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A Different Look at the Reinsurance Problem

Recall the general form of a reserve equation with reinsurance:

dXe = b(Xe, ae, i) dt + o(m:)dB: — / [af](t, x)N(dxdt),
Ry

Xo = x.
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A Different Look at the Reinsurance Problem

Recall the general form of a reserve equation with reinsurance:
dXe = b(Xe, ae, i) dt + o(m:)dB: — / [af](t, x)N(dxdt),
Ry
Xo = x.

Suppose that the random field « is such that there exists some
predictable pair (3, u) so that the martingale

My 2 /0 ' BodB. + /O t /R LUCRICED

satisfies the following property:
d[M"]y = dt + udM, t > 0. (1)

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 3/ 37



A Different Look at the Reinsurance Problem

Recall the general form of a reserve equation with reinsurance:
dXe = b(Xe, ae, i) dt + o(m:)dB: — / [af](t, x)N(dxdt),
Ry
Xo = x.

Suppose that the random field « is such that there exists some
predictable pair (3, u) so that the martingale

t t
My 2 / 8.dB, + / / [f](s, x) R (dxds)
0 o JRr:
satisfies the following property:
d[M"]y = dt + udM, t > 0. (1)

Note: Since A[MY]; = (AM{)? = us AMY, u exactly controls the
jumps of the reserve, that is, the claim size!
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A Different Look at the Reinsurance Problem

@ The equation (1) implies that ( M), = t. A martingale with
such a property is called a “normal martingale’ (Dellacherie
(1989)) and the equation (1) is called the “structure
equation” (Emery (1989))
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A Different Look at the Reinsurance Problem

@ The equation (1) implies that (M), = t. A martingale with
such a property is called a “normal martingale’ (Dellacherie
(1989)) and the equation (1) is called the “structure
equation” (Emery (1989))

@ One can show (and will do) that for any bounded, predictable
process u there are always such « and (3, at least when the
probability space is “nice”.
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A Different Look at the Reinsurance Problem

@ The equation (1) implies that (M), = t. A martingale with
such a property is called a “normal martingale’ (Dellacherie
(1989)) and the equation (1) is called the “structure
equation” (Emery (1989))

@ One can show (and will do) that for any bounded, predictable
process u there are always such « and (3, at least when the
probability space is “nice”.

@ Then, noting that the Brownian motion B itself satisfies (1)
with u = 0, one can rewrite (1) as

t t
xt:x+/ b(Xs,us,ws)ds-l-/ F(r)dMY, t>0, (2)
0 0

where MY is a (possibly multi-dimensional) martingale
satisfying the Structure Equation.
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A Different Look at the Reinsurance Problem

@ The process u “controls” exactly the jump sizes of MY
(whence that of X)

@ 7 could be regarded as a “regular” control.
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A Different Look at the Reinsurance Problem

@ The process u “controls” exactly the jump sizes of MY
(whence that of X)

@ 7 could be regarded as a “regular” control.

@ The system (2) provides a new model for stochastic control
problems in which the control of the jump size is essential.
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A Different Look at the Reinsurance Problem
(Note ... |

Note
@ The process u “controls” exactly the jump sizes of MY
(whence that of X)
@ 7 could be regarded as a “regular” control.

@ The system (2) provides a new model for stochastic control
problems in which the control of the jump size is essential.

Some references:

@ Ma-Protter-San Martin (1998) — Anticipating calculus and an
Ocone-Haussmann-Clark type formula for normal martingales

@ Dritschel-Protter (1999) — complete market with
discontinuous security prices.

@ Buckdahn-Ma-Rainer (2008) — Stochastic Control for
Systems driven by normal mg.

\
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Normal Martingales and Structure Equation

o (Q,.7, P;F)— a filtered probability space, and F 2 {Z;} =0
satisfies the “usual hypotheses” .

o /§(F,P) — the space of all L2 P-martingales s.t. Xo = 0.
o X € #Z(F,P)is “normal” if (X), =t (i.e, [X]t =t +mg.)

