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Preface

This book is focused on the recent developments on problems of probability
model under uncertainty by using the notion of nonlinear expectations and, in
particular, sublinear expectations. Roughly speaking, a nonlinear expectation
E is a monotone and constant preserving functional defined on a linear space of
random variables. We are particularly interested in sublinear expectations, i.e.,
E[X + Y ] ≤ E[X] + E[Y ] for all random variables X, Y and E[λX] = λE[X] if
λ ≥ 0.

A sublinear expectation E can be represented as the upper expectation of
a subset of linear expectations {Eθ : θ ∈ Θ}, i.e., E[X] = supθ∈ΘEθ[X]. In
most cases, this subset is often treated as an uncertain model of probabilities
{Pθ : θ ∈ Θ} and the notion of sublinear expectation provides a robust way to
measure a risk loss X. In fact, the sublinear expectation theory provides many
rich, flexible and elegant tools.

A remarkable point of view is that we emphasize the term“expectation”
rather than the well-accepted classical notion “probability” and its non-additive
counterpart “capacity”. A technical reason is that in general the information
contained in a nonlinear expectation E will be lost if one consider only its
corresponding “non-additive probability” or “capacity” P(A) = E[1A]. Philo-
sophically, the notion of expectation has its direct meaning of “mean”, “av-
erage” which is not necessary to be derived from the corresponding “relative
frequency” which is the origin of the probability measure. For example, when a
person gets a sample {x1, · · · , xN} from a random variable X, he can directly
use X = 1

N

∑
xi to calculate its mean. In general he uses ϕ(X) = 1

N

∑
ϕ(xi)

for the mean of ϕ(X). We will discuss in detail this issue after the overview of
our new law of large numbers (LLN) and central limit theorem (CLT).

A theoretical foundation of the above expectation framework is our new
LLN and CLT under sublinear expectations. Classical LLN and CLT have been
widely used in probability theory, statistics, data analysis as well as in many
practical situations such as financial pricing and risk management. They provide
a strong and convincing way to explain why in practice normal distributions are
so widely utilized. But often a serious problem is that, in general, the “i.i.d”.
condition is difficult to be satisfied. In practice, for the most real-time processes
and data for which the classical trials and samplings become impossible, the
uncertainty of probabilities and distributions can not be neglected. In fact the
abuse of normal distributions in finance and many other industrial or commercial
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domains has been criticized.
Our new CLT does not need this strong “i.i.d”. assumption. Instead of

fixing a probability measure P , we introduce an uncertain subset of probability
measures {Pθ : θ ∈ Θ} and consider the corresponding sublinear expectation
E[X] = supθ∈ΘEθ[X]. Our main assumptions are:

(i) The distribution of Xi is within a subset of distributions {Fθ(x) : θ ∈ Θ}
with

µ = E[Xi] ≥ µ = −E[−Xi];

(ii) Any realization of X1, · · · , Xn does not change the distributional uncer-
tainty of Xn+1.

Under E, we call X1, X2, · · · to be identically distributed if condition (i) is
satisfied, and we call Xn+1 is independent from X1, · · · , Xn if condition (ii) is
fulfilled. Mainly under the above weak “i.i.d.” assumptions, we have proved
that for each continuous function ϕ with linear growth we have the following
LLN:

lim
n→∞

E[ϕ(
Sn
n

)] = sup
µ≤v≤µ

ϕ(v).

Namely, the uncertain subset of the distributions of Sn/n is approximately a
subset of dirac measures {δv : µ ≤ v ≤ µ}.

In particular, if µ = µ = 0, then Sn/n converges in law to 0. In this case, if
we assume furthermore that σ2 = E[X2

i ] and σ2 = −E[−X2
i ], i = 1, 2, · · · , then

we have the following generalization of the CLT:

lim
n→∞

E[ϕ(Sn/
√
n)] = E[ϕ(X)].

Here X is called G-normal distributed and denoted by N({0} × [σ2, σ2]). The
value E[ϕ(X)] can be calculated by defining u(t, x) := E[ϕ(x +

√
tX)] which

solves the partial differential equation (PDE) ∂tu = G(uxx) with G(a) :=
1
2 (σ2a+ − σ2a−). Our results reveal a deep and essential relation between the
theory of probability and statistics under uncertainty and second order fully
nonlinear parabolic equations (HJB equations). We have two interesting situa-
tions: when ϕ is a convex function, then

E[ϕ(X)] =
1√

2πσ2

∫ ∞

−∞
ϕ(x) exp(− x2

2σ2 )dx,

but if ϕ is a concave function, the above σ2 must be replaced by σ2. If σ = σ = σ,
then N({0} × [σ2, σ2]) = N(0, σ2) which is a classical normal distribution.

This result provides a new way to explain a well-known puzzle: many practi-
tioners, e.g., traders and risk officials in financial markets can widely use normal
distributions without serious data analysis or even with data inconsistence. In
many typical situations E[ϕ(X)] can be calculated by using normal distribu-
tions with careful choice of parameters, but it is also a high risk calculation if
the reasoning behind has not been understood.
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We call N({0} × [σ2, σ2]) the G-normal distribution. This new type of
sublinear distributions was first introduced in Peng (2006)[98] (see also [102],
[100],[101], [103]) for a new type of “G-Brownian motion” and the related calcu-
lus of Itô’s type. The main motivations were uncertainties in statistics, measures
of risk and superhedging in finance (see El Karoui, Peng, S. and Quenez, M.
C. (1997) [44], Artzner, Ph., Delbaen, F., Eber, J. M. and Heath, D. (1999)
[3], Chen, Z. and Epstein, L. (2002) [19], Föllmer, H. and Schied, A. (2004)
[51]). Fully nonlinear super-hedging is also a possible domain of applications
(see Avellaneda, M., Levy, A. and Paras, A. (1995) [5], Lyons, T. (1995) [80],
see also Cheridito, P., Soner, H.M., Touzi, N. and Victoir, N. (2007) [23] where
a new BSDE approach was introduced).

Technically we introduce a new method to prove our CLT on a sublinear
expectation space. This proof is short since we have borrowed a deep interior
estimate of fully nonlinear partial differential equation (PDE) in Krylov (1987)
[74]. In fact the theory of fully nonlinear parabolic PDE plays an essential
role in deriving our new results of LLN and CLT. In the classical situation the
corresponding PDE becomes a heat equation which is often hidden behind its
heat kernel, i.e., the normal distribution. In this book we use the powerful notion
of viscosity solutions for our nonlinear PDE initially introduced by Crandall
and Lions (1983) [29]. This notion is specially useful when the equation is
degenerate. For reader’s convenience, we provide an introductory chapter in
Appendix C. If readers are only interested in the classical non-degenerate cases,
the corresponding solutions will become smooth (see the last section of Appendix
C).

We define a sublinear expectation on the space of continuous paths from R+

to Rd which is an analogue of Wiener’s law, by which a G-Brownian motion
is formulated. Briefly speaking, a G-Brownian motion (Bt)t≥0 is a continuous
process with independent and stationary increments under a given sublinear
expectation E.

G–Brownian motion has a very rich and interesting new structure which non-
trivially generalizes the classical one. We can establish the related stochastic
calculus, especially Itô’s integrals and the related quadratic variation process
〈B〉. A very interesting new phenomenon of our G-Brownian motion is that its
quadratic variation process 〈B〉 is also a continuous process with independent
and stationary increments, and thus can be still regarded as a Brownian motion.
The corresponding G-Itô’s formula is obtained. We have also established the
existence and uniqueness of solutions to stochastic differential equation under
our stochastic calculus by the same Picard iterations as in the classical situation.

New norms were introduced in the notion of G-expectation by which the cor-
responding stochastic calculus becomes significantly more flexible and powerful.
Many interesting, attractive and challenging problems are also automatically
provided within this new framework.

In this book we adopt a novel method to present our G-Brownian motion
theory. In the first two chapters as well as the first two sections of Chapter III,
our sublinear expectations are only assumed to be finitely sub-additive, instead
of “σ-sub-additive”. This is just because all the related results obtained in this
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part do not need the “σ-sub-additive” assumption, and readers even need not to
have the background of classical probability theory. In fact, in the whole part of
the first five chapters we only use a very basic knowledge of functional analysis
such as Hahn-Banach Theorem (see Appendix A). A special situation is when
all the sublinear expectations in this book become linear. In this case this book
can be still considered as using a new and very simple approach to teach the
classical Itô’s stochastic calculus, since this book does not need the knowledge
of probability theory. This is an important advantage to use expectation as our
basic notion.

The “authentic probabilistic parts”, i.e., the pathwise analysis of our G-
Brownian motion and the corresponding random variables, view as functions of
G-Brownian path, is presented in Chapter VI. Here just as the classical “P -sure
analysis”, we introduce “ĉ-sure analysis” for G-capacity ĉ. Readers who are not
interested in the deep parts of stochastic analysis of G-Brownian motion theory
do not need to read this chapter.

This book was based on the author’s Lecture Notes [100] for several series of
lectures, for the 2nd Workshop Stochastic Equations and Related Topic Jena,
July 23–29, 2006; Graduate Courses of Yantai Summer School in Finance, Yantai
University, July 06–21, 2007; Graduate Courses of Wuhan Summer School, July
24–26, 2007; Mini-Course of Institute of Applied Mathematics, AMSS, April
16–18, 2007; Mini-course in Fudan University, May 2007 and August 2009;
Graduate Courses of CSFI, Osaka University, May 15–June 13, 2007; Minerva
Research Foundation Lectures of Columbia University in Fall of 2008; Mini-
Workshop of G-Brownian motion and G-expectations in Weihai, July 2009, and
series talks in Hong Kong during my recent one-month visit to Department of
Applied Mathematics, Hong Kong Polytechnic University. The hospitalities and
encouragements of the above institutions and the enthusiasm of the audiences
are the main engine to realize this lecture notes. I thank for many comments and
suggestions given during those courses, especially to Li Juan and Hu Mingshang.
During the preparation of this book, a special reading group was organized with
members Hu Mingshang, Li Xinpeng, Xu Xiaoming, Lin Yiqing, Su Chen, Wang
Falei and Yin Yue. They proposed very helpful suggestions for the revision of
the book. Hu Mingshang and Li Xinpeng have made a great effort for the final
edition. Their efforts are decisively important to the realization of this book.
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Chapter I

Sublinear Expectations and
Risk Measures

The sublinear expectation is also called the upper expectation or the upper
prevision, and this notion is used in situations when the probability models
have uncertainty. In this chapter, we present the basic notion of sublinear ex-
pectations and the corresponding sublinear expectation spaces. We give the
representation theorem of a sublinear expectation and the notions of distribu-
tions and independence under the framework of sublinear expectation. We also
introduce a natural Banach norm of a sublinear expectation in order to get
the completion of a sublinear expectation space which is a Banach space. As
a fundamentally important example, we introduce the notion of coherent risk
measures in finance. A large part of notions and results in this chapter will be
throughout this book.

§1 Sublinear Expectations and Sublinear Expec-
tation Spaces

Let Ω be a given set and let H be a linear space of real valued functions defined
on Ω. In this book, we suppose that H satisfies c ∈ H for each constant c and
|X| ∈ H if X ∈ H. The space H can be considered as the space of random
variables.

Definition 1.1 A Sublinear expectation E is a functional E : H → R satis-
fying
(i) Monotonicity:

E[X] ≥ E[Y ] if X ≥ Y.

(ii) Constant preserving:

E[c] = c for c ∈ R.

1



2 Chap.I Sublinear Expectations and Risk Measures

(iii) Sub-additivity: For each X,Y ∈ H,

E[X + Y ] ≤ E[X] + E[Y ].

(iv) Positive homogeneity:

E[λX] = λE[X] for λ ≥ 0.

The triple (Ω,H,E) is called a sublinear expectation space. If (i) and
(ii) are satisfied, E is called a nonlinear expectation and the triple (Ω,H,E)
is called a nonlinear expectation space .

Definition 1.2 Let E1 and E2 be two nonlinear expectations defined on (Ω,H).
E1 is said to be dominated by E2 if

E1[X]− E1[Y ] ≤ E2[X − Y ] for X,Y ∈ H.

Remark 1.3 From (iii), a sublinear expectation is dominated by itself. In many
situations, (iii) is also called the property of self-domination. If the inequality in
(iii) becomes equality, then E is a linear expectation, i.e., E is a linear functional
satisfying (i) and (ii).

Remark 1.4 (iii)+(iv) is called sublinearity. This sublinearity implies
(v) Convexity:

E[αX + (1− α)Y ] ≤ αE[X] + (1− α)E[Y ] for α ∈ [0, 1].

If a nonlinear expectation E satisfies convexity, we call it a convex expecta-
tion.

The properties (ii)+(iii) implies
(vi) Cash translatability:

E[X + c] = E[X] + c for c ∈ R.

In fact, we have

E[X] + c = E[X]− E[−c] ≤ E[X + c] ≤ E[X] + E[c] = E[X] + c.

For property (iv), an equivalence form is

E[λX] = λ+E[X] + λ−E[−X] for λ ∈ R.

In this book, we will systematically study the sublinear expectation spaces.
In the following chapters, unless otherwise stated, we consider the following
sublinear expectation space (Ω,H,E): if X1, · · · , Xn ∈ H then ϕ(X1, · · · , Xn) ∈
H for each ϕ ∈ Cl.Lip(Rn) where Cl.Lip(Rn) denotes the linear space of functions
ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y| for x, y ∈ Rn,
some C > 0, m ∈ N depending on ϕ.

In this case X = (X1, · · · , Xn) is called an n-dimensional random vector, de-
noted by X ∈ Hn.
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Remark 1.5 It is clear that if X ∈ H then |X|, Xm ∈ H. More generally,
ϕ(X)ψ(Y ) ∈ H if X,Y ∈ H and ϕ,ψ ∈ Cl.Lip(R). In particular, if X ∈ H then
E[|X|n] <∞ for each n ∈ N.

Here we use Cl.Lip(Rn) in our framework only for some convenience of tech-
niques. In fact our essential requirement is that H contains all constants and,
moreover, X ∈ H implies |X| ∈ H. In general, Cl.Lip(Rn) can be replaced by
any one of the following spaces of functions defined on Rn.

• L∞(Rn): the space of bounded Borel-measurable functions;

• Cb(Rn): the space of bounded and continuous functions;

• Ckb (Rn): the space of bounded and k-time continuously differentiable func-
tions with bounded derivatives of all orders less than or equal to k;

• Cunif (Rn): the space of bounded and uniformly continuous functions;

• Cb.Lip(Rn): the space of bounded and Lipschitz continuous functions;

• L0(Rn): the space of Borel measurable functions.

Next we give two examples of sublinear expectations.

Example 1.6 In a game we select a ball from a box containing W white, B
black and Y yellow balls. The owner of the box, who is the banker of the game,
does not tell us the exact numbers of W,B and Y . He or she only informs us
that W+B+Y = 100 and W = B ∈ [20, 25]. Let ξ be a random variable defined
by

ξ =

 1 if we get a white ball;
0 if we get a yellow ball;

−1 if we get a black ball.

Problem: how to measure a loss X = ϕ(ξ) for a given function ϕ on R.
We know that the distribution of ξ is{

−1 0 1
p
2 1− p p

2

}
with uncertainty: p ∈[µ, µ] = [0.4, 0.5].

Thus the robust expectation of X = ϕ(ξ) is

E[ϕ(ξ)] := sup
P∈P

EP [ϕ(ξ)]

= sup
p∈[µ,µ]

[
p

2
(ϕ(1) + ϕ(−1)) + (1− p)ϕ(0)].

Here, ξ has distribution uncertainty.
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Example 1.7 A more general situation is that the banker of a game can choose
among a set of distributions {F (θ,A)}A∈B(R),θ∈Θ of a random variable ξ . In this
situation the robust expectation of a risk position ϕ(ξ) for some ϕ ∈ Cl.Lip(R)
is

E[ϕ(ξ)] := sup
θ∈Θ

∫
R
ϕ(x)F (θ, dx).

Exercise 1.8 Prove that a functional E satisfies sublinearity if and only if it
satisfies convexity and positive homogeneity.

Exercise 1.9 Suppose that all elements in H are bounded. Prove that the
strongest sublinear expectation on H is

E∞[X] := X∗ = sup
ω∈Ω

X(ω).

Namely, all other sublinear expectations are dominated by E∞[·].

§2 Representation of a Sublinear Expectation

A sublinear expectation can be expressed as a supremum of linear expectations.

Theorem 2.1 Let E be a functional defined on a linear space H satisfying sub-
additivity and positive homogeneity. Then there exists a family of linear func-
tionals {Eθ : θ ∈ Θ} defined on H such that

E[X] = sup
θ∈Θ

Eθ[X] for X ∈ H

and, for each X ∈ H, there exists θX ∈ Θ such that E[X] = EθX
[X].

Furthermore, if E is a sublinear expectation, then the corresponding Eθ is a
linear expectation.

Proof. Let Q = {Eθ : θ ∈ Θ} be the family of all linear functionals dominated
by E, i.e., Eθ[X] ≤ E[X], for all X ∈ H, Eθ ∈ Q.

We first prove thatQ is non empty. For a givenX ∈ H, we set L = {aX : a ∈
R} which is a subspace of H. We define I : L →R by I[aX] = aE[X], ∀a ∈R,
then I[·] forms a linear functional on H and I ≤ E on L. Since E[·] is sub-
additive and positively homogeneous, by Hahn-Banach theorem (see Appendix
A), there exists a linear functional E on H such that E = I on L and E ≤ E
on H. Thus E is a linear functional dominated by E such that E[X] = E[X].

We now define
EΘ[X] := sup

θ∈Θ
Eθ[X] for X ∈ H.

It is clear that EΘ = E.
Furthermore, if E is a sublinear expectation, then we have that, for each

nonnegative element X ∈ H, E[X] = −E[−X] ≥ −E[−X] ≥ 0. For each c ∈R,
−E[c] = E[−c] ≤ E[−c] = −c and E[c] ≤ E[c] = c, so we get E[c] = c. Thus E
is a linear expectation. The proof is complete. �
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Remark 2.2 It is important to observe that the above linear expectation Eθ is
only “finitely additive”. A sufficient condition for the σ-additivity of Eθ is to
assume that E[Xi] → 0 for each sequence {Xi}∞i=1 of H such that Xi(ω) ↓ 0
for each ω. In this case, it is clear that Eθ[Xi] → 0. Thus we can apply the
well-known Daniell-Stone Theorem (see Theorem 3.3 in Appendix B) to find a
σ-additive probability measure Pθ on (Ω, σ(H)) such that

Eθ[X] =
∫

Ω

X(ω)dPθ, X ∈ H.

The corresponding model uncertainty of probabilities is the subset {Pθ : θ ∈ Θ},
and the corresponding uncertainty of distributions for an n-dimensional random
vector X in H is {FX(θ,A) := Pθ(X ∈ A) : A ∈ B(Rn)}.

In many situation, we may concern the probability uncertainty, and the
probability maybe only finitely additive. So next we will give another version
of the above representation theorem.

Let Pf be the collection of all finitely additive probability measures on
(Ω,F), we consider L∞0 (Ω,F) the collection of risk positions with finite val-
ues, which consists risk positions X of the form

X(ω) =
N∑
i=1

xiIAi
(ω), xi ∈ R, Ai ∈ F , i = 1, · · · , N.

It is easy to check that, under the norm ‖·‖∞, L∞0 (Ω,F) is dense in L∞(Ω,F).
For a fixed Q ∈ Pf and X ∈ L∞0 (Ω,F) we define

EQ[X] = EQ[
N∑
i=1

xiIAi(ω)] :=
N∑
i=1

xiQ(Ai) =
∫

Ω

X(ω)Q(dω).

EQ : L∞0 (Ω,F) → R is a linear functional. It is easy to check that EQ satisfies
(i) monotonicity and (ii) constant preserving. It is also continuous under ‖X‖∞.

|EQ[X]| ≤ sup
ω∈Ω

|X(ω)| = ‖X‖∞ .

Since L∞0 is dense in L∞ we then can extend EQ from L∞0 to a linear continuous
functional on L∞(Ω,F).

Proposition 2.3 The linear functional EQ[·] :L∞(Ω,F) → R satisfies (i) and
(ii). Inversely each linear functional η(·) :L∞(Ω,F) → R satisfying (i) and (ii)
induces a finitely additive probability measure via Qη(A) = η(IA), A ∈ F . The
corresponding expectation is η itself

η(X) =
∫

Ω

X(ω)Qη(dω).
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Theorem 2.4 A sublinear expectation E has the following representation: there
exists a subset Q ⊂ Pf , such that

E[X] = sup
Q∈Q

EQ[X] for X ∈ H.

Proof. By Theorem 2.1, we have

E[X] = sup
θ∈Θ

Eθ[X] for X ∈ H,

where Eθ is a linear expectation on H for fixed θ ∈ Θ.
We can define a new sublinear expectation on L∞(Ω, σ(H)) by

Ẽθ[X] := inf{Eθ[Y ];Y ≥ X,Y ∈ H}.

It is not difficult to check that Ẽθ is a sublinear expectation on L∞(Ω, σ(H)),
where σ(H) is the smallest σ-algebra generated by H. We also have Eθ ≤ Ẽθ
on H, by Hahn-Banach theorem, Eθ can be extended from H to L∞(Ω, σ(H)),
by Proposition 2.3, there exists Q ∈ Pf , such that

Eθ[X] = EQ[X] for X ∈ H.

So there exists Q ⊂ Pf , such that

E[X] = sup
Q∈Q

EQ[X] for X ∈ H.

�

Exercise 2.5 Prove that Ẽθ is a sublinear expectation.

§3 Distributions, Independence and Product Spaces

We now give the notion of distributions of random variables under sublinear
expectations.

Let X = (X1, · · · , Xn) be a given n-dimensional random vector on a sublin-
ear expectation space (Ω,H,E). We define a functional on Cl.Lip(Rn) by

FX [ϕ] := E[ϕ(X)] : ϕ ∈ Cl.Lip(Rn) → R.

The triple (Rn, Cl.Lip(Rn),FX) forms a sublinear expectation space. FX is called
the distribution of X under E. In the σ-additive situation (see Remark 2.2),
we have the following form:

FX [ϕ] = sup
θ∈Θ

∫
Rn

ϕ(x)FX(θ, dx).
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Definition 3.1 Let X1 and X2 be two n–dimensional random vectors defined
on sublinear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2), respectively. They
are called identically distributed, denoted by X1

d= X2, if

E1[ϕ(X1)] = E2[ϕ(X2)] for ϕ ∈ Cl.Lip(Rn).

It is clear that X1
d= X2 if and only if their distributions coincide. We say that

the distribution of X1 is stronger than that of X2 if E1[ϕ(X1)] ≥ E2[ϕ(X2)], for
each ϕ ∈ Cl.Lip(Rn).

Remark 3.2 In the case of sublinear expectations, X1
d= X2 implies that the

uncertainty subsets of distributions of X1 and X2 are the same, e.g., in the
framework of Remark 2.2,

{FX1(θ1, ·) : θ1 ∈ Θ1} = {FX2(θ2, ·) : θ2 ∈ Θ2}.

Similarly if the distribution of X1 is stronger than that of X2, then

{FX1(θ1, ·) : θ1 ∈ Θ1} ⊃ {FX2(θ2, ·) : θ2 ∈ Θ2}.

The distribution of X ∈ H has the following four typical parameters:

µ̄ := E[X], µ := −E[−X], σ̄2 := E[X2], σ2 := −E[−X2].

The intervals [µ, µ̄] and [σ2, σ̄2] characterize the mean-uncertainty and the
variance-uncertainty of X respectively.

The following property is very useful in our sublinear expectation theory.

Proposition 3.3 Let (Ω,H,E) be a sublinear expectation space and X,Y be
two random variables such that E[Y ] = −E[−Y ], i.e., Y has no mean-uncertainty.
Then we have

E[X + αY ] = E[X] + αE[Y ] for α ∈ R.

In particular, if E[Y ] = E[−Y ] = 0, then E[X + αY ] = E[X].

Proof. We have

E[αY ] = α+E[Y ] + α−E[−Y ] = α+E[Y ]− α−E[Y ] = αE[Y ] for α ∈ R.

Thus

E[X + αY ] ≤ E[X] + E[αY ] = E[X] + αE[Y ] = E[X]− E[−αY ] ≤ E[X + αY ].

�

Definition 3.4 A sequence of n-dimensional random vectors {ηi}∞i=1 defined
on a sublinear expectation space (Ω,H,E) is said to converge in distribu-
tion (or converge in law) under E if for each ϕ ∈ Cb.Lip(Rn), the sequence
{E[ϕ(ηi)]}∞i=1 converges.
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The following result is easy to check.

Proposition 3.5 Let {ηi}∞i=1 converge in law in the above sense. Then the
mapping F[·] : Cb.Lip(Rn) → R defined by

F[ϕ] := lim
i→∞

E[ϕ(ηi)] for ϕ ∈ Cb.Lip(Rn)

is a sublinear expectation defined on (Rn, Cb.Lip(Rn)).

The following notion of independence plays a key role in the sublinear ex-
pectation theory.

Definition 3.6 In a sublinear expectation space (Ω,H,E), a random vector Y ∈
Hn is said to be independent from another random vector X ∈ Hm under E[·]
if for each test function ϕ ∈ Cl.Lip(Rm+n) we have

E[ϕ(X,Y )] = E[E[ϕ(x, Y )]x=X ].

Remark 3.7 In a sublinear expectation space (Ω,H,E), Y is independent from
X means that the uncertainty of distributions {FY (θ, ·) : θ ∈ Θ} of Y does
not change after the realization of X = x. In other words, the “conditional
sublinear expectation” of Y with respect to X is E[ϕ(x, Y )]x=X . In the case of
linear expectation, this notion of independence is just the classical one.

Remark 3.8 It is important to note that under sublinear expectations the con-
dition “Y is independent from X” does not imply automatically that “X is
independent from Y ”.

Example 3.9 We consider a case where E is a sublinear expectation and X,Y ∈
H are identically distributed with E[X] = E[−X] = 0 and σ2 = E[X2] >
σ2 = −E[−X2]. We also assume that E[|X|] = E[X+ + X−] > 0, thus
E[X+] = 1

2E[|X| + X] = 1
2E[|X|] > 0. In the case where Y is independent

from X, we have

E[XY 2] = E[X+σ2 −X−σ2] = (σ2 − σ2)E[X+] > 0.

But if X is independent from Y , we have

E[XY 2] = 0.

The independence property of two random vectors X,Y involves only the
“joint distribution” of (X,Y ). The following result tells us how to construct
random vectors with given “marginal distributions” and with a specific direction
of independence.

Definition 3.10 Let (Ωi,Hi,Ei), i = 1, 2 be two sublinear expectation spaces.
We denote

H1 ⊗H2 := {Z(ω1, ω2) = ϕ(X(ω1), Y (ω2)) : (ω1, ω2) ∈ Ω1 × Ω2,

(X,Y ) ∈ Hm
1 ×Hn

2 , ϕ ∈ Cl.Lip(Rm+n)},
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and, for each random variable of the above form Z(ω1, ω2) = ϕ(X(ω1), Y (ω2)),

(E1 ⊗ E2)[Z] := E1[ϕ̄(X)], where ϕ̄(x) := E2[ϕ(x, Y )], x ∈ Rm.

It is easy to check that the triple (Ω1×Ω2,H1⊗H2,E1⊗E2) forms a sublinear
expectation space. We call it the product space of sublinear expectation spaces
(Ω1,H1, E1) and (Ω2,H2, E2). In this way, we can define the product space

(
n∏
i=1

Ωi,
n⊗
i=1

Hi,
n⊗
i=1

Ei)

of given sublinear expectation spaces (Ωi,Hi,Ei), i = 1, 2, · · · , n. In partic-
ular, when (Ωi,Hi,Ei) = (Ω1,H1, E1) we have the product space of the form
(Ωn1 ,H⊗n

1 , E⊗n1 ).

Let X, X̄ be two n-dimensional random vectors on a sublinear expectation
space (Ω,H,E). X̄ is called an independent copy of X if X̄ d= X and X̄ is
independent from X.

The following property is easy to check.

Proposition 3.11 Let Xi be an ni-dimensional random vector on sublinear
expectation space (Ωi,Hi,Ei) for i = 1, · · · , n, respectively. We denote

Yi(ω1, · · · , ωn) := Xi(ωi), i = 1, · · · , n.

Then Yi, i = 1, · · · , n, are random vectors on (
∏n
i=1 Ωi,

⊗n
i=1Hi,

⊗n
i=1 Ei).

Moreover we have Yi
d= Xi and Yi+1 is independent from (Y1, · · · , Yi), for each

i.
Furthermore, if (Ωi,Hi,Ei) = (Ω1,H1, E1) and Xi

d= X1, for all i, then we
also have Yi

d= Y1. In this case Yi is said to be an independent copy of Y1 for
i = 2, · · · , n.

Remark 3.12 In the above construction the integer n can be also infinite. In
this case each random variable X ∈

⊗∞
i=1Hi belongs to (

∏k
i=1 Ωi,

⊗k
i=1Hi,

⊗k
i=1 Ei)

for some positive integer k <∞ and
∞⊗
i=1

Ei[X] :=
k⊗
i=1

Ei[X].

Example 3.13 We consider a situation where two random variables X and Y
in H are identically distributed and their common distribution is

FX [ϕ] = FY [ϕ] = sup
θ∈Θ

∫
R
ϕ(y)F (θ, dy) for ϕ ∈ Cl.Lip(R),

where for each θ ∈ Θ, {F (θ,A)}A∈B(R) is a probability measure on (R,B(R)).
In this case, ”Y is independent from X” means that the joint distribution of X
and Y is

FX,Y [ψ] = sup
θ1∈Θ

∫
R

[
sup
θ2∈Θ

∫
R
ψ(x, y)F (θ2, dy)

]
F (θ1, dx) for ψ ∈ Cl.Lip(R2).
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Remark 3.14 The situation “Y is independent from X”often appears when Y
occurs after X, thus a robust expectation should take the information of X into
account.

Exercise 3.15 Suppose X,Y ∈ Hd and Y is an independent copy of X. Prove
that for each a ∈ R, b ∈ Rd,a+ 〈b, Y 〉 is an independent copy of a+ 〈b,X〉.

Exercise 3.16 Let (Ω,H,E) be a sublinear expectation space. Prove that if
E[ϕ(X)] = E[ϕ(Y )] for any ϕ ∈ Cb,Lip, then it still holds for any ϕ ∈ Cl,Lip.
That is, we can replace ϕ ∈ Cl,Lip in Definition 3.1 by ϕ ∈ Cb,Lip.

§4 Completion of Sublinear Expectation Spaces

Let (Ω,H,E) be a sublinear expectation space. We have the following useful
inequalities.

We first give the following well-known inequalities.

Lemma 4.1 For r > 0 and 1 < p, q <∞ with 1
p + 1

q = 1, we have

|a+ b|r ≤ max{1, 2r−1}(|a|r + |b|r) for a, b ∈ R, (4.1)

|ab| ≤ |a|p

p
+
|b|q

q
. (4.2)

Proposition 4.2 For each X,Y ∈H, we have

E[|X + Y |r] ≤ 2r−1(E[|X|r] + E[|Y |r]), (4.3)

E[|XY |] ≤ (E[|X|p])1/p · (E[|Y |q])1/q, (4.4)

(E[|X + Y |p])1/p ≤ (E[|X|p])1/p + (E[|Y |p])1/p, (4.5)

where r≥ 1 and 1 < p, q <∞ with 1
p + 1

q = 1.
In particular, for 1 ≤ p < p′, we have (E[|X|p])1/p ≤ (E[|X|p′ ])1/p′ .

Proof. The inequality (4.3) follows from (4.1).
For the case E[|X|p] · E[|Y |q] > 0, we set

ξ =
X

(E[|X|p])1/p
, η =

Y

(E[|Y |q])1/q
.

By (4.2) we have

E[|ξη|] ≤ E[
|ξ|p

p
+
|η|q

q
] ≤ E[

|ξ|p

p
] + E[

|η|q

q
]

=
1
p

+
1
q

= 1.
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Thus (4.4) follows.
For the case E[|X|p] ·E[|Y |q] = 0, we consider E[|X|p]+ ε and E[|Y |q]+ ε for

ε > 0. Applying the above method and letting ε→ 0, we get (4.4).
We now prove (4.5). We only consider the case E[|X + Y |p] > 0.

E[|X + Y |p] = E[|X + Y | · |X + Y |p−1]

≤ E[|X| · |X + Y |p−1] + E[|Y | · |X + Y |p−1]

≤ (E[|X|p])1/p · (E[|X + Y |(p−1)q])1/q

+ (E[|Y |p])1/p · (E[|X + Y |(p−1)q])1/q.

Since (p− 1)q = p, we have (4.5).
By(4.4), it is easy to deduce that (E[|X|p])1/p ≤ (E[|X|p′ ])1/p′ for 1 ≤ p < p′.

�

For each fixed p ≥ 1, we observe that Hp
0 = {X ∈ H, E[|X|p] = 0} is a

linear subspace of H. Taking Hp
0 as our null space, we introduce the quotient

space H/Hp
0. Observing that, for every {X} ∈ H/Hp

0 with a representation
X ∈ H, we can define an expectation E[{X}] := E[X] which is still a sublinear
expectation. We set ‖X‖p := (E[|X|p])

1
p . By Proposition 4.2, it is easy to check

that ‖·‖p forms a Banach norm on H/Hp
0. We extend H/Hp

0 to its completion
Ĥp under this norm, then (Ĥp, ‖·‖p) is a Banach space. In particular, when
p = 1, we denote it by (Ĥ, ‖·‖).

For each X ∈ H, the mappings

X+(ω) : H → H and X−(ω) : H → H

satisfy

|X+ − Y +| ≤ |X − Y | and |X− − Y −| = |(−X)+ − (−Y )+| ≤ |X − Y |.

Thus they are both contraction mappings under ‖·‖p and can be continuously
extended to the Banach space (Ĥp, ‖·‖p).

We can define the partial order “≥” in this Banach space.

Definition 4.3 An element X in (Ĥ, ‖·‖) is said to be nonnegative, or X ≥ 0,
0 ≤ X, if X = X+. We also denote by X ≥ Y , or Y ≤ X, if X − Y ≥ 0.

It is easy to check that X ≥ Y and Y ≥ X imply X = Y on (Ĥp, ‖·‖p).
For each X,Y ∈ H, note that

|E[X]− E[Y ]| ≤ E[|X − Y |] ≤ ||X − Y ||p.

Thus the sublinear expectation E[·] can be continuously extended to (Ĥp, ‖·‖p)
on which it is still a sublinear expectation.

Let (Ω,H,E1) be a nonlinear expectation space. E1 is said to be dominated
by E if
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E1[X]− E1[Y ] ≤ E[X − Y ] for X,Y ∈ H.

From this we can easily deduce that |E1[X]− E1[Y ]| ≤ E[|X − Y |], thus the
nonlinear expectation E1[·] can be continuously extended to (Ĥp, ‖·‖p) on which
it is still a nonlinear expectation.

Remark 4.4 It is important to note that X1, · · · , Xn ∈ Ĥ does not imply
ϕ(X1, · · · , Xn) ∈ Ĥ for each ϕ ∈ Cl.Lip(Rn). Thus, when we talk about the no-
tions of distributions, independence and product spaces on (Ω, Ĥ,E), the space
Cl.Lip(Rn) is replaced by Cb.Lip(Rn) unless otherwise stated.

Exercise 4.5 Prove that the inequalities (4.3),(4.4),(4.5) still hold for (Ω, Ĥ,E).

§5 Coherent Measures of Risk

Let the pair (Ω,H) be such that Ω is a set of scenarios and H is the collection
of all possible risk positions in a financial market.

