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Sec.1. Sublinear Expectations and Sublinear Expectation

Spaces

): a given set
‘H: a linear space of real valued functions defined on (), s.t.

@ a) ¢ € H for each constant c,
eb)XeH = |X|eH
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Definition

A Sublinear expectation [ is a functional E : H — R satisfying
(i) Monotonicity:
E[X] > E[Y] if X > Y.
(ii) Constant preserving:
Elc]=c forceR.

(iii) Sub-additivity: For each X, Y € 'H,

E[X + Y] <E[X]+E[Y].
(iv) Positive homogeneity:

E[AX] = AE[X] for A > 0.

(), H,E): a sublinear expectation space.
(i)+(ii): E is called nonlinear expectation .
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Definition
Let IE; and [E; be two nonlinear expectations defined on (Q), H). E; is
said to be dominated by [E; if

E1[X] — E1[Y] < Ba[X — Y] for X, Y € H. (1)

From (iii), a sublinear expectation is dominated by itself. In many
situations, (iii) is also called the property of self-domination. If the
inequality in (iii) becomes equality, then E is a linear expectation, i.e., E is

a linear functional satisfying (i) and (ii). O
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Remark.
(iii)+(iv) is called sublinearity. This sublinearity implies
(v) Convexity:

EjaX 4+ (1 —a)Y] < aE[X]+ (1 —a)E[Y] fora € [0,1].

If a nonlinear expectation IE satisfies convexity, we call it a convex
expectation.
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Remark.

The properties (ii)+(iii) implies
(vi) Cash translatability:

E[X +c] =E[X]+c¢ for c € R.
In fact, we have
E[X]+c=E[X] —E[—c] <E[X +c] <E[X]+E[c] =E[X] +c.
For property (iv), an equivalence form is

E[AX] = ATE[X] + A E[-X] for A € R.
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In this book, we will systematically study the sublinear expectation spaces.
In the following chapters, unless otherwise stated, we consider the
following sublinear expectation space (QQ, H,E): if Xy,---, X, € H then
@(X1,- -+, Xp) € H for each ¢ € Cjp(R") where Cpjp(IR") denotes the
linear space of functions ¢ satisfying

[9(x) = @) < Clx—y| forx,y € R".

In this case X = (X, -, X,) is called an n-dimensional random vector,
denoted by X € H".

It is clear that if X € H then |X|, X" € H.

Here we use C.jp(IR") in our framework only for some convenience of
techniques. In fact our essential requirement is that H contains all
constants and, moreover, X € H implies | X| € H. In general, C;jp(R")
can be replaced by any one of the following spaces of functions defined on
R".

o IL®(IR"): the space of bounded Borel-measurable functions;

@ Cp(IR™): the space of bounded and continuous functions;
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C,f(]R”): the space of bounded and k-time continuously differentiable
functions with bounded derivatives of all orders less than or equal to
k;

Cunif (R"): the space of bounded and uniformly continuous
functions;

Ch.Lip(IR"): the space of bounded and Lipschitz continuous
functions:

e L[O(IR"): the space of Borel measurable functions.

C/.L,-p(]R”): the space of local Lipschitz continuous functions;

Next we give two examples of sublinear expectations.
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Example
In a game we select a ball from a box containing W white, B black and
Y yellow balls. The owner of the box, who is the banker of the game, does
not tell us the exact numbers of W, B and Y. He or she only informs us
that W+ B+ Y =100 and W = B € [20,25]. Let ¢ be a random
variable defined by

1 if we get a white ball;
= 0 if we get a yellow ball;
—1 if we get a black ball.

Problem: how to measure a loss X = ¢(¢&) for a given function ¢ on R.
We know that the distribution of ¢ is

_pl 0 il, with uncertainty: p €[u, ] = [0.4,0.5].
3 1=-p 5 =

Thus the robust expectation of X = ¢({) is

E[¢(Z)] := sup Ep[p(C)]
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Example
A more general situation is that the banker of a game can choose among
a set of distributions {F (0, A) } ac5(Rr)0co of a random variable ¢ . In this
situation the robust expectation of a risk position ¢(¢) for some

(S CL,'p(]R) is

E[¢(Z)] := SUP fo P(x)F (6, dx).
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Prove that a functional [E satisfies sublinearity if and only if it satisfies
convexity and positive homogeneity.

O

| A\

Exercise.

Suppose that all elements in H are bounded. Prove that the strongest
sublinear expectation on H is

E®[X] := X* = sup X(w).
we)

Namely, all other sublinear expectations are dominated by [E®[-].

.
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Sec.2 Representation of a Sublinear Expectation

A sublinear expectation can be expressed as a supremum of linear
expectations.
Theorem

Let E a sublinear functional defined on (Q),H). Then 3 a family of linear
functionals {Ey : 0 € ©} on (QQ,H) s. t.

E[X] = maxEy[X] for X € H
0cO

Furthermore, if E is a sublinear expectation, then each Ey is a linear
expectation.
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e Q={E:0€0}:=
{the family of all linear functionals dominated byE} .
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e Q={E:0€0}:=
{the family of all linear functionals dominated byE} .

e @ is non empty:
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e Q={E:0€0}:=

{the family of all linear functionals dominated byE} .
e @ is non empty:
e Given X € H, L = {aX : a € R}, a subspace of H.
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e Q={E:0€0}:=
{the family of all linear functionals dominated byE} .
e @ is non empty:
e Given X € H, L = {aX : a € R}, a subspace of H.
o /[aX]:= aE[X], Va€ R
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e Q={E:0€0}:=

{the family of all linear functionals dominated byE} .
Q is non empty:

Given X € H, L ={aX : a € R}, a subspace of H.
laX] := aE[X], Vae R

I-] a linear functional on H s.t. | <IE on L.
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e Q={E:0€0}:=
{the family of all linear functionals dominated by[E} .
e @ is non empty:
e Given X € H, L = {aX : a € R}, a subspace of H.
o /[aX]:= aE[X], Va€ R
e /[] a linear functional on H s.t. / <E on L.
o

Since E|[-]is sublinear = ( Hahn-Banach theorem) 3 a linear
functional E on H s.t.
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e Q={E:0€0}:=

{the family of all linear functionals dominated byE} .
Q is non empty:

Given X € H, L ={aX : a € R}, a subspace of H.
laX] := aE[X], Vae R

I-] a linear functional on H s.t. | <IE on L.

Since E|[-]is sublinear = ( Hahn-Banach theorem) 3 a linear
functional E on H s.t.

@ E=/onlLand E<E onH.
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e Q={E:0€0}:=

{the family of all linear functionals dominated byE} .
Q is non empty:

Given X € H, L ={aX : a € R}, a subspace of H.
laX] := aE[X], Vae R

I-] a linear functional on H s.t. | <IE on L.

Since E|[-]is sublinear = ( Hahn-Banach theorem) 3 a linear
functional E on H s.t.

E=1/onland E<EonH.
This linear functional is dominated by [E such that E[X] = E[X].
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o Eg[X] := supgep Eo[X] for X € H. Clearly Eg = E.
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o Eg[X] := supgep Eo[X] for X € H. Clearly Eg = E.

o If E is monotone, then for each X > 0,

E[X] = —E[-X] > —~E[-X] > 0.
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o Eg[X] := supgep Eo[X] for X € H. Clearly Eg = E.
o If [E is monotone, then for each X > 0,
E[X] = —E[-X] > —=E[-X] > 0.

o If [E is constant preserving then for each ¢ €R,
—Elc] = E[—c] < E[—¢] = —c and E[c] < E[c] = ¢, so we get
E[c] = c.
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o Eg[X] := supgep Eo[X] for X € H. Clearly Eg = E.

o If E is monotone, then for each X > 0,
E[X] = —E[-X] > —=E[-X] > 0.

o If [E is constant preserving then for each ¢ €R,
—Elc] = E[—c] < E[—¢] = —c and E[c] < E[c] = ¢, so we get
E[c] = c.

@ The proof is complete.
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Remark.

It is important to observe that the above linear expectation Eg is only
“finitely additive”. A sufficient condition for the o-additivity of Ey is to
assume that IE[X;] — 0 for each sequence {X;}?; of H such that
Xi(w) | 0 for each w. In this case, it is clear that Eg[X;] — 0. Thus we
can apply the well-known Daniell-Stone Theorem (see Theorem
—TheoremDL in Appendix B) to find a o-additive probability measure Py
on (Q,0(H)) such that

Ey[X] :/QX(w)dPe, X e

The corresponding model uncertainty of probabilities is the subset

{Py : 6 € ®}, and the corresponding uncertainty of distributions for an
n-dimensional random vector X in H is

{Fx(0,A) == Py(X € A): Ae B(R")}. O
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In many situation, we may concern the probability uncertainty, and the
probability maybe only finitely additive. So next we will give another
version of the above representation theorem.

Let Pr be the collection of all finitely additive probability measures on
(Q), F), we consider L (Q), F) the collection of risk positions with finite
values, which consists risk positions X of the form

N
X(w> = ZXiIA,-((U>, xi€R, Aje F,i=1,---,N.
i=1

It is easy to check that, under the norm |||, L& (Q, F) is dense in
L*®(Q, F). For a fixed Q@ € Pr and X € LF (), F) we define

Eq[X] = Eo[;XilA,-(w)] = ;x,-Q(A,-) = /QX(W)Q(C’W)-

Eq : Ly (Q), F) — Ris a linear functional. It is easy to check that Eg
satisfies (i) monotonicity and (ii) constant preserving. It is also continuous
under || X|| -

|Eq[X]| < sup (X (@) = 11Xl -
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Since ILg’ is dense in IL® we then can extend Eq from Iy to a linear
continuous functional on L®(Q), F).

Proposition.
The linear functional Eg[-] :IL®(Q), F) — R satisfies (i) and (ii). Inversely
each linear functional 7(-) :IL*°(Q, F) — R satisfying (i) and (ii) induces
a finitely additive probability measure via Q,;(A) =1(la), A€ F. The
corresponding expectation is 7 itself

100 = [ X(@)@y(dw)
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A sublinear expectation [E has the following representation: there exists a
subset Q C Pr, such that

E[X] = sup Eg[X] for X € H.
QeQ
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Proof.
By Theorem —t1, we have

E[X] = gug Eyp[X] for X € H,
€

where Ey is a linear expectation on H for fixed 6 € ©.
We can define a new sublinear expectation on IL®(Q,c(H)) by

Eg[X] :=inf{B[Y];Y > X,Y € H}.

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Proof.

It is not difficult to check that IEg is a sublinear expectation on
L®(Q,0(H)), where o(H) is the smallest o-algebra generated by H. We
also have £y < IEy on H, by Hahn-Banach theorem, Ey can be extended
from H to L°(Q), o (H)), by Proposition —prop1, there exists Q € P,
such that

Eg[X] = Eq[X] for X € H.

So there exists @ C P, such that

E[X] = sup Eg[X] for X € H.
QeQ
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Prove that [Eg is a sublinear expectation. O
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Sec.3 Distributions, Independence and Product Spaces

Definition

Let X7 and X5 be two n—dimensional random vectors defined on nonlinear
expectation spaces (1, H1,E1) and (Qo, Ha, Ey), respectively. They are
called identically distributed, denoted by X 4 Xo, if

Eq1[p(X1)] = E2[p(X2)] for ¢ € Cpijp(R").

It is clear that X3 4 X if and only if their distributions coincide. We say
that the distribution of Xj is stronger than that of X; if
E1[¢(X1)] > ]Eg[(p(Xg)], for each Q< C[_,'p(IR").
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Remark.

. . d T .
In the case of sublinear expectations, X; = X implies that the uncertainty
subsets of distributions of X7 and X, are the same, e.g., in the framework
of Remark —r1,

{FX1(91,~) : 91 € @1} = {FX2(92,-) : 92 € @2}
Similarly if the distribution of Xj is stronger than that of X5, then

{FX1(91,-) 10, € @1} D) {FX2(92,-) 10, € @2}.

The distribution of X € 'H has the following four typical parameters:
i :=E[X], Y= —E[-X], o2 :=E[X?], ¢®:= —E[-X?].

The intervals [u, ji] and [¢?, 52| characterize the mean-uncertainty and
the variance-uncertainty of X respectively.

A natural question is: can we find a family of distribution measures to
represent the above sublinear distribution of X7 The answer is affirmative:

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct




Let (O, H,E) be a sublinear expectation space. Let X € H? be given.
Then for each sequence {¢,}% 1 C Cpjp(RY) satisfying ¢, | 0, we have
Efpn(X)] 1 0.
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Proof.
For each fixed N > 0,

QD,,(X) < k,l7v = (Pl(x)|[|x|>N] < k,iv aF gol(l)il)l)d for each x € Rdxm’

where k) = max|, <y @n(x). We then have
1
Elpn(X)] < kn' + 15 E[gr(X)|X]°].

It follows from ¢, | 0 that k)Y | 0. Thus we have
limp—co E[@n(X)] < SE[@1(X)|X]]. Since N can be arbitrarily large, we
get E[pn(X)] | 0. O

.
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Lemma

Let (), ’H,E) be a sublinear expectation space and let Fx[¢] := E[¢(X)]
be the sublinear distribution of X € H9. Then there exists a family of
probability measures {Fp} o defined on (RY, B(RY)) such that

x|p] = sup/ x)Fp(dx), ¢ € Crjp(R ) (2)

v
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Proof.

By the representation theorem, for the sublinear expectation Fx [¢]
defined on (R?, Cp;»(IR")), there exists a family of linear expectations
{fatoco on (RY, C1;p(IR")) such that

Fx[g] = Sggfa[q)], ¢ € CLip(R").

By the above lemma, for each sequence {@,}% ; in Cprjp(IR") such that
®n | 0on RY, Fx[g,] | 0, thus fy[@,] | O for each 8 € @. It follows from
Daniell-Stone Theorem (see Theorem —TheoremDL in Appendix B) that,
for each 6 € ©, there exists a unique probability measure Fy(+) on

(R?, 0(Cp.Lip(R?)) = (R, B(R?)), such that fy[p] = [ps ¢(x)Fo(dx).
Thus we have (—Distr). O

v
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The above lemma tells us that in fact the sublinear distribution [Fx of X
characterizes the uncertainty of distribution of X which is an subset of
distributions {Fy}ycq- O

The following property is very useful in our sublinear expectation-theary.
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Proposition.

Let (Q),H,E) be a sublinear expectation space and X, Y be two random
variables such that E[Y] = —E[—Y], i.e., Y has no mean-uncertainty.
Then we have

E[X +aY] =E[X]+aE[Y] forae€R.

In particular, if E[Y] =E[-Y] =0, then E[X +aY] = E[X]. O
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We have
ElaY] =a"E[Y]+a E[-Y] =aTE[Y] —a E[Y] = aE[Y] for a € R.
Thus

E[X +aY] < E[X]+E[aY] = E[X]+aE[Y] = E[X] — E[-aY] < E[X +
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A more general form of the above proposition is:

We make the same assumptions as the previous proposition. Let E be a
nonlinear expectation on (Q), H) dominated by the sublinear expectation
E in the sense of (??). If E[Y]| = E[— Y], then we have
E[aY] = aE[Y] = «E[Y], « €R (3)
as well as
E[X +aY]=E[X]+aE[Y], X €H, a €R. (4)
In particular
E[X+c] =E[X]+c¢, forceR. (5)
L]
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We have

and

E[Y] = —E[-Y]< -
E[0] — E[- Y] < E[Y].

T
|
=

From the above relations we have E[Y] = E[Y]
(—el.3.1). Still by the domination,

Il
[
i
|
=
[o5)
S
o
—+
=0
c
(7]

E[X +aY]-E[X] <E
E[X] —E[X +aY] <E

Thus (—el.3.2) holds.
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Definition

A sequence of n-dimensional random vectors {7} ; defined on a
sublinear expectation space (Q), H, [E) is said to converge in distribution
(or converge in law) under E if for each ¢ € Cp1jp(IR"), the sequence

{E[¢(ni)]}:=, converges.
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The following result is easy to check.

Proposition.

Let {#;}-, converge in law in the above sense. Then the mapping
F[-] : Cp.1ip(R") — R defined by

Flg] := lim E[p(n;)] for ¢ € Cprip(R")

1—00

is a sublinear expectation defined on (R", Cp 1jp(IR")). O
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The following notion of independence plays a key role in the nonlinear
expectation theory.

Definition

In a nonlinear expectation space (Q),H,E), a random vector Y € H" is
said to be independent from another random vector X € H™ under E[:]
if for each test function ¢ € Cpjp(R™"") we have

Ef[p(X, Y)] = E[E[p(x, Y)]x=x]-
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Remark.

In particular, for a sublinear expectation space (QQ, H,E), Y is
independent from X means that the uncertainty of distributions

{Fy(6, ) : 0 € ®} of Y does not change after the realization of X = x.
In other words, the “conditional sublinear expectation” of Y with respect
to X is E[@(x, Y)]x=x. In the case of linear expectation, this notion of
independence is just the classical one. Ol

v
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It is important to note that under sublinear expectations the condition “Y
is independent from X" does not imply automatically that “X is
independent from Y". Ol
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Example

We consider a case where E is a sublinear expectation and X, Y € H are
identically distributed with IE[X] = E[—X] =0 and

72 = E[X?] > ¢® = —E[—X?]. We also assume that

E[|X]] = E[XT +X~] >0, thus E[X*] = 3E[|X|+ X] =1E[|X]] > 0.
In the case where Y is independent from X, we have

E[XY?] = E[X1? — X ¢?] = (¢ — c®)E[XT] > 0.