@ If a normal martingale also has the “Representation Property”,
then there exists an F-predictable process u such that

t
(X]e = t+/ usdXs, vVt > 0. (3)
0
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Normal Martingales and Structure Equation

o (Q,.7, P;F)— a filtered probability space, and F 2 {Z;} =0
satisfies the “usual hypotheses” .

o /§(F,P) — the space of all L2 P-martingales s.t. Xo = 0.
o X € .#(F,P)is “normal” if (X),

t, (i.e., [X]t = t+mg.)
@ If a normal martingale also has the “Representation Property”,
then there exists an F-predictable process u such that

t
(X]e = t+/ usdXs, vVt > 0. (3)
0

A solution to the structure equation must be “normal” but the
converse it not necessarily true!
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Some examples

@ u = 0 — Brownian motion

eu=ac R*(é R\ {0}) — compensated Poisson process
@ ur = —X; — Azéma's martingale
°

uy = —2Xy — “Parabolic martingale’ (Protter-Sharpe
(1979)).
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Some examples

@ u = 0 — Brownian motion

eu=ac R*(é R\ {0}) — compensated Poisson process
@ ur = —X; — Azéma's martingale

@ u; = —2X; — "“Parabolic martingale’ (Protter-Sharpe
(1979)).

Characteristics of the solutions to structure equations

Let X € .#3(F, P) be a solution to (3), and denote
Ix(w) 2 {t > 0; AXe(w) # 0}, w € Q. Then,

o AX; = ug, for all t € Dx, P-as.

@ Decomposing X = X + X9 one has

dXf = 1y,,—0ydX;, and dxd = 1y, 201dX:, t > 0.

v
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Normal martingales in a Wiener-Poisson space

Note that in general the well-posedness of higher dimensional
structure equation is not trivial. References include Meyer (1989),
Kurtz-Protter (1991), and Phan (2001), ...
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Normal martingales in a Wiener-Poisson space

Note that in general the well-posedness of higher dimensional
structure equation is not trivial. References include Meyer (1989),

Kurtz-Protter (1991), and Phan (2001), ...

“Wiener-Poisson” space
Assume that on (2, .%#, P) there exist

@ B — a d-dimensional standard Brownian motion

@ u— a Poisson random measure, such that B Il u, and with
2 v(dx)dt, where v is the Lévy

the compensator fi(dtdx)
measure of L.
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Normal martingales in a Wiener-Poisson space

Note that in general the well-posedness of higher dimensional
structure equation is not trivial. References include Meyer (1989),

Kurtz-Protter (1991), and Phan (2001), ...

“Wiener-Poisson” space
Assume that on (2, .%#, P) there exist

@ B — a d-dimensional standard Brownian motion

@ u— a Poisson random measure, such that B Il u, and with
2 v(dx)dt, where v is the Lévy

the compensator fi(dtdx)
measure of L.

Denote
o FBur — {ﬂ’tB’“}tzo to be the natural filtration generated by B
and u, and let

A ——P . . o
e F =FB# (augmentation) satisfies the usual hypothses.

Roscoff 3/2010 8/ 37
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Normal martingales in a Wiener-Poisson space

Martingale Representation Theorem (Jacod-Shiryaev (1987,/2003))

For any X € ///02(F, P;R?), There exists a unique pair
(o, B) € LE([0, T]; R9*9) x L2([0, T] x R*; dt x dv; R?), such that

t
X, = / 0redBs + / B.()ii(dsdx),  t>0. (4)
0 [0,t] xR*

V.
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Normal martingales in a Wiener-Poisson space

Martingale Representation Theorem (Jacod-Shiryaev (1987,/2003))

For any X € .#Z(F, P; R?), There exists a unique pair
(o, B) € LE([0, T]; R9*9) x L2([0, T] x R*; dt x dv; R?), such that

t
X, = / 0redBs + / B.()ii(dsdx),  t>0. (4)
0 [0,t] xR*

V.

