Finance, Insurance, and Stochastic Control (IV)

Jin Ma

$\overline{\mathrm{USC}}$ Department of Mathematics
University of Southern California

Spring School on "Stochastic Control in Finance" Roscoff, France, March 7-17, 2010

Outline

(1) Introduction
(2) Normal martingales in a Wiener-Poisson space
(3) The Stochastic Control Problem

4 The Dynamic Programming (Bellman) Principle
(5) The HJB Equations
(6) Uniqueness

A Different Look at the Reinsurance Problem

Recall the general form of a reserve equation with reinsurance:

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \alpha_{t}, \pi_{t}\right) d t+\sigma\left(\pi_{t}\right) d B_{t}-\int_{\mathbb{R}_{+}}[\alpha f](t, x) \tilde{N}(d x d t) \\
& X_{0}=x
\end{aligned}
$$

A Different Look at the Reinsurance Problem

Recall the general form of a reserve equation with reinsurance:

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \alpha_{t}, \pi_{t}\right) d t+\sigma\left(\pi_{t}\right) d B_{t}-\int_{\mathbb{R}_{+}}[\alpha f](t, x) \tilde{N}(d x d t) \\
& X_{0}=x
\end{aligned}
$$

Suppose that the random field α is such that there exists some predictable pair (β, u) so that the martingale

$$
M_{t}^{u} \triangleq \int_{0}^{t} \beta_{s} d B_{s}+\int_{0}^{t} \int_{\mathbb{R}_{+}}[\alpha f](s, x) \tilde{N}(d x d s)
$$

satisfies the following property:

$$
\begin{equation*}
d\left[M^{u}\right]_{t}=d t+u_{t} d M_{t}^{u}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

A Different Look at the Reinsurance Problem

Recall the general form of a reserve equation with reinsurance:

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \alpha_{t}, \pi_{t}\right) d t+\sigma\left(\pi_{t}\right) d B_{t}-\int_{\mathbb{R}_{+}}[\alpha f](t, x) \tilde{N}(d x d t) \\
& X_{0}=x
\end{aligned}
$$

Suppose that the random field α is such that there exists some predictable pair (β, u) so that the martingale

$$
M_{t}^{u} \triangleq \int_{0}^{t} \beta_{s} d B_{s}+\int_{0}^{t} \int_{\mathbb{R}_{+}}[\alpha f](s, x) \tilde{N}(d x d s)
$$

satisfies the following property:

$$
\begin{equation*}
d\left[M^{u}\right]_{t}=d t+u_{t} d M_{t}^{u}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

Note: Since $\Delta\left[M^{u}\right]_{t}=\left(\Delta M_{t}^{u}\right)^{2}=u_{t} \Delta M_{t}^{u}, u$ exactly controls the jumps of the reserve, that is, the claim size!

A Different Look at the Reinsurance Problem

- The equation (1) implies that $\langle M\rangle_{t}=t$. A martingale with such a property is called a "normal martingale" (Dellacherie (1989)) and the equation (1) is called the "structure equation" (Emery (1989))

A Different Look at the Reinsurance Problem

- The equation (1) implies that $\langle M\rangle_{t}=t$. A martingale with such a property is called a "normal martingale" (Dellacherie (1989)) and the equation (1) is called the "structure equation" (Emery (1989))
- One can show (and will do) that for any bounded, predictable process u there are always such α and β, at least when the probability space is "nice".

A Different Look at the Reinsurance Problem

- The equation (1) implies that $\langle M\rangle_{t}=t$. A martingale with such a property is called a "normal martingale" (Dellacherie (1989)) and the equation (1) is called the "structure equation" (Emery (1989))
- One can show (and will do) that for any bounded, predictable process u there are always such α and β, at least when the probability space is "nice".
- Then, noting that the Brownian motion B itself satisfies (1) with $u \equiv 0$, one can rewrite (1) as

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} b\left(X_{s}, u_{s}, \pi_{s}\right) d s+\int_{0}^{t} \tilde{\sigma}\left(\pi_{s}\right) d M_{s}^{u}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

where M^{u} is a (possibly multi-dimensional) martingale satisfying the Structure Equation.

A Different Look at the Reinsurance Problem

Note

- The process u "controls" exactly the jump sizes of M^{u} (whence that of X)
- π could be regarded as a "regular" control.

A Different Look at the Reinsurance Problem

Note

- The process u "controls" exactly the jump sizes of M^{u} (whence that of X)
- π could be regarded as a "regular" control.
- The system (2) provides a new model for stochastic control problems in which the control of the jump size is essential.

A Different Look at the Reinsurance Problem

Note

- The process u "controls" exactly the jump sizes of M^{u} (whence that of X)
- π could be regarded as a "regular" control.
- The system (2) provides a new model for stochastic control problems in which the control of the jump size is essential.

Some references:

- Ma-Protter-San Martin (1998) - Anticipating calculus and an Ocone-Haussmann-Clark type formula for normal martingales
- Dritschel-Protter (1999) — complete market with discontinuous security prices.
- Buckdahn-Ma-Rainer (2008) - Stochastic Control for Systems driven by normal mg.

Normal Martingales and Structure Equation

- $(\Omega, \mathscr{F}, P ; \mathbf{F})$ - a filtered probability space, and $\mathbf{F} \triangleq\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$ satisfies the "usual hypotheses".
- $\mathscr{M}_{0}^{2}(\mathbf{F}, P)$ - the space of all $L^{2} P$-martingales s.t. $X_{0}=0$.
- $X \in \mathscr{M}_{0}^{2}(\mathbf{F}, P)$ is "normal" if $\langle X\rangle_{t}=t$, (i.e., $[X]_{t}=t+\mathrm{mg}$.)
- If a normal martingale also has the "Representation Property", then there exists an F-predictable process u such that

$$
\begin{equation*}
[X]_{t}=t+\int_{0}^{t} u_{s} d X_{s}, \quad \forall t \geq 0 \tag{3}
\end{equation*}
$$

Normal Martingales and Structure Equation

- $(\Omega, \mathscr{F}, P ; \mathbf{F})-$ a filtered probability space, and $\mathbf{F} \triangleq\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$ satisfies the "usual hypotheses".
- $\mathscr{M}_{0}^{2}(\mathbf{F}, P)$ - the space of all $L^{2} P$-martingales s.t. $X_{0}=0$.
- $X \in \mathscr{M}_{0}^{2}(\mathbf{F}, P)$ is "normal" if $\langle X\rangle_{t}=t$, (i.e., $[X]_{t}=t+\mathrm{mg}$.)
- If a normal martingale also has the "Representation Property", then there exists an \mathbf{F}-predictable process u such that

$$
\begin{equation*}
[X]_{t}=t+\int_{0}^{t} u_{s} d X_{s}, \quad \forall t \geq 0 . \tag{3}
\end{equation*}
$$

Warning

A solution to the structure equation must be "normal" but the converse it not necessarily true!