But if X is independent from Y, we have

E[XY?] = 0.
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The independence property of two random vectors X, Y involves only the
“joint distribution” of (X, Y). The following result tells us how to
construct random vectors with given “marginal distributions” and with a
specific direction of independence.

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Definition.
Let (Q;, H;,E;), i = 1,2 be two sublinear (resp. nonlinear) expectation
spaces. We denote

Hi @ Hp := {Z(w1,w2) = ¢(X(w1), Y(w2)) : (w1, w2) € Q1 X Oy,
(X, Y) € HT X Hg, (NS CLip(Rm+n)},

and, for each random variable of the above form
Z(w1,w2) = ¢(X(w1), Y(w2)),

(E1 ® E)[Z] := E1[¢(X)], where §(x) := Ea[p(x, Y)], x € R™.

Ol

v
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Definition (continue) .
It is easy to check that the triple (Q1 x O, H1 ® Ha,E1 ® Ey) forms a
sublinear (resp. nonlinear) expectation space. We call it the product
space of sublinear (resp. nonlinear) expectation spaces ()1, H1, E1) and
(Q2, H2, [E3). In this way, we can define the product space

JT1Q QHi,QE:)
i=1 =1 =1

of given sublinear (resp. nonlinear) expectation spaces (Q;, H;, E;),
i=1,2,---,n. In particular, when (Q;, H;, E;) = (Q1,H1, E1) we have
the product space of the form (Qf, HY", E}"). ]

v
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Let X, X be two n-dimensional random vectors on a sublinear (resp.
nonlinear) expectation space (), H,IE). X is called an independent copy

of X if X £ X and X is independent from X.
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The following property is easy to check.

Proposition.

Let X; be an n;-dimensional random vector on sublinear (resp. nonlinear)
expectation space (Q);, H;,[E;) for i =1,---,n, respectively. We denote

»/i(wll-.- ,(Un) = X,'((,(J,‘), | = 1’ ,n.

Then Y;, i=1,---,n, are random vectors on

(IT1 Q) @71 Hi, @71 E;). Moreover we have Y; 4 X;and Yi, 1 is
independent from (Yy,---,Y;), for each /.

Furthermore, if (Q;, H;,IE;) = (Q1,Hy, Eq) and X; < Xy, for all i, then

we also have Y; 4 Y1. In this case Y; is said to be an independent copy
of Yifori=2,---,n. []

v
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Remark.

In the above construction the integer n can be also infinite. In this case
each random variable X € ®52; H; belongs to
(TT, O, ®%_; Hi, ®*_, ;) for some positive integer k < co and

k

éE,[X] = ®]E,[X]

i=1

| D
A\

Remark.

The situation “Y is independent from X" often appears when Y occurs
after X, thus a robust expectation should take the information of X into
account. L]

v
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Suppose X, Y € H and Y is an independent copy of X. Prove that for
each a€ R, b € R a+ (b, Y) is an independent copy of a+ (b, X). [J
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In a sublinear expectation space we have:

Example

We consider a situation where two random variables X and Y in H are
identically distributed and their common distribution is

Fx[g] = Fylg] =sup | ¢(y)F(6,dy) for ¢ € Cijp(R),
6e® /R
where for each 0 € ©, {F (0, A)} acp(r) is a probability measure on
(R, B(R)). In this case, " Y is independent from X" means that the joint
distribution of X and Y is

Fx y[y] = sup sup / P(x,y)F(02,dy)| F(61,dx) fory € CL,-,,(IR2 )
01 €0 R 0,€0 R

v
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Let (O3, H,E) be a sublinear expectation space. Prove that if

El¢(X)] =E[p(Y)] for any ¢ € Cp,1jp, then it still holds for any

@ € CyLip- That is, we can replace ¢ € (1, in Definition —d1 by

(RS Cb,Lip- []
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Sec.4 Completion of Sublinear Expectation Spaces

Let (O3, H,E) be a sublinear expectation space. We have the following

useful inequalities.
We first give the following well-known inequalities.

Lemma
Forr>0and1<p,q<00W/th -I-l =1, we have

la+ b|” < max{1,2"1}(|a|" + |b|") fora,bER, (6)

lal?__ [bl*
bl < : 7
b= ==+ (7)
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Proposition
For each X, Y €H, we have

E[IX + Y["] < 2 H(E[|X|"T+ E[| Y|]), (8)
E[|XY]] < (E [IXI”])”” (E[|Y|)*9, (9)
(E[IX + Y[P)P < (E[IXIP])Y? + (E[| YIP)YP, (10)

where r> 1 and 1 < p, g < oo with ,l)—i-%:l.
In particular, for 1 < p < p/, we have (E[|X|P])Y/? < (E[|X|P)V/¢'. [

v
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The inequality (—ee04.5) follows from (—ee04.3).
For the case E[|X|?] - E[|Y|9] > 0, we set

X Y

C= ExE e T E®vIYe

By (—ee04.4) we have

Elleyl) < 50+ 1) < gE0) 1 gy
— 24l
P q

Thus (—ee04.6) follows.
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Proof (continue) .
For the case E[|X|?] - E[|Y|9] = 0, we consider [E[|X|P] + ¢ and
E[|Y|9] + € for ¢ > 0. Applying the above method and letting ¢ — 0, we
get (—ee04.6).
We now prove (—ee04.7). We only consider the case E[|X + Y|P] >0
E[|X + Y[P] =E[|X+ Y|-|X+ Y[P]
<E[X]- X+ YP+E[Y]- X + V[P
< (E[IX|PDYP - (B[ X + Y|P~Da])H/a
+ (B[ YIPDYP - (E[|X + Y|P~DI])/a.

—_— —

Since (p — 1)g = p, we have (—ee04.7).
By(~ee04.6), it is easy to deduce that (E[|X|P])}/? < (E[|X|P])1/? for
1<p<p.

Ol

v
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For each fixed p > 1, we observe that Hf = {X € H, E[|X|P] =0} is a
linear subspace of H. Taking H§ as our null space, we introduce the
quotient space H /HE. Observing that, for every {X} € H/Hf with a
representation X € H, we can define an expectation E[{X}]| := E[X]
which is still a sublinear expectation. We set [ X||, := (1EHX|P])% By
Proposition 77, it is easy to check that ||-[|, forms a Banach norm on
H/HE. We extend H/HE to its completion H,, under this norm, then
(Hp, ||l ;) is a Banach space. In particular, when p =1, we denote it by

AR
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For each X € 'H, the mappings
X"(w):H—H and X (w):H —H
satisfy
XF=YH < IX=Y] and X" = Y| = [(=X)* = (=Y)*] < [X = V],

Thus they are both contraction mappings under |||, and can be
continuously extended to the Banach space (7, I-11,,)-

We can define the partial order “>" in this Banach space.
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Definition

An element X in (7:{, ||-]|) is said to be nonnegative, or X >0, 0 < X,
if X =XT. Wealsodenoteby X > Y,or Y <X, ifX—Y >0.
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It is easy to check that X > Y and Y > X imply X = Y on

(Foo II-11,,)-
For each X, Y € H, note that

[E[X] - E[Y]| <E[X - Y[] < [[X = Y]],

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



We then can define

Definition

The sublinear expectation [E[-] can be continuously extended to (#,, 1-1l,,)

on which it is still a sublinear expectation. We still denote by (Q}, 7:(,,,113).
Let (Q),’H,E1) be a nonlinear expectation space. [E; is said to be
dominated by E if

Ei[X] —Ei[Y] <E[X - Y] for X,Y € H.

From this we can easily deduce that |E;[X] — E;[Y]| < E[|X — Y]], thus
the nonlinear expectation IE1[-] can be continuously extended to
(Hp, lI1l,) on which it is still a nonlinear expectation. We still denote by

(Q, Hp, Ey).
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Remark.

It is important to note that Xy, -, X, € H does not imply

o(X1, -, Xn) € H for each ¢ € Cpip(R™). Thus, when we talk about the
notions of distributions, independence and product spaces on (Q), 7:{,IE),
the space Cpjp(IR") is replaced by Cp1jp(IR") unless otherwise stated. [

Exercise.

Prove that the inequalities (—ee04.5),(—ee04.6),(—ee04.7) still hold for
(), H,E). O

v
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Sec.5 Coherent Measures of Risk

Let the pair (), H) be such that Q) is a set of scenarios and H is the
collection of all possible risk positions in a financial market.

If X € H, then for each constant ¢, X V¢, X A c are all in H. One
typical example in finance is that X is the tomorrow's price of a stock. In
this case, any European call or put options with strike price K of forms
(S—K)", (K—S)" arein H.
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A risk supervisor is responsible for taking a rule to tell traders, securities
companies, banks or other institutions under his supervision, which kind of
risk positions is unacceptable and thus a minimum amount of risk capitals
should be deposited to make the positions acceptable. The collection of
acceptable positions is defined by

A ={X € H: X is acceptable}.

This set has meaningful properties in economy.
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Definition

A set A is called a coherent acceptable set if it satisfies
(i) Monotonicity:

XeA Y>X imply YeA

(i) 0c Abut —1 ¢ A.

(iii) Positive homogeneity
X € A implies AX € A for A > 0.
(iv) Convexity:

X,YeA imply aX+(1—a)Y € A fora € [0,1].
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Remark.
(iii)+(iv) imply
(v) Sublinearity:

X,Ye A= uX+vY e A foruv>0.

If the set A only satisfies (i),(ii) and (iv), then A is called a convex
acceptable set. [
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In this section we mainly study the coherent case. Once the rule of the
acceptable set is fixed, the minimum requirement of risk deposit is then
automatically determined.

Definition
Given a coherent acceptable set .4, the functional p(-) defined by

p(X) =pa(X):=inff{meR: m+Xec A}, XeH

is called the coherent risk measure related to A.
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It is easy to see that

p(X +p(X)) = 0.

Proposition.

p(-) is a coherent risk measure satisfying four properties:

(i) Monotonicity: If X > Y then p(X) < p(Y).
(ii) Constant preserving: p(1) = —p(—1) = —1.
(iii) Sub-additivity: For each X, Y € H, p(X+Y)

< p(X) +p(¥).
(iv) Positive homogeneity: p(AX) = Ap(X) for A > 0.

Ol

v
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Proof.
(i), (ii) are obvious.
We now prove (iii). Indeed,
p(X+Y)=inf{meR: m+ (X+Y)e A}
=inf{m+n:mneR, (m+X)+(n+Y)e A}
<inf{meR: m+Xec A} +inf{neR: n+Y € A}
=p(X) +p(Y).

To prove (iv), in fact the case A = 0 is trivial; when A > 0,

p(AX) =inf{meR: m+AX € A}
=Ainf{neR: n+ X € A} = Ap(X),

where n = m/\. ]
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Obviously, if IE is a sublinear expectation, we define p(X) := E[—X], then
p is a coherent risk measure. Inversely, if p is a coherent risk measure, we
define E[X] := p(—X), then E is a sublinear expectation.

Let p(-) be a coherent risk measure. Then we can inversely define

Ap=1{X € H:p(X) <0}.

Prove that A, is a coherent acceptable set. [
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The sublinear expectation is also called the upper expectation (see Huber
(1981) [?] in robust statistics), or the upper prevision in the theory of
imprecise probabilities (see Walley (1991) [?] and a rich literature provided
in the Notes of this book). To our knowledge, the Representation Theorem
—t1 was firstly obtained for the case where Q) is a finite set by [?], and this
theorem was rediscovered independently by Artzner, Delbaen, Eber and
Heath (1999) [?] and then by Delbaen (2002) [?] for the general Q).
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A typical example of dynamic nonlinear expectation, called g—expectation
(small g), was introduced in Peng (1997) [?] in the framework of
backward stochastic differential equations. Readers are referred to Briand,
Coquet, Hu, Mémin and Peng (2000) [?], Chen (1998) [?], Chen and
Epstein (2002) [?], Chen, Kulperger and Jiang (2003) [?], Chen and Peng
(1998) [?] and (2000) [?], Coquet, Hu, Mémin and Peng (2001) [?] (2002)
[?] . Jiang (2004) [?], Jiang and Chen (2004) [?, ?], Peng (1999) [?] and
(2004) [?], Peng and Xu (2003) [?] and Rosazza (2006) [?] for the further
development of this theory.
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It seems that the notions of distributions and independence under
nonlinear expectations were new. We think that these notions are perfectly
adapted for the further development of dynamic nonlinear expectations.
For other types of the related notions of distributions and independence
under nonlinear expectations or non-additive probabilities, we refer to the
Notes of the book [?] and the references listed in Marinacci (1999) [?] and
Maccheroni and Marinacci (2005) [?]. Coherent risk measures can be also
regarded as sublinear expectations defined on the space of risk positions in
financial market. This notion was firstly introduced in [?]. Readers can be
referred also to the well-known book of Féllmer and Schied (2004) [?] for
the systematical presentation of coherent risk measures and convex risk
measures. For the dynamic risk measure in continuous time, see [?] or [?],
Barrieu and El Karoui (2004) [?] using g-expectations. Super-hedging and
super pricing (see El Karoui and Quenez (1995) [?] and El Karoui, Peng
and Quenez (1997) [?]) are also closely related to this formulation.
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Law of Large Numbers and Central Limit Theorem
(label)ch2 In this chapter, we first introduce two types of fundamentally
important distributions, namely, maximal distribution and G-normal
distribution, in the theory of sublinear expectations. The former
corresponds to constants and the latter corresponds to normal distribution
in classical probability theory. We then present the law of large numbers
(LLN) and central limit theorem (CLT) under sublinear expectations. It is
worth pointing out that the limit in LLN is a maximal distribution and the
limit in CLT is a G-normal distribution.
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Sec. Maximal Distribution and G-normal Distribution

We will firstly define a special type of very simple distributions which are
frequently used in practice, known as “worst case risk measure”.

Definition
(maximal distribution) (label)Prop-G1 copy(1)A d-dimensional random
vector # = (11, -+ ,14) on a sublinear expectation space (0, H,E) is
called maximal distributed if there exists a bounded, closed and convex
subset I' C R? such that

Elg(n)] = max¢(y).

yerl
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Remark.
Here I' gives the degree of uncertainty of #. It is easy to check that this
maximal distributed random vector 7 satisfies

ary%—bﬁg (a+b)y forab>0,

where 7] is an independent copy of 7. We will see later that in fact this
relation characterizes a maximal distribution. Maximal distribution is also
called “worst case risk measure” in finance. my
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When d =1 we have I' = [y, 7], where i = E[] and y = —E[—7].
The distribution of 7 is B

F,[¢] = E[p(1)] = sup ¢(y) for ¢ € Cpip(R).

HSy<jfi
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Recall a well-known characterization: X < N(0,X) if and only if

(label)ch2elaX + bX £ /a2 + b2X for a,b > 0, (11)

where X is an independent copy of X. The covariance matrix X is defined
by ¥ = E[XXT]. We now consider the so called G-normal distribution in
probability model uncertainty situation. The existence, uniqueness and
characterization will be given later.
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Definition

(G-normal distribution) (label)Def-Gnormal copy(2) A d-dimensional
random vector X = (X1,---,Xy)" on a sublinear expectation space
(Q),'H,E) is called (centralized) G-normal distributed if X? € H for
i=1,---,d and

aX +bX L /22 4+ b2X fora b>0,

where X is an independent copy of X.
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Noting that IE[X + X] = 2E[X] and E[X + X] = E[v2X] = V2E[X],
we then have E[X] = 0. Similarly, we can prove that [E[—X] = 0. Namely,
X has no mean-uncertainty. [
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The following property is easy to prove by the definition.

Proposition.

(label)GCDLet X be G-normal distributed. Then for each A € R™*9, AX
is also G-normal distributed. In particular, for each a € RY, (a, X) is a

1-dimensional G-normal distributed random variable, but its inverse is not
true (see Exercise —ex1). O
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We denote by S(d)(label)sd the collection of all d x d symmetric
matrices. Let X be G-normal distributed and # be maximal distributed
d-dimensional random vectors on (Q), H,E). The following function is

very important to characterize their distributions:

G(p, A) = 113[% (A, X)+ (p,m)],  (p,A) € RY x S(d).(abel)e313

(12)

It is easy to check that G is a sublinear function monotonic in A € S(d) in
the following sense: for each p, p € RY and A, A € S(d)

G(p+pA+A) <G(p,A)+G(pA),
G(Ap,AA) =AG(p,A), YA =0,
G(p,A) >G(pA), ifA>A.

Clearly, G is also a continuous function.
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By Theorem —t1 in Chapter —chl, there exists a bounded and closed
subset T C RY x R¥*? such that

(label)ch2e2G(p, A) = sup [-tr[AQQT]+ (p,q)] for (p, A) € RY x S(d)
(q,Q)eT
(14)
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We have the following result, which will be proved in the next section.