If X € .#42(F, P;RY) is a normal martingale driven by u = {u;}+>0
on a Wiener-Poisson space (2,.#, P), what would be the relations
between v and («, 5)?
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Normal martingales in a Wiener-Poisson space

X is a solution to the structure equation driven by u:

d[X; = dt + uidX], 1<i<d, 5)
d[X', X¥]; =0, 1<i<k<d, t>0,

— JAL ={(x,w): Bi(x,w) # 0} € BR*) ® Fs, s.t.

d
> adas? =G0y a0y = 0,ds x dP ae;

=t ,
Be(x) = uglai(x),ds x dv x dP a.e.;
; 1
I/(As N Aé)l{u;;éo’ué#o} = (5,’7kwl{u£¢o}, ds x dP a.e.

(6)

Here {0;x} is the Kronecker's delta.

v
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Existence of Solution to Structure Equation

@ Denote I' = {all atoms of v} and define
ver(A) =v(A) = Y v({x}), A€ B(R\{0}), 0¢A
x€MNA

where A is the closure of A in R.
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Existence of Solution to Structure Equation

@ Denote I' = {all atoms of v} and define
v (A) =v(A) = Y v({x}), A€ BR\{0}), 0¢A
x€MNA
where A is the closure of A in R.

o Assume v ([—1,1]) = +o0 (e.g., v(dx) = C|x|~ () dx1),
and let u = (u*, ..., u?) be any bdd, F-predictable process.
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Existence of Solution to Structure Equation

@ Denote I' = {all atoms of v} and define
v (A) =v(A) = Y v({x}), A€ BR\{0}), 0¢A
x€MNA
where A is the closure of A in R.

o Assume v ([—1,1]) = +o0 (e.g., v(dx) = C|x|~ () dx1),
and let u = (u*, ..., u?) be any bdd, F-predictable process.

@ ThenVt>0,31=79>7rl>72>-..>77>0,all
F-measurable, s.t.,

AL (=L =AUl A Te, =1 d
and apf = 011, _q), Bi(x) = uily(x), i,j =1, ,d,
x € R, satisfy (6). Hence dX = adB + /ﬁdﬁ solves the
struction equation on (Q,.%, P,F, B, u)!
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Uniqueness

It turns out that the solution to (5) is not unique, not even in law!

Example
Assume d =1, v(dx) = x_zl{x>0}, and B 1L . Set
7 =inf{t >0, B; = 1}. Define ur = 1(; 1 )(t),
ar = —ay = 1pg 7(t), and Bi(x) = Bi(x) = 14,(x), where
[0 on 0 <t <7(w);
Adlw) = { [1,00) ont> T(w).
Then N; = ,u([O t] x [1,00)) is a standard Poisson, 1L B, and
denoting Ny = N, — t, by the characterization theorem,

Xt = Bipr + Nt = Nt/\T and X{ =—Bat + Nt — Nt/\ﬂ

both solves the structure equation driven by u, but X and X’ are
not identical in law! (Indeed write 7 = inf{t; X; = 1} and define

= inf{t; X! = 1}. Then look at X7 = X:; and X'T = =X/, )
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[to's formula

Because of the special structure of a normal martingale, the 1td's
formula takes a unusual form. We first define the following
Differential-Difference operators:

o(s,x + u'ej) — o(s,x)
uf

i A
szfu[gp](s,x) = l{u;ZO}VX,go(s,x) + l{ui?gg}

9

d
A 1
A5 = Y {Lwmoy 5 Da (5 %)
i=1

o(s,x+u'e))—p(s,x) — u'V,ip(s, x)
+1uiz0y (u)2 }’

where {e1, ..., eq} is the canonical orthonormal basis in R,
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[to's formula

Theorem

Let u = {us; t > 0} be a bounded F-predictable process with
values in RY and X € .#2(F, P; RY) a solution to the structure
equation (5) driven by u.