Some examples

Example

- $u \equiv 0$ - Brownian motion
- $u \equiv \alpha \in \mathbb{R}^{*}(\triangleq \mathbb{R} \backslash\{0\})$ - compensated Poisson process
- $u_{t}=-X_{t}$ - Azéma's martingale
- $u_{t}=-2 X_{t}$ - "Parabolic martingale" (Protter-Sharpe (1979)).

Some examples

Example

- $u \equiv 0$ - Brownian motion
- $u \equiv \alpha \in \mathbb{R}^{*}(\triangleq \mathbb{R} \backslash\{0\})$ - compensated Poisson process
- $u_{t}=-X_{t}$ - Azéma's martingale
- $u_{t}=-2 X_{t}$ - "Parabolic martingale" (Protter-Sharpe (1979)).

Characteristics of the solutions to structure equations

Let $X \in \mathscr{M}_{0}^{2}(\mathbf{F}, P)$ be a solution to (3), and denote $\mathscr{D}_{X}(\omega) \triangleq\left\{t>0 ; \Delta X_{t}(\omega) \neq 0\right\}, \omega \in \Omega$. Then,

- $\Delta X_{t}=u_{t}$, for all $t \in \mathscr{D}_{X}, P$-a.s.
- Decomposing $X=X^{c}+X^{d}$, one has

$$
d X_{t}^{c}=\mathbf{1}_{\left\{u_{t}=0\right\}} d X_{t}, \text { and } d X_{t}^{d}=\mathbf{1}_{\left\{u_{t} \neq 0\right\}} d X_{t}, t \geq 0
$$

Normal martingales in a Wiener-Poisson space

Note that in general the well-posedness of higher dimensional structure equation is not trivial. References include Meyer (1989), Kurtz-Protter (1991), and Phan (2001), ...

Normal martingales in a Wiener-Poisson space

Note that in general the well-posedness of higher dimensional structure equation is not trivial. References include Meyer (1989), Kurtz-Protter (1991), and Phan (2001), ...

"Wiener-Poisson" space

Assume that on (Ω, \mathscr{F}, P) there exist

- B - a d-dimensional standard Brownian motion
- μ - a Poisson random measure, such that $B \Perp \mu$, and with the compensator $\widehat{\mu}(d t d x) \triangleq \nu(d x) d t$, where ν is the Lévy measure of μ.

Normal martingales in a Wiener-Poisson space

Note that in general the well-posedness of higher dimensional structure equation is not trivial. References include Meyer (1989), Kurtz-Protter (1991), and Phan (2001), ...

"Wiener-Poisson" space

Assume that on (Ω, \mathscr{F}, P) there exist

- B - a d-dimensional standard Brownian motion
- μ - a Poisson random measure, such that $B \Perp \mu$, and with the compensator $\widehat{\mu}(d t d x) \triangleq \nu(d x) d t$, where ν is the Lévy measure of μ.
Denote
- $\mathbf{F}^{B, \mu}=\left\{\mathscr{F}_{t}^{B, \mu}\right\}_{t \geq 0}$ to be the natural filtration generated by B and μ, and let
- $\mathbf{F} \triangleq{\overline{\mathbf{F}^{B, \mu}}}^{P}$ (augmentation) satisfies the usual hypothses.

Normal martingales in a Wiener-Poisson space

Martingale Representation Theorem (Jacod-Shiryaev (1987/2003))

For any $X \in \mathscr{M}_{0}^{2}\left(\mathbf{F}, P ; \mathbb{R}^{d}\right)$, There exists a unique pair
$(\alpha, \beta) \in L_{\mathbf{F}}^{2}\left([0, T] ; \mathbb{R}^{d \times d}\right) \times L_{\mathbf{F}}^{2}\left([0, T] \times \mathbb{R}^{*} ; d t \times d \nu ; \mathbb{R}^{d}\right)$, such that

$$
\begin{equation*}
X_{t}=\int_{0}^{t} \alpha_{s} d B_{s}+\int_{[0, t] \times \mathbb{R}^{*}} \beta_{s}(x) \tilde{\mu}(d s d x), \quad t \geq 0 \tag{4}
\end{equation*}
$$

Normal martingales in a Wiener-Poisson space

Martingale Representation Theorem (Jacod-Shiryaev (1987/2003))

For any $X \in \mathscr{M}_{0}^{2}\left(\mathbf{F}, P ; \mathbb{R}^{d}\right)$, There exists a unique pair
$(\alpha, \beta) \in L_{\mathbf{F}}^{2}\left([0, T] ; \mathbb{R}^{d \times d}\right) \times L_{\mathbf{F}}^{2}\left([0, T] \times \mathbb{R}^{*} ; d t \times d \nu ; \mathbb{R}^{d}\right)$, such that

$$
\begin{equation*}
X_{t}=\int_{0}^{t} \alpha_{s} d B_{s}+\int_{[0, t] \times \mathbb{R}^{*}} \beta_{s}(x) \tilde{\mu}(d s d x), \quad t \geq 0 \tag{4}
\end{equation*}
$$

Question:

If $X \in \mathscr{M}_{0}^{2}\left(\mathbf{F}, P ; \mathbb{R}^{d}\right)$ is a normal martingale driven by $u=\left\{u_{t}\right\}_{t \geq 0}$ on a Wiener-Poisson space (Ω, \mathscr{F}, P), what would be the relations between u and (α, β) ?

Normal martingales in a Wiener-Poisson space

Theorem

X is a solution to the structure equation driven by u :

$$
\begin{gather*}
\left\{\begin{array}{l}
d\left[X^{i}\right]_{t}=d t+u_{t}^{i} d X_{t}^{i}, \quad 1 \leq i \leq d, \\
d\left[X^{i}, X^{k}\right]_{t}=0, \quad 1 \leq i<k \leq d, \quad t \geq 0
\end{array}\right. \tag{5}\\
\Longleftrightarrow \exists A_{s}^{i}=\left\{(x, \omega): \beta_{s}^{i}(x, \omega) \neq 0\right\} \in \mathscr{B}\left(\mathbb{R}^{*}\right) \otimes \mathscr{F}_{s}, \text { s.t. } \\
\left\{\begin{array}{l}
\sum_{j=1}^{d} \alpha_{s}^{i, j} \alpha_{s}^{k, j}=\delta_{i, k} \mathbf{1}_{\left\{u_{s}^{i}=0\right\}}, \quad \alpha_{s}^{i, j} \mathbf{1}_{\left\{u_{s}^{i} \neq 0\right\}}=0, d s \times d P \text { a.e.; } \\
\beta_{s}^{i}(x)=u_{s}^{i} \mathbf{1}_{A_{s}^{i}}(x), d s \times d \nu \times d P \text { a.e.; } \\
\nu\left(A_{s}^{i} \cap A_{s}^{k}\right) \mathbf{1}_{\left\{u_{s}^{i} \neq 0, u_{s}^{k} \neq 0\right\}}=\delta_{i, k} \frac{1}{\left(u_{s}^{i}\right)^{2}} \mathbf{1}_{\left\{u_{s}^{i} \neq 0\right\}}, \quad d s \times d P \text { a.e. }
\end{array}\right. \tag{6}
\end{gather*}
$$

Here $\left\{\delta_{i k}\right\}$ is the Kronecker's delta.

