Nonlinear Expectations and Stochastic Calculus under Uncertainty

—with Robust Central Limit Theorem and G－Brownian Motion

彭实戈Shige Peng

Shandong University

Presented at Spring School of Roscoff

- $L^{0}(\Omega)$: the space of all $\mathcal{B}(\Omega)$-measurable real functions;
- $B_{b}(\Omega)$: all bounded functions in $L^{0}(\Omega)$;
- $C_{b}(\Omega)$: all continuous functions in $B_{b}(\Omega)$.

All along this section, we consider a given subset $\mathcal{P} \subseteq \mathcal{M}$. We denote

$$
c(A):=\sup _{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega) .
$$

One can easily verify the following theorem.

Theorem

The set function $c(\cdot)$ is a Choquet capacity, i.e. (see [?, ?]),
(1) $0 \leq c(A) \leq 1, \forall A \subset \Omega$.
(2) If $A \subset B$, then $c(A) \leq c(B)$.
(3) If $\left(A_{n}\right)_{n=1}^{\infty}$ is a sequence in $\mathcal{B}(\Omega)$, then $c\left(\cup A_{n}\right) \leq \sum c\left(A_{n}\right)$.
(9) If $\left(A_{n}\right)_{n=1}^{\infty}$ is an increasing sequence in $\mathcal{B}(\Omega): A_{n} \uparrow A=\cup A_{n}$, then $c\left(\cup A_{n}\right)=\lim _{n \rightarrow \infty} c\left(A_{n}\right)$.

Furthermore, we have

Theorem

For each $A \in \mathcal{B}(\Omega)$, we have

$$
c(A)=\sup \{c(K): K \text { compact } K \subset A\} .
$$

Proof.

It is simply because

$$
c(A)=\sup _{P \in \mathcal{P}} \sup _{\substack{\text { compact } \\ K \subset A}} P(K)=\sup _{\substack{K \text { compact } \\ K \subset A}} \sup _{\substack{ }} P(K)=\sup _{\substack{K \text { compact } \\ K \subset A}} c(K) .
$$

Definition

We use the standard capacity-related vocabulary: a set A is polar if $c(A)=0$ and a property holds "quasi-surely" (q.s.)" qs if it holds outside a polar set.

We also have in a trivial way a Borel-Cantelli Lemma.

Lemma

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Borel sets such that

$$
\sum_{n=1}^{\infty} c\left(A_{n}\right)<\infty
$$

Then $\lim \sup _{n \rightarrow \infty} A_{n}$ is polar.

Proof.

Applying the Borel-Cantelli Lemma under each probability $P \in \mathcal{P}$.
The following theorem is Prokhorov's theorem.

Theorem

\mathcal{P} is relatively compact if and only if for each $\varepsilon>0$, there exists a compact set K such that $c\left(K^{c}\right)<\varepsilon$.

The following two lemmas can be found in［？］．

Lemma

\mathcal{P} is relatively compact if and only if for each sequence of closed sets $F_{n} \downarrow \varnothing$ ，we have $c\left(F_{n}\right) \downarrow 0$ ．

Proof．

We outline the proof for the convenience of readers．
＂\Longrightarrow＂part：It follows from Theorem－newth6 that for each fixed $\varepsilon>0$ ， there exists a compact set K such that $c\left(K^{c}\right)<\varepsilon$ ．Note that $F_{n} \cap K \downarrow \varnothing$ ， then there exists an $N>0$ such that $F_{n} \cap K=\varnothing$ for $n \geq N$ ，which implies $\lim _{n} c\left(F_{n}\right)<\varepsilon$ ．Since ε can be arbitrarily small，we obtain $c\left(F_{n}\right) \downarrow 0$ ． ＂$\Longleftarrow " ~ p a r t: ~ F o r ~ e a c h ~ \varepsilon>0, ~ l e t ~\left(~(~ A ~ k ~)_{i=1}^{\infty}\right.$ be a sequence of open balls of radius $1 / k$ covering Ω ．Observe that $\left(\cup_{i=1}^{n} A_{i}^{k}\right)^{c} \downarrow \varnothing$ ，then there exists an n_{k} such that $c\left(\left(\cup_{i=1}^{n_{k}} A_{i}^{k}\right)^{c}\right)<\varepsilon 2^{-k}$ ．Set $K=\overline{\cap_{k=1}^{\infty} \cup_{i=1}^{n_{k}} A_{i}^{k}}$ ．It is easy to check that K is compact and $c\left(K^{c}\right)<\varepsilon$ ．Thus by Theorem－newth6， \mathcal{P} is relatively compact．

Lemma

Let \mathcal{P} be weakly compact. Then for each sequence of closed sets $F_{n} \downarrow F$, we have $c\left(F_{n}\right) \downarrow c(F)$.