Proposition

(label)Prop-Gnorm copy(1) Let G : R x S(d) — R be a given sublinear
and continuous function, monotonic in A € 5(d) in the sense of (—e314).
Then there exists a G-normal distributed d-dimensional random vector X
and a maximal distributed d-dimensional random vector 7 on some
sublinear expectation space (Q), H, E) satisfying (—e313) and

(aX + bX,a%n + b?7f) = (Va2 + b2X, (> + b?)y), fora, b > 0, (label)e31
(15)
where (X,7) is an independent copy of (X, 7). O

v
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Definition
The pair (X, ) satisfying (—e311) is called G-distributed.

In fact, if the pair (X, 7) satisfies (-e311), then

aX + bX £ /22 + B2X, an+ bij < (a+ b)y for a, b > 0.

Thus X is G-normal and # is maximal distributed. ]
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The above pair (X, #) is characterized by the following parabolic partial
differential equation (PDE for short) defined on [0,00) x R x R :

d:u — G(Dyu, D2u) = 0, (label)ee03 (16)
with Cauchy condition u|;—¢ = ¢, where G : RY x S(d) — R is defined

by (—e313) and D?u = (aﬁl_xj ),J 1 Du= (05,u)¢_,. The PDE (—ee03) is
called a G-equation.
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In this book we will mainly use the notion of viscosity solution to describe
the solution of this PDE. For reader’s convenience, we give a systematical
introduction of the notion of viscosity solution and its related properties
used in this book (see Appendix C, Section 1-3). It is worth to mention
here that for the case where G is non-degenerate, the viscosity solution of
the G-equation becomes a classical C12 solution (see Appendix C, Section
4). Readers without knowledge of viscosity solutions can simply understand
solutions of the G-equation in the classical sense along the whole book.
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Proposition.

For the pair (X, 1) satisfying (—e311) and a function ¢ € C;;,(R? x RY),
we define

u(t,x,y) :=E[p(x + ViX,y + tn)], (t,x,y) € [0,00) X RY x RY.
Then we have

u(t+s,x,y) =E[u(t,x+sX,y+sy)], s>0.(label)e315 (17)
[]

v
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Proposition (continue).

We also have the estimates: for each T > 0, there exist constants
C, k > 0 such that, for all t,s € [0, T] and x,%,y, 7 € RY,

u(t, x,y) —u(t,%,y)| < C(L+|x|*+y|* + =¥+ |7[*) (Ix = | + |y — 7I)
(18)
and

lu(t,x,y) — u(t+s,%,y)| < C(1+ |x|*+ |y|*)(s+ |s|*?).(label) €05
(19)
Moreover, u is the unique viscosity solution, continuous in the sense of
(—e04) and (—e05), of the PDE (—ee03). O

v
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Proof.
Since

Elp(x + vVtX,y + tn)] = E[p(X + VtX,y + t)]

< Elp(x+VtX,y +tn) — o(x + VX, 7 + tn)]

S E[G(L+ X<+ 75+ IxI* + Iy + % + |y])]
X (Ix=x|+1ly—7l)

< CAA XM+ Iy + %"+ [71) (Ix = x| + |y = 7]

u(t,x,y) —u(t,x,y)

~

we have (—e04).

0J

v
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Proof (continue).

Let (X,7) be an independent copy of (X, 7). By (-e311),

u(t+s,xy) =E[p(x+Vt+sX,y+ (t+5s)q)]
E[p(x + VsX +VtX,y + s+ ti])]

E[E[p(x 4+ v/sx + VtX,y + sy + t7)] z.7)=(x.)]
Elu(t,x +v/sX,y +sn)],

we thus obtain (-e315). From this and (—e04) it follows that

u(t+s,x,y) —u(t,x,y) =Eu(t,x+ VsX,y +sn) —u(t,x,y)]
< E[G(L+ x|+ y[“ + X+ ) (Vs|X| + slq])],

thus we obtain (—e05).
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Proof. (continue) .

Now, for a fixed (t,x,y) € (0,00) x RY x RY, let

¥ € C*([0,00) x R? x R?) be such that ¢ > u and

Y(t,x,y) = u(t,x,y). By (—e315) and Taylor's expansion, it follows that,
for 6 € (0, 1),

0 <E[p(t—6,x+VoX,y +6n) — ¢(t,x,y)]
< C(6%/2 4 62) —9:p(t,x,y)0

FEUDA (3 1), X) VBt (Dyp(tx,y),1) 6+ 5 (D29t x, )X, X))

~

= —0:y(t,x,y)0 + E[(Dy¢(t,x,y), 1) + % (DZp(t, x, )X, X)]6 + C(6°
= —3:(t,x,¥)0 + 6G(Dyw, D2p)(t,x,y) + C(8%/2 4 6?),
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Proof. (continue) .

from which it is easy to check that

[0: — G(Dyy, DZ9)](t,x,y) < 0.

Thus u is a viscosity subsolution of (—ee03). Similarly we can prove that u

is a viscosity supersolution of (—ee03).

Ol
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Corollary

(label)gG-Plcoro copy(1) If both (X,7) and (X, 1) satisfy (—e311) with
the same G, i.e.,

G(p,A) = EL3 {AX, X) + (p )] = EL (A%, X) + {p, )] for (p, A) € R

then (X, 1) 4 (X, 7). In particular, X 2 _X.
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Proof
For each ¢ € Cpjp(RY x RY), we set

u(t,x,y) .= E[lp(x +VtX,y + tn)],
5(t,%,y) = Elg(x + ViX,y + )], (t,%,y) € [0,00) X RY x R.

By Proposition —gG-P1 copy(1), both u and @ are viscosity solutions of the
G-equation (—ee03) with Cauchy condition u|s=g = U|t=0 = ¢. It follows
from the uniqueness of the viscosity solution that u = &. In particular,

E[p(X,n)] = E[p(X,7)].

Thus (X,7) < (X, 7). O
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Corollary

(label)GvlLet (X,n) satisfy (—e311). For each ¢ € Cpj»(RY) we define

v(t,x) = E[p((x +VtX +tn)], (t,x) € [0,00) x RY. (label)e320 (20)
Then v is the unique viscosity solution of the following parabolic PDE:
9:v — G(Dyv,D2v) =0,  v|i—o = .(label)e318 (21)

Moreover, we have v(t,x +y) = u(t, x,y), where u is the solution of the
PDE (-ee03) with initial condition u(t,x,y)|t=0 = ¥(x +y).
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Example.
Let X be G-normal distributed. The distribution of X is characterized by

u(t,x) = Elp(x +viX), ¢ € Cuip(RY).

In particular, E[@(X)] = u(1,0), where u is the solution of the following
parabolic PDE defined on [0, 00) x R :

(label)e03d,;u — G(D?u) =0, uli—o = @, (22)
where G = Gx(A) : S(d) — R is defined by
G(A) = %IE[(AX,X)], A€ S(d).

The parabolic PDE (—€03) is called a G-heat equation.
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Example (continue) .

It is easy to check that G is a sublinear function defined on S(d). By
Theorem —t1 in Chapter —chl, there exists a bounded, convex and closed
subset ® C S(d) such that

(label) GaChIIZE[(AX, X)] = G(A) = ~ sup tr[AQ], A€ S(d). (23)
2 2 QO

Since G(A) is monotonic: G(A1) > G(Ap), for A1 > Ay, it follows that
@CS,(d)={0€5(d):6>0} ={BBT : Bc R},

where IR*9(label)splusd is the set of all d x d matrices. If @ is a
singleton: ® = {Q}, then X is classical zero-mean normal distributed
with covariance Q. In general, ® characterizes the covariance uncertainty
of X. We denote X < N({0} x ©) (Recall equation (—ch2e2), we can set
(9,Q) € {0} x ©).

Ol
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Example (continue) .

When d = 1, we have X < N({0} x [¢?,5?]) (We also denoted by
X < N0, [¢2,52])), where 72 = E[X?] and ¢2 = —E[-X?]. The
corresponding G-heat equation is

1
deu — 5 (O (@%u)" — 0 (@20) ) =0, uleco = g.

For the case g2 > 0, this equation is also called the Barenblatt
equation.
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In the following two typical situations, the calculation of E[¢(X)] is very
easy:

@ For each convex function ¢, we have

2
E[p(X)] m | 0@y en(-2)ay.

Indeed, for each fixed t > 0, it is easy to check that the function
u(t,x) := E[p(x + v/tX)] is convex in x:
u(t,ax + (1 - a)y) = Elp(ex + (1 — a)y + VX))
< aE[p(x + ViX)] + (1 — 2)E[p(x + VX))
=wau(t,x)+ (1 —a)u(t,x).
It follows that (92, u)~ = 0 and thus the above G-heat equation
becomes

62
2
atU == 7aXXU, U‘t:() = Q.
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@ For each concave function ¢, we have

2

E[g(X)] (y eXp(—yj)dy-

-l

In particular,
E[X] = E[-X] =0, E[X?]=0°, —E[-X?=/¢?

and
E[X*] = 3¢*, —E[-X*] = 3¢*.
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Example.

(label)examplel16 Let 7 be maximal distributed, the distribution of # is
characterized by the following parabolic PDE defined on [0,00) x RY :

deu— g(Du) =0, (label)e0l ul|i—o = ¢, (24)
where g = g, (p) : R — R is defined by

g(p) :=E[(p,7)], peR?
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Example (continue) .

It is easy to check that gj is a sublinear function defined on RY. By

Theorem —t1 in Chapter —chl, there exists a bounded, convex and closed

subset @ C RY such that

g(p) =sup (p,q), p <RI (label)e35
qe®

(25)

Ol

v
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Example (continue) .

By this characterization, we can prove that the distribution of # is given by

£ g] = Elo(n)] = sup p(v) = svp || 9(x)5,(dx), 9 € Cip(R?), labe
(26)

where 9, is Dirac measure. Namely it is the maximal distribution with the
uncertainty subset of probabilities as Dirac measures concentrated at ©.
We denote % el N(© x {0}) (Recall equation (-ch2e2), we can set
(g9,Q) € ©x {0}).
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Example (continue) .

In particular, for d =1,
g,(p) :=Elpy] = fip" —pp~, pER,

where i = E[n] and p = —IE[—#]. The distribution of 7 is given by
(—e003). We denote 5 4 N(u, ] x {0}). O
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Exercise.

(label)ex1 We consider X = (X1, X2), where Xi 2 N({0} x [o?,7°]) with
o > o, X is an independent copy of Xj. Show that

(1) For each a € R?, (a,X) is a 1-dimensional G-normal distributed
random variable.

(2) X is not G-normal distributed. O
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Exercise.

Let X be G-normal distributed. For each ¢ € CL,-p(IRd), we define a
function

u(t,x) = E[p(x + vtX)], (t,x) € [0,00) x R%.

Show that u is the unique viscosity solution of the PDE (—e03) with
Cauchy condition ul¢=0 = ¢. O
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Exercise.

(label)ex2 Let 77 be maximal distributed. For each ¢ € Cpjp(R?), we
define a function

u(t,y) == Elg(y + tn)], (t,y) € [0,00) x R,

Show that u is the unique viscosity solution of the PDE (—e01) with
Cauchy condition ul¢=0 = ¢. O
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Sec. Existence of G-distributed Random Variables

(label)c2s2 In this section, we give the proof of the existence of
G-distributed random variables, namely, the proof of Proposition
—Prop-Gnorm copy(1).

Let G : RY x S(d) — R be a given sublinear function monotonic in

A € S(d) in the sense of (—e314). We now construct a pair of
d-dimensional random vectors (X, ) on some sublinear expectation space
(Q, H, E) satisfying (—e313) and (—e311).
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For each ¢ € Cp;»(IR?9), let u = u? be the unique viscosity solution of the
G-equation (—ee03) with u?|;—o = ¢. We take Q=R H= CL,p( )
and w = (x,y) € € R?9. The corresponding sublinear expectation E[-] is
defined by E[&] = u?(1,0,0), for each & € H of the form

§(@0) = (@(x,¥)) (xy)ero € Crip(R??). The monotonicity and
sub-additivity of u? with respect to ¢ are known in the theory of viscosity
solution. For reader’s convenience we provide a new and simple proof in
Appendix C (see Corollary —Comparison and Corollary —Domination). The
constant preserving and positive homogeneity of IE[ | are easy to check.
Thus the functional E[-] : H — IR forms a sublinear expectation.

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



We now consider a pair of d-dimensional random vectors
(X,7)(@) = (x,y). We have

E[p(X,7)] = u?(1,0,0) for ¢ € Cpjp(R??).

In particular, just setting @o(x,y) = 4 (Ax,x) + (p,y), we can check that

1
u?(t,x,y) = G(p, At + 5 (Ax,x) + (p,y) -

We thus have

]E[% <A)?,>?> + (p,M] = u?(1,0,0) = G(p,A), (p,A) € RY xS(d).
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We construct a product space
(O,H,E)=(QxOQOHHEQE),

and introduce two pairs of random vectors

(X,T])((TJ;[,(TJQ) = (01, ()_(,17)((7]1,(7]2) = (09, ((:61’662) e Q) xQO.
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By Proposition —ppl in Chapter —chl, (X, 7) g (X, ) and (X, 1) is an
independent copy of (X, 7).

We now prove that the distribution of (X, 7) satisfies condition (—e311).
For each ¢ € Cp;,(IR??) and for each fixed A > 0, (%,7) € R?, since the
function v defined by v(t,x,y) := u?(At,x + v/Ax, 7 + Ay) solves exactly
the same equation (—ee03), but with Cauchy condition

V[tmo = (X + VA X 7+ A x ).

Thus
E[p(x+ VAX, 7+ An)] = v(1,0,0) = u?(A,%, 7).
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By the definition of E, for each t > 0 and s > 0,

E[p(VeX +/sX, t + sif)] = E[E[p(Vix + v/sX, ty + 571)] (x,)=(x.)]
= E[u? (s, VtX, ty)] = u*" ) (t,0,0)
= u?(t+5,0,0)
= E[p(Vt+sX,(t+s)y)].

Namely (v/tX ++/sX, tn + s7) 4 (Vt+sX,(t+s)y). Thus the
distribution of (X, 7) satisfies condition (—e311).
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From now on, when we mention the sublinear expectation space
(), H,E), we suppose that there exists a pair of random vectors (X, 1)
on (), H,E) such that (X,#) is G-distributed. O
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Exercise.

(label)exxeel Prove that IE[X3] > 0 for X < N({0} x [¢2,52]) with

o? < 2.

It is worth to point that E[¢(X)] not always equal to sup,2<,<s2 E-[@(X)]
for ¢ € Cj1ip(IR), where E, denotes the linear expectation corresponding
to the normal distributed density function N(0,0?). O

v
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Sec. Law of Large Numbers and Central Limit Theorem

Theorem

(Law of large numbers) Let {Y;}*, be a sequence of R9-valued
random variables on a sublinear expectation space Q,’H,IE). We assume

that Yii1 ol Y; and Yii1 is independent from {Y1,---,Y;} for each
i=1,2,---. Then {5,}%_, defined by

converges in law to a maximal distribution:

lim E[p(S,)] = E[p(y)], (label)e325 (27)

n—oo

for all p € C(IR9) with linear growth condition (|¢(x)| < C(1+ |x])),
where 17 is maximal distributed with

g(p) =E[(p,Y1)], pE€ ]Rd_-_»__,,_____,_w
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Remark
When d = 1, the sequence {S,}% ; converges in law to N([u, i] x {0}),
where fi = E[Y1] and 4 = —E[—Yi]. For the general case, the sum
Ly7 . Y; converges in law to N(© x {0}), where ® C R is the
bounded, convex and closed subset defined in Example —example116. If we
take in particular ¢(y) = dg(y) = inf{|x — y| : x € @}, then by (-e325)
we have the following generalized law of large numbers:

lim E[d Z Yi)] = sup dg(0) = 0.(/abel)e319 (28)

n—eo 6c®

If Y; has no mean-uncertainty, or in other words, @ is a singleton:
© = {6}, then (-e319) becomes
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(Central limit theorem with zero-mean).

Let {X;}-, be a sequence of IR%-valued random variables on a sublinear
expectation space ((),H,E). We assume that X; 1 g X; and Xj.1 is
independent from {Xi,---,X;} for each i =1,2,---. We further assume
that

E[Xi] = E[-Xi1] = 0.
Then the sequence {5,}% ; defined by

converges in law to X, i.e.,

lim Elp(5,)] = E[p(X)],

n—oo

for all functions ¢ € C(RY) satisfying linear growth condition, [
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(Central limit theorem with zero-mean) (continue) .

where X is a G-normal distributed random vector and the corresponding
sublinear function G : S(d) — R is defined by

G(A) = ]E[% (AX, X1)], A€ S(d).
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When d = 1, the sequence {5,}%_; converges in law to
N({0} x [¢?,7°]), where 7 = E[X?] and ¢? = —E[—X?]. In particular,
if 7> = g2, then it becomes a classical central limit theorem. O
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The following theorem is a nontrivial generalization of the above two
theorems.

(Central Limit Theorem with law of large numbers).

(label)CLT Let {(X;, Yi)}=; be a sequence of R? x R9-valued random
vectors on a sublinear expectation space (), H,IE). We assume that

(Xit1, Yit1) 4 (Xi, Y;) and (Xj11, Yi+1) is independent from
{(X1, Y1), ,(X;, Yi)} foreach i = 1,2,---. We further assume that

E[X;] = E[-X1] = 0.
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Central Limit Theorem with law of large numbers.