Existence of Solution to Structure Equation

- Denote $\Gamma=\{$ all atoms of $\nu\}$ and define

$$
\nu^{\mathrm{cont}}(A)=\nu(A)-\sum_{x \in \Gamma \cap A} \nu(\{x\}), \quad A \in \mathscr{B}(\mathbb{R} \backslash\{0\}), 0 \notin \bar{A},
$$

where \bar{A} is the closure of A in \mathbb{R}.

Existence of Solution to Structure Equation

- Denote $\Gamma=\{$ all atoms of $\nu\}$ and define

$$
\nu^{\mathrm{cont}}(A)=\nu(A)-\sum_{x \in \Gamma \cap A} \nu(\{x\}), \quad A \in \mathscr{B}(\mathbb{R} \backslash\{0\}), 0 \notin \bar{A},
$$

where \bar{A} is the closure of A in \mathbb{R}.

- Assume $\nu^{\text {cont }}([-1,1])=+\infty$ (e.g., $\nu(d x)=C|x|^{-(1+\alpha)} d x$!), and let $u=\left(u^{1}, \ldots, u^{d}\right)$ be any bdd, \mathbf{F}-predictable process.

Existence of Solution to Structure Equation

- Denote $\Gamma=\{$ all atoms of $\nu\}$ and define

$$
\nu^{c o n t}(A)=\nu(A)-\sum_{x \in \Gamma \cap A} \nu(\{x\}), \quad A \in \mathscr{B}(\mathbb{R} \backslash\{0\}), 0 \notin \bar{A},
$$

where \bar{A} is the closure of A in \mathbb{R}.

- Assume $\nu^{\text {cont }}([-1,1])=+\infty$ (e.g., $\nu(d x)=C|x|^{-(1+\alpha)} d x$!), and let $u=\left(u^{1}, \ldots, u^{d}\right)$ be any bdd, \mathbf{F}-predictable process.
- Then $\forall t \geq 0, \exists 1=\tau_{t}^{0}>\tau_{t}^{1}>\tau_{t}^{2}>\cdots>\tau_{t}^{d}>0$, all \mathscr{F}_{t}-measurable, s.t.,

$$
A_{t}^{i} \triangleq\left\{\left(-\tau_{t}^{i-1},-\tau_{t}^{i}\right] \cup\left[\tau_{t}^{i}, \tau_{t}^{i-1}\right)\right\} \cap \Gamma^{c}, \quad i=1, \cdots, d
$$

and $\alpha_{t}^{i, j}=\delta_{i j} \mathbf{1}_{\left\{u_{t}^{i}=0\right\}}, \beta_{t}^{i}(x)=u_{t}^{i} \mathbf{1}_{A_{t}^{i}}(x), i, j=1, \cdots, d$, $x \in \mathbb{R}$, satisfy (6). Hence $d X=\alpha d B+\int \beta d \tilde{\mu}$ solves the struction equation on $(\Omega, \mathscr{F}, P, \mathbf{F}, B, \mu)$!

Uniqueness

It turns out that the solution to (5) is not unique, not even in law!

Example

Assume $d=1, \nu(d x)=x^{-2} \mathbf{1}_{\{x>0\}}$, and $B \Perp \mu$. Set
$\tau=\inf \left\{t \geq 0, B_{t}=1\right\}$. Define $u_{t}=\mathbf{1}_{(\tau,+\infty)}(t)$,
$\alpha_{t}=-\alpha_{t}^{\prime}=\mathbf{1}_{[0, \tau]}(t)$, and $\beta_{t}(x)=\beta_{t}^{\prime}(x)=\mathbf{1}_{A_{t}}(x)$, where

$$
A_{t}(\omega)= \begin{cases}\emptyset & \text { on } 0 \leq t \leq \tau(\omega) \\ {[1, \infty)} & \text { on } t>\tau(\omega)\end{cases}
$$

Then $N_{t} \triangleq \mu([0, t] \times[1, \infty))$ is a standard Poisson, $\Perp B$, and denoting $\tilde{N}_{t}=N_{t}-t$, by the characterization theorem,

$$
X_{t}=B_{t \wedge \tau}+\tilde{N}_{t}-\tilde{N}_{t \wedge \tau} \quad \text { and } \quad X_{t}^{\prime}=-B_{\tau \wedge t}+\tilde{N}_{t}-\tilde{N}_{t \wedge \tau}
$$

both solves the structure equation driven by u, but X and X^{\prime} are not identical in law! (Indeed write $\tau=\inf \left\{t ; X_{t}=1\right\}$ and define $\tau^{\prime}=\inf \left\{t ; X_{t}^{\prime}=1\right\}$. Then look at $X_{t}^{\tau}=X_{\tau \wedge t}$ and $\left.X_{t}^{\prime \tau^{\prime}}=X_{\tau^{\prime} \wedge t}^{\prime}!\right)$

Because of the special structure of a normal martingale, the Itô's formula takes a unusual form. We first define the following Differential-Difference operators:

$$
\begin{aligned}
\mathscr{A}_{u}^{i}[\varphi](s, x) \triangleq & \mathbf{1}_{\left\{u^{i}=0\right\}} \nabla_{x_{i}} \varphi(s, x)+\mathbf{1}_{\left\{u^{i} \neq 0\right\}} \frac{\varphi\left(s, x+u^{i} e_{i}\right)-\varphi(s, x)}{u^{i}} \\
\mathscr{L}_{u}[\varphi](s, x) \triangleq & \sum_{i=1}^{d}\left\{\mathbf{1}_{\left\{u^{i}=0\right\}} \frac{1}{2} D_{x_{i} x_{i}}^{2} \varphi(s, x)\right. \\
& \left.+\mathbf{1}_{\left\{u^{i} \neq 0\right\}} \frac{\varphi\left(s, x+u^{i} e_{i}\right)-\varphi(s, x)-u^{i} \nabla_{x^{i}} \varphi(s, x)}{\left(u^{i}\right)^{2}}\right\}
\end{aligned}
$$

where $\left\{e_{1}, \ldots, e_{d}\right\}$ is the canonical orthonormal basis in \mathbb{R}^{d}.

Theorem

Let $u=\left\{u_{t} ; t \geq 0\right\}$ be a bounded \mathbf{F}-predictable process with values in \mathbb{R}^{d} and $X \in \mathscr{M}_{0}^{2}\left(\mathbf{F}, P ; \mathbb{R}^{d}\right)$ a solution to the structure equation (5) driven by u.
Then, for any $\varphi \in C^{1,2}\left([0, T] \times \mathbb{R}^{d}\right)$, the following formula holds :

$$
\begin{aligned}
\varphi\left(t, X_{t}\right)-\varphi\left(0, X_{0}\right)= & \sum_{i=1}^{d} \int_{0}^{t} \mathscr{A}_{u_{s}}^{i}[\varphi]\left(s, X_{s-}\right) d X_{s}^{i} \\
& +\int_{0}^{t}\left(\partial_{s} \varphi\left(s, X_{s}\right)+\mathscr{L}_{u_{s}}[\varphi]\left(s, X_{s}\right)\right) d s
\end{aligned}
$$

Proof. Apply the general Itô formula, and note that $\left[X^{i}, X^{k}\right]=0$, for $i \neq k ; \Delta X_{t}^{i}=u_{t}^{i}$ on $u_{t}^{i} \neq 0$, and the structure equation \ldots

The "non-uniqueness" of the solution to the structure equation indicates that a "weak" form of stochastic control is necessary.