If X ∈ H, then for each constant c, X ∨ c, X ∧ c are all in H. One typical
example in finance is that X is the tomorrow’s price of a stock. In this case, any
European call or put options with strike price K of forms (S−K)+, (K−S)+

are in H.
A risk supervisor is responsible for taking a rule to tell traders, securities

companies, banks or other institutions under his supervision, which kind of risk
positions is unacceptable and thus a minimum amount of risk capitals should
be deposited to make the positions acceptable. The collection of acceptable
positions is defined by

A = {X ∈ H : X is acceptable}.

This set has meaningful properties in economy.

Definition 5.1 A set A is called a coherent acceptable set if it satisfies
(i) Monotonicity:

X ∈ A, Y ≥ X imply Y ∈ A.

(ii) 0 ∈ A but −1 6∈ A.
(iii) Positive homogeneity

X ∈ A implies λX ∈ A for λ ≥ 0.

(iv) Convexity:

X,Y ∈ A imply αX + (1− α)Y ∈ A for α ∈ [0, 1].
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Remark 5.2 (iii)+(iv) imply
(v) Sublinearity:

X,Y ∈ A ⇒ µX + νY ∈ A for µ, ν ≥ 0.

Remark 5.3 If the set A only satisfies (i),(ii) and (iv), then A is called a
convex acceptable set.

In this section we mainly study the coherent case. Once the rule of the
acceptable set is fixed, the minimum requirement of risk deposit is then auto-
matically determined.

Definition 5.4 Given a coherent acceptable set A, the functional ρ(·) defined
by

ρ(X) = ρA(X) := inf{m ∈ R : m+X ∈ A}, X ∈ H
is called the coherent risk measure related to A.

It is easy to see that

ρ(X + ρ(X)) = 0.

Proposition 5.5 ρ(·) is a coherent risk measure satisfying four properties:

(i) Monotonicity: If X ≥ Y then ρ(X) ≤ ρ(Y ).
(ii) Constant preserving: ρ(1) = −ρ(−1) = −1.
(iii) Sub-additivity: For each X,Y ∈ H, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
(iv) Positive homogeneity: ρ(λX) = λρ(X) for λ ≥ 0.

Proof. (i), (ii) are obvious.
We now prove (iii). Indeed,

ρ(X + Y ) = inf{m ∈ R : m+ (X + Y ) ∈ A}
= inf{m+ n : m,n ∈ R, (m+X) + (n+ Y ) ∈ A}
≤ inf{m ∈ R : m+X ∈ A}+ inf{n ∈ R : n+ Y ∈ A}
=ρ(X) + ρ(Y ).

To prove (iv), in fact the case λ = 0 is trivial; when λ > 0,

ρ(λX) = inf{m ∈ R : m+ λX ∈ A}
= λ inf{n ∈ R : n+X ∈ A} = λρ(X),

where n = m/λ. �
Obviously, if E is a sublinear expectation, we define ρ(X) := E[−X], then ρ

is a coherent risk measure. Inversely, if ρ is a coherent risk measure, we define
E[X] := ρ(−X), then E is a sublinear expectation.

Exercise 5.6 Let ρ(·) be a coherent risk measure. Then we can inversely define

Aρ:= {X ∈ H : ρ(X) ≤ 0}.

Prove that Aρ is a coherent acceptable set.
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Notes and Comments

The sublinear expectation is also called the upper expectation (see Huber (1981)
[59] in robust statistics), or the upper prevision in the theory of imprecise prob-
abilities (see Walley (1991) [118] and a rich literature provided in the Notes
of this book). To our knowledge, the Representation Theorem 2.1 was firstly
obtained for the case where Ω is a finite set by [59], and this theorem was redis-
covered independently by Artzner, Delbaen, Eber and Heath (1999) [3] and then
by Delbaen (2002) [35] for the general Ω. A typical example of dynamic nonlin-
ear expectation, called g–expectation (small g), was introduced in Peng (1997)
[90] in the framework of backward stochastic differential equations. Readers are
referred to Briand, Coquet, Hu, Mémin and Peng [14], Chen [18], Chen and
Epstein [19], Chen, Kulperger and Jiang [20], Chen and Peng [21] and [22], Co-
quet, Hu, Mémin and Peng [26] [27], Jiang [67], Jiang and Chen [68, 69], Peng
[92] and [95], Peng and Xu [105] and Rosazza [110] for the further development
of this theory. It seems that the notions of distributions and independence un-
der nonlinear expectations were new. We think that these notions are perfectly
adapted for the further development of dynamic nonlinear expectations. For
other types of the related notions of distributions and independence under non-
linear expectations or non-additive probabilities, we refer to the Notes of the
book [118] and the references listed in Marinacci (1999) [81] and Maccheroni
and Marinacci (2005) [82]. Coherent risk measures can be also regarded as sub-
linear expectations defined on the space of risk positions in financial market.
This notion was firstly introduced in [3]. Readers can be referred also to the
well-known book of Föllmer and Schied (2004)[51] for the systematical presen-
tation of coherent risk measures and convex risk measures. For the dynamic
risk measure in continuous time, see [110] or [95], Barrieu and El Karoui (2004)
[9] using g-expectations. Super-hedging and super pricing (see El Karoui and
Quenez (1995) [43] and El Karoui, Peng and Quenez (1997) [44]) are also closely
related to this formulation.



Chapter II

Law of Large Numbers and
Central Limit Theorem

In this chapter, we first introduce two types of fundamentally important distri-
butions, namely, maximal distribution and G-normal distribution, in the theory
of sublinear expectations. The former corresponds to constants and the lat-
ter corresponds to normal distribution in classical probability theory. We then
present the law of large numbers (LLN) and central limit theorem (CLT) un-
der sublinear expectations. It is worth pointing out that the limit in LLN is a
maximal distribution and the limit in CLT is a G-normal distribution.

§1 Maximal Distribution and G-normal Distri-
bution

We will firstly define a special type of very simple distributions which are fre-
quently used in practice, known as “worst case risk measure”.

Definition 1.1 (maximal distribution) A d-dimensional random vector η =
(η1, · · · , ηd) on a sublinear expectation space (Ω,H,E) is called maximal dis-
tributed if there exists a bounded, closed and convex subset Γ ⊂ Rd such that

E[ϕ(η)] = max
y∈Γ

ϕ(y).

Remark 1.2 Here Γ gives the degree of uncertainty of η. It is easy to check
that this maximal distributed random vector η satisfies

aη + bη̄
d= (a+ b)η for a, b ≥ 0,

where η̄ is an independent copy of η. We will see later that in fact this relation
characterizes a maximal distribution. Maximal distribution is also called “worst
case risk measure” in finance.

15
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Remark 1.3 When d = 1 we have Γ = [µ, µ], where µ = E[η] and µ = −E[−η].
The distribution of η is

F̂η[ϕ] = E[ϕ(η)] = sup
µ≤y≤µ̄

ϕ(y) for ϕ ∈ Cl.Lip(R).

Recall a well-known characterization: X d= N(0,Σ) if and only if

aX + bX̄
d=
√
a2 + b2X for a, b ≥ 0, (1.1)

where X̄ is an independent copy of X. The covariance matrix Σ is defined by
Σ = E[XXT ]. We now consider the so called G-normal distribution in probabil-
ity model uncertainty situation. The existence, uniqueness and characterization
will be given later.

Definition 1.4 (G-normal distribution) A d-dimensional random vector X =
(X1, · · · , Xd)T on a sublinear expectation space (Ω,H,E) is called (centralized)
G-normal distributed if

aX + bX̄
d=
√
a2 + b2X for a, b ≥ 0,

where X̄ is an independent copy of X.

Remark 1.5 Noting that E[X + X̄] = 2E[X] and E[X + X̄] = E[
√

2X] =√
2E[X], we then have E[X] = 0. Similarly, we can prove that E[−X] = 0.

Namely, X has no mean-uncertainty.

The following property is easy to prove by the definition.

Proposition 1.6 Let X be G-normal distributed. Then for each A ∈ Rm×d,
AX is also G-normal distributed. In particular, for each a ∈ Rd, 〈a, X〉 is a
1-dimensional G-normal distributed random variable, but its inverse is not true
(see Exercise 1.15).

We denote by S(d) the collection of all d × d symmetric matrices. Let X
be G-normal distributed and η be maximal distributed d-dimensional random
vectors on (Ω,H,E). The following function is very important to characterize
their distributions:

G(p,A) := E[
1
2
〈AX,X〉+ 〈p, η〉], (p,A) ∈ Rd × S(d). (1.2)

It is easy to check that G is a sublinear function monotonic in A ∈ S(d) in the
following sense: for each p, p̄ ∈ Rd and A, Ā ∈ S(d) G(p+ p̄, A+ Ā) ≤ G(p,A) +G(p̄, Ā),

G(λp, λA) = λG(p,A), ∀λ ≥ 0,
G(p,A) ≥ G(p, Ā), if A ≥ Ā.

(1.3)
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Clearly, G is also a continuous function. By Theorem 2.1 in Chap.I, there exists
a bounded and closed subset Γ ⊂ Rd × Rd×d such that

G(p,A) = sup
(q,Q)∈Γ

[
1
2
tr[AQQT ] + 〈p, q〉] for (p,A) ∈ Rd × S(d). (1.4)

We have the following result, which will be proved in the next section.

Proposition 1.7 Let G : Rd × S(d) → R be a given sublinear and continuous
function, monotonic in A ∈ S(d) in the sense of (1.3). Then there exists a G-
normal distributed d-dimensional random vector X and a maximal distributed
d-dimensional random vector η on some sublinear expectation space (Ω,H,E)
satisfying (1.2) and

(aX + bX̄, a2η + b2η̄) d= (
√
a2 + b2X, (a2 + b2)η), for a, b ≥ 0, (1.5)

where (X̄, η̄) is an independent copy of (X, η).

Definition 1.8 The pair (X, η) satisfying (1.5) is called G-distributed.

Remark 1.9 In fact, if the pair (X, η) satisfies (1.5), then

aX + bX̄
d=
√
a2 + b2X, aη + bη̄

d= (a+ b)η for a, b ≥ 0.

Thus X is G-normal and η is maximal distributed.

The above pair (X, η) is characterized by the following parabolic partial
differential equation (PDE for short) defined on [0,∞)× Rd × Rd :

∂tu−G(Dyu,D
2
xu) = 0, (1.6)

with Cauchy condition u|t=0 = ϕ, where G : Rd × S(d) → R is defined by
(1.2) and D2u = (∂2

xixj
u)di,j=1, Du = (∂xiu)

d
i=1. The PDE (1.6) is called a

G-equation.
In this book we will mainly use the notion of viscosity solution to describe

the solution of this PDE. For reader’s convenience, we give a systematical intro-
duction of the notion of viscosity solution and its related properties used in this
book (see Appendix C, Section 1-3). It is worth to mention here that for the case
where G is non-degenerate, the viscosity solution of the G-equation becomes a
classical C1,2 solution (see Appendix C, Section 4). Readers without knowledge
of viscosity solutions can simply understand solutions of the G-equation in the
classical sense along the whole book.

Proposition 1.10 For the pair (X, η) satisfying (1.5) and a function ϕ ∈
Cl.Lip(Rd × Rd), we define

u(t, x, y) := E[ϕ(x+
√
tX, y + tη)], (t, x, y) ∈ [0,∞)× Rd × Rd.
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Then we have

u(t+ s, x, y) = E[u(t, x+
√
sX, y + sη)], s ≥ 0. (1.7)

We also have the estimates: for each T > 0, there exist constants C, k > 0 such
that, for all t, s ∈ [0, T ] and x, x̄, y, ȳ ∈ Rd,

|u(t, x, y)− u(t, x̄, ȳ)| ≤ C(1 + |x|k + |y|k + |x̄|k + |ȳ|k)(|x− x̄|+ |y − ȳ|) (1.8)

and
|u(t, x, y)− u(t+ s, x, y)| ≤ C(1 + |x|k + |y|k)(s+ |s|1/2). (1.9)

Moreover, u is the unique viscosity solution, continuous in the sense of (1.8)
and (1.9), of the PDE (1.6).

Proof. Since

u(t, x, y)− u(t, x̄, ȳ) = E[ϕ(x+
√
tX, y + tη)]− E[ϕ(x̄+

√
tX, ȳ + tη)]

≤ E[ϕ(x+
√
tX, y + tη)− ϕ(x̄+

√
tX, ȳ + tη)]

≤ E[C1(1 + |X|k + |η|k + |x|k + |y|k + |x̄|k + |ȳ|k)]
× (|x− x̄|+ |y − ȳ|)

≤ C(1 + |x|k + |y|k + |x̄|k + |ȳ|k)(|x− x̄|+ |y − ȳ|),

we have (1.8).
Let (X̄, η̄) be an independent copy of (X, η). By (1.5),

u(t+ s, x, y) = E[ϕ(x+
√
t+ sX, y + (t+ s)η)]

= E[ϕ(x+
√
sX +

√
tX̄, y + sη + tη̄)]

= E[E[ϕ(x+
√
sx̃+

√
tX̄, y + sỹ + tη̄)](ex,ey)=(X,η)]

= E[u(t, x+
√
sX, y + sη)],

we thus obtain (1.7). From this and (1.8) it follows that

u(t+ s, x, y)− u(t, x, y) = E[u(t, x+
√
sX, y + sη)− u(t, x, y)]

≤ E[C1(1 + |x|k + |y|k + |X|k + |η|k)(
√
s|X|+ s|η|)],

thus we obtain (1.9).
Now, for a fixed (t, x, y) ∈ (0,∞)×Rd ×Rd, let ψ ∈ C2,3

b ([0,∞)×Rd ×Rd)
be such that ψ ≥ u and ψ(t, x, y) = u(t, x, y). By (1.7) and Taylor’s expansion,
it follows that, for δ ∈ (0, t),

0 ≤ E[ψ(t− δ, x+
√
δX, y + δη)− ψ(t, x, y)]

≤ C̄(δ3/2 + δ2)− ∂tψ(t, x, y)δ

+ E[〈Dxψ(t, x, y), X〉
√
δ + 〈Dyψ(t, x, y), η〉 δ +

1
2
〈
D2
xψ(t, x, y)X,X

〉
δ]

= −∂tψ(t, x, y)δ + E[〈Dyψ(t, x, y), η〉+
1
2
〈
D2
xψ(t, x, y)X,X

〉
]δ + C̄(δ3/2 + δ2)

= −∂tψ(t, x, y)δ + δG(Dyψ,D
2
xψ)(t, x, y) + C̄(δ3/2 + δ2),
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from which it is easy to check that

[∂tψ −G(Dyψ,D
2
xψ)](t, x, y) ≤ 0.

Thus u is a viscosity subsolution of (1.6). Similarly we can prove that u is a
viscosity supersolution of (1.6). �

Corollary 1.11 If both (X, η) and (X̄, η̄) satisfy (1.5) with the same G, i.e.,

G(p,A) := E[
1
2
〈AX,X〉+〈p, η〉] = E[

1
2
〈
AX̄, X̄

〉
+〈p, η̄〉] for (p,A) ∈ Rd×S(d),

then (X, η) d= (X̄, η̄). In particular, X d= −X.

Proof. For each ϕ ∈ Cl.Lip(Rd × Rd), we set

u(t, x, y) := E[ϕ(x+
√
tX, y + tη)],

ū(t, x, y) := E[ϕ(x+
√
tX̄, y + tη̄)], (t, x, y) ∈ [0,∞)× Rd × Rd.

By Proposition 1.10, both u and ū are viscosity solutions of the G-equation (1.6)
with Cauchy condition u|t=0 = ū|t=0 = ϕ. It follows from the uniqueness of the
viscosity solution that u ≡ ū. In particular,

E[ϕ(X, η)] = E[ϕ(X̄, η̄)].

Thus (X, η) d= (X̄, η̄). �

Corollary 1.12 Let (X, η) satisfy (1.5). For each ψ ∈ Cl.Lip(Rd) we define

v(t, x) := E[ψ((x+
√
tX + tη)], (t, x) ∈ [0,∞)× Rd. (1.10)

Then v is the unique viscosity solution of the following parabolic PDE:

∂tv −G(Dxv,D
2
xv) = 0, v|t=0 = ψ. (1.11)

Moreover, we have v(t, x + y) ≡ u(t, x, y), where u is the solution of the PDE
(1.6) with initial condition u(t, x, y)|t=0 = ψ(x+ y).

Example 1.13 Let X be G-normal distributed. The distribution of X is char-
acterized by

u(t, x) = E[ϕ(x+
√
tX)], ϕ ∈ Cl.Lip(Rd).

In particular, E[ϕ(X)] = u(1, 0), where u is the solution of the following parabolic
PDE defined on [0,∞)× Rd :

∂tu−G(D2u) = 0, u|t=0 = ϕ, (1.12)

where G = GX(A) : S(d) → R is defined by

G(A) :=
1
2

E[〈AX,X〉], A ∈ S(d).
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The parabolic PDE (1.12) is called a G-heat equation.
It is easy to check that G is a sublinear function defined on S(d). By Theorem

2.1 in Chap.I, there exists a bounded, convex and closed subset Θ ⊂ S(d) such
that

1
2

E[〈AX,X〉] = G(A) =
1
2

sup
Q∈Θ

tr[AQ], A ∈ S(d). (1.13)

Since G(A) is monotonic: G(A1) ≥ G(A2), for A1 ≥ A2, it follows that

Θ ⊂ S+(d) = {θ ∈ S(d) : θ ≥ 0} = {BBT : B ∈ Rd×d},

where Rd×d is the set of all d× d matrices. If Θ is a singleton: Θ = {Q}, then
X is classical zero-mean normal distributed with covariance Q. In general, Θ
characterizes the covariance uncertainty of X. We denote X

d= N({0} × Θ)
(Recall equation (1.4), we can set (q,Q) ∈ {0} ×Θ).

When d = 1, we have X
d= N({0} × [σ2, σ̄2]) (We also denoted by X

d=
N(0, [σ2, σ̄2])), where σ̄2 = E[X2] and σ2 = −E[−X2]. The corresponding G-
heat equation is

∂tu−
1
2
(σ̄2(∂2

xxu)
+ − σ2(∂2

xxu)
−) = 0, u|t=0 = ϕ.

For the case σ2 > 0, this equation is also called the Barenblatt equation.

In the following two typical situations, the calculation of E[ϕ(X)] is very easy:

• For each convex function ϕ, we have

E[ϕ(X)] =
1√
2π

∫ ∞

−∞
ϕ(σ2y) exp(−y

2

2
)dy.

Indeed, for each fixed t ≥ 0, it is easy to check that the function u(t, x) :=
E[ϕ(x+

√
tX)] is convex in x:

u(t, αx+ (1− α)y) = E[ϕ(αx+ (1− α)y +
√
tX)]

≤ αE[ϕ(x+
√
tX)] + (1− α)E[ϕ(x+

√
tX)]

= αu(t, x) + (1− α)u(t, x).

It follows that (∂2
xxu)

− ≡ 0 and thus the above G-heat equation becomes

∂tu =
σ2

2
∂2
xxu, u|t=0 = ϕ.

• For each concave function ϕ, we have

E[ϕ(X)] =
1√
2π

∫ ∞

−∞
ϕ(σ2y) exp(−y

2

2
)dy.



§1 Maximal Distribution and G-normal Distribution 21

In particular,

E[X] = E[−X] = 0, E[X2] = σ2, −E[−X2] = σ2

and
E[X4] = 3σ4, −E[−X4] = 3σ4 .

Example 1.14 Let η be maximal distributed, the distribution of η is character-
ized by the following parabolic PDE defined on [0,∞)× Rd :

∂tu− g(Du) = 0, u|t=0 = ϕ, (1.14)

where g = gη(p) : Rd → R is defined by

gη(p) := E[〈p, η〉], p ∈ Rd.

It is easy to check that gη is a sublinear function defined on Rd. By Theorem
2.1 in Chap.I, there exists a bounded, convex and closed subset Θ̄ ⊂ Rd such
that

g(p) = sup
q∈Θ̄

〈p, q〉 , p ∈ Rd. (1.15)

By this characterization, we can prove that the distribution of η is given by

F̂η[ϕ] = E[ϕ(η)] = sup
v∈Θ̄

ϕ(v) = sup
v∈Θ̄

∫
Rd

ϕ(x)δv(dx), ϕ ∈ Cl.Lip(Rd), (1.16)

where δv is Dirac measure. Namely it is the maximal distribution with the
uncertainty subset of probabilities as Dirac measures concentrated at Θ̄. We
denote η d= N(Θ̄× {0}) (Recall equation (1.4), we can set (q,Q) ∈ Θ̄× {0}).

In particular, for d = 1,

gη(p) := E[pη] = µ̄p+ − µp−, p ∈ R,

where µ̄ = E[η] and µ = −Ê[−η]. The distribution of η is given by (1.16). We

denote η d= N([µ, µ̄]× {0}).

Exercise 1.15 We consider X = (X1, X2), where X1
d= N({0}× [σ2, σ2]) with

σ > σ, X2 is an independent copy of X1. Show that
(1) For each a ∈ R2, 〈a,X〉 is a 1-dimensional G-normal distributed random

variable.
(2) X is not G-normal distributed.

Exercise 1.16 Let X be G-normal distributed. For each ϕ ∈ Cl.Lip(Rd), we
define a function

u(t, x) := E[ϕ(x+
√
tX)], (t, x) ∈ [0,∞)× Rd.

Show that u is the unique viscosity solution of the PDE (1.12) with Cauchy
condition u|t=0 = ϕ.
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Exercise 1.17 Let η be maximal distributed. For each ϕ ∈ Cl.Lip(Rd), we
define a function

u(t, y) := E[ϕ(y + tη)], (t, y) ∈ [0,∞)× Rd.

Show that u is the unique viscosity solution of the PDE (1.14) with Cauchy
condition u|t=0 = ϕ.

§2 Existence of G-distributed Random Variables

In this section, we give the proof of the existence of G-distributed random
variables, namely, the proof of Proposition 1.7.

Let G : Rd × S(d) → R be a given sublinear function monotonic in A ∈ S(d)
in the sense of (1.3). We now construct a pair of d-dimensional random vectors
(X, η) on some sublinear expectation space (Ω,H,E) satisfying (1.2) and (1.5).

For each ϕ ∈ Cl.Lip(R2d), let u = uϕ be the unique viscosity solution of
the G-equation (1.6) with uϕ|t=0 = ϕ. We take Ω̃ = R2d, H̃ = Cl.Lip(R2d)
and ω̃ = (x, y) ∈ R2d. The corresponding sublinear expectation Ẽ[·] is defined
by Ẽ[ξ] = uϕ(1, 0, 0), for each ξ ∈ H̃ of the form ξ(ω̃) = (ϕ(x, y))(x,y)∈R2d ∈
Cl.Lip(R2d). The monotonicity and sub-additivity of uϕ with respect to ϕ are
known in the theory of viscosity solution. For reader’s convenience we provide a
new and simple proof in Appendix C (see Corollary 2.4 and Corollary 2.5). The
constant preserving and positive homogeneity of Ẽ[·] are easy to check. Thus
the functional Ẽ[·] : H̃ → R forms a sublinear expectation.

We now consider a pair of d-dimensional random vectors (X̃, η̃)(ω̃) = (x, y).
We have

Ẽ[ϕ(X̃, η̃)] = uϕ(1, 0, 0) for ϕ ∈ Cl.Lip(R2d).

In particular, just setting ϕ0(x, y) = 1
2 〈Ax, x〉+ 〈p, y〉, we can check that

uϕ0(t, x, y) = G(p,A)t+
1
2
〈Ax, x〉+ 〈p, y〉 .

We thus have

Ẽ[
1
2

〈
AX̃, X̃

〉
+ 〈p, η̃〉] = uϕ0(1, 0, 0) = G(p,A), (p,A) ∈ Rd × S(d).

We construct a product space

(Ω,H,E) = (Ω̃× Ω̃, H̃ ⊗ H̃, Ẽ⊗ Ẽ),

and introduce two pairs of random vectors

(X, η)(ω̃1, ω̃2) = ω̃1, (X̄, η̄)(ω̃1, ω̃2) = ω̃2, (ω̃1, ω̃2) ∈ Ω̃× Ω̃.

By Proposition 3.11 in Chap.I, (X, η) d= (X̃, η̃) and (X̄, η̄) is an independent
copy of (X, η).
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We now want to prove that the distribution of (X, η) satisfies condition
(1.5). For each ϕ ∈ Cl.Lip(R2d) and for each fixed λ > 0, (x̄, ȳ) ∈ R2d, since
the function v defined by v(t, x, y) := uϕ(λt, x̄+

√
λx, ȳ+λy) solves exactly the

same equation (1.6), but with Cauchy condition

v|t=0 = ϕ(x̄+
√
λ× ·, ȳ + λ× ·).

Thus
E[ϕ(x̄+

√
λX, ȳ + λη)] = v(1, 0, 0) = uϕ(λ, x̄, ȳ).

By the definition of E, for each t > 0 and s > 0,

E[ϕ(
√
tX +

√
sX̄, tη + sη̄)] = E[E[ϕ(

√
tx+

√
sX̄, ty + sη̄)](x,y)=(X,η)]

= E[uϕ(s,
√
tX, tη)] = uu

ϕ(s,·,·)(t, 0, 0)
= uϕ(t+ s, 0, 0)

= E[ϕ(
√
t+ sX, (t+ s)η)].

Namely (
√
tX +

√
sX̄, tη + sη̄) d= (

√
t+ sX, (t+ s)η). Thus the distribution of

(X, η) satisfies condition (1.5).

Remark 2.1 From now on, when we mention the sublinear expectation space
(Ω,H,E), we suppose that there exists a pair of random vectors (X, η) on (Ω,H,E)
such that (X, η) is G-distributed.

Exercise 2.2 Prove that Ê[X3] > 0 for X d= N({0} × [σ2, σ̄2]) with σ2 < σ̄2.
It is worth to point that Ê[ϕ(X)] not always equal to supσ2≤σ≤σ̄2 Eσ[ϕ(X)]

for ϕ ∈ Cl,Lip(R), where Eσ denotes the linear expectation corresponding to the
normal distributed density function N(0, σ2).

§3 Law of Large Numbers and Central Limit
Theorem

Theorem 3.1 (Law of large numbers) Let {Yi}∞i=1 be a sequence of Rd-
valued random variables on a sublinear expectation space (Ω,H,E). We assume
that Yi+1

d= Yi and Yi+1 is independent from {Y1, · · · , Yi} for each i = 1, 2, · · · .
Then the sequence {S̄n}∞n=1 defined by

S̄n :=
1
n

n∑
i=1

Yi

converges in law to a maximal distribution, i.e.,

lim
n→∞

E[ϕ(S̄n)] = E[ϕ(η)], (3.17)
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for all functions ϕ ∈ C(Rd) satisfying linear growth condition (|ϕ(x)| ≤ C(1 +
|x|)), where η is a maximal distributed random vector and the corresponding
sublinear function g : Rd → R is defined by

g(p) := E[〈p, Y1〉], p ∈ Rd.

Remark 3.2 When d = 1, the sequence {S̄n}∞n=1 converges in law to N([µ, µ̄]×
{0}), where µ̄ = E[Y1] and µ = −E[−Y1]. For the general case, the sum
1
n

∑n
i=1 Yi converges in law to N(Θ̄ × {0}), where Θ̄ ⊂ Rd is the bounded,

convex and closed subset defined in Example 1.14. If we take in particular
ϕ(y) = dΘ̄(y) = inf{|x − y| : x ∈ Θ̄}, then by (3.17) we have the following
generalized law of large numbers:

lim
n→∞

E[dΘ̄(
1
n

n∑
i=1

Yi)] = sup
θ∈Θ̄

dΘ̄(θ) = 0. (3.18)

If Yi has no mean-uncertainty, or in other words, Θ̄ is a singleton: Θ̄ = {θ̄},
then (3.18) becomes

lim
n→∞

E[| 1
n

n∑
i=1

Yi − θ̄|] = 0.

Theorem 3.3 (Central limit theorem with zero-mean) Let {Xi}∞i=1 be a
sequence of Rd-valued random variables on a sublinear expectation space (Ω,H,E).
We assume that Xi+1

d= Xi and Xi+1 is independent from {X1, · · · , Xi} for each
i = 1, 2, · · · . We further assume that

E[X1] = E[−X1] = 0.

Then the sequence {S̄n}∞n=1 defined by

S̄n :=
1√
n

n∑
i=1

Xi

converges in law to X, i.e.,

lim
n→∞

E[ϕ(S̄n)] = E[ϕ(X)],

for all functions ϕ ∈ C(Rd) satisfying linear growth condition, where X is a
G-normal distributed random vector and the corresponding sublinear function
G : S(d) → R is defined by

G(A) := E[
1
2
〈AX1, X1〉], A ∈ S(d).

Remark 3.4 When d = 1, the sequence {S̄n}∞n=1 converges in law to N({0} ×
[σ2, σ2]), where σ2 = E[X2

1 ] and σ2 = −E[−X2
1 ]. In particular, if σ2 = σ2, then

it becomes a classical central limit theorem.
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The following theorem is a nontrivial generalization of the above two theo-
rems.

Theorem 3.5 (Central limit theorem with law of large numbers) Let
{(Xi, Yi)}∞i=1 be a sequence of Rd × Rd-valued random vectors on a sublin-

ear expectation space (Ω,H,E). We assume that (Xi+1, Yi+1)
d= (Xi, Yi) and

(Xi+1, Yi+1) is independent from {(X1, Y1), · · · , (Xi, Yi)} for each i = 1, 2, · · · .
We further assume that

E[X1] = E[−X1] = 0.

Then the sequence {S̄n}∞n=1 defined by

S̄n :=
n∑
i=1

(
Xi√
n

+
Yi
n

)

converges in law to X + η, i.e.,

lim
n→∞

E[ϕ(S̄n)] = E[ϕ(X + η)], (3.19)

for all functions ϕ ∈ C(Rd) satisfying a linear growth condition, where the pair
(X, η) is G-distributed. The corresponding sublinear function G : Rd×S(d) → R
is defined by

G(p,A) := E[〈p, Y1〉+
1
2
〈AX1, X1〉], A ∈ S(d), p ∈ Rd.

Thus E[ϕ(X + η)] can be calculated by Corollary 1.12.

The following result is equivalent to the above central limit theorem.

Theorem 3.6 We make the same assumptions as in Theorem 3.5. Then for
each function ϕ ∈ C(Rd × Rd) satisfying linear growth condition, we have

lim
n→∞

E[ϕ(
n∑
i=1

Xi√
n
,
n∑
i=1

Yi
n

)] = E[ϕ(X, η)].

Proof. It is easy to prove Theorem 3.5 by Theorem 3.6. To prove Theorem 3.6
from Theorem 3.5, it suffices to define a pair of 2d-dimensional random vectors

X̄i = (Xi, 0), Ȳi = (0, Yi) for i = 1, 2, · · · .

We have

lim
n→∞

E[ϕ(
n∑
i=1

Xi√
n
,
n∑
i=1

Yi
n

)] = lim
n→∞

E[ϕ(
n∑
i=1

(
X̄i√
n

+
Ȳi
n

))] = E[ϕ(X̄ + η)]

= E[ϕ(X, η)]

with X̄ = (X, 0) and η̄ = (0, η). �
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To prove Theorem 3.5, we need the following norms to measure the regularity
of a given real functions u defined on Q = [0, T ]× Rd:

‖u‖C0,0(Q) = sup
(t,x)∈Q

|u(t, x)|,

‖u‖C1,1(Q) = ‖u‖C0,0(Q) + ‖∂tu‖C0,0(Q) +
d∑
i=1

‖∂xiu‖C0,0(Q) ,

‖u‖C1,2(Q) = ‖u‖C1,1(Q) +
d∑

i,j=1

∥∥∂xixj
u
∥∥
C0,0(Q)

.

For given constants α, β ∈ (0, 1), we denote

‖u‖Cα,β(Q) = sup
x,y∈Rd, x 6=y
s,t∈[0,T ],s 6=t

|u(s, x)− u(t, y)|
|r − s|α + |x− y|β

,

‖u‖C1+α,1+β(Q) = ‖u‖Cα,β(Q) + ‖∂tu‖Cα,β(Q) +
d∑
i=1

‖∂xi
u‖Cα,β(Q) ,

‖u‖C1+α,2+β(Q) = ‖u‖C1+α,1+β(Q) +
d∑

i,j=1

∥∥∂xixju
∥∥
Cα,β(Q)

.

If, for example, ‖u‖C1+α,2+β(Q) < ∞, then u is said to be a C1+α,2+β-function
on Q.

We need the following lemma.

Lemma 3.7 We assume the same assumptions as in Theorem 3.5. We further
assume that there exists a constant β > 0 such that, for each A, Ā ∈ S(d) with
A ≥ Ā, we have

E[〈AX1, X1〉]− E[
〈
ĀX1, X1

〉
] ≥ βtr[A− Ā]. (3.20)

Then our main result (3.19) holds.

Proof. We first prove (3.19) for ϕ ∈ Cb.Lip(Rd). For a small but fixed h > 0,
let V be the unique viscosity solution of

∂tV +G(DV,D2V ) = 0, (t, x) ∈ [0, 1 + h)× Rd, V |t=1+h = ϕ. (3.21)

Since (X, η) satisfies (1.5), we have

V (h, 0) = E[ϕ(X + η)], V (1 + h, x) = ϕ(x). (3.22)

Since (3.21) is a uniformly parabolic PDE and G is a convex function, by the
interior regularity of V (see Appendix C), we have

‖V ‖C1+α/2,2+α([0,1]×Rd) <∞ for some α ∈ (0, 1).
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We set δ = 1
n and S0 = 0. Then

V (1, S̄n)− V (0, 0) =
n−1∑
i=0

{V ((i+ 1)δ, S̄i+1)− V (iδ, S̄i)}

=
n−1∑
i=0

{[V ((i+ 1)δ, S̄i+1)− V (iδ, S̄i+1)] + [V (iδ, S̄i+1)− V (iδ, S̄i)]}

=
n−1∑
i=0

{
Iiδ + J iδ

}
with, by Taylor’s expansion,

J iδ = ∂tV (iδ, S̄i)δ+
1
2
〈
D2V (iδ, S̄i)Xi+1, Xi+1

〉
δ+
〈
DV (iδ, S̄i), Xi+1

√
δ + Yi+1δ

〉

Iiδ = δ

∫ 1

0

[∂tV ((i+ β)δ, S̄i+1)− ∂tV (iδ, S̄i+1)]dβ + [∂tV (iδ, S̄i+1)− ∂tV (iδ, S̄i)]δ

+
〈
D2V (iδ, S̄i)Xi+1, Yi+1

〉
δ3/2 +

1
2
〈
D2V (iδ, S̄i)Yi+1, Yi+1

〉
δ2

+
∫ 1

0

∫ 1

0

〈
Θi
βγ(Xi+1

√
δ + Yi+1δ), Xi+1

√
δ + Yi+1δ

〉
γdβdγ

with
Θi
βγ = D2V (iδ, S̄i + γβ(Xi+1

√
δ + Yi+1δ))−D2V (iδ, S̄i).

Thus

E[
n−1∑
i=0

J iδ]− E[−
n−1∑
i=0

Iiδ] ≤ E[V (1, S̄n)]− V (0, 0) ≤ E[
n−1∑
i=0

J iδ] + E[
n−1∑
i=0

Iiδ]. (3.23)

We now prove that E[
∑n−1
i=0 J

i
δ] = 0. For J iδ, note that

E[
〈
DV (iδ, S̄i), Xi+1

√
δ
〉
] = E[−

〈
DV (iδ, S̄i), Xi+1

√
δ
〉
] = 0,

then, from the definition of the function G, we have

E[J iδ] = E[∂tV (iδ, S̄i) +G(DV (iδ, S̄i), D2V (iδ, S̄i))]δ.

