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@ Reinsurance and Stochastic Control Problems
© Proportional Reinsurance with Diffusion Models
© General Reinsurance Problems

@ Admissibility of Strategies

© Existence of Admissible Strategies

@ Utility Optimization
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Reinsurance Problem

An insurance company may choose to “cede” some of its risk to a
reinsurer by paying a premium. Thus the reserve may look like

t t
Xe=x+ / ch(1+ ps)ds — / / h(s, x)u(dxds),
0 o JrR,

where h is the “retention function”
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Reinsurance Problem

An insurance company may choose to “cede” some of its risk to a
reinsurer by paying a premium. Thus the reserve may look like

t t
Xe=x+ / ch(1+ ps)ds — / / h(s, x)u(dxds),
0 o JrR,

where h is the “retention function”

Common types of retention functions:
e h(x) = ax, 0 < a <1 — Proportional Reinsurance

e h(x) = aAx, a>0— Stop-loss Reinsurance
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Reinsurance Problem

Basic Idea

An insurance company may choose to “cede” some of its risk to a
reinsurer by paying a premium. Thus the reserve may look like

t t
Xe=x+ / ch(1 + ps)ds — / / h(s, x)u(dxds),
0 o JrR,

where h is the “retention function”

Common types of retention functions:
e h(x) =ax, 0 < a <1— Proportional Reinsurance

e h(x) = aAx, a>0— Stop-loss Reinsurance

Purpose

Determine the “reasonable” reinsurance premium, find the "best”
reinsurance policy,..., etc.
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Generalized Cramér-Lundberg model

e (Q,%,P) — a complete probability space
o W = {W;}+>0— a d-dimensional Brownian Motion

o p = {p:t}+>0 — stationary Poisson point process, 1. W

N,(dtdz) — counting measure of p on (0,00) x Ry
N,(dtdz) = E(N,(dtdz)) = v(dz)dt

F=FYQFr,

FIE {:FP-predible, E J)| [y, [o|9dvds < 00, q > 1}

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 4/ 58



Generalized Cramér-Lundberg model

e (Q,%,P) — a complete probability space
o W = {W;}+>0— a d-dimensional Brownian Motion

o p = {p:t}+>0 — stationary Poisson point process, 1. W

N,(dtdz) — counting measure of p on (0,00) x Ry
N,(dtdz) = E(N,(dtdz)) = v(dz)dt

F=FYQFr,

F,‘,’é{go:Fp—predi'bIe, EfOTfR+]g0|‘7dVds < oo, q>1}

t+
S, :/ / f(s,x,w)Np(dsdx), t>0, feF, (1)
0 Ry

Compound Poisson Case: f(t,z) =z, v(Ry) = A
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Profit Margin Principle

A "“Counting Principle” for Reinsurance Premiums

@ p— original safety loading of the cedent company

@ p’'— safety loading of the reinsurance company

e p*— modified safety loading of the cedent company (after
reinsurance)

If the claim size is U, then the “profit margin principle’ states

(1+p)E[U] = (14 p")E[U — h(U)] + (1 + p*)E[h(U)]. (2)

-~

original premium premium to the modified premium
reinsurance company

= p — "“Cheap” Reinsurance

p" #£ p® — “Non-cheap” Reinsurance
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Existing Literature

@ Stop-Loss Reinsurance (e.g., Sondermann (1991), Mnif-Sulem
(2001), Azcue-Muler (2005), ...)
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@ Proportional Reinsurance

e Diffusion approximation: dX; = padt + ocadWy, Xog = x
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Existing Literature

@ Stop-Loss Reinsurance (e.g., Sondermann (1991), Mnif-Sulem
(2001), Azcue-Muler (2005), ...)
@ Proportional Reinsurance

e Diffusion approximation: dX; = padt + ocadWy, Xog = x
(e.g., Asmussen-Hojgaard-Taksar (2000), ...)

o General reserve models (Liu-M. 2009, ...)
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Proportional Reinsurance with Diffusion Models

The following case study is based on Hojgaard-Taksar (1997).

Consider the reserve with “proportional reinsurance” :

t
Xy = x+ / ac(l+ ps)ds — aS;.
0

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 7/ 58



Proportional Reinsurance with Diffusion Models

The following case study is based on Hojgaard-Taksar (1997).

Consider the reserve with “proportional reinsurance” :
t
Xy = x+ / ac(l+ ps)ds — aS;.
0

Replacing this by the following “Diffusion Model":

t t
Xt =X +/ /,LO[tdt +/ O'Oétth, t> 0, (3)
0 0

where 1 >0, 0 > 0, and o € [0,1] is a stochastic process
representing the fraction of the incoming claim that the insurance
company retains to itself. We call it a “admissible reinsurance
policy’ if it is FW-adapted.
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Proportional Reinsurance with Diffusion Models

@ “Return Function":
A T
J(x; o) = E/ e X dt,
0

where 7 = 7% = inf{t > 0 : X{°* = 0} is the ruin time and
¢ > 0 is the “discount factor".
@ "“Value Function”:

V(x) = sup J(x; @)
acd

Roscoff 3/2010 8/ 58

Jin Ma (USC) Finance, Insurance, and Mathematics



Proportional Reinsurance with Diffusion Models

@ “Return Function”:

J(x; ) 2 E/ e X dt,
0

where 7 = 7% = inf{t > 0 : X{°* = 0} is the ruin time and
¢ > 0 is the “discount factor".
@ "“Value Function”:

V(x) = sup J(x; @)
acd

Note

For any a € & and x > 0, define & = at1j;<rxay. Then
X = 7% —  J(x,&) = J(x, ). we can work on