Definition ("weak controls")

Let $U \in \mathbb{R}, U_{1} \in \mathbb{R}^{k}$ be compact. A "weak control at time $t \in[0, T] "$ is a 7 -tuple $\left(\Omega, \mathscr{F}, P, \mathbf{F}^{t}, \pi, u, X^{u}\right)$ such that

- $\left(\Omega, \mathscr{F}, P ; \mathbf{F}^{t}=\left\{\mathscr{F}_{s}\right\}_{s \geq t}\right)$ satisfies the usual hypotheses;
- (π, u) is \mathbf{F}^{t}-predictable, with values in $\bar{U} \triangleq U_{1} \times U^{d}$;
- $X=X^{u} \in \mathscr{M}_{0}^{2}\left(\mathbf{F}^{t}, P ; \mathbb{R}^{d}\right)$ satisfies the structure equation

$$
\left\{\begin{array}{l}
d\left[X^{i}\right]_{s}=d s+u_{s}^{i} d X_{s}^{i}, \quad 1 \leq i \leq d, \quad s \in[t, T] \tag{7}\\
d\left[X^{i}, X^{k}\right]_{s}=0, \quad 1 \leq i<k \leq d, \quad s \in[t, T] \\
X_{s}=0, \quad s \in[0, t] .
\end{array}\right.
$$

We denote the set of all weak controls at t by $\mathscr{U}(t)$

Note

If $0 \leq t \leq t^{\prime} \leq T$, then $\mathscr{U}(t) \subseteq \mathscr{U}\left(t^{\prime}\right)$ in the following sense:
$\left(\Omega, \mathscr{F}, P, \mathbf{F}^{t}, \pi, u, X\right) \in \mathscr{U}(t) \Longrightarrow$
$\left(\Omega, \mathscr{F}, P, \mathbf{F}^{t^{\prime}},\left(\pi_{s}, u_{s}\right)_{s \geq t^{\prime}},\left(X_{s}-X_{t^{\prime}}\right)_{s \geq t^{\prime}}\right) \in \mathscr{U}\left(t^{\prime}\right)$.

Note

If $0 \leq t \leq t^{\prime} \leq T$, then $\mathscr{U}(t) \subseteq \mathscr{U}\left(t^{\prime}\right)$ in the following sense:
$\left(\Omega, \mathscr{F}, P, \mathbf{F}^{t}, \pi, u, X\right) \in \mathscr{U}(t) \Longrightarrow$
$\left(\Omega, \mathscr{F}, P, \mathbf{F}^{t^{\prime}},\left(\pi_{s}, u_{s}\right)_{s \geq t^{\prime}},\left(X_{s}-X_{t^{\prime}}\right)_{s \geq t^{\prime}}\right) \in \mathscr{U}\left(t^{\prime}\right)$.
Assume that $b=b(y, \pi, u)$ and $\sigma=\sigma(y, \pi, u)$ are

- uniformly continuous in (y, π, u);
- Lipschitz in y, uniformly in (u, π).

For $(t, y) \in[0, T] \times \mathbb{R}^{m}$ and $\mu=\left(\Omega, \mathscr{F}, P, \mathbf{F}, \pi, u, X^{u}\right) \in \mathscr{U}(t)$, consider the controlled dynamics

$$
\begin{equation*}
Y_{s}=y+\int_{t}^{s} b\left(Y_{r}, \pi_{r}, u_{r}\right) d r+\int_{t}^{s} \sigma\left(Y_{r-}, \pi_{r}, u_{r}\right) d X_{r}^{u}, s \geq t \tag{8}
\end{equation*}
$$

Denote the (unique) solution of (8) by $Y^{t, y}(\mu)=\left\{Y_{s}^{t, y}(\mu)\right\}_{s \in[t, T]}$.

The Dynamic Programming (Bellman) Principle

Define

- The cost functional:

$$
J(t, y ; \mu) \triangleq E\left\{g\left(Y_{T}^{t, y}(\mu)\right)\right\}, \quad(t, y) \in[0, T] \times \mathbb{R}^{*}
$$

where $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is, say, bounded and continuous.

- The value function:

$$
V(t, y)=\inf _{\mu \in \mathscr{U}(t)} E\left\{g\left(Y_{T}^{t, y}(\mu)\right)\right\}, \quad(t, x) \in[0, T] \times \mathbb{R}^{m}
$$

The Dynamic Programming (Bellman) Principle

Define

- The cost functional:

$$
J(t, y ; \mu) \triangleq E\left\{g\left(Y_{T}^{t, y}(\mu)\right)\right\}, \quad(t, y) \in[0, T] \times \mathbb{R}^{*}
$$

where $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is, say, bounded and continuous.

- The value function:

$$
V(t, y)=\inf _{\mu \in \mathscr{U}(t)} E\left\{g\left(Y_{T}^{t, y}(\mu)\right)\right\}, \quad(t, x) \in[0, T] \times \mathbb{R}^{m}
$$

Theorem

For any $(t, y) \in[0, T] \times \mathbb{R}^{m}$ and $0<h \leq T-t$, it holds that

$$
\begin{equation*}
V(t, y)=\inf _{\mu \in \mathscr{U}(t)} E\left[V\left(t+h, Y_{t+h}^{t, y}(\mu)\right)\right] . \tag{9}
\end{equation*}
$$

The Dynamic Programming (Bellman) Principle

Sketch of the Proof.
(I) Show that $V(t, y) \geq \inf _{\mu \in \mathscr{U}(t)} E\left[V\left(t+h, Y_{t+h}^{t, y}(\mu)\right)\right]$.

- Since $\mu \in \mathscr{U}(t) \subset \mathscr{U}(t+h) \Longrightarrow Y_{T}^{t, y}(\mu)=Y_{T}^{t+h, Y_{t+h}^{t, y}}(\mu)$,

$$
\begin{aligned}
& \Longrightarrow E\left\{g \left(Y_{T}^{\left.\left.t+h, Y_{t+h}(\mu)\right)\right\}}\right.\right. \\
& =\int_{\mathbb{R}^{m}} E\left\{g\left(Y_{T}^{t+h, Y_{t+h}}\right) \mid Y_{t+h}(\mu)=z\right\} P \circ\left[Y_{t+h}(\mu)\right]^{-1}(d z) \\
& \left.\geq \int_{\mathbb{R}^{m}} E\left\{V\left(t+h, Y_{t+h}\right) \mid Y_{t+h}(\mu)=z\right\} P \circ\left[Y_{t+h}\right](\mu)\right]^{-1}(d z) \\
& =E\left\{V\left(t+h, Y_{t+h}(\mu)\right)\right\} .
\end{aligned}
$$

Warning

The real argument involves the decomposition of the Wiener-Poisson canonical space on $[t, T]$ into $[t, t+h]]$ part and $[t+h, T]$ part, following the idea of Fleming-Souganidis (1989).