Combining the above two equalities with ∂tV +G(DV,D2V ) = 0 as well as the
independence of (Xi+1, Yi+1) from {(X1, Y1), · · · , (Xi, Yi)}, it follows that

E[
n−1∑
i=0

J iδ] = E[
n−2∑
i=0

J iδ] = · · · = 0.

Thus (3.23) can be rewritten as

−E[−
n−1∑
i=0

Iiδ] ≤ E[V (1, S̄n)]− V (0, 0) ≤ E[
n−1∑
i=0

Iiδ].
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But since both ∂tV and D2V are uniformly α
2 -hölder continuous in t and α-

hölder continuous in x on [0, 1]×Rd, we then have

|Iiδ| ≤ Cδ1+α/2(1 + |Xi+1|2+α + |Yi+1|2+α).

It follows that

E[|Iiδ|] ≤ Cδ1+α/2(1 + E[|X1|2+α + |Y1|2+α]).

Thus

−C(
1
n

)α/2(1 + E[|X1|2+α + |Y1|2+α]) ≤ E[V (1, S̄n)]− V (0, 0)

≤ C(
1
n

)α/2(1 + E[|X1|2+α + |Y1|2+α]).

As n→∞, we have
lim
n→∞

E[V (1, S̄n)] = V (0, 0). (3.24)

On the other hand, for each t, t′ ∈ [0, 1 + h] and x ∈ Rd, we have

|V (t, x)− V (t′, x)| ≤ C(
√
|t− t′|+ |t− t′|).

Thus |V (0, 0)− V (h, 0)| ≤ C(
√
h+ h) and, by (3.24),

|E[V (1, S̄n)]− E[ϕ(S̄n)]| = |E[V (1, S̄n)]− E[V (1 + h, S̄n)]| ≤ C(
√
h+ h).

It follows from (3.22) and (3.24) that

lim sup
n→∞

|E[ϕ(S̄n)]− E[ϕ(X + η)]| ≤ 2C(
√
h+ h).

Since h can be arbitrarily small, we have

lim
n→∞

E[ϕ(S̄n)] = E[ϕ(X + η)].

�

Remark 3.8 From the proof we can check that the main assumption of identical
distribution of {Xi, Yi}∞i=1 can be weaken to

E[〈p, Yi〉+
1
2
〈AXi, Xi〉] = G(p,A), i = 1, 2, · · · , p ∈ Rd, A ∈ S(d).

Another essential condition is E[|Xi|2+δ] + E[|Yi|1+δ] ≤ C for some δ > 0. We
do not need the condition E[|Xi|n] + E[|Yi|n] <∞ for each n ∈ N.

We now give the proof of Theorem 3.5.
Proof of Theorem 3.5. For the case when the uniform elliptic condition (3.20)
does not hold, we first introduce a perturbation to prove the above convergence
for ϕ ∈ Cb.Lip(Rd). According to Definition 3.10 and Proposition 3.11 in Chap I,
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we can construct a sublinear expectation space (Ω̄, H̄, Ē) and a sequence of three
random vectors {(X̄i, Ȳi, κ̄i)}∞i=1 such that, for each n = 1, 2, · · · , {(X̄i, Ȳi)}ni=1

d=
{(Xi, Yi)}ni=1 and (X̄n+1, Ȳn+1, κ̄n+1) is independent from {(X̄i, Ȳi, κ̄i)}ni=1 and,
moreover,

Ē[ψ(X̄i, Ȳi, κ̄i)] = (2π)−d/2
∫

Rd

E[ψ(Xi, Yi, x)]e−|x|
2/2dx for ψ ∈ Cl.Lip(R3×d).

We then use the perturbation X̄ε
i = X̄i + εκ̄i for a fixed ε > 0. It is easy to

see that the sequence {(X̄ε
i , Ȳi)}∞i=1 satisfies all conditions in the above CLT, in

particular,

Gε(p,A) := Ē[
1
2
〈
AX̄ε

1 , X̄
ε
1

〉
+
〈
p, Ȳ1

〉
] = G(p,A) +

ε2

2
tr[A].

Thus it is strictly elliptic. We then can apply Lemma 3.7 to

S̄εn :=
n∑
i=1

(
X̄ε
i√
n

+
Ȳi
n

) =
n∑
i=1

(
X̄i√
n

+
Ȳi
n

) + εJn, Jn =
n∑
i=1

κ̄i√
n

and obtain
lim
n→∞

Ē[ϕ(S̄εn)] = Ē[ϕ(X̄ + η̄ + εκ̄)],

where ((X̄, κ̄), (η̄, 0)) is Ḡ-distributed under Ē[·] and

Ḡ(p̄, Ā) := Ē[
1
2
〈
Ā(X̄1, κ̄1)T , (X̄1, κ̄1)T

〉
+
〈
p̄, (Ȳ1, 0)T

〉
], Ā ∈ S(2d), p̄ ∈ R2d.

By Proposition 1.6, it is easy to prove that (X̄ + εκ̄, η̄) is Gε-distributed and
(X̄, η̄) is G-distributed. But we have

|E[ϕ(S̄n)]− Ē[ϕ(S̄εn)]| = |Ē[ϕ(S̄εn − εJn)]− Ē[ϕ(S̄εn)]|
≤ εCĒ[|Jn|] ≤ C ′ε

and similarly,
|E[ϕ(X + η)] − Ē[ϕ(X̄ + η̄ + εκ̄)]| = |Ē[ϕ(X̄+η̄)]− Ē[ϕ(X̄+η̄ + εκ̄)]| ≤ Cε.

Since ε can be arbitrarily small, it follows that

lim
n→∞

E[ϕ(S̄n)] = E[ϕ(X + η)] for ϕ ∈ Cb.Lip(Rd).

On the other hand, it is easy to check that supn E[|S̄n|2] + E[|X + η|2] < ∞.
We then can apply the following lemma to prove that the above convergence
holds for ϕ∈C(Rd) with linear growth condition. The proof is complete. �

Lemma 3.9 Let (Ω,H,E) and (Ω̃, H̃, Ẽ) be two sublinear expectation spaces and
let Yn ∈ H and Y ∈ H̃, n = 1, 2, · · · , be given. We assume that, for a given p ≥
1, supn E[|Yn|p] + Ẽ[|Y |p] <∞. If the convergence limn→∞ E[ϕ(Yn)] = Ẽ[ϕ(Y )]
holds for each ϕ ∈ Cb.Lip(Rd), then it also holds for all functions ϕ ∈ C(Rd)
with the growth condition |ϕ(x)| ≤ C(1 + |x|p−1).
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Proof. We first prove that the above convergence holds for ϕ ∈ Cb(Rd) with
a compact support. In this case, for each ε > 0, we can find a ϕ̄ ∈ Cb.Lip(Rd)
such that supx∈Rd |ϕ(x)− ϕ̄(x)| ≤ ε

2 . We have

|E[ϕ(Yn)]− Ẽ[ϕ(Y )]| ≤ |E[ϕ(Yn)]− E[ϕ̄(Yn)]|+ |Ẽ[ϕ(Y )]− Ẽ[ϕ̄(Y )]|

+ |E[ϕ̄(Yn)]− Ẽ[ϕ̄(Y )]| ≤ ε+ |E[ϕ̄(Yn)]− Ẽ[ϕ̄(Y )]|.

Thus lim supn→∞ |E[ϕ(Yn)]− Ẽ[ϕ(Y )]| ≤ ε. The convergence must hold since ε
can be arbitrarily small.

Now let ϕ be an arbitrary C(Rd)-function with growth condition |ϕ(x)| ≤
C(1+|x|p−1). For each N > 0 we can find ϕ1, ϕ2 ∈ C(Rd) such that ϕ = ϕ1+ϕ2

where ϕ1 has a compact support and ϕ2(x) = 0 for |x| ≤ N , and |ϕ2(x)| ≤ |ϕ(x)|
for all x. It is clear that

|ϕ2(x)| ≤
2C(1 + |x|p)

N
for x ∈ Rd.

Thus

|E[ϕ(Yn)]− Ẽ[ϕ(Y )]| = |E[ϕ1(Yn) + ϕ2(Yn)]− Ẽ[ϕ1(Y ) + ϕ2(Y )]|

≤ |E[ϕ1(Yn)]− Ẽ[ϕ1(Y )]|+ E[|ϕ2(Yn)|] + Ẽ[|ϕ2(Y )|]

≤ |E[ϕ1(Yn)]− Ẽ[ϕ1(Y )]|+ 2C
N

(2 + E[|Yn|p] + Ẽ[|Y |p])

≤ |E[ϕ1(Yn)]− Ẽ[ϕ1(Y )]|+ C̄

N
,

where C̄ = 2C(2+supn E[|Yn|p]+Ẽ[|Y |p]).We thus have lim supn→∞ |E[ϕ(Yn)]−
Ẽ[ϕ(Y )]| ≤ C̄

N . Since N can be arbitrarily large, E[ϕ(Yn)] must converge to
Ẽ[ϕ(Y )]. �

Exercise 3.10 Let Xi ∈ H, i = 1, 2, · · · , be such that Xi+1 is independent from
{X1, · · · , Xi}, for each i = 1, 2, · · · . We further assume that

E[Xi] = −E[−Xi] = 0,

lim
i→∞

E[X2
i ] = σ2 <∞, lim

i→∞
−E[−X2

i ] = σ2,

E[|Xi|2+δ] ≤M for some δ > 0 and a constant M.

Prove that the sequence {S̄n}∞n=1 defined by

S̄n =
1√
n

n∑
i=1

Xi

converges in law to X, i.e.,

lim
n→∞

E[ϕ(S̄n)] = E[ϕ(X)] for ϕ ∈ Cb,lip(R),

where X ∼ N({0} × [σ2, σ2]).
In particular, if σ2 = σ2, it becomes a classical central limit theorem.
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Notes and Comments

The contents of this chapter are mainly from Peng (2008) [103] (see also Peng
(2007) [99]).

The notion of G-normal distribution was firstly introduced by Peng (2006)
[98] for 1-dimensional case, and Peng (2008) [102] for multi-dimensional case. In
the classical situation, a distribution satisfying equation (1.1) is said to be stable
(see Lévy (1925) [75] and (1965) [76]). In this sense, our G-normal distribution
can be considered as the most typical stable distribution under the framework
of sublinear expectations.

Marinacci (1999) [81] used different notions of distributions and indepen-
dence via capacity and the corresponding Choquet expectation to obtain a law
of large numbers and a central limit theorem for non-additive probabilities (see
also Maccheroni and Marinacci (2005) [82] ). But since a sublinear expectation
can not be characterized by the corresponding capacity, our results can not be
derived from theirs. In fact, our results show that the limit in CLT, under
uncertainty, is a G-normal distribution in which the distribution uncertainty is
not just the parameter of the classical normal distributions (see Exercise 2.2).

The notion of viscosity solutions plays a basic role in the definition and
properties of G-normal distribution and maximal distribution. This notion was
initially introduced by Crandall and Lions (1983) [29]. This is a fundamentally
important notion in the theory of nonlinear parabolic and elliptic PDEs. Read-
ers are referred to Crandall, Ishii and Lions (1992) [30] for rich references of the
beautiful and powerful theory of viscosity solutions. For books on the theory of
viscosity solutions and the related HJB equations, see Barles (1994) [8], Fleming
and Soner (1992) [49] as well as Yong and Zhou (1999) [122].

We note that, for the case when the uniform elliptic condition holds, the vis-
cosity solution (1.10) becomes a classical C1+ α

2 ,2+α-solution (see Krylov (1987)
[74] and the recent works in Cabre and Caffarelli (1997) [17] and Wang (1992)
[117]). In 1-dimensional situation, when σ2 > 0, the G-equation becomes the
following Barenblatt equation:

∂tu+ γ|∂tu| = 4u, |γ| < 1.

This equation was first introduced by Barenblatt (1979) [7] (see also Avellaneda,
Levy and Paras (1995) [5]).
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Chapter III

G-Brownian Motion and
Itô’s Integral

The aim of this chapter is to introduce the concept of G-Brownian motion, to
study its properties and to construct Itô’s integral with respect to G-Brownian
motion. We emphasize here that our definition of G-Brownian motion is con-
sistent with the classical one in the sense that if there is no volatility uncer-
tainty. Our G-Brownian motion also has independent increments with identical
G-normal distributions. G-Brownian motion has a very rich and interesting
new structure which non-trivially generalizes the classical one. We thus can
establish the related stochastic calculus, especially Itô’s integrals and the re-
lated quadratic variation process. A very interesting new phenomenon of our
G-Brownian motion is that its quadratic process also has independent incre-
ments which are identically distributed. The corresponding G-Itô’s formula is
obtained.

§1 G-Brownian Motion and its Characterization

Definition 1.1 Let (Ω,H,E) be a sublinear expectation space. (Xt)t≥0 is called
a d-dimensional stochastic process if for each t ≥ 0, Xt is a d-dimensional
random vector in H.

Let G(·) : S(d) → R be a given monotonic and sublinear function. By
Theorem 2.1 in Chap. I, there exists a bounded, convex and closed subset
Σ ⊂ S+(d) such that

G(A) =
1
2

sup
B∈Σ

(A,B) , A ∈ S(d).

By Section 2 in Chap. II, we know that the G-normal distribution N({0} ×Σ)
exists.

We now give the definition of G-Brownian motion.

33
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Definition 1.2 A d-dimensional process (Bt)t≥0 on a sublinear expectation
space (Ω,H,E) is called a G–Brownian motion if the following properties
are satisfied:
(i) B0(ω) = 0;
(ii) For each t, s ≥ 0, the increment Bt+s−Bt is N({0}×sΣ)-distributed and is
independent from (Bt1 , Bt2 , · · · , Btn), for each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

Remark 1.3 We can prove that, for each t0 > 0, (Bt+t0 − Bt0)t≥0 is a G-
Brownian motion. For each λ > 0, (λ−

1
2Bλt)t≥0 is also a G-Brownian motion.

This is the scaling property of G-Brownian motion, which is the same as that
of the classical Brownian motion.

We will denote in the rest of this book

Ba
t = 〈a, Bt〉 for each a = (a1, · · · , ad)T ∈ Rd.

By the above definition we have the following proposition which is important
in stochastic calculus.

Proposition 1.4 Let (Bt)t≥0 be a d-dimensional G-Brownian motion on a
sublinear expectation space (Ω,H,E). Then (Ba

t )t≥0 is a 1-dimensional Ga-
Brownian motion for each a ∈Rd, where Ga(α) = 1

2 (σ2
aaTα

+ − σ2
−aaTα

−),
σ2
aaT = 2G(aaT ) = E[〈a, B1〉2], σ2

−aaT = −2G(−aaT ) = −E[−〈a, B1〉2].
In particular, for each t, s ≥ 0, Ba

t+s −Ba
t
d= N({0} × [sσ2

−aaT , sσ
2
aaT ]).

Proposition 1.5 For each convex function ϕ , we have

E[ϕ(Ba
t+s −Ba

t )] =
1√

2πsσ2
aaT

∫ ∞

−∞
ϕ(x) exp(− x2

2sσ2
aaT

)dx.

For each concave function ϕ and σ2
−aaT > 0, we have

E[ϕ(Ba
t+s −Ba

t )] =
1√

2πsσ2
−aaT

∫ ∞

−∞
ϕ(x) exp(− x2

2sσ2
−aaT

)dx.

In particular, we have

E[(Ba
t −Ba

s )
2] = σ2

aaT (t− s), E[(Ba
t −Ba

s )
4] = 3σ4

aaT (t− s)2,

E[−(Ba
t −Ba

s )
2] = −σ2

−aaT (t− s), E[−(Ba
t −Ba

s )
4] = −3σ4

−aaT (t− s)2.

The following theorem gives a characterization of G-Brownian motion.

Theorem 1.6 Let (Bt)t≥0 be a d-dimensional process defined on a sublinear
expectation space (Ω,H,E) such that
(i) B0(ω)= 0;
(ii) For each t, s ≥ 0, Bt+s−Bt and Bs are identically distributed and Bt+s−Bt
is independent from (Bt1 , Bt2 , · · · , Btn), for each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤
t.
(iii) E[Bt] = E[−Bt] = 0 and limt↓0 E[|Bt|3]t−1 = 0.
Then (Bt)t≥0 is a G-Brownian motion with G(A) = 1

2E[〈AB1, B1〉], A ∈ S(d).
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Proof. We only need to prove that B1 isG-normal distributed and Bt
d=
√
tB1.

We first prove that

E[〈ABt, Bt〉] = 2G(A)t, A ∈ S(d).

For each given A ∈ S(d), we set b(t) =E[〈ABt, Bt〉]. Then b(0) = 0 and |b(t)| ≤
|A|(E[|Bt|3])2/3 → 0 as t→ 0. Since for each t, s ≥ 0,

b(t+ s) = E[〈ABt+s, Bt+s〉] = Ê[〈A(Bt+s −Bs +Bs), Bt+s −Bs +Bs〉]
= E[〈A(Bt+s −Bs), (Bt+s −Bs)〉+ 〈ABs, Bs〉+ 2〈A(Bt+s −Bs), Bs〉]
= b(t) + b(s),

we have b(t) = b(1)t =2G(A)t.
We now prove that B1 is G-normal distributed and Bt

d=
√
tB1. For this,

we just need to prove that, for each fixed ϕ ∈ Cb.Lip(Rd), the function

u(t, x) := E[ϕ(x+Bt)], (t, x) ∈ [0,∞)× Rd

is the viscosity solution of the following G-heat equation:

∂tu−G(D2u) = 0, u|t=0 = ϕ. (1.1)

We first prove that u is Lipschitz in x and 1
2 -Hölder continuous in t. In fact,

for each fixed t, u(t, ·) ∈Cb.Lip(Rd) since

|u(t, x)− u(t, y)| = |E[ϕ(x+Bt)]− E[ϕ(y +Bt)]|
≤ E[|ϕ(x+Bt)− ϕ(y +Bt)|]
≤ C|x− y|,

where C is Lipschitz constant of ϕ.
For each δ ∈ [0, t], since Bt −Bδ is independent from Bδ, we also have

u(t, x) = E[ϕ(x+Bδ + (Bt −Bδ)]
= E[E[ϕ(y + (Bt −Bδ))]y=x+Bδ

],

hence
u(t, x) = E[u(t− δ, x+Bδ)]. (1.2)

Thus

|u(t, x)− u(t− δ, x)| = |E[u(t− δ, x+Bδ)− u(t− δ, x)]|
≤ E[|u(t− δ, x+Bδ)− u(t− δ, x)|]

≤ E[C|Bδ|] ≤ C
√

2G(I)
√
δ.

To prove that u is a viscosity solution of (1.1), we fix (t, x) ∈ (0,∞) × Rd and
let v ∈ C2,3

b ([0,∞) × Rd) be such that v ≥ u and v(t, x) = u(t, x). From (1.2)
we have

v(t, x) = E[u(t− δ, x+Bδ)] ≤ E[v(t− δ, x+Bδ)].
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Therefore by Taylor’s expansion,

0 ≤ E[v(t− δ, x+Bδ)− v(t, x)]
= E[v(t− δ, x+Bδ)− v(t, x+Bδ) + (v(t, x+Bδ)− v(t, x))]

= E[−∂tv(t, x)δ + 〈Dv(t, x), Bδ〉+
1
2
〈D2v(t, x)Bδ, Bδ〉+ Iδ]

≤ −∂tv(t, x)δ +
1
2

E[〈D2v(t, x)Bδ, Bδ〉] + E[Iδ]

= −∂tv(t, x)δ +G(D2v(t, x))δ + E[Iδ],

where

Iδ =
∫ 1

0

−[∂tv(t− βδ, x+Bδ)− ∂tv(t, x)]δdβ

+
∫ 1

0

∫ 1

0

〈(D2v(t, x+ αβBδ)−D2v(t, x))Bδ, Bδ〉αdβdα.

With the assumption (iii) we can check that limδ↓0 E[|Iδ|]δ−1 = 0, from which we
get ∂tv(t, x)−G(D2v(t, x)) ≤ 0, hence u is a viscosity subsolution of (1.1). We
can analogously prove that u is a viscosity supersolution. Thus u is a viscosity
solution and (Bt)t≥0 is a G-Brownian motion. The proof is complete. �

Exercise 1.7 Let Bt be a 1-dimensional Brownian motion, and B1
d= N({0}×

[σ2, σ2]). Prove that for each m ∈ N,

Ê[|Bt|m] =
{

2(m− 1)!!σmt
m
2 /
√

2π m is odd,
(m− 1)!!σmt

m
2 m is even.

§2 Existence of G-Brownian Motion

In the rest of this book, we denote by Ω = Cd0 (R+) the space of all Rd–valued
continuous paths (ωt)t∈R+ , with ω0 = 0, equipped with the distance

ρ(ω1, ω2) :=
∞∑
i=1

2−i[( max
t∈[0,i]

|ω1
t − ω2

t |) ∧ 1].

For each fixed T ∈ [0,∞), we set ΩT := {ω·∧T : ω ∈ Ω}. We will consider the
canonical process Bt(ω) = ωt, t ∈ [0,∞), for ω ∈ Ω.

For each fixed T ∈ [0,∞), we set

Lip(ΩT ) := {ϕ(Bt1∧T , · · · , Btn∧T ) : n ∈ N, t1, · · · , tn ∈ [0,∞), ϕ ∈ Cl.Lip(Rd×n) }.

It is clear that Lip(Ωt)⊆Lip(ΩT ), for t ≤ T . We also set

Lip(Ω) :=
∞⋃
n=1

Lip(Ωn).
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Remark 2.1 It is clear that Cl.Lip(Rd×n), Lip(ΩT ) and Lip(Ω) are vector lat-
tices. Moreover, note that ϕ,ψ ∈ Cl.Lip(Rd×n) imply ϕ · ψ ∈ Cl.Lip(Rd×n),
then X, Y ∈Lip(ΩT ) imply X · Y ∈Lip(ΩT ). In particular, for each t ∈ [0,∞),
Bt ∈ Lip(Ω).

Let G(·) : S(d) → R be a given monotonic and sublinear function. In the
following, we want to construct a sublinear expectation on (Ω, Lip(Ω)) such
that the canonical process (Bt)t≥0 is a G-Brownian motion. For this, we first
construct a sequence of d-dimensional random vectors (ξi)∞i=1 on a sublinear
expectation space (Ω̃, H̃, Ẽ) such that ξi is G-normal distributed and ξi+1 is
independent from (ξ1, · · · , ξi) for each i = 1, 2, · · · .

We now introduce a sublinear expectation Ê defined on Lip(Ω) via the fol-
lowing procedure: for each X ∈ Lip(Ω) with

X = ϕ(Bt1 −Bt0 , Bt2 −Bt1 , · · · , Btn −Btn−1)

for some ϕ ∈ Cl.Lip(Rd×n) and 0 = t0 < t1 < · · · < tn <∞, we set

Ê[ϕ(Bt1 −Bt0 , Bt2 −Bt1 , · · · , Btn −Btn−1)]

:= Ẽ[ϕ(
√
t1 − t0ξ1, · · · ,

√
tn − tn−1ξn)].

The related conditional expectation of X = ϕ(Bt1 , Bt2 − Bt1 , · · · , Btn −
Btn−1) under Ωtj is defined by

Ê[X|Ωtj ] = Ê[ϕ(Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1)|Ωtj ] (2.3)
:= ψ(Bt1 , · · · , Btj −Btj−1),

where

ψ(x1, · · · , xj) = Ẽ[ϕ(x1, · · · , xj ,
√
tj+1 − tjξj+1, · · · ,

√
tn − tn−1ξn)].

It is easy to check that Ê[·] consistently defines a sublinear expectation on
Lip(Ω) and (Bt)t≥0 is a G-Brownian motion. Since Lip(ΩT )⊆Lip(Ω), Ê[·] is also
a sublinear expectation on Lip(ΩT ).

Definition 2.2 The sublinear expectation Ê[·]: Lip(Ω) → R defined through the
above procedure is called a G–expectation. The corresponding canonical process
(Bt)t≥0 on the sublinear expectation space (Ω, Lip(Ω), Ê) is called a G–Brownian
motion.

In the rest of this book, when we talk about G–Brownian motion, we mean
that the canonical process (Bt)t≥0 is under G-expectation.

Proposition 2.3 We list the properties of Ê[·|Ωt] that hold for each X,Y ∈Lip(Ω):
(i) If X ≥ Y , then Ê[X|Ωt] ≥ Ê[Y |Ωt].
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(ii) Ê[η|Ωt] = η, for each t ∈ [0,∞) and η ∈Lip(Ωt).
(iii) Ê[X|Ωt]− Ê[Y |Ωt] ≤ Ê[X − Y |Ωt].
(iv) Ê[ηX|Ωt] = η+Ê[X|Ωt] + η−Ê[−X|Ωt] for each η ∈ Lip(Ωt).
(v) Ê[Ê[X|Ωt]|Ωs] = Ê[X|Ωt∧s], in particular, Ê[Ê[X|Ωt]] = Ê[X].

For each X ∈ Lip(Ωt), Ê[X|Ωt] = Ê[X], where Lip(Ωt) is the linear space of
random variables with the form

ϕ(Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn+1 −Btn),

n = 1, 2, · · · , ϕ ∈ Cl.Lip(Rd×n), t1, · · · , tn, tn+1 ∈ [t,∞).

Remark 2.4 (ii) and (iii) imply

Ê[X + η|Ωt] = Ê[X|Ωt] + η for η ∈ Lip(Ωt).

We now consider the completion of sublinear expectation space (Ω, Lip(Ω), Ê).
We denote by LpG(Ω), p ≥ 1, the completion of Lip(Ω) under the norm

‖X‖p := (Ê[|X|p])1/p. Similarly, we can define LpG(ΩT ), LpG(ΩtT ) and LpG(Ωt).
It is clear that for each 0 ≤ t ≤ T <∞, LpG(Ωt) ⊆ LpG(ΩT ) ⊆ LpG(Ω).

According to Sec.4 in Chap.I, Ê[·] can be continuously extended to (L1
G(Ω), ||·

||). We now consider the extension of conditional G-expectation. For each
fixed t ≤ T , the conditional G-expectation Ê[·|Ωt] : Lip(ΩT ) → Lip(Ωt) is a
continuous mapping under ‖·‖. Indeed, we have

Ê[X|Ωt]− Ê[Y |Ωt] ≤ Ê[X − Y |Ωt] ≤ Ê[|X − Y ||Ωt],

then
|Ê[X|Ωt]− Ê[Y |Ωt]| ≤ Ê[|X − Y ||Ωt].

We thus obtain ∥∥∥Ê[X|Ωt]− Ê[Y |Ωt]
∥∥∥ ≤ ‖X − Y ‖ .

It follows that Ê[·|Ωt] can be also extended as a continuous mapping

Ê[·|Ωt] : L1
G(ΩT ) → L1

G(Ωt).

If the above T is not fixed, then we can obtain Ê[·|Ωt] : L1
G(Ω) → L1

G(Ωt).

Remark 2.5 The above proposition also holds for X,Y ∈ L1
G(Ω). But in (iv),

η ∈ L1
G(Ωt) should be bounded, since X,Y ∈ L1

G(Ω) does not imply X · Y ∈
L1
G(Ω).

In particular, we have the following independence:

Ê[X|Ωt] = Ê[X], ∀X ∈ L1
G(Ωt).

We give the following definition similar to the classical one:
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Definition 2.6 An n-dimensional random vector Y ∈ (L1
G(Ω))n is said to be

independent from Ωt for some given t if for each ϕ ∈ Cb.Lip(Rn) we have

Ê[ϕ(Y )|Ωt] = Ê[ϕ(Y )].

Remark 2.7 Just as in the classical situation, the increments of G–Brownian
motion (Bt+s −Bt)s≥0 are independent from Ωt.

The following property is very useful.

Proposition 2.8 Let X,Y ∈ L1
G(Ω) be such that Ê[Y |Ωt] = −Ê[−Y |Ωt], for

some t ∈ [0, T ]. Then we have

Ê[X + Y |Ωt] = Ê[X|Ωt] + Ê[Y |Ωt].

In particular, if Ê[Y |Ωt] = ÊG[−Y |Ωt] = 0, then Ê[X + Y |Ωt] = Ê[X|Ωt].

Proof. This follows from the following two inequalities:

Ê[X + Y |Ωt] ≤ Ê[X|Ωt] + Ê[Y |Ωt],

Ê[X + Y |Ωt] ≥ Ê[X|Ωt]− Ê[−Y |Ωt] = Ê[X|Ωt] + Ê[Y |Ωt].

�

Example 2.9 For each fixed a ∈Rd, s ≤ t, we have

Ê[Ba
t −Ba

s |Ωs] = 0, Ê[−(Ba
t −Ba

s )|Ωs] = 0,

Ê[(Ba
t −Ba

s )
2|Ωs] = σ2

aaT (t− s), Ê[−(Ba
t −Ba

s )
2|Ωs] = −σ2

−aaT (t− s),

Ê[(Ba
t −Ba

s )
4|Ωs] = 3σ4

aaT (t− s)2, Ê[−(Ba
t −Ba

s )
4|Ωs] = −3σ4

−aaT (t− s)2,

where σ2
aaT = 2G(aaT ) and σ2

−aaT = −2G(−aaT ).

Example 2.10 For each a ∈Rd, n ∈ N, 0 ≤ t ≤ T, X ∈ L1
G(Ωt) and ϕ ∈

Cl.Lip(R), we have

Ê[Xϕ(Ba
T −Ba

t )|Ωt] = X+Ê[ϕ(Ba
T −Ba

t )|Ωt] +X−Ê[−ϕ(Ba
T −Ba

t )|Ωt]

= X+Ê[ϕ(Ba
T −Ba

t )] +X−Ê[−ϕ(Ba
T −Ba

t )].

In particular, we have

Ê[X(Ba
T −Ba

t )|Ωt] = X+Ê[(Ba
T −Ba

t )] +X−Ê[−(Ba
T −Ba

t )] = 0.

This, together with Proposition 2.8, yields

Ê[Y +X(Ba
T −Ba

t )|Ωt] = Ê[Y |Ωt], Y ∈ L1
G(Ω).
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We also have

Ê[X(Ba
T −Ba

t )
2|Ωt] = X+Ê[(Ba

T −Ba
t )

2] +X−Ê[−(Ba
T −Ba

t )
2]

= [X+σ2
aaT −X−σ2

−aaT ](T − t)

and

Ê[X(Ba
T −Ba

t )
2n−1|Ωt] = X+Ê[(Ba

T −Ba
t )

2n−1] +X−Ê[−(Ba
T −Ba

t )
2n−1]

= |X|Ê[(Ba
T−t)

2n−1].

Example 2.11 Since

Ê[2Ba
s (B

a
t −Ba

s )|Ωs] = Ê[−2Ba
s (B

a
t −Ba

s )|Ωs] = 0,

we have

Ê[(Ba
t )

2 − (Ba
s )

2|Ωs] = Ê[(Ba
t −Ba

s +Ba
s )

2 − (Ba
s )

2|Ωs]

= Ê[(Ba
t −Ba

s )
2 + 2(Ba

t −Ba
s )B

a
s |Ωs]

= σ2
aaT (t− s).

Exercise 2.12 Show that if X ∈ Lip(ΩT ) and Ê[X] = −Ê[−X], then Ê[X] =
EP [X], where P is a Wiener measure on Ω.

Exercise 2.13 For each s, t ≥ 0, we set Bst := Bt+s −Bs. Let η = (ηij)di,j=1 ∈
L1
G(Ωs; S(d)). Prove that

Ê[〈ηBst , Bst 〉|Ωs] = 2G(η)t.

§3 Itô’s Integral with G–Brownian Motion

Definition 3.1 For T ∈ R+, a partition πT of [0, T ] is a finite ordered subset
πT = {t0, t1, · · · , tN} such that 0 = t0 < t1 < · · · < tN = T .

µ(πT ) := max{|ti+1 − ti| : i = 0, 1, · · · , N − 1}.

We use πNT = {tN0 , tN1 , · · · , tNN} to denote a sequence of partitions of [0, T ] such
that limN→∞ µ(πNT ) = 0.

Let p ≥ 1 be fixed. We consider the following type of simple processes: for
a given partition πT = {t0, · · · , tN} of [0, T ] we set

ηt(ω) =
N−1∑
k=0

ξk(ω)I[tk,tk+1)(t),

where ξk ∈ LpG(Ωtk), k = 0, 1, 2, · · · , N − 1 are given. The collection of these
processes is denoted by Mp,0

G (0, T ).
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Definition 3.2 For an η ∈ Mp,0
G (0, T ) with ηt(ω) =

∑N−1
k=0 ξk(ω)I[tk,tk+1)(t),

the related Bochner integral is∫ T

0

ηt(ω)dt :=
N−1∑
k=0

ξk(ω)(tk+1 − tk).

For each η ∈Mp,0
G (0, T ), we set

ẼT [η] :=
1
T

Ê[
∫ T

0

ηtdt] =
1
T

Ê[
N−1∑
k=0

ξk(ω)(tk+1 − tk)].

It is easy to check that ẼT : Mp,0
G (0, T ) → R forms a sublinear expectation. We

then can introduce a natural norm ‖η‖Mp
G(0,T ), under which, Mp,0

G (0, T ) can be
extended to Mp

G(0, T ) which is a Banach space.

Definition 3.3 For each p ≥ 1, we denote by Mp
G(0, T ) the completion of

MG
p,0(0, T ) under the norm

‖η‖Mp
G(0,T ) :=

{
Ê[
∫ T

0

|ηt|pdt]

}1/p

.

It is clear that Mp
G(0, T ) ⊃ Mq

G(0, T ) for 1 ≤ p ≤ q. We also use Mp
G(0, T ; Rn)

for all n-dimensional stochastic processes ηt = (η1
t , · · · , ηnt ), t ≥ 0 with ηit ∈

Mp
G(0, T ), i = 1, 2, · · · , n.
We now give the definition of Itô’s integral. For simplicity, we first introduce

Itô’s integral with respect to 1-dimensional G–Brownian motion.
Let (Bt)t≥0 be a 1-dimensional G–Brownian motion with G(α) = 1

2 (σ̄2α+−
σ2α−), where 0 ≤ σ ≤ σ̄ <∞.

Definition 3.4 For each η ∈M2,0
G (0, T ) of the form

ηt(ω) =
N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t),

we define

I(η) =
∫ T

0

ηtdBt :=
N−1∑
j=0

ξj(Btj+1 −Btj ).

Lemma 3.5 The mapping I : M2,0
G (0, T ) → L2

G(ΩT ) is a continuous linear
mapping and thus can be continuously extended to I : M2

G(0, T ) → L2
G(ΩT ).

We have

Ê[
∫ T

0

ηtdBt] = 0, (3.4)

Ê[(
∫ T

0

ηtdBt)2] ≤ σ̄2Ê[
∫ T

0

η2
t dt]. (3.5)
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Proof. From Example 2.10, for each j,

Ê[ξj(Btj+1 −Btj )|Ωtj ] = Ê[−ξj(Btj+1 −Btj )|Ωtj ] = 0.

We have

Ê[
∫ T

0

ηtdBt] = Ê[
∫ tN−1

0

ηtdBt + ξN−1(BtN −BtN−1)]

= Ê[
∫ tN−1

0

ηtdBt + Ê[ξN−1(BtN −BtN−1)|ΩtN−1 ]]

= Ê[
∫ tN−1

0

ηtdBt].

Then we can repeat this procedure to obtain (3.4).
We now give the proof of (3.5). Firstly, from Example 2.10, we have

Ê[(
∫ T

0

ηtdBt)2] = Ê[
(∫ tN−1

0

ηtdBt + ξN−1(BtN −BtN−1)
)2

]

= Ê[
(∫ tN−1

0

ηtdBt

)2

+ ξ2N−1(BtN −BtN−1)
2

+ 2
(∫ tN−1

0

ηtdBt

)
ξN−1(BtN −BtN−1)]

= Ê[
(∫ tN−1

0

ηtdBt

)2

+ ξ2N−1(BtN −BtN−1)
2]

= · · · = Ê[
N−1∑
i=0

ξ2i (Bti+1 −Bti)
2].