Proof.

We outline the proof for the convenience of readers. For each fixed $\varepsilon>0$, by the definition of $c\left(F_{n}\right)$, there exists a $P_{n} \in \mathcal{P}$ such that
$P_{n}\left(F_{n}\right) \geq c\left(F_{n}\right)-\varepsilon$. Since \mathcal{P} is weakly compact, there exist $P_{n_{k}}$ and $P \in \mathcal{P}$ such that $P_{n_{k}}$ converge weakly to P. Thus

$$
P\left(F_{m}\right) \geq \limsup _{k \rightarrow \infty} P_{n_{k}}\left(F_{m}\right) \geq \limsup _{k \rightarrow \infty} P_{n_{k}}\left(F_{n_{k}}\right) \geq \lim _{n \rightarrow \infty} c\left(F_{n}\right)-\varepsilon .
$$

Letting $m \rightarrow \infty$, we get $P(F) \geq \lim _{n \rightarrow \infty} c\left(F_{n}\right)-\varepsilon$, which yields $c\left(F_{n}\right) \downarrow c(F)$.

Following [?] (see also [?, ?]) the upper expectation of \mathcal{P} is defined as follows: for each $X \in L^{0}(\Omega)$ such that $E_{P}[X]$ exists for each $P \in \mathcal{P}$,

$$
\mathbb{E}[X]=\mathbb{E}^{\mathcal{P}}[X]:=\sup _{P \in \mathcal{P}} E_{P}[X] .
$$

It is easy to verify

Theorem

The upper expectation $\mathbb{E}[\cdot]$ of the family \mathcal{P} is a sublinear expectation on $B_{b}(\Omega)$ as well as on $C_{b}(\Omega)$, i.e.,
(1) for all X, Y in $B_{b}(\Omega), X \geq Y \Longrightarrow \mathbb{E}[X] \geq \mathbb{E}[Y]$.
(2) for all X, Y in $B_{b}(\Omega), \mathbb{E}[X+Y] \leq \mathbb{E}[X]+\mathbb{E}[Y]$.
(3) for all $\lambda \geq 0, X \in B_{b}(\Omega), \mathbb{E}[\lambda X]=\lambda \mathbb{E}[X]$.
(9) for all $c \in \mathbb{R}, X \in B_{b}(\Omega), \mathbb{E}[X+c]=\mathbb{E}[X]+c$.

Moreover, it is also easy to check

Theorem

We have
(1) Let $\mathbb{E}\left[X_{n}\right]$ and $\mathbb{E}\left[\sum_{n=1}^{\infty} X_{n}\right]$ be finite. Then $\mathbb{E}\left[\sum_{n=1}^{\infty} X_{n}\right] \leq \sum_{n=1}^{\infty} \mathbb{E}\left[X_{n}\right]$.
(2) Let $X_{n} \uparrow X$ and $\mathbb{E}\left[X_{n}\right], \mathbb{E}[X]$ be finite. Then $\mathbb{E}\left[X_{n}\right] \uparrow \mathbb{E}[X]$.

Definition

The functional $\mathbb{E}[\cdot]$ is said to be regular if for each $\left\{X_{n}\right\}_{n=1}^{\infty}$ in $C_{b}(\Omega)$ such that $X_{n} \downarrow 0$ on Ω, we have $\mathbb{E}\left[X_{n}\right] \downarrow 0$.

Similar to Lemma -Lemma1 we have:
Theorem
$\mathbb{E}[\cdot]$ is regular if and only if \mathcal{P} is relatively compact.

Proof.