The Dynamic Programming (Bellman) Principle

(II) Show $V(t, y) \leq \inf _{\mu \in \mathscr{U}(t)} E\left[V\left(t+h, Y_{t+h}^{t, y}(\mu)\right)\right]$.

- Fix $0 \leq t \leq t+h \leq T, y \in \mathbb{R}^{m}$
- For $n=1,2, \cdots$, define $\Gamma^{n}=\left\{k 2^{-n} ; k \in \mathbf{Z}^{m}\right\}$, and

$$
I(z) \triangleq \Pi_{i=1}^{m}\left[\left(k_{i}-1\right) 2^{-n}, k_{i} 2^{-n}\right], \quad z=k 2^{-n} \in \Gamma^{n}
$$

- Define $Y_{t+h}^{(n)}(\mu)=\sum_{z \in \Gamma^{n}} z \mathbf{1}_{l(z)}\left(Y_{t+h}^{t, y}(\mu)\right)(\Longrightarrow$

$$
\left.Y_{t+h}^{(n)}(\mu)-Y_{t+h}^{t, y}(\mu) \in\left[0,2^{-n}\right]^{m}\right) \text { and }
$$

$$
P^{z}(\cdot) \triangleq P\left\{\cdot \mid Y_{t+h}^{(n)}(\mu)=z\right\}, \text { whenever } \quad P\left\{Y_{t+h}^{(n)}(\mu)=z\right\}>0
$$

- $\forall \varepsilon>0, n \geq 1$, and $z \in \Gamma^{n}$, let $\mu^{z}=\left(\Omega^{z}, \mathscr{F}^{z}, P^{z}, \mathbf{F}^{z}, u^{z}, X^{z}\right) \in \mathscr{U}(t+h)$ be such that $E^{z}\left[g\left(Y_{T}^{t+h, z}\right)\left(\mu^{z}\right)\right] \leq V(t+h, z)+\varepsilon$.
- Define $(\widehat{\Omega}, \widehat{\mathscr{F}}, \widehat{P})=(\Omega, \mathscr{F}, P) \otimes\left(\otimes_{z \in \Gamma^{n}}\left(\Omega^{z}, \mathscr{F}^{z}, P^{z}\right)\right)$,
- $\widehat{\mathscr{F}}_{s}=\left\{\begin{array}{ll}\mathscr{F}_{s}, & s \in(t, t+h), \\ \mathscr{F}_{s} \otimes\left(\otimes_{z \in \Gamma^{n}} \mathscr{F}_{s}^{z}\right), & s \in[t+h, T],\end{array}\right.$ with usual augmentation.
- $\left(\widehat{\pi}_{s}, \widehat{u}_{s}\right)=\left\{\begin{array}{lc}\left(\pi_{s}, u_{s}\right), & \text { if } s \in(t, t+h), \\ \left(\pi_{s}^{z}, u_{s}^{z}\right), & \text { if }\left\{Y_{t+h}^{t, y} \in I(z)\right\} \\ & \text { and } s \in[t+h, T],\end{array}\right.$
- $\widehat{X}_{s}= \begin{cases}X_{s}, & \text { if } s \in(t, t+h), \\ X_{t+h}+\left(X_{s}^{z}-z\right), & \text { if }\left\{Y_{t+h}^{t, y} \in I(z)\right\} \\ & \text { and } s \in[t+h, T],\end{cases}$

The Dynamic Programming (Bellman) Principle

Then, show that

- \widehat{X} is a solution of structure equation (5) driven by \widehat{u};
- $(\widehat{\Omega}, \widehat{\mathscr{F}}, \widehat{P}, \widehat{\mathbf{F}}, \pi, u, X),(\widehat{\Omega}, \widehat{\mathscr{F}}, \widehat{P}, \widehat{\mathbf{F}}, \widehat{\pi}, \widehat{u}, \widehat{X}) \in \mathscr{U}(t)$.
- $\left(\widehat{\Omega}, \widehat{\mathscr{F}}, \widehat{P}, \widehat{\mathbf{F}}^{t+h}, \pi^{z}, u^{z}, X^{z}\right) \in \mathscr{U}(t+h)$.
- for large n, the solution $\widehat{Y}_{s}=Y_{s}^{t, y}$ satisfies

$$
\begin{aligned}
\widehat{E}\left\{g\left(\widehat{Y}_{T}\right)\right\} & \leq \sum_{z \in \Gamma^{n}} E\left\{g\left(Y_{T}^{z}\right)\right\} P\left\{Y_{t+h}^{t, y} \in I(z)\right\}+\varepsilon \\
& \leq \sum_{z \in \Gamma^{n}} V(t+h, z) P\left\{Y_{t+h}^{t, y} \in I(z)\right\}+2 \varepsilon \\
& =E\left\{\sum_{z \in \Gamma^{n}} V(t+h, z) \mathbf{1}_{I(z)}\left(Y_{t+h}^{t, y}\right)\right\}+2 \varepsilon .
\end{aligned}
$$

- Letting $\varepsilon \searrow 0$ and $n \rightarrow \infty \Longrightarrow \quad$ Done!

The HJB Equations

Controlled Differential-Difference Operators

For each $(\pi, u) \in U_{1} \times U^{d}$ we define

$$
\begin{aligned}
& \mathscr{A}_{\pi, u}^{i}[\varphi](s, y)= \mathbf{1}_{\left\{u^{i}=0\right\}} \nabla_{y} \varphi(s, y) \sigma^{i}(y, \pi, u) \\
&+\mathbf{1}_{\left\{u^{i} \neq 0\right\}} \frac{\varphi\left(s, y+u^{i} \sigma^{i}(y, \pi, u)\right)-\varphi(s, y)}{u^{i}} \\
& \mathscr{L}_{\pi, u[\varphi](s, y)=} \nabla_{y} \varphi(s, y) b(y, \pi, u) \\
&+ \sum_{i=1}^{d}\left\{\mathbf{1}_{\left\{u^{i}=0\right\}} \frac{1}{2}\left[D_{y y}^{2} \varphi(s, y) \sigma^{i}(y, \pi, u), \sigma^{i}(y, \pi, u)\right]\right. \\
&+\left.\mathbf{1}_{\left\{u^{i} \neq 0\right\}} \frac{\Delta^{i}[\varphi]\left(s, y, u^{i}\right)-u^{i} \nabla_{y} \varphi(s, y) \sigma^{i}(y, \pi, u)}{\left(u^{i}\right)^{2}}\right\},
\end{aligned}
$$

where $\left.\Delta^{i}[\varphi]\left(s, y, u^{i}\right) \triangleq \varphi\left(s, y+u^{i} \sigma^{i}(y, \pi, u)\right)\right)-\varphi(s, y)$.