' (x) 2 {aed 1 ar= Ooofor all t > 7%} and

J(x; @) 2 E/ e X dt, a € o'(x).
0
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The HJB Equation

1. The Concavity of V.
o Forany x!,x2 >0and A € (0,1), let &' € &(x;), i = 1,2.
Define € 2 Ax! + (1 — A)x2, a 2 Aa! + (1 — A)a2.
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The HJB Equation

1. The Concavity of V.
o Forany x!,x2 >0and A € (0,1), let &' € &(x;), i = 1,2.
Define € 2 Ax! + (1 — A)x2, a 2 Aa! + (1 — A)a2.

e Denote X' = X and 1/ = TXf’ai, i =1,2. Then by the
linearity of the reserve equation (3) one has

Xe 2 X5 = X1 (1 - NX2, and 1280 =1y g2,

— J(&,0) = M(xE o) + (1= N)J(x2,a?).

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 9/ 58



The HJB Equation

1. The Concavity of V.
o Forany x!,x2 >0and A € (0,1), let &' € &(x;), i = 1,2.
Define € 2 Ax! + (1 — A)x2, a 2 Aa! + (1 — A)a2.

e Denote X' = X and 1/ = TXf’ai, i =1,2. Then by the
linearity of the reserve equation (3) one has

Xe 2 X5 = X1 (1 - NX2, and 1280 =1y g2,

— J(&,0) = M(xE o) + (1= N)J(x2,a?).
e Ve >0, choose o, s.t. J(x',a') > V(x') —¢g/2, i =1,2.

= J(&, @) = M(xt, at) + (1 — N)J(x?,a?)
>AVEH) + (1= NV(x?) —¢

= V() > AV +(1-A)V(x®)—e = Done! ®
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The HJB Equation

2. The HIJB Equation.
@ Let 7 be any F-stopping time. By “Bellman Principle’

TYNAT R o R
V(x)= sup E {/ e XV dt 4 e (TUAT) V(Xf.f;T)} )
acd (x) 0

e Vo € &/ and h>0|etTh:T£éhAinf{t: | X — x| > h}.
Then 7" < 00, a.s. and 7" — 0, as h — 0, a.s.

e Assume V € C2. For any a € [0,1], define a = a € /. Then
for any h < x, we have 7" < 7% Letting 7 = 7" in (4) and
applying 1t6 (to F(t,x) = e “*V/(x)) we deduce

OZE/
0
L

where [£2g](x) = 58" (x) + pag'(x) — cg(x).

h

e X dt + e [L? V](X;(’a)dt} :
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The HJB Equation

@ Letting h — 0, one has
0> x+ [Z?V](x).

= 02> x+ maxye[o1][-£?V](x), since a is arbitrary.
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The HJB Equation

@ Letting h — 0, one has
0> x+ [Z?V](x).
= 02> x+ maxye[o1][-£?V](x), since a is arbitrary.

@ On the other hand, Vé > 0, we choose a* € &7 (x) s.t.

Toz*

Th* * *
V(x) < E {/ e X dt + e o V(X )} +0.
0
Letting 6 = E[7/.]? and applying It& again we have

'Th*
0< 1 E / e~ {XO + max|.Z7V](XX) dt + 6
E[Ta* 0 a

— X + max,eo,1j[-£?V](x), as h — 0.
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The HJB Equation

We obtain the HJB equation:

o2a?
max { V" (x) + paV'(x) — cV(x) + x} =0,
a€[0,1] 2

V(0) = 0.

(4)

We shall construct a solution to the HJB equation (4) that is
concave and C? by using the technique of “Principle of Smooth
fit" that we used before.

@ First we note that if
2 2
a(x) € argmax,co.1] {—% V" + paV' —cV + x}, then the
first order condition tells us that

() = - Ly, )
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Principle of Smooth Fit

@ Plugging this into the HJB equation (4) we get

_ eV

T2V~ V) Fx =0 xel0,0).  (6)
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Principle of Smooth Fit

@ Plugging this into the HJB equation (4) we get

_ eV

T2V~ V) Fx =0 xel0,0).  (6)

Find a C? function X : R [0, 00), such that V/(X(z)) = e~?!
(Note: Since V is concave, one could argue that the Implicit
Function Thm applies to equation: F(X,z) = V/(X) —e %2 =0.)
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Principle of Smooth Fit

@ Plugging this into the HJB equation (4) we get

_ eV

T2V~ V) Fx =0 xel0,0).  (6)

Find a C? function X : R [0, 00), such that V/(X(z)) = e~?!
(Note: Since V is concave, one could argue that the Implicit
Function Thm applies to equation: F(X,z) = V/(X) —e %2 =0.)

4

e Since V/(X(z)) = e % and V"(X(2)) = — €

X2 replacing x
by X(z) in (6) we obtain
2
2 X(@e - VIX@) X&) =0 (1)
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Principle of Smooth Fit

Differentiating (7) w.r.t. z and eliminating V:

M2 " ,u,2 / /
-z -z _
ﬁX (Z)e — (?‘i‘C) e X(Z)+X(Z) =0.

Therefore, denoting ~ 2 202 /12, the equation becomes

X"(z) = (1 + ey —ve")X'(2) = 0. (8)

Jin Ma (USC)
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Principle of Smooth Fit

o Differentiating (7) w.r.t. z and eliminating V:

N2 " ,u,2 / /
-z -z _
ﬁX (Z)e — <F+C) e X(Z)+X(Z) =0.

