
Finance, Insurance, and Stochastic Control (III)

Jin Ma

Spring School on “Stochastic Control in Finance”
Roscoff, France, March 7-17, 2010

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 1/ 58



Outline

1 Reinsurance and Stochastic Control Problems

2 Proportional Reinsurance with Diffusion Models

3 General Reinsurance Problems

4 Admissibility of Strategies

5 Existence of Admissible Strategies

6 Utility Optimization

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 2/ 58



Reinsurance Problem

Basic Idea

An insurance company may choose to “cede” some of its risk to a
reinsurer by paying a premium. Thus the reserve may look like

Xt = x +

∫ t

0
ch
s (1 + ρs)ds −

∫ t

0

∫
R+

h(s, x)µ(dxds),

where h is the “retention function”

Common types of retention functions:

h(x) = αx , 0 ≤ α ≤ 1 — Proportional Reinsurance

h(x) = α ∧ x , α > 0 — Stop-loss Reinsurance

Purpose

Determine the “reasonable” reinsurance premium, find the ”best”
reinsurance policy,..., etc.
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Generalized Cramér-Lundberg model

(Ω,F ,P) — a complete probability space

W = {Wt}t≥0— a d-dimensional Brownian Motion

p = {pt}t≥0 — stationary Poisson point process, ⊥⊥ W

Np(dtdz) — counting measure of p on (0,∞)× R+

N̂p(dtdz) = E (Np(dtdz)) = ν(dz)dt

F = FW ⊗ Fp,

F q
p
4
={ϕ :Fp-predi’ble, E

∫ T
0

∫
R+
|ϕ|qdνds <∞, q ≥ 1}

Claim Process

St =

∫ t+

0

∫
R+

f (s, x , ω)Np(dsdx), t ≥ 0, f ∈ Fp. (1)

Compound Poisson Case: f (t, z) ≡ z , ν(R+) = λ.
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Profit Margin Principle

A “Counting Principle” for Reinsurance Premiums

ρ— original safety loading of the cedent company

ρr— safety loading of the reinsurance company

ρα— modified safety loading of the cedent company (after
reinsurance)

If the claim size is U, then the “profit margin principle” states

(1 + ρ)E [U]︸ ︷︷ ︸
original premium

= (1 + ρr )E [U − h(U)]︸ ︷︷ ︸
premium to the

reinsurance company

+(1 + ρα)E [h(U)]︸ ︷︷ ︸
modified premium

. (2)

ρr = ρα = ρ — “Cheap” Reinsurance

ρr 6= ρα — “Non-cheap” Reinsurance
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Existing Literature

Stop-Loss Reinsurance (e.g., Sondermann (1991), Mnif-Sulem
(2001), Azcue-Muler (2005), ...)

Proportional Reinsurance

Diffusion approximation: dXt = µαtdt + σαtdWt ,X0 = x
(e.g., Asmussen-Hojgaard-Taksar (2000), ...)

General reserve models (Liu-M. 2009, ...)
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Proportional Reinsurance with Diffusion Models

The following case study is based on Hojgaard-Taksar (1997).

Consider the reserve with “proportional reinsurance” :

Xt = x +

∫ t

0
αc(1 + ρs)ds − αSt .

Replacing this by the following “Diffusion Model”:

Xt = x +

∫ t

0
µαtdt +

∫ t

0
σαtdWt , t ≥ 0, (3)

where µ > 0, σ > 0, and αt ∈ [0, 1] is a stochastic process
representing the fraction of the incoming claim that the insurance
company retains to itself. We call it a “admissible reinsurance
policy” if it is FW -adapted.
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Proportional Reinsurance with Diffusion Models

“Return Function”:

J(x ;α)
4
= E

∫ τ

0
e−ctX x ,α

t dt,

where τ = τ x ,α = inf{t ≥ 0 : X x ,α
t = 0} is the ruin time and

c > 0 is the “discount factor”.

“Value Function”:

V (x) = sup
α∈A

J(x ;α)

Note

For any α ∈ A and x > 0, define α̂t = αt1{t≤τ x,α}. Then

τ x ,α̂ = τ x ,α =⇒ J(x , α̂) = J(x , α). we can work on

A ′(x)
4
= {α ∈ A : αt = 0 for all t > τ x ,α} and

J ′(x ;α)
4
= E

∫ ∞

0
e−ctX x ,α

t dt, α ∈ A ′(x).
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The HJB Equation

1. The Concavity of V .

For any x1, x2 > 0 and λ ∈ (0, 1), let αi ∈ A (xi ), i = 1, 2.

Define ξ
4
= λx1 + (1− λ)x2, α

4
= λα1 + (1− λ)α2.

Denote X i = X x i ,αi
and τ i = τ x i ,αi

, i = 1, 2. Then by the
linearity of the reserve equation (3) one has

Xt
4
= X ξ,α

t = λX 1
t + (1− λ)X 2

t , and τ
4
= τ ξ,α = τ1 ∨ τ2.

=⇒ J(ξ, α) = λJ(x1, α1) + (1− λ)J(x2, α2).

∀ε > 0, choose αi , s.t. J(x i , αi ) ≥ V (x i )− ε/2, i = 1, 2.

