpha \leq 1$), then

$$
0 \leq \alpha(t, z) v(t, z)+\delta(v(t, z)) \leq|v(t, z)|, \quad \forall(t, z),- \text {-a.s. }
$$

Some Remarks

- for $\alpha \in F_{p}^{2}$,

$$
\left\{\begin{array}{l}
\alpha v+\delta(v)=|v|\left\{\alpha \mathbf{1}_{\{v \geq 0\}}+(1-\alpha) \mathbf{1}_{\{v<0\}}\right\} \tag{15}\\
r^{\alpha, v}=r \Longleftrightarrow m(t, \alpha v+\delta(v))=0
\end{array}\right.
$$

- If α is a (true) reinsurance policy (hence $0 \leq \alpha \leq 1$), then

$$
0 \leq \alpha(t, z) v(t, z)+\delta(v(t, z)) \leq|v(t, z)|, \quad \forall(t, z), \text {-a.s. }
$$

Definition

For $v \in \mathscr{D}$, a wider-sense strategy $(\alpha, \pi, D) \in \mathscr{A}^{W}(x)$ is called " v-admissible" if
(i) $\int_{0}^{T}|m(t, a v+\delta(v))| d t<\infty, P$-a.s.
(ii) $X^{v} \triangleq X^{v, x, \pi, \alpha, D} \geq 0$, for all $0 \leq t \leq T$, P-a.s.
$\mathscr{A}^{v}(x) \triangleq\{$ all wider-sense v-admissible strategies $\}$

Some Remarks

Note:

If $v \in \mathscr{D}$ and $(\alpha, \pi, D) \in \mathscr{A}^{v}(x)$ such that

$$
\left\{\begin{array}{l}
0 \leq \alpha(t, z) \leq 1 \\
\delta(v(t, z))+\alpha(t, z) v(t, z)=0,
\end{array} \quad d t \times \nu(d z) \text {-a.e. }, P\right. \text {-a.s. }
$$

$$
\text { then }(\alpha, \pi, D) \in \mathscr{A}(x)(!) \text { and and } r_{t}^{\alpha, v}=r_{t}, t \geq 0
$$

Some Remarks

Note:

If $v \in \mathscr{D}$ and $(\alpha, \pi, D) \in \mathscr{A}^{v}(x)$ such that

$$
\left\{\begin{array}{l}
0 \leq \alpha(t, z) \leq 1 ; \\
\delta(v(t, z))+\alpha(t, z) v(t, z)=0,
\end{array} \quad d t \times \nu(d z) \text {-a.e. }, P\right. \text {-a.s. }
$$

then $(\alpha, \pi, D) \in \mathscr{A}(x)(!)$ and and $r_{t}^{\alpha, v}=r_{t}, t \geq 0$.
For any $v \in \mathscr{D}$ and $(\pi, \alpha, D) \in \mathscr{A}^{v}(x)$, define

$$
\begin{aligned}
\gamma_{t}^{\alpha, v} & \triangleq \exp \left\{-\int_{0}^{t} r_{s}^{\alpha, v} d s\right\} \\
H_{t}^{\alpha, v} & \triangleq \gamma_{t}^{\alpha, v} Y_{t} Z_{t}, \quad \psi(t, z)=\alpha(t, z) f(t, z) \\
\bar{\psi}_{t}^{v} & \triangleq \int_{\mathbb{R}_{+}} \psi(t, z) v(t, z) \nu(d z) \triangleq m^{v}(t, \psi)
\end{aligned}
$$

Proposition

Assume (H1)—(H3). Then,
(i) for any $v \in \mathscr{D}$, and $(\pi, \alpha, D) \in \mathscr{A}^{v}(x)$, the following budget constraint still holds

$$
\begin{equation*}
E\left\{\int_{0}^{T} H_{s}^{\alpha, v} D_{s} d s+H_{T}^{\alpha, v} X_{T}^{v}\right\} \leq x \tag{16}
\end{equation*}
$$

(ii) if $(\pi, \alpha, D) \in \mathscr{A}(x)$, then for any $v \in \mathscr{D}$ it holds that

$$
\begin{equation*}
X^{v, x, \alpha, \pi, D}(t) \geq X^{x, \alpha, \pi, D}(t) \geq 0, \quad 0 \leq t \leq T, \quad-\text { a.s. } \tag{17}
\end{equation*}
$$

In other words, $\mathscr{A}(x) \subseteq \mathscr{A}^{v}(x), \forall v \in \mathscr{D}$.