Then, for each i = 0, 1, · · · , N − 1, we have

Ê[ξ2i (Bti+1 −Bti)
2 − σ2ξ2i (ti+1 − ti)]

=Ê[Ê[ξ2i (Bti+1 −Bti)
2 − σ2ξ2i (ti+1 − tj)|Ωti ]]

=Ê[σ2ξ2i (ti+1 − ti)− σ2ξ2i (ti+1 − ti)] = 0.

Finally, we have

Ê[(
∫ T

0

ηtdBt)2] = Ê[
N−1∑
i=0

ξ2i (Bti+1 −Bti)
2]

≤Ê[
N−1∑
i=0

ξ2i (Bti+1 −Bti)
2 −

N−1∑
i=0

σ2ξ2i (ti+1 − ti)] + Ê[
N−1∑
i=0

σ2ξ2i (ti+1 − ti)]

≤
N−1∑
i=0

Ê[ξ2i (Bti+1 −Bti)
2 − σ2ξ2i (ti+1 − ti)] + Ê[

N−1∑
i=0

σ2ξ2i (ti+1 − ti)]

=Ê[
N−1∑
i=0

σ2ξ2i (ti+1 − ti)] = σ̄2Ê[
∫ T

0

η2
t dt].
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�

Definition 3.6 We define, for a fixed η ∈M2
G(0, T ), the stochastic integral∫ T

0

ηtdBt := I(η).

It is clear that (3.4) and (3.5) still hold for η ∈M2
G(0, T ).

We list some main properties of Itô’s integral of G–Brownian motion. We
denote, for some 0 ≤ s ≤ t ≤ T ,∫ t

s

ηudBu :=
∫ T

0

I[s,t](u)ηudBu.

Proposition 3.7 Let η, θ ∈ M2
G(0, T ) and let 0 ≤ s ≤ r ≤ t ≤ T . Then we

have
(i)
∫ t
s
ηudBu =

∫ r
s
ηudBu +

∫ t
r
ηudBu.

(ii)
∫ t
s
(αηu + θu)dBu = α

∫ t
s
ηudBu +

∫ t
s
θudBu, if α is bounded and in L1

G(Ωs).
(iii) Ê[X +

∫ T
r
ηudBu|Ωs] = Ê[X|Ωs] for X ∈ L1

G(Ω).

We now consider the multi-dimensional case. Let G(·) : S(d) → R be a
given monotonic and sublinear function and let (Bt)t≥0 be a d-dimensional G–
Brownian motion. For each fixed a ∈Rd, we still use Ba

t := 〈a, Bt〉. Then
(Ba

t )t≥0 is a 1-dimensional Ga–Brownian motion with Ga(α) = 1
2 (σ2

aaTα
+ −

σ2
−aaTα

−), where σ2
aaT = 2G(aaT ) and σ2

−aaT = −2G(−aaT ). Similar to 1-
dimensional case, we can define Itô’s integral by

I(η) :=
∫ T

0

ηtdB
a
t , for η ∈M2

G(0, T ).

We still have, for each η ∈M2
G(0, T ),

Ê[
∫ T

0

ηtdB
a
t ] = 0,

Ê[(
∫ T

0

ηtdB
a
t )

2] ≤ σ2
aaT Ê[

∫ T

0

η2
t dt].

Furthermore, Proposition 3.7 still holds for the integral with respect to Ba
t .

Exercise 3.8 Prove that, for a fixed η ∈M2
G(0, T ),

σ2Ê[
∫ T

0

η2
t dt] ≤ Ê[(

∫ T

0

ηtdBt)2] ≤ σ2Ê[
∫ T

0

η2
t dt],

where σ2 = Ê[B2
1 ] and σ2 = −Ê[−B2

1 ].

Exercise 3.9 Prove that, for each η ∈Mp
G(0, T ), we have

Ê[
∫ T

0

|ηt|pdt] ≤
∫ T

0

Ê[|ηt|p]dt.
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§4 Quadratic Variation Process of G–Brownian
Motion

We first consider the quadratic variation process of 1-dimensional G–Brownian
motion (Bt)t≥0 with B1

d= N({0} × [σ2, σ̄2]). Let πNt , N = 1, 2, · · · , be a
sequence of partitions of [0, t]. We consider

B2
t =

N−1∑
j=0

(B2
tNj+1

−B2
tNj

)

=
N−1∑
j=0

2BtNj (BtNj+1
−BtNj ) +

N−1∑
j=0

(BtNj+1
−BtNj )2.

As µ(πNt ) → 0, the first term of the right side converges to 2
∫ t
0
BsdBs in L2

G(Ω).
The second term must be convergent. We denote its limit by 〈B〉t, i.e.,

〈B〉t := lim
µ(πN

t )→0

N−1∑
j=0

(BtNj+1
−BtNj )2 = B2

t − 2
∫ t

0

BsdBs. (4.6)

By the above construction, (〈B〉t)t≥0 is an increasing process with 〈B〉0 = 0.
We call it the quadratic variation process of the G–Brownian motion B.
It characterizes the part of statistic uncertainty of G–Brownian motion. It is
important to keep in mind that 〈B〉t is not a deterministic process unless σ=σ̄,
i.e., when (Bt)t≥0 is a classical Brownian motion. In fact we have the following
lemma.

Lemma 4.1 For each 0 ≤ s ≤ t <∞, we have

Ê[〈B〉t − 〈B〉s |Ωs] = σ̄2(t− s), (4.7)

Ê[−(〈B〉t − 〈B〉s)|Ωs] = −σ2(t− s). (4.8)

Proof. By the definition of 〈B〉 and Proposition 3.7 (iii),

Ê[〈B〉t − 〈B〉s |Ωs] = Ê[B2
t −B2

s − 2
∫ t

s

BudBu|Ωs]

= Ê[B2
t −B2

s |Ωs] = σ̄2(t− s).

The last step follows from Example 2.11. We then have (4.7). The equality
(4.8) can be proved analogously with the consideration of Ê[−(B2

t − B2
s )|Ωs]=

−σ2(t− s). �
A very interesting point of the quadratic variation process 〈B〉 is, just like

the G–Brownian motion B itself, the increment 〈B〉s+t − 〈B〉s is independent
from Ωs and identically distributed with 〈B〉t. In fact we have
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Lemma 4.2 For each fixed s,t ≥ 0, 〈B〉s+t−〈B〉s is identically distributed with
〈B〉t and independent from Ωs.

Proof. The results follow directly from

〈B〉s+t − 〈B〉s = B2
s+t − 2

∫ s+t

0

BrdBr − [B2
s − 2

∫ s

0

BrdBr]

= (Bs+t −Bs)2 − 2
∫ s+t

s

(Br −Bs)d(Br −Bs)

= 〈Bs〉t ,

where 〈Bs〉 is the quadratic variation process of the G–Brownian motion Bst =
Bs+t −Bs, t ≥ 0. �

We now define the integral of a process η ∈ M1
G(0, T ) with respect to 〈B〉.

We first define a mapping:

Q0,T (η) =
∫ T

0

ηtd 〈B〉t :=
N−1∑
j=0

ξj(〈B〉tj+1
− 〈B〉tj ) : M1,0

G (0, T ) → L1
G(ΩT ).

Lemma 4.3 For each η ∈M1,0
G (0, T ),

Ê[|Q0,T (η)|] ≤ σ̄2Ê[
∫ T

0

|ηt|dt]. (4.9)

Thus Q0,T : M1,0
G (0, T ) →L1

G(ΩT ) is a continuous linear mapping. Conse-
quently, Q0,T can be uniquely extended to M1

G(0, T ). We still denote this map-
ping by ∫ T

0

ηtd 〈B〉t := Q0,T (η) for η ∈M1
G(0, T ).

We still have

Ê[|
∫ T

0

ηtd 〈B〉t |] ≤ σ̄2Ê[
∫ T

0

|ηt|dt] for η ∈M1
G(0, T ). (4.10)

Proof. Firstly, for each j = 1, · · · , N − 1, we have

Ê[|ξj |(〈B〉tj+1 − 〈B〉tj )− σ2|ξj |(tj+1 − tj)]

=Ê[Ê[|ξj |(〈B〉tj+1 − 〈B〉tj )|Ωtj ]− σ2|ξj |(tj+1 − tj)]

=Ê[|ξj |σ2(tj+1 − tj)− σ2|ξj |(tj+1 − tj)] = 0.
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Then (4.9) can be checked as follows:

Ê[|
N−1∑
j=0

ξj(〈B〉tj+1
− 〈B〉tj )|] ≤ Ê[

N−1∑
j=0

|ξj | 〈B〉tj+1
− 〈B〉tj ]

≤Ê[
N−1∑
j=0

|ξj |[(〈B〉tj+1 − 〈B〉tj )− σ2(tj+1 − tj)]] + Ê[σ2
N−1∑
j=0

|ξj |(tj+1 − tj)]

≤
N−1∑
j=0

Ê[|ξj |[(〈B〉tj+1 − 〈B〉tj )− σ2(tj+1 − tj)]] + Ê[σ2
N−1∑
j=0

|ξj |(tj+1 − tj)]

=Ê[σ2
N−1∑
j=0

|ξj |(tj+1 − tj)] = σ2Ê[
∫ T

0

|ηt|dt].

�

Proposition 4.4 Let 0 ≤ s ≤ t, ξ ∈ L2
G(Ωs), X ∈L1

G(Ω). Then

Ê[X + ξ(B2
t −B2

s )] = Ê[X + ξ(Bt −Bs)2]

= Ê[X + ξ(〈B〉t − 〈B〉s)].

Proof. By (4.6) and Proposition 3.7 (iii), we have

Ê[X + ξ(B2
t −B2

s )] = Ê[X + ξ(〈B〉t − 〈B〉s + 2
∫ t

s

BudBu)]

= Ê[X + ξ(〈B〉t − 〈B〉s)].

We also have

Ê[X + ξ(B2
t −B2

s )] = Ê[X + ξ((Bt −Bs)2 + 2(Bt −Bs)Bs)]

= Ê[X + ξ(Bt −Bs)2].

�
We have the following isometry.

Proposition 4.5 Let η ∈M2
G(0, T ). Then

Ê[(
∫ T

0

ηtdBt)2] = Ê[
∫ T

0

η2
t d 〈B〉t]. (4.11)

Proof. We first consider η ∈M2,0
G (0, T ) of the form

ηt(ω) =
N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t)
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and then
∫ T
0
ηtdBt =

∑N−1
j=0 ξj(Btj+1 −Btj ). From Proposition 3.7, we get

Ê[X + 2ξj(Btj+1 −Btj )ξi(Bti+1 −Bti)] = Ê[X] for X ∈ L1
G(Ω), i 6= j.

Thus

Ê[(
∫ T

0

ηtdBt)2] = Ê[(
N−1∑
j=0

ξj(Btj+1 −Btj ))
2] = Ê[

N−1∑
j=0

ξ2j (Btj+1 −Btj )
2].

From this and Proposition 4.4, it follows that

Ê[(
∫ T

0

ηtdBt)2] = Ê[
N−1∑
j=0

ξ2j (〈B〉tj+1
− 〈B〉tj )] = Ê[

∫ T

0

η2
t d 〈B〉t].

Thus (4.11) holds for η ∈ M2,0
G (0, T ). We can continuously extend the above

equality to the case η ∈M2
G(0, T ) and get (4.11). �

We now consider the multi-dimensional case. Let (Bt)t≥0 be a d-dimensional
G–Brownian motion. For each fixed a ∈Rd, (Ba

t )t≥0 is a 1-dimensional Ga–
Brownian motion. Similar to 1-dimensional case, we can define

〈Ba〉t := lim
µ(πN

t )→0

N−1∑
j=0

(Ba
tNj+1

−Ba
tNj

)2 = (Ba
t )

2 − 2
∫ t

0

Ba
s dB

a
s ,

where 〈Ba〉 is called the quadratic variation process of Ba. The above
results also hold for 〈Ba〉. In particular,

Ê[|
∫ T

0

ηtd 〈Ba〉t |] ≤ σ2
aaT Ê[

∫ T

0

|ηt|dt] for η ∈M1
G(0, T )

and

Ê[(
∫ T

0

ηtdB
a
t )

2] = Ê[
∫ T

0

η2
t d 〈Ba〉t] for η ∈M2

G(0, T ).

Let a = (a1, · · · , ad)T and ā = (ā1, · · · , ād)T be two given vectors in Rd. We
then have their quadratic variation processes of 〈Ba〉 and 〈Bā〉. We can define
their mutual variation process by〈

Ba, Bā
〉
t
:=

1
4
[
〈
Ba +Bā

〉
t
−
〈
Ba −Bā

〉
t
]

=
1
4
[
〈
Ba+ā

〉
t
−
〈
Ba−ā

〉
t
].

Since 〈Ba−ā〉 = 〈Bā−a〉 = 〈−Ba−ā〉, we see that 〈Ba, Bā〉t = 〈Bā, Ba〉t. In
particular, we have 〈Ba, Ba〉 = 〈Ba〉. Let πNt , N = 1, 2, · · · , be a sequence of
partitions of [0, t]. We observe that

N−1∑
k=0

(Ba
tNk+1

−Ba
tNk

)(Bā
tNk+1

−Bā
tNk

) =
1
4

N−1∑
k=0

[(Ba+ā
tk+1

−Ba+ā
tk

)2 − (Ba−ā
tk+1

−Ba−ā
tk

)2].
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Thus as µ(πNt ) → 0 we have

lim
N→∞

N−1∑
k=0

(Ba
tNk+1

−Ba
tNk

)(Bā
tNk+1

−Bā
tNk

) =
〈
Ba, Bā

〉
t
.

We also have〈
Ba, Bā

〉
t
=

1
4
[
〈
Ba+ā

〉
t
−
〈
Ba−ā

〉
t
]

=
1
4
[(Ba+ā

t )2 − 2
∫ t

0

Ba+ā
s dBa+ā

s − (Ba−ā
t )2 + 2

∫ t

0

Ba−ā
s dBa−ā

s ]

= Ba
t B

ā
t −

∫ t

0

Ba
s dB

ā
s −

∫ t

0

Bā
s dB

a
s .

Now for each η ∈M1
G(0, T ), we can consistently define∫ T

0

ηtd
〈
Ba, Bā

〉
t
=

1
4

∫ T

0

ηtd
〈
Ba+ā

〉
t
− 1

4

∫ T

0

ηtd
〈
Ba−ā

〉
t
.

Lemma 4.6 Let ηN ∈M2,0
G (0, T ), N = 1, 2, · · · , be of the form

ηNt (ω) =
N−1∑
k=0

ξNk (ω)I[tNk ,t
N
k+1)

(t)

with µ(πNT ) → 0 and ηN → η in M2
G(0, T ), as N → ∞. Then we have the

following convergence in L2
G(ΩT ):

N−1∑
k=0

ξNk (Ba
tNk+1

−Ba
tNk

)(Bā
tNk+1

−Bā
tNk

) →
∫ T

0

ηtd
〈
Ba, Bā

〉
t
.

Proof. Since〈
Ba, Bā

〉
tNk+1

−
〈
Ba, Bā

〉
tNk

= (Ba
tNk+1

−Ba
tNk

)(Bā
tNk+1

−Bā
tNk

)

−
∫ tNk+1

tNk

(Ba
s −Ba

tNk
)dBā

s −
∫ tNk+1

tNk

(Bā
s −Bā

tNk
)dBa

s ,

we only need to prove

Ê[
N−1∑
k=0

(ξNk )2(
∫ tNk+1

tNk

(Ba
s −Ba

tNk
)dBā

s )
2] → 0.

For each k = 1, · · · , N − 1, we have

Ê[(ξNk )2(
∫ tNk+1

tNk

(Ba
s −Ba

tNk
)dBā

s )
2 − C(ξNk )2(tNk+1 − tNk )2]

=Ê[Ê[(ξNk )2(
∫ tNk+1

tNk

(Ba
s −Ba

tNk
)dBā

s )
2|ΩtNk ]− C(ξNk )2(tNk+1 − tNk )2]

≤Ê[C(ξNk )2(tNk+1 − tNk )2 − C(ξNk )2(tNk+1 − tNk )2] = 0,
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where C = σ̄2
aaT σ̄

2
āāT /2.

Thus we have

Ê[
N−1∑
k=0

(ξNk )2(
∫ tNk+1

tNk

(Ba
s −Ba

tNk
)dBā

s )
2]

≤Ê[
N−1∑
k=0

(ξNk )2[(
∫ tNk+1

tNk

(Ba
s −Ba

tNk
)dBā

s )
2 − C(tNk+1 − tNk )2]]

+ Ê[
N−1∑
k=0

C(ξNk )2(tNk+1 − tNk )2]

≤
N−1∑
k=0

Ê[(ξNk )2[(
∫ tNk+1

tNk

(Ba
s −Ba

tNk
)dBā

s )
2 − C(tNk+1 − tNk )2]]

+ Ê[
N−1∑
k=0

C(ξNk )2(tNk+1 − tNk )2]

≤Ê[
N−1∑
k=0

C(ξNk )2(tNk+1 − tNk )2] ≤ Cµ(πNT )Ê[
∫ T

0

|ηNt |2dt],

As µ(πNT ) → 0, the proof is complete. �

Exercise 4.7 Let Bt be a 1-dimensional G-Brownian motion and ϕ be a bounded
and Lipschitz function on R. Show that

lim
N→∞

Ê[|
N−1∑
k=0

ϕ(BtNk )[(BtNk+1
−BtNk )2 − (〈B〉tNk+1

− 〈B〉tNk )]|] = 0,

where tNk = kT/N, k = 0, 2, · · · , N − 1.

Exercise 4.8 Prove that, for a fixed η ∈M1
G(0, T ),

σ2Ê[
∫ T

0

|ηt|dt] ≤ Ê[
∫ T

0

|ηt|d〈B〉t] ≤ σ2Ê[
∫ T

0

|ηt|dt],

where σ2 = Ê[B2
1 ] and σ2 = −Ê[−B2

1 ].

§5 The Distribution of 〈B〉
In this section, we first consider the 1-dimensional G–Brownian motion (Bt)t≥0

with B1
d= N({0} × [σ2, σ̄2]).

The quadratic variation process 〈B〉 of G-Brownian motion B is a very in-
teresting process. We have seen that the G-Brownian motion B is a typical
process with variance uncertainty but without mean-uncertainty. In fact, 〈B〉 is
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concentrated all uncertainty of the G-Brownian motion B. Moreover, 〈B〉 itself
is a typical process with mean-uncertainty. This fact will be applied to measure
the mean-uncertainty of risk positions.

Lemma 5.1 We have
Ê[〈B〉2t ] ≤ 10σ̄4t2. (5.12)

Proof. Indeed,

Ê[〈B〉2t ] = Ê[(Bt2 − 2
∫ t

0

BudBu)2]

≤ 2Ê[B4
t ] + 8Ê[(

∫ t

0

BudBu)2]

≤ 6σ̄4t2 + 8σ̄2Ê[
∫ t

0

Bu
2du]

≤ 6σ̄4t2 + 8σ̄2

∫ t

0

Ê[Bu2]du

= 10σ̄4t2.

�

Proposition 5.2 Let (bt)t≥0 be a process on a sublinear expectation space (Ω,H, Ê)
such that
(i) b0 = 0;
(ii) For each t, s ≥ 0, bt+s− bt is identically distributed with bs and independent
from (bt1 , bt2 , · · · , btn) for each n ∈ N and 0 ≤ t1, · · · , tn ≤ t;
(iii) limt↓0 Ê[b2t ]t

−1 = 0.
Then bt is N([µt, µt]× {0})-distributed with µ = Ê[b1] and µ = −Ê[−b1].

Proof. We first prove that

Ê[bt] = µt and − Ê[−bt] = µt.

We set ϕ(t) := Ê[bt]. Then ϕ(0) = 0 and limt↓0 ϕ(t) =0. Since for each t, s ≥ 0,

ϕ(t+ s) = Ê[bt+s] = Ê[(bt+s − bs) + bs]
= ϕ(t) + ϕ(s).

Thus ϕ(t) is linear and uniformly continuous in t, which means that Ê[bt] = µt.
Similarly −Ê[−bt] = µt.

We now prove that bt is N([µt, µt] × {0})-distributed. By Exercise 1.17 in
Chap.II, we just need to prove that for each fixed ϕ ∈ Cb.Lip(R), the function

u(t, x) := Ê[ϕ(x+ bt)], (t, x) ∈ [0,∞)× R
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is the viscosity solution of the following parabolic PDE:

∂tu− g(∂xu) = 0, u|t=0 = ϕ (5.13)

with g(a) = µa+ − µa−.
We first prove that u is Lipschitz in x and 1

2 -Hölder continuous in t. In fact,
for each fixed t, u(t, ·) ∈Cb.Lip(R) since

|Ê[ϕ(x+ bt)]− Ê[ϕ(y + bt)]| ≤ Ê[|ϕ(x+ bt)− ϕ(y + bt)|]
≤ C|x− y|.

For each δ ∈ [0, t], since bt − bδ is independent from bδ, we have

u(t, x) = Ê[ϕ(x+ bδ + (bt − bδ)]

= Ê[Ê[ϕ(y + (bt − bδ))]y=x+bδ
],

hence
u(t, x) = Ê[u(t− δ, x+ bδ)]. (5.14)

Thus

|u(t, x)− u(t− δ, x)| = |Ê[u(t− δ, x+ bδ)− u(t− δ, x)]|

≤ Ê[|u(t− δ, x+ bδ)− u(t− δ, x)|]

≤ Ê[C|bδ|] ≤ C1

√
δ.

To prove that u is a viscosity solution of the PDE (5.13), we fix a point
(t, x) ∈ (0,∞) × R and let v ∈ C2,2

b ([0,∞) × R) be such that v ≥ u and
v(t, x) = u(t, x). From (5.14), we have

v(t, x) = Ê[u(t− δ, x+ bδ)] ≤ Ê[v(t− δ, x+ bδ)].

Therefore, by Taylor’s expansion,

0 ≤ Ê[v(t− δ, x+ bδ)− v(t, x)]

= Ê[v(t− δ, x+ bδ)− v(t, x+ bδ) + (v(t, x+ bδ)− v(t, x))]

= Ê[−∂tv(t, x)δ + ∂xv(t, x)bδ + Iδ]

≤ −∂tv(t, x)δ + Ê[∂xv(t, x)bδ] + Ê[Iδ]

= −∂tv(t, x)δ + g(∂xv(t, x))δ + Ê[Iδ],

where

Iδ = δ

∫ 1

0

[−∂tv(t− βδ, x+ bδ) + ∂tv(t, x)]dβ

+ bδ

∫ 1

0

[∂xv(t, x+ βbδ)− ∂xv(t, x)]dβ.
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With the assumption that limt↓0Ê[b2t ]t
−1 = 0, we can check that

lim
δ↓0

Ê[|Iδ|]δ−1 = 0,

from which we get ∂tv(t, x)−g(∂xv(t, x)) ≤ 0, hence u is a viscosity subsolution
of (5.13). We can analogously prove that u is also a viscosity supersolution. It
follows that bt is N([µt, µt]× {0})-distributed. The proof is complete. �

It is clear that 〈B〉 satisfies all the conditions in the Proposition 5.2, thus
we immediately have

Theorem 5.3 〈B〉t is N([σ2t, σ̄2t]×{0})-distributed, i.e., for each ϕ ∈ Cl.Lip(R),

Ê[ϕ(〈B〉t)] = sup
σ2≤v≤σ̄2

ϕ(vt). (5.15)

Corollary 5.4 For each 0 ≤ t ≤ T <∞, we have

σ2(T − t) ≤ 〈B〉T − 〈B〉t ≤ σ̄2(T − t) in L1
G(Ω).

Proof. It is a direct consequence of

Ê[( 〈B〉T − 〈B〉t − σ̄2(T − t))+] = sup
σ2≤v≤σ̄2

(v − σ̄2)+(T − t) = 0

and

Ê[( 〈B〉T − 〈B〉t − σ2(T − t))−] = sup
σ2≤v≤σ̄2

(v − σ2)−(T − t) = 0.

�

Corollary 5.5 We have, for each t, s ≥ 0, n ∈ N,

Ê[( 〈B〉t+s − 〈B〉s)
n|Ωs] = Ê[〈B〉nt ] = σ̄2ntn (5.16)

and
Ê[−( 〈B〉t+s − 〈B〉s)

n|Ωs] = Ê[−〈B〉nt ] = −σ2ntn. (5.17)

We now consider the multi-dimensional case. For notational simplicity, we
denote by Bi := Bei the i-th coordinate of the G–Brownian motion B, under a
given orthonormal basis (e1, · · · , ed) of Rd. We denote

(〈B〉t)ij :=
〈
Bi, Bj

〉
t
.

Then 〈B〉t, t ≥ 0, is an S(d)-valued process. Since

Ê[〈ABt, Bt〉] = 2G(A)t for A ∈ S(d),
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we have

Ê[(〈B〉t , A)] = Ê[
d∑

i,j=1

aij
〈
Bi, Bj

〉
t
]

= Ê[
d∑

i,j=1

aij(BitB
j
t −

∫ t

0

BisdB
j
s −

∫ t

0

BjsdB
i
s)]

= Ê[
d∑

i,j=1

aijB
i
tB

j
t ] = 2G(A)t for A ∈ S(d),

where (aij)di,j=1 = A.
Now we set, for each ϕ ∈ Cl.Lip(S(d)),

v(t,X) := Ê[ϕ(X + 〈B〉t)], (t,X) ∈ [0,∞)× S(d).

Let Σ ⊂ S+(d) be the bounded, convex and closed subset such that

G(A) =
1
2

sup
B∈Σ

(A,B) , A ∈ S(d).

Proposition 5.6 The function v solves the following first order PDE:

∂tv − 2G(Dv) = 0, v|t=0 = ϕ,

where Dv = (∂xij
v)di,j=1. We also have

v(t,X) = sup
Λ∈Σ

ϕ(X + tΛ).

Sketch of the Proof. We have

v(t+ δ,X) = Ê[ϕ(X + 〈B〉δ + 〈B〉t+δ − 〈B〉δ)]

= Ê[v(t,X + 〈B〉δ)].

The rest part of the proof is similar to the 1-dimensional case. �

Corollary 5.7 We have

〈B〉t ∈ tΣ := {t× γ : γ ∈ Σ},

or equivalently, dtΣ(〈B〉t) = 0, where dU (X) = inf{
√

(X − Y,X − Y ) : Y ∈ U}.

Proof. Since
Ê[dtΣ(〈B〉t)] = sup

Λ∈Σ
dtΣ(tΛ) = 0,

it follows that dtΣ(〈B〉t) = 0. �

Exercise 5.8 Complete the proof of Proposition 5.6.



54 Chap.III G-Brownian Motion and Itô’s Integral

§6 G–Itô’s Formula

In this section, we give Itô’s formula for a “G-Itô process” X. For simplicity,
we first consider the case of the function Φ is sufficiently regular.

Lemma 6.1 Let Φ ∈ C2(Rn) with ∂xν Φ, ∂2
xµxν Φ ∈ Cb.Lip(Rn) for µ, ν =

1, · · · , n. Let s ∈ [0, T ] be fixed and let X = (X1, · · · , Xn)T be an n–dimensional
process on [s, T ] of the form

Xν
t = Xν

s + αν(t− s) + ηνij(
〈
Bi, Bj

〉
t
−
〈
Bi, Bj

〉
s
) + βνj(Bjt −Bjs),

where, for ν = 1, · · · , n, i, j = 1, · · · , d, αν , ηνij and βνj are bounded elements
in L2

G(Ωs) and Xs = (X1
s , · · · , Xn

s )T is a given random vector in L2
G(Ωs). Then

we have, in L2
G(Ωt),

Φ(Xt)− Φ(Xs) =
∫ t

s

∂xν Φ(Xu)βνjdBju +
∫ t

s

∂xν Φ(Xu)ανdu (6.18)

+
∫ t

s

[∂xν Φ(Xu)ηνij +
1
2
∂2
xµxν Φ(Xu)βµiβνj ]d

〈
Bi, Bj

〉
u
.

Here we use the , i.e., the above repeated indices µ, ν, i and j imply the sum-
mation.

Proof. For each positive integer N , we set δ = (t−s)/N and take the partition

πN[s,t] = {tN0 , tN1 , · · · , tNN} = {s, s+ δ, · · · , s+Nδ = t}.

We have

Φ(Xt)− Φ(Xs) =
N−1∑
k=0

[Φ(XtNk+1
)− Φ(XtNk

)] (6.19)

=
N−1∑
k=0

{∂xν Φ(XtNk
)(Xν

tNk+1
−Xν

tNk
)

+
1
2
[∂2
xµxν Φ(XtNk

)(Xµ

tNk+1
−Xµ

tNk
)(Xν

tNk+1
−Xν

tNk
) + ηNk ]},

where

ηNk = [∂2
xµxν Φ(XtNk

+θk(XtNk+1
−XtNk

))−∂2
xµxν Φ(XtNk

)](Xµ

tNk+1
−Xµ

tNk
)(Xν

tNk+1
−Xν

tNk
)

with θk ∈ [0, 1]. We have

Ê[|ηNk |2] = Ê[|[∂2
xµxν Φ(XtNk

+ θk(XtNk+1
−XtNk

))− ∂2
xµxν Φ(XtNk

)]

× (Xµ

tNk+1
−Xµ

tNk
)(Xν

tNk+1
−Xν

tNk
)|2]

≤ cÊ[|XtNk+1
−XtNk

|6] ≤ C[δ6 + δ3],
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where c is the Lipschitz constant of {∂2
xµxν Φ}nµ,ν=1 and C is a constant inde-

pendent of k. Thus

Ê[|
N−1∑
k=0

ηNk |2] ≤ N
N−1∑
k=0

Ê[|ηNk |2] → 0.

The rest terms in the summation of the right side of (6.19) are ξNt + ζNt with

ξNt =
N−1∑
k=0

{∂xν Φ(XtNk
)[αν(tNk+1 − tNk ) + ηνij(

〈
Bi, Bj

〉
tNk+1

−
〈
Bi, Bj

〉
tNk

)

+ βνj(Bj
tNk+1

−Bj
tNk

)] +
1
2
∂2
xµxν Φ(XtNk

)βµiβνj(BitNk+1
−BitNk

)(Bj
tNk+1

−Bj
tNk

)}

and

ζNt =
1
2

N−1∑
k=0

∂2
xµxν Φ(XtNk

){[αµ(tNk+1 − tNk ) + ηµij(
〈
Bi, Bj

〉
tNk+1

−
〈
Bi, Bj

〉
tNk

)]

× [αν(tNk+1 − tNk ) + ηνlm(
〈
Bl, Bm

〉
tNk+1

−
〈
Bl, Bm

〉
tNk

)]

+ 2[αµ(tNk+1 − tNk ) + ηµij(
〈
Bi, Bj

〉
tNk+1

−
〈
Bi, Bj

〉
tNk

)]βνl(BltNk+1
−BltNk

)}.

We observe that, for each u ∈ [tNk , t
N
k+1),

Ê[|∂xν Φ(Xu)−
N−1∑
k=0

∂xν Φ(XtNk
)I[tNk ,t

N
k+1)

(u)|2]

= Ê[|∂xν Φ(Xu)− ∂xν Φ(XtNk
)|2]

≤ c2Ê[|Xu −XtNk
|2] ≤ C[δ + δ2],

where c is the Lipschitz constant of {∂xν Φ}nν=1 and C is a constant independent
of k. Thus

∑N−1
k=0 ∂xν Φ(XtNk

)I[tNk ,t
N
k+1)

(·) converges to ∂xν Φ(X·) in M2
G(0, T ).

Similarly,
∑N−1
k=0 ∂2

xµxν Φ(XtNk
)I[tNk ,t

N
k+1)

(·) converges to ∂2
xµxν Φ(X·) in M2

G(0, T ).
From Lemma 4.6 as well as the definitions of the integrations of dt, dBt and

d 〈B〉t, the limit of ξNt in L2
G(Ωt) is just the right hand side of (6.18). By the

next Remark we also have ζNt → 0 in L2
G(Ωt). We then have proved (6.18). �

Remark 6.2 To prove ζNt → 0 in L2
G(Ωt), we use the following estimates: for

ψN ∈ M2,0
G (0, T ) with ψNt =

∑N−1
k=0 ξNtkI[tNk ,t

N
k+1)

(t), and πNT = {tN0 , · · · , tNN}
such that limN→∞ µ(πNT ) = 0 and Ê[

∑N−1
k=0 |ξNtk |

2(tNk+1 − tNk )] ≤ C, for all N =
1, 2, · · · , we have Ê[|

∑N−1
k=0 ξNk (tNk+1 − tNk )2|2] → 0 and, for any fixed a, ā ∈Rd,

Ê[|
N−1∑
k=0

ξNk (〈Ba〉tNk+1
− 〈Ba〉tNk )2|2] ≤ CÊ[

N−1∑
k=0

|ξNk |2(〈Ba〉tNk+1
− 〈Ba〉tNk )3]

≤ CÊ[
N−1∑
k=0

|ξNk |2σ6
aaT (tNk+1 − tNk )3] → 0,
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Ê[|
N−1∑
k=0

ξNk (〈Ba〉tNk+1
− 〈Ba〉tNk )(tNk+1 − tNk )|2]

≤CÊ[
N−1∑
k=0

|ξNk |2(tNk+1 − tNk )(〈Ba〉tNk+1
− 〈Ba〉tNk )2]

≤CÊ[
N−1∑
k=0

|ξNk |2σ4
aaT (tNk+1 − tNk )3] → 0,

as well as

Ê[|
N−1∑
k=0

ξNk (tNk+1 − tNk )(Ba
tNk+1

−Ba
tNk

)|2]

≤CÊ[
N−1∑
k=0

|ξNk |2(tNk+1 − tNk )|Ba
tNk+1

−Ba
tNk
|2]

≤CÊ[
N−1∑
k=0

|ξNk |2σ2
aaT (tNk+1 − tNk )2] → 0

and

Ê[|
N−1∑
k=0

ξNk (〈Ba〉tNk+1
− 〈Ba〉tNk )(Bā

tNk+1
−Bā

tNk
)|2]

≤CÊ[
N−1∑
k=0

|ξNk |2(〈Ba〉tNk+1
− 〈Ba〉tNk )|Bā

tNk+1
−Bā

tNk
|2]

≤CÊ[
N−1∑
k=0

|ξNk |2σ2
aaT σ

2
āāT (tNk+1 − tNk )2] → 0.

�

We now consider a general form of G–Itô’s formula. Consider

Xν
t = Xν

0 +
∫ t

0

ανsds+
∫ t

0

ηνijs d
〈
Bi, Bj

〉
s
+
∫ t

0

βνjs dB
j
s .

Proposition 6.3 Let Φ ∈ C2(Rn) with ∂xν Φ, ∂2
xµxν Φ ∈ Cb.Lip(Rn) for µ, ν =

1, · · · , n. Let αν , βνj and ηνij, ν = 1, · · · , n, i, j = 1, · · · , d be bounded processes
in M2

G(0, T ). Then for each t ≥ 0 we have, in L2
G(Ωt)

Φ(Xt)− Φ(Xs) =
∫ t

s

∂xν Φ(Xu)βνju dB
j
u +

∫ t

s

∂xν Φ(Xu)ανudu (6.20)

+
∫ t

s

[∂xν Φ(Xu)ηνiju +
1
2
∂2
xµxν Φ(Xu)βµiu β

νj
u ]d

〈
Bi, Bj

〉
u
.
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Proof. We first consider the case where α, η and β are step processes of the
form

ηt(ω) =
N−1∑
k=0

ξk(ω)I[tk,tk+1)(t).