=⇒ J(ξ, α) = λJ(x1, α1) + (1− λ)J(x2, α2)
≥ λV (x1) + (1− λ)V (x2)− ε

=⇒ V (ξ) ≥ λV (x1) + (1− λ)V (x2)− ε =⇒ Done!
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The HJB Equation

2. The HJB Equation.

Let τ be any F-stopping time. By “Bellman Principle”

V (x) = sup
α∈A (x)

E

{∫ τα∧τ

0
e−ctX x ,α̂

t dt + e−c(τα∧τ)V (X x ,α̂
τα∧τ )

}
.

∀α ∈ A and h > 0 let τh = τh
α
4
= h ∧ inf{t : |Xα

t − x | > h}.
Then τh <∞, a.s. and τh → 0, as h → 0, a.s.

Assume V ∈ C 2. For any a ∈ [0, 1], define α ≡ a ∈ A . Then
for any h < x , we have τh < τα. Letting τ = τh in (4) and
applying Itô (to F (t, x) = e−ctV (x)) we deduce

0 ≥ E

{∫ τh

0
e−ctX x ,α

t dt + e−ct [L aV ](X x ,α
t )dt

}
,

where [L ag ](x)
4
= σ2a2

2 g ′′(x) + µag ′(x)− cg(x).
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The HJB Equation

Letting h → 0, one has

0 ≥ x + [L aV ](x).

=⇒ 0 ≥ x + maxa∈[0,1][L
aV ](x), since a is arbitrary.

On the other hand, ∀δ > 0, we choose α∗ ∈ A (x) s.t.

V (x) ≤ E

{∫ τh
α∗

0
e−ctX x ,α∗

t dt + e−cτh
α∗V (X x ,α∗

τh
α∗

)

}
+ δ.

Letting δ = E [τh
α∗ ]

2 and applying Itô again we have

0 ≤ 1

E [τh
α∗ ]

E

{∫ τh
α∗

0
e−ct{Xα

t + max
a

[L aV ](X x ,α
t )}dt + δ

}

−→ x + maxa∈[0,1][L
aV ](x), as h → 0.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 11/ 58



The HJB Equation

Letting h → 0, one has

0 ≥ x + [L aV ](x).

=⇒ 0 ≥ x + maxa∈[0,1][L
aV ](x), since a is arbitrary.

On the other hand, ∀δ > 0, we choose α∗ ∈ A (x) s.t.

V (x) ≤ E

{∫ τh
α∗

0
e−ctX x ,α∗

t dt + e−cτh
α∗V (X x ,α∗

τh
α∗

)

}
+ δ.

Letting δ = E [τh
α∗ ]

2 and applying Itô again we have
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The HJB Equation

We obtain the HJB equation: max
α∈[0,1]

{
σ2α2

2
V ′′(x) + µαV ′(x)− cV (x) + x

}
= 0,

V (0) = 0.
(4)

We shall construct a solution to the HJB equation (4) that is
concave and C 2 by using the technique of “Principle of Smooth
fit” that we used before.

First we note that if
α(x) ∈ argmaxα∈[0,1]

{
−σ2α2

2 V ′′ + µαV ′ − cV + x
}

, then the

first order condition tells us that

α(x) = − µV ′(x)

σ2V ′′(x)
. (5)
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Principle of Smooth Fit

Plugging this into the HJB equation (4) we get

− µ2[V ′(x)]2

2σ2V ′′(x)
− cV (x) + x = 0, x ∈ [0,∞). (6)

Main Trick:

Find a C 2 function X : R 7→ [0,∞), such that V ′(X (z)) = e−z !
(Note: Since V is concave, one could argue that the Implicit
Function Thm applies to equation: F (X , z) = V ′(X )− e−z = 0.)

Since V ′(X (z)) = e−z and V ′′(X (z)) = − e−z

X ′(z)
, replacing x

by X (z) in (6) we obtain

µ2

2σ2
X ′(z)e−z − cV (X (z)) + X (z) = 0. (7)
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Principle of Smooth Fit

Differentiating (7) w.r.t. z and eliminating V :

µ2

2σ2
X ′′(z)e−z −

(
µ2

2σ2
+ c

)
e−zX ′(z) + X ′(z) = 0.

Therefore, denoting γ
4
= 2σ2/µ2, the equation becomes

X ′′(z)− (1 + cγ − γez)X ′(z) = 0. (8)

Solving (8) explicitly we have X ′(z) = k1e
(1+cγ)z−γez

or

X (z) = k1

∫ z

−∞
e(1+cγ)y−γey

dy + k2

= k1

∫ ez

0
y cγe−γydy + k2, (y 7→ ey = y ′)

—This is a Γ-integral!
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Principle of Smooth Fit

Let G be the c.d.f. of a Gamma distribution with parameter
(cγ + 1, 1/γ). Then

X (z) = k1
Γ(cγ + 1)

γcγ+1
G (ez) + k2 = k1G (ez) + k2.

Clearly k2 = X (−∞) ≥ 0. By definition of X we see that

− ln(V ′(x)) = ln
(
G−1

(x − k2

k1

))
or V ′(x) =

1

G−1
(

x−k2
k1

) .
=⇒ α(x) =

µ

σ2
k1G

−1
(x − k2

k1

)
g
(
G−1

(x − k2

k1

))
, x ≥ k2,

where g is the density function of G .
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Principle of Smooth Fit

Change variable: y = G−1((x − k2)/k1), we have

α(x) = α̂(y) =
µk1

σ2
yg(y), y ≥ 0.