A BSDE with Super Linear Growth

In light of the BSDE argument before, we need to consider a BSDE based on the "fictitious" reserve. But note that

$$
\begin{aligned}
d X_{t}^{v}= & \left\{\left[r_{t}+m(t, \alpha v+\delta(v))\right] X_{t}^{v}-D_{t}+\rho_{t} m(t, \alpha)\right\} d t \\
& +X_{t}^{v}\left\langle\pi_{t}, \sigma_{s} d W_{t}^{0}\right\rangle-\int_{\mathbb{R}_{+}} \alpha(t, z) f(t, z) \tilde{N}_{p}(d t d z) \\
= & \left\{\left[r_{t}+m(t, \delta(v))\right] X_{t}^{v}+\bar{\psi}_{t}^{v} X_{t}^{v}-D_{t}\right\} d t \\
& +\left\langle\varphi_{t}^{v}, d W_{t}^{0}\right\rangle-\int_{\mathbb{R}_{+}} \psi(t, z) \tilde{N}_{p}^{0}(d t d z)
\end{aligned}
$$

where $\tilde{N}_{p}^{0}(d t d z)=\tilde{N}_{p}(d t d z)-\rho_{t} \nu(d z) d t, \varphi_{t}^{v}=X_{t}^{v} \sigma_{t}^{T} \pi_{t}$.

Recall

- W^{0} is a Q-B.M. and \tilde{N}^{0} is a Q-Poisson martingale measure.
- $m(t, \eta)=m^{f}(t, \eta), m^{1}(t, \eta)=\bar{\eta}_{t}$.

A BSDE with Super Linear Growth

The corresponding BSDEs is therefore: for $B \in L^{2}\left(\Omega ; \mathscr{F}_{T}\right)$, $v \in F_{p}^{2}, r_{t}^{v}=r_{t}+m(t, \delta(v)):$

$$
\begin{align*}
y_{t}= & B-\int_{t}^{T}\left\{r_{s}^{v} y_{s}+\bar{\psi}_{s}^{v} y_{s}-D_{s}\right\} d s-\int_{t}^{T}\left\langle\varphi_{s}, d W_{s}^{0}\right\rangle \\
& +\int_{t}^{T} \int_{\mathbb{R}_{+}} \psi_{s} \tilde{N}_{p}^{0}(d s d z) . \tag{18}
\end{align*}
$$

Note

The BSDE (18) is "superlinear" in both Y and Z !
$\left(|a b| \leq C\left(|a|^{p}+|b|^{q}\right), p, q>1\right)$

- Continuous case:

Lepeltier-San Martin (1998), Bahlali-Essaky-Labed (2003), Kobylanski-Lepeltier-Quenez-Torres (2003) ...

- Jump case: Liu (2006), Liu-M. (2009)

Main Result

Theorem

Assume (H1)-(H3). Assume further that processes r and D are all uniformly bounded. Then for any $v \in \mathscr{D}$ and $B \in L^{\infty}\left(\Omega ; \mathscr{F}_{T}\right)$, the BSDE (18) has a unique adapted solution $\left(y^{v}, \varphi^{v}, \psi^{v}\right)$.

Main Result

Theorem

Assume (H1)-(H3). Assume further that processes r and D are all uniformly bounded. Then for any $v \in \mathscr{D}$ and $B \in L^{\infty}\left(\Omega ; \mathscr{F}_{T}\right)$, the BSDE (18) has a unique adapted solution $\left(y^{v}, \varphi^{v}, \psi^{v}\right)$.

Define a "portfolio/pseudo-reinsurance" pair:

$$
\pi_{t}^{v}=\left[\sigma_{t}^{T}\right]^{-1} \frac{\varphi_{t}^{v}}{y_{t}^{v}} ; \quad \alpha^{v}(t, z)=\frac{\psi^{v}(t, z)}{f(t, z)}
$$

We call $\left(\pi^{v}, \alpha^{v}\right)$ the portfolio/pseudo-reinsurance pair associated to v.

Main Result

Theorem

Assume (H1)-(H3). Assume further that processes r and D are all uniformly bounded. Then for any $v \in \mathscr{D}$ and $B \in L^{\infty}\left(\Omega ; \mathscr{F}_{T}\right)$, the $B S D E$ (18) has a unique adapted solution $\left(y^{v}, \varphi^{v}, \psi^{v}\right)$.