Therefore, denoting ~y 2 202 /12, the equation becomes
X"(z) = (1+cy —~e*)X'(z) = 0. (8)

o Solving (8) explicitly we have X'(z) = kjellTe7)2=7¢ of

X(z) = kl/ e(reNy=re" gy 4k,

)
ez

- kl/ y e Wdy + ko, (v e =)
0

—This is a I-integral!
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Principle of Smooth Fit

@ Let G be the c.d.f. of a Gamma distribution with parameter
(evy+1,1/5). Then

Mey+1)

X(z) =k yertl

G(ez) + ky = le(eZ) + ky.
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Principle of Smooth Fit

@ Let G be the c.d.f. of a Gamma distribution with parameter
(evy+1,1/5). Then

Mey+1)

X(z) =k yertl

G(ez) + ky = le(ez) + ky.

o Clearly ko = X(—o00) > 0. By definition of X we see that

_In(V'(X)):In(G_1<X;1k2>> or V'(x):ﬁ.
Tk

= ot = e (e (). <2

where g is the density function of G.
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Principle of Smooth Fit

o Change variable: y = G™((x — k2)/k1), we have

o() = aly) = Ydye(y).  y>0

@ Since &(0) =0 and &(o0) = oo, we can find a y; € (0,00)
such that &(y;1) = 1. Also, since

&(y)=Ky“e ¥ (cy+1—-1y) >0,
A
ko < x < kiG(y1) + k2 = xq,

& is strictly increasing on (kz,x1), and &(y1) = a(x1) = 1.
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Principle of Smooth Fit

o Change variable: y = G™((x — k2)/k1), we have

o() = aly) = Ydye(y).  y>0

@ Since &(0) =0 and &(o0) = oo, we can find a y; € (0,00)
such that &(y;1) = 1. Also, since
&(y) =KyTe ™ (ey+1-7y) >0,
A
ky < x < kiG(y1) + ko = x1,

& is strictly increasing on (kz,x1), and &(y1) = a(x1) = 1.

For otherwise extending G~ = 0 on (—00,0] we have a(x) =0
for x < kp. Then HJB equation implies V(x) = —x/c, for x < ko.
But for such V the maximizer of (7) cannot be zero, whenever

u > 0, a contradiction.
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Principle of Smooth Fit

@ Thus

X 1
V(x):/  duthks, O0<x<x. (9
o 6 (%)
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Principle of Smooth Fit

@ Thus

x 1
V(x):/ — —du+ks, 0<x<x. (9)
0 o (k)

@ Also, since a(x) 11 as x | xq, we define a(x) =1 for x > xy.
But with a = 1 (4) becomes an ODE:

2
% V/(x) + V' (x) — cV(x) +x =0,  x € [0,00).
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Principle of Smooth Fit

@ Thus

x 1
V(x):/ — —du+ks, 0<x<x. (9)
0 o (k)

@ Also, since a(x) 11 as x | xq, we define a(x) =1 for x > xy.
But with a = 1 (4) becomes an ODE:

2
% V/(x) + V' (x) — cV(x) +x =0,  x € [0,00).

@ Solving the non-homogeneous ODE we get

I

V(X) = f —+ — =+ K4er—X + k5er+x.
C C

o

—igy /B oc
where rp = —F——=——.
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Principle of Smooth Fit

e Note that by concavity of V we have V/(x) = (1) or
V(x) = O(x), as x — oo Thus ks = 0. Renaming the
constants we have

x
/ —dz, 0<x<x
Vi ={ P 61 (&) (10)
X r—x
-+ - + koe X > X1.
C C
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Principle of Smooth Fit

e Note that by concavity of V we have V/(x) = (1) or
V(x) = O(x), as x — oo Thus ks = 0. Renaming the
constants we have
X 1
/ ——dz, 0<x<x1
Vi) =4 o 6 (z) (10)

—+—2+k26r_x X > X1.
C C

Principle of Smooth Fit
Find k1 and ko so that V is C2 at x = x1.
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Principle of Smooth Fit

e Note that by concavity of V we have V/(x) = (1) or
V(x) = O(x), as x — oo Thus ks = 0. Renaming the
constants we have

/ — L 4 0<x<x
—1 z
Vix)=¢ 70 G (k_> (10)

—+—2+k26r_x X > X1.
C C

Principle of Smooth Fit
Find k1 and ko so that V is C2 at x = x1.

@ First note that

1
V'(x1+) = - +hor_e™, V'(x1+) = kor_e™ .
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Principle of Smooth Fit

@ Denoting 3 = Kye'™* and noting that V/(x1) = 1/y1, we

derive from the HJB equation that V" (x1) = —u/o?V'(x1).
1 1 1

== — = —+f0r; —%—:ﬁrz.
yn ¢ o n
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Principle of Smooth Fit

e Denoting 5 = Kye™* and noting that V/(x1) = 1/y1, we

derive from the HJB equation that V" (x1) = —u/o?V'(x1).
1 1 1

== — = —+f0r; —%—:ﬁrf.
yn ¢ o n

@ Solving for (y1,3) we obtain

(1. 8) = (C (1 + 0‘2/1;‘_) ’ c(azrf_ljr /M—)> '
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Principle of Smooth Fit

e Denoting 5 = Kye™* and noting that V/(x1) = 1/y1, we

derive from the HJB equation that V" (x1) = —u/a?V'(x1).
1 1 1

== — = —+f0r; —%—:ﬁrf.
ynn ¢ o°n

@ Solving for (y1,3) we obtain

(1. 8) = <C (1 + o'éur_) ’ c(aZrE_/jr /M—)> '

e by definition of r_ we see that (y1,3) € (0,¢) x (—oc,0).
Recall that y; = G~1(x1/k1) we have

X1

1
;A ). Skign)

B o2 a?G(y1)
= ()= (uylg(yl)’ ng(yl))
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Theorem

The function

X 1
/ — = ik, 0<x<x
V(x) = o Gt (k£1> (11)
=+ 5 4 g~ X > X1,
c ¢
_ —u _ 9°G(n) N
where 3 = ) T gln)” ki = my18(y1)’

yi=c (1 -+ ;%) is a concave solution to the HJB equation (4).