Since α̂(0) = 0 and α̂(∞) = ∞, we can find a y1 ∈ (0,∞)
such that α̂(y1) = 1. Also, since

α̂′(y) = Ky cγe−γy (cγ + 1− γy) > 0,

k2 < x < k1G (y1) + k2
4
= x1,

α̂ is strictly increasing on (k2, x1), and α̂(y1) = α(x1) = 1.

Claim: k2 = 0!

For otherwise extending G−1 ≡ 0 on (−∞, 0] we have α(x) = 0
for x ≤ k2. Then HJB equation implies V (x) = −x/c , for x ≤ k2.
But for such V the maximizer of (7) cannot be zero, whenever
µ > 0, a contradiction.
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Principle of Smooth Fit

Thus

V (x) =

∫ x

0

1

G−1
(

u
k1

)du + k3, 0 ≤ x < x1. (9)

Also, since α(x) ↑ 1 as x ↑ x1, we define α(x) = 1 for x > x1.
But with α ≡ 1 (4) becomes an ODE:

σ2

2
V ′′(x) + µV ′(x)− cV (x) + x = 0, x ∈ [0,∞).

Solving the non-homogeneous ODE we get

V (x) =
x

c
+
µ

c2
+ K4e

r−x + k5e
r+x .

where r± =
−µ

σ
±

√
µ2

σ2 +2c

σ .
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Principle of Smooth Fit

Note that by concavity of V we have V ′(x) = O(1) or
V (x) = O(x), as x →∞ Thus k5 = 0. Renaming the
constants we have

V (x) =


∫ x

0

1

G−1
(

z
k1

)dz , 0 ≤ x < x1

x

c
+
µ

c2
+ k2e

r−x x > x1.

(10)

Principle of Smooth Fit

Find k1 and k2 so that V is C 2 at x = x1.

First note that

V ′(x1+) =
1

c
+ k2r−er−x1 , V ′′(x1+) = k2r−er−x1 .
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Principle of Smooth Fit

Denoting β = K2e
r−x1 and noting that V ′(x1) = 1/y1, we

derive from the HJB equation that V ′′(x1) = −µ/σ2V ′(x1).

=⇒ 1

y1
=

1

c
+ βr−; − µ

σ2

1

y1
= βr2

−.

Solving for (y1, β) we obtain

(y1, β) =

(
c

(
1 +

µ

σ2r−

)
,

−µ
c(σ2r2

− + µr−)

)
.

by definition of r− we see that (y1, β) ∈ (0, c)× (−∞, 0).
Recall that y1 = G−1(x1/k1) we have

x1

k1
= G (y1),

µ

σ2
k1y1g(y1) = 1.

=⇒ (k1, x1) =

(
σ2

µy1g(y1)
,
σ2G (y1)

µy1g(y1)

)
.
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Theorem

The function

V (x) =


∫ x

0

1

G−1
(

z
k1

)dz , 0 ≤ x < x1

x

c
+
µ

c2
+ βer−x x > x1,

(11)

where β = −µ
c(σ2r2

−+µr−)
, x1 = σ2G(y1)

µy1g(y1)
, k1 = σ2

µy1g(y1)
,

y1 = c
(
1 + µ

σ2r−

)
is a concave solution to the HJB equation (4).

Proof. Plug in and check!

Warning:

This theorem does not give the solution to the optimization
problem. In other words: the function V may not be the value
function!
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A Verification Theorem

In order to check that the C 2 function V that we worked so hard
to get is indeed the value function, and the function a(x) we have
obtained is the optimal policy.

Theorem

Let V be the function given by (11), and define a process

a∗t
4
= a(X ∗

t ), where

a(x) =


G−1

(
x
k1

)
g

(
G−1

(
x
k1

))
y1g(y1)

x < x1

1 x > x1,

Then V(x) is the value function and α∗ is an optimal strategy.
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General Reinsurance Problems

We now consider the following more general dynamics of a risk
reserve:

Xt = x +

∫ t

0
(1 + ραs )cα(s)ds −

∫ t

0

∫
R+

α(s, z)f (s, z)Np(dsdz),

where cα is the adjusted premium rate after reinsurance.

Question

What is the general form of the reinsurance policy and the
reasonable form of cα?

Definition

A (proportional) reinsurance policy is a random field
α : [0,∞)× R+ × Ω 7→ [0, 1] such that for each fixed z ∈ IR+, the
process α(·, z , ·) is predictable.
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Remarks

The dependence of a reinsurance policy α on the variable z
amounts to saying that the proportion can depend on the
sizes of the claims.

One can define a reinsurance policy as a predictable process
αt , but in general one may not be able to find an optimal
strategy, unless St has fixed size jumps. The similar issue also
occurs in utility optimization problems in finance involving
jump-diffusion models (See, e.g, X. X. Xue (1992).)