From the above lemma, it is clear that (6.20) holds true. Now let

Xν,N
t = Xν

0 +
∫ t

0

αν,Ns ds+
∫ t

0

ηνij,Ns d
〈
Bi, Bj

〉
s
+
∫ t

0

βνj,Ns dBjs ,

where αN , ηN and βN are uniformly bounded step processes that converge to
α, η and β in M2

G(0, T ) as N →∞, respectively. From Lemma 6.1,

Φ(XN
t )− Φ(XN

s ) =
∫ t

s

∂xν Φ(XN
u )βνj,Nu dBju +

∫ t

s

∂xν Φ(XN
u )αν,Nu du (6.21)

+
∫ t

s

[∂xν Φ(XN
u )ηνij,Nu +

1
2
∂2
xµxν Φ(XN

u )βµi,Nu βνj,Nu ]d
〈
Bi, Bj

〉
u
.

Since

Ê[|Xν,N
t −Xν

t |2]

≤CÊ[
∫ T

0

[(αν,Ns − ανs )
2 + |ην,Ns − ηνs |2 + |βν,Ns − βνs |2]ds],

where C is a constant independent of N , we can prove that, in M2
G(0, T ),

∂xν Φ(XN
· )ηνij,N· → ∂xν Φ(X·)ηνij· ,

∂2
xµxν Φ(XN

· )βµi,N· βνj,N· → ∂2
xµxν Φ(X·)βµi· β

νj
· ,

∂xν Φ(XN
· )αν,N· → ∂xν Φ(X·)αν· ,

∂xν Φ(XN
· )βνj,N· → ∂xν Φ(X·)βνj· .

We then can pass to limit as N →∞ in both sides of (6.21) to get (6.20). �
In order to consider the general Φ, we first prove a useful inequality.
For the G-expectation Ê, we have the following representation (see Chap.VI):

Ê[X] = sup
P∈P

EP [X] for X ∈ L1
G(Ω), (6.22)

where P is a weakly compact family of probability measures on (Ω,B(Ω)).

Proposition 6.4 Let β ∈ Mp
G(0, T ) with p ≥ 2 and let a ∈ Rd be fixed. Then

we have
∫ T
0
βtdB

a
t ∈ L

p
G(ΩT ) and

Ê[|
∫ T

0

βtdB
a
t |p] ≤ CpÊ[|

∫ T

0

β2
t d〈Ba〉t|p/2]. (6.23)
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Proof. It suffices to consider the case where β is a step process of the form

βt(ω) =
N−1∑
k=0

ξk(ω)I[tk,tk+1)(t).

For each ξ ∈ Lip(Ωt) with t ∈ [0, T ], we have

Ê[ξ
∫ T

t

βsdB
a
s ] = 0.

From this we can easily get EP [ξ
∫ T
t
βsdB

a
s ] = 0 for each P ∈ P, which implies

that (
∫ t
0
βsdB

a
s )t∈0,T ] is a P -martingale. Similarly we can prove that

Mt := (
∫ t

0

βsdB
a
s )

2 −
∫ t

0

β2
sd〈Ba〉s, t ∈ [0, T ]

is a P -martingale for each P ∈ P. By the Burkholder-Davis-Gundy inequalities,
we have

EP [|
∫ T

0

βtdB
a
t |p] ≤ CpEP [|

∫ T

0

β2
t d〈Ba〉t|p/2] ≤ CpÊ[|

∫ T

0

β2
t d〈Ba〉t|p/2],

where Cp is a universal constant independent of P . Thus we get (6.23). �
We now give the general G–Itô’s formula.

Theorem 6.5 Let Φ be a C2-function on Rn such that ∂2
xµxν Φ satisfy polyno-

mial growth condition for µ, ν = 1, · · · , n. Let αν , βνj and ηνij, ν = 1, · · · , n,
i, j = 1, · · · , d be bounded processes in M2

G(0, T ). Then for each t ≥ 0 we have
in L2

G(Ωt)

Φ(Xt)− Φ(Xs) =
∫ t

s

∂xν Φ(Xu)βνju dB
j
u +

∫ t

s

∂xν Φ(Xu)ανudu (6.24)

+
∫ t

s

[∂xν Φ(Xu)ηνiju +
1
2
∂2
xµxν Φ(Xu)βµiu β

νj
u ]d

〈
Bi, Bj

〉
u
.

Proof. By the assumptions on Φ, we can choose a sequence of functions ΦN ∈
C2

0 (Rn) such that

|ΦN (x)−Φ(x)|+|∂xν ΦN (x)−∂xν Φ(x)|+|∂2
xµxν ΦN (x)−∂2

xµxν Φ(x)| ≤ C1

N
(1+|x|k),

where C1 and k are positive constants independent of N . Obviously, ΦN satisfies
the conditions in Proposition 6.3, therefore,

ΦN (Xt)− ΦN (Xs) =
∫ t

s

∂xν ΦN (Xu)βνju dB
j
u +

∫ t

s

∂xvΦN (Xu)ανudu (6.25)

+
∫ t

s

[∂xν ΦN (Xu)ηνiju +
1
2
∂2
xµxν ΦN (Xu)βµiu β

νj
u ]d

〈
Bi, Bj

〉
u
.
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For each fixed T > 0, by Proposition 6.4, there exists a constant C2 such that

Ê[|Xt|2k] ≤ C2 for t ∈ [0, T ].

Thus we can prove that ΦN (Xt) → Φ(Xt) in L2
G(Ωt) and in M2

G(0, T ),

∂xν ΦN (X·)ηνij· → ∂xν Φ(X·)ηνij· ,

∂2
xµxν ΦN (X·)βµi· β

νj
· → ∂2

xµxν Φ(X·)βµi· β
νj
· ,

∂xν ΦN (X·)αν· → ∂xν Φ(X·)αν· ,

∂xν ΦN (X·)βνj· → ∂xν Φ(X·)βνj· .

We then can pass to limit as N →∞ in both sides of (6.25) to get (6.24). �

Corollary 6.6 Let Φ be a polynomial and a,aν∈Rd be fixed for ν = 1, · · · , n.
Then we have

Φ(Xt)− Φ(Xs) =
∫ t

s

∂xν Φ(Xu)dBaν

u +
1
2

∫ t

s

∂2
xµxν Φ(Xu)d

〈
Baµ

, Baν
〉
u
,

where Xt = (Ba1

t , · · · , Ban

t )T . In particular, we have, for k = 2, 3, · · · ,

(Ba
t )
k = k

∫ t

0

(Ba
s )
k−1dBa

s +
k(k − 1)

2

∫ t

0

(Ba
s )
k−2d〈Ba〉s.

If Ê becomes a linear expectation, then the above G–Itô’s formula is the
classical one.

§7 Generalized G-Brownian Motion

Let G : Rd × S(d) → R be a given continuous sublinear function monotonic in
A ∈ S(d). Then by Theorem 2.1 in Chap.I, there exists a bounded, convex and
closed subset Σ ⊂ Rd × S+(d) such that

G(p,A) = sup
(q,B)∈Σ

[
1
2
tr[AB] + 〈p, q〉] for (p,A) ∈ Rd × S(d).

By Chapter II, we know that there exists a pair of d-dimensional random vectors
(X,Y ) which is G-distributed.

We now give the definition of the generalized G-Brownian motion.

Definition 7.1 A d-dimensional process (Bt)t≥0 on a sublinear expectation
space (Ω,H, Ê) is called a generalized G-Brownian motion if the follow-
ing properties are satisfied:
(i) B0(ω) = 0;
(ii) For each t, s ≥ 0, the increment Bt+s − Bt identically distributed with√
sX + sY and is independent from (Bt1 , Bt2 , · · · , Btn), for each n ∈ N and

0 ≤ t1 ≤ · · · ≤ tn ≤ t, where (X,Y ) is G-distributed.
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The following theorem gives a characterization of the generalizedG-Brownian
motion.

Theorem 7.2 Let (Bt)t≥0 be a d-dimensional process defined on a sublinear
expectation space (Ω,H, Ê) such that
(i) B0(ω)= 0;
(ii) For each t, s ≥ 0, Bt+s−Bt and Bs are identically distributed and Bt+s−Bt
is independent from (Bt1 , Bt2 , · · · , Btn), for each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤
t.
(iii) limt↓0 Ê[|Bt|3]t−1 = 0.
Then (Bt)t≥0 is a generalized G-Brownian motion with G(p,A) = limδ↓0 Ê[〈p,Bδ〉+
1
2 〈ABδ, Bδ〉]δ

−1 for (p,A) ∈ Rd × S(d).

Proof. We first prove that limδ↓0 Ê[〈p,Bδ〉 + 1
2 〈ABδ, Bδ〉]δ

−1 exists. For each
fixed (p,A) ∈ Rd × S(d), we set

f(t) := Ê[〈p,Bt〉+
1
2
〈ABt, Bt〉].

Since

|f(t+ h)− f(t)| ≤ Ê[(|p|+ 2|A||Bt|)|Bt+h −Bt|+ |A||Bt+h −Bt|2] → 0,

we get that f(t) is a continuous function. It is easy to prove that

Ê[〈q,Bt〉] = Ê[〈q,B1〉]t for q ∈ Rd.

Thus for each t, s > 0,

|f(t+ s)− f(t)− f(s)| ≤ CÊ[|Bt|]s,

where C = |A|Ê[|B1|]. By (iii), there exists a constant δ0 > 0 such that
Ê[|Bt|3] ≤ t for t ≤ δ0. Thus for each fixed t > 0 and N ∈ N such that
Nt ≤ δ0, we have

|f(Nt)−Nf(t)| ≤ 3
4
C(Nt)4/3.

From this and the continuity of f , it is easy to show that limt↓0 f(t)t−1 exists.
Thus we can get G(p,A) for each (p,A) ∈ Rd × S(d). It is also easy to check
that G is a continuous sublinear function monotonic in A ∈ S(d).

We only need to prove that, for each fixed ϕ ∈ Cb.Lip(Rd), the function

u(t, x) := Ê[ϕ(x+Bt)], (t, x) ∈ [0,∞)× Rd

is the viscosity solution of the following parabolic PDE:

∂tu−G(Du,D2u) = 0, u|t=0 = ϕ. (7.26)
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We first prove that u is Lipschitz in x and 1
2 -Hölder continuous in t. In fact,

for each fixed t, u(t, ·) ∈Cb.Lip(Rd) since

|Ê[ϕ(x+Bt)]− Ê[ϕ(y +Bt)]| ≤ Ê[|ϕ(x+Bt)− ϕ(y +Bt)|]
≤ C|x− y|.

For each δ ∈ [0, t], since Bt −Bδ is independent from Bδ,

u(t, x) = Ê[ϕ(x+Bδ + (Bt −Bδ)]

= Ê[Ê[ϕ(y + (Bt −Bδ))]y=x+Bδ
].

Hence
u(t, x) = Ê[u(t− δ, x+Bδ)]. (7.27)

Thus

|u(t, x)− u(t− δ, x)| = |Ê[u(t− δ, x+Bδ)− u(t− δ, x)]|

≤ Ê[|u(t− δ, x+Bδ)− u(t− δ, x)|]

≤ Ê[C|Bδ|] ≤ C
√
G(0, I) + 1

√
δ.

To prove that u is a viscosity solution of (7.26), we fix a (t, x) ∈ (0,∞) × Rd
and let v ∈ C2,3

b ([0,∞) × Rd) be such that v ≥ u and v(t, x) = u(t, x). From
(7.27), we have

v(t, x) = Ê[u(t− δ, x+Bδ)] ≤ Ê[v(t− δ, x+Bδ)].

Therefore, by Taylor’s expansion,

0 ≤ Ê[v(t− δ, x+Bδ)− v(t, x)]

= Ê[v(t− δ, x+Bδ)− v(t, x+Bδ) + (v(t, x+Bδ)− v(t, x))]

= Ê[−∂tv(t, x)δ + 〈Dv(t, x), Bδ〉+
1
2
〈D2v(t, x)Bδ, Bδ〉+ Iδ]

≤ −∂tv(t, x)δ + Ê[〈Dv(t, x), Bδ〉+
1
2
〈D2v(t, x)Bδ, Bδ〉] + Ê[Iδ],

where

Iδ =
∫ 1

0

−[∂tv(t− βδ, x+Bδ)− ∂tv(t, x)]δdβ

+
∫ 1

0

∫ 1

0

〈(D2v(t, x+ αβBδ)−D2v(t, x))Bδ, Bδ〉αdβdα.

With the assumption (iii) we can check that limδ↓0 Ê[|Iδ|]δ−1 = 0, from which
we get ∂tv(t, x)−G(Dv(t, x), D2v(t, x)) ≤ 0, hence u is a viscosity subsolution
of (7.26). We can analogously prove that u is a viscosity supersolution. Thus u
is a viscosity solution and (Bt)t≥0 is a generalized G-Brownian motion. �



62 Chap.III G-Brownian Motion and Itô’s Integral

Notes and Comments

Bachelier (1900) [6] proposed Brownian motion as a model for fluctuations of the
stock market, Einstein (1905) [42] used Brownian motion to give experimental
confirmation of the atomic theory, and Wiener (1923) [119] gave a mathemati-
cally rigorous construction of Brownian motion. Here we follow Kolmogorov’s
idea (1956) [72] to construct G-Brownian motion by introducing infinite di-
mensional function space and the corresponding family of infinite dimensional
sublinear distributions, instead of linear distributions in [72].

The notions of G-Brownian motion and the related stochastic calculus of
Itô’s type were firstly introduced by Peng (2006) [98] for 1-dimensional case and
then in [102] for multi-dimensional situation. It is very interesting that Denis
and Martini (2006) [38] studied super-pricing of contingent claims under model
uncertainty of volatility. They have introduced a norm on the space of contin-
uous paths Ω = C([0, T ]) which corresponds to our L2

G-norm and developed a
stochastic integral. There is no notion of nonlinear expectation and the related
nonlinear distribution, such as G-expectation, conditional G-expectation, the
related G-normal distribution and the notion of independence in their paper.
But on the other hand, powerful tools in capacity theory enable them to obtain
pathwise results for random variables and stochastic processes through the lan-
guage of “quasi-surely” (see e.g. Dellacherie (1972) [32], Dellacherie and Meyer
(1978 and 1982) [33], Feyel and de La Pradelle (1989) [48]) in place of “almost
surely” in classical probability theory.

A main motivations of G-Brownian motion were the pricing and risk mea-
sures under volatility uncertainty in financial markets (see Avellaneda, Levy and
Paras (1995) [5] and Lyons (1995) [80]). It was well-known that under volatil-
ity uncertainty the corresponding uncertain probabilities are singular from each
other. This causes a serious problem for the related path analysis to treat,
e.g., path-dependent derivatives, under a classical probability space. Our G-
Brownian motion provides a powerful tool to such type of problems.

Our new Itô’s calculus for G-Brownian motion is of course inspired from
Itô’s groundbreaking work since 1942 [63] on stochastic integration, stochastic
differential equations and stochastic calculus through interesting books cited in
Chap. IV. Itô’s formula given by Theorem 6.5 is from Peng [98], [102]. Gao
(2009)[54] proved a more general Itô’s formula for G-Brownian motion. An
interesting problem is: can we get an Itô’s formula in which the conditions
correspond the classical one? Recently Li and Peng have solved this problem in
[77].

Using nonlinear Markovian semigroup known as Nisio’s semigroup (see Nisio
(1976) [84]), Peng (2005) [96] studied the processes with Markovian properties
under a nonlinear expectation.



Chapter IV

G-martingales and Jensen’s
Inequality

In this chapter, we introduce the notion of G-martingales and the related
Jensen’s inequality for a new type of G-convex functions. Essentially differ-
ent from the classical situation, “M is a G-martingale” does not imply that
“−M is a G-martingale”.

§1 The Notion of G-martingales

We now give the notion of G–martingales.

Definition 1.1 A process (Mt)t≥0 is called a G–martingale (respectively, G–
supermartingale, G–submartingale) if for each t ∈ [0,∞), Mt ∈ L1

G(Ωt)
and for each s ∈ [0, t], we have

Ê[Mt|Ωs] = Ms (respectively, ≤Ms, ≥Ms).

Example 1.2 For each fixed X ∈ L1
G(Ω), it is clear that (Ê[X|Ωt])t≥0 is a

G–martingale.

Example 1.3 For each fixed a ∈ Rd, it is easy to check that (Ba
t )t≥0 and

(−Ba
t )t≥0 are G–martingales. The process (〈Ba〉t−σ2

aaT t)t≥0 is a G–martingale
since

Ê[〈Ba〉t − σ2
aaT t|Ωs] = Ê[〈Ba〉s − σ2

aaT t+ (〈Ba〉t − 〈Ba〉s)|Ωs]

= 〈Ba〉s − σ2
aaT t+ Ê[〈Ba〉t − 〈Ba〉s]

= 〈Ba〉s − σ2
aaT s.

63
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Similarly we can show that (−(〈Ba〉t − σ2
aaT t))t≥0 is a G–submartingale. The

process ((Ba
t )

2)t≥0 is a G–submartingale since

Ê[(Ba
t )

2|Ωs] = Ê[(Ba
s )

2 + (Ba
t −Ba

s )
2 + 2Ba

s (B
a
t −Ba

s )|Ωs]

= (Ba
s )

2 + Ê[(Ba
t −Ba

s )
2|Ωs]

= (Ba
s )

2 + σ2
aaT (t− s) ≥ (Ba

s )
2.

Similarly we can prove that ((Ba
t )

2 − σ2
aaT t)t≥0 and ((Ba

t )
2 − 〈Ba〉t)t≥0 are

G–martingales.

In general, we have the following important property.

Proposition 1.4 Let M0 ∈ R, ϕ = (ϕj)dj=1 ∈M2
G(0, T ; Rd) and η = (ηij)di,j=1 ∈

M1
G(0, T ; S(d)) be given and let

Mt = M0 +
∫ t

0

ϕjudB
j
u +

∫ t

0

ηiju d
〈
Bi, Bj

〉
u
−
∫ t

0

2G(ηu)du for t ∈ [0, T ].

Then M is a G–martingale. Here we still use the , i.e., the above repeated
indices i and j imply the summation.

Proof. Since Ê[
∫ t
s
ϕjudB

j
u|Ωs] = Ê[−

∫ t
s
ϕjudB

j
u|Ωs] = 0, we only need to prove

that

M̄t =
∫ t

0

ηiju d
〈
Bi, Bj

〉
u
−
∫ t

0

2G(ηu)du for t ∈ [0, T ]

is a G–martingale. It suffices to consider the case where η ∈ M1,0
G (0, T ; S(d)),

i.e.,

ηt =
N−1∑
k=0

ηtkI[tk,tk+1)(t).

We have, for s ∈ [tN−1, tN ],

Ê[M̄t|Ωs] = M̄s + Ê[(ηtN−1 , 〈B〉t − 〈B〉s)− 2G(ηtN−1)(t− s)|Ωs]

= M̄s + Ê[(A, 〈B〉t − 〈B〉s)]A=ηtN−1
− 2G(ηtN−1)(t− s)

= M̄s.

Then we can repeat this procedure backwardly to prove the result for s ∈
[0, tN−1]. �

Corollary 1.5 Let η ∈M1
G(0, T ). Then for each fixed a ∈ Rd, we have

σ2
−aaT Ê[

∫ T

0

|ηt|dt] ≤ Ê[
∫ T

0

|ηt|d〈Ba〉t] ≤ σ2
aaT Ê[

∫ T

0

|ηt|dt]. (1.1)
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Proof. For each ξ ∈M1
G(0, T ), by the above proposition, we have

Ê[
∫ T

0

ξtd〈Ba〉t −
∫ T

0

2Ga(ξt)dt] = 0,

where Ga(α) = 1
2 (σ2

aaTα
+ − σ2

−aaTα
−). Letting ξ = |η| and ξ = −|η|, we get

Ê[
∫ T

0

|ηt|d〈Ba〉t − σ2
aaT

∫ T

0

|ηt|dt] = 0,

Ê[−
∫ T

0

|ηt|d〈Ba〉t + σ2
−aaT

∫ T

0

|ηt|dt] = 0.

From the sub-additivity of G-expectation, we can easily get the result. �

Remark 1.6 It is worth to mention that for a G–martingale M , in general,
−M is not a G–martingale. But in Proposition 1.4, when η ≡ 0, −M is still a
G–martingale.

Exercise 1.7 (a) Let (Mt)t≥0 be a G–supermartingale. Show that (−Mt)t≥0 is
a G–submartingale.

(b) Find a G–submartingale (Mt)t≥0 such that (−Mt)t≥0 is not a G–supermartingale.

Exercise 1.8 (a) Let (Mt)t≥0 and (Nt)t≥0 be two G–supermartingales. Prove
that (Mt +Nt)t≥0 is a G–supermartingale.

(b) Let (Mt)t≥0 and (−Mt)t≥0 be two G–martingales. For each G–submartingale
(respectively, G–supermartingale) (Nt)t≥0, prove that (Mt + Nt)t≥0 is a G–
submartingale (respectively, G–supermartingale).

§2 On G-martingale Representation Theorem

How to give a G-martingale representation theorem is still a largely open prob-
lem. Xu and Zhang (2009) [120] have obtained a martingale representation for
a special ‘symmetric’ G-martingale process. A more general situation have been
proved by Soner, Touzi and Zhang (preprint in private communications). Here
we present the formulation of this G-martingale representation theorem under
a very strong assumption.

In this section, we consider the generator G : S(d) → R satisfying the uni-
formly elliptic condition, i.e., there exists a β > 0 such that, for each A, Ā ∈ S(d)
with A ≥ Ā,

G(A)−G(Ā) ≥ βtr[A− Ā].

For each ξ = (ξj)dj=1 ∈ M2
G(0, T ; Rd) and η = (ηij)di,j=1 ∈ M1

G(0, T ; S(d)),
we use the following notations∫ T

0

〈ξt, dBt〉 :=
d∑
j=1

∫ T

0

ξjt dB
j
t ;
∫ T

0

(ηt, d〈B〉t) :=
d∑

i,j=1

∫ T

0

ηijt d
〈
Bi, Bj

〉
t
.

We first consider the representation of ϕ(BT −Bt1) for 0 ≤ t1 ≤ T <∞.
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Lemma 2.1 Let ξ = ϕ(BT −Bt1), ϕ ∈ Cb.Lip(Rd). Then we have the following
representation:

ξ = Ê[ξ] +
∫ T

t1

〈βt, dBt〉+
∫ T

t1

(ηt, d〈B〉t)−
∫ T

t1

2G(ηt)dt.

Proof. We know that u(t, x) = Ê[ϕ(x+BT−Bt)] is the solution of the following
PDE:

∂tu+G(D2u) = 0 (t, x) ∈ [0, T ]× Rd, u(T, x) = ϕ(x).

For each ε > 0, by the interior regularity of u (see Appendix C), we have

‖u‖C1+α/2,2+α([0,T−ε]×Rd) <∞ for some α ∈ (0, 1).

Applying G-Itô’s formula to u(t, Bt − Bt1) on [t1, T − ε], since Du(t, x) is uni-
formly bounded, letting ε→ 0, we have

ξ = Ê[ξ] +
∫ T

t1

∂tu(t, Bt −Bt1)dt+
∫ T

t1

〈Du(t, Bt −Bt1), dBt〉

+
1
2

∫ T

t1

(D2u(t, Bt −Bt1), d〈B〉t)

= Ê[ξ] +
∫ T

t1

〈Du(t, Bt −Bt1), dBt〉+
1
2

∫ T

t1

(D2u(t, Bt −Bt1), d〈B〉t)

−
∫ T

t1

G(D2u(t, Bt −Bt1))dt.

�
We now give the representation theorem of ξ = ϕ(Bt1 , Bt2 −Bt1 , · · · , BtN −

BtN−1).

Theorem 2.2 Let ξ = ϕ(Bt1 , Bt2 −Bt1 , · · · , BtN −BtN−1), ϕ ∈ Cb.Lip(Rd×N ),
0 ≤ t1 < t2 < · · · < tN = T <∞. Then we have the following representation:

ξ = Ê[ξ] +
∫ T

0

〈βt, dBt〉+
∫ T

0

(ηt, d〈B〉t)−
∫ T

0

2G(ηt)dt.

Proof. We only need to prove the case ξ = ϕ(Bt1 , BT −Bt1). We set, for each
(x, y) ∈ R2d,

u(t, x, y) = Ê[ϕ(x, y +BT −Bt)]; ϕ1(x) = Ê[ϕ(x,BT −Bt1)].

For each x ∈ Rd, we denote ξ̄ = ϕ(x,BT −Bt1). By Lemma 2.1, we have

ξ̄ = ϕ1(x) +
∫ T

t1

〈Dyu(t, x,Bt −Bt1), dBt〉+
1
2

∫ T

t1

(D2
yu(t, x,Bt −Bt1), d〈B〉t)

−
∫ T

t1

G(D2
yu(t, x,Bt −Bt1))dt.
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By the definitions of the integrations of dt, dBt and d〈B〉t, we can replace x by
Bt1 and get

ξ = ϕ1(Bt1) +
∫ T

t1

〈Dyu(t, Bt1 , Bt −Bt1), dBt〉

+
1
2

∫ T

t1

(D2
yu(t, Bt1 , Bt −Bt1), d〈B〉t)−

∫ T

t1

G(D2
yu(t, Bt1 , Bt −Bt1))dt.

Applying Lemma 2.1 to ϕ1(Bt1), we complete the proof. �
We then immediately have the following G-martingale representation theo-

rem.

Theorem 2.3 Let (Mt)t∈[0,T ] be a G-martingale with MT = ϕ(Bt1 , Bt2−Bt1 , · · · ,BtN−
BtN−1), ϕ ∈ Cb.Lip(Rd×N ), 0 ≤ t1 < t2 < · · · < tN = T <∞. Then

Mt = Ê[MT ] +
∫ t

0

〈βs, dBs〉+
∫ t

0

(ηs, d〈B〉s)−
∫ t

0

2G(ηs)ds, t ≤ T.

Proof. For MT , by Theorem 2.2, we have

MT = Ê[MT ] +
∫ T

0

〈βs, dBs〉+
∫ T

0

(ηs, d〈B〉s)−
∫ T

0

2G(ηs)ds.

Taking the conditional G-expectation on both sides of the above equality and
by Proposition 1.4, we obtain the result. �

§3 G–convexity and Jensen’s Inequality for G–
expectations

A very interesting question is whether the well–known Jensen’s inequality still
holds for G–expectations.

First, we give a new notion of convexity.

Definition 3.1 A continuous function h : R → R is called G–convex if for
each bounded ξ ∈ L1

G(Ω), the following Jensen’s inequality holds:

Ê[h(ξ)] ≥ h(Ê[ξ]).

In this section, we mainly consider C2-functions.

Proposition 3.2 Let h ∈ C2(R). Then the following statements are equivalent:
(i) The function h is G–convex.
(ii) For each bounded ξ ∈ L1

G(Ω), the following Jensen’s inequality holds:

Ê[h(ξ)|Ωt] ≥ h(Ê[ξ|Ωt]) for t ≥ 0.
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(iii) For each ϕ ∈ C2
b (Rd), the following Jensen’s inequality holds:

Ê[h(ϕ(Bt))] ≥ h(Ê[ϕ(Bt)]) for t ≥ 0.

(iv) The following condition holds for each (y, z, A) ∈ R× Rd × S(d):

G(h′(y)A+ h′′(y)zzT )− h′(y)G(A) ≥ 0. (3.2)

To prove the above proposition, we need the following lemmas.

Lemma 3.3 Let Φ : Rd → S(d) be continuous with polynomial growth. Then

lim
δ↓0

Ê[
∫ t+δ

t

(Φ(Bs), d〈B〉s)]δ−1 = 2Ê[G(Φ(Bt))]. (3.3)

Proof. If Φ is a Lipschitz function, it is easy to prove that

Ê[|
∫ t+δ

t

(Φ(Bs)− Φ(Bt), d〈B〉s)|] ≤ C1δ
3/2,

where C1 is a constant independent of δ. Thus

lim
δ↓0

Ê[
∫ t+δ

t

(Φ(Bs), d〈B〉s)]δ−1 = lim
δ↓0

Ê[(Φ(Bt), 〈B〉t+δ − 〈B〉s)]δ−1

= 2Ê[G(Φ(Bt))].

Otherwise, we can choose a sequence of Lipschitz functions ΦN : Rd → S(d)
such that

|ΦN (x)− Φ(x)| ≤ C2

N
(1 + |x|k),

where C2 and k are positive constants independent of N . It is easy to show that

Ê[|
∫ t+δ

t

(Φ(Bs)− ΦN (Bs), d〈B〉s)|] ≤
C

N
δ

and
Ê[|G(Φ(Bt))−G(ΦN (Bt))|] ≤

C

N
,

where C is a universal constant. Thus

|Ê[
∫ t+δ

t

(Φ(Bs), d〈B〉s)]δ−1 − 2Ê[G(Φ(Bt))]|

≤|Ê[
∫ t+δ

t

(ΦN (Bs), d〈B〉s)]δ−1 − 2Ê[G(ΦN (Bt))]|+
3C
N
.

Then we have

lim sup
δ↓0

|Ê[
∫ t+δ

t

(Φ(Bs), d〈B〉s)]δ−1 − 2Ê[G(Φ(Bt))]| ≤
3C
N
.

Since N can be arbitrarily large, we complete the proof. �
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Lemma 3.4 Let Ψ be a C2-function on Rd such that D2Ψ satisfy polynomial
growth condition. Then we have

lim
δ↓0

(Ê[Ψ(Bδ)]−Ψ(0))δ−1 = G(D2Ψ(0)). (3.4)

Proof. Applying G-Itô’s formula to Ψ(Bδ), we get

Ψ(Bδ) = Ψ(0) +
∫ δ

0

〈DΨ(Bs), dBs〉+
1
2

∫ δ

0

(D2Ψ(Bs), d〈B〉s).

Thus we have

Ê[Ψ(Bδ)]−Ψ(0) =
1
2

ÊG[
∫ δ

0

(D2Ψ(Bs), d〈B〉s)].

By Lemma 3.3, we obtain the result. �

Lemma 3.5 Let h ∈ C2(R) and satisfy (3.2). For each ϕ ∈ Cb.Lip(Rd), let
u(t, x) be the solution of the G-heat equation:

∂tu−G(D2u) = 0 (t, x) ∈ [0,∞)× Rd, u(0, x) = ϕ(x). (3.5)

Then ũ(t, x) := h(u(t, x)) is a viscosity subsolution of G-heat equation (3.5) with
initial condition ũ(0, x) = h(ϕ(x)).

Proof. For each ε > 0, we denote by uε the solution of the following PDE:

∂tu
ε −Gε(D2uε) = 0 (t, x) ∈ [0,∞)× Rd, uε(0, x) = ϕ(x),

where Gε(A) := G(A) + εtr[A]. Since Gε satisfies the uniformly elliptic condi-
tion, by Appendix C, we have uε ∈ C1,2((0,∞) × Rd). By simple calculation,
we have

∂th(uε) = h′(uε)∂tuε = h′(uε)Gε(D2uε)

and
∂th(uε)−Gε(D2h(uε)) = fε(t, x), h(uε(0, x)) = h(ϕ(x)),

where
fε(t, x) = h′(uε)G(D2uε)−G(D2h(uε))− εh′′(uε)|Duε|2.

Since h is G–convex, it follows that fε ≤ −εh′′(uε)|Duε|2. We can also deduce
that |Duε| is uniformly bounded by the Lipschitz constant of ϕ. It is easy to
show that uε uniformly converges to u as ε→ 0. Thus h(uε) uniformly converges
to h(u) and h′′(uε) is uniformly bounded. Then we get

∂th(uε)−Gε(D2h(uε)) ≤ Cε, h(uε(0, x)) = h(ϕ(x)),

where C is a constant independent of ε. By Appendix C, we conclude that h(u)
is a viscosity subsolution. �
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Proof of Proposition 3.2. Obviously (ii)=⇒(i)=⇒(iii). We now prove
(iii)=⇒(ii). For ξ ∈ L1

G(Ω) of the form

ξ = ϕ(Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1),

where ϕ ∈ C2
b (Rd×n), 0 ≤ t1 ≤ · · · ≤ tn < ∞, by the definitions of Ê[·] and

Ê[·|Ωt], we have

Ê[h(ξ)|Ωt] ≥ h(Ê[ξ|Ωt]), t ≥ 0.

We then can extend this Jensen’s inequality, under the norm || · || = Ê[| · |], to
each bounded ξ ∈ L1

G(Ω).
(iii)=⇒(iv): for each ϕ ∈ C2

b (Rd), we have Ê[h(ϕ(Bt))] ≥ h(Ê[ϕ(Bt)]) for each
t ≥ 0. By Lemma 3.4, we know that

lim
δ↓0

(Ê[ϕ(Bδ)]− ϕ(0))δ−1 = G(D2ϕ(0))

and
lim
δ↓0

(Ê[h(ϕ(Bδ))]− h(ϕ(0)))δ−1 = G(D2h(ϕ)(0)).

Thus we get
G(D2h(ϕ)(0)) ≥ h′(ϕ(0))G(D2ϕ(0)).

For each (y, z, A) ∈ R× Rd × S(d), we can choose a ϕ ∈ C2
b (Rd) such that

(ϕ(0), Dϕ(0), D2ϕ(0)) = (y, z, A). Thus we obtain (iv).
(iv)=⇒(iii): for each ϕ ∈ C2

b (Rd), u(t, x) = Ê[ϕ(x+Bt)] (respectively, ū(t, x) =
Ê[h(ϕ(x + Bt))]) solves the G-heat equation (3.5). By Lemma 3.5, h(u) is a
viscosity subsolution of G-heat equation (3.5). It follows from the maximum
principle that h(u(t, x)) ≤ ū(t, x). In particular, (iii) holds. �

Remark 3.6 In fact, (i)⇐⇒(ii)⇐⇒(iii) still hold without the assumption h ∈
C2(R).

Proposition 3.7 Let h be a G–convex function and X ∈ L1
G(Ω) be bounded.

Then Yt = h(Ê[X|Ωt]), t ≥ 0, is a G–submartingale.

Proof. For each s ≤ t,

Ê[Yt|Ωs] = Ê[h(Ê[X|Ωt])|Ωs] ≥ h(Ê[X|Ωs]) = Ys.

�

Exercise 3.8 Suppose that G satisfies the uniformly elliptic condition and h ∈
C2(R). Show that h is G-convex if and only if h is convex.
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Notes and Comments

This chapter is mainly from Peng (2007) [100].
Peng (1997) [90] introduced a filtration consistent (or time consistent, or

dynamic) nonlinear expectation, called g-expectation, via BSDE, and then in
[92] for some basic properties of the g-martingale such as nonlinear Doob-Meyer
decomposition theorem, see also Briand, Coquet, Hu, Mémin and Peng (2000)
[14], Chen, Kulperger and Jiang (2003) [20], Chen and Peng (1998) [21] and
(2000) [22], Coquet, Hu, Mémin and Peng (2001) [26], and (2002) [27], Peng
(1999) [92], (2004) [95], Peng and Xu (2003) [105], Rosazza (2006) [110]. Our
conjecture is that all properties obtained for g-martingales must has its corre-
spondence for G-martingale. But this conjecture is still far from being complete.
Here we present some properties of G-martingales.

The problem G-martingale representation theorem has been raised as a prob-
lem in Peng (2007) [100]. In Section 2, we only give a result with very regular
random variables. Some very interesting developments to this important prob-
lem can be found in Soner, Tuozi and Zhang (2009) [112] and Song (2009) [114].