" \Longrightarrow " part: For each sequence of closed subsets $F_{n} \downarrow \varnothing$ such that F_{n}, $n=1,2, \cdots$, are non-empty (otherwise the proof is trivial), there exists $\left\{g_{n}\right\}_{n=1}^{\infty} \subset C_{b}(\Omega)$ satisfying

$$
0 \leq g_{n} \leq 1, \quad g_{n}=1 \text { on } F_{n} \text { and } g_{n}=0 \text { on }\left\{\omega \in \Omega: d\left(\omega, F_{n}\right) \geq \frac{1}{n}\right\}
$$

We set $f_{n}=\wedge_{i=1}^{n} g_{i}$, it is clear that $f_{n} \in C_{b}(\Omega)$ and $\mathbf{1}_{F_{n}} \leq f_{n} \downarrow 0 . \mathbb{E}[\cdot]$ is regular implies $\mathbb{E}\left[f_{n}\right] \downarrow 0$ and thus $c\left(F_{n}\right) \downarrow 0$. It follows from Lemma -Lemma1 that \mathcal{P} is relatively compact.
" \Longleftarrow " part: For each $\left\{X_{n}\right\}_{n=1}^{\infty} \subset C_{b}(\Omega)$ such that $X_{n} \downarrow 0$, we have

$$
\mathbb{E}\left[X_{n}\right]=\sup _{P \in \mathcal{P}} E_{P}\left[X_{n}\right]=\sup _{P \in \mathcal{P}} \int_{0}^{\infty} P\left(\left\{X_{n} \geq t\right\}\right) d t \leq \int_{0}^{\infty} c\left(\left\{X_{n} \geq t\right\}\right) d t
$$

For each fixed $t>0,\left\{X_{n} \geq t\right\}$ is a closed subset and $\left\{X_{n} \geq t\right\} \downarrow \varnothing$ as $n \uparrow \infty$. By Lemma -Lemma1, $c\left(\left\{X_{n} \geq t\right\}\right) \downarrow 0$ and thus $\int_{0}^{\infty} c\left(\left\{X_{n} \geq t\right\}\right) d t \downarrow 0$. Consequently $\mathbb{E}\left[X_{n}\right] \downarrow 0$.

We set, for $p>0$,

- $\mathcal{L}^{p}:=\left\{X \in L^{0}(\Omega): \mathbb{E}\left[|X|^{p}\right]=\sup _{P \in \mathcal{P}} E_{P}\left[|X|^{p}\right]<\infty\right\}$;
- $\mathcal{N}^{p}:=\left\{X \in L^{0}(\Omega): \mathbb{E}\left[|X|^{p}\right]=0\right\}$;
- $\mathcal{N}:=\left\{X \in L^{0}(\Omega): X=0, c-q . s.\right\}$.

It is seen that \mathcal{L}^{p} and \mathcal{N}^{p} are linear spaces and $\mathcal{N}^{p}=\mathcal{N}$, for each $p>0$. We denote $\mathbb{L}^{p}:=\mathcal{L}^{p} / \mathcal{N}$. As usual, we do not take care about the distinction between classes and their representatives.

Lemma

Let $X \in \mathbb{L}^{p}$. Then for each $\alpha>0$

$$
c(\{|X|>\alpha\}) \leq \frac{\mathbb{E}\left[|X|^{p}\right]}{\alpha^{p}}
$$

Proof.

Just apply Markov inequality under each $P \in \mathcal{P}$.
Similar to the classical results, we get the following proposition and the proof is omitted which is similar to the classical arguments.

Proposition.

We have
(1) For each $p \geq 1, \mathbb{L}^{p}$ is a Banach space under the norm $\|X\|_{p}:=\left(\mathbb{E}\left[\|\left. X\right|^{p}\right]\right)^{\frac{1}{p}}$.
(2) For each $p<1, \mathbb{L}^{p}$ is a complete metric space under the distance $d(X, Y):=\mathbb{E}\left[|X-Y|^{p}\right]$.

We set

$$
\begin{aligned}
\mathcal{L}^{\infty} & :=\left\{X \in L^{0}(\Omega): \exists \text { a constant } M, \text { s.t. }|X| \leq M, \text { q.s. }\right\} \\
\mathbb{L}^{\infty} & :=\mathcal{L}^{\infty} / \mathcal{N}
\end{aligned}
$$

Proposition.