Given a reinsurance policy α, during time period [t, t + ∆t]
the insurance company retains to itself

[α ∗ S ]t+∆t
t

4
=

∫ t+∆t

t

∫
R+

α(s, z)f (s, z)Np(dzds)

and cedes to the reinsurer

[(1− α) ∗ S ]t+∆t
t

4
=

∫ t+∆t

t

∫
R+

[1− α(s, z)]f (s, z)Np(dzds).
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Dynamics for the Reserve with Reinsurance

By “Profit Margin Principle”, one has:

(1 + ρt)E
p
t {[1 ∗ S ]t+∆t

t }︸ ︷︷ ︸
original premium

= (1 + ρr
t)E

p
t {[(1− α) ∗ S ]t+∆t

t }︸ ︷︷ ︸
premium to the reinsurance company

+(1 + ραt )Ep
t {[α ∗ S ]t+∆t

t }︸ ︷︷ ︸
modified premium

∆t → 0 =⇒

(1 + ρt)ct = (1 + ρr
t)

∫
R+

(1− α(t, z))f (t, z)ν(dz)

+(1 + ραt )

∫
R+

α(t, z)f (t, z)ν(dz).

Denote Sαt =

∫ t

0

∫
R+

α(s, z)f (s, z)Np(dzds), and

m(t, α) =

∫
R+

α(t, z)f (t, z)ν(dz),
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Dynamics for the Reserve with Reinsurance

We see that a general dynamics of risk reserve

Xt = x +

∫ t

0
(1+ραs )m(s, α)ds−

∫ t

0

∫
R+

α(s, z)f (s, z)Np(dsdz).

Note

Whether a reinsurance is cheap or non-cheap does not change
the form of the reserve equation. We will not distinguish them
in the future.

If the reinsurance policy α is independent of claim size z , then

Sαt =

∫ t

0
α(s)

∫
R+

f (s, z)Np(dzds) =

∫ t

0
α(s)dSs

and m(t, α) = α(s)cs , as we often see in the standard
reinsurance framework.
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Reinsurance and Investment

The Market:{
dP0

t = rtP
0
t dt; (money market)

dP i
t = P i

t [µ
i
tdt +

∑n
j=1 σ

ij
t dW j

t ], i = 1, · · · , n. (stocks)

Portfolio Process:

πt(·) =
(
π1

t , · · · , πk
t

)
— πi

t is the fraction of its reserve Xt

allocated to the i th stock.

Xt −
k∑

i=1

πi
tXt = (1−

k∑
i=1

πi
t)Xt — money market account.

Consumption (Rate) Process:
D = {Dt : t ≥ 0} — F -predictable nonnegative process
satisfying D ∈ L1

F ([0,T ]× R+) (may include dividend/bonus,
etc.).
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Dynamics of Reserve with Reinsurance and Investment

dXt =
{

Xt

[
rt + 〈πt , µt − rt1 〉

]
+ (1 + ρt)m(t, α)− Dt

}
dt

+Xt 〈πt , σtdWt 〉−
∫

R+

α(t, z)f (t, z , ·)Np(dtdz),

where 1 = (1, · · · , 1)T . We call the pair (π, α) D-financing”.

Example

Classical Model:

— r = 0, ρ = 0, π = 0, f (t, x , ·) = x , ν(dx) = λF (dx).

Discounted Risk Reserve:

— ρ = 0, π = 0, f (t, x , ·) = x , ν(dx) = λF (dx), but r > 0 is
deterministic

Perturbed Risk Reserve:

— r = 0, ρ = 0, π = ε, f (t, x , ·) = x , ν(dx) = λF (dx).
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Standing Assumptions

.

(H1) f ∈ Fp, continuous in t, and piecewise continuous in z .
Furthermore, ∃0 < d < L such that

d ≤ f (s, z , ω) ≤ L, ∀(s, z) ∈ [0,∞)× R+, P-a.s.

Remark

The bounds d and L in (H1) could be understood as the
deductible and benefit limit. They can be relaxed to certain
integrability assumptions on both f and f −1.

(H2) The safety loading ρ and the premium c are both bounded,
non-negative Fp-adapted processes,

(H3) The processes r , µ, and σ are FW -adapted and bounded.
Furthermore, ∃δ > 0, such that σtσ

∗
t ≥ δI , ∀t ∈ [0,T ], P-a.s.
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Admissibility of Strategies

Main Features

α ∈ [0, 1] is intrinsic, cannot be relaxed.

α CANNOT be assumed a priori to be proportional to the
reserve Xt

by nature of a reinsurance problem, (or by regulation) we
require that the reserve be aloft. That is, at any time t ≥ 0,
X x ,π,α,D

t ≥ C for some constant C > 0. We will set C = 0.

Definition (Admissible strategies)

For any x ≥ 0, a portfolio/reinsurance/consumption (PRC for
short) triplet (π, α,D) is called “admissible at x”, if

X x ,π,α,D
t ≥ 0, ∀t ∈ [0,T ], P-a.s.

We denote the totality of all strategies admissible at x by A (x).
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A Necessary Condition

Define

θt
4
= σ−1

t (µt − rt1) — (risk premium)

γt
4
= exp{−

∫ t
0 rsds}, t ≥ 0 — (discount factor)

W 0
t
4
= Wt +

∫ t
0 θsds

Zt
4
= exp

{
−

∫ t
0 〈 θs , dWs 〉−1

2

∫ t
0 ‖θs‖

2ds
}

Yt
4
= exp

{∫ t
0

∫
IR+

ln(1 + ρs)Np(dsdz)− ν(IR+)
∫ t
0 ρsds

}
Ht

4
= γtYtZt — state-price-density

Girsanov-Meyer Transformations

dQZ = ZTdP; dQY = YTdP; dQ = YTdQZ = YTZTdP.
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A Necessary Condition

The following facts are easy to check:

The process Y is a square-integrable P-martingale;

The process Z is a square-integrable QY -martingale;

For any reinsurance policy α, the process

Nα
t
4
=

∫ t

0
(1 + ρs)m(s, α)ds −

∫ t+

0

∫
R+

α(s, z)f (s, z)Np(dsdz)

is a QY -local martingale.