Then, for any ¢ € C12([0, T] x RY), the following formula holds :

d .t
o6, X) —9(0,%) = 3 / A [0](5, Xe )X
i=1 70

Proof. Apply the general It& formula, and note that [X', X¥] = 0,
for i # k; AX! = ul on u} # 0, and the structure equation ... N
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The Stochastic Control Problem

The “non-uniqueness” of the solution to the structure equation
indicates that a “weak” form of stochastic control is necessary.

Definition (“weak controls”)

Let U € R, U; € R¥ be compact. A “weak control at time
t € [0, T]" is a 7-tuple (,.Z, P,Ft, 7, u, X“) such that
o (Q,.7,P;Ft = {Z}s>¢) satisfies the usual hypotheses;
o (m,u) is Ft-predictable, with values in U 2 U x U,
o X = XY e .#Z(Ft, P;RY) satisfies the structure equation
d[X]s = ds + uldX},

1
d[X', Xk]s =0, 1<i<
Xs=0, selo,t].

<d, seltT]

<
k<d, se[t,T], ()

We denote the set of all weak controls at t by % (t)

v
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The Stochastic Control Problem

IfO<t<t <T,then Z(t) C %(t') in the following sense:
(Q,Z,P,Ft,m u, X) e U(t) =
(Q, Z,P,Ft (75, us)s>tr, (Xs — Xer)s>v) € % (t).
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The Stochastic Control Problem

IfO<t<t <T,then Z(t) C %(t') in the following sense:
(Q,Z,P,Ft,m u, X) e U(t) =
(Q, Z,P,Ft (75, us)s>tr, (Xs — Xer)s>v) € % (t).

Assume that b = b(y,w,u) and o = o(y,m, u) are

e uniformly continuous in (y,m, u);

e Lipschitz in y, uniformly in (u, 7).
For (t,y) € [0, T] x R™ and pn = (2, %, P,F,m,u, X") € % (t),
consider the controlled dynamics

s S
Ys=y -I—/ b(Yy, 7, uy)dr -|—/ o(Yr—,mr,ur)dX/,s > t. (8)
t t

Denote the (unique) solution of (8) by Y™ (u) = {Yst’y(,u)}se[m—].
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The Dynamic Programming (Bellman) Principle

Define

@ The cost functional:
A *
J(t.yin) = E{g(YP (W)}, (ty) € [0, T]x R,
where g : R™ — R is, say, bounded and continuous.

@ The value function:

V(t,y) = Meig/f(t) E{g(Y?" (W)}, (t,x) € [0, T] x R™.
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The Dynamic Programming (Bellman) Principle

Define

@ The cost functional:
A *
J(t.yin) = E{g(YP (W)}, (ty) € [0, T]x R,
where g : R™ — R is, say, bounded and continuous.

@ The value function:

V(t,y) = ﬂeig/f(t) E{g(Y?" (W)}, (t,x) € [0, T] x R™.

For any (t,y) € [0, T]| x R™ and 0 < h < T — t, it holds that

Vty) = inf EIV(E+h Y0 ©)
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The Dynamic Programming (Bellman) Principle

Sketch of the Proof.

(1) Show that V/(t,y) > inf,eq () E[V(t + h, Y2 (1))

o Since pie %(t) C U(t+h) = Y () = YV (),

— E{a (7" w)}

= [ e

> /R CE{V(E+ b Yern) Yern(n) = 2) Po [Yeunl ()]~ (d2)
— E{V(t+h Yern(p)}-

Yern() = 2} P o [Yepn(u)] 7 (d2)

The real argument involves the decomposition of the
Wiener-Poisson canonical space on [t, T] into [t, t + h]| part and
[t + h, T] part, following the idea of Fleming-Souganidis (1989).
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The Dynamic Programming (Bellman) Principle

(1) Show V(t,y) < infeq ) EIV(t + h, Y (1))
o Fix0<t<t+h<T,ycR"™
@ Forn=1,2,---, define " = {k27 ", k € Z}, and