Define a "portfolio/pseudo-reinsurance" pair:

$$
\pi_{t}^{v}=\left[\sigma_{t}^{T}\right]^{-1} \frac{\varphi_{t}^{v}}{y_{t}^{v}} ; \quad \alpha^{v}(t, z)=\frac{\psi^{v}(t, z)}{f(t, z)}
$$

We call $\left(\pi^{v}, \alpha^{v}\right)$ the portfolio/pseudo-reinsurance pair associated to v.

Question:
When will $\left(\pi^{v}, \alpha^{v}, D\right) \in \mathscr{A}(x)$?

A Sufficient Condition

Theorem

Assume (H1)-(H3). Let D be a bounded consumption process, and B be any nonnegative, bounded \mathscr{F}_{T}-measurable random variable such that $E(B)>0$. Suppose that for some $u^{*} \in \mathscr{D}$ whose associated portfolio/pseudo-reinsurance pair, denoted by (π^{*}, α^{*}), satisfies that

$$
u^{*} \in \operatorname{argmax}_{v} E\left\{H_{T}^{\alpha^{*}, v} B+\int_{0}^{T} H_{s}^{\alpha^{*}, v} D_{s} d s\right\}
$$

where for any $v \in \mathscr{D}$,

$$
\left.H_{t}^{\alpha^{*}, v} \triangleq \gamma_{t}^{\alpha^{*}, v} Y_{t} Z_{t}, \quad \gamma_{t}^{\alpha^{*}, v} \triangleq \exp \left\{-\int_{0}^{t}\left[r_{s}^{v}+m\left(s, \alpha^{*} v\right)\right)\right] d s\right\} .
$$

Then the triplet $\left(\pi^{*}, \alpha^{*}, D\right) \in \mathscr{A}(x)$. Further, the corresponding reserve X^{*} satisfies $X_{T}^{*}=B, P$-a.s.

An Utility Optimization Problem

Recall that $U:[0, \infty) \mapsto[-\infty, \infty]$ is a "utility function" if it is increasing and concave. Assume that $U \in C^{1}$, and $U^{\prime}(\infty) \triangleq \lim _{x \rightarrow \infty} U^{\prime}(x)=0$. Define

- $\operatorname{dom}(U) \triangleq\{x \in[0, \infty) ; U(x)>-\infty\}$
- $\bar{x} \triangleq \inf \{x \geq 0: U(x)>-\infty\}$
- $I \triangleq\left[U^{\prime}\right]^{-1}\left(I\right.$ is continuous and decreasing on $\left(0, U^{\prime}(\bar{x}+)\right)$, extendable to $(0, \infty]$ by setting $I(y)=\bar{x}$ for $\left.y \geq U^{\prime}(\bar{x}+)\right)$

An Utility Optimization Problem

Recall that $U:[0, \infty) \mapsto[-\infty, \infty]$ is a "utility function" if it is increasing and concave. Assume that $U \in C^{1}$, and $U^{\prime}(\infty) \triangleq \lim _{x \rightarrow \infty} U^{\prime}(x)=0$. Define

- $\operatorname{dom}(U) \triangleq\{x \in[0, \infty) ; U(x)>-\infty\}$
- $\bar{x} \triangleq \inf \{x \geq 0: U(x)>-\infty\}$
- $I \triangleq\left[U^{\prime}\right]^{-1}\left(I\right.$ is continuous and decreasing on $\left(0, U^{\prime}(\bar{x}+)\right)$, extendable to $(0, \infty]$ by setting $I(y)=\bar{x}$ for $\left.y \geq U^{\prime}(\bar{x}+)\right)$

"Truncated" Utility Function

- for some $K>0, U$ is a utility function on $[0, K]$ but $U(x)=U(K)$ for all $x \geq K$. (The interval $[0, K]$ is called the "effective domain" of U.)
- A truncated utility function is "good" if $U^{\prime}(\bar{x}+)<\infty$.