Under the framework of g-expectation, Chen, Kulperger and Jiang (2003)
[20], Hu (2005) [58], Jiang and Chen (2004) [68] investigate the Jensen’s in-
equality for g-expectation. Recently, Jia and Peng (2007) [66] introduced the
notion of g-convex function and obtained many interesting properties. Certainly
a G-convex function concerns fully nonlinear situations.
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Chapter V

Stochastic Differential
Equations

In this chapter, we consider the stochastic differential equations and backward
stochastic differential equations driven by G-Brownian motion. The conditions
and proofs of existence and uniqueness of a stochastic differential equation is
similar to the classical situation. However the corresponding problems for back-
ward stochastic differential equations are not that easy, many are still open. We
only give partial results to this direction.

§1 Stochastic Differential Equations

In this chapter, we denote by M̄p
G(0, T ; Rn), p ≥ 1, the completion ofMp,0

G (0, T ; Rn)
under the norm (

∫ T
0

Ê[|ηt|p]dt)1/p. It is not hard to prove that M̄p
G(0, T ; Rn) ⊆

Mp
G(0, T ; Rn). We consider all the problems in the space M̄p

G(0, T ; Rn), and the
sublinear expectation space (Ω,H, Ê) is fixed.

We consider the following SDE driven by a d-dimensional G-Brownian mo-
tion:

Xt = X0+
∫ t

0

b(s,Xs)ds+
∫ t

0

hij(s,Xs)d
〈
Bi, Bj

〉
s
+
∫ t

0

σj(s,Xs)dBjs , t ∈ [0, T ],

(1.1)
where the initial condition X0 ∈ Rn is a given constant, and b, hij , σj are given
functions satisfying b(·, x), hij(·, x), σj(·, x) ∈ M̄2

G(0, T ; Rn) for each x ∈ Rn and
the Lipschitz condition, i.e., |φ(t, x) − φ(t, x′)| ≤ K|x − x′|, for each t ∈ [0, T ],
x, x′ ∈ Rn, φ = b, hij and σj , respectively. Here the horizon [0, T ] can be
arbitrarily large. The solution is a process X ∈ M̄2

G(0, T ; Rn) satisfying the
SDE (1.1).

We first introduce the following mapping on a fixed interval [0, T ]:

Λ· : M̄2
G(0, T ; Rn) → M̄2

G(0, T ; Rn)

73
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by setting Λt, t ∈ [0, T ], with

Λt(Y ) = X0 +
∫ t

0

b(s, Ys)ds+
∫ t

0

hij(s, Ys)d
〈
Bi, Bj

〉
s
+
∫ t

0

σj(s, Ys)dBjs .

We immediately have the following lemma.

Lemma 1.1 For each Y, Y ′ ∈ M̄2
G(0, T ; Rn), we have the following estimate:

Ê[|Λt(Y )− Λt(Y ′)|2] ≤ C

∫ t

0

Ê[|Ys − Y ′
s |2]ds, t ∈ [0, T ], (1.2)

where the constant C depends only on the Lipschitz constant K.

We now prove that SDE (1.1) has a unique solution. By multiplying e−2Ct

on both sides of (1.2) and integrating them on [0, T ], it follows that∫ T

0

Ê[|Λt(Y )− Λt(Y ′)|2]e−2Ctdt ≤ C

∫ T

0

e−2Ct

∫ t

0

ÊG[|Ys − Y ′
s |2]dsdt

= C

∫ T

0

∫ T

s

e−2CtdtÊ[|Ys − Y ′
s |2]ds

=
1
2

∫ T

0

(e−2Cs − e−2CT )Ê[|Ys − Y ′
s |2]ds.

We then have∫ T

0

Ê[|Λt(Y )− Λt(Y ′)|2]e−2Ctdt ≤ 1
2

∫ T

0

Ê[|Yt − Y ′
t |2]e−2Ctdt. (1.3)

We observe that the following two norms are equivalent on M̄2
G(0, T ; Rn), i.e.,

(
∫ T

0

Ê[|Yt|2]dt)1/2 ∼ (
∫ T

0

Ê[|Yt|2]e−2Ctdt)1/2.

From (1.3) we can obtain that Λ(Y ) is a contraction mapping. Consequently,
we have the following theorem.

Theorem 1.2 There exists a unique solution X ∈ M̄2
G(0, T ; Rn) of the stochas-

tic differential equation (1.1).

We now consider the following linear SDE. For simplicity, we assume that
d = 1 and n = 1.

Xt = X0+
∫ t

0

(bsXs+b̃s)ds+
∫ t

0

(hsXs+h̃s)d〈B〉s+
∫ t

0

(σsXs+σ̃s)dBs, t ∈ [0, T ],

(1.4)
where X0 ∈ R is given, b., h., σ. are given bounded processes in M̄2

G(0, T ; R) and
b̃., h̃., σ̃. are given processes in M̄2

G(0, T ; R). By Theorem 1.2, we know that the
linear SDE (1.4) has a unique solution.
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Remark 1.3 The solution of the linear SDE (1.4) is

Xt = Γ−1
t (X0 +

∫ t

0

b̃sΓsds+
∫ t

0

(h̃s − σsσ̃s)Γsd〈B〉s +
∫ t

0

σ̃sΓsdBs), t ∈ [0, T ],

where Γt = exp(−
∫ t
0
bsds−

∫ t
0
(hs − 1

2σ
2
s)d〈B〉s −

∫ t
0
σsdBs).

In particular, if b., h., σ. are constants and b̃., h̃., σ̃. are zero, then X is a
geometric G-Brownian motion.

Definition 1.4 We call X is a geometric G-Brownian motion if

Xt = exp(αt+ β〈B〉t + γBt), (1.5)

where α, β, γ are constants.

Exercise 1.5 Prove that M̄p
G(0, T ; Rn) ⊆Mp

G(0, T ; Rn).

Exercise 1.6 Complete the proof of Lemma 1.1.

§2 Backward Stochastic Differential Equations

We consider the following type of BSDE:

Yt = Ê[ξ +
∫ T

t

f(s, Ys)ds+
∫ T

t

hij(s, Ys)d
〈
Bi, Bj

〉
s
|Ωt], t ∈ [0, T ], (2.6)

where ξ ∈ L1
G(ΩT ; Rn) is given, and f, hij are given functions satisfying f(·, y),

hij(·, y) ∈ M̄1
G(0, T ; Rn) for each y ∈ Rn and the Lipschitz condition, i.e.,

|φ(t, y) − φ(t, y′)| ≤ K|y − y′|, for each t ∈ [0, T ], y, y′ ∈ Rn, φ = f and
hij , respectively. The solution is a process Y ∈ M̄1

G(0, T ; Rn) satisfying the
above BSDE.

We first introduce the following mapping on a fixed interval [0, T ]:

Λ· : M̄1
G(0, T ; Rn) → M̄1

G(0, T ; Rn)

by setting Λt, t ∈ [0, T ], with

Λt(Y ) = Ê[ξ +
∫ T

t

f(s, Ys)ds+
∫ T

t

hij(s, Ys)d
〈
Bi, Bj

〉
s
|Ωt].

We immediately have

Lemma 2.1 For each Y, Y ′ ∈ M̄1
G(0, T ; Rn), we have the following estimate:

Ê[|Λt(Y )− Λt(Y ′)|] ≤ C

∫ T

t

Ê[|Ys − Y ′
s |]ds, t ∈ [0, T ], (2.7)

where the constant C depends only on the Lipschitz constant K.
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We now prove that BSDE (2.6) has a unique solution. By multiplying e2Ct

on both sides of (2.7) and integrating them on [0, T ], it follows that∫ T

0

Ê[|Λt(Y )− Λt(Y ′)|]e2Ctdt ≤ C

∫ T

0

∫ T

t

Ê[|Ys − Y ′
s |]e2Ctdsdt

= C

∫ T

0

Ê[|Ys − Y ′
s |]
∫ s

0

e2Ctdtds

=
1
2

∫ T

0

Ê[|Ys − Y ′
s |](e2Cs − 1)ds

≤ 1
2

∫ T

0

Ê[|Ys − Y ′
s |]e2Csds. (2.8)

We observe that the following two norms are equivalent on M̄1
G(0, T ; Rn), i.e.,∫ T

0

Ê[|Yt|]dt ∼
∫ T

0

Ê[|Yt|]e2Ctdt.

From (2.8), we can obtain that Λ(Y ) is a contraction mapping. Consequently,
we have the following theorem.

Theorem 2.2 There exists a unique solution (Yt)t∈[0,T ] ∈ M̄1
G(0, T ; Rn) of the

backward stochastic differential equation (2.6).

Let Y v, v = 1, 2, be the solutions of the following BSDE:

Y vt = Ê[ξv +
∫ T

t

(f(s, Y vs ) + ϕvs)ds+
∫ T

t

(hij(s, Y vs ) + ψij,vs )d
〈
Bi, Bj

〉
s
|Ωt].

Then the following estimate holds.

Proposition 2.3 We have

Ê[|Y 1
t −Y 2

t |] ≤ CeC(T−t)(Ê[|ξ1−ξ2|]+
∫ T

t

Ê[|ϕ1
s−ϕ2

s|+ |ψij,1s −ψij,2s |]ds), (2.9)

where the constant C depends only on the Lipschitz constant K.

Proof. Similar to Lemma 2.1, we have

Ê[|Y 1
t − Y 2

t |] ≤ C(
∫ T

t

Ê[|Y 1
s − Y 2

s |]ds+ Ê[|ξ1 − ξ2|]

+
∫ T

t

Ê[|ϕ1
s − ϕ2

s|+ |ψij,1s − ψij,2s |]ds).

By the Gronwall inequality (see Exercise 2.5), we conclude the result. �



§3 Nonlinear Feynman-Kac Formula 77

Remark 2.4 In particular, if ξ2 = 0, ϕ2
s = −f(s, 0), ψij,2s = −hij(s, 0), ϕ1

s =
0, ψij,1s = 0, we obtain the estimate of the solution of the BSDE. Let Y be the
solution of the BSDE (2.6). Then

Ê[|Yt|] ≤ CeC(T−t)(Ê[|ξ|] +
∫ T

t

Ê[|f(s, 0)|+ |hij(s, 0)|]ds), (2.10)

where the constant C depends only on the Lipschitz constant K.

Exercise 2.5 (The Gronwall inequality) Let u(t) be a nonnegative function
such that

u(t) ≤ C +A

∫ t

0

u(s)ds for 0 ≤ t ≤ T,

where C and A are constants. Prove that u(t) ≤ CeAt for 0 ≤ t ≤ T .

Exercise 2.6 For each ξ ∈ L1
G(ΩT ; Rn). Show that the process (Ê[ξ|Ωt])t∈[0,T ]

belongs to M̄1
G(0, T ; Rn).

Exercise 2.7 Complete the proof of Lemma 2.1.
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Consider the following SDE:{
dXt,ξ

s = b(Xt,ξ
s )ds+ hij(Xt,ξ

s )d
〈
Bi, Bj

〉
s
+ σj(Xt,ξ

s )dBjs , s ∈ [t, T ],

Xt,ξ
t = ξ,

(3.11)

where ξ ∈ L2
G(Ωt; Rn) is given and b, hij , σj : Rn → Rn are given Lipschitz

functions, i.e., |φ(x) − φ(x′)| ≤ K|x − x′|, for each x, x′ ∈ Rn, φ = b, hij and
σj .
We then consider associated BSDE:

Y t,ξs = Ê[Φ(Xt,ξ
T ) +

∫ T

s

f(Xt,ξ
r , Y t,ξr )dr +

∫ T

s

gij(Xt,ξ
r , Y t,ξr )d

〈
Bi, Bj

〉
r
|Ωs],

(3.12)
where Φ : Rn → R is a given Lipschitz function and f , gij : Rn × R → R are
given Lipschitz functions, i.e., |φ(x, y) − φ(x′, y′)| ≤ K(|x − x′| + |y − y′|), for
each x, x′ ∈ Rn, y, y′ ∈ R, φ = f and gij .

We have the following estimates:

Proposition 3.1 For each ξ, ξ′ ∈ L2
G(Ωt; Rn), we have, for each s ∈ [t, T ],

Ê[|Xt,ξ
s −Xt,ξ′

s |2|Ωt] ≤ C|ξ − ξ′|2 (3.13)

and
Ê[|Xt,ξ

s |2|Ωt] ≤ C(1 + |ξ|2), (3.14)

where the constant C depends only on the Lipschitz constant K.
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Proof. It is easy to obtain

Ê[|Xt,ξ
s −Xt,ξ′

s |2|Ωt] ≤ C1(|ξ − ξ′|2 +
∫ s

t

Ê[|Xt,ξ
r −Xt,ξ′

r |2|Ωt]dr).

By the Gronwall inequality, we obtain

Ê[|Xt,ξ
s −Xt,ξ′

s |2|Ωt] ≤ C1e
C1T |ξ − ξ′|2.

Similarly, we can get (3.14). �

Corollary 3.2 For each ξ ∈ L2
G(Ωt; Rn), we have

Ê[|Xt,ξ
t+δ − ξ|2|Ωt] ≤ C(1 + |ξ|2)δ for δ ∈ [0, T − t], (3.15)

where the constant C depends only on the Lipschitz constant K.

Proof. It is easy to obtain

Ê[|Xt,ξ
t+δ − ξ|2|Ωt] ≤ C1

∫ t+δ

t

(1 + Ê[|Xt,ξ
s |2|Ωt])ds.

By Proposition 3.1, we obtain the result. �

Proposition 3.3 For each ξ, ξ′ ∈ L2
G(Ωt; Rn), we have

|Y t,ξt − Y t,ξ
′

t | ≤ C|ξ − ξ′| (3.16)

and
|Y t,ξt | ≤ C(1 + |ξ|), (3.17)

where the constant C depends only on the Lipschitz constant K.

Proof. For each s ∈ [0, T ], it is easy to check that

|Y t,ξs − Y t,ξ
′

s | ≤ C1Ê[|Xt,ξ
T −Xt,ξ′

T |+
∫ T

s

(|Xt,ξ
r −Xt,ξ′

r |+ |Y t,ξr − Y t,ξ
′

r |)dr|Ωs].

Since
Ê[|Xt,ξ

s −Xt,ξ′

s ||Ωt] ≤ (Ê[|Xt,ξ
s −Xt,ξ′

s |2|Ωt])1/2,
we have

Ê[|Y t,ξs − Y t,ξ
′

s ||Ωt] ≤ C2(|ξ − ξ′|+
∫ T

s

Ê[|Y t,ξr − Y t,ξ
′

r ||Ωt]dr).

By the Gronwall inequality, we obtain (3.16). Similarly we can get (3.17). �
We are more interested in the case when ξ = x ∈ Rn. Define

u(t, x) := Y t,xt , (t, x) ∈ [0, T ]× Rn. (3.18)

By the above proposition, we immediately have the following estimates:

|u(t, x)− u(t, x′)| ≤ C|x− x′|, (3.19)

|u(t, x)| ≤ C(1 + |x|), (3.20)

where the constant C depends only on the Lipschitz constant K.
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Remark 3.4 It is important to note that u(t, x) is a deterministic function of
(t, x), because Xt,x

s and Y t,xs are independent from Ωt.

Theorem 3.5 For each ξ ∈ L2
G(Ωt; Rn), we have

u(t, ξ) = Y t,ξt . (3.21)

Proposition 3.6 We have, for δ ∈ [0, T − t],

u(t, x) = Ê[u(t+δ,Xt,x
t+δ)+

∫ t+δ

t

f(Xt,x
r , Y t,xr )dr+

∫ t+δ

t

gij(Xt,x
r , Y t,xr )d

〈
Bi, Bj

〉
r
].

(3.22)

Proof. Since Xt,x
s = X

t+δ,Xt,x
t+δ

s for s ∈ [t+ δ, T ], we get Y t,xt+δ = Y
t+δ,Xt,x

t+δ

t+δ . By
Theorem 3.5, we have Y t,xt+δ = u(t+ δ,Xt,x

t+δ), which implies the result. �
For each A ∈ S(n), p ∈ Rn, r ∈ R, we set

F (A, p, r, x) := G(B(A, p, r, x)) + 〈p, b(x)〉+ f(x, r),

where B(A, p, r, x) is a d× d symmetric matrix with

Bij(A, p, r, x) := 〈Aσi(x), σj(x)〉+ 〈p, hij(x) + hji(x)〉+ gij(x, r) + gji(x, r).

Theorem 3.7 u(t, x) is a viscosity solution of the following PDE:{
∂tu+ F (D2u,Du, u, x) = 0,
u(T, x) = Φ(x). (3.23)

Proof. We first show that u is a continuous function. By (3.19) we know that u
is a Lipschitz function in x. It follows from (2.10) and (3.14) that for s ∈ [t, T ],
Ê[|Y t,xs |] ≤ C(1 + |x|). Noting (3.15) and (3.22), we get |u(t, x)− u(t+ δ, x)| ≤
C(1 + |x|)(δ1/2 + δ) for δ ∈ [0, T − t]. Thus u is 1

2 -Hölder continuous in t, which
implies that u is a continuous function. We can also show, that for each p ≥ 2,

Ê[|Xt,x
t+δ − x|p] ≤ C(1 + |x|p)δp/2, (3.24)

Now for fixed (t, x) ∈ (0, T )×Rn, let ψ ∈ C2,3
b ([0, T ]×Rn) be such that ψ ≥ u

and ψ(t, x) = u(t, x). By (3.22), (3.24) and Taylor’s expansion, it follows that,
for δ ∈ (0, T − t),

0 ≤ Ê[ψ(t+ δ,Xt,x
t+δ)− ψ(t, x) +

∫ t+δ

t

f(Xt,x
r , Y t,xr )dr

+
∫ t+δ

t

gij(Xt,x
r , Y t,xr )d

〈
Bi, Bj

〉
r
]

≤ 1
2

Ê[(B(D2ψ(t, x), Dψ(t, x), ψ(t, x), x), 〈B〉t+δ − 〈B〉t)]

+ (∂tψ(t, x) + 〈Dψ(t, x), b(x)〉+ f(x, ψ(t, x)))δ + C(1 + |x|+ |x|2 + |x|3)δ3/2

≤ (∂tψ(t, x) + F (D2ψ(t, x), Dψ(t, x), ψ(t, x), x))δ + C(1 + |x|+ |x|2 + |x|3)δ3/2,
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then it is easy to check that

∂tψ(t, x) + F (D2ψ(t, x), Dψ(t, x), ψ(t, x), x) ≥ 0.

Thus u is a viscosity subsolution of (3.23). Similarly we can prove that u is a
viscosity supersolution of (3.23). �

Example 3.8 Let B = (B1, B2) be a 2-dimensional G-Brownian motion with

G(A) = G1(a11) +G2(a22),

where
Gi(a) =

1
2
(σ2
i a

+ − σ2
i a
−), i = 1, 2.

In this case, we consider the following 1-dimensional SDE:

dXt,x
s = µXt,x

s ds+ νXt,x
s d

〈
B1
〉
s
+ σXt,x

s dB2
s , Xt,x

t = x,

where µ, ν and σ are constants.
The corresponding function u is defined by

u(t, x) := Ê[ϕ(Xt,x
T )].

Then
u(t, x) = Ê[u(t+ δ,Xt,x

t+δ)]

and u is the viscosity solution of the following PDE:

∂tu+ µx∂xu+ 2G1(νx∂xu) + σ2x2G2(∂2
xxu) = 0, u(T, x) = ϕ(x).

Exercise 3.9 For each ξ ∈ LpG(Ωt; Rn) with p ≥ 2, show that SDE (3.11) has a
unique solution in M̄p

G(t, T ; Rn). Furthermore, show that the following estimates
hold.

Ê[|Xt,x
s −Xt,x′

s |p] ≤ C|x− x′|p,

Ê[|Xt,x
s |p] ≤ C(1 + |x|p),

Ê[|Xt,x
t+δ − x|p] ≤ C(1 + |x|p)δp/2.

Notes and Comments

This chapter is mainly from Peng (2007) [100].
There are many excellent books on Itô’s stochastic calculus and stochastic

differential equations founded by Itô’s original paper [63], as well as on martin-
gale theory. Readers are referred to Chung and Williams (1990) [25], Dellacherie
and Meyer (1978 and 1982) [33], He, Wang and Yan (1992) [55], Itô and McKean
(1965) [64], Ikeda and Watanabe (1981) [61], Kallenberg (2002) [70], Karatzas
and Shreve (1988) [71], Øksendal (1998) [85], Protter (1990) [108], Revuz and
Yor (1999)[109] and Yong and Zhou (1999) [122].
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Linear backward stochastic differential equation (BSDE) was first introduced
by Bismut in (1973) [12] and (1978) [13]. Bensoussan developed this approach in
(1981) [10] and (1982) [11]. The existence and uniqueness theorem of a general
nonlinear BSDE, was obtained in 1990 in Pardoux and Peng [86]. The present
version of the proof was based on El Karoui, Peng and Quenez (1997) [44],
which is also a very good survey on BSDE theory and its applications, specially
in finance. Comparison theorem of BSDEs was obtained in Peng (1992) [88] for
the case when g is a C1-function and then in [44] when g is Lipschitz. Nonlinear
Feynman-Kac formula for BSDE was introduced by Peng (1992) [89] and [87].
Here we obtain the corresponding Feynman-Kac formula under the framework of
G-expectation. We also refer to Yong and Zhou (1999) [122], as well as in Peng
(1997) [91] (in 1997, in Chinese) and (2004) [93] for systematic presentations of
BSDE theory. For contributions in the developments of this theory, readers can
be referred to the literatures listing in the Notes and Comments in Chap. I.
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Chapter VI

Capacity and Quasi-Surely
Analysis for G-Brownian
Paths

In this chapter, we first present a general framework for an upper expectation
defined on a metric space (Ω,B(Ω)) and the corresponding capacity to introduce
the quasi-surely analysis. The results are important for us to obtain the pathwise
analysis for G-Brownian motion.

§1 Integration theory associated to an upper prob-
ability

Let Ω be a complete separable metric space equipped with the distance d, B(Ω)
the Borel σ-algebra of Ω and M the collection of all probability measures on
(Ω,B(Ω)).

• L0(Ω): the space of all B(Ω)-measurable real functions;

• Bb(Ω): all bounded functions in L0(Ω);

• Cb(Ω): all continuous functions in Bb(Ω).

All along this section, we consider a given subset P ⊆M.

1.1 Capacity associated to P
We denote

c(A) := sup
P∈P

P (A), A ∈ B(Ω).

One can easily verify the following theorem.

83
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Theorem 1.1 The set function c(·) is a Choquet capacity, i.e. (see [24, 32]),

1. 0 ≤ c(A) ≤ 1, ∀A ⊂ Ω.

2. If A ⊂ B, then c(A) ≤ c(B).

3. If (An)∞n=1 is a sequence in B(Ω), then c(∪An) ≤
∑
c(An).

4. If (An)∞n=1 is an increasing sequence in B(Ω): An ↑ A = ∪An, then
c(∪An) = limn→∞ c(An).

Furthermore, we have

Theorem 1.2 For each A ∈ B(Ω), we have

c(A) = sup{c(K) : K compact K ⊂ A}.

Proof. It is simply because

c(A) = sup
P∈P

sup
K compact
K⊂A

P (K) = sup
K compact
K⊂A

sup
P∈P

P (K) = sup
K compact
K⊂A

c(K).

�

Definition 1.3 We use the standard capacity-related vocabulary: a set A is
polar if c(A) = 0 and a property holds “quasi-surely” (q.s.) if it holds outside
a polar set.

Remark 1.4 In other words, A ∈ B(Ω) is polar if and only if P (A) = 0 for
any P ∈ P.

We also have in a trivial way a Borel-Cantelli Lemma.

Lemma 1.5 Let (An)n∈N be a sequence of Borel sets such that

∞∑
n=1

c(An) <∞.

Then lim supn→∞An is polar .

Proof. Applying the Borel-Cantelli Lemma under each probability P ∈ P. �
The following theorem is Prohorov’s theorem.

Theorem 1.6 P is relatively compact if and only if for each ε > 0, there exists
a compact set K such that c(Kc) < ε.

The following two lemmas can be found in [60].

Lemma 1.7 P is relatively compact if and only if for each sequence of closed
sets Fn ↓ ∅, we have c(Fn) ↓ 0.
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Proof. We outline the proof for the convenience of readers.
“=⇒” part: It follows from Theorem 1.6 that for each fixed ε > 0, there exists
a compact set K such that c(Kc) < ε. Note that Fn ∩K ↓ ∅, then there exists
an N > 0 such that Fn ∩K = ∅ for n ≥ N , which implies limn c(Fn) < ε. Since
ε can be arbitrarily small, we obtain c(Fn) ↓ 0.
“⇐=” part: For each ε > 0, let (Aki )

∞
i=1 be a sequence of open balls of radius

1/k covering Ω. Observe that (∪ni=1A
k
i )
c ↓ ∅, then there exists an nk such that

c((∪nk
i=1A

k
i )
c) < ε2−k. Set K = ∩∞k=1 ∪

nk
i=1 A

k
i . It is easy to check that K is

compact and c(Kc) < ε. Thus by Theorem 1.6 P is relatively compact. �

Lemma 1.8 Let P be weakly compact. Then for each sequence of closed sets
Fn ↓ F , we have c(Fn) ↓ c(F ).

Proof. We outline the proof for the convenience of readers. For each fixed ε > 0,
by the definition of c(Fn), there exists a Pn ∈ P such that Pn(Fn) ≥ c(Fn)− ε.
Since P is weakly compact, there exist Pnk

and P ∈ P such that Pnk
converge

weakly to P . Thus

P (Fm) ≥ lim sup
k→∞

Pnk
(Fm) ≥ lim sup

k→∞
Pnk

(Fnk
) ≥ lim

n→∞
c(Fn)− ε.

Letting m → ∞, we get P (F ) ≥ limn→∞ c(Fn) − ε, which yields c(Fn) ↓ c(F ).
�
Following [60] (see also [35, 50]) the upper expectation of P is defined as follows:
for each X ∈ L0(Ω) such that EP [X] exists for each P ∈ P,

E[X] = EP [X] := sup
P∈P

EP [X].

It is easy to verify

Theorem 1.9 The upper expectation E[·] of the family P is a sublinear expec-
tation on Bb(Ω) as well as on Cb(Ω), i.e.,

1. for all X,Y in Bb(Ω), X ≥ Y =⇒ E[X] ≥ E[Y ].

2. for all X,Y in Bb(Ω), E[X + Y ] ≤ E[X] + E[Y ].

3. for all λ ≥ 0, X ∈ Bb(Ω), E[λX] = λE[X].

4. for all c ∈ R, X ∈ Bb(Ω) , E[X + c] = E[X] + c.

Moreover, it is also easy to check

Theorem 1.10 We have

1. Let E[Xn] and E[
∑∞
n=1Xn] be finite. Then E[

∑∞
n=1Xn] ≤

∑∞
n=1 E[Xn].

2. Let Xn ↑ X and E[Xn], E[X] be finite. Then E[Xn] ↑ E[X].

Definition 1.11 The functional E[·] is said to be regular if for each {Xn}∞n=1

in Cb(Ω) such that Xn ↓ 0 on Ω, we have E[Xn] ↓ 0.
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Similar to Lemma 1.7 we have:

Theorem 1.12 E[·] is regular if and only if P is relatively compact.

Proof. “=⇒” part: For each sequence of closed subsets Fn ↓ ∅ such that
Fn, n = 1, 2, · · · , are non-empty (otherwise the proof is trivial), there exists
{gn}∞n=1 ⊂ Cb(Ω) satisfying

0 ≤ gn ≤ 1, gn = 1 on Fn and gn = 0 on {ω ∈ Ω : d(ω, Fn) ≥
1
n
}.

We set fn = ∧ni=1gi, it is clear that fn ∈ Cb(Ω) and 1Fn
≤ fn ↓ 0. E[·] is

regular implies E[fn] ↓ 0 and thus c(Fn) ↓ 0. It follows from Lemma 1.7 that P
is relatively compact.
“⇐=” part: For each {Xn}∞n=1 ⊂ Cb(Ω) such that Xn ↓ 0, we have

E[Xn] = sup
P∈P

EP [Xn] = sup
P∈P

∫ ∞

0

P ({Xn ≥ t})dt ≤
∫ ∞

0

c({Xn ≥ t})dt.

For each fixed t > 0, {Xn ≥ t} is a closed subset and {Xn ≥ t} ↓ ∅ as n ↑ ∞.
By Lemma 1.7, c({Xn ≥ t}) ↓ 0 and thus

∫∞
0
c({Xn ≥ t})dt ↓ 0. Consequently

E[Xn] ↓ 0. �

1.2 Functional spaces

We set, for p > 0,

• Lp := {X ∈ L0(Ω) : E[|X|p] = supP∈P EP [|X|p] <∞};

• N p := {X ∈ L0(Ω) : E[|X|p] = 0};

• N := {X ∈ L0(Ω) : X = 0, c-q.s.}.

It is seen that Lp and N p are linear spaces and N p = N , for each p > 0.
We denote Lp := Lp/N . As usual, we do not take care about the distinction
between classes and their representatives.

Lemma 1.13 Let X ∈ Lp. Then for each α > 0

c({|X| > α}) ≤ E[|X|p]
αp

.

Proof. Just apply Markov inequality under each P ∈ P. �
Similar to the classical results, we get the following proposition and the proof
is omitted which is similar to the classical arguments.

Proposition 1.14 We have

1. For each p ≥ 1, Lp is a Banach space under the norm ‖X‖p := (E[|X|p])
1
p .
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2. For each p < 1, Lp is a complete metric space under the distance
d(X,Y ) := E[|X − Y |p].

We set

L∞ := {X ∈ L0(Ω) : ∃ a constant M , s.t. |X| ≤M, q.s.};
L∞ := L∞/N .

Proposition 1.15 Under the norm

‖X‖∞ := inf {M ≥ 0 : |X| ≤M, q.s.} ,

L∞ is a Banach space.

Proof. From {|X| > ‖X‖∞} = ∪∞n=1

{
|X| ≥ ‖X‖∞ + 1

n

}
we know that |X| ≤

‖X‖∞, q.s., then it is easy to check that ‖·‖∞ is a norm. The proof of the
completeness of L∞ is similar to the classical result. �
With respect to the distance defined on Lp, p > 0, we denote by

• Lpb the completion of Bb(Ω).

• Lpc the completion of Cb(Ω).

By Proposition 1.14, we have

Lpc ⊂ Lpb ⊂ Lp, p > 0.

The following Proposition is obvious and the proof is left to the reader.

Proposition 1.16 We have

1. Let p, q > 1, 1
p + 1

q = 1. Then X ∈ Lp and Y ∈ Lq implies

XY ∈ L1 and E[|XY |] ≤ (E[|X|p])
1
p (E[|Y |q])

1
q ;

Moreover X ∈ Lpc and Y ∈ Lqc implies XY ∈ L1
c;

2. Lp1 ⊂ Lp2 , Lp1b ⊂ Lp2b , Lp1c ⊂ Lp2c , 0 < p2 ≤ p1 ≤ ∞;

3. ‖X‖p ↑ ‖X‖∞, for each X ∈ L∞.

Proposition 1.17 Let p ∈ (0,∞] and (Xn) be a sequence in Lp which converges
to X in Lp. Then there exists a subsequence (Xnk

) which converges to X quasi-
surely in the sense that it converges to X outside a polar set.
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Proof. Let us assume p ∈ (0,∞), the case p = ∞ is obvious since the conver-
gence in L∞ implies the convergence in Lp for all p.
One can extract a subsequence (Xnk

) such that

E[|X −Xnk
|p] ≤ 1/kp+2, k ∈ N.

We set for all k
Ak = {|X −Xnk

| > 1/k},

then as a consequence of the Markov property (Lemma 1.13) and the Borel-
Cantelli Lemma 1.5, c(limk→∞Ak) = 0. As it is clear that on (limk→∞Ak)c,
(Xnk

) converges to X, the proposition is proved. �
We now give a description of Lpb .

Proposition 1.18 For each p > 0,

Lpb = {X ∈ Lp : lim
n→∞

E[|X|p1{|X|>n}] = 0}.

Proof. We denote Jp = {X ∈ Lp : limn→∞ E[|X|p1{|X|>n}] = 0}. For each
X ∈ Jp let Xn = (X ∧ n) ∨ (−n) ∈ Bb(Ω). We have

E[|X −Xn|p] ≤ E[|X|p1{|X|>n}] → 0, as n→∞.

Thus X ∈ Lpb .
On the other hand, for each X ∈ Lpb , we can find a sequence {Yn}∞n=1 in Bb(Ω)
such that E[|X−Yn|p] → 0. Let yn = supω∈Ω |Yn(ω)| andXn = (X∧yn)∨(−yn).
Since |X−Xn| ≤ |X−Yn|, we have E[|X−Xn|p] → 0. This clearly implies that
for any sequence (αn) tending to ∞, limn→∞ E[|X − (X ∧ αn) ∨ (−αn)|p] = 0.
Now we have, for all n ∈ N,

E[|X|p1{|X|>n}] = E[(|X| − n+ n)p1{|X|>n}]

≤ (1 ∨ 2p−1)
(
E[(|X| − n)p1{|X|>n}] + npc(|X| > n)

)
.

The first term of the right hand side tends to 0 since

E[(|X| − n)p1{|X|>n}] = E[|X − (X ∧ n) ∨ (−n)|p] → 0.

For the second term, since

np

2p
1{|X|>n} ≤ (|X| − n

2
)p1{|X|>n} ≤ (|X| − n

2
)p1{|X|>n

2 },

we have

np

2p
c(|X| > n) =

np

2p
E[1{|X|>n}] ≤ E[(|X| − n

2
)p1{|X|>n

2 }] → 0.

Consequently X ∈ Jp. �

Proposition 1.19 Let X ∈ L1
b . Then for each ε > 0, there exists a δ > 0, such

that for all A ∈ B(Ω) with c(A) ≤ δ, we have E[|X|1A] ≤ ε.
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Proof. For each ε > 0, by Proposition 1.18, there exists an N > 0 such that
E[|X|1{|X|>N}] ≤ ε

2 . Take δ = ε
2N . Then for a subset A ∈ B(Ω) with c(A) ≤ δ,

we have

E[|X|1A] ≤ E[|X|1A1{|X|>N}] + E[|X|1A1{|X|≤N}]
≤ E[|X|1{|X|>N}] +Nc(A) ≤ ε.

�
It is important to note that not every element in Lp satisfies the condition
limn→∞ E[|X|p1{|X|>n}] = 0. We give the following two counterexamples to
show that L1 and L1

b are different spaces even under the case that P is weakly
compact.

Example 1.20 Let Ω = N, P = {Pn : n ∈ N} where P1({1}) = 1 and
Pn({1}) = 1 − 1

n , Pn({n}) = 1
n , for n = 2, 3, · · · . P is weakly compact. We

consider a function X on N defined by X(n) = n, n ∈ N. We have E[|X|] = 2
but E[|X|1{|X|>n}] = 1 6→ 0. In this case, X ∈ L1 but X 6∈ L1

b .

Example 1.21 Let Ω = N, P = {Pn : n ∈ N} where P1({1}) = 1 and
Pn({1}) = 1− 1

n2 , Pn({kn}) = 1
n3 , k = 1, 2, . . . , n,for n = 2, 3, · · · . P is weakly

compact. We consider a function X on N defined by X(n) = n, n ∈ N. We
have E[|X|] = 25

16 and nE[1{|X|≥n}] = 1
n → 0, but E[|X|1{|X|≥n}] = 1

2 + 1
2n 6→ 0.

In this case, X is in L1, continuous and nE[1{|X|≥n}] → 0, but it is not in L1
b .

1.3 Properties of elements in Lp
c

Definition 1.22 A mapping X on Ω with values in a topological space is said
to be quasi-continuous (q.c.) if

∀ε > 0, there exists an open set O with c(O) < ε such that X|Oc is continuous.

Definition 1.23 We say that X : Ω → R has a quasi-continuous version if
there exists a quasi-continuous function Y : Ω → R with X = Y q.s..