(2) 2 Nm [k —1)27" k2",  z=k2 "™

@ Define Y+h(u) Z Z]-I(z)( t+h('“)) (=

zeln

YD () = Y, (1) € [0,277]™) and

P*() S PLIYE)

eon(1) = z}, whenever P{Yt(i)h( )=z} >0.

eVe>0,n>1,and ze " let
w? = (Q%,.7%, P F? u*, X?) € % (t + h) be such that
E*g(YE™) (4] < V(& + h2) + &,
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The Dynamic Programming (Bellman) Principle

~  ~ ~

e Define (Q2,.#,P) = (Q,.7,P) ® (®,ern(Q%, 7%, P?)),

=~ [ s, s e (t, t+ h), )
° 7 S—{ Fo® (0nernFZ), selt+h 1], "
augmentation.
(s, us) if se(tt + h)
o (Ts,Us) =< (mZ,uZ if {Ytiyh }
and s € [t + h T]
Xs, if se(t,t+h),

o Xs=1{ Xepn+(XZ—2), if {V7, el(z)}
and se€[t+h, T],
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The Dynamic Programming (Bellman) Principle

Then, show that
e X is a solution of structure equation (5) driven by u;
o (0,7 PF7ruX)(Q PF%ﬁX)E%(t)
° (Q,g, P Ft+h 77 y 2. X% e U(t+ h).
o for large n, the solution Ys = Y satisfies

Ele(Vr)} < Y E{e(vp)}P{Vit e i@} +=

zeln

< ¥ V(t+h,z)P{Yt’h €Iz )}+2€

zeln
= E{ 3Vt +h (Vi) ) +2e
zeln
o Letting e \,0 and n — oo =  Donel |
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The HJB Equations

Controlled Differential-Difference Operators

For each (m,u) € Uy x U9 we define

A} [0l(s,y) = Vicey Vysp(s, y)o' (v, m, u)

o(s,y+u'ca(y,m u))—e(s,y)
u' ’

+1{ui7é0}
"iﬂﬂ',U[So](s?y) = vy@(s7y)b(y7 71-7 U)

d
1 i i
+ Z {l{uiZO}E [D)%ytp(say)o- (ya T, U), o (ya T, U)]
i=1

- A'le)(s,y, u') — u'V (s, y)o'(y, m, u)
+ Leuizoy (u')2 )

. A ..
where A'[¢](s,y,u') = ¢(s,y+u'a'(y,m, u)))—p(s, y).
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The HJB Equations

If (Q,%,P,Ft,m,u,X) € (t) and Y = Y is the
corresponding system dynamics, then by Itd's formula, for any
@ € C12([0, T] x R™) it holds that

S Ys) —(t,y)

Z [} s o0
/ (Bs0(s, Ye) + Zru (s, ¥2) ) s
0

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 23/ 37



The HJB Equations

Consider the following fully nonlinear partial differential-difference
equation (PDDE):

—0:V(t,y)— inf 2 ,[V](t,y) =0,

T ey e xR (o)

V(T,y)=gly), y € R™,
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The HJB Equations

Consider the following fully nonlinear partial differential-difference
equation (PDDE):

—0:V(t,y)— inf 2 ,[V](t,y) =0,
() e T)xR™, (10)

V(T,y)=gly), y € R™,

Purpose:

Show that the value function V/(-,-) is the unique viscosity solution
to the HJB equation (10).
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The HJB Equations

Consider the following fully nonlinear partial differential-difference
equation (PDDE):

—0:V(t,y)— inf 2 ,[V](t,y) =0,

T ey e xR (o)

V(T,y)=gly), y € R™,

Purpose:

Show that the value function V/(-,-) is the unique viscosity solution
to the HJB equation (10).

Note: The PDDE (10) has not been studied in the literature,
therefore a thorough investigation is needed, starting from the
definition of "viscosity solution” (!)
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The HJB Equations

To overcome the difficulty caused by the “small jumps”, we adopt
the idea of Barles-Buckdahn-Pardoux (1997) for the IPDEs.