An Utility Optimization Problem

Given any UF U, we can define for each n,

$$
U_{n}(x)=U\left(\underline{x}^{n}\right)-\frac{1}{2}\left(\underline{x}^{n}\right)^{2}-n \underline{x}^{n}+\int_{0}^{x \wedge \bar{x}^{n}} \xi^{n}(y) d y
$$

where $U^{\prime}\left(\underline{x}^{n}\right)=n$ and $U^{\prime}\left(\bar{x}^{n}\right)=\frac{1}{n}$, and

$$
\xi^{n}(x)= \begin{cases}\underline{x}^{n}-x+n & 0 \leq x \leq \underline{x}^{n} \tag{19}\\ U^{\prime}(x) & \underline{x}^{n} \leq x \leq \bar{x}^{n} \\ \frac{1}{n} & x>\bar{x}^{n}\end{cases}
$$

Then U_{n} 's are good TUF's with $\bar{x}=0, K=\bar{x}^{n}$,

$$
U_{n}(0+)=U_{n}(0)=U\left(\underline{x}^{n}\right)-\frac{1}{2}\left(\underline{x}^{n}\right)^{2}-n \underline{x}^{n}
$$

and $U_{n}(x) \rightarrow U(x)$ as $n \rightarrow \infty$.

An Utility Optimization Problem

Now let U be good TUF (WLOG: $\bar{x}=0$, and $\left.U^{\prime}(0)<\infty\right)$. Thus

- $U^{\prime}:[0, K] \mapsto\left[U^{\prime}(K), U^{\prime}(0)\right]$
- $I(y)=\left[U^{\prime}\right]^{-1}:\left[U^{\prime}(K), U^{\prime}(0)\right] \mapsto[0, K]$ is continuous and strictly decreasing (extendable to $[0, \infty)$ by defining $I(y)=0$ for $y \geq U^{\prime}(0)$ and $I(y)=K$ for $\left.y \in\left[0, U^{\prime}(K)\right]\right)$
- In particular, I is bounded on $[0, \infty)(!)$.

An Utility Optimization Problem

Now let U be good TUF (WLOG: $\bar{x}=0$, and $\left.U^{\prime}(0)<\infty\right)$. Thus

- $U^{\prime}:[0, K] \mapsto\left[U^{\prime}(K), U^{\prime}(0)\right]$
- $I(y)=\left[U^{\prime}\right]^{-1}:\left[U^{\prime}(K), U^{\prime}(0)\right] \mapsto[0, K]$ is continuous and strictly decreasing (extendable to $[0, \infty)$ by defining $I(y)=0$ for $y \geq U^{\prime}(0)$ and $I(y)=K$ for $\left.y \in\left[0, U^{\prime}(K)\right]\right)$
- In particular, I is bounded on $[0, \infty)(!)$.

Note

If U is a good TUF with effective domain $[0, K]$, and

$$
\tilde{U}(y) \triangleq \max _{0<x \leq K}\{U(x)-x y\}, \quad 0<y<\infty
$$

is the Legendre-Fenchel transform of U. Then it holds that

$$
\tilde{U}(y)=U(I(y))-y l(y), \quad \forall y>0
$$

Modified Preference Structure

We now modify the so-called "preference structure" (see Karatzas-Shreve's book) to the good TUF's:

Definition

A pair of functions $U_{1}:[0, T] \times(0, \infty) \mapsto[-\infty, \infty)$ and $U_{2}:[0,, \infty) \mapsto[-\infty, \infty$) is called a "modified (von Neumann-Morgenstern) preference structure" if
(i) for fixed $t, U^{1}(t, \cdot)$ is a UF with (subsistence consumption) $\bar{x}_{1}(t) \triangleq \inf \left\{x \in \mathbb{R} ; U^{1}(t, x)>-\infty\right\}$ being continuous on $[0, T]$, and U_{1} and U_{1}^{\prime} being continuous on

$$
\mathscr{D}\left(U_{1}\right) \triangleq\left\{(t, x): x>\bar{x}^{1}(t), t \in[0, T]\right\} ;
$$

(ii) U_{2} is a good TUF with (subsistence terminal wealth) $\bar{x}_{2}=\inf \left\{x: U_{2}^{\prime}(x)>-\infty\right\}$.