The HJB Equations

If $\left(\Omega, \mathscr{F}, P, \mathbf{F}^{t}, \pi, u, X\right) \in \mathscr{U}(t)$ and $Y=Y^{t, y}$ is the corresponding system dynamics, then by Itô's formula, for any $\varphi \in C^{1,2}\left([0, T] \times \mathbb{R}^{m}\right)$ it holds that

$$
\begin{aligned}
& \varphi\left(s, Y_{s}\right)-\varphi(t, y) \\
= & \sum_{i=1}^{d} \int_{0}^{t} \mathscr{A}_{\pi_{s}, u_{s}}^{i}[\varphi]\left(s, Y_{s-}\right) d X_{s}^{i} \\
& +\int_{0}^{t}\left(\partial_{s} \varphi\left(s, Y_{s}\right)+\mathscr{L}_{\pi_{s}, u_{s}}[\varphi]\left(s, Y_{s}\right)\right) d s .
\end{aligned}
$$

The HJB Equations

Consider the following fully nonlinear partial differential-difference equation (PDDE):

$$
\left\{\begin{array}{lc}
-\partial_{t} V(t, y)-\inf _{(\pi, u) \in \bar{U}^{2}} \mathscr{L}_{\pi, u}[V](t, y)=0, \tag{10}\\
(t, y) \in[0, T) \times \mathbb{R}^{m}, \\
V(T, y)=g(y), & y \in \mathbb{R}^{m},
\end{array}\right.
$$

The HJB Equations

Consider the following fully nonlinear partial differential-difference equation (PDDE):

$$
\left\{\begin{array}{lc}
-\partial_{t} V(t, y)-\inf _{(\pi, u) \in \bar{U}} \mathscr{L}_{\pi, u}[V](t, y)=0, \\
(t, y) \in[0, T) \times \mathbb{R}^{m}, \tag{10}\\
V(T, y)=g(y), & y \in \mathbb{R}^{m},
\end{array}\right.
$$

Purpose:

Show that the value function $V(\cdot, \cdot)$ is the unique viscosity solution to the HJB equation (10).

The HJB Equations

Consider the following fully nonlinear partial differential-difference equation (PDDE):

$$
\left\{\begin{array}{lc}
-\partial_{t} V(t, y)-\inf _{(\pi, u) \in \bar{U}} \mathscr{L}_{\pi, u}[V](t, y)=0, \\
(t, y) \in[0, T) \times \mathbb{R}^{m}, \tag{10}\\
V(T, y)=g(y), & y \in \mathbb{R}^{m},
\end{array}\right.
$$

Purpose:

Show that the value function $V(\cdot, \cdot)$ is the unique viscosity solution to the HJB equation (10).

Note: The PDDE (10) has not been studied in the literature, therefore a thorough investigation is needed, starting from the definition of "viscosity solution" (!)

The HJB Equations

To overcome the difficulty caused by the "small jumps", we adopt the idea of Barles-Buckdahn-Pardoux (1997) for the IPDEs.

Definition

For each $\delta>0$, define the following operator:

$$
\begin{aligned}
& \mathscr{L}_{\pi, u}^{\delta}[V, \varphi](t, y) \triangleq \nabla_{y} \varphi(t, y) b(y, \pi, u) \\
& \quad+\sum_{i=1}^{d}\left\{\mathbf{1}_{\left\{u^{i}=0\right\}} \frac{1}{2}\left(D_{y y}^{2} \varphi(t, y) \sigma^{i}(y, \pi, u), \sigma^{i}(y, \pi, u)\right)\right. \\
& +\mathbf{1}_{\left\{0<\left|u^{i}\right| \leq \delta\right\}} \frac{\Delta^{i}[\varphi]\left(t, y, u^{i}\right)-u^{i} \nabla_{y} \varphi(t, y) \sigma^{i}(y, \pi, u)}{\left(u^{i}\right)^{2}} \\
& \left.\quad+\mathbf{1}_{\left\{\left|u^{i}\right|>\delta\right\}} \frac{\Delta^{i}[V]\left(t, y, u^{i}\right)-u^{i} \nabla_{y} \varphi(t, y) \sigma^{i}(y, \pi, u)}{\left(u^{i}\right)^{2}}\right\},
\end{aligned}
$$

where $\left.\Delta^{i}[\varphi]\left(t, y, u^{i}\right) \triangleq \varphi\left(t, y+u^{i} \sigma^{i}(y, \pi, u)\right)\right)-\varphi(t, y)$.

The HJB Equations

Definition

A continuous function $V:[0, T] \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called a viscosity "subsolution" (resp. "supersolution") of the PDDE (10) if
(i) $V(T, y) \leq(r e s p . \geq) g(y), y \in \mathbb{R}^{m}$; and
(ii) for any $(t, y) \in[0, T) \times \mathbb{R}^{m}$ and $\varphi \in C^{1,2}\left([0, T] \times \mathbb{R}^{m}\right)$ such that $V-\varphi$ attains a local maximum (resp. minimum) at (t, y), it holds that

$$
-\frac{\partial}{\partial t} \varphi(t, y)-\inf _{(\pi, u) \in \bar{U}} \mathscr{L}_{\pi, u}^{\delta}[V, \varphi](t, y) \leq(\text { resp. } \geq) 0
$$

for all sufficiently small $\delta>0$.
A function V is called a viscosity solution of (10) if it is both a viscosity subsolution and a supersolution of (10).

The HJB Equations

Remark

One can show that

- the definition is equivalent to one in which the "local maximum (minimum)" is replaced by "global maximum (minimum)" or even 'strict global maximum (minimum)";
- the operator $\mathscr{L}_{\pi, u}[V, \varphi](t, y)$ is replaced by $\mathscr{L}_{\pi, u}[\varphi](t, y)$.
(The idea is similar to that of Barles-Buckdahn-Pardoux (1997), but a little more complicated because of the "difference" operators!)

The HJB Equations

Remark

One can show that

- the definition is equivalent to one in which the "local maximum (minimum)" is replaced by "global maximum (minimum)" or even 'strict global maximum (minimum)";
- the operator $\mathscr{L}_{\pi, u}[V, \varphi](t, y)$ is replaced by $\mathscr{L}_{\pi, u}[\varphi](t, y)$.
(The idea is similar to that of Barles-Buckdahn-Pardoux (1997), but a little more complicated because of the "difference" operators!)

Theorem

The value function $V(t, y)$ is a viscosity solution of (10).

Sketch of the proof.