The process ZNα is a QY -local martingale.

In the “Q”-world:

the process W 0 is also a Q-Brownian motion,

Nα is a Q-local martingale.

NαW 0 is a Q-local martingale.
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A Necessary Condition (Budget Constraint)

Under the probability Q the reserve process reads

X̃t +

∫ t

0
γsDsds = x +

∫ t

0
X̃s 〈π, σsdW 0

s 〉−
∫ t

0
γsdNα

s .

The admissibility of (π, α,D) implies that the right hand side is a
positive local martingale, whence a supermartingale under Q!

Theorem

Assume (H2) and (H3). Then for any PRC triplet
(π, α,D) ∈ A (x), the following (“budget constraint”) holds

E
{∫ T

0
HsDsds + HTX x ,α,π,D

T

}
≤ x ,

where Ht = γtYtZt , and γt = exp{−
∫ t
0 rsds}.
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Wider-sense Strategies

Definition (wider-sense strategies)

A triplet of F-adapted processes (π, α,D) is called a wider-sense
strategy if π and D are admissible, but α ∈ F 2

p . Denote all
wider-sense strategies by A w (x). We call the process α in a
wider-sense strategy a pseudo-reinsurance policy.

Lemma (Existence of wider-sense strategies)

Assume (H1)– (H3). For any consumption process D and any
B ∈ FT such that E (B) > 0 and

E
{∫ T

0
HsDsds + HTB

}
= x , (12)

∃(π, α) such that (D, π, α) ∈ A w (x), and that

X x ,π,α,D
t > 0, ∀0 ≤ t ≤ T ; and X x ,π,α,D

T = B, P-a.s.
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Wider-sense Strategies

Sketch of the Proof.

Given a consumption rate process D, consider the BSDE:

Xt = B −
∫ T

t

{
rsXs +〈ϕs , θs 〉−Ds + ρs

∫
R+

ψ(s, z)ν(dz)
}

ds

−
∫ T

t
〈ϕs , dWs 〉+

∫ T

t

∫
R+

ψ(s, z)Ñp(dsdz). (13)

— (Tang-Li (1994), Situ (2000))

Define α(t, z)
4
= ψ(t,z)

f (t,z) — a pseudo-reinsurance policy =⇒

−
∫ T

t

{
ρs

∫
R+

ψ(s, z)ν(dz)ds +

∫
R+

ψ(s, z)Ñp(dsdz)
}

= −
∫ T

t

{
(1 + ρs)m(s, α)ds +

∫
R+

α(s, z)f (s, z)Np(dsdz)
}
,
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Wider-sense Strategies

The BSDE (13) becomes

dXt = {rtXt − Dt}dt + 〈ϕt , dW 0
t 〉−dNα

t , (14)

where W 0 is a Q-B.M. and Nα is a Q-local martingale.

“Localizing” ⊕ “Monotone Convergence” ⊕ “Exponentiating”
⊕ E (B) > 0 and D is non-negative:

γtXt = EQ
{
γTB +

∫ T

t
γsDsds

∣∣∣Ft

}
≥ EQ{γTB|Ft} > 0.

=⇒ P{Xt > 0, ∀t ≥ 0;XT = B} = 1.

Define πt
4
= [σ∗t ]

−1ϕt/Xt and note that

X0 = EQ
{
γTXT +

∫ T

0
γsDsds

}
= E

{
HTXT+

∫ T

0
HsDsds

}
= x

=⇒ (π, α,D) ∈ A w (x)!
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A Duality Method

Question

When will (π, α,D) ∈ A W (x)?

Following the idea of “Duality Method” (Cvitanic-Karatzas
(1993)), we begin by recalling the support function of [0, 1]

δ(x)
4
= δ(x |[0, 1])

4
=

{
0, x ≥ 0,
−x , x < 0.

Define a subspace of F 2
p :

D
4
= {v ∈ F 2

p : sup
t∈[0,R]

∫
R+

|v(t, z)|ν(dz) < CR , ∀R > 0}.

For each v ∈ D , recall that

m(t, δ(v)) =

∫
R+

δ(v(t, z))f (t, z)ν(dz), t ≥ 0.
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An Auxiliary (Fictitious) Market

The Fictitious Market

For v ∈ D , consider a market in which the interest rate and
appreciation rate are perturbed:

dPv ,0
t = Pv ,0

t {rt + m(t, δ(v))}dt,

dPv ,i
t = Pv ,i

t {(µi
t + m(t, δ(v))dt+

k∑
j=1

σij
t dW j

t }, i = 1, · · · , k.

Consider also a (fictitious) expense loading and interest rate

ρv (s, z , x)
4
= ρs + v(s, z)x , rα,vt = rt + m(t, αv + δ(v)).