Utility Optimization Problem

Assume that $\left(U_{1}, U_{2}\right)$ is a modified preference structure, with effective domain of U_{2} being $[0, K]$. For $(\pi, \alpha, D) \in \mathscr{A}(x)$, define

- Cost functional:

$$
J(x ; \pi, \alpha, D) \triangleq E\left\{\int_{0}^{T} U_{1}\left(t, D_{t}\right) d t+U_{2}\left(X_{T}^{x, \alpha, \pi, D}\right)\right\}
$$

- Value function:

$$
V(x) \triangleq \sup _{(\pi, \alpha, D) \in \mathscr{A}(x)} J(x ; \pi, \alpha, D)
$$

Utility Optimization Problem

Assume that $\left(U_{1}, U_{2}\right)$ is a modified preference structure, with effective domain of U_{2} being $[0, K]$. For $(\pi, \alpha, D) \in \mathscr{A}(x)$, define

- Cost functional:

$$
J(x ; \pi, \alpha, D) \triangleq E\left\{\int_{0}^{T} U_{1}\left(t, D_{t}\right) d t+U_{2}\left(X_{T}^{x, \alpha, \pi, D}\right)\right\}
$$

- Value function:

$$
V(x) \triangleq \sup _{(\pi, \alpha, D) \in \mathscr{A}(x)} J(x ; \pi, \alpha, D)
$$

Duality Method

First find a (wider-sense) optimal strategy via fictitious market, then verify that it is actually a true strategy using the sufficient condition.

Fix $v \in \mathscr{D}$.

- $\forall(\pi, \alpha, D) \in \mathscr{A}^{v}(x)$, denote the "fictitious" reserve by X^{v}.
- The "fictitious" budget constraint:

$$
x \geq E^{Q}\left\{\gamma_{T}^{\alpha, v} X_{T}^{v}+\int_{0}^{T} \gamma_{s}^{\alpha, v} D_{s} d s\right\}=E\left\{H_{T}^{\alpha, v} X_{T}^{v}+\int_{0}^{T} H_{s}^{\alpha, v} D_{s} d s\right\}
$$

- Define $I_{1}(t, \cdot)=\left[U_{1}^{\prime}(t, \cdot)\right]^{-1}$ and $I_{2}=\left[U_{2}^{\prime}\right]^{-1}$,

$$
\mathscr{X}_{v}^{\alpha}(y) \triangleq E\left\{H_{T}^{\alpha, v} I_{2}\left(y H_{T}^{\alpha, v}\right)+\int_{0}^{T} H_{t}^{\alpha, v} I_{1}\left(t, y H_{t}^{\alpha, v}\right) d t\right\}, y>0
$$

$\left(\Longrightarrow \mathscr{X}_{v}^{\alpha}(\cdot)\right.$ is continuous, decreasing, and $\mathscr{X}_{v}^{\alpha}(0+)=\infty$.)

- Define $\mathscr{Y}_{v}^{\alpha}(x)=\inf \left\{y: \mathscr{X}_{v}^{\alpha}(y)<x\right\} \triangleq\left[\mathscr{X}_{v}^{\alpha}\right]^{-1}(x) \in\left(0, y_{0}\right)$, where $y_{0} \triangleq \sup \left\{y>0 ; \mathscr{X}_{v}(y)>\mathscr{X}_{v}(\infty)\right\}$
- The "fictitious" budget constraint implies that $V(x)=-\infty$ whenever $x<\mathscr{X}_{v}^{\alpha}(\infty)$. Thus may assuem $x>\mathscr{X}_{v}^{\alpha}(\infty)$.
- consider the problem of maximizing

$$
\left\{\begin{array}{l}
\tilde{J}(D, B) \triangleq E\left\{\int_{0}^{T} U_{1}(t, D(t)) d t+U_{2}(B)\right\} \\
\text { s.t. } E\left\{\int_{0}^{T} H_{t}^{\alpha, v} D_{t} d t+H_{T}^{\alpha, v} B\right\} \leq x .
\end{array}\right.
$$

where D is a consumption process and $B \in L_{\mathscr{F}_{T}}^{\infty}(\Omega)$. s.t.,

- "Lagrange multiplier": define

$$
\begin{aligned}
J_{v}^{\alpha}(D, B ; x, y) \triangleq & x y+E \int_{0}^{T}\left[U_{1}(t, D(t))-y H_{t}^{\alpha, v} D_{t}\right] d t \\
& +E\left[U_{2}(B)-y H_{T}^{\alpha, v} B\right] \\
\leq & x y+E\left\{\int_{0}^{T} \tilde{U}_{1}\left(t, y H_{t}^{\alpha, v}\right) d t+\tilde{U}_{2}\left(y H_{T}^{\alpha, v}\right)\right\}
\end{aligned}
$$

The procedure

Note

The equality holds $\Longleftrightarrow D_{t}^{\alpha, v}=I_{1}\left(t, y H_{t}^{\alpha, v}\right)$ and $B^{\alpha, v}=I_{2}\left(y H_{T}^{\alpha, v}\right)$, $0 \leq t \leq T$, P-a.s.