Proposition 1.24 Let p > 0. Then each element in Lpc has a quasi-continuous
version.

Proof. Let (Xn) be a Cauchy sequence in Cb(Ω) for the distance on Lp. Let
us choose a subsequence (Xnk

)k≥1 such that

E[|Xnk+1 −Xnk
|p] ≤ 2−2k, ∀k ≥ 1,

and set for all k,

Ak =
∞⋃
i=k

{|Xni+1 −Xni
| > 2−i/p}.

Thanks to the subadditivity property and the Markov inequality, we have

c(Ak) ≤
∞∑
i=k

c(|Xni+1 −Xni
| > 2−i/p) ≤

∞∑
i=k

2−i = 2−k+1.
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As a consequence, limk→∞ c(Ak) = 0, so the Borel set A =
⋂∞
k=1Ak is polar.

As each Xnk
is continuous, for all k ≥ 1, Ak is an open set. Moreover, for all

k, (Xni
) converges uniformly on Ack so that the limit is continuous on each Ack.

This yields the result. �
The following theorem gives a concrete characterization of the space Lpc .

Theorem 1.25 For each p > 0,

Lpc = {X ∈ Lp : X has a quasi-continuous version, lim
n→∞

E[|X|p1{|X|>n}] = 0}.

Proof. We denote

Jp = {X ∈ Lp : X has a quasi-continuous version, lim
n→∞

E[|X|p1{|X|>n}] = 0}.

LetX ∈ Lpc , we know by Proposition 1.24 thatX has a quasi-continuous version.
Since X ∈ Lpb , we have by Proposition 1.18 that limn→∞ E[|X|p1{|X|>n}] = 0.
Thus X ∈ Jp.
On the other hand, let X ∈ Jp be quasi-continuous. Define Yn = (X ∧n)∨ (−n)
for all n ∈ N. As E[|X|p1{|X|>n}] → 0, we have E[|X − Yn|p] → 0.
Moreover, for all n ∈ N, as Yn is quasi-continuous , there exists a closed set Fn
such that c(F cn) <

1
np+1 and Yn is continuous on Fn. It follows from Tietze’s

extension theorem that there exists Zn ∈ Cb(Ω) such that

|Zn| ≤ n and Zn = Yn on Fn.

We then have

E[|Yn − Zn|p] ≤ (2n)pc(F cn) ≤
(2n)p

np+1
.

So E[|X − Zn|p] ≤ (1 ∨ 2p−1)(E[|X − Yn|p] + E[|Yn − Zn|p]) → 0, and X ∈ Lpc .
�
We give the following example to show that Lpc is different from Lpb even under
the case that P is weakly compact.

Example 1.26 Let Ω = [0, 1], P = {δx : x ∈ [0, 1]} is weakly compact. It is
seen that Lpc = Cb(Ω) which is different from Lpb .

We denote L∞c := {X ∈ L∞ : X has a quasi-continuous version}, we have

Proposition 1.27 L∞c is a closed linear subspace of L∞.

Proof. For each Cauchy sequence {Xn}∞n=1 of L∞c under ‖·‖∞, we can find
a subsequence {Xni}

∞
i=1 such that

∥∥Xni+1 −Xni

∥∥
∞ ≤ 2−i. We may further

assume that each Xn is quasi-continuous. Then it is easy to prove that for each
ε > 0, there exists an open set G such that c(G) < ε and

∣∣Xni+1 −Xni

∣∣ ≤ 2−i

for all i ≥ 1 on Gc, which implies that the limit belongs to L∞c . �
As an application of Theorem 1.25, we can easily get the following results.
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Proposition 1.28 Assume that X : Ω → R has a quasi-continuous version
and that there exists a function f : R+ → R+ satisfying limt→∞

f(t)
tp = ∞ and

E[f(|X|)] <∞. Then X ∈ Lpc .

Proof. For each ε > 0, there exists an N > 0 such that f(t)
tp ≥ 1

ε , for all t ≥ N .
Thus

E[|X|p1{|X|>N}] ≤ εE[f(|X|)1{|X|>N}] ≤ εE[f(|X|)].
Hence limN→∞ E[|X|p1{|X|>N}] = 0. From Theorem 1.25 we infer X ∈ Lpc . �

Lemma 1.29 Let {Pn}∞n=1 ⊂ P converge weakly to P ∈ P. Then for each
X ∈ L1

c, we have EPn
[X] → EP [X].

Proof. We may assume that X is quasi-continuous, otherwise we can consider
its quasi-continuous version which does not change the value EQ for each Q ∈ P.
For each ε > 0, there exists an N > 0 such that E[|X|1{|X|>N}] < ε

2 . Set
XN = (X∧N)∨(−N). We can find an open subset G such that c(G) < ε

4N and
XN is continuous on Gc. By Tietze’s extension theorem, there exists Y ∈ Cb(Ω)
such that |Y | ≤ N and Y = XN on Gc. Obviously, for each Q ∈ P,

|EQ[X]− EQ[Y ]| ≤ EQ[|X −XN |] + EQ[|XN − Y |]

≤ ε

2
+ 2N

ε

4N
= ε.

It then follows that

lim sup
n→∞

EPn [X] ≤ lim
n→∞

EPn [Y ] + ε = EP [Y ] + ε ≤ EP [X] + 2ε,

and similarly lim infn→∞EPn
[X] ≥ EP [X]−2ε. Since ε can be arbitrarily small,

we then have EPn
[X] → EP [X]. �

Remark 1.30 For continuous X, the above lemma is Lemma 3.8.7 in [15].

Now we give an extension of Theorem 1.12.

Theorem 1.31 Let P be weakly compact and let {Xn}∞n=1 ⊂ L1
c be such that

Xn ↓ X, q.s.. Then E[Xn] ↓ E[X].

Remark 1.32 It is important to note that X does not necessarily belong to L1
c.

Proof. For the case E[X] > −∞, if there exists a δ > 0 such that E[Xn] >
E[X] + δ, n = 1, 2, · · · , we then can find a Pn ∈ P such that EPn

[Xn] >
E[X] + δ − 1

n , n = 1, 2, · · · . Since P is weakly compact, we then can find a
subsequence {Pni

}∞i=1 that converges weakly to some P ∈ P. From which it
follows that

EP [Xni
] = lim

j→∞
EPnj

[Xni
] ≥ lim sup

j→∞
EPnj

[Xnj
]

≥ lim sup
j→∞

{E[X] + δ − 1
nj
} = E[X] + δ, i = 1, 2, · · · .
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Thus EP [X] ≥ E[X] + δ. This contradicts the definition of E[·]. The proof for
the case E[X] = −∞ is analogous. �
We immediately have the following corollary.

Corollary 1.33 Let P be weakly compact and let {Xn}∞n=1 be a sequence in L1
c

decreasingly converging to 0 q.s.. Then E[Xn] ↓ 0.

1.4 Kolmogorov’s criterion

Definition 1.34 Let I be a set of indices, (Xt)t∈I and (Yt)t∈I be two processes
indexed by I . We say that Y is a quasi-modification of X if for all t ∈ I,
Xt = Yt q.s..

Remark 1.35 In the above definition, quasi-modification is also called modifi-
cation in some papers.

We now give a Kolmogorov criterion for a process indexed by Rd with d ∈ N.

Theorem 1.36 Let p > 0 and (Xt)t∈[0,1]d be a process such that for all t ∈
[0, 1]d, Xt belongs to Lp . Assume that there exist positive constants c and ε
such that

E[|Xt −Xs|p] ≤ c|t− s|d+ε.

Then X admits a modification X̃ such that

E

[(
sup
s 6=t

|X̃t − X̃s|
|t− s|α

)p]
<∞,

for every α ∈ [0, ε/p). As a consequence, paths of X̃ are quasi-surely Höder
continuous of order α for every α < ε/p in the sense that there exists a Borel
set N of capacity 0 such that for all w ∈ N c, the map t → X̃(w) is Höder
continuous of order α for every α < ε/p. Moreover, if Xt ∈ Lpc for each t, then
we also have X̃t ∈ Lpc .

Proof. Let D be the set of dyadic points in [0, 1]d:

D =
{

(
i1
2n
, · · · , id

2n
); n ∈ N, i1, · · · , id ∈ {0, 1, · · · , 2n}

}
.

Let α ∈ [0, ε/p). We set

M = sup
s,t∈D,s 6=t

|Xt −Xs|
|t− s|α

.

Thanks to the classical Kolmogorov’s criterion (see Revuz-Yor [109]), we know
that for any P ∈ P, EP [Mp] is finite and uniformly bounded with respect to P
so that

E[Mp] = sup
P∈P

EP [Mp] <∞.
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As a consequence, the map t → Xt is uniformly continuous on D quasi-surely
and so we can define

∀t ∈ [0, 1]d, X̃t = lim
s→t,s∈D

Xs.

It is now clear that X̃ satisfies the enounced properties. �

§2 G-expectation as an Upper Expectation

In the following sections of this Chapter, let Ω = Cd0 (R+) denote the space of
all Rd−valued continuous functions (ωt)t∈R+ , with ω0 = 0, equipped with the
distance

ρ(ω1, ω2) :=
∞∑
i=1

2−i[( max
t∈[0,i]

|ω1
t − ω2

t |) ∧ 1],

and let Ω̄ = (Rd)[0,∞) denote the space of all Rd−valued functions (ω̄t)t∈R+ . Let
B(Ω) denote the σ-algebra generated by all open sets and let B(Ω̄) denote the
σ-algebra generated by all finite dimensional cylinder sets. The corresponding
canonical process is Bt(ω) = ωt (respectively, B̄t(ω̄) = ω̄t), t ∈ [0,∞) for ω ∈ Ω
(respectively, ω̄ ∈ Ω̄). The spaces of Lipschitzian cylinder functions on Ω and
Ω̄ are denoted respectively by

Lip(Ω) := {ϕ(Bt1 , Bt2 , · · · , Btn) : ∀n ≥ 1, t1, · · · , tn ∈ [0,∞),∀ϕ ∈ Cl.Lip(Rd×n)},

Lip(Ω̄) := {ϕ(B̄t1 , B̄t2 , · · · , B̄tn) : ∀n ≥ 1, t1, · · · , tn ∈ [0,∞),∀ϕ ∈ Cl.Lip(Rd×n)}.

Let G(·) : S(d) → R be a given continuous monotonic and sublinear function.
Following Sec.2 in Chap.III, we can construct the corresponding G-expectation
Ê on (Ω, Lip(Ω)). Due to the natural correspondence of Lip(Ω̄) and Lip(Ω), we
also construct a sublinear expectation Ē on (Ω̄, Lip(Ω̄)) such that (B̄t(ω̄))t≥0 is
a G-Brownian motion.
The main objective of this section is to find a weakly compact family of (σ-
additive) probability measures on (Ω,B(Ω)) to represent G-expectation Ê. We
need the following lemmas.

Lemma 2.1 Let 0 ≤ t1 < t2 < · · · < tm < ∞ and {ϕn}∞n=1 ⊂ Cl.Lip(Rd×m)
satisfy ϕn ↓ 0. Then Ē[ϕn(B̄t1 , B̄t2 , · · · , B̄tm)] ↓ 0.

Proof. We denote X = (B̄t1 , B̄t2 , · · · , B̄tm). For each N > 0, it is clear that

ϕn(x) ≤ kNn + ϕ1(x)I[|x|>N ] ≤ kNn +
ϕ1(x)|x|

N
for each x ∈ Rd×m,

where kNn = max|x|≤N ϕn(x). Noting that ϕ1(x)|x| ∈ Cl.Lip(Rd×m), we have

Ē[ϕn(X)] ≤ kNn +
1
N

Ē[ϕ1(X)|X|].
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It follows from ϕn ↓ 0 that kNn ↓ 0. Thus we have limn→∞ Ē[ϕn(X)] ≤
1
N Ē[ϕ1(X)|X|]. Since N can be arbitrarily large, we get Ē[ϕn(X)] ↓ 0. �
We denote T := {t = (t1, . . . , tm) : ∀m ∈ N, 0 ≤ t1 < t2 < · · · < tm <∞}.

Lemma 2.2 Let E be a finitely additive linear expectation dominated by Ē on
Lip(Ω̄). Then there exists a unique probability measure Q on (Ω̄,B(Ω̄)) such
that E[X] = EQ[X] for each X ∈ Lip(Ω̄).

Proof. For each fixed t = (t1, . . . , tm) ∈ T , by Lemma 2.1, for each sequence
{ϕn}∞n=1 ⊂ Cl.Lip(Rd×m) satisfying ϕn ↓ 0, we have E[ϕn(B̄t1 , B̄t2 , · · · , B̄tm)] ↓
0. By Daniell-Stone’s theorem (see Appendix B), there exists a unique probabil-
ity measureQt on (Rd×m,B(Rd×m)) such that EQt

[ϕ] = E[ϕ(B̄t1 , B̄t2 , · · · , B̄tm)]
for each ϕ ∈ Cl.Lip(Rd×m). Thus we get a family of finite dimensional distribu-
tions {Qt : t ∈ T }. It is easy to check that {Qt : t ∈ T } is consistent. Then
by Kolmogorov’s consistent theorem, there exists a probability measure Q on
(Ω̄,B(Ω̄)) such that {Qt : t ∈ T } is the finite dimensional distributions of Q.
Assume that there exists another probability measure Q̄ satisfying the condi-
tion, by Daniell-Stone’s theorem, Q and Q̄ have the same finite-dimensional
distributions. Then by monotone class theorem, Q = Q̄. The proof is complete.
�

Lemma 2.3 There exists a family of probability measures Pe on (Ω̄,B(Ω̄)) such
that

Ē[X] = max
Q∈Pe

EQ[X], for X ∈ Lip(Ω̄).

Proof. By the representation theorem of sublinear expectation and Lemma 2.2,
it is easy to get the result. �

For this Pe, we define the associated capacity:

c̃(A) := sup
Q∈Pe

Q(A), A ∈ B(Ω̄),

and the upper expectation for each B(Ω̄)-measurable real function X which
makes the following definition meaningful:

Ẽ[X] := sup
Q∈Pe

EQ[X].

Theorem 2.4 For (B̄)t≥0 , there exists a continuous modification (B̃)t≥0 of B̄
(i.e., c̃({B̃t 6= B̄t}) = 0, for each t ≥ 0) such that B̃0 = 0.

Proof. By Lemma 2.3, we know that Ē = Ẽ on Lip(Ω̄). On the other hand, we
have

Ẽ[|B̄t − B̄s|4] = Ē[|B̄t − B̄s|4] = d|t− s|2 for s, t ∈ [0,∞),

where d is a constant depending only on G. By Theorem 1.36, there exists a
continuous modification B̃ of B̄. Since c̃({B̄0 6= 0}) = 0, we can set B̃0 = 0.
The proof is complete. �
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For each Q ∈ Pe, let Q ◦ B̃−1 denote the probability measure on (Ω,B(Ω))
induced by B̃ with respect to Q. We denote P1 = {Q ◦ B̃−1 : Q ∈ Pe}. By
Lemma 2.4, we get

Ẽ[|B̃t − B̃s|4] = Ẽ[|B̄t − B̄s|4] = d|t− s|2,∀s, t ∈ [0,∞).

Applying the well-known result of moment criterion for tightness of Kolmogorov-
Chentsov’s type (see Appendix B), we conclude that P1 is tight. We denote by
P = P1 the closure of P1 under the topology of weak convergence, then P is
weakly compact.
Now, we give the representation of G-expectation.

Theorem 2.5 For each continuous monotonic and sublinear function G : S(d) →
R, let Ê be the corresponding G-expectation on (Ω, Lip(Ω)). Then there exists a
weakly compact family of probability measures P on (Ω,B(Ω)) such that

Ê[X] = max
P∈P

EP [X] for X ∈ Lip(Ω).

Proof. By Lemma 2.3 and Lemma 2.4, we have

Ê[X] = max
P∈P1

EP [X] for X ∈ Lip(Ω).

For each X ∈ Lip(Ω), by Lemma 2.1, we get Ê[|X − (X ∧ N) ∨ (−N)|] ↓ 0 as
N → ∞. Noting that P = P1, by the definition of weak convergence, we get
the result. �

Remark 2.6 In fact, we can construct the family P in a more explicit way: Let
(Wt)t≥0 = (W i

t )
d
i=1,t≥0 be a d-dimensional Brownian motion in this space. The

filtration generated by W is denoted by FWt . Now let Γ be the bounded, closed
and convex subset in Rd×d such that

G(A) = sup
γ∈Γ

tr[AγγT ], A ∈ S(d),

(see see (1.13) in Ch. II) and AΓ the collection of all Θ-valued (FWt )t≥0-adapted
process [0,∞). We denote

Bγt :=
∫ T

0

γsdWs, t ≥ 0, γ ∈ AΓ.

and P0 the collection of probability measures on the canonical space (Ω,B(Ω))
induced by {Bγ : γ ∈ AΓ}. Then P = P0 (see [37] for details).
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§3 G-capacity and Paths of G-Brownian Motion

According to Theorem 2.5, we obtain a weakly compact family of probability
measures P on (Ω,B(Ω)) to represent G-expectation Ê[·]. For this P, we define
the associated G-capacity:

ĉ(A) := sup
P∈P

P (A), A ∈ B(Ω)

and upper expectation for each X ∈ L0(Ω) which makes the following definition
meaningful:

Ē[X] := sup
P∈P

EP [X].

By Theorem 2.5, we know that Ē = Ê on Lip(Ω), thus the Ê[| · |]-completion
and the Ē[| · |]-completion of Lip(Ω) are the same.
For each T > 0, we also denote by ΩT = Cd0 ([0, T ]) equipped with the distance

ρ(ω1, ω2) =
∥∥ω1 − ω2

∥∥
Cd

0 ([0,T ])
:= max

0≤t≤T
|ω1
t − ω2

t |.

We now prove that L1
G(Ω) = L1

c , where L1
c is defined in Sec.1. First, we need

the following classical approximation lemma.

Lemma 3.1 For each X ∈ Cb(Ω) and n = 1, 2, · · · , we denote

X(n)(ω) := inf
ω′∈Ω

{X(ω′) + n ‖ω − ω′‖Cd
0 ([0,n])} for ω ∈ Ω.

Then the sequence {X(n)}∞n=1 satisfies:

(i) −M ≤ X(n) ≤ X(n+1) ≤ · · · ≤ X, M = supω∈Ω |X(ω)|;

(ii) |X(n)(ω1)−X(n)(ω2)| ≤ n ‖ω1 − ω2‖Cd
0 ([0,n]) for ω1, ω2 ∈ Ω;

(iii) X(n)(ω) ↑ X(ω) for ω ∈ Ω.

Proof. (i) is obvious.
For (ii), we have

X(n)(ω1)−X(n)(ω2)
≤ supω′∈Ω{[X(ω′) + n ‖ω1 − ω′‖Cd

0 ([0,n])]− [X(ω′) + n ‖ω2 − ω′‖Cd
0 ([0,n])]}

≤ n ‖ω1 − ω2‖Cd
0 ([0,n])

and, symmetrically, X(n)(ω2) −X(n)(ω1) ≤ n ‖ω1 − ω2‖Cd
0 ([0,n]). Thus (ii) fol-

lows.
We now prove (iii). For each fixed ω ∈ Ω, let ωn ∈ Ω be such that

X(ωn) + n ‖ω − ωn‖Cd
0 ([0,n]) ≤ X(n)(ω) +

1
n
.
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It is clear that n ‖ω − ωn‖Cd
0 ([0,n]) ≤ 2M+1 or ‖ω − ωn‖Cd

0 ([0,n]) ≤
2M+1
n . Since

X ∈ Cb(Ω), we get X(ωn) → X(ω) as n→∞. We have

X(ω) ≥ X(n)(ω) ≥ X(ωn) + n ‖ω − ωn‖Cd
0 ([0,n]) −

1
n
,

thus
n ‖ω − ωn‖Cd

0 ([0,n]) ≤ |X(ω)−X(ωn)|+
1
n
.

We also have

X(ωn)−X(ω) + n ‖ω − ωn‖Cd
0 ([0,n]) ≥ X(n)(ω)−X(ω)

≥ X(ωn)−X(ω) + n ‖ω − ωn‖Cd
0 ([0,n]) −

1
n
.

From the above two relations, we obtain

|X(n)(ω)−X(ω)| ≤ |X(ωn)−X(ω)|+ n ‖ω − ωn‖Cd
0 ([0,n]) +

1
n

≤ 2(|X(ωn)−X(ω)|+ 1
n

) → 0 as n→∞.

Thus (iii) is obtained. �

Proposition 3.2 For each X ∈ Cb(Ω) and ε > 0, there exists Y ∈ Lip(Ω) such
that Ē[|Y −X|] ≤ ε.

Proof. We denote M = supω∈Ω |X(ω)|. By Theorem 1.12 and Lemma 3.1,
we can find µ > 0, T > 0 and X̄ ∈ Cb(ΩT ) such that Ē[|X − X̄|] < ε/3,
supω∈Ω |X̄(ω)| ≤M and

|X̄(ω)− X̄(ω′)| ≤ µ ‖ω − ω′‖Cd
0 ([0,T ]) for ω, ω′ ∈ Ω.

Now for each positive integer n, we introduce a mapping ω(n)(ω) : Ω → Ω:

ω(n)(ω)(t) =
n−1∑
k=0

1[tnk ,t
n
k+1)

(t)

tnk+1 − tnk
[(tnk+1− t)ω(tnk )+ (t− tnk )ω(tnk+1)]+1[T,∞)(t)ω(t),

where tnk = kT
n , k = 0, 1, · · · , n. We set X̄(n)(ω) := X̄(ω(n)(ω)), then

|X̄(n)(ω)− X̄(n)(ω′)| ≤ µ sup
t∈[0,T ]

|ω(n)(ω)(t)− ω(n)(ω′)(t)|

= µ sup
k∈[0,··· ,n]

|ω(tnk )− ω′(tnk )|.

We now choose a compact subset K ⊂ Ω such that Ē[1KC ] ≤ ε/6M . Since
supω∈K supt∈[0,T ] |ω(t)−ω(n)(ω)(t)| → 0, as n→∞, we can choose a sufficiently
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large n0 such that

sup
ω∈K

|X̄(ω)− X̄(n0)(ω)| = sup
ω∈K

|X̄(ω)− X̄(ω(n0)(ω))|

≤ µ sup
ω∈K

sup
t∈[0,T ]

|ω(t)− ω(n0)(ω)(t)|

< ε/3.

Set Y := X̄(n0), it follows that

Ē[|X − Y |] ≤ Ē[|X − X̄|] + Ē[|X̄ − X̄(n0)|]
≤ Ē[|X − X̄|] + Ē[1K |X̄ − X̄(n0)|] + 2M Ē[1KC ]
< ε.

The proof is complete. �

By Proposition 3.2, we can easily get L1
G(Ω) = L1

c . Furthermore, we can get
LpG(Ω) = Lpc , ∀p > 0.
Thus, we obtain a pathwise description of LpG(Ω) for each p > 0:

LpG(Ω) = {X ∈ L0(Ω) : X has a quasi-continuous version and lim
n→∞

Ē[|X|pI{|X|>n}] = 0}.

Furthermore, Ē[X] = Ê[X], for each X ∈ L1
G(Ω).

Exercise 3.3 Show that, for each p > 0,

LpG(ΩT ) = {X ∈ L0(ΩT ) : X has a quasi-continuous version and lim
n→∞

Ē[|X|pI{|X|>n}] = 0}.

Notes and Comments

The results of this chapter for G-Brownina motions were mainly obtained by
Denis, Hu and Peng (2008) [37] (see also Denis and Martini (2006) [38] and
the related comments after Chapter III). Hu and Peng (2009) [56] then have
introduced an intrinsic and simple approach. This approach can be regarded
as a combination and extension of the original Brownian motion construction
approach of Kolmogorov (for more general stochastic processes) and a sort of
cylinder Lipschitz functions technique already introduced in Chap. III. Section
1 is from [37] and Theorem 2.5 is firstly obtained in [37], whereas contents of
Sections 2 and 3 are mainly from [56].
Choquet capacity was first introduced by Choquet (1953) [24], see also Del-
lacherie (1972) [32] and the references therein for more properties. The ca-
pacitability of Choquet capacity was first studied by Choquet [24] under 2-
alternating case, see Dellacherie and Mayer (1978 and 1982) [33], Huber and
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Strassen (1972) [60] and the references therein for more general case. It seems
that the notion of upper expectations was first discussed by Huber (1981) [59]
in robust statistics. Recently, it was rediscovered in mathematical finance, es-
pecially in risk measure, see Delbaen (1992, 2002) [34, 35], Föllmer and Schied
(2002, 2004) [50] and etc..
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Appendix A
Preliminaries in Functional
Analysis

§1 Completion of Normed Linear Spaces

In this section, we suppose H is a linear space under the norm ‖ · ‖.

Definition 1.1 {xn} ∈ H is a Cauchy sequence, if {xn} satisfies Cauchy’s
convergence condition:

lim
n,m→∞

‖xn − xm‖ = 0.

Definition 1.2 A normed linear space H is called a Banach space if it is
complete, i.e., if every Cauchy sequence {xn} of H converges strongly to a
point x∞ of H:

lim
n→∞

‖xn − x∞‖ = 0.

Such a limit point x∞, if exists, is uniquely determined because of the triangle
inequality ‖x− x′‖ ≤ ‖x− xn‖+ ‖xn − x′‖.

The completeness of a Banach space plays an important role in functional anal-
ysis. We introduce the following theorem of completion.

Theorem 1.3 Let H be a normed linear space which is not complete. Then H
is isomorphic and isometric to a dense linear subspace of a Banach-space H̃,
i.e., there exists a one-to-one correspondence x ↔ x̃ of H onto a dense linear
subspace of H̃ such that

x̃+ y = x̃+ ỹ, α̃x = αx̃, ‖x̃‖ = ‖x‖.

The space H̃ is uniquely determined up to isometric isomorphism.

For a proof see Yosida [123] (1980, p.56).
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§2 The Hahn-Banach Extension Theorem

Definition 2.1 Let T1 and T2 be two linear operators with domains D(T1) and
D(T2) both contained in a linear space H, and the ranges R(T1) and R(T2) both
contained in a linear space M. Then T1 = T2 if and only if D(T1) = D(T2)
and T1x = T2x for all x ∈ D(T1). If D(T1) ⊆ D(T2) and T1x = T2x for all
x ∈ D(T1), then T2 is called an extension of T1, or T1 is called a restriction
of T2.

Theorem 2.2 (Hahn-Banach extension theorem in real linear spaces)
Let H be a real linear space and let p(x) be a real-valued function defined on H
satisfying the following conditions:

p(x+ y) ≤ p(x) + p(y) (subadditivity);
p(αx) = αp(x) for α ≥ 0 (positive homogeneity).

Let L be a real linear subspace of H and f0 be a real-valued linear functional
defined on L :

f0(αx+ βy) = αf0(x) + βf0(y) for x, y ∈ L and α, β ∈ R.

Let f0 satisfy f0(x) ≤ p(x) on L. Then there exists a real-valued linear func-
tional F defined on H such that
(i) F is an extension of f0, i.e., F (x) = f0(x) for all x ∈ L.
(ii) F (x) ≤ p(x) for x ∈ H.

For a proof see Yosida [123] (1980, p.102).

Theorem 2.3 (Hahn-Banach extension theorem in normed linear spaces)
Let H be a normed linear space under the norm ‖ · ‖, L be a linear subspace of
H and let f1 be a continuous linear functional defined on L. Then there exists
a continuous linear functional f , defined on H, such that
(i) f is an extension of f1.
(ii) ‖f1‖ = ‖f‖.

For a proof see for example Yosida [123] (1980, p.106).

§3 Dini’s Theorem and Tietze’s Extension The-
orem

Theorem 3.1 (Dini’s theorem) Let H be a compact topological space. If a
monotone sequence of continuous functions converges pointwise to a continuous
function, then it also converges uniformly.

Theorem 3.2 (Tietze’s extension theorem) Let L be a closed subset of a
normal space H and let f : L → R be a continuous function. Then there exists
a continuous extension of f to all of H with values in R.



Appendix B
Preliminaries in Probability
Theory

§1 Kolmogorov’s Extension Theorem

Let X be a random variable with values in Rn defined on a probability space
(Ω,F , P ). Denote by B the Borel σ-algebra on Rn. We define X’s law of distri-
bution PX and its expectation EP with respect to P as follows respectively:

PX(B) := P (ω : X(ω) ∈ B); EP [X] :=
∫ +∞

−∞
xP (dx),

where B ∈ B.
In fact, we have PX(B) = EP [IB(X)].
Now let {Xt}t∈T be a stochastic process with values in Rn defined on a prob-
ability space (Ω,F , P ), where the parameter space T is usually the halfline
[0,+∞).

Definition 1.1 The finite dimensional distributions of the process {Xt}t∈T
are the measures µt1,··· ,tk defined on Rnk, k = 1, 2, · · · , by

µt1,··· ,tk(B1 × · · · ×Bk) := P [Xt1 ∈ B1, · · · , Xtk ∈ Bk], ti ∈ T, i = 1, 2, · · · , k,

where Bi ∈ B, i = 1, 2, · · · , k.

The family of all finite-dimensional distributions determine many (but not all)
important properties of the process {Xt}t∈T .
Conversely, given a family {νt1,··· ,tk : ti ∈ T, i = 1, 2, · · · , k, k ∈ N} of probabil-
ity measures on Rnk, it is important to be able to construct a stochastic process
(Yt)t∈T with νt1,··· ,tk as its finite-dimensional distributions. The following fa-
mous theorem states that this can be done provided that {νt1,··· ,tk} satisfy two
natural consistency conditions.
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Theorem 1.2 (Kolmogorov’s extension theorem) For all t1, t2, · · · , tk,
k ∈ N, let νt1,··· ,tk be probability measures on Rnk such that

νtπ(1),··· ,tπ(k)(B1 × · · · ×Bk) = νt1,··· ,tk(Bπ−1(1) × · · · ×Bπ−1(k))

for all permutations π on {1, 2, · · · , k} and

νt1,··· ,tk(B1 × · · · ×Bk) = νt1,··· ,tk,tk+1,··· ,tk+m
(B1 × · · · ×Bk × Rn × · · · × Rn)

for all m ∈ N, where the set on the right hand side has a total of k+m factors.
Then there exists a probability space (Ω,F , P ) and a stochastic process (Xt) on
Ω, Xt : Ω → Rn, such that

νt1,··· ,tk(B1 × · · · ×Bk) = P [Xt1 ∈ B1, · · · , Xtk ∈ Bk]

for all ti ∈ T and all Borel sets Bi, i = 1, 2, · · · , k, k ∈ N.

For a proof see Kolmogorov [72] (1956, p.29).

§2 Kolmogorov’s Criterion

Definition 2.1 Suppose that (Xt) and (Yt) are two stochastic processes defined
on (Ω,F , P ). Then we say that (Xt) is a version of (or a modification of)
(Yt) if

P ({ω : Xt(ω) = Yt(ω)}) = 1 for all t.

Theorem 2.2 (Kolmogorov’s continuity criterion) Suppose that the pro-
cess X = {Xt}t≥0 satisfies the following condition: for all T > 0 there exist
positive constants α, β, D such that

E[|Xt −Xs|α] ≤ D|t− s|1+β , 0 ≤ s, t ≤ T.

Then there exists a continuous version of X.

For a proof see Stroock and Varadhan [115] (1979, p.51).
Let E be a metric space and B be the Borel σ-algebra on E. We recall a few
facts about the weak convergence of probability measures on (E,B). If P is
such a measure, we say that a subset A of E is a P -continuity set if P (∂A) = 0,
where ∂A is the boundary of A.

Proposition 2.3 For probability measures Pn(n ∈ N) and P , the following
conditions are equivalent:

(i) For every bounded continuous function f on E,

lim
n→∞

∫
fdPn =

∫
fdP ;
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(ii) For every bounded uniformly continuous function f on E,

lim
n→∞

∫
fdPn =

∫
fdP ;

(iii) For every closed subset F of E, lim supn→∞ Pn(F ) ≤ P (F );

(iv) For every open subset G of E, lim infn→∞ Pn(G) ≥ P (G);

(v) For every P -continuity set A, limn→∞ Pn(A) = P (A).

Definition 2.4 If Pn and P satisfy the equivalent conditions of the preceding
proposition, we say that (Pn) converges weakly to P .

Now let π be a family of probability measures on (E,B).

Definition 2.5 A family π is weakly relatively compact if every sequence
of π contains a weakly convergent subsequence.

Definition 2.6 A family π is tight if for every ε ∈ (0, 1), there exists a compact
set Kε such that

P (Kε) ≥ 1− ε for every P ∈ π.

With this definition, we have the following theorem.

Theorem 2.7 (Prokhorov’s criterion) If a family π is tight, then it is weakly
relatively compact. If E is a Polish space (i.e., a separable completely metrizable
topological space), then a weakly relatively compact family is tight.

Definition 2.8 If (Xn)n∈N and X are random variables taking their values in
a metric space E, we say that (Xn) converges in distribution or converges
in law to X if their laws PXn

converge weakly to the law PX of X.

We stress the fact that the (Xn) and X need not be defined on the same prob-
ability space.

Theorem 2.9 (Kolmogorov’s criterion for weak compactness) Let {Xn}
be a sequence of Rd-valued continuous processes defined on probability spaces
(Ωn,Fn, Pn) such that

(i) the family {PnXn
0
} of initial laws is tight in Rd.

(ii) there exist three strictly positive constants α, β, γ such that for each s, t ∈ R+

and each n,
EPn [|Xn

s −Xn
t |α] ≤ β|s− t|γ+1,

then the set (PnXn) of the laws of the (Xn) is weakly relatively compact.

For the proof see Daniel Revuz and Marc Yor [109] (1999, p.517)



106 Appendix

§3 Daniell-Stone Theorem

Let (Ω,F , µ) be a measure space, on which we can define integration. One
essential properties of integration is its linearity, thus it can be seen as a lin-
ear functional on L1(Ω,F , µ). This idea leads to another approach to define
integral–Daniell’s integral.

Definition 3.1 Let Ω be an abstract set and H be a linear space formed by a
family of real valued functions. H is called a vector lattice if

f ∈ H ⇒ |f | ∈ H, f ∧ 1 ∈ H.

Definition 3.2 Suppose that H is a vector lattice on Ω and I is a positive linear
functional on H, i.e.,

f, g ∈ H, α, β ∈ R ⇒ I(αf + βg) = αI(f) + βI(g);
f ∈ H, f ≥ 0 ⇒ I(f) ≥ 0.

If I satisfies the following condition:

fn ∈ H, fn ↓ 0 ⇒ I(fn) → 0,

or equivalently,

fn ∈ H, fn ↑ f ∈ H ⇒ I(f) = lim
n→∞

I(fn),

then I is called a Daniell’s integral on H.

Theorem 3.3 (Daniell-Stone theorem) Suppose that H is a vector lattice
on Ω and I is a Daniell integral on H. Then there exists a measure µ ∈ F ,
where F := σ(f : f ∈ H), such that H ⊂ L1(Ω,F , µ) and I(f) = µ(f), ∀f ∈ H.
Furthermore, if 1 ∈ H∗

+, where H∗
+ := {f : ∃fn ≥ 0, fn ∈ H such that fn ↑ f},

then this measure µ is unique and is σ-finite.

For the proof see Dellacherie and Meyer [33] (1978, p.59), Dudley [41] (1995,
p.142), or Jia [121] (1998, p.74).