Under the fictitious market, the reserve equation becomes

X v
t = x +

∫ t

0
X v

s rα,vs ds+

∫ t

0
X v

s 〈πs , σsdW 0
s 〉+Nα

t −
∫ t

0
Dsds.
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Some Remarks

for α ∈ F 2
p ,{
αv + δ(v) = |v |{α1{v≥0} + (1− α)1{v<0}}
rα,v = r ⇐⇒ m(t, αv + δ(v)) = 0.

(15)

If α is a (true) reinsurance policy (hence 0 ≤ α ≤ 1), then

0 ≤ α(t, z)v(t, z) + δ(v(t, z)) ≤ |v(t, z)|, ∀(t, z), -a.s.

Definition

For v ∈ D , a wider-sense strategy (α, π,D) ∈ A W (x) is called
“v -admissible” if

(i)
∫ T
0 |m(t, av + δ(v))|dt <∞, P-a.s.

(ii) X v 4
= X v ,x ,π,α,D ≥ 0, for all 0 ≤ t ≤ T , P-a.s.

A v (x)
4
= { all wider-sense v -admissible strategies}
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Some Remarks

Note:

If v ∈ D and (α, π,D) ∈ A v (x) such that{
0 ≤ α(t, z) ≤ 1;
δ(v(t, z)) + α(t, z)v(t, z) = 0,

dt × ν(dz)-a.e. , P-a.s.

then (α, π,D) ∈ A (x)(!) and and rα,vt = rt , t ≥ 0.

For any v ∈ D and (π, α,D) ∈ A v (x), define

γα,vt
4
= exp

{
−

∫ t

0
rα,vs ds

}
;

Hα,v
t

4
= γα,vt YtZt , ψ(t, z) = α(t, z)f (t, z),

ψ
v
t

4
=

∫
R+

ψ(t, z)v(t, z)ν(dz)
4
= mv (t, ψ).
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Some Remarks

Proposition

Assume (H1)—(H3). Then,

(i) for any v ∈ D , and (π, α,D) ∈ A v (x), the following budget
constraint still holds

E
{∫ T

0
Hα,v

s Dsds + Hα,v
T X v

T

}
≤ x ; (16)

(ii) if (π, α,D) ∈ A (x), then for any v ∈ D it holds that

X v ,x ,α,π,D(t) ≥ X x ,α,π,D(t) ≥ 0, 0 ≤ t ≤ T , -a.s. (17)

In other words, A (x) ⊆ A v (x), ∀v ∈ D .
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A BSDE with Super Linear Growth

In light of the BSDE argument before, we need to consider a
BSDE based on the “fictitious” reserve. But note that

dX v
t =

{
[rt + m(t, αv + δ(v))]X v

t − Dt + ρtm(t, α)
}

dt

+X v
t 〈πt , σsdW 0

t 〉−
∫

R+

α(t, z)f (t, z)Ñp(dtdz)

=
{

[rt + m(t, δ(v))]X v
t + ψ

v
t X v

t − Dt

}
dt

+ 〈ϕv
t , dW 0

t 〉−
∫

R+

ψ(t, z)Ñ0
p(dtdz).

where Ñ0
p(dtdz) = Ñp(dtdz)− ρtν(dz)dt, ϕv

t = X v
t σ

T
t πt .

Recall

W 0 is a Q-B.M. and Ñ0 is a Q-Poisson martingale measure.

m(t, η) = mf (t, η), m1(t, η) = ηt .
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A BSDE with Super Linear Growth

The corresponding BSDEs is therefore: for B ∈ L2(Ω; FT ),
v ∈ F 2

p , r v
t = rt + m(t, δ(v)):

yt = B −
∫ T

t

{
r v
s ys + ψ

v
s ys − Ds

}
ds −

∫ T

t
〈ϕs , dW 0

s 〉

+

∫ T

t

∫
R+

ψsÑ
0
p(dsdz). (18)

Note

The BSDE (18) is “superlinear” in both Y and Z !
(|ab| ≤ C (|a|p + |b|q), p, q > 1)

Continuous case:

Lepeltier-San Martin (1998), Bahlali-Essaky-Labed (2003),
Kobylanski-Lepeltier-Quenez-Torres (2003) ...

Jump case: Liu (2006), Liu-M. (2009)
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Main Result

Theorem

Assume (H1)–(H3). Assume further that processes r and D are all
uniformly bounded. Then for any v ∈ D and B ∈ L∞(Ω; FT ), the
BSDE (18) has a unique adapted solution (y v , ϕv , ψv ).

Define a “portfolio/pseudo-reinsurance” pair:

πv
t = [σT

t ]−1ϕ
v
t

y v
t

; αv (t, z) =
ψv (t, z)

f (t, z)
.

We call (πv , αv ) the portfolio/pseudo-reinsurance pair associated
to v .

Question:

When will (πv , αv ,D) ∈ A (x)?
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A Sufficient Condition

Theorem

Assume (H1)–(H3). Let D be a bounded consumption process,
and B be any nonnegative, bounded FT -measurable random
variable such that E (B) > 0. Suppose that for some u∗ ∈ D
whose associated portfolio/pseudo-reinsurance pair, denoted by
(π∗, α∗), satisfies that

u∗ ∈ argmaxvE
{

Hα∗,v
T B +

∫ T

0
Hα∗,v

s Dsds
}
,

where for any v ∈ D ,

Hα∗,v
t

4
= γα

∗,v
t YtZt , γα

∗,v
t

4
= exp

{
−

∫ t

0
[r v

s + m(s, α∗v))]ds
}
.