This leads to the following special "Forward-Backward SDE":

$$
\left\{\begin{aligned}
H_{t}= & \left.1+\int_{0}^{t} H_{s}\left[r_{s}+m(s, \delta(v)+\alpha v)\right)\right] d s-\int_{0}^{t} H_{s}\left\langle\theta_{s}, d W_{s}\right\rangle \\
& +\int_{0}^{t} \int_{\mathbb{R}_{+}} H_{s-} \rho_{s} \tilde{N}_{p}(d s d z) ; \\
X_{t}= & I_{2}\left(y H_{T}\right)-\int_{t}^{T}\left\{X_{s}\left[r_{s}+m(s, \delta(v)+\alpha v)+\left\langle\pi_{s}, \sigma_{s} \theta_{s}\right\rangle\right]\right. \\
& \left.+\left(1+\rho_{s}\right) m(s, \alpha)\right\} d s-\int_{t}^{T} X_{s}\left\langle\pi_{s}, \sigma_{s} d W_{s}\right\rangle \\
& +\int_{t}^{T} \int_{\mathbb{R}^{+}} \alpha(s, z) f(s, z) N_{p}(d s d z)+\int_{t}^{T} I_{1}\left(s, y H_{s}\right) d s
\end{aligned}\right.
$$

Main Result

Theorem

Assume (H1)-(H3). Let $\left(U_{1}, U_{2}\right)$ be a modified preference structure. The following two statements are equivalent:
(i) For any $x \in \mathbb{R}$, the pair $B^{*} \triangleq I_{2}\left(\mathscr{Y}(x) H_{T}\right)$ and
$D_{t}^{*} \triangleq I_{1}\left(t, \mathscr{Y}(x) H_{t}\right)$, satisfy

$$
\begin{aligned}
V(x) & =E\left\{\int_{0}^{T} U_{1}\left(t, D_{t}^{*}\right) d t+U_{2}\left(B^{*}\right)\right\} \\
& =\sup _{(\pi, \alpha, D) \in \mathscr{A}(x)} J(x ; \pi, \alpha, D)
\end{aligned}
$$

where $\mathscr{Y}(x)$ is such that

$$
x=E\left\{\int_{0}^{T} I_{1}\left(t, \mathscr{Y}(x) H_{t}\right) d t+I_{2}\left(\mathscr{Y}(x) H_{T}\right)\right\}
$$

Main Result

(ii) There exists a $u^{*} \in \mathscr{D}$, such that the FBSDE (20) has an adapted solution $\left(H^{*}, X^{*}, \pi^{*}, \alpha^{*}\right)$, with y satisfying

$$
\begin{equation*}
x=E\left\{\int_{0}^{T} I_{1}\left(t, y H_{t}^{*}\right) d t+I_{2}\left(y H_{T}^{*}\right)\right\} \tag{20}
\end{equation*}
$$

In particular, if (i) or (ii) holds, then $\left(\pi^{*}, \alpha^{*}, D^{*}\right) \in \mathscr{A}(x)$ is an optimal strategy for the utility maximization insurance/investment problem.

Sketch of proof

" i) $\Longrightarrow(\mathrm{ii})$ ":
Assume $\left(\pi^{*}, \alpha^{*}, D^{*}\right) \in \mathscr{A}(x)$ is s.t. $X_{T}^{\pi^{*}, \alpha^{*}, D^{*}}=B^{*}$, and that

$$
J\left(x ; \pi^{*}, \alpha^{*}, D^{*}\right)=V(x)=E\left\{\int_{0}^{T} U_{1}\left(t, D_{t}^{*}\right) d t+U_{2}\left(B^{*}\right)\right\} .
$$