Then the sequence {5,}% ; defined by

= = Xi Y
5= ,-;(ﬁ +—)
converges in law to X + 7, i.e.,
lim IE[go(S,)] =E[p(X +17)], (label)el2 (29)

n—oo

for all functions ¢ € C(IR?) satisfying a linear growth condition, where the
pair (X, ) is G-distributed. The corresponding sublinear function
G :R? x S(d) — R is defined by

G(p,A) :=El(p, Y1) + 5 (X0, 1)), A€S(d), peR.

Thus E[¢(X +77)] can be calculated by Corollary —Gv. O
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The following result is equivalent to the above central limit theorem.

Theorem

(label)CLT1We make the same assumptions as in Theorem —CLT. Then for
each function ¢ € C(RY x RY) satisfying linear growth condition, we have

lim E[g Z _Z = Elp(X, 7).
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It is easy to prove Theorem —CLT by Theorem —CLT1. To prove Theorem
—CLT1 from Theorem —CLT, it suffices to define a pair of 2d-dimensional
random vectors

X = (X,0), Yi=(0,Y) fori=12,-.

We have
) noX Y _
Jm, El Z ; ) = lim Elp(}) (% + 7)) = Elp(X +1)]
Elop(X,7)]
with X = (X,0) and 7 = (0,7). O
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To prove Theorem —CLT, we need the following norms to measure the
regularity of a given real functions u defined on @ = [0, T] x R¢:

lullcon(qy = sup [u(t,x)],
@) (tx)eQ

d

HU||CLI(Q) = HUHCOrO(Q) + HatUHCOrO(Q) + Z HaXi”HCO/O(Q) ’
i=1

d
HUHCL?(Q) = HUHCM(Q) + Z HaXfXjUHCO,O(Q)-
ij=1
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For given constants «, B € (0,1), we denote

ull cosiqy = sup |us, x) = ult,y)]|

x,y€ERY, x#£y |r - S|“ + |X _y|ﬁ,
s,t€[0,T],s#t

d
H“Hclww(a) = HUHCW(Q) + HatuHC“rﬁ(Q) + Z Hax,-“Hca,ﬁ(Q) ,
i=1

d
||U||C1+nc,2+/3(Q) == ||U||C1+vc,1+/3((\)) + Z Hax,-xJ-U’

CHR(Q)”
=1 @

If, for example, |[u|| c1re2+p(q) < 00, then u is said to be a
ClF2+P_function on Q.
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We need the following lemma.

Lemma

(label)Lem-CLTWe assume the same assumptions as in Theorem —CLT.

We further assume that there exists a constant B > 0 such that, for each
A, A€ S(d) with A> A, we have

E[(AX1, X1)] — E[(AXy, X1)] > Btr{A— A].(label)Ellip  (30)

Then our main result (—e12) holds.
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Proof.

We first prove (—el2) for ¢ € Cb,L,-p(]Rd). For a small but fixed h > 0, let
V be the unique viscosity solution of

0:V+G(DV,D?V) =0, (t,x) €[0,1+h) xRY, V|i—1:h = ¢.(label)el4
(31)

Since (X, 1) satisfies (—e311), we have
V(h,0) =E[p(X+7)], V(1+hx)=¢(x).(label)equ—h  (32)

Since (—el4) is a uniformly parabolic PDE and G is a convex function, by
the interior regularity of V' (see Appendix C), we have

H V|‘C1+”‘/2'2+"‘([0,1]><]Rd) < 0 for some « S (O, ].)
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Proof (continue).

We set § = % and Sg = 0. Then

V(L,5,) = V(0,0) = TAV((i+1)8,50) = V(i5,5)}
i=0
n—1
(VG +1)8,3101) — V6, Sia)] + [V(i8,5141) — V(i6,3)])
i=0
Y {65+ %}
i=0
by Taylor's expansion,

with,

g =

1
3:V(i0,5)5+ 5 (D?V(i5, 1) ,+1,X,+1>(5+<DV(/(5 5), X1V +
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Proof (continue).

. 1 _ _ _
I :5/0 B: V(i + B)S, 5i1) — 3eV(i, 5is1)]dB + [9:V(i6, 5i1) — e V(i

_ 1
+(D?V(i6, 5)) Xit1, Yie1) 63/ + 5

<D2 V(ié, 5) Yit1, Yi+1> 52
11,
+/0 /0 <®23’Y(Xi+1\/5+ Yi116), Xip1 Vo + Y,'+1(5> ydBdy
with

®p, = D*V(i6, 5 + vB(Xit1V6 + Yi10)) — D*V(ié, 5;).
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Proof (continue).

Thus
n—1 ) n—1 . _
E[) " 4]—-E[- ) K] <E[V(L,5,)]-V(0,0) <E]| Z S +E] Z 11].(1ab
i=0 i=0 - i—0
(33)
We now prove that IE[ZIf’;Ol Ji] = 0. For Ji, note that
E[(DV(i6,5), Xi+1V8 )] = B[ (DV(i6, 3), X;+1V3)] = 0
then, from the definition of the function G, we have
E[Ji] = E[0:V(i5,5;) + G(DV(is,5;), D>V (i, 5;))]6.
O
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Proof (continue).

Combining the above two equalities with 9,V + G(DV, D?V) = 0 as well
as the independence of (Xjt1, Yit1) from {(X1, Y1),---,(X;, Yi)}, it

follows that . )
E[) ] =E[} b] =
i=0 i=0
Thus (—c2eel5) can be rewritten as

2/5<]E (1,5,)] — (o,o)glE[nillg].
i=0
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Proof (continue).

But since both 9;V and D?V are uniformly 5-hélder continuous in t and
a-hélder continuous in x on [0,1] x R9, we then have

1] < COM2(1+ [ Xipa [PH + | Yia [PH9).
It follows that

E[|;]] < COM*2(1+ E[Xa P + [ va**)).
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Proof (continue).
Thus

—C (U E[X P+ [2) < E[V(L,5)] - V(0,0)

1
< C(;)a/2(1+]E[|X1|2+“+ |Y1|2+¢

—

As n — oo, we have

lim E[V(1,S5,)] = V(0,0).(/abel)equ — O (34)

n—oo

On the other hand, for each t,t' € [0,1+ h] and x € R, we have

|V(t,x) — V(t',x)| < C(y/|t—t|+|t—1t]).
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Proof (continue).
Thus |V(0,0) — V(h,0)| < C(v/h+ h) and, by (-equ-0),

[E[V(1,50)] — Elp(3a)]l = [E[V(L,3,)] = E[V(1+h,5,)]| < C(Vh+h)
It follows from (—equ-h) and (—equ-0) that

limsup [E[g(5,)] — Elp(X + )] < 2C(Vh + h).

n—oo

Since h can be arbitrarily small, we have

lim E[p(Sn)] = E[p(X +1)].

n—oo

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Remark.
From the proof we can check that the main assumption of identical
distribution of {X;, Y;}; can be weaken to

1
E[{p, Yi) + 5 (AX;, Xi)] = G(p,A), i=12,---, p€ RY, A€ S(d).

Another essential condition is IE[|X;|?°] + E[| Y;|1™°] < C for some
5 > 0. We do not need the condition E[|X;|"] + E[| Y;|"] < oo for each
n &€ N. O
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We now give the proof of Theorem —CLT. Proof of Theorem —CLT. For
the case when the uniform elliptic condition (—Ellip) does not hold, we first
introduce a perturbation to prove the above convergence for

@ € Cp1ip(RY). According to Definition —dd1 and Proposition —ppl in
Chap |, we can construct a sublinear expectation space (Q),H,E) and a
sequence of three random vectors {(X;, Y;, ;) }2; such that, for each
=12, {(X;, V) }y £ (X, Y}y and (Rov1, Viss, Rov1) is
independent from {(X;, Y;,%;)}"_; and,
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moreover,

E[p(X;, Y, &) = (2n)—d/2/d15[¢(x,-, Y;, x)]e *2dx for p € Cpip(R¥
R

We then use the perturbation Xf = X; + ¢k; for a fixed € > 0. It is easy to

see that the sequence {(X?, Y;)}$; satisfies all conditions in the above

CLT, in particular,

1 €2

Ge(p, A) = B[ (AXS, X5) + (p, V)] = Glp,A) + S tr[A].

N |

Thus it is strictly elliptic.
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We then can apply Lemma —Lem-CLT to

XV & XY 0,
(- ( ’+*’): (7’_}_7’)_{_8_/”, J, = i
" ,-:Elﬁ n ,-:Zlﬁ n ,-;ﬁ

and obtain
lim E[g(5;)] = E[p(X + 17 +¢8)],
where ((X, ), (77,0)) is G-distributed under E[-] and

C(p,A) = ]E[; (A, m)T, (k)T ) + (5 (%1,0)T)], Aes(d), pe
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By Proposition —~GCD, it is easy to prove that (X + ¢k, 7) is G.-distributed
and (X,17) is G-distributed. But we have

[E[p(Sn)] — Elp(5,)]] = [Elp(S; — eJn)] — E[p(S;)]]
< eCE[|J,]] £ Ce

and similarly,
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[E[p(X +1)] —E
[E[p(X+7)] — E[
it follows that

< Ce. Since € can be arbitrarily small,

lim E[¢(Sn)] = E[p(X +1)] for ¢ € Corjp(RY).

On the other hand, it is easy to check that

sup, B[|5,|2] + E[|X 4 7]?] < co. We then can apply the following lemma
to prove that the above convergence holds for g€ C(IR?) with linear
growth condition. The proof is complete. 0
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Let (OO, H,E) and ( O, H,E) be two sublinear expectation spaces and let
Y,€eHandY € H,n=1,2,---, be given. We assume that, for a given
p > 1, sup, E[| Y5 |P] + E|| Y ] < oo. If the convergence

holds for each ¢ € Cp1jp(IRY), then it also

P
limn—co E[p(Ya)] = Elg(Y)]
C(RY) with the growth condition

holds for all functions ¢ €
p()] < C(L+[x[P).
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Proof.
We first prove that the above convergence holds for ¢ € C,(IRY) with a

compact support. In this case, for each € > 0, we can find a

¢ € Co.1ip(RY) such that sup,cga |@(x) — §(x)| < 5. We have
[Elp(Yn)] —Elp(V)]] < [E[p(Ya)] — E[§(Ya)]| + [E[p(Y)] — E[g(Y)]|
+[E[@(Yn)] = E[p(V)]] < e+ [E[p(Ya)] — E[p(Y)]]-
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Proof. (continue).

Thus limsup,_.« [E[@(Ys)] — E[@(Y)]| < &. The convergence must hold
since € can be arbitrarily small.

Now let ¢ be an arbitrary C(IRY)-function with growth condition

lp(x)| < C(1+ |x|P1). For each N > 0 we can find @1, 92 € C(IR9)
such that ¢ = @1 + @2 where @1 has a compact support and gog(x) =0
for [x| < N, and |@2(x)| < |@(x)| for all x. It is clear that

p
@2 () =< 2(:(1;|x|) for x € R
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Proof. (continue).
Thus

[Elg(Yn)] — E[p(Y)]| = [E[p1(Yn) + ¢2(Ya)] — E[p1(Y) + ¢2(Y)]]
< [E[g1(Yn)] — Elp1(Y)]| + Ellg2(Ya)[] + E[|p2

< [E[g1(Yn)] = Elp1(Y)]| + WC(HJEHY 1”1 + B

where C = 2C(2 + sup, E[] Yn|] +IE[_|Y|P]). We thus have
limsup,_.. [E[@(Yn)] — E[p(Y)]| < €. Since N can be arbitrarily large,
E[g(Y,)] must converge to E[p(Y)]. O

v
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Exercise.

Let X; € H,i=1,2,---, be such that X;;1 is independent from
{X1,---, X}, foreach i =1,2,--- . We further assume that

E[X;] = —E[-Xi]] =0,

lim E[X?] =72 < oo, lim —E[-X?] = ¢?,

1—00 1— 00

E[|X;|>"°] < M for some § > 0 and a constant M.

Prove that the sequence {5,}%° ; defined by
_ 1 &

5= — ) X;

n \/E ; 1

converges in law to X, i.e.,

limp—oo E[@(Sn)] = E[@(X)] for ¢ € Cpip(R), where

X ~ N({0} x [?,7?]). In particular, if 7 = o2, it becomes a classical
central limit theorem. Ol

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



The contents of this chapter are mainly from Peng (2008) [?] (see also
Peng (2007) [?]).

The notion of G-normal distribution was firstly introduced by Peng (2006)
[?] for 1-dimensional case, and Peng (2008) [?] for multi-dimensional case.
In the classical situation, a distribution satisfying equation (—ch2el) is said
to be stable (see Lévy (1925) [?] and (1965) [?]). In this sense, our
G-normal distribution can be considered as the most typical stable
distribution under the framework of sublinear expectations.
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Marinacci (1999) [?] used different notions of distributions and
independence via capacity and the corresponding Choquet expectation to
obtain a law of large numbers and a central limit theorem for non-additive
probabilities (see also Maccheroni and Marinacci (2005) [?] ). But since a
sublinear expectation can not be characterized by the corresponding
capacity, our results can not be derived from theirs. In fact, our results
show that the limit in CLT, under uncertainty, is a G-normal distribution
in which the distribution uncertainty is not just the parameter of the
classical normal distributions (see Exercise —exxeel).
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The notion of viscosity solutions plays a basic role in the definition and
properties of G-normal distribution and maximal distribution. This notion
was initially introduced by Crandall and Lions (1983) [?]. This is a
fundamentally important notion in the theory of nonlinear parabolic and
elliptic PDEs. Readers are referred to Crandall, Ishii and Lions (1992) [?]
for rich references of the beautiful and powerful theory of viscosity
solutions. For books on the theory of viscosity solutions and the related
HJB equations, see Barles (1994) [?], Fleming and Soner (1992) [?] as
well as Yong and Zhou (1999) [?].
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We note that, for the case when the uniform elliptic condition holds, the
viscosity solution (—e320) becomes a classical C1+22*_solution (see
Krylov (1987) [?] and the recent works in Cabre and Caffarelli (1997) [?]
and Wang (1992) [?]). In 1-dimensional situation, when ¢2 > 0, the
G-equation becomes the following Barenblatt equation:

dru+ y|oru| = Au, |y] < 1.

This equation was first introduced by Barenblatt (1979) [?] (see also
Avellaneda, Levy and Paras (1995) [?]).

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct




G-Brownian Motion and Ito's Integral

(label)ch3

The aim of this chapter is to introduce the concept of G-Brownian
motion, to study its properties and to construct [t0's integral with respect
to G-Brownian motion. We emphasize here that our definition of
G-Brownian motion is consistent with the classical one in the sense that if
there is no volatility uncertainty. Our G-Brownian motion also has
independent increments with identical G-normal distributions. G-Brownian
motion has a very rich and interesting new structure which non-trivially
generalizes the classical one. We thus can establish the related stochastic
calculus, especially 1td’s integrals and the related quadratic variation
process. A very interesting new phenomenon of our G-Brownian motion is
that its quadratic process also has independent increments which are
identically distributed. The corresponding G-It6's formula is obtained.
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Sec. G-Brownian Motion and its Characterization

Definition

Let (), H,E) be a sublinear expectation space. (X;)¢>o is called a
d-dimensional stochastic process if for each t > 0, X; is a d-dimensional
random vector in H.
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Let G(-) : S(d) — R be a given monotonic and sublinear function. By
Theorem —t1 in Chapter —chl, there exists a bounded, convex and closed
subset X C S (d) such that

1
G(A)==sup (A B), Ae€S(d).
2 Bex.
By Section —c2s2 in Chapter —ch2, we know that the G-normal

distribution N({0} x X) exists.
We now give the definition of G-Brownian motion.
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Definition

A d-dimensional process (B;):>0 on a sublinear expectation space

(Q), H,E) is called a G-Brownian motion (label)bbbif the following
properties are satisfied:

(i) Bo(w) = 0;

(i) For each t,s > 0, the increment B;ys — B; is N({0} x sX)-distributed
and is independent from (B, By,, -+, Bt,), for each n € IN and
0<tH <--- <t <t
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We can prove that, for each to > 0, (Bti+t, — B,)t>0 is @ G-Brownian

motion. For each A > 0, (A~2B);)s>0 is also a G-Brownian motion. This
is the scaling property of G-Brownian motion, which is the same as that of
the classical Brownian motion. Ol

We will denote in the rest of this book

B? = (a,B;) foreacha= (aj, - ,aq)" €R".
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By the above definition we have the following proposition which is
important in stochastic calculus.

Proposition.

Let (Bt)t>0 be a d-dimensional G-Brownian motion on a sublinear
expectation space (Q), H,E). Then (B2):>0 is a 1-dimensional
G,-Brownian motion for each a €RY, where

Ga(a) = (02 ;o —0?_ra7), 02, =2G(aa’) = E[(a, B1)?],

0?2 . =-2G(—aa’) = —E[—(a, B1)?].

—aa
In particular, for each t,s > 0,

d
B2, . — B2 = N({0} x [s0?__;,s02 ;]). O

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Proposition

For each convex function ¢ , we have

X
Elp(B2s— B = ——— [ gl emn(—5 0
’ 27‘(5(72 2SUaaT

For each concave function ¢ and UEaaT > 0, we have

x) exp(—

Elg(B?,, — BY) / o
’ 1/2715(7 2s ‘733
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Proposition (continue).