4

Proof. Plug in and check! |
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Theorem

The function

X 1
/ — = ik, 0<x<x
V(x) = o Gt <k£1) (11)
=+ 5 4 g~ X > X1,
c c
_ —u _ 9°G(n) N
where 3 = ) T gln)” kg = ny18(y1)’

yi=c (1 -+ ;%) is a concave solution to the HJB equation (4).

4

Proof. Plug in and check! |

This theorem does not give the solution to the optimization
problem. In other words: the function V' may not be the value
function!
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A Verification Theorem

In order to check that the C? function V that we worked so hard
to get is indeed the value function, and the function a(x) we have
obtained is the optimal policy.

Theorem
Let V be the function given by (11), and define a process

a; 2 a(Xy), where
M GLIGHE)

)= yig(y1)
1 X > X1,

X < X1

Then V/(x) is the value function and o* is an optimal strategy.
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General Reinsurance Problems

We now consider the following more general dynamics of a risk
reserve:

Xt:x+/0t(1+,0?)co‘(s)ds—/ot/RJroc(s,z)f(s,z)Np(dsdz),

where ¢ is the adjusted premium rate after reinsurance.
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General Reinsurance Problems

We now consider the following more general dynamics of a risk
reserve:

Xt:x+/0t(1+,0?)c°‘(s)ds—/ot/RJroc(s,z)f(s,z)Np(dsdz),

where ¢ is the adjusted premium rate after reinsurance.

What is the general form of the reinsurance policy and the
reasonable form of c“?
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General Reinsurance Problems

We now consider the following more general dynamics of a risk
reserve:

Xt:x—i—/ot(l—l—p?)co‘(s)ds—/Ot/R+oc(s,z)f(s,z)Np(dsdz),

where c® is the adjusted premium rate after reinsurance.

What is the general form of the reinsurance policy and the
reasonable form of c“?

A (proportional) reinsurance policy is a random field
a:[0,00) x Ry x Q+ [0,1] such that for each fixed z € IR, the
process a(-, z,-) is predictable.

v
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@ The dependence of a reinsurance policy « on the variable z
amounts to saying that the proportion can depend on the
sizes of the claims.

@ One can define a reinsurance policy as a predictable process
a¢, but in general one may not be able to find an optimal
strategy, unless S; has fixed size jumps. The similar issue also
occurs in utility optimization problems in finance involving
jump-diffusion models (See, e.g, X. X. Xue (1992).)

@ Given a reinsurance policy «, during time period [t, t + At]
the insurance company retains to itself

A [EHAL
[ % S]EHAL = / / afs, z)f (s, z)Np(dzds)
t R,
and cedes to the reinsurer

t+At
(1= a) « S]Eae 2 /t /R [1 — a(s, 2)]F(s, )N, (dzds).
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Dynamics for the Reserve with Reinsurance

e By “Profit Margin Principle”, one has:
(1+ pe) EP{[L * SIEHAT)
original premium
— (14 PDEPLI(L — ) * SIEFAT) (1 + p2)EP{[a + S]EFATY
premium to the reinsurance company modified premium

o At -0 —

(1+p)e = (1+p0) /R (1 - a(t, 2))F(t, 2)(d2)

+(1 —i—p?‘)/R a(t, z)f(t, z)v(dz).
e Denote 5/ :/0 /R+ als, z)f(s, z) Np(dzds), and

m(t,a) = /R alt, 2)F(t, 2)v(dz),
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Dynamics for the Reserve with Reinsurance

We see that a general dynamics of risk reserve

X, = x +/Ot(1+pg)m(s,a)ds—/ot/R+a(s,z)f(s,z)/vp(dsdz).
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Dynamics for the Reserve with Reinsurance

We see that a general dynamics of risk reserve

X, = x —i—/ot(l—i-p?)m(s,a)ds—/ot/R+a(s,z)f(s,z)Np(dsdz).

@ Whether a reinsurance is cheap or non-cheap does not change
the form of the reserve equation. We will not distinguish them
in the future.

@ If the reinsurance policy « is independent of claim size z, then

o = /0 a(s) /R (5, 2Ny( ) = /O “a(s)dS,

and m(t,a) = a(s)cs, as we often see in the standard
reinsurance framework.
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Reinsurance and Investment

@ The Market:
dP? = r,P0dt; (money market)
dP} = Pilpidt + 37y ofdW]], i=1,--- n. (stocks)

@ Portfolio Process:
o m(:) = (w%, . ,wf) — 7l is the fraction of its reserve X;

allocated to the it stock.

k k
o X; — ZwiXt =(1- Zﬁi)Xt — money market account.
i=1 i=1

o Consumption (Rate) Process:
D = {D; : t > 0} — .#-predictable nonnegative process
satisfying D € L([0, T] x R}) (may include dividend/bonus,
etc.).
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Dynamics of Reserve with Reinsurance and Investment

dX; = {Xt [rt + (e, iy — rtl)} + (14 pe)m(t, o) — Dt}dt

X, (e, e dWe ) — / a(t, 2)F(t, 2, )Ny (dtdz),
Ry

where 1 = (1,---,1)7. We call the pair (7, ) D-financing" .
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Dynamics of Reserve with Reinsurance and Investment

dXt = {Xt[rt—i—(Trt,,ut—rtl)} +(1+pt)m(t70é)—Dt}dt
X, (e, e dWe ) — / a(t, 2)F(t, 2, )Ny (dtdz),
Ry
where 1 = (1,---,1)7. We call the pair (7, a) D-financing" .
o Classical Model:
—r=0,p=07=0, f(t,x,) = x, v(dx) = AF(dx).
@ Discounted Risk Reserve:
—p=0,7=0, f(t,x, ) = x, v(dx) = AF(dx), but r > 0 is
deterministic

@ Perturbed Risk Reserve:
—r=0,p=07m=¢, f(t,x,)=x, v(dx) = AF(dx).
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Standing Assumptions

(H1) f € Fp, continuous in t, and piecewise continuous in z.
Furthermore, 30 < d < L such that

d<f(s,z,w) <L, V(s,z) € [0,00) x Ry, P-a.s.