Definition

For each § > 0, define the following operator:
A
L3V, @)t y) = Vyelt,y)bly, m, u)
d
1 i i
+ 3 {105 (D3 0(t. )0 (v, m, 0), o' (v, m, )
i=1

A'lo)(t,y,u') — u'Vyo(t,y)o' (y, m, u)

H{o<|uil<s) ()2
1 Ai[V](t,y, ui) - uivy@(ty)ai(yaﬂ-a U)
THu>03 ()2 }

i\ 2

where Al[p](t,y, u') = @(t,y + u'o’(y,m,u))) = ¢(t,y).

Jin Ma (USC) Finance, Insurance, and Mathematics Roscoff 3/2010 25/ 37



The HJB Equations

A continuous function V : [0, T] x R™ — R is called a viscosity
“subsolution” (resp. “supersolution”) of the PDDE (10) if

(i) V(T,y) < (resp. =) g(y), y € R™; and

(ii) for any (t,y) € [0, T) x R™ and ¢ € CH?([0, T] x R™) such
that V — ¢ attains a local maximum (resp. minimum) at
(t,y), it holds that

= ge(ty) — inf L2V, @l(t,y) < (resp. 2) 0,
(m,u)eU

for all sufficiently small § > 0.

A function V is called a viscosity solution of (10) if it is both a
viscosity subsolution and a supersolution of (10).

y
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The HJB Equations

One can show that

@ the definition is equivalent to one in which the “/ocal
maximum (minimum)" is replaced by “global maximum

(minimum)” or even ‘strict global maximum (minimum)”;
o the operator .Z ,[V, ¢|(t,y) is replaced by Z ,[¢](t,y).
(The idea is similar to that of Barles-Buckdahn-Pardoux (1997),

but a little more complicated because of the “difference”
operators!)
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The HJB Equations

One can show that

@ the definition is equivalent to one in which the “/ocal
maximum (minimum)" is replaced by “global maximum

(minimum)” or even ‘strict global maximum (minimum)”;
o the operator .Z ,[V, ¢|(t,y) is replaced by Z ,[¢](t,y).
(The idea is similar to that of Barles-Buckdahn-Pardoux (1997),

but a little more complicated because of the “difference”
operators!)

The value function V/(t,y) is a viscosity solution of (10).
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Sketch of the proof.

(1) “Subsolution”:

e Fix (t,y). Let u 2 (2, 7,P,F,m u X) € %(t) with
deterministic (m,u) € U. Let ¢ € C%? be such that V — ¢
achieves a global maximum at (t, y).

o Applying Itd's formula and the Bellman principle:
0 < E{V(t+hY) - V(ty)}
< et +h YT - ot y)}

t+h b
| E{parts Vi 4 Zulells e pas
t

@ Dividing both sides by h and letting h — 0 we obtain

—0rp(t,y) — Lrulel(t,y) <0, V(m u)e U.

Namely V is a viscosity subsolution.
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Sketch of the proof.

(I1) “Supersolution”:
o Fix (t,y). Let ¢ € C%? be such that V — ¢ attains a global
minimum at (t,y).
@ Fix an arbitrary h > 0. For any € > 0, applying the Bellman
Principle to find x5 = (Q,.%,Ft, P,u, X)>h € % (t) s.t.

V(t,y) +eh > ES"{V(t+ h Y (17")}.

o following the similar argument as before we have

t+h
£ {/ {05 + Lo us 21} (5, Yst’y(;f”’))ds} < ch.
t

e Find C > 0 and § > 0 such that
{0s(s, 2) + ZrulPl(s; 2) < €, V(s, 2)
and for all |(s,z) — (t,y)| <26 and (7,u) € U,
{0sp + Lrulel} (s, 2) = {0sp + Zrulel} (£ y) < e
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Sketch of the proof.

o Consequently,
eh = h{Op + L. ulel}(t,y) — he

—ChP=h{ sup |YEY —y| >4
se[t,t+h]

AV

h(Oue(en) + inf Zruple.y) — he

—ChP=M{ sup |YEY —y| >4
s€(t,t+h]
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Sketch of the proof.