In particular, we have

E[(B? - B2)2] = %r(t—s), E[(B? - B2)Y] = 30, (t — )2,
E[~(8 — B2 = 0% ,r(t—5), E[~(Bf — B = ~30%,r(t— )}

O]

v
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The following theorem gives a characterization of G-Brownian motion.

Theorem

Let (Bt)eso = (BE, -+, Bf) >0 be a d-dimensional process defined on a
sublinear expectation space (Q), H,E) such that |Bi|* € H, for
i=1,---,d and k =1,2,3, and such that

(i) Bo(w)=0;

(ii) For each t,s > 0, Bys — Bt and Bs are identically distributed and
Biis — Bt is independent from (By,, By, -+ ,Bt,), for each n € N and
0<t;<---<t,<t.

(iii) E[B ] E[—B:] =0 and lim. o E[| B;|3]t " = 0.

Then (Bt)¢>o is a G-Brownian motion with

G(A) = LE[(ABy, B1)], A€ S(d).

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Proof

We only need to prove that B; is G-normal distributed and B; = \fBl
We first prove that

E[(AB:, B:)] = 2G(A)t, A € S(d).

For each given A € S(d), we set b(t) =E[(AB, B)]. Then b(0) = 0 and
|b(t)| < |A|(E[|B¢|3])?/3 — 0 as t — 0. Since for each t,s > 0,

b(t + 5) [<ABt+SI Bt+s>] = Il::KA(Bt‘Jrs - Bs + BS)/ Bt+s - Bs = Bs>]
E[{A(Bt1s — Bs), (Bess — Bs)) + (ABs, Bs) +2(A(Brss — By)
= b(t) + b(s),

we have b(t) = b(1)t =2G(A)t.
We now prove that B; is G-normal distributed and B; 4 V/tBy. For this,
we just need to prove that, for each fixed ¢ € Cp1;»(R?), the function

u(t,x) :=E[p(x + B:)], (t,x) € [0,00) x RY
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Proof. (continue).

We first prove that u is Lipschitz in x and %-Hélder continuous in t. In
fact, for each fixed t, u(t,-) € Cp1ip(R?) since

lu(t,x) —u(t,y)| = [E[e(x + B:)] — E[p(y + B:)]|
< E[|o(x+ B:) — ¢(y + By)|]
< Clx—yl,

where C is Lipschitz constant of ¢.
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Proof. (continue).

For each ¢ € [0, t], since B; — By is independent from Bg, we also have

u(t,x) =E[(x+ Bs + (B: — By)]
=E[E[p(y + (Bt — Bs))]y=x+8,),

hence
u(t,x) = E[u(t — J,x + Bs)].(label) Dyna (36)
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Proof. (continue).
Thus

lu(t,x) —u(t—36,x)| = |E[u(t —6,x+ Bs) — u(t —4,x)]|
< E[|u(t—6,x+ Bs) — u(t —6,x)|]

< E[C|Bs|] < C1/2G(/) V.

To prove that u is a viscosity solution of (—G-heat-BM), we fix
(t,x) € (0,00) x R¥ and let v € C*([0,00) x R?) be such that v > u
and v(t,x) = u(t,x). From (-Dyna) we have

v(t,x) = E[u(t —6,x+ Bs)] < E[v(t —J,x + Bs)].
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Proof. (continue).

Therefore by Taylor's expansion,

0 <E[v(t—96,x+ Bs) — v(t, x)]
=E[v(t—9,x+ Bs) — v(t,x+ Bs) + (v(t,x + B;) — v(t,x))]

= B[~2ev(t, )3 + (Dv(t, ), B5) + 2 {Dv(t,x)Bs, By) + 1]

< —0rv(t, x)6 + %]E[<D2V(t1X)B5' Bs)] + El[ls]
= —3:v(t,x)0 + G(D?v(t,x))é + E[l;],

where
1
Is = / _[3ev(t — BS,x + Bs) — B,v(t, x)]6dB
0

+/01 /()1<(D2V(t,x+aﬁ85) — D?v(t,x))B;s, Bs)adBdu.

Wlth the assumption (iii) we can check that lims)g IEHM] =0, from
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Exercise.

Let B, be a 1-dimensional Brownian motion, and B; < N({0} x [¢?,77]).
Prove that for each m € IN,

B[|B,|™] = 2(m—1)!1e™t? //2mr misodd,
U7 (m=1)eme? m is even.
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Sec. Existence of G-Brownian Motion

In the rest of this book, we denote by Q = C¢(IR™) the space of all
R9-valued continuous paths (w;):cr+, with wo = 0, equipped with the
distance
22 max]|wt w?|) A 1].
0,i
For each fixed T € [0,00), we set Q1 := {w.A7: w € OQ}. We will
consider the canonical process B(w) = wy, t € [0,00), for w € Q).
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For each fixed T € [0,00), we set

Lip(QT) = {Q(Btl/\T/' o /Bt,,/\T) ne NI ty,---,th € [0,00), @ S CLip(R

It is clear that Ljp(Q:)CLip(Q7), for t < T. We also set

Lip(Q) := U Lip(Q2n).

n=1

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



It is clear that Cp;p,(R?*"), L;p(Q7) and L;(Q)) are vector lattices.
Moreover, note that @, € Cpj»(R?*") imply @ - 1 € Cpjp(RY*"), then
X, Y eLip(Q7) imply X - Y €Lijp(Q7). In particular, for each t € [0, 00),
B: € L,'p(Q). L]
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Let G(-) : S(d) — R be a given monotonic and sublinear function. In the
following, we want to construct a sublinear expectation on (Q, Lj»(Q2))
such that the canonical process (B;):>o is a G-Brownian motion. For this,
we first construct a sequence of d-dimensional random vectors (&;)$>, on a
sublinear expectation space (ﬁ, ﬁ,]ﬁ) such that ¢; is G-normal distributed
and {11 is independent from (&y,---,&;) foreach i =1,2,---.
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We now introduce a sublinear expectation IE defined on Li»(Q)) via the
following procedure: for each X € Ljp(€)) with

X = ¢(By — By, Bt, = By, -+ , B, — Bt, ;)
for some ¢ € CL;,,(]RdX”) and 0=ty < t; < --- < t, < 00, we set

IAE[(P(BH - Btol Bt2 - Bt1/ ity Bt,, - Bt,,,l)]

= lﬁ[(p(\/ t1 — t0§1, e Aty — tnflgn)].
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The related conditional expectation of
X = gD(Btl, Bt2 — Bt1/ ey, Btn — Btnfl) under Qtj is defined by

E[X|Qy] = E[p(By, By, — By, -+, Be, — Bt, ;)| Q4] (label) Condition
(37)
= 1/](81_—1,' . /Bt' — Btj—l)/

J

where

wix, o, x) = Elp(xa, X, /t1 — GGt Vitn — tam18n)]-

It is easy to check that IE[] consistently defines a sublinear expectation on
Lip(Q) and (Bt)s>0 is a G-Brownian motion. Since Ljp(Q7)CLjp(Q2),
IE[-] is also a sublinear expectation on L,(Q1).
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Definition

The sublinear expectation [E[-]: L;,(Q2) — R defined through the above
procedure is called a G—expectation.(label)ge The corresponding
canonical process (B;)¢>0 on the sublinear expectation space

(Q, Ljp(Q),E) is called a G-Brownian motion.

In the rest of this book, when we talk about G—Brownian motion, we
mean that the canonical process (B;):>0 is under G-expectation.
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Proposition.

(label)Prop-1-9-1 We list the properties of IE[-|Q);] that hold for each
X,Y €Ly(Q):

(i) If X >V, then E[X|Q;] > E[Y|Q4].

(i) E[y|Q¢] =17, foreach t € [0,00) and 57 EL;p( Q).

(i) EBIX|Q:] - E[Y|Q:] <E[X — Y|l

(iv) E[nX|Q¢] =yt E[X|Qf] + 77 E[-X|Q4] for each i € Ljp(Q).
(v) E[E[X|Q:]]Qs] = E[X|Q¢ns], in particular, E[E[X|Q.]] = E[X].

O

v
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Proposition. (continue) .
For each X € L;,(QF), B[X|Q:] = E[X], where L;,(QF) is the linear
space of random variables with the form
@(Btz - Btl/ Bt?, — Bt2/ Ty Btn+1 - Btn)'
n= ]-/2/ Tty GD S CLip(Rdxn)/ t]./ Tty tn/ tn+1 € [t,OO),

(i) and (iii) imply

EIX +7|Q: = B[X|Q: +7 for 7 € Lip(Q).
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We now consider the completion of sublinear expectation space

(Q, Lp(Q), ).

We denote by LZ(Q), p > 1, the completion of Lj,(£)) under the norm
1X1], :== (B[|X|P])1/P. Similarly, we can define L% (Q7), L2 (QY) and
LZ(QF). It is clear that for each 0 < t < T < oo,

L5(0) € L(Qr) C LA(0Y)
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According to Sec.—c1sb in Chap.—chl, IE[] can be continuously extended
to a sublinear expectation on (Q), LL(Q)) still denoted by E[-]. We now
consider the extension of conditional expectations. For each fixed t < T,
the conditional G-expectation B[-|Q¢] : Ljp(Q7) — Lip(Q) is a
continuous mapping under ||-||. Indeed, we have

E[X|Q:] — E[Y|Q:] < E[X — Y|Q,] <E[|X - Y]|Q],

then
IE[X]Q:] — E[Y|Q:]| < E[IX — Y[|Q].
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We thus obtain
[EX|Qe] = B[Y[Qd][| < IX = Y.
It follows that IE[-|Q);] can be also extended as a continuous mapping
E[[Q] : L(Q7) — Le(Qe).

If the above T is not fixed, then we can obtain
E[-[Q4] : LE(Q) — Lg ().
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The above proposition also holds for X, Y € LL(Q). But in (iv),
11 € L (Q) should be bounded, since X, Y € LL(Q) does not imply
XY € LL(Q). O
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In particular, we have the following independence:

E[X|Q.] =E[X], ¥X € LE(OQY).
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We give the following definition similar to the classical one:

Definition

An n-dimensional random vector Y € (LE(€2))" is said to be independent
from Q) for some given t if for each ¢ € Cp1jp(IR") we have

E[p(Y)|Q] = E[p(Y)].

Remark.

| A

Just as in the classical situation, the increments of G—Brownian motion
(Bt+s — Bt)s>0 are independent from Q);. O

v
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The following property is very useful.
Proposition.

(label)d-E-x+yLet X, Y € LL(Q) be such that E[Y|Q,] = —E[-Y|Q,],
for some t € [0, T|. Then we have

BIX + Y|Q.] = E[X|Q:] + E[Y]Q].

In particular, if E[Y|Q:] = E¢[-Y|Q:] = 0, then
E[X + Y|Q:] = E[X|Q]. O
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This follows from the following two inequalities:

E[X + Y|Q:] < E[X|Q.] +E[Y]Q],
EIX 4 Y|Q:] > E[X|Qy] — E[-Y|Q:] = E[X|Q:] + B[Y]Q].
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Example

For each fixed a €RY, s < t, we have

E(Bf — B2|Q] =0, E[-(Bf - B])|Q] =0,
B2 = 02yr(t—s), E[-(B} - B2)?*|Q] = 02 r(t —s

IE[(B? _ aa’l
E[(Bf — B2)*|Qs] = 305,r(t —s)?, E[-(B? — B2)*|Qs] = —302 7 (t
where 02 ; =2G(aa’) and 02 = —2G(—aa’).

I~
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Example

(label)eeelFor eacha €R9, n € N, 0<t < T, X € Llc(Qt) and

¢ € Crip(R), we have

EB[X¢(BF — B)|Q:] = X E[p(BF — B)|Q:] + X E[—¢(BF — BY)| Q]
= X" E[p(B} — B})] + X E[-¢(BF — BY)].

# % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Example (continue).

In particular, we have
E[X (B} — BY)|Qx] = XTE[(B} - B7)] + X" E[-(B} - Bf)] = 0.
This, together with Proposition —d-E-x+vy, yields

E[Y +X(BF — BY)|Q:] = E[Y|Q], Y € LE(Q).
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Example (continue).

We also have

A

E[X(BF — B)?|Q] = XTE[(BF — B?)?] + X E[—(B} — BY)?]
= [XTo2r — X0 |(T—t)

and

E[X(BY — B)*" Q] = XVE[(BF — BY)*"~'] + X "E[- (B} — B?)*" ]
= [X|E[(BF_)*"7"].
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(label)Exam-B2Since
E[2B7(Bf — B2)|Os] = E[-2B2(Bf — B2)|Qs] = 0,
we have

E[(Bf)? — (B2)*|Q%] = E[(B? — B + B2)* — (B2)?|Qs]
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Show that if X € Lip(Q7) and E[X] = —IE[—X], then E[X] = Ep[X],
where P is a Wiener measure on Q). O
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Show that if X € Lip(Q7) and E[X] = —IE[—X], then E[X] = Ep[X],
where P is a Wiener measure on Q). ]

Exercise

(label)d-Exm-GBM-14a copy(1) For each s, t > 0, we set
Bf := Bris — Bs. Let 7 = (1)1 € L(Qs;8(d)). Prove that

E[(nB;, Bf)|Qs] = 2G(n)t.
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Sec. Ito's Integral with G—Brownian Motion

Definition
(label)d-Def-4For T € R, a partition 7t of [0, T] is a finite ordered
subset T = {to, t1, - ,tny} suchthat 0 =to < t; < --- <ty = T.

u(mr) == max{|tiz1 —t;| : i=0,1,---,N—1}.

We use 7'[’¥ = {tév, t{V, cee, tﬁ} to denote a sequence of partitions of
[0, T] such that limy_,c u(7t¥) = 0.
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Let p > 1 be fixed. We consider the following type of simple processes: for
a given partition 7t = {to,- -, ty} of [0, T] we set

Z Ck [tk,tk+1 (t)/

where & € L%.(Qy,), k=0,1,2,--- ,N — 1 are given. The collection of
these processes is denoted by I\/IZ’O(O, T)(label)mpO.
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(label)d-Def-5For an 17 € M2°(0, T) with
ne(w) =Yg Sk(w)lpg, ¢,.,)(t), the related Bochner integral is

T N—-1
| @)= T &) (b1 — 1)
e k=0
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For each 77 € M2°(0, T), we set
- 1 T 1. N-1
Erly) = B[ nedt] = ZEIY &) (ten — 1))
T “Jo T =

It is easy to check that E7 : I\/IZ’O(O, T) — R forms a sublinear
expectation. We then can introduce a natural norm HinMZ(O,T), under

which, M2°(0, T) can be extended to M2 (0, T) which is a Banach space.
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For each p > 1, we denote by MZ(O, T) the completion of
Mg (label)mgpP® (0, T) under the norm

1/p
oy = {EL[ et}
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It is clear that MZ(0, T) D MZ(0, T) for 1 < p < g. We also use
MZ(0, T;IR") for all n-dimensional stochastic processes
e = (yt,---,n7), t > 0with yp € M2(0, T), i=1,2,--- ,n.
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We now give the definition of It6’s integral. For simplicity, we first
introduce 1t8’s integral with respect to 1-dimensional G—Brownian motion.
Let (Bt)t>0 be a 1-dimensional G—Brownian motion with

G(a) = 1(7%at — %), where 0 < ¢ < 7 < oo.
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Definition
For each 7 € MZ°(0, T) of the form

N—1
ne(w) = 20 ‘:j(w)l[tj,tj+1)(t)/
j=

we define

T N—1
I(n) = /0 NedBe := 2 gj(Bth - Btj)'
j=0
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Lemma

(label)bdd The mapping | : MZ°(0, T) — L%(Q7) is a continuous linear
mapping and thus can be continuously extended to
I: M2(0, T) — LZ(Q7). We have

E[ /0 "B =0, (label)el (38)

E[( /0 " pedBl)Y < 02K /0 " y2dt].(Iabel)e2 (39)
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Proof.
From Example —eeel, for each j,

IE[CJ'(BUH - Btj)‘Qtj] = IE[_';I'(BUH - Btj)’Qtj] = 0.
We have
R T " tn—1
IE[/O 17:dB:] = IE[/O 17:dBt + n—1(Bey — Bty ,)]
ty—1 n
[ et Blgn-1(Byy — Bey.y) ]

“ ty—1
| /0 7:dBy).

Il
on3

Then we can repeat this procedure to obtain (—el).
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Proof. (continue).

We now give the proof of (—e2). Firstly, from Example —eeel, we have

2

/ 1:dB:)?] = | (/tNl 1edB: + CNfl(BtN - BtN1)> ]

E)

tN 1 5 2
ﬂtdBt + (:Nfl(BtN - BtN—l)
tN 1
+2 ( UtdBr> En-1(Bty — Bey_,)]
t N—1 5 2
ﬂtdBt + gN—l(BtN - BtN—l) ]

= IE[Z &3 (Bt — Be)?):
i=0
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Proof. (continue).
Then, for each i = 0,1, - - -

IE [‘:12 ( Bti+1
=K []E [612 ( Bti+1
E[T28F (ti1

Finally, we have

,N —1, we have

— B)? — 72 (tix1 — t7)]

— B)? — 77 (tix1 — ;)| Q]]
= t,') —525,2<ti+1 - ti)] =0.