The bounds d and L in (H1) could be understood as the
deductible and benefit limit. They can be relaxed to certain
integrability assumptions on both f and f~1.

(H2) The safety loading p and the premium c are both bounded,
non-negative FP-adapted processes,

(H3) The processes r, j, and o are F-adapted and bounded.
Furthermore, 36 > 0, such that o0 > §/, Vt € [0, T], P-a.s.
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Admissibility of Strategies

e « € [0,1] is intrinsic, cannot be relaxed.

@ o CANNOT be assumed a priori to be proportional to the
reserve X;

@ by nature of a reinsurance problem, (or by regulation) we
require that the reserve be aloft. That is, at any time t > 0,
Xf’”’a’D > C for some constant C > 0. We will set C = 0.
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Admissibility of Strategies

e « € [0,1] is intrinsic, cannot be relaxed.

@ o CANNOT be assumed a priori to be proportional to the
reserve X;

@ by nature of a reinsurance problem, (or by regulation) we
require that the reserve be aloft. That is, at any time t > 0,
th’”’a’D > C for some constant C > 0. We will set C = 0.

Definition (Admissible strategies)

For any x > 0, a portfolio/reinsurance/consumption (PRC for
short) triplet (7, «, D) is called “admissible at x”, if

X P >0 vtelo,T], P-as.

We denote the totality of all strategies admissible at x by 7 (x).
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A Necessary Condition

Define
° 0 = o7 Y (e — rel) — (risk premium)
° 2 exp{— fot rsds}, t > 0 — (discount factor)
° W0 W; + fo Osds
o 7, = exp{ — [y (05, dWs) =3 [ Hestds}
o Y, Zexp { IN Jr, In(1 + ps)Np(dsdz) — v(IRT) IN psds}

° Ht vt Y¢ Zy — state-price-density

Girsanov-Meyer Transformations

dQZ = ZTdP; de = YTdP; dQ = YTdQZ = YTZTG'P.
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A Necessary Condition

The following facts are easy to check:

@ The process Y is a square-integrable P-martingale;
@ The process Z is a square-integrable Qy-martingale;

@ For any reinsurance policy «, the process

N¢ 2 /Ot(l + ps)m(s, a)ds —/Ot+/R+a(s,z)f(s,z)Np(dsdz)

is a Qy-local martingale.

@ The process ZN® is a Qy-local martingale.

In the “Q"-world:

@ the process W0 is also a Q-Brownian motion,
e N%is a Q-local martingale.

o N“WO is a Q-local martingale.
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A Necessary Condition (Budget Constraint)
Under the probability @ the reserve process reads

t t t
Xt+/ %Dsds:x—i—/ Xs<7r,adeso>—/ vsdN.
0 0 0

The admissibility of (7, «, D) implies that the right hand side is a
positive local martingale, whence a supermartingale under Q!
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A Necessary Condition (Budget Constraint)

Under the probability @ the reserve process reads

t t t
Xt+/ %Dsds:x—k/ Xs<7r,adeSO>—/ vsdN2.
0 0 0

The admissibility of (7, «, D) implies that the right hand side is a
positive local martingale, whence a supermartingale under Q!
Theorem

Assume (H2) and (H3). Then for any PRC triplet
(m,a, D) € &/(x), the following (“budget constraint”) holds

.
E{ / HsDsds + Hy X™P } < x,
0

where H; = v:Y:Z;, and ¢ = exp{— fot rsds}.
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Wider-sense Strategies
Definition (wider-sense strategies)

A triplet of F-adapted processes (7, «, D) is called a wider-sense
strategy if m and D are admissible, but o € Fg. Denote all
wider-sense strategies by 7" (x). We call the process « in a
wider-sense strategy a pseudo-reinsurance policy.

Lemma (Existence of wider-sense strategies)

Assume (H1)- (H3). For any consumption process D and any
B € Zt such that E(B) > 0 and

.
E{/ HsDyds + HTB} = x, (12)
0

J(7, @) such that (D, 7, a) € &% (x), and that
X P >0, 90<t<T; and Xy"*° =B, P-as.

v
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Wider-sense Strategies

Sketch of the Proof.

@ Given a consumption rate process D, consider the BSDE:

-
Xe = B —/ {rsXs +{@s,0s) —Ds + ps w(s,z)y(dz)}ds
t Ry

-/ " W) 1 / ' / s odsde). (13

— (Tang-Li (1994), Situ (2000))

e Define a(t, z) = %((fj)) — a pseudo-reinsurance policy =
T ~
/ / U(s,2)(d2)ds + | (s, 2) i (dsdz)
Ry

= [ pamts. s+ [ als. (s (0500}
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Wider-sense Strategies

e The BSDE (13) becomes
dXi = {reX; — Die}dt + (@r, dWP ) —dNg,  (14)

where W9 is a Q-B.M. and N® is a Q-local martingale.