Then the triplet (π∗, α∗,D) ∈ A (x). Further, the corresponding
reserve X ∗ satisfies X ∗

T = B, P-a.s.
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An Utility Optimization Problem

Recall that U : [0,∞) 7→ [−∞,∞] is a “utility function” if it is
increasing and concave. Assume that U ∈ C 1, and

U ′(∞)
4
= limx→∞ U ′(x) = 0. Define

dom(U)
4
= {x ∈ [0,∞);U(x) > −∞}

x̄
4
= inf{x ≥ 0 : U(x) > −∞}

I
4
= [U ′]−1 (I is continuous and decreasing on (0,U ′(x̄+)),

extendable to (0,∞] by setting I (y) = x̄ for y ≥ U ′(x̄+))

“Truncated” Utility Function

for some K > 0, U is a utility function on [0,K ] but
U(x) = U(K ) for all x ≥ K . (The interval [0,K ] is called the
“effective domain” of U.)

A truncated utility function is “good” if U ′(x̄+) <∞.
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An Utility Optimization Problem

Given any UF U, we can define for each n,

Un(x) = U(xn)− 1

2
(xn)2 − nxn +

∫ x∧x̄n

0
ξn(y)dy ,

where U ′(xn) = n and U ′(x̄n) = 1
n , and

ξn(x) =


xn − x + n 0 ≤ x ≤ xn

U ′(x) xn ≤ x ≤ x̄n

1
n x > x̄n,

(19)

Then Un’s are good TUF’s with x̄ = 0, K = x̄n,

Un(0+) = Un(0) = U(xn)− 1

2
(xn)2 − nxn,

and Un(x) → U(x) as n →∞.
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An Utility Optimization Problem

Now let U be good TUF (WLOG: x̄ = 0, and U ′(0) <∞). Thus

U ′ : [0,K ] 7→ [U ′(K ),U ′(0)]

I (y) = [U ′]−1 : [U ′(K ),U ′(0)] 7→ [0,K ] is continuous and
strictly decreasing (extendable to [0,∞) by defining I (y) = 0
for y ≥ U ′(0) and I (y) = K for y ∈ [0,U ′(K )])

In particular, I is bounded on [0,∞)(!).

Note

If U is a good TUF with effective domain [0,K ], and

Ũ(y)
4
= max

0<x≤K
{U(x)− xy}, 0 < y <∞.

is the Legendre-Fenchel transform of U. Then it holds that

Ũ(y) = U(I (y))− yI (y), ∀y > 0.
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Modified Preference Structure

We now modify the so-called “preference structure” (see
Karatzas-Shreve’s book) to the good TUF’s:

Definition

A pair of functions U1 : [0,T ]× (0,∞) 7→ [−∞,∞) and
U2 : [0, ,∞) 7→ [−∞,∞) is called a “modified (von
Neumann-Morgenstern) preference structure” if

(i) for fixed t, U1(t, ·) is a UF with (subsistence consumption)

x̄1(t)
4
= inf{x ∈ R;U1(t, x) > −∞} being continuous on

[0,T ], and U1 and U ′
1 being continuous on

D(U1)
4
= {(t, x) : x > x̄1(t), t ∈ [0,T ]};

(ii) U2 is a good TUF with (subsistence terminal wealth)
x̄2 = inf{x : U ′

2(x) > −∞}.
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Utility Optimization Problem

Assume that (U1,U2) is a modified preference structure, with
effective domain of U2 being [0,K ]. For (π, α,D) ∈ A (x), define

Cost functional:

J(x ;π, α,D)
4
= E

{∫ T

0
U1(t,Dt)dt + U2

(
X x ,α,π,D

T

)}
.

Value function:

V (x)
4
= sup

(π,α,D)∈A (x)
J(x ;π, α,D).

Duality Method

First find a (wider-sense) optimal strategy via fictitious market,
then verify that it is actually a true strategy using the sufficient
condition.
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The procedure

Fix v ∈ D .

∀(π, α,D) ∈ A v (x), denote the “fictitious” reserve by X v .

The “fictitious” budget constraint:

x ≥ EQ
{
γα,vT X v

T+

∫ T

0
γα,vs Dsds

}
= E

{
Hα,v

T X v
T+

∫ T

0
Hα,v

s Dsds
}

Define I1(t, ·) = [U ′
1(t, ·)]−1 and I2 = [U ′

2]
−1,

X α
v (y)

4
= E

{
Hα,v

T I2(yH
α,v
T )+

∫ T

0
Hα,v

t I1(t, yH
α,v
t )dt

}
, y > 0.

( =⇒ X α
v (·) is continuous, decreasing, and X α

v (0+) = ∞.)