@ Since

PR sup  [YEY —y[ > 6}
se[t,t+h]

< th [Z/ YRy ,ws,us)|2ds]

1
< C(1+y)? )5—2/7

8
8t (t,y)+ inf 2 ,o(t, y)<25+C(1+M)

(mu)eU
— — 0 (t,y)+ inf _Zrup(t,y) <O0. .
ot (m,u)eU
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Uniqueness

The value function V(-,-) is the unique viscosity solution of (10)
among all bounded, continuous functions.

Sketch of the proof. (Assume d =1, no7, 0 =1, b=0)

e Change V(t,x) — e’'V(T —t, x), for v > 0, then need only
consider the equation

OrV(t,x) +yV(t,x)— JQLXU[V](LX) =0,
V(0,x) = g(x).

o Let V be a sub- and W a super-solution of (11) (want:
V < W). Suppose that

= sup  (V(t,x) — W(t,x)) > 0.
(t,x)€[0, T]xR
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Uniqueness

@ Fore,a >0, set

1 N 1 )
T—t T-—s

A o
Voo 2 V(tx) = Wis,y) - 5

a 2 2 1 2 1 2
—= ——|x—y[f—=|s—t

and (t,%,8,9) € argmaxV¥. ,. (Note: (%,%,8,9) depend on &,
«a, of course!)

e Vn >0, 3(ty,x,) € [0, T] xR, a;; > 0 such that Va € (0, ayy),
V(t’naXn)_ W(t’mxn) > 0_7]/21 \UE,OA(%75\<7§75}) > 0_77 > 0.

= Vo € (0,ay), I(ta, Xa, ta, Xa) such that (possibly along a
subsequence),

V(E,%) — W(5,9) = V(ta, xa) — W(ta, Xa), as ¢—0.
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Uniqueness

o Applying Ishii's lemma to get: 3 (27,%) € R?™ such that

. 1 %—9 .
° 4 TV L ax 2) e PTV(ER),

1 xX—y —1,2,—

_a}?7g)€‘@ W(§7}7)7

and

Zr 0 5 . 1 ln =y
< — — -
( 0 —w ) < A+pA“c, with A E < o )—i—algm,

N

where 22"V V(% %) (resp. 7 " W(,X)) denotes the
“parabolic superjet” (resp. “subjets”).
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Uniqueness

@ By definition of viscosity solution (via "jets”) we then have

0> %((TiA)z 7 ! ) T(VER) - W)

- W(s, 9 +u) — W(E,9)
+ jnf, {1{#0} 2
1 V(E, %+ u) + V(E,8) + au(X + 9)
—H{u#0} 2

+1{u:0}(@ - 3{)}
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Uniqueness

@ By definition of viscosity solution (via "jets”) we then have
1

(%

0

> S (= + ) 1 (VD - W)

+322{1{u¢0}

Since (t,y,v,p,S) 2 inf (r.u) Zr,ultp] is discontinuous on (p, S),
this conclusion could be wrong, unless U takes some special form!
We need to assume that U = {0} U U; where U; is compact.
(Consider, e.g., the insurance model where there is “deductible”.)
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Uniqueness

ws,a(/i.))?a §ay) Z \UE,CY(%’& + u7§?5} + U)
@ We obtain that
0 = (0-m+ inf {10 ~ 2)
uel

—a(X+9)u—av®+a(k+F)u
+1iuz0) 2 }

= Jgfj{_al{u;ﬁO} +1p—o)(Z — 2)}

@ Thus

0 = (0 —n)+ inf(—alfo —4aliu=0})

= (0 —n)—4a.
@ Choose 0 <n < 6 andy > 94_—“7], we have
0> ~(0 —n) —4a > 0, a contradiction. [ |
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