@ "Localizing” @ “Monotone Convergence” & “Exponentiating”
@ E(B) > 0 and D is non-negative:

-
e Xy = EQ{'yTB +/ %Dsds)yt} > EQ{y7B|#,} > 0.
t

— P{X, >0, Vt > 0; X7 = B} = 1.
e Define ¢ 2 [03]7 Yt/ X; and note that

Xo = EQ{fyTXT-l-/OTystds} - E{HTXT—l—/OTHsDSds} — x

= (m,a,D) € o"(x)! [ ]
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A Duality Method

When will (7, , D) € 7" (x)?
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A Duality Method

When will (7, , D) € 7" (x)?

Following the idea of “Duality Method’ (Cvitanic-Karatzas
(1993)), we begin by recalling the support function of [0, 1]

0, x>0,
—x, x<0.

5() 2 5(x][0.1]) 2 {
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A Duality Method

When will (7, , D) € 7" (x)?

Following the idea of “Duality Method’ (Cvitanic-Karatzas
(1993)), we begin by recalling the support function of [0, 1]

0, x>0,
—x, x<0.

5() 2 5(x][0.1]) 2 {

Define a subspace of F,f:

22 {ve Fg . sup / |v(t,z)|v(dz) < Cr, YR > 0}.
te[0,R] JR*

For each v € &, recall that

m(t,o(v)) = /R+ d(v(t,z))f(t,z)v(dz), t > 0.
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An Auxiliary (Fictitious) Market

The Fictitious Market

For v € 9, consider a market in which the interest rate and
appreciation rate are perturbed:

dPy® = PY{re + m(t,6(v))}dt,
k

dPy = PYH{(ui + m(t, 6(v))dt+> ofdWi}, i=1,-- k.
j=1

Consider also a (fictitious) expense loading and interest rate

p" (s, z, x) 2 ps +v(s,z)x, r" =r+ m(t,av+4d(v)).

Under the fictitious market, the reserve equation becomes

t t t
XY :x+/ Xs"r;’""ds—i—/ XY <7r5,05dW50)+Nf‘—/ Dsds.
0 0 0
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° foraEFg,

av+i(v) = \V|{041{v20} +(1 - a)l{v<0}} (15)
r*V =r <= m(t,av+46(v)) =0.

@ If v is a (true) reinsurance policy (hence 0 < v < 1), then

0 <a(t,z)v(t,z) +0(v(t,z)) <|v(t,z)|, V(t, z), -as.
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e fora € Fg,

av +6(v) = [v{alyse + (1 - a)lfycop} (15)
r*V =r <= m(t,av+46(v)) =0.

o If a is a (true) reinsurance policy (hence 0 < o < 1), then

0 <a(t,z)v(t,z) +0(v(t,z)) <|v(t,z)|, V(t, z), -as.

Definition

For v € 9, a wider-sense strategy (a, 7, D) € &/ (x) is called
“v-admissible” if

() [ Im(t,av + 8(v))|dt < oo, P-as.

(ii) XV 2 XvxmaD >0 forall 0< t < T, P-as.

oV (x) 2 { all wider-sense v-admissible strategies}

<
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Some Remarks

If ve 2 and (a,m,D) € o7V(x) such that

< < 1:
{ 0<a(tz) <L dt x v(dz)-a.e. , P-a.s.

o(v(t,z)) + a(t, z)v(t,z) =0,

then (o, 7,D) € &(x)(!) and and r*Y = r, t > 0.
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Some Remarks

If ve 2 and (a,m,D) € o7V(x) such that

< < 1:
{ 0<a(tz) <L dt x v(dz)-a.e. , P-a.s.

o(v(t,z)) + a(t, z)v(t,z) =0,

then (o, 7,D) € &(x)(!) and and r*Y = r, t > 0.

For any v € 2 and (7, a, D) € @7V(x), define

t
v & exp{—/ rsa"/ds};
0

YVt =
HOY 2 40vY,Z,  (t,2) = alt, 2)f(t, 2),
o £ /R¢(t,z)v(t,z)u(dz)émV(W).
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Some Remarks

Assume (H1)—(H3). Then,

(i) forany v € 2, and (7, «a, D) € o/Y(x), the following budget
constraint still holds

;
E{/o H Dyds + H%"X%} < x; (16)

(ii) if (7, a, D) € o/(x), then for any v € Z it holds that

Xv,x,a,Tr,D(t) > XxyOéJ",D(t) > (), 0<t< T, -a.s. (17)

In other words, </ (x) C &7V (x), Vv € 2.
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A BSDE with Super Linear Growth

In light of the BSDE argument before, we need to consider a
BSDE based on the “fictitious” reserve. But note that

dXy = {[rt + m(t, av -+ 5(W)XY — Dy + pem(t, a)}dt
FXY (e, 0udW0) — / a(t, 2)F(t, 2) N, (dtdz)
Ry

— {re mle SNIXE X - DY

+ (¥, dW2) / ¥(t, z) N3 (dtdz).

where Ng(dtdz) = N,(dtdz) — piv(dz)dt, of = XY o[ m:.

o W%isa Q-B.M. and N? is a Q-Poisson martingale measure.

O m(t777) = mf(tﬂ?): ml(t,ﬂ) =1t
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A BSDE with Super Linear Growth

The corresponding BSDEs is therefore: for B € L2(Q;.%7),

veF:r! =r+m(tdv)):

T .y T
Yt = B_/ {rs‘/ys+¢sys_DS}ds_/ <()057dWSO>
t t
T ~
+/ wsNg(dsdz). (18)
t JR,

Note
The BSDE (18) is “superlinear” in both Y and Z!
(lab] < C([al? +[b]%). p,q > 1)
e Continuous case:
Lepeltier-San Martin (1998), Bahlali-Essaky-Labed (2003),
Kobylanski-Lepeltier-Quenez-Torres (2003) ...