(I) "Subsolution":

- Fix (t, y). Let $\mu \triangleq(\Omega, \mathscr{F}, P, \mathbf{F}, \pi, u, X) \in \mathscr{U}(t)$ with deterministic $(\pi, u) \in \bar{U}$. Let $\varphi \in C^{1,2}$ be such that $V-\varphi$ achieves a global maximum at (t, y).
- Applying Itô's formula and the Bellman principle:

$$
\begin{aligned}
0 & \leq E\left\{V\left(t+h, Y_{t+h}^{t, y}\right)-V(t, y)\right\} \\
& \leq\left\{\varphi\left(t+h, Y_{t+h}^{t, y}\right)-\varphi(t, y)\right\} \\
& =\int_{t}^{t+h} E\left\{\frac{\partial}{\partial s} \varphi\left(s, Y_{s}^{t, y}\right)+\mathscr{L}_{\pi, u}[\varphi]\left(s, Y_{s}^{t, y}\right)\right\} d s .
\end{aligned}
$$

- Dividing both sides by h and letting $h \rightarrow 0$ we obtain

$$
-\partial_{t} \varphi(t, y)-\mathscr{L}_{\pi, u}[\varphi](t, y) \leq 0, \quad \forall(\pi, u) \in \bar{U}
$$

Namely V is a viscosity subsolution.

Sketch of the proof.

(II) "Supersolution":

- Fix (t, y). Let $\varphi \in C^{1,2}$ be such that $V-\varphi$ attains a global minimum at (t, y).
- Fix an arbitrary $h>0$. For any $\varepsilon>0$, applying the Bellman Principle to find $\mu^{\varepsilon, h}=\left(\Omega, \mathscr{F}, \mathbf{F}^{t}, P, u, X\right)^{\varepsilon, h} \in \mathscr{U}(t)$ s.t.

$$
V(t, y)+\varepsilon h \geq E^{\varepsilon, h}\left\{V\left(t+h, Y_{t+h}^{t, y}\left(\mu^{\varepsilon, h}\right)\right)\right\} .
$$

- following the similar argument as before we have

$$
E^{\varepsilon, h}\left\{\int_{t}^{t+h}\left\{\partial_{s} \varphi+\mathscr{L}_{\pi_{s}, u_{s}}[\varphi]\right\}\left(s, Y_{s}^{t, y}\left(\mu^{\varepsilon, h}\right)\right) d s\right\} \leq \varepsilon h .
$$

- Find $C>0$ and $\delta>0$ such that

$$
\mid\left\{\partial_{s} \varphi(s, z)+\mathscr{L}_{\pi, u}[\varphi](s, z) \mid \leq C, \quad \forall(s, z)\right.
$$

and for all $|(s, z)-(t, y)| \leq 2 \delta$ and $(\pi, u) \in \bar{U}$,

$$
\left|\left\{\partial_{s} \varphi+\mathscr{L}_{\pi, u}[\varphi]\right\}(s, z)-\left\{\partial_{s} \varphi+\mathscr{L}_{\pi, u}[\varphi]\right\}(t, y)\right| \leq \varepsilon .
$$

Sketch of the proof.

- Consequently,

$$
\begin{aligned}
\varepsilon h \geq & h\left\{\partial_{t} \varphi+\mathscr{L}_{\pi_{s}, u_{s}}[\varphi]\right\}(t, y)-h \varepsilon \\
& -C h P^{\varepsilon, h}\left\{\sup _{s \in[t, t+h]}\left|Y_{s}^{t, y}-y\right| \geq \delta\right\} \\
\geq & h\left(\partial_{t} \varphi(t, y)+\inf _{(\pi, u) \in \bar{U}} \mathscr{L}_{\pi, u} \varphi(t, y)\right)-h \varepsilon \\
& -C h P^{\varepsilon, h}\left\{\sup _{s \in[t, t+h]}\left|Y_{s}^{t, y}-y\right| \geq \delta\right\}
\end{aligned}
$$

Sketch of the proof.

- Since

$$
\begin{gathered}
P^{\varepsilon, h}\left\{\sup _{s \in[t, t+h]}\left|Y_{s}^{t, y}-y\right| \geq \delta\right\} \\
\leq \frac{4}{\delta^{2}} E^{\varepsilon, h}\left[\sum_{i=1}^{d} \int_{t}^{t+h}\left|\sigma^{\cdot, i}\left(Y_{s \wedge \tau-}^{t, y}, \pi_{s}, u_{s}\right)\right|^{2} d s\right] \\
\leq C\left(1+|y|^{2}\right) \frac{1}{\delta^{2}} h . \\
\Longrightarrow \frac{\partial}{\partial t} \varphi(t, y)+\inf _{(\pi, u) \in \bar{U}} \mathscr{L}_{\pi, u} \varphi(t, y) \leq 2 \varepsilon+C\left(1+|y|^{2}\right) \frac{1}{\delta^{2}} h . \\
\Longrightarrow \frac{\partial}{\partial t} \varphi(t, y)+\inf _{(\pi, u) \in \bar{U}} \mathscr{L}_{\pi, u} \varphi(t, y) \leq 0 .
\end{gathered}
$$

Uniqueness

Theorem

The value function $V(\cdot, \cdot)$ is the unique viscosity solution of (10) among all bounded, continuous functions.

Sketch of the proof. (Assume $d=1$, no $\pi, \sigma=1, b=0$)

- Change $V(t, x) \mapsto e^{\gamma t} V(T-t, x)$, for $\gamma>0$, then need only consider the equation

$$
\begin{aligned}
& \partial_{t} V(t, x)+\gamma V(t, x)-\inf _{u \in U} \mathscr{L}_{u}[V](t, x)=0, \\
& V(0, x)=g(x)
\end{aligned}
$$

- Let V be a sub- and W a super-solution of (11) (want:
$V \leq W)$. Suppose that

$$
\theta \triangleq \sup _{(t, x) \in[0, T] \times \mathbb{R}}(V(t, x)-W(t, x))>0
$$

Uniqueness

- For $\varepsilon, \alpha>0$, set

$$
\begin{aligned}
\Psi_{\varepsilon, \alpha} \triangleq & V(t, x)-W(s, y)-\frac{\alpha}{2}\left(\frac{1}{T-t}+\frac{1}{T-s}\right) \\
& -\frac{\alpha}{2}\left(|x|^{2}+|y|^{2}\right)-\frac{1}{2 \varepsilon}|x-y|^{2}-\frac{1}{2 \varepsilon}|s-t|^{2}
\end{aligned}
$$

and $(\hat{t}, \hat{x}, \hat{s}, \hat{y}) \in \operatorname{argmax} \Psi_{\varepsilon, \alpha}$. (Note: $(\hat{t}, \hat{x}, \hat{s}, \hat{y})$ depend on ε, α, of course!)