Define $u^{*}(t, z)=\mathbf{1}_{\left\{\alpha^{*}(t, z)=0\right\}}-\mathbf{1}_{\left\{\alpha^{*}(t, z)=1\right\}}$. Then $\left|u^{*}\right| \leq 1$ and

$$
\delta\left(u^{*}\right)+\alpha^{*} u^{*}=\left|u^{*}\right|\left\{\alpha^{*} \mathbf{1}_{\left\{u^{*} \geq 0\right\}}+\left(1-\alpha^{*}\right) \mathbf{1}_{\left\{u^{*}<0\right\}}\right\} \equiv 0 .
$$

$\Longrightarrow m\left(\cdot, \delta\left(u^{*}\right)+\alpha^{*} u^{*}\right)=0, \gamma^{\alpha^{*}, u^{*}}=\gamma$, and $H^{\alpha^{*}, u^{*}}=H$. (since
$\left.X_{T}^{*}=B^{*}=I_{2}\left(\mathscr{Y}(x) H_{T}\right)\right)$
$\Longrightarrow\left(H, X^{*}, \pi^{*}, \alpha^{*}\right)$ solves FBSDE (20) with $y=\mathscr{Y}(x)$ and
$v=u^{*}$.

Sketch of proof

"(ii) \Longrightarrow (i)":
Assume that for some $u^{*} \in \mathscr{D}$, FBSDE (20) has an adapted solution $\left(H^{*}, X^{*}, \pi^{*}, \alpha^{*}\right)$ with $y=\mathscr{Y}_{u^{*}}^{\alpha^{*}}(x) \triangleq \mathscr{Y}^{*}(x)$. Define

$$
D_{t}^{*}=I_{1}\left(t, \mathscr{Y}^{*}(x) H_{t}^{*}\right), \quad t \geq 0, \quad B^{*} \triangleq I_{2}\left(\mathscr{Y}^{*}(x) H_{T}^{*}\right)
$$

Since $\left(D^{*}, B^{*}\right) \in \operatorname{argmax} J_{u^{*}}^{\alpha^{*}}\left(x, \mathscr{Y}^{*}(x) ; D, B\right)$ (the LagrangeMultiplier Problem), we must have

$$
x=E\left\{\int_{0}^{T} H_{t}^{*} D_{t}^{*} d t+H^{*} B^{*}\right\}
$$

and

$$
V^{*}(x)=\sup _{(D, B)} J_{u^{*}}^{\alpha^{*}}(\cdots)=E\left\{\int_{0}^{T} U_{1}\left(t, D_{t}^{*}\right) d t+U_{2}\left(B^{*}\right)\right\}
$$

Sketch of Proof

Note: I_{2} is bounded $(!) \Longrightarrow\left|B^{*}\right| \leq K$, and by the budget constraint, for any other $v \in \mathscr{D}$

$$
\begin{aligned}
& E\left\{\int_{0}^{T} H_{t}^{\alpha^{*}, v} D_{t}^{*} d t+H_{T}^{\alpha^{*}, v} B^{*}\right\} \leq x=E\left\{\int_{0}^{T} H_{t}^{*} D_{t}^{*} d t+H_{T}^{*} B^{*}\right\} . \\
& \Longrightarrow\left(\alpha^{*}, \pi^{*}, D^{*}\right) \in \mathscr{A}(x) \text { (Sufficient Condition), } \\
& \Longrightarrow 0 \leq \alpha^{*}(t, z) \leq 1, m\left(t, \alpha^{*} u^{*}+\delta\left(u^{*}\right)\right)=0, \text { and } X_{0}^{*}=x . \\
& \Longrightarrow H^{*}=H, \mathscr{Y}^{*}(x)=\mathscr{Y}(x) \text {, and } X^{*}=X^{\times, \pi^{*}, \alpha^{*}, D^{*}} . \\
& \Longrightarrow\left(D^{*}, B^{*}\right) \text { become the same as that defined in (i), and }
\end{aligned}
$$

$$
V^{*}(x)=V(x)=E\left\{\int_{0}^{T} U_{1}\left(t, D_{t}^{*}\right) d t+U_{2}\left(B^{*}\right)\right\}
$$

[Hojgaard, B. and Taksar, M. (1997) Optimal Proportional Reinsurance Policies for Diffusion Models, Scand. Actuarial J. 2, 166-180.

图 Liu, Y., Ma, J. (2009). Optimal Reinsurance/Investment for General Insurance Models. The Annals of Applied Probability. Vol. 19 (4), pp. 1495-1528.
囲 Liu, Y. (2005). PhD Thesis, Purdue University.