@ Jump case: Liu (2006), Liu-M. (2009)
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Main Result

Assume (H1)-(H3). Assume further that processes r and D are all
uniformly bounded. Then for any v € & and B € L>*(Q; %T), the
BSDE (18) has a unique adapted solution (y", ", ").
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Main Result

Assume (H1)-(H3). Assume further that processes r and D are all
uniformly bounded. Then for any v € & and B € L>*(Q; %T), the
BSDE (18) has a unique adapted solution (y", ", ").

Define a “portfolio/pseudo-reinsurance’ pair:

—1%0;.*/_ v _ wv(t’ Z)
] i a’(t,z) = flt.2)

w =[o]

We call (¥, @) the portfolio/pseudo-reinsurance pair associated
to v.
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Main Result

Assume (H1)-(H3). Assume further that processes r and D are all
uniformly bounded. Then for any v € & and B € L>*(Q; %T), the
BSDE (18) has a unique adapted solution (y", ", ").

Define a “portfolio/pseudo-reinsurance’ pair:

71S0¥_ v _ va(t’ Z)
] i a’(t,z) = flt.2)

w =[o]

We call (7Y, ") the portfolio/pseudo-reinsurance pair associated
to v.

When will (7, a", D) € o/(x)?
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A Sufficient Condition

Theorem

Assume (H1)-(H3). Let D be a bounded consumption process,
and B be any nonnegative, bounded .%r-measurable random
variable such that E(B) > 0. Suppose that for some u* € 9
whose associated portfolio/pseudo-reinsurance pair, denoted by
(7, «*), satisfies that

T
ut e argmava{Hg‘. B +/ Hg*"’Dsds},
0
where for any v € 9,
a*v D o*v a*v D ‘ v *
Ht =Vt Ych Yt =&Xpy — [rs + m(s,a V))]dS .
0

Then the triplet (7*,a*, D) € </ (x). Further, the corresponding
reserve X* satisfies X1 = B, P-a.s.

v
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An Utility Optimization Problem

Recall that U : [0, 00) — [—00, 0] is a “utility function” if it is
increasing and concave. Assume that U € C!, and

U'(o0) 2 limy_—oo U'(x) = 0. Define
e dom(V) 2 {x €]0,00); U(x) > —ox}
o %2 inf{x >0: U(x) > —oo}

012 [U']71 (1 is continuous and decreasing on (0, U'(%+)),
extendable to (0, 00| by setting /(y) = x for y > U'(x+))

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 45/ 58



An Utility Optimization Problem

Recall that U : [0, 00) — [—00, 0] is a “utility function” if it is
increasing and concave. Assume that U € C!, and
U'(00) 2 limy_oe U'(x) = 0. Define

e dom(V) 2 {x €]0,00); U(x) > —ox}

°ox2 inf{x > 0: U(x) > —oco}

012 [U']7 (I is continuous and decreasing on (0, U'(X+)),
extendable to (0, oc] by setting /(y) = x for y > U'(x+))

“Truncated” Utility Function

e for some K >0, U is a utility function on [0, K] but
U(x) = U(K) for all x > K. (The interval [0, K] is called the
“effective domain” of U.)

@ A truncated utility function is “good” if U'(x+) < oo.
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An Utility Optimization Problem

Given any UF U, we can define for each n,

1 XAX
K) = SR = [ )y,

Un(x) = U(x

o

where U'(x") = nand U'(x") = %, and

x"—x+n 0<x<x"
"(x) =4 U(x) X" < x < X" (19)
1 x> X",

n

Then U,'s are good TUF’s with X =0, K = X",
Un(0-) = Un(0) = U(x") = S(")2 = ",

and Up(x) — U(x) as n — oc.
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An Utility Optimization Problem

Now let U be good TUF (WLOG: x =0, and U’(0) < o0). Thus
o U':[0,K] — [U'(K), U'(0)]

o I(y)=[UT1: [U(K), U (0)] — [0, K] is continuous and
strictly decreasing (extendable to [0, c0) by defining /(y) =0
for y > U'(0) and I(y) = K for y € [0, U'(K)])

e In particular, / is bounded on [0, c0)(!).
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An Utility Optimization Problem

Now let U be good TUF (WLOG: x =0, and U’(0) < o0). Thus
o U [0.K] = [U(K), U'(0)]
o I(y)=[UT1: [U(K), U (0)] — [0, K] is continuous and
strictly decreasing (extendable to [0, c0) by defining I(y) =0
for y > U'(0) and I(y) = K for y € [0, U'(K)])

e In particular, / is bounded on [0, c0)(!).

If U is a good TUF with effective domain [0, K], and

~ A
Uly) = max {U(x) —xy}, 0<y<co.

is the Legendre-Fenchel transform of U. Then it holds that
O(y) = U(I(y)) = ¥I(y),  Vy>0. |
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Modified Preference Structure

We now modify the so-called “preference structure” (see

Karatzas-Shreve's book) to the good TUF's:

Definition

A pair of functions Uy : [0, T] x (0,00) — [—00,00) and

Uz : [0,,00) = [—00,00) is called a “modified (von

Neumann-Morgenstern) preference structure” if

(i) for fixed t, UL(t,-) is a UF with (subsistence consumption)
x1(t) 2 inf{x € R; U(t,x) > —oo} being continuous on
[0, T], and Uy and U; being continuous on
D) £ {(t,x) : x> =X(2), [0, T]};

(i) Us is a good TUF with (subsistence terminal wealth)
Xp = inf{x : Uj(x) > —o0}.
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Utility Optimization Problem

Assume that (Ui, U») is a modified preference structure, with
effective domain of U, being [0, K]. For (7, «, D) € <7/ (x), define

@ Cost functional:
J(x; 7, o, D) 2 / UltDt)dt+U2(XX“”D)}

@ Value function:

sup J(x; m, e, D).
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Utility Optimization Problem

Assume that (Ui, Uz) is a modified preference structure, with
effective domain of U, being [0, K]. For (7, «, D) € <7/ (x), define

@ Cost functional:
J(x; 7, o, D) 2 / U1tDt)dt+U2<XX0”rD)}

@ Value function:

sup J(x; m, e, D).