- $\forall \eta>0, \exists\left(t_{\eta}, x_{\eta}\right) \in[0, T] \times \mathbb{R}, \alpha_{\eta}>0$ such that $\forall \alpha \in\left(0, \alpha_{\eta}\right)$, $V\left(t_{\eta}, x_{\eta}\right)-W\left(t_{\eta}, x_{\eta}\right) \geq \theta-\eta / 2 ; \quad \Psi_{\varepsilon, \alpha}(\hat{t}, \hat{x}, \hat{s}, \hat{y}) \geq \theta-\eta>0$.
$\Longrightarrow \forall \alpha \in\left(0, \alpha_{\eta}\right), \exists\left(t_{\alpha}, x_{\alpha}, t_{\alpha}, x_{a}\right)$ such that (possibly along a subsequence),

$$
V(\hat{t}, \hat{x})-W(\hat{s}, \hat{y}) \rightarrow V\left(t_{\alpha}, x_{\alpha}\right)-W\left(t_{\alpha}, x_{\alpha}\right), \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Uniqueness

- Applying Ishii's lemma to get: $\exists(\mathscr{X}, \mathscr{Y}) \in \mathbb{R}^{2 m}$ such that

$$
\left\{\begin{array}{l}
\left(\frac{\hat{t}-\hat{s}}{\varepsilon}+\frac{\alpha}{2} \frac{1}{(T-\hat{t})^{2}}, \frac{\hat{x}-\hat{y}}{\varepsilon}+\alpha \hat{x}, \mathscr{X}\right) \in \overline{\mathscr{P}}^{1,2,+} V(\hat{t}, \hat{x}), \\
\left(\frac{\hat{t}-\hat{s}}{\varepsilon}-\frac{\alpha}{2} \frac{1}{(T-\hat{s})^{2}}, \frac{\hat{x}-\hat{y}}{\varepsilon}-\alpha \hat{y}, \mathscr{Y}\right) \in \overline{\mathscr{P}}^{1,2,-} W(\hat{s}, \hat{y}),
\end{array}\right.
$$

and
$\left(\begin{array}{cc}\mathscr{X} & 0 \\ 0 & -\mathscr{Y}\end{array}\right) \leq A+\rho A^{2}$, with $A=\frac{1}{\varepsilon}\left(\begin{array}{cc}I_{m} & -I_{m} \\ -I_{m} & I_{m}\end{array}\right)+\alpha I_{2 m} ;$
where $\overline{\mathscr{P}}^{1,2,+} V(\hat{t}, \hat{x})\left(\right.$ resp. $\left.\overline{\mathscr{P}}^{1,2,-} W(\hat{t}, \hat{x})\right)$ denotes the "parabolic superjet" (resp. "subjets").

Uniqueness

- By definition of viscosity solution (via "jets") we then have

$$
\begin{aligned}
& 0 \geq \frac{\alpha}{2}\left(\frac{1}{(T-\hat{t})^{2}}+\frac{1}{(T-\hat{s})^{2}}\right)+\gamma(V(\hat{t}, \hat{x})-W(\hat{s}, \hat{y})) \\
&+\inf _{u \in U}\left\{\mathbf{1}_{\{u \neq 0\}} \frac{W(\hat{s}, \hat{y}+u)-W(\hat{s}, \hat{y})}{u^{2}}\right. \\
&-\mathbf{1}_{\{u \neq 0\}} \frac{V(\hat{t}, \hat{x}+u)+V(\hat{t}, \hat{x})+\alpha u(\hat{x}+\hat{y})}{u^{2}} \\
&\left.+\mathbf{1}_{\{u=0\}}(\mathscr{Y}-\mathscr{X})\right\}
\end{aligned}
$$

Uniqueness

- By definition of viscosity solution (via "jets") we then have

$$
\begin{aligned}
0 & \geq \frac{\alpha}{2}\left(\frac{1}{(T-\hat{t})^{2}}+\frac{1}{(T-\hat{s})^{2}}\right)+\gamma(V(\hat{t}, \hat{x})-W(\hat{s}, \hat{y})) \\
+ & \inf _{u \in U}\left\{\mathbf{1}_{\{u \neq 0\}} \frac{W(\hat{s}, \hat{y}+u)-W(\hat{s}, \hat{y})}{u^{2}}\right. \\
& -\mathbf{1}_{\{u \neq 0\}} \frac{V(\hat{t}, \hat{x}+u)+V(\hat{t}, \hat{x})+\alpha u(\hat{x}+\hat{y})}{u^{2}} \\
& \left.+\mathbf{1}_{\{u=0\}}(\mathscr{Y}-\mathscr{X})\right\}
\end{aligned}
$$

Warning:

Since $\mathscr{H}(t, y, v, p, S) \triangleq \inf _{(\pi, u)} \mathscr{L}_{\pi, u}[\varphi]$ is discontinuous on (p, S), this conclusion could be wrong, unless U takes some special form!
We need to assume that $U=\{0\} \cup U_{1}$ where U_{1} is compact. (Consider, e.g., the insurance model where there is "deductible".)

Uniqueness

- Now recall the definition of $(\hat{t}, \hat{x}, \hat{s}, \hat{y})$ we have

$$
\Psi_{\varepsilon, \alpha}(\hat{t}, \hat{x}, \hat{s}, \hat{y}) \geq \Psi_{\varepsilon, \alpha}(\hat{t}, \hat{x}+u, \hat{s}, \hat{y}+u)
$$

- We obtain that

$$
\begin{aligned}
0 \geq & \gamma(\theta-\eta)+\inf _{u \in U}\left\{\mathbf{1}_{\{u=0\}}(\mathscr{Y}-\mathscr{X})\right. \\
& \left.+\mathbf{1}_{\{u \neq 0\}} \frac{-\alpha(\hat{x}+\hat{y}) u-\alpha u^{2}+\alpha(\hat{x}+\hat{y}) u}{u^{2}}\right\} \\
= & \inf _{u \in U}\left\{-\alpha \mathbf{1}_{\{u \neq 0\}}+\mathbf{1}_{\{u=0\}}(\mathscr{Y}-\mathscr{X})\right\} .
\end{aligned}
$$

- Thus

$$
\begin{aligned}
0 & \geq \gamma(\theta-\eta)+\inf _{u \in U}\left(-\alpha \mathbf{1}_{\{u \neq 0\}}-4 \alpha \mathbf{1}_{\{u=0\}}\right) \\
& =\gamma(\theta-\eta)-4 \alpha
\end{aligned}
$$

- Choose $0<\eta<\theta$ and $\gamma>\frac{4 \alpha}{\theta-\eta}$, we have $0 \geq \gamma(\theta-\eta)-4 \alpha>0$, a contradiction.

Ruckdahn，R．and Ma，J．，Rainer，C．（2008），Stochastic Control Problems for Systems Driven by Normal Martingales． The Annals of Applied Probability．Vol． 18 （2），pp．632－663．
圊 Dritschel，M．and Protter，P．（1999），Complete markets with discontinuous security price，Finance Stoch． 3 203＂C214
围 Emery，M．，Chaotic Representation Property of certain Azéma Martingales，Illinois Journal of Mathematics 50：2（2006）， 395－411．
圊 Ma，J．，Protter，P．，and San Martin，J．，Anticipating integrals for a class of martingales，Bernoulli 4：1（1998），81－114．

囦 Meyer，P．A．，Construction de solutions d＇équations de structure，Séminaire de Probabilités XXIII，Springer Verlag， Lecture Notes in Mathematics 1372 （1989），142－145．