Define Y α
v (x) = inf{y : X α

v (y) < x} 4= [X α
v ]−1(x) ∈ (0, y0),

where y0
4
= sup{y > 0;Xv (y) > Xv (∞)}
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The procedure

The “fictitious” budget constraint implies that V (x) = −∞
whenever x < X α

v (∞). Thus may assuem x > X α
v (∞).

consider the problem of maximizing
J̃(D,B)

4
= E

{∫ T

0
U1(t,D(t))dt + U2(B)

}
s.t. E

{∫ T

0
Hα,v

t Dtdt + Hα,v
T B

}
≤ x .

where D is a consumption process and B ∈ L∞FT
(Ω). s.t.,

”Lagrange multiplier”: define

Jαv (D,B; x , y)
4
= xy + E

∫ T

0
[U1(t,D(t))− yHα,v

t Dt ]dt

+E [U2(B)− yHα,v
T B]

≤ xy + E
{∫ T

0
Ũ1(t, yH

α,v
t )dt + Ũ2(yH

α,v
T )

}
.
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The procedure

Note

The equality holds ⇐⇒ Dα,v
t = I1(t, yH

α,v
t ) and Bα,v = I2(yH

α,v
T ),

0 ≤ t ≤ T , P-a.s.

This leads to the following special “Forward-Backward SDE”:

Ht = 1 +

∫ t

0
Hs [rs + m(s, δ(v) + αv))]ds −

∫ t

0
Hs 〈 θs , dWs 〉

+

∫ t

0

∫
IR+

Hs−ρsÑp(dsdz);

Xt = I2(yHT )−
∫ T

t

{
Xs[rs +m(s, δ(v)+αv)+〈πs , σsθs 〉]

+(1+ρs)m(s, α)
}

ds −
∫ T

t
Xs 〈πs , σsdWs 〉

+

∫ T

t

∫
IR+

α(s, z)f (s, z)Np(dsdz)+

∫ T

t
I1(s, yHs)ds,
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Main Result

Theorem

Assume (H1)–(H3). Let (U1,U2) be a modified preference
structure. The following two statements are equivalent:

(i) For any x ∈ IR, the pair B∗
4
= I2(Y (x)HT ) and

D∗
t
4
= I1(t,Y (x)Ht), satisfy

V (x) = E
{∫ T

0
U1(t,D

∗
t )dt + U2(B

∗)
}

= sup
(π,α,D)∈A (x)

J(x ;π, α,D),

where Y (x) is such that

x = E
{∫ T

0
I1(t,Y (x)Ht)dt + I2(Y (x)HT )

}
;
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Main Result

(ii) There exists a u∗ ∈ D , such that the FBSDE (20) has an
adapted solution (H∗,X ∗, π∗, α∗), with y satisfying

x = E
{∫ T

0
I1(t, yH

∗
t )dt + I2(yH

∗
T )

}
. (20)

In particular, if (i) or (ii) holds, then (π∗, α∗,D∗) ∈ A (x) is an
optimal strategy for the utility maximization insurance/investment
problem.
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Sketch of proof

“(i) =⇒ (ii)”:

Assume (π∗, α∗,D∗) ∈ A (x) is s.t. Xπ∗,α∗,D∗

T = B∗, and that

J(x ;π∗, α∗,D∗) = V (x) = E
{∫ T

0
U1(t,D

∗
t )dt + U2(B

∗)
}
.

Define u∗(t, z) = 1{α∗(t,z)=0} − 1{α∗(t,z)=1}. Then |u∗| ≤ 1 and

δ(u∗) + α∗u∗ = |u∗|{α∗1{u∗≥0} + (1− α∗)1{u∗<0}} ≡ 0.

=⇒ m(·, δ(u∗) + α∗u∗) = 0, γα
∗,u∗ = γ, and Hα∗,u∗ = H. (since

X ∗
T = B∗ = I2(Y (x)HT ))

=⇒ (H,X ∗, π∗, α∗) solves FBSDE (20) with y = Y (x) and
v = u∗.
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Sketch of proof

“(ii) =⇒ (i)”:
Assume that for some u∗ ∈ D , FBSDE (20) has an adapted

solution (H∗,X ∗, π∗, α∗) with y = Y α∗
u∗ (x)

4
= Y ∗(x). Define

D∗
t = I1(t,Y

∗(x)H∗
t ), t ≥ 0, B∗

4
= I2(Y

∗(x)H∗
T ).

Since (D∗,B∗) ∈argmaxJα
∗

u∗ (x ,Y ∗(x);D,B) (the Lagrange-
Multiplier Problem), we must have

x = E
{∫ T

0
H∗

t D∗
t dt + H∗B∗

}
,

and

V ∗(x) = sup
(D,B)

Jα
∗

u∗ (· · · ) = E
{∫ T

0
U1(t,D

∗
t )dt + U2(B

∗)}.

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 56/ 58



Sketch of Proof

Note: I2 is bounded(!) =⇒ |B∗| ≤ K , and by the budget
constraint, for any other v ∈ D

E
{∫ T

0
Hα∗,v

t D∗
t dt + Hα∗,v

T B∗
}
≤ x = E

{∫ T

0
H∗

t D∗
t dt + H∗

TB∗
}
.

=⇒ (α∗, π∗,D∗) ∈ A (x) (Sufficient Condition),
=⇒ 0 ≤ α∗(t, z) ≤ 1, m(t, α∗u∗ + δ(u∗)) = 0, and X ∗

0 = x .
=⇒ H∗ = H, Y ∗(x) = Y (x), and X ∗ = X x ,π∗,α∗,D∗

.
=⇒ (D∗,B∗) become the same as that defined in (i), and

V ∗(x) = V (x) = E{
∫ T

0
U1(t,D

∗
t )dt + U2(B

∗)}.
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