Duality Method

First find a (wider-sense) optimal strategy via fictitious market,
then verify that it is actually a true strategy using the sufficient
condition.
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The procedure

Fix v e 9.

e Y(m, a, D) € o7V(x), denote the “fictitious” reserve by X".

@ The “fictitious” budget constraint:

T T
x> EQ{fy‘;‘."’X¥+ / fy?"’Dsds} - E{H?‘J"X%—i— / Hso“"Dsds}
0 0

o Define I(t,-) = [UL(t,")] " and b = [U5]" 2,
A o,V a,V T a,V a,VvV
22(y) = E{HF (yHF )+ / HEY (e, yHE)de f, y > 0.
0

(= Z2(-) is continuous, decreasing, and 2Z,*(0+) = c0.)

e Define Z*(x) = inf{y : Z*(y) < x} 2 [2.2]71(x) € (0, yo),
where yg 2 sup{y > 0; Z,(y) > Z,(c0)}
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The procedure

@ The “fictitious” budget constraint implies that V(x) = —oo
whenever x < 2 %(c0). Thus may assuem x > 2 *(00).
@ consider the problem of maximizing

(D, B) / Us(t, D(t))dt + Ua(B) )
T

s.t. E{/ Hi™" Dedt + HY B < x
0

where D is a consumption process and B € L3 (). s.t.,
@ "Lagrange multiplier”": define

i
(D, B;x,y) 2 Xy+E/ [UL(£, D(£)) — yHO* Dy dt
0

LE[Us(B) — yH2V B

IN

.
xy + E{/ Un(t, yHE"")dt + Uz(yH?’V)}-
0
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The procedure

The equality holds <= D" = l(t,yH;"") and B*Y = hL(yHT"),
0<t<T, Pas.

This leads to the following special “Forward-Backward SDE":

He=1+ /t Hulrs + m(s, 8(v) + av))lds — /t H, (0, dW, )
0 0

t
+// Hs— psNp(dsdz);
0 Ry

X = kiyHr) - [ {000 )

t

H1+ps)m(s, @) ds—/ Xs (s, 0sdWs )

\ // afs, z)f(s, z)N, (dsd2)+/ h(s, yHs)ds,
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Main Result

Theorem

Assume (H1)-(H3). Let (U1, Uz) be a modified preference
structure. The following two statements are equivalent:

(i) For any x € IR, the pair B* 2 (% (x)Hy) and
D¥ £ I(t, ¥ (x)H,), satisfy

V(x) = E{/OT Ur(t, Df)dt + Us(B")}

= sup J(x; m, o, D),
(m,a,D)ea (x)

where % (x) is such that

x = E{ /OT h(t, % (x)Hy)dt + /2(@(X)HT)};

<
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Main Result

(ii) There exists a u* € 2, such that the FBSDE (20) has an
adapted solution (H*, X*, 7%, *), with y satisfying

x = E{ /OT h(t, yH?)dt + /2(yH*T)}. (20)

In particular, if (i) or (ii) holds, then (7*,a*, D*) € &7 (x) is an
optimal strategy for the utility maximization insurance/investment
problem.
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Sketch of proof

‘(i) = (ii)":

Assume (7%, o*, D*) € o/ (x) is s.t. X;T.*’a*’D* = B*, and that
T
S 7,0, D) = V(x) = E{/ Ui(t, D})dt + Un(B") .
0
Define u*(t,z) = 1{a+(t,2)=0} — L{a*(t,z)=1}- Then |[u*| <1 and
(S(U*) + ofut = |U*|{a*1{u*20} + (1 — Oé*)].{u*<o}} =0.

— m(-,6(u*) + a*u*) =0, v ¢ =+, and H*Y" = H. (since
X;(— = B* = /Q(Q(X)HT))

= (H, X*,7*,a") solves FBSDE (20) with y = #(x) and

v = u*.
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Sketch of proof

‘(i) = (i)":

Assume that for some uv* € &, FBSDE (20) has an adapted

solution (H*, X*, 7%, a*) with y = 72" (x) £ #*(x). Define
Df = h(t, 7" (x)HY), t>0, B*Z Lh(F*(x)H).

Since (D*, B*) cargmaxJ3 (x, #*(x); D, B) (the Lagrange-
Multiplier Problem), we must have

X = E{ /OT H; D} dt + H*B*},

and

i
VA(x) = sup () = E{/O Us(t, DY)dt + Us(B*)}.
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Sketch of Proof

Note: / is bounded(!) = |B*| < K, and by the budget
constraint, for any other v € &

T i T
E{/ HE™ Y D dt + HE "’B*} <x= E{/ H; D} dt + H:;B*}.
0 0
= (o, 7%, D*) € &/(x) (Sufficient Condition),
= 0 < o*(t,z) <1, m(t,a*u* 4+ 6(u*)) =0, and X5 = x.

fr— H>k e H, @*(X) = @(X)’ and X* — XXJI'*,Oé*,D*.
= (D*, B*) become the same as that defined in (i), and

i
VA (x) = V(x) = E{/O Us(t, DF)dt + Us(B"))}.
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