Appendix C
Solutions of Parabolic
Partial Differential
Equations

§1 The Definition of Viscosity Solutions

The notion viscosity solutions were firstly introduced by Crandall and Lions
(1981) [28] and (1983) [29] (see also Evans’s contribution (1978) [45] and (1980)
[46]) for the first-order Hamilton-Jacobi equation, with uniqueness proof given in
[29]. The the proof of second-order case for Hamilton-Jacobi-Bellman equations
was firstly developed by Lions (1982)[78] and (1983) [79] using stochastic control
verification arguments. A breakthrough was achieved in the second-order PDE
theory by Jensen (1988) [65]. For all other important contributions in the
developments of this theory we refer to the well-known user’s guide by Crandall,
Ishii and Lions (1992) [30]. For reader’s convenience, we systematically interpret
some parts of [30] required in this book into it’s parabolic version. However,
up to my knowledge, the presentation and the related proof for the domination
theorems seems to be a new generalization of the maximum principle presented
in [30]. Books on this theory are, among others, Barles (1994) [8], Fleming, and
Soner (1992) [49], Yong and Zhou (1999) [122].
Let T > 0 be fixed and let O ⊂ [0, T ]× RN . We set

USC(O) = {upper semicontinuous functions u : O → R},

LSC(O) = {lower semicontinuous functions u : O → R}.

Consider the following parabolic PDE:{
(E) ∂tu−G(t, x, u,Du,D2u) = 0 on (0, T )× RN ,
(IC) u(0, x) = ϕ(x) for x ∈ RN , (1.1)

where G : [0, T ]× RN × R× RN × S(N) → R, ϕ ∈ C(RN ). We always suppose
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that G is continuous and satisfies the following degenerate elliptic condition:

G(t, x, r, p,X) ≥ G(t, x, r, p, Y ) whenever X ≥ Y. (1.2)

Next we recall the definition of viscosity solutions from Crandall, Ishii and Lions
[30]. Let u : (0, T )×RN → R and (t, x) ∈ (0, T )×RN . We denote by P2,+u(t, x)
(the “parabolic superjet” of u at (t, x)) the set of triples (a, p,X) ∈ R×RN ×
S(N) such that

u(s, y) ≤ u(t, x) + a(s− t) + 〈p, y − x〉

+
1
2
〈X(y − x), y − x〉+ o(|s− t|+ |y − x|2).

We define

P̄2,+u(t, x) :={(a, p,X) ∈ R× RN × S(N) : ∃(tn, xn, an, pn, Xn)

such that (an, pn, Xn) ∈ P2,+u(tn, xn) and
(tn, xn, u(tn, xn), an, pn, Xn) → (t, x, u(t, x), a, p,X)}.

Similarly, we define P2,−u(t, x) (the “parabolic subjet” of u at (t, x)) by
P2,−u(t, x) := −P2,+(−u)(t, x) and P̄2,−u(t, x) by P̄2,−u(t, x) := −P̄2,+(−u)(t, x).

Definition 1.1 (i) A viscosity subsolution of (E) on (0, T )×RN is a function
u ∈ USC((0, T )× RN ) such that for each (t, x) ∈ (0, T )× RN ,

a−G(t, x, u(t, x), p,X) ≤ 0 for (a, p,X) ∈ P2,+u(t, x);

likewise, a viscosity supersolution of (E) on (0, T ) × RN is a function v ∈
LSC((0, T )× RN ) such that for each (t, x) ∈ (0, T )× RN ,

a−G(t, x, v(t, x), p,X) ≥ 0 for (a, p,X) ∈ P2,−v(t, x);

and a viscosity solution of (E) on (0, T )×RN is a function that is simultane-
ously a viscosity subsolution and a viscosity supersolution of (E) on (0, T )×RN .
(ii) A function u ∈ USC([0, T ) × RN ) is called a viscosity subsolution of
(1.1) on [0, T ) × RN if u is a viscosity subsolution of (E) on (0, T ) × RN and
u(0, x) ≤ ϕ(x) for x ∈ RN ; the appropriate notions of a viscosity supersolution
and a viscosity solution of (1.1) on [0, T )× RN are then obvious.

We now give the following equivalent definition (see Crandall, Ishii and Lions
[30]).

Definition 1.2 A viscosity subsolution of (E) on (0, T ) × RN is a function
u ∈ USC((0, T )×RN ) such that for all (t, x) ∈ (0, T )×RN , φ ∈ C2((0, T )×RN )
such that u(t, x) = φ(t, x) and u < φ on (0, T )× RN\(t, x), we have

∂tφ(t, x)−G(t, x, φ(t, x), Dφ(t, x), D2φ(t, x)) ≤ 0;
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likewise, a viscosity supersolution of (E) on (0, T ) × RN is a function v ∈
LSC((0, T ) × RN ) such that for all (t, x) ∈ (0, T ) × RN , φ ∈ C2((0, T ) × RN )
such that u(t, x) = φ(t, x) and u > φ on (0, T )× RN\(t, x), we have

∂tφ(t, x)−G(t, x, φ(t, x), Dφ(t, x), D2φ(t, x)) ≥ 0;

and a viscosity solution of (E) on (0, T )×RN is a function that is simultaneously
a viscosity subsolution and a viscosity supersolution of (E) on (0, T )×RN . The
definition of a viscosity solution of (1.1) on [0, T )×RN is the same as the above
definition.

§2 Comparison Theorem

We will use the following well-known result in viscosity solution theory (see
Theorem 8.3 of Crandall, Ishii and Lions [30]).

Theorem 2.1 Let ui ∈USC((0, T ) × RNi) for i = 1, · · · , k. Let ϕ be a func-
tion defined on (0, T ) × RN1+···+Nk such that (t, x1, . . . , xk) → ϕ(t, x1, . . . , xk)
is once continuously differentiable in t and twice continuously differentiable in
(x1, · · · , xk) ∈ RN1+···+Nk . Suppose that t̂ ∈ (0, T ), x̂i ∈ RNi for i = 1, · · · , k
and

w(t, x1, · · · , xk) := u1(t, x1) + · · ·+ uk(t, xk)− ϕ(t, x1, · · · , xk)
≤ w(t̂, x̂1, · · · , x̂k)

for t ∈ (0, T ) and xi ∈ RNi . Assume, moreover, that there exists r > 0 such
that for every M > 0 there exists constant C such that for i = 1, · · · , k,

bi ≤ C whenever (bi, qi, Xi) ∈ P2,+ui(t, xi),
|xi − x̂i|+ |t− t̂| ≤ r and |ui(t, xi)|+ |qi|+ ‖Xi‖ ≤M.

(2.3)

Then for each ε > 0, there exist Xi ∈ S(Ni) such that
(i) (bi, Dxi

ϕ(t̂, x̂1, · · · , x̂k), Xi) ∈ P
2,+
ui(t̂, x̂i), i = 1, · · · , k,

(ii)

−(
1
ε

+ ‖A‖)I ≤

 X1 · · · 0
...

. . .
...

0 · · · Xk

 ≤ A+ εA2,

(iii) b1 + · · ·+ bk = ∂tϕ(t̂, x̂1, · · · , x̂k),
where A = D2

xϕ(t̂, x̂) ∈ S(N1 + · · ·+Nk).

Observe that the above condition (2.3) will be guaranteed by having each ui be
a subsolution of a parabolic equation given in the following two theorems.
In the following we always suppose that G is continuous and satisfies the degen-
erate elliptic condition.
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Theorem 2.2 (Domination Theorem) Let ui ∈USC([0, T ]× RN ) be subso-
lutions of

∂tu−Gi(t, x, u,Du,D2u) = 0, i = 1, · · · , k, (2.4)

on (0, T ) × RN such that
∑k
i=1 (ui(t, x))

+ → 0, uniformly as |x| → ∞. We
assume that
(i) The functions

Gi : [0, T ]× RN × R× RN × S(N) → R, i = 1, · · · , k,

are continuous in the following sense: for each t ∈ [0, T ), v ∈ R, x, y, p ∈ RN
and X ∈ S(N),

|Gi(t, x, v, p,X)−Gi(t, y, v, p,X)|
≤ ω̄(1 + (T − t)−1 + |x|+ |y|+ |v|)ω(|x− y|+ |p| · |x− y|),

where ω, ω̄ : R+ → R+ are given continuous functions with ω(0) = 0.
(ii) Given constants βi > 0, i = 1, · · · , k, the following domination condition
holds for Gi:

k∑
i=1

βiGi(t, x, vi, pi, Xi) ≤ 0, (2.5)

for each (t, x) ∈ (0, T ) × RN and (vi, pi, Xi) ∈ R × RN × S(N) such that∑k
i=1 βivi ≥ 0,

∑k
i=1 βipi = 0,

∑k
i=1 βiXi ≤ 0.

Then a similar domination also holds for the solutions: if the sum of initial
values

∑k
i=1 βiui(0, ·) is a non-positive function on RN , then

∑k
i=1 βiui(t, ·) ≤ 0,

for all t > 0.

Proof. We first observe that for δ̄ > 0 and for each 1 ≤ i ≤ k, the functions

defined by ũi := ui − δ̄/(T − t) is a subsolution of

∂tũi − G̃i(t, x, ũi, Dũi, D2ũi) ≤ − δ̄

(T − t)2
,

where G̃i(t, x, v, p,X) := Gi(t, x, v + δ̄/(T − t), p,X). It is easy to check that
the functions G̃i satisfy the same conditions as Gi. Since

∑k
i=1 βiui ≤ 0 follows

from
∑k
i=2 βiũi ≤ 0 in the limit δ̄ ↓ 0, it suffices to prove the theorem under the

additional assumptions:

∂tui −Gi(t, x, ui, Dui, D2ui) ≤ −c, where c = δ̄/T 2,
and limt→T ui(t, x) = −∞ uniformly on [0, T )× RN . (2.6)

To prove the theorem, we assume to the contrary that

sup
(t,x)∈[0,T )×RN

k∑
i=1

βiui(t, x) = m0 > 0
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We will apply Theorem 2.1 for x = (x1, · · · , xk) ∈ Rk×N and

w(t, x) :=
k∑
i=1

βiui(t, xi), ϕ(x) = ϕα(x) :=
α

2

k−1∑
i=1

|xi+1 − xi|2.

For each large α > 0, the maximum of w − ϕα achieves at some (tα, xα) inside
a compact subset of [0, T )× Rk×N . Indeed, since

Mα =
k∑
i=1

βiui(tα, xαi )− ϕα(xα) ≥ m0,

we conclude tα must be inside an interval [0, T0], T0 < T and xα must be inside
a compact set {x ∈ Rk×N : supt∈[0,T0] w(t, x) ≥ m0

2 }. We can check that (see
[30] Lemma 3.1)

(i) limα→∞ ϕα(xα) = 0,
(ii) limα→∞Mα = limα→∞ β1u1(tα, xα1 ) + · · ·+ βkuk(tα, xαk ))

= sup(t,x)∈[0,T )×RN [β1u1(t, x) + · · ·+ βkuk(t, x)]
= [β1u1(t̂, x̂) + · · ·+ βkuk(t̂, x̂)] = m0,

(2.7)

where (t̂, x̂) is a limit point of (tα, xα). Since ui ∈ USC, for sufficiently large α,
we have

β1u1(tα, xα1 ) + · · ·+ βkuk(tα, xαk ) ≥ m0

2
.

If t̂ = 0, we have lim supα→∞
∑k
i=1 βiui(t

α, xαi ) =
∑k
i=1 βiui(0, x̂) ≤ 0. We

know that t̂ > 0 and thus tα must be strictly positive for large α. It follows
from Theorem 2.1 that, for each ε > 0 there exist bαi ∈ R, Xi ∈ S(N) such that

(bαi , β
−1
i Dxi

ϕ(xα), Xi) ∈ P̄2,+ui(tα, xαi ),
k∑
i=1

βib
α
i = 0 for i = 1, · · · , k, (2.8)

and such that

−(
1
ε

+ ‖A‖)I ≤


β1X1 . . . 0 0

...
. . .

...
...

0 . . . βk−1Xk−1 0
0 . . . 0 βkXk

 ≤ A+ εA2, (2.9)

where A = D2ϕα(xα) ∈ S(kN) is explicitly given by

A = αJkN , where JkN =



IN −IN · · · · · · 0

−IN 2IN
. . .

...
...

. . . . . . . . .
...

...
. . . 2IN −IN

0 · · · · · · −IN IN


.
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The second inequality of (2.9) implies
∑k
i=1 βiXi ≤ 0. Set

pα1 = β−1
1 Dx1ϕα(xα) = β−1

1 α(xα1 − xα2 ),

pα2 = β−1
2 Dx2ϕα(xα) = β−1

2 α(2xα2 − xα1 − xα3 ),
...

pαk−1 = β−1
k−1Dxk−1ϕα(xα) = β−1

k−1α(2xαk−1 − xαk−2 − xαk ),

pαk = β−1
k Dxk

ϕα(xα) = β−1
k α(xαk − xαk−1).

Thus
∑k
i=1 βip

α
i = 0. From this together with (2.8) and (2.6), it follows that

bαi −Gi(tα, xαi , ui(t
α, xαi ), pαi , Xi) ≤ −c, i = 1, · · · , k.

By (2.7) (i), we also have limα→∞ |pαi | · |xαi − xα1 | → 0. This, together with the
domination condition (2.5) of Gi, implies

−c
k∑
i=1

βi = −
k∑
i=1

βib
α
i − c

k∑
i=1

βi ≥ −
k∑
i=1

βiGi(tα, xαi , ui(t
α, xαi ), pαi , Xi)

≥ −
k∑
i=1

βiGi(tα, xα1 , ui(t
α, xαi ), pαi , Xi)

−
k∑
i=1

βi|Gi(tα, xαi , ui(tα, xαi ), pαi , Xi)−Gi(tα, xα1 , ui(t
α, xαi ), pαi , Xi)|

≥ −
k∑
i=1

βiω̄(1 + (T − T0)−1 + |xα1 |+ |xαi |+ |ui(tα, xαi )|) · ω(|xαi − xα1 |

+ |pαi | · |xαi − xα1 |).

The right side tends to zero as α → ∞, which induces a contradiction. The
proof is complete. �

Theorem 2.3 (Domination Theorem) Let ui ∈USC([0, T ]×RN ) with poly-
nomial growth be subsolutions of

∂tu−Gi(u,Du,D2u) = 0, i = 1, · · · , k, (2.10)

on (0, T ) × RN . We assume that Gi : R × RN × S(N) → R, i = 1, · · · , k, are
given continuous functions satisfying the following conditions:
(i) positive homogeneity:

Gi(λv, λp, λX) = λGi(v, p,X) for all λ ≥ 0, v ∈ R, p ∈ RN , X ∈ S(N),

(ii) Lipschitz condition: there exists a positive constant C, such that

|Gi(v1, p,X)−Gi(v2, q, Y )| ≤ C(|v1 − v2|+ |p− q|+ ‖X − Y ‖),
for all v1, v2 ∈ R, p, q ∈ RN and X,Y ∈ S(N),
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(iii) domination condition for Gi: for fixed constants βi > 0, i = 1, · · · , k,

k∑
i=1

βiGi(vi, pi, Xi) ≤ 0 for all vi ∈ R, pi ∈ RN , Xi ∈ S(N),

such that
k∑
i=1

βivi ≥ 0,
k∑
i=1

βipi = 0,
k∑
i=1

βiXi ≤ 0.

Then the following domination holds: if
∑k
i=1 βiui(0, ·) is a non-positive func-

tion, then we have

k∑
i=1

βiui(t, x) ≤ 0 for (t, x) ∈ (0, T )× RN .

Proof. We set ξ(x) := (1 + |x|2)l/2 and

ũi(t, x) := ui(t, x)e−λtξ−1(x), i = 1, · · · , k,

where l is chosen to be large enough such that
∑k
i=1 |ũi(t, x)| → 0 uniformly as

|x| → ∞. From condition (i), it is easy to check that for each i = 1, · · · , k, ũi is
a subsolution of

∂tũi − G̃i(x, ũi, Dũi, D2ũi) = 0, (2.11)

where

G̃i(x, v, p,X) := −λv +Gi(v, p+ vη(x), X + p⊗ η(x) + η(x)⊗ p+ vκ(x)).

Here

η(x) := ξ−1(x)Dξ(x) = l(1 + |x|2)−1x,

κ(x) := ξ−1(x)D2ξ(x) = l(1 + |x|2)−1I + l(l − 2)(1 + |x|2)−2x⊗ x.

Since η and κ are uniformly bounded and uniformly Lipschitz functions, one can
choose a fixed but large enough constant λ > 0 such that G̃i(x, v, p,X) satisfies
all conditions of Gi, i = 1, · · · , k in Theorem 2.2. The proof is complete by
directly applying this theorem. �
We have the following corollaries which are basic in this book.

Corollary 2.4 (Comparison Theorem) Let F1, F2 : RN × S(N) → R be given
functions satisfying conditions (i) and (ii) of Theorem 2.3. We also assume
that, for each p ∈ RN and X, Y ∈ S(N) such that X ≥ Y , we have

F1(p,X) ≥ F2(p, Y ).

Let v1 ∈ LSC([0, T ]×RN ) be a viscosity supersolution of ∂tv−F1(Dv,D2v) = 0
and let v2 ∈ USC([0, T ]×RN ) be a viscosity subsolution of ∂tv−F2(Dv,D2v) = 0
such that v1(0, ·)− v2(0, ·) is a non-negative function. Then we have v1(t, x)−
v2(t, x) ≥ 0 for all (t, x) ∈ [0, T )× RN .
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Proof. We set β1 = β2 = 1, G1(p,X) := −F1(−p,−X) and G2 = F2(p,X).
It is observed that u1 := −v1 ∈USC((0, T ) × RN ) is a viscosity subsolution of
∂tu − G1(Du,D2u) = 0. For each p1, p2 ∈ RN and X1, X2 ∈ S(N) such that
p1 + p2 = 0 and X1 +X2 ≤ 0, we also have

G1(p1, X1) +G2(p2, X2) = F2(p2, X2)− F1(p2,−X1) ≤ 0.

We thus can apply Theorem 2.3 and get u1 + v2 ≤ 0. The proof is complete. �

Corollary 2.5 (Domination Theorem) Let Fi : RN × S(N) → R, i = 0, 1, be
given functions satisfying conditions (i) and (ii) of Theorem 2.3. Let vi ∈LSC([0, T ]×
RN ) be viscosity supersolutions of ∂tv−Fi(Dv,D2v) = 0 respectively for i = 0, 1
and let v2 ∈USC([0, T ]×RN ) be a viscosity subsolution of ∂tv−F1(Dv,D2v) = 0.
We assume that

F1(p,X)− F1(q, Y ) ≤ F0(p− q, Z)

for p, q ∈ RN , X, Y, Z ∈ S(N) such that X − Y ≤ Z.

Then the following domination holds: if v0(0, ·) + v1(0, ·) − v2(0, ·) is a non-
negative function, then v0(t, ·) + v1(t, ·)− v2(t, ·) ≥ 0 for all t > 0.

Proof. Set

Gi(p,X) := −Fi(−p,−X), i = 0, 1, and G2(p,X) := F1(p,X),

we observe that ui = −vi ∈USC((0, T )×RN ), i = 0, 1, are viscosity subsolutions
of ∂tu−Gi(Du,D2u) = 0, i = 0, 1. We thus have, for each X0 +X1 +X2 ≤ 0,
p0 + p1 + p2 = 0,

G0(p0, X0) +G1(p1, X1) +G2(p2, X2)
= −F0(−p0,−X0)− F1(−p1,−X1) + F1(p2, X2) ≤ 0.

Then Theorem 2.3 can be applied for the case βi = 1, we get
∑
ui ≤ 0 or

v0 + v1 − v2 ≥ 0. �
Let G : RN × S(N) → R be a given continuous sublinear function monotonic
in A ∈ S(N). Obviously, G satisfies conditions (i) and (ii) of Theorem 2.3. We
consider the following G-equation:

∂tu−G(Du,D2u) = 0, u(0, x) = ϕ(x). (2.12)

Theorem 2.6 Let G : RN×S(N) → R be a given continuous sublinear function
monotonic in A ∈ S(N). Then we have

(i) If u ∈ USC([0, T ] × RN ) with polynomial growth is a viscosity subsolution
of (2.12) and v ∈ LSC([0, T ]× RN ) with polynomial growth is a viscosity
supersolution of (2.12), then u ≤ v.

(ii) If uϕ ∈ C([0, T ]×RN ) denotes the polynomial growth solution of (2.12) with
initial condition ϕ, then uλϕ = λuϕ for each λ ≥ 0 and uϕ+ψ ≤ uϕ + uψ.

Proof. By the above corollaries, it is easy to obtain the results. �
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§3 Perron’s Method and Existence

The combination of Perron’s method and viscosity solutions was introduced by
H. Ishii [62]. For the convenience of readers, we interpret the proof provided in
Crandall, Ishii and Lions [30] into its parabolic situation.
We consider the following parabolic PDE:{

∂tu−G(t, x, u,Du,D2u) = 0 on (0,∞)× RN ,
u(0, x) = ϕ(x) for x ∈ RN , (3.13)

where G : [0,∞)× RN × R× RN × S(N) → R, ϕ ∈ C(RN ).
To discuss Perron’s method, we will use the following notations: if u : O →
[−∞,∞] where O ⊂ [0,∞)× RN , then{

u∗(t, x) = limr↓0 sup{u(s, y) : (s, y) ∈ O and
√
|s− t|+ |y − x|2 ≤ r},

u∗(t, x) = limr↓0 inf{u(s, y) : (s, y) ∈ O and
√
|s− t|+ |y − x|2 ≤ r}.

(3.14)
One calls u∗ the upper semicontinuous envelope of u; it is the smallest upper
semicontinuous function (with values in [−∞,∞]) satisfying u ≤ u∗. Similarly,
u∗ is the lower semicontinuous envelope of u.

Theorem 3.1 (Perron’s Method) Let comparison hold for (3.13), i.e., if w is
a viscosity subsolution of (3.13) and v is a viscosity supersolution of (3.13),
then w ≤ v. Suppose also that there is a viscosity subsolution u and a viscosity
supersolution ū of (3.13) that satisfy the condition u∗(0, x) = ū∗(0, x) = ϕ(x)
for x ∈ RN . Then

W (t, x) = sup{w(t, x) : u ≤ w ≤ ū and w is a viscosity subsolution of (3.13)}

is a viscosity solution of (3.13).

The proof consists of two lemmas. For the proof of the following two lemmas,
we also see [1]. The first one is

Lemma 3.2 Let F be a family of viscosity subsolution of (3.13) on (0,∞)×RN .
Let w(t, x) = sup{u(t, x) : u ∈ F} and assume that w∗(t, x) < ∞ for (t, x) ∈
(0,∞)× RN . Then w∗ is a viscosity subsolution of (3.13) on (0,∞)× RN .

Proof. Let (t, x) ∈ (0,∞) × RN and consider a sequence sn, yn, un ∈ F such
that limn→∞(sn, yn, un(sn, yn)) = (t, x, w∗(t, x)). There exists r > 0 such that
Nr = {(s, y) ∈ (0,∞) × RN :

√
|s− t|+ |y − x|2 ≤ r} is compact. For φ ∈ C2

such that φ(t, x) = w∗(t, x) and w∗ < φ on (0,∞)×RN\(t, x), let (tn, xn) be a
maximum point of un−φ overNr, hence un(s, y) ≤ un(tn, xn)+φ(s, y)−φ(tn, xn)
for (s, y) ∈ Nr. Suppose that (passing to a subsequence if necessary) (tn, xn) →
(t̄, x̄) as n → ∞. Putting (s, y) = (sn, yn) in the above inequality and taking
the limit inferior as n→∞, we obtain

w∗(t, x) ≤ lim inf
n→∞

un(tn, xn) + φ(t, x)− φ(t̄, x̄)

≤ w∗(t̄, x̄) + φ(t, x)− φ(t̄, x̄).
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From the above inequalities and the assumption on φ, we get limn→∞(tn, xn,un(tn, xn)) =
(t, x, w∗(t, x)) (without passing to a subsequence). Since un is a viscosity sub-
solution of (3.13), by definition we have

∂tφ(tn, xn)−G(tn, xn, un(tn, xn), Dφ(tn, xn), D2φ(tn, xn)) ≤ 0.

Letting n→∞, we conclude that

∂tφ(t, x)−G(t, x, w∗(t, x), Dφ(t, x), D2φ(t, x)) ≤ 0.

Thus w∗ is a viscosity subsolution of (3.13) by definition. �
The second step in the proof of Theorem 3.1 is a simple “bump” construction
that we now describe. Suppose that u is a viscosity subsolution of (3.13) on
(0,∞) × RN and u∗ is not a viscosity supersolution of (3.13), so that there is
(t, x) ∈ (0,∞) × RN and φ ∈ C2 with u∗(t, x) = φ(t, x), u∗ > φ on (0,∞) ×
RN\(t, x) and

∂tφ(t, x)−G(t, x, φ(t, x), Dφ(t, x), D2φ(t, x)) < 0.

The continuity ofG provides r, δ1 > 0 such thatNr = {(s, y) :
√
|s− t|+ |y − x|2 ≤

r} is compact and
∂tφ−G(s, y, φ+ δ,Dφ,D2φ) ≤ 0

for all s, y, δ ∈ Nr × [0, δ1]. Lastly, we obtain δ2 > 0 for which u∗ > φ + δ2 on
∂Nr. Setting δ0 = min(δ1, δ2) > 0, we define

U =
{

max(u, φ+ δ0) on Nr
u elsewhere.

By the above inequalities and Lemma 3.2, it is easy to check that U is a viscosity
subsolution of (3.13) on (0,∞) × RN . Obviously, U ≥ u. Finally, observe that
U∗(t, x) ≥ max(u∗(t, x), φ(t, x) + δ0) > u∗(t, x); hence there exists (s, y) such
that U(s, y) > u(s, y). We summarize the above discussion as the following
lemma.

Lemma 3.3 Let u be a viscosity subsolution of (3.13) on (0,∞) × RN . If u∗
fails to be a viscosity supersolution at some point (s, z), then for any small κ > 0
there is a viscosity subsolution Uκ of (3.13) on (0,∞)× RN satisfying{

Uκ(t, x) ≥ u(t, x) and sup(Uκ − u) > 0,
Uκ(t, x) = u(t, x) for

√
|t− s|+ |x− z|2 ≥ κ.

Proof of Theorem 3.1. With the notation of the theorem observe that u∗ ≤
W∗ ≤W ≤W ∗ ≤ ū∗ and, in particular, W∗(0, x) = W (0, x) = W ∗(0, x) = ϕ(x)
for x ∈ RN . By lemma 3.2, W ∗ is a viscosity subsolution of (3.13) and hence,
by comparison, W ∗ ≤ ū. It then follows from the definition of W that W = W ∗

(so W is a viscosity subsolution). If W∗ fails to be a viscosity supersolution at
some point (s, z) ∈ (0,∞) × RN , let Wκ be provided by Lemma 3.3. Clearly
u ≤ Wκ and Wκ(0, x) = ϕ(x) for sufficiently small κ. By comparison, Wκ ≤ ū
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and since W is the maximal viscosity subsolution between u and ū, we arrive at
the contradiction Wκ ≤W . Hence W∗ is a viscosity supersolution of (3.13) and
then, by comparison for (3.13), W ∗ = W ≤ W∗, showing that W is continuous
and is a viscosity solution of (3.13). The proof is complete. �
Let G : RN × S(N) → R be a given continuous sublinear function monotonic in
A ∈ S(N). We now consider the existence of viscosity solution of the following
G-equation:

∂tu−G(Du,D2u) = 0, u(0, x) = ϕ(x). (3.15)

Case 1: If ϕ ∈ C2
b (RN ), then u(t, x) = Mt+ ϕ(x) and ū(t, x) = M̄t+ ϕ(x) are

respectively the classical subsolution and supersolution of (3.15), where M =
infx∈RN G(Dϕ(x), D2ϕ(x)) and M̄ = supx∈RN G(Dϕ(x), D2ϕ(x)). Obviously, u
and ū satisfy all the conditions in Theorem 3.1. By Theorem 2.6, we know the
comparison holds for (3.15). Thus by Theorem 3.1, we obtain that G-equation
(3.15) has a viscosity solution.
Case 2: If ϕ ∈ Cb(RN ) with lim|x|→∞ ϕ(x) = 0, then we can choose a sequence
ϕn ∈ C2

b (RN ) which uniformly converge to ϕ. For ϕn, by Case 1, there exists a
viscosity solution uϕn . By comparison theorem, it is easy to show that uϕn is
uniformly convergent, the limit denoted by u. Similar to the proof of Lemma
3.2, it is easy to prove that u is a viscosity solution of G-equation (3.15) with
initial condition ϕ.
Case 3: If ϕ ∈ C(RN ) with polynomial growth, then we can choose a large
l > 0 such that ϕ̃(x) = ϕ(x)ξ−1(x) satisfies the condition in Case 2, where
ξ(x) = (1 + |x|2)l/2. It is easy to check that u is a viscosity solution of G-
equation (3.15) if and only if ũ(t, x) = u(t, x)ξ−1(x) is a viscosity solution of
the following PDE:

∂tũ− G̃(x, ũ,Dũ,D2ũ) = 0, ũ(0, x) = ϕ̃, (3.16)

where G̃(x, v, p,X) = G(p+ vη(x), X + p⊗ η(x) + η(x)⊗ p+ vκ(x)). Here

η(x) := ξ−1(x)Dξ(x) = l(1 + |x|2)−1x,

κ(x) := ξ−1(x)D2ξ(x) = l(1 + |x|2)−1I + l(l − 2)(1 + |x|2)−2x⊗ x.

Similar to the above discussion, we obtain that there exists a viscosity solution
of (3.16) with initial condition ϕ̃. Thus there exists a viscosity solution of G-
equation (3.15).
We summarize the above discussions as a theorem.

Theorem 3.4 Let ϕ ∈ C(RN ) with polynomial growth. Then there exists a
viscosity solution of G-equation (3.15) with initial condition ϕ.

§4 Krylov’s Regularity Estimate for Parabolic
PDE

The proof of our new central limit theorem is based on a powerful C1+α/2,2+α-
regularity estimates for fully nonlinear parabolic PDE obtained in Krylov [74].
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A more recent result of Wang [117] (the version for elliptic PDE was initially
introduced in Cabre and Caffarelli [17]), using viscosity solution arguments, can
also be applied.
For simplicity, we only consider the following type of PDE:

∂tu+G(D2u,Du, u) = 0, u(T, x) = ϕ(x), (4.17)

where G : S(d)× Rd × R → R is a given function and ϕ ∈ Cb(Rd).
Following Krylov [74], we fix constants K ≥ ε > 0, T > 0 and set Q = (0, T )×
Rd. Now we give the definition of G(ε,K,Q) and Ḡ(ε,K,Q).
The following definition is according to Definition 5.5.1 in Krylov [74].

Definition 4.1 Let G : S(d)×Rd×R → R be given, written it as G(uij , ui, u),
i, j = 1, . . . , d. We denote G ∈ G(ε,K,Q) if G is twice continuously differen-
tiable with respect to (uij , ui, u) and, for each real-valued uij = uji, ũij = ũji,
ui, ũi, u, ũ and λi, the following inequalities hold:

ε|λ|2 ≤
∑
i,j

λiλj∂uij
G ≤ K|λ|2,

|G−
∑
i,j

uij∂uijG| ≤MG
1 (u)(1 +

∑
i

|ui|2),

|∂uG|+ (1 +
∑
i

|ui|)
∑
i

|∂uiG| ≤MG
1 (u)(1 +

∑
i

|ui|2 +
∑
i,j

|uij |),

[MG
2 (u, uk)]−1G(η)(η) ≤

∑
i,j

|ũij |
[∑

i

|ũi|+ (1 +
∑
i,j

|uij |)|ũ|
]

+
∑
i

|ũi|2(1 +
∑
i,j

|uij |) + (1 +
∑
i,j

|uij |3)|ũ|2,

where the arguments (uij , ui, u) of G and its derivatives are omitted, η = (ũij , ũi, ũ),
and

G(η)(η) :=
∑
i,j,r,s

ũij ũrs∂
2
uijurs

G+ 2
∑
i,j,r

ũij ũr∂
2
uijur

G+ 2
∑
i,j

ũij ũ∂
2
uijuG

+
∑
i,j

ũiũj∂
2
uiuj

G+ 2
∑
i

ũiũ∂
2
uiuG+ |ũ|2∂2

uuG,

MG
1 (u) and MG

2 (u, uk) are some continuous functions which grow with |u| and
ukuk and MG

2 ≥ 1.

Remark 4.2 Let εI ≤ A = (aij) ≤ KI. It is easy to check that

G(uij , ui, u) =
∑
i,j

aijuij +
∑
i

biui + cu

belongs to G(ε,K,Q).
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The following definition is Definition 6.1.1 in Krylov [74].

Definition 4.3 Let a function G = G(uij , ui, u) : S(d)×Rd ×R → R be given.
We write G ∈ Ḡ(ε,K,Q) if there exists a sequence Gn ∈ G(ε,K,Q) converging
to G as n→∞ at every point (uij , ui, u) ∈ S(d)× Rd × R such that

(i) MG1
i = MG2

i = · · · =: MG
i , i = 1, 2;

(ii) for each n = 1, 2, . . ., the function Gn is infinitely differentiable with respect
to (uij , ui, u);

(iii) there exist constants δ0 =: δG0 > 0 and M0 =: MG
0 > 0 such that

Gn(uij , 0,−M0) ≥ δ0, Gn(−uij , 0,M0) ≤ −δ0

for each n ≥ 1 and symmetric nonnegative matrices (uij).

The following theorem is Theorem 6.4.3 in Krylov [74] , which plays important
role in our proof of central limit theorem.

Theorem 4.4 Suppose that G ∈ Ḡ(ε,K,Q) and ϕ ∈ Cb(Rd) with supx∈Rd |ϕ(x)| ≤
MG

0 . Then PDE (4.17) has a solution u possessing the following properties:

(i) u ∈ C([0, T ]× Rd), |u| ≤MG
0 on Q;

(ii) there exists a constant α ∈ (0, 1) only depending on d,K, ε such that for
each κ > 0,

||u||C1+α/2,2+α([0,T−κ]×Rd) <∞. (4.18)

Now we consider the G-equation. Let G : Rd × S(d) → R be a given continuous
sublinear function monotonic in A ∈ S(d). Then there exists a bounded, convex
and closed subset Σ ⊂ Rd × S+(d) such that

G(p,A) = sup
(q,B)∈Σ

[
1
2
tr[AB] + 〈p, q〉] for (p,A) ∈ Rd × S(d). (4.19)

The G-equation is

∂tu+G(Du,D2u) = 0, u(T, x) = ϕ(x). (4.20)

We set
ũ(t, x) = et−Tu(t, x). (4.21)

It is easy to check that ũ satisfies the following PDE:

∂tũ+G(Dũ,D2ũ)− ũ = 0, ũ(T, x) = ϕ(x). (4.22)

Suppose that there exists a constant ε > 0 such that for each A, Ā ∈ S(d) with
A ≥ Ā, we have

G(0, A)−G(0, Ā) ≥ εtr[A− Ā]. (4.23)
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Since G is continuous, it is easy to prove that there exists a constant K > 0
such that for each A, Ā ∈ S(d) with A ≥ Ā, we have

G(0, A)−G(0, Ā) ≤ Ktr[A− Ā]. (4.24)

Thus for each (q,B) ∈ Σ, we have

2εI ≤ B ≤ 2KI.

By Remark 4.2, it is easy to check that G̃(uij , ui, u) := G(ui, uij) − u ∈
Ḡ(ε,K,Q) and δG0 = MG

0 can be any positive constant. By Theorem 4.4 and
(4.21), we have the following regularity estimate for G-equation (4.20).

Theorem 4.5 Let G satisfy (4.19) and (4.23), ϕ ∈ Cb(Rd) and let u be a
solution of G-equation (4.20). Then there exists a constant α ∈ (0, 1) only
depending on d,G, ε such that for each κ > 0,

||u||C1+α/2,2+α([0,T−κ]×Rd) <∞. (4.25)
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