/ WtdBt = 2 ‘:2 Bt:+1 Bti)2]
 N— N—1 o N-1
SIE[ Z €?<Bti+1 - Bti)2 - Z 5251'2(ti+1 - ti)] + ]E[ Z E2“:7(1?(’-7-1-1 - tf)]
i i=0 i=0
_ N—-1
Z 67 (Bt — By)? = T°C; (tiyr — 1)) + B[ ), 02¢F (ti+1 — )]
i=0 i=0
N-1 T
BY Pt — 1)) = B[ ]

Nonline
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Definition

We define, for a fixed 7 € M%(0, T), the stochastic integral

_
/0 7edBe = 1(1)).

It is clear that (—el) and (—e2) still hold for 7 € M2(0, T).
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We list some main properties of 1td's integral of G—Brownian motion. We
denote, for some 0 <s <t < T,

t T
/snudBu ::/O I ()1, 0B,.

Proposition.

(label)Prop-InteglLet 7,6 € M%(O, T)andlet 0<s<r<t<T. Then
we have

(i) [ 1udBy = [/ 7udBy+ [ 17.dB,.

(i) fst(ouyu +6,)dB, = zxfstqudBu + fst 6,dB,, if a is bounded and in
LL(Q). (i) BIX + [T 7,dBu|Qs] = E[X|Qs] for X € LL(Q). O

v

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



We now consider the multi-dimensional case. Let G(-) : S(d) — R be a
given monotonic and sublinear function and let (B;);>o be a
d-dimensional G—Brownian motion. For each fixed a €R9, we still use

B? :=(a,B:). Then (B2)¢>0 is a 1—dimensiona| Ga—Brownian motion with
Ga(a) = 5(02 ;o™ —0? ;a7 ), where 02 . = 2G(aa”) and

0?2 . =-2G(—aa’).

aal
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Similar to 1-dimensional case, we can define Itd's integral by
T
1(7) ::/ 1edB2, for j € ME(0, T).
0
We still have, for each 7 € M%(0, T),
T
]E[/ 7edB2] = 0,
0
e a\2 2 w2
BI(| nedB?)?) < o2, BI [ nct]

Furthermore, Proposition —Prop-Integ still holds for the integral with
respect to B}.
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Exercise.

Prove that, for a fixed 7 € M%(0, T),

R T
B[ ) < B[ neas)?) <[ et

where 2 = [E[B?] and ¢? = —E[-B?].

Exercise
Prove that, for each 7 € MZ(0, T), we have

| \D

A T TA
BU/ Ielrde] < [ Bllnl)de
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Sec. Quadratic Variation Process of G—Brownian Motion

We first consider the quadratic variation process of 1-dimensional
G-Brownian motion (B;)e>o with By < N({0} x [¢2,52]). Let 7V,
N =1,2,---, be a sequence of partitions of [0, t]. We consider
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2 2 p2
s j=0 (Btf’il BEN)
N—-1 —
=L 2B (B — By) + Z o, BtN
= ~

As u(mlN) — 0, the first term of the right side converges to 2 fot BsdBs in
LZ(Q ) The second term must be convergent. We denote its limit by

—
W

=

-

t
(B) = lim Y (B —Byw)> =B} —2/ B,dB.(label)quadra — def
=0 j i 0

(40)
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By the above construction, ((B),)s>0 is an increasing process with

(B)g = 0. We call it the quadratic variation process(label)qvb of the
G-Brownian motion B. It characterizes the part of statistic uncertainty of
G-Brownian motion. It is important to keep in mind that (B), is not a
deterministic process unless o = 7, i.e., when (B;)¢>0 is a classical
Brownian motion. In fact we have the following lemma.
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Lemma

(label)Lem-Q1For each 0 < s < t < oo, we have

E[(B), — (B),|Qs] = 7(t —s), (label)quadra (41)
E[—((B), — (B),)|Qs] = —c?(t — s).(label) quadral (42)
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Proof.
By the definition of (B) and Proposition —Prop-Integ (iii),

t
E[(B), — (B), |Qs] = B[B — B =2 | BudB,|Q]
S
= E[B? — B2|Q,] = 7%(t — 5).
The last step follows from Example —Exam-B2. We then have (—quadra).
The equality (—quadral) can be proved analogously with the consideration

of E[—(B? — B2)|Qs] = —c?(t — s). O

v
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A very interesting point of the quadratic variation process (B) is, just like
the G—Brownian motion B itself, the increment (B)_ ., — (B), is

independent from Qs and identically distributed with (B),. In fact we
have
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(label)Lem-Qua2For each fixed s,t > 0, (B)
distributed with (B), and independent from Q).

sit — (B)s is identically
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Proof.
The results follow directly from

s+t s
(B)eve—(B)s = BZe—2 [ BoaB (822 [ B,dB]
s+t
— (Byyt— Bs)? — 2/ (B, — B,)d(B, — B.)
S
= <Bs>t1

where (B®) is the quadratic variation process of the G—Brownian motion
Bf = Byt —Bs, t > 0. O

v

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



We now define the integral of a process 7 € M (0, T) with respect to
(B). We first define a mapping:

Qurln) = [ e (8), za oo = (B)y) s ME(0, T) — L5 (O7)
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Lemma

(label)Lem-Q2For each 1 € MZ%(0, T),

. . T
BI|Qo ()| < &®B[ [ |neld]. (1abel)dA (43)

Thus Qo 1 : MZ%(0, T) —LL(Q7) is a continuous linear mapping.
Consequently, Qo7 can be uniquely extended to M (0, T). We still
denote this mapping by

;
/0 1ed (B), = Qo7 (1) forn € ML(0, T).
We still have

.
B 17td<B>t|]§(72]E[/ le|dt] for € ML(0, T).(label)qua — ine

0 0
(44)

v
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Proof
Firstly, for each j =1,--- ,N — 1, we have

E[I¢;1((B)g., — (B)y) — T218| (ti+1 — 17)]
=E[E[Z;|((B)e, — (B)g) Q4] = 7218] (i1 — 17)]
E[1¢;17% (tj+1 — ) =11 (1 — 1) = 0.

Then (—dA) can be checked as follows:

N-1

Zgj tﬂ_l_ >tj>|] S]E[;) ’gj’<B>tj+1_<B>tj]

< N= J o N-1
<E[ Z 5By — (B)y) — T (i1 — 1)]] + B[ ;) 16l (811 — 1))]

N—Jl . . JN—l
< I E[|&][((B)e.y — (B)g) — 0 (tj+1 — 17)]] + E[o” ;) 16l (81— 1)]

. T
=02 ¥ |5;|(ti1 — )] = B[ | |:]dt].
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(label)Prop-templLet 0 < s < t, ¢ € L%(Qs), X €LE(Q). Then

E[X +&(Bf - B2)] = E[X + (Bt — Bs)’]

E[X +¢((B), — (B),)]-

Proof.
By (—quadra-def) and Proposition —Prop-Integ (iii), we have

| \D

B[X +¢(Bf — B?)]

BIX +5((8), — (B),+2 [ BdB.)
EIX +£((B), — (B).)].

We also have

E[X +¢(BF — BY)] = E[X + &((B: — Bs)* +2(B: — Bs) Bs)]
— ]E[X + C(Bt — BS)Q]'
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We have the following isometry.

Proposition
Let 7 € M%(0, T). Then

(/ 1:dBy)?] ]E[/ n2d (B),].(label)isometry (45)

0l

v
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Proof
We first consider 1 € I\/Ié’O(O, T) of the form

E gf [tj tj11) )

and then foT nedBy = ZJ-N:_Ol &j(By., — By;). From Proposition
—Prop-Integ, we get

IE[X + 2€j(Btj+1 - Btj)gi(Bt:‘+l - Bti)] = ]E[X] for X € LlG(Q)v

i

Ol

v
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Proof (continue).

Thus
2 AL 2
/ 1:dB:)?] = Z &i(By,, — By))?l =E[ ) &7 (By., — By)°].
=0

From this and Proposition —Prop-temp, it follows that

BI( [ maof] = LS, (), ~ (8),)) = BL [ 12 (5

Thus (—isometry) holds for 7 € Mé’O(O, T). We can continuously extend
the above equality to the case 7 € M2(0, T) and get (—isometry). O
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We now consider the multi-dimensional case. Let (B;):>0 be a
d-dimensional G-Brownian motion. For each fixed a €RY, (B2);>¢ is a
1-dimensional Gz—Brownian motion. Similar to 1-dimensional case, we can

define
S 2 2 ‘
B, = i 5~ Bl)P = (B2 —2 | B2dB2,
< >t y(ﬂlé\’n)’]HOJ;)( tJN+1 tJN) ( t) o ° 5
where (B?) is called the quadratic variation process of B?. The above
results also hold for (B?).
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In particular,

. T . T
Bl [ 100 (B7) 1) < 27 B [ nelde] for y € ME(O, T)

and
. T . T
BI(| nedB2)?) = B[ n2d (B),] for y € ME(, T).
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Leta = (a,---,a4)" anda = (31, --,34) be two given vectors in RY.
We then have their quadratic variation processes of (B?) and (B?). We
can define their mutual variation process by

(8% B%), == L [(B* + BY), — (B* ~ B

= %[<Ba+5>t - <Ba_5>t]'
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Since <Ba_5> = <Ba_a> = <—Ba_5>, we see that <Ba, 85>t = <Ba, Ba>t.
In particular, we have (B?, B?) = (B?). Let tl¥, N=1,2,---, be a
sequence of partitions of [0, t].
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We observe that

N—1 _ 1 N—-1
a a a a\ _ ata +a
L (Bl — BBy, —Bp) = 7 L 1B - BE7)°

Thus as u(tlN) — 0 we have
N—1

N—oc0 ey k oy

k=0
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—(

lim ) (B — B (B —Bj)=(B%B%),

a—a

tyt1

a—a
ty

)?].




We also have

(%, B%), = ; (B, — (8°),
1

— 4[(Ba+a 2/ Ba+adBa+a_<Ba a +2/ Ba adBa a]

= stf—/ Bgdsg—/ B2dB2.
0 0
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Now for each 7 € M (0, T), we can consistently define

T a a 1 T a+ta 1 T a—a
/0 77td<B’B>t:Z/O 17td<B >t_1/0 ’7fd<B >t'

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Lemma

(label)d-Lem-mutualLet "V € I\/lé’o(O, T), N=1,2,---, be of the form

Z Ck [tk ) (t)

with u(t¥) — 0 and 4V — 17 in MZ4(0, T), as N — oo. Then we have
the following convergence in L%(Q):

B

N—-1 " T _
8 = — d(B? B?). .
L cl(By, -~ B3)(Bh, ~Bh) — [ md (857,
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Since
(8850, - (8% 8% = (B, - 3Bl ~
_/k“(B;_BfN)dBf—/k“(Bg 3,)dB
tk k tk k
L]
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Proof. (continue).

we only need to prove

| el to _
BLY (&2, (B2 - By)dB2)?] 0.
k=0 b

For each k=1,--- ,N — 1, we have

BIE)( [, (B2 — B3)dB2)? — CE (e — )7
—BIB(EN)( [, (82 - B3)dB2I0g] — CElR(elhs — )
<E[C(ER)*(tfhr — t)? = CER(thr — t0)?] = O,

where C = 72

=7
aaTUEET/2'
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Proof. (continue).

Thus we have

il thi1 =
BIY (61%( [, (B2 — B3y dB2)]
k=0 By
L il th1 =
<BY (@?(( [, (82 - Bj)aBI)2 = (s — 7]
k=0 t
N—1
+ELY, CEP(la — i)
N-1 ~ ) t11<V+1 =
< ¥ E(ENI( [, (8 - BR)aBH)? — C(efly — )]
k=0 ty
+ [ Z CER)(tha — 1)
. N—1
<E[Y C@EM2(tly — )] < Cu(l) [/ I Pd],
k=0
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Exercise.
Let B; be a 1-dimensional G-Brownian motion and ¢ be a bounded and
Lipschitz function on IR. Show that

N—1
im B X ¢(By)[(By, By~ (8)

N—o0

where tN = kT/N,k=0,2,--- ,N — 1.

| A

Exercise.
Prove that, for a fixed 7 € M{(0, T),

where 2 = E[B?] and ¢? = —E[-B?].

.
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Sec. The Distribution of (B)

In this section, we first consider the 1-dimensional G—Brownian motion
(Be)e=o with By < N({0} x [¢2,52]).

The quadratic variation process (B) of G-Brownian motion B is a very
interesting process. We have seen that the G-Brownian motion B is a
typical process with variance uncertainty but without mean-uncertainty. In
fact, (B) is concentrated all uncertainty of the G-Brownian motion B.
Moreover, (B) itself is a typical process with mean-uncertainty. This fact
will be applied to measure the mean-uncertainty of risk positions.
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We have

B[(B)2] < 105*¢2.(label) Qua2 (46)
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Indeed,

E[(B)7]

" t
B[(B2 — 2/ B,dB,)?]
0
t
< 215[B4] + 8E( / B,dB,)?]
0
“ t
< 65t* + 85°E| / B,?dul
0

t A

< 65t +8c‘72/ E[B,?]du
0

= 105*¢2.
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Proposition.

(label)c3pl Let (bt)¢>0 be a process on a sublinear expectation space

(Q, H,TE) such that

(i) bg = 0;

(ii) For each t,s > 0, byys — by is identically distributed with bs and
independent from (by,, bt,, - -+ , bz, ) for each n € N and

0<ty, -, th<t

(iii) limg o B[p2]t ™1 = 0.

Then by is N([ut,7t] x {0})-distributed with % = IE[b;] and

E = —]E[—bl]. L]
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Proof.
We first prove that

E[b] = it and —E[—b] = pt.

We set ¢(t) := E[b]. Then ¢(0) =0 and lim;|o ¢(t) =0. Since for each
t,s >0,

p(t+5) = Blbers] = B{(bess — bs) + b
s).

= ¢(t) + ¢(
Thus ¢(t) is linear and uniformly continuous in t, which means that
E[be] = jit. Similarly —IE[—b¢] = pt. .

v
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We now prove that by is N([ut,7it] x {0})-distributed. By Exercise —ex2

in Chap.—ch2, we just need to prove that for each fixed ¢ € Cohrip(R), the
function

u(t,x) :=E[p(x+ bt)], (t,x) €[0,00) x R
is the viscosity solution of the following parabolic PDE:
deu—g(dxu) =0,  ult=0 = ¢(label)G — mean (47)

with g(a) = fria®™ — pa~.
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We first prove that u is Lipschitz in x and %—Hé’)lder continuous in t. In
fact, for each fixed t, u(t,-) € Cprjp(IR) since

[E[p(x + be)] — E[p(y + be)]| < E[lp(x + be) — (v + be)]]
< Clx—yl.
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For each 6 € [0, t], since by — by is independent from by, we have

u(t,x) = E[(x + bs + (b — bs)]
= IE[IE[q)(y + (bt — bs))]y=x+bs)s
hence
u(t,x) = F [u(t — &, x + bs)].(label)eq4.21 (48)
Thus
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To prove that u is a viscosity solution of the PDE (—G-mean), we fix a
point (t,x) € (0,00) x R and let v € C*([0,00) x R) be such that
v > uand v(t,x) = u(t,x). From (—eq4.21), we have

v(t,x) = E[u(t —§,x + bs)] < E[v(t —6,x + bs)].
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Therefore, by Taylor's expansion,

0 < E[v(t—6,x+ bs) — v(t,x)]
:]E[ (t—=6,x+ bs) — v(t,x+ bs) + (v(t,x + bs) — v(t,x))]
= [ tv(t,x)8 + oxv(t, x)bs + Is]
< — ( x)6 +E[0,v(t,x)bs] + E[lj]
= —atv( x)6 + g(dxv(t,x))6 +E[ly],
where

1
- 5/0 [—3ev(t — S, x + bs) + dev(t, x)]dp

1
n b(g/o Bv(t,x + Bbs) — dxv(t, x)]dB.
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Proof. (continue).

With the assumption that lim;|olE[b?]t~! = 0, we can check that

imE[|ls]1671 =0,
I [45]]

from which we get 9;v(t,x) — g(dxv(t,x)) <0, hence u is a viscosity
subsolution of (~G-mean). We can analogously prove that v is also a
viscosity supersolution. It follows that b; is N([ut, 7it] x {0})-distributed.
The proof is complete. N O

v
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It is clear that (B) satisfies all the conditions in the Proposition —c3pl1,
thus we immediately have

(B), is N([gt,0%t] x {0})-distributed, i.e., for each ¢ € Cjp(R),

Elp((B))] = sup ¢(vt). (49)

02<v<g?
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Foreach0 <t < T < oo, we have

(T —1) < (B)y — (B), < 0*(T — 1) in LE(Q).
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It is a direct consequence of

E[((B) — (B), —5X(T—t))t] = sup (v—052)"(T—1t)=0

0?2 <v<a?

Nonlinear Expectations and Stochastic Calct
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Corollary
(label)Lem-Qua2 copy(1) We have, for each t,s > 0, n € N,

E[((B)eys — (B),)"1Qs] = E[(B){] = 7*"t"

and

A

IE[_( <B>t+s — <B>s)n’Qs] = IE[— <B>';] = _0_2ntn.
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We now consider the multi-dimensional case. For notational simplicity, we
denote by B’ := B® the i-th coordinate of the G—Brownian motion B,
under a given orthonormal basis (eg,- - - ,e4) of RY. We denote

((B)¢)j == (B, B'),.

Then (B),, t > 0, is an S(d)-valued process.
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Since

E[(AB:, B;)] = 2G(A)t for A€ S(d),

we have
A A d . .
E[((B),, A)] =E[) a; (B &),
ij=1
. g o £ £
= E[) a(BiB/— | BlaB/— | BldBI)
A d H H
=E[ Y a;B{Bl] =2G(A)t for A€ S(d),
ij=1

where (a;)¢ A.

=1
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Now we set, for each ¢ € C;p(S(d)),
v(t,X) :=E[p(X +(B),)], (t,X) €[0,00) x5(d).

Let X C S, (d) be the bounded, convex and closed subset such that

G(A) = ;,S;;‘; (A, B), AcS(d).
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Proposition.

(label)pl The function v solves the following first order PDE:
v —2G(Dv) =0, v|— = ¢,
where Dv = (dx; V)gj=1- We also have

v(t,X) = /S\lé%(P(X + tA).

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



Sketch of the Proof. We have

v(t+6,X) =E[p(X + (B)s+ (B) 15— (B)s)]
E[v(t, X + (B)s)]

The rest part of the proof is similar to the 1-dimensional case. [
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Corollary
We have

(B), e t:={txy:yeX}

or equivalently, ds((B),) = 0, where
du(X) = inf{\/(X=Y,X—Y):Y € U}.

| N\

Proof.
Since
E[dt2(<3>t)] = sup dx (tA) =0,
AeX
it follows that dex ((B),) = 0. O

§
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Complete the proof of Proposition —p1. O
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Sec. G-Ito's Formula

In this section, we give 1t8’s formula for a “G-1t6 process” X. For
simplicity, we first consider the case of the function @ is sufficiently

regular.
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(label)d-Lem-26Let ® € C?(R") with 9w ®, 9%, P € Cpjp(R") for

w,v=1---,n Lets € [0, T] be fixed and let X = (X1,--- ,X")T be an
n—dimensional process on [s, T] of the form

X¢ =XV +av(t—s)+n"I((B, BI), — (B, BI) ) + pY(B] — BI),

where, forv=1,---,n,i,j=1,---,d, &, 17‘”7 and ,B"f are bounded
elements in L%(Qs) and Xs = (X},---,XI)T is a given random vector in
L2(Q).
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Lemma (continue).

Then we have, in LZ(Q)),

) t
D(X,) — D(X,) /ax@ VJdB{,Jr/ 9, ®(X,)a" du(label)d — B -
(52)

—|—/t[axvq)(xu)17vu + aXP‘XVq)( U):BHi:BVj]d<Bi’ Bj>u'

Here we use the , i.e., the above repeated indices y,v, i and j imply the
summation. O)
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Proof
For each positive integer N, we set 6 = (t —s)/N and take the partition

ﬂ[,\sllt] I{t(,)\l,tll_vl~..,tﬁ}:{5,5+5,...’s+N(S:t}‘

We have
D(X;) — Z Xy ) — ®(X)](label)d — Ito (53)
k=0
N—-1
— v v
—k:O{aXV(D(XtLV)()<thrl Xt,’(")
1
+ 5[5 @(X) (X = Xi) (X = Xin) + 7113,
2 th1 t £ b
where

7 = [0 @ (X + 00Xy — X)) — 2 @ (X (X —XE) (XY .

thi1 t thi1

with 8, € [0,1].
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Proof. (Continue).

We have
B ) = BII[020 @ (X + 0 Xy, — X)) — Do ® (X))
x tk+1—x;*N>< b X3P
CB[|X — Xl] < C[6° + 5%,

where c is the Lipschitz constant of {92
independent of k. Thus

N—1 —
E[l Y 7i ] E B[]
k=0 k=0

@}, and Cis a constant

xHxv
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Proof. (Continue).

The rest terms in the summation of the right side of (—d-Ito) are &N + ¢V
with

N—1 . . i . i
el = Y (0@ (X[ (s — o) + 1T ((B), B)y — (B, BT) )
k=0

N
te1

o ; 1 S
i ﬁw(B{LV+1 — B+ Eaiyxv®(xt£,)[3u:ﬁvj(BgN

tk k+1

- Biy) (Bl — Bly)

N N
te ty

Ol

v
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Proof. (Continue).

and

Z 021, ®(X

x [ (£ — ) +17”""(<B’, B™) ,

+ 20 (881 — 1) + 7" ((B', B oy —

Mo (e — ) + 7 ((B), B) y —

- <BI' Bm>t"’)]

k+1

(B, 8) B (Bl — Bly

(B, B7) )]

k

o

Ol

v
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Proof. (Continue).

We observe that, for each u € [t,')’, t,'(VH),

E[[0w (X kZ v D( tN) [t tk+1)(”)|2]

= B[00 ®(Xy) — 90 @(X)|?]
< PB[|IXy — X [*] < C[6+ 6%,

where c is the Lipschitz constant of {0,®}/_; and C is a constant
independent of k. Thus N4 9, ®( Xe )l (e, e ) (+) converges to

D ®(X.) in MZ(0, T). Similarly, Y} 182 q)<Xt£’)l[t£’,t,i"+1)<') converges

xHxv

to 02,,,®(X.) in MZ(0, T).

xHxv

Ol

v
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Proof. (Continue).

From Lemma —d-Lem-mutual as well as the definitions of the integrations
of dt, dB; and d (B),, the limit of ¢V in LZ(Q)¢) is just the right hand
side of (—d-B-Ito). By the next Remark we also have ¢ — 0 in LZ(Q);).

We then have proved (—d-B-Ito). O
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Remark.

To prove ZN — 0in L2 (Q ), we use the following estimates: for
PN € ME°(0, T) with pf = TR0 el v (1), and

7T¥ ={ty, -, N} such that I|mNHooy(7'[T) =0 and

By [eN2(e), —t))] < C, forall N=1,2,- -, we have

Bl ZN g eN (e, — t))?|?] — 0 and, for any fixed a,a €RY,

N—1
Bl| X 6 (8%, — (8 )°P) < € Z|€N B, — (B

IE Z |€k aaT tk+1 ty )3] —0

Ol

V.
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Remark. (continue).

N-1
Bl| X e((8%) gy, = (B (e — )P

[Z R P (81 — ) ((B?)

k+1

— (B )]

[Z ‘ék aaT tk-i—l tll<v>3] = O’

as well as

N-1
E[| l(;)glcl(tli\l—i-l &) (B = B[]

tih ty
B (2N N
E[) |2k (tk+1—tk)|3§2v févl ]
k=0
SR e Ny2
SC]E[ ’C ‘ aaT<tk+1 tk) ] — 0 g
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Remark. (continue).
and
o N-1 N
E[ ) ¢k ((B®)y
k=0

] thy

N—

SCE[E |CII<V|2(<Ba>tLV <Ba>tN)|B — B2

il
k=0 k+1

Z |CN ? z?aT 'sT(t/iV-&-l - tll<v)2] — 0.

— (B ) (Bl — B[]
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We now consider a general form of G—It6's formula. Consider

t t " 3 . t . .
XV :xg+/ agds+/ qud<B',Bf>s+/ BYdBI.
0 0 0

Proposition.

(label)d- Prop ltoLet ® € C2(R") with 9, ®, BXWQJ € Cp1ip(R") for
wv=1.---,n Letoc,,BWandn"’J,v—l ,n i,j=1,---,d be
bounded processes in M2(0, T). Then for each t > 0 we have, in LZ((Q);)

t
q>(xt)—c1>(xs):/5 9,0 (X,) B dBI +/ 9,0 (X, ), du(label)d — Ito
(54)

t . . . .
+ [Pt + 2 o(X,)BL B (1 B),.

Ol

v
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Proof
We first consider the case where «, 77 and B are step processes of the form

2 Ck [tk/tk+1 (t)
From the above lemma, it is clear that (—d-Ito-form1) holds true. Now let
N t t . t. 5
X = X5 + / ayNds + / neiNd (B, B') _+ / BUNdBl,
0 0 0

where oV, 17N and ﬁN are uniformly bounded step processes that converge
to a, 17 and B in M2(0, T) as N — oo, respectively.

O

v
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Proof. (continue).

From Lemma —d-Lem-26,

=

t . . t
(X)) —o(x)) = / 3,0 ®(XM)BYNdBI + / D (XM N du(label)
(55)

+ [ @O + 5080 D(XBE M (8
Since
BlIx - X1
<RI [ (4™ — a2+ g — g2+ |2 — i,

where C is a constant independent of NV.
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Proof. (continue).
We can prove that, in M2(0, T),

0 ®( XNy "IN — 9. d(X)n'Y,
R ®(XN) BN BN — 2, D(X) B BY,
0 ®(XM)a'N — 9. d(X)a?,
0, ®(XN) BN — 9,0 D(X)BY.

We then can pass to limit as N — oo in both sides of (-d-N-Ito) to get
(—d-Ito-form1). O
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In order to consider the general @, we first prove a useful inequality.
For the G-expectation IE, we have the following representation (see
Chap.—ch6):
E[X] = sup Ep[X] for X € LEL(Q), (56)
PeP

where P is a weakly compact family of probability measures on (Q, B(Q)).
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Proposition.

(label)B-D-G Let € M2(0, T) with p > 2 and let a € IR¥ be fixed.
Then we have [, B.dB2 € L% (Q7) and

. T . T
(label)ebdgBl| [~ pedB2)"] < GEI| [ p2d(8%).72).  (57)

Ol

v
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Proof
It suffices to consider the case where 8 is a step process of the form

.Bt(w E S (w [tk tit1) ( )-

For each ¢ € Ljp(Q)) with t € [0, T], we have
A T
Ble [ poaBz] =0
t

From this we can easily get Ep[¢ ftT BsdB2] = 0 for each P € P, which
implies that (fot BsdB?)ico,1) is a P-martingale. Similarly we can prove
that

/ B,dB?)? / B2d(B),, tel0,T]

is a P-martingale for each P € P.
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Proof. (continue).

By the Burkholder-Davis-Gundy inequalities, we have

Epll [ BeaBEIP) < GoEell [ BRa(B%) P2 < GEIl [ BRa(B7) 7"

where C, is a universal constant independent of P. Thus we get
(—ebdg). O

v
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We now give the general G—It6’s formula.

Theorem
(label) Thm6.5 Let ® be a C?-function on R" such that 9, ,® satisfy

xbxv -,
polynomial growth condition for y,v =1,---,n. Let a¥, B/ and ",
v=1---,ni,j=1,---,d be bounded processes in M%(0, T). Then for

each t > 0 we have in L%(Q);)

t o t
D(X,) — D(X,) = / 9,0 (X,)BYdBl + / 9,0 (X, )a',du(label) €629
S S
(58)
‘ vij | L1a2 Wi puj i nj
+ [ (X)L + 503 @ (XY B1d (B, 87),.
S

v
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Proof.
By the assumptions on @, we can choose a sequence of functions
®py € CZ(R") such that

q
i

<

[@n(x) = P(x)] + [0 Py (x) = Dr P (x)] + [0 P (x) — D0 @(x) | <

where (7 and k are positive constants independent of N. Obviously, ®y
satisfies the conditions in Proposition —d-Prop-Ito, therefore,

(®)]

t - t
cp,\,(xt)—cp,v(xs):/ axvq>N(Xu)5VquBJu+/ 3.0 O (Xo )& du(label)e
(59)

t . 1 " . . J
+ [ P tn (X)L + 50 P (X,)BY B1d (B, B
s

Ol

v
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Proof. (continue).

For each fixed T > 0, by Proposition —B-D-G, there exists a constant (;
such that

E[|X:|?] < G fort € [0, T].
Thus we can prove that Dy (X;) — ®(X;) in LZ(Q;) and in M2(0, T),

0 ®p (X ) VY — 9,0 ®(X)y'Y,
02,0 @ (X )P BY — 82, (X ) B BY,
D0 Py (X )a! — 00D (X)a?,
0, @ (X)BY — 0,0 P(X)BY.
We then can pass to limit as N — oo in both sides of (—e630) to get
(—e629). O

v
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Corollary

Let ® be a polynomial and a, a'€RY be fixed forv=1,---,n. Then we
have

t
<I>(Xt)—<1>(Xs)=/ 0,v®d(X,)dB + 2/ 92, . D(X <Ba”,sa”> ,

where Xy = (B2 ,---,B¥")T . In particular, we have, for k = 2,3, - -,

(8 = k [ (B ragz + U [ (gryezgee),,
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Sec. Generalized G-Brownian Motion

If E becomes a linear expectation, then the above G-It8’s formula is the
classical one.

Let G : RY x S(d) — R be a given continuous sublinear function
monotonic in A € S(d). Then by Theorem —t1 in Chap.—ch1, there exists
a bounded, convex and closed subset £ C RY x S, (d) such that

GlpA) = s;l)pez[ltr[AB] +(p,q)] for (p,A) € RY x S(d).

By Chapter —ch2, we know that there exists a pair of d-dimensional
random vectors (X, Y') which is G-distributed.
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We now give the definition of the generalized G-Brownian motion.

Definition

A d-dimensional process (B;):>0 on a sublinear expectation space
(Q, H,E) is called a generalized G-Brownian motion if the following
properties are satisfied:

(i) Bo(w) =0;

(ii) For each t,s > 0, the increment B;s — B; identically distributed with
\/sX + sY and is independent from (B, By, -+, B, ), for each n € N
and 0 < t; <--- <t, <t where (X, Y) is G-distributed.
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The following theorem gives a characterization of the generalized
G-Brownian motion.

Theorem

Let (Bt)¢>0 be a d-dimensional process defined on a sublinear expectation
space (Q, H,IE) such that

(i) Bo(w)=0;

(ii) For each t,s > 0, Byys — Bt and Bs are identically distributed and
Bt+s — By is independent from (By,, B:,,- -+, Bt,), for each n € N and
0<ty<--- <t <t

(iii) limgyo B[| B3]t~ = 0.

Then (B:)t>0 is a generalized G-Brownian motion with

G(p, A) = lims;o B[(p, Bs) + 3(ABs, Bs)]6~ for (p, A) € R? x S(d).
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Proof.

We first prove that lims o E[(p, Bs) + 1(AB;, Bs)]6~ 1 exists. For each
fixed (p, A) € RY x S(d), we set

f(t) :=E[(p, B:) + %(ABt, B:)].
Since
[ (t+h) = f(t)] < B[(Ip| +2|AlBe|)|Bexn — Be| +|Al| Besn — Bel?] — 0,
we get that f(t) is a continuous function. It is easy to prove that

(g, B:)] = E[(q, B1)]t for g € RY.
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Proof. (continue).
Thus for each t,s > 0,

|F(t+s) — (1) — f(s)| < CE[|Be[]s,

where C = |A|E[|B1]]. By (iii), there exists a constant &y > 0 such that
E[|B¢|3] < t for t < &y. Thus for each fixed t > 0 and N € N such that
Nt < &g, we have

|F(NE) — NF(2)] < %C(Nt)4/3.

From this and the continuity of f, it is easy to show that lim. o f (¢)t~*
exists. Thus we can get G(p, A) for each (p, A) € RY x S(d). It is also
easy to check that G is a continuous sublinear function monotonic in
A€ 5(d).
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Proof. (continue).

We only need to prove that, for each fixed ¢ € Cp;p(RY), the function
u(t,x) == Elp(x + Bt)], (tx) € [0,00) xR

is the viscosity solution of the following parabolic PDE:
(label)e7310;u — G(Du, D?u) =0, ul|i—o = @. (60)

We first prove that u is Lipschitz in x and %-Hélder continuous in t. In
fact, for each fixed t, u(t,-) € Cprip(R?) since

[Elp(x + B:)] — Elp(y + Be)]| < E[l@(x+ Bt) — ¢(y + B)|]
C|

x—yl.

IAIA
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Proof. (continue).

For each 6 € [0, t], since B; — B; is independent from Bs,

u(t,x) = E[(x + Bs + (B: — B;)]
= B[E[p(y + (Bt — Bs))ly=x+8,)-
Hence
(label)e732u(t, x) = Blu(t — &, x + B;)]. (61)
Thus

lu(t,x) —u(t—6,x)| = |E[u(t —6,x+ Bs) — u(t —6,x)]|

IEHu(t—(S,X—l— Bs) — u(t—6,x)|]

B[C|By|] < C1/G(0,1) + 1V/6.

IN

IN
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Proof. (continue).

To prove that u is a viscosity solution of (—e731), we fix a
(t,x) € (0,00) x RY and let v € C*([0,00) x R?) be such that v > u
and v(t,x) = u(t,x). From (-e732), we have

v(t,x) = E[u(t — 8,x+ Bs)] < E[v(t —6,x + Bs)].
Therefore, by Taylor's expansion,
0 <E[v(t—d,x+ Bs) — v(t,x)]
=E[v(t — 6,x+ Bs) — v(t,x + Bs) + (v(t,x + B;) — v(t,x))]
= B[—3,v(t,x)5 + (D (t,x),B(5>+%(D2v(t,x)Bg,B(s>+I5]
< —9:v(t,x)d + E[(Dv(t,x), Bs) + %(D2v(t,x)85, Bs)] + E[ls],

where

= 1 —[0¢v(t — Bd, x + Bs) — 0:v(t, x)]|0dp

Q
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Proof. (continue).

With the assumption (iii) we can check that lims o IE[|/;]]6" = 0, from
which we get 9;v(t,x) — G(Dv(t,x), D?v(t,x)) <0, hence u is a
viscosity subsolution of (-e731). We can analogously prove that v is a
viscosity supersolution. Thus v is a viscosity solution and (B;);>0 is a
generalized G-Brownian motion.

Ol

.
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In many situations we are interested in a generalized 2d-dimensional
Brownian motion (B, b:)¢>o such that E[B;] = —E[-B;] = 0 and
E[|b:|?]/t — 0, as t | 0. In this case B is in fact a G-Brownian motion
defined on Definition 2.1 of Chapter —ch?2.
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Moreover the process b satisfies properties of Proposition 5.2. We define
u(t,x,y) = E[@p(x + B,y + b;)]. By the above proposition it follows that
u is the solution of the PDE

d:u = G(Dyu, D2 u), uli—o = ¢ € Cpjp(R??).
where G is a sublinear function of (p, A) € RY, defined by
G(p, A) :=E[(p, bs) + (AB:, B)].

Here (-,-) = (-, *)ra-
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Sec. G-Brownian Motion under a Nonlinear Expectation

We can also define a G-Brownian motion on a nonlinear expectation space
(QO,H,E).

Definition

(label)defllI901A d-dimensional process (B:):>0 on a nonlinear
expectation space (Q,H,E) is called a (nonlinear) G-Brownian motion
if the following properties are satisfied:

(i) Bo(w) =0;

(ii) For each t,s > 0, the increment Bys — B; identically distributed with
Bs and is independent from (By,, B:,, - -+, Bt,), for each n € N and
0<ti <---<th <t

(iii) limgyo B[| B3]t~ = 0.

% % X.Shige Peng () Nonlinear Expectations and Stochastic Calct



The following theorem gives a characterization of the nonlinear
G-Brownian motion, and give us the generator G of our G-Brownian
motion.
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Theorem

(label) Thmll18.2 Let E be a nonlinear expectation and IE be a sublinear
expectation defined on (Q,H). let E be dominated by IE, namely

E[X]-E[Y]<E[X-Y], X, YcEH.

Let (B, bt)t>0 be a given R?>-valued G-Brownian motion on (Q, H,IE)
such that E[B;] = E[—B:] = 0 and lim;_oE[|b;|?]/t = 0. Then, for
each fixed ¢ € Cb_L,-p(1R2d), the function

i(t,x,y) :=E[p(x+ B,y + bt)], (t,x,y) € [0,00) x R*
is the viscosity solution of the following parabolic PDE:
0:0 — G(Dy, i, D2T) = 0, uls—o = ¢.(label)elll831 (62)

where

G(p, A) = B[(p, b1) + ~(ABy1, B1)], (p, A) € RY x S(d).

2
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Remark.

Let G(p, A) := lE[(p, b1) + %(ABl, B1)]. Then the function G is
dominated by the sublinear function G in the following sense:

G(p,A)—G(p,A) < G(p—p,A=A), (p,A), (P,A') €R?x S(d)(-(/a)be
63
L]

v
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Proof of Theorem —Thmll18.2.

We set |
f(t) = far(t) :==E[(p, bt) + §<ABt’ B:)], t > 0.

Since
|F(t+h) — £(t)] < E[(|p| +2|Al|Be|)|Bern — Bel + |Al|Besn — Be[] — 0,

we get that f(t) is a continuous function. Since E[B;] = E[-B:] =0, it
follows from Proposition —Propl.3.4 that E[X + (p, B;)] = E[X] for each
X € H and p € RY.

Ol
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Proof. (continue).
Thus

F(t4h) = E[{p bern— be) + (o be)
1 1
+§<ABt+h — Bt,Biin — Be) + 5 (ABy, By)]

= E[(p,

ba) -+ 5(AB, B)] + El(p,be) + 3
= f(t) +f(h).

> (B, By)
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Proof. (continue).

It then follows that 7(t) = f(1)t = G(A, p)t. We now prove that the
function v is Lipschitz in x and uniformly continuous in t. In fact, for each

fixed t, u(t,-) € Cprip(R?) since

|E[@(x + B,y + bt)] — E[p(x' + B,y + by)]|
<E[l@(x+ Bty + bt) — ¢(xX' + Be,y' + by)|] < C(|x = x| + |y — ¥']).

For each ¢ € [0, t], since (B; — By, by — bs) is independent from (Bj, bs),

i(t,x) =E[p(x + Bs + (Bt — Bs),y + bs + (br — bs))]

= E[E[p(x + (Bt — Bs), 7 + (b — b5))x—x+ Byg—y-+bs):
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Proof. (continue).

Hence

u(t,x) = B[u(t — 8,x + Bs,y + bs)].(label)ell1832

Thus

|u(t,x,y) —u(t—9,x,

It follows from (iii) of Definition —defll1901 that u(t, x, y) is continuous in
€ [0,00) x R?.

t uniformly in (t, x)

y)| = [Ela(t — 6,x+ Bs,y + bs) — ui(t
|

<
< E[C(|Bs| + |bs])]-

_5/X/y)]|
[ U(t—06,x+ Bs,y+ bs) —u(t—96,x,y)|]

(64)

Ol
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Proof. (continue).

To prove that @ is a viscosity solution of (—elll831), we fix a
(t,x,y) € (0,00) x R and let v € C3([0,00) x IR??) be such that
v>uand v(t,x,y) = u(t,x,y). From (—elll832), we have

v(t,x,y) = Blu(t — 8,x + Bs,y + bs)] < E[v(t — 8, x + Bs, y + bs)].

Ol

v
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Proof. (continue).
Therefore, by Taylor's expansion,
0 < E[v(t —6,x+ Bs,y + bs) — v(t,x)]
= IE[V(t —0,x+ Bs,y + b(s) = V(t,X+ Bs,y + b,;)
+ (v(t,x + Bs,y + bs) — v(t, x,y)]

[ d¢v(t,x,y)0 + (Dyv(t,x,y), bs)

X

+ @v(t, %), B + 2 (O,
< —0:v(t,x, )8 +E[(Dyv(t,x,y), bs) + %(D v(t,x,y)Bs, Bs)] + E[ls],

Ol
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Proof. (continue).

where
1
lo= [ —[Pev(t = 67,x+ By, + b5) = ev(t,x,y)}ody
1
+ /0 (9yv(t,x+7Bs,y +vbs) — dyv(t,x,y), bs) dy
1
+ /0 (0xv(t,x,y + vbs) — Ixv(t,x,y), Bs) dy
1 1
+ /0 /o ((D2,v(t,x +ayBs,y + vbs) — D2 v(t,x,y))Bs, Bs)ydvyda.
With the assumption (iii) we can check that lims o IE[|/;]]6" = 0, from
which we get 9;:v(t,x) — G(Dv(t,x), D?v(t,x)) <0, hence u is a

viscosity subsolution of (—elll831). We can analogously prove that u is a
viscosity supersolution. Thus u is a viscosity solution. [

v
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Sec. Construction of G-Brownian Motions under Nonlinear

Expectation

Let G(-) : RY x S(d) — R be a given sublinear function monotonic on
A€S(d) and G(-) : R? x S(d) — R be a given function dominated by G
in the sense of (—elllGdom). The construction of a IR??-dimensional
G-Brownian motion (B¢, bt) >0 under a nonlinear expectation E,
dominated by a sublinear expectation IE is based on a similar approach
introduced in Section 2. In fact we will see that by our construction

(B¢, bt) >0 is also a G-Brownian motion of the sublinear expectation E.
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We denote by Q) = C29(IR™) the space of all R??~valued continuous paths
(we)ter+- For each fixed T € [0,00), we set Q7 := {w. 1 :w € Q}. We
will consider the canonical process (B;, by)(w) = wy, t € [0,00), for

w € ). We also follow section 2 to introduce the spaces of random
variables L;,(Q7) and L;,(Q) so that to define IE and |E on (Q, Li,(Q0)).
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To this purpose we first construct a sequence of d-dimensional random
vectors (X;,77;)%; on a sublinear expectation space (Q, H, [E) such that
(Xi,ni) is G-distributed and (Xit1,7%i+1) is independent from
((X1,m),---,(Xi,ni)) for each i =1,2,---. By the definition of
G-distribution the function

u(t,x,y) = IE[go(x—i— ViXi,y + tm)], t>0, x,y€ R

is the viscosity solution of the following parabolic PDE, which is the same
as equation (—ee03) in Chap.Il.

d:u — G(Dyu,D2,u) =0, uli—o = ¢ € Cpip(R??).
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We also consider the PDE (for the existence, uniqueness, comparison and
domination properties, see Theorem —Com-G in Appendix C).

9.0 — G(Dyi, D2,1) =0, @|s—0 = ¢ € Cpjp(R??),
and denote by P:[¢](x,y) = @(t,x,y). Since G is dominated by G, it
follows from the domination theorem of viscosity solutions, i.e., Theorem

—G-Tilde in Appendix C, that, for each @, ¢ € Cp1p(IR?9),

Pelgl(x,y) = Pe[g](x,y) < E[(@ —9)(x + VtXa,y + t1)].
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We now introduce a sublinear expectation IE and a nonlinear E defined on
Li»(Q2) via the following procedure: for each X € L;j,(Q2) with

X = @(By, — Bty bty — by, - -+, By, — Bey, be, — bt )
for ¢ € CL,-p(]R2dX”) and 0=ty < t; < --- < t, < 00, we set
E[¢(Bt, — Biy, by, — bty, -+, Bt, — B, ,, b, — by, )]
:=Elp(v/t1 — toX1, (t1 — t0)771, - -+, V/Tn — tn—1Xn, (tn — tn-1)7n)].

and

E[¢(Bt, — By, by — by, -+, B, — B, y, b, — bt, ;)] = ¢4(0,0)

where @, € Cb,L,-p(]RZd) is defined iteratively through

(Pl (X]./ i, /an]./ynf].) = ﬁtnftnfl [GD]. (X1/YI, cr , Xn—1,Yn-1, )](0/ 0)/

q)"—l(Xl/YI) = Etz—tl[QN—Z(Xllyll')](0/0)/
pn(x1,y1) = Pou[en-1()]0xa, ).
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The related conditional expectation of
X :(P(Btl - Bto/ bt1 - bto/ oty Btn - Btn,l, bt
defined by

— by,_,) under Oy is

n

E[X|Qq] = E[p(By, — Bry, bty — by, -+, B, — B, 1, br, — b, ;) Q2] (/abe
(©5)
:lp(Btl_Btolbh_bto/"' /B Btj 1,b btj 1)

where

lzb(Xll"' /XJ) :]E Xl/"' 7 Xjs m)ngl/ tl_tO M+l ,Vith —

Similarly

]E[X|Qtj] = Ganj(Btl - Bto/ btl - btol e /Btj - Bt 17 bt - btj,1)~
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It is easy to check that IE[] (resp.~]E) consistently defines a sublinear
(resp. nonlinear) expectation and E[-] on (), Lj5())). Moreover
(B¢, bt) >0 is a G-Brownian motion under IE and a G-Brownian motion

under [E.
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Proposition

(label)Prop-1-9-2We also list the properties of E[-|Q);] that hold for each
X, Y GLip(Q)Z

(i) If X > Y, then E[X|Q¢] > E[Y|Q].

(ii) [X+17|Qt] =IE[X|Q)¢] + 17, foreach t > 0 and 17 €L;p ().

(iii) ]E[X|Q | —E[Y|Q] < E[X — Y|Q].

(iv) E[E[X|Q:]|Qs] = E[X[Q¢ps], in particular, E[E[X|Q:]] = E[X].
(

s

v) For each X € L;,(QF), E[X|Q;] = E[X], where L;,(QF) is the linear
pace of random variables with the form

p(We, — Wy, Wey = Wey, -, Wh,y — We),
n = 1/2/' Tty 90 S CLI'p(RdX")/ tl/' o /tn/ tn+1 S [t,OO).
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Since IE can be considered as a special nonlinear expectation of E
dominated by its self, thus E[-|Q)¢] also satisfies above properties (i)—(v).
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Moreover

Proposition.

(label)Prop-1-9-1The conditional sublinear expectation IE[-|Q);] satisfies
(i)-(v). Moreover E[-|Q)] itself is sublinear, i.e.,
(i) E[X|0 ~E[Y]0,] < B[X - V|0,
(vii) E[X|Q¢] = nTE[X|Q] + 17 E[—X]|Q4] for each 17 € Lip(Q).
[]
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We now consider the completion of sublinear expectation space

(Q, Lp(Q), ).

We denote by LZ(Q), p > 1, the completion of Lj,(£)) under the norm
1X1], :== (B[|X|P])1/P. Similarly, we can define L% (Q7), L2 (QY) and
LZ(QF). It is clear that for each 0 < t < T < oo,

L5(0) € L(Qr) C LA(0Y)
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According to Sec.—c1sb in Chap.—chl, IE[ ] can be continuously extended
to (Q, LL(Q)). Moreover, since E is dominated by IE, thus by Definition
—Def|4.4 in Chap.l, (Q, LL(Q),IE) forms a sublinear expectation space

and (Q, LL(Q),E) forms a nonlinear expectation space.
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We now consider the extension of conditional G-expectation. For each
fixed t < T, the conditional G-expectation E[-|Q¢] : Ljp(Q7) — Lip(Q)
is a continuous mapping under ||-||. Indeed, we have

E[X|Q:] —E[Y|Q:] < E[X — Y|Q] < E[|X — Y]||Q4],
then N N
[E[X]Q:] — E[Y|Q:]| < E[[X — Y[[Q].
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We thus obtain

Hfﬁ[xyat] —E[Y|Q]

<Ix-vl.
It follows that IE[-|Q)¢] can be also extended as a continuous mapping
E[-|Q] : LE(Q7) — LL(O).

E the above T is not fixed, then we can obtain
E[10] : L(Q) — L5(€)).

The above proposition also holds for X, Y € LL(Q). But in (iv),
11 € LE(Q¢) should be bounded, since X, Y € LL(Q)) does not imply
XY eLL(Q) 0
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In particular, we have the following independence:

E[X|Q:] = E[X], VX € LL(Q}).
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We give the following definition similar to the classical one:

Definition

An n-dimensional random vector Y € (LL(()))" is said to be independent
from Q) for some given t if for each ¢ € Cp1jp(IR") we have

E[p(Y)|] = E[p(Y)].
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Bachelier (1900) [?] proposed Brownian motion as a model for fluctuations
of the stock market, Einstein (1905) [?] used Brownian motion to give
experimental confirmation of the atomic theory, and Wiener (1923) [?]
gave a mathematically rigorous construction of Brownian motion. Here we
follow Kolmogorov's idea (1956) [?] to construct G-Brownian motion by
introducing infinite dimensional function space and the corresponding
family of infinite dimensional sublinear distributions, instead of linear
distributions in [?].
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The notions of G-Brownian motion and the related stochastic calculus of
Itd's type were firstly introduced by Peng (2006) [?] for 1-dimensional case
and then in (2008) [?] for multi-dimensional situation. It is very interesting
that Denis and Martini (2006) [?] studied super-pricing of contingent
claims under model uncertainty of volatility. They have introduced a norm
on the space of continuous paths 3 = C([0, T|) which corresponds to our
L2G—norm and developed a stochastic integral. There is no notion of
nonlinear expectation and the related nonlinear distribution, such as
G-expectation, conditional G-expectation, the related G-normal
distribution and the notion of independence in their paper. But on the
other hand, powerful tools in capacity theory enable them to obtain
pathwise results for random variables and stochastic processes through the
language of “quasi-surely” (see e.g. Dellacherie (1972) [?], Dellacherie and
Meyer (1978 and 1982) [?], Feyel and de La Pradelle (1989) [?]) in place
of “almost surely” in classical probability theory.
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The main motivations of G-Brownian motion were the pricing and risk
measures under volatility uncertainty in financial markets (see Avellaneda,
Levy and Paras (1995) [?] and Lyons (1995) [?]). It was well-known that
under volatility uncertainty the corresponding uncertain probabilities are
singular from each other. This causes a serious problem for the related
path analysis to treat, e.g., path-dependent derivatives, under a classical
probability space. Our G-Brownian motion provides a powerful tool to
such type of problems.
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Our new It6’s calculus for G-Brownian motion is of course inspired from
Itd's groundbreaking work since 1942 [?] on stochastic integration,
stochastic differential equations and stochastic calculus through interesting
books cited in Chapter —ch5. It6's formula given by Theorem —Thm6.5 is
from Peng [?], [?]. Gao (2009)[?] proved a more general 1td’s formula for
G-Brownian motion. An interesting problem is: can we get an Itd's
formula in which the conditions correspond the classical one? Recently Li
and Peng have solved this problem in [?].

Using nonlinear Markovian semigroup known as Nisio's semigroup (see
Nisio (1976) [?]), Peng (2005) [?] studied the processes with Markovian
properties under a nonlinear expectation.
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