Under the norm

$$
\|X\|_{\infty}:=\inf \{M \geq 0:|X| \leq M, \quad \text { q.s. }\}
$$

\mathbb{L}^{∞} is a Banach space.

Proof.

From $\left\{|X|>\|X\|_{\infty}\right\}=\cup_{n=1}^{\infty}\left\{|X| \geq\|X\|_{\infty}+\frac{1}{n}\right\}$ we know that $|X| \leq\|X\|_{\infty}$, q.s., then it is easy to check that $\|\cdot\|_{\infty}$ is a norm. The proof of the completeness of \mathbb{L}^{∞} is similar to the classical result.

With respect to the distance defined on $\mathbb{L}^{p}, p>0$, we denote by

- \mathbb{L}_{b}^{p} the completion of $B_{b}(\Omega)$.
- \mathbb{L}_{c}^{p} the completion of $C_{b}(\Omega)$.

By Proposition -Prop3, we have

$$
\mathbb{L}_{c}^{p} \subset \mathbb{L}_{b}^{p} \subset \mathbb{L}^{p}, \quad p>0
$$

The following Proposition is obvious and the proof is left to the reader.

Proposition.

We have
(1) Let $p, q>1, \frac{1}{p}+\frac{1}{q}=1$. Then $X \in \mathbb{L}^{p}$ and $Y \in \mathbb{L}^{q}$ implies

$$
X Y \in \mathbb{L}^{1} \text { and } \mathbb{E}[|X Y|] \leq\left(\mathbb{E}\left[|X|^{p}\right]\right)^{\frac{1}{p}}\left(\mathbb{E}\left[|Y|^{q}\right]\right)^{\frac{1}{q}} ;
$$

Moreover $X \in \mathbb{L}_{c}^{p}$ and $Y \in \mathbb{L}_{c}^{q}$ implies $X Y \in \mathbb{L}_{c}^{1}$;
(2) $\mathbb{L}^{p_{1}} \subset \mathbb{L}^{p_{2}}, \mathbb{L}_{b}^{p_{1}} \subset \mathbb{L}_{b}^{p_{2}}, \mathbb{L}_{c}^{p_{1}} \subset \mathbb{L}_{c}^{p_{2}}, 0<p_{2} \leq p_{1} \leq \infty$;
(3) $\|X\|_{p} \uparrow\|X\|_{\infty}$, for each $X \in \mathbb{L}^{\infty}$.

Proposition.

Let $p \in(0, \infty]$ and $\left(X_{n}\right)$ be a sequence in \mathbb{L}^{p} which converges to X in \mathbb{L}^{p}. Then there exists a subsequence $\left(X_{n_{k}}\right)$ which converges to X quasi-surely in the sense that it converges to X outside a polar set.

Proof.

Let us assume $p \in(0, \infty)$, the case $p=\infty$ is obvious since the convergence in \mathbb{L}^{∞} implies the convergence in \mathbb{L}^{p} for all p. One can extract a subsequence $\left(X_{n_{k}}\right)$ such that

$$
\mathbb{E}\left[\left|X-X_{n_{k}}\right|^{p}\right] \leq 1 / k^{p+2}, \quad k \in \mathbb{N}
$$

We set for all k

$$
A_{k}=\left\{\left|X-X_{n_{k}}\right|>1 / k\right\}
$$

then as a consequence of the Markov property (Lemma -markov) and the Borel-Cantelli Lemma -BoreIC, $c\left(\overline{\lim }_{k \rightarrow \infty} A_{k}\right)=0$. As it is clear that on $\left(\overline{\lim }_{k \rightarrow \infty} A_{k}\right)^{c},\left(X_{n_{k}}\right)$ converges to X, the proposition is proved.

We now give a description of \mathbb{L}_{b}^{p}.
Proposition.
"Prop5For each $p>0$,

$$
\mathbb{L}_{b}^{p}=\left\{X \in \mathbb{L}^{p}: \lim _{n \rightarrow \infty} \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right]=0\right\}
$$

Proof.

We denote $J_{p}=\left\{X \in \mathbb{L}^{p}: \lim _{n \rightarrow \infty} \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right]=0\right\}$. For each $X \in J_{p}$ let $X_{n}=(X \wedge n) \vee(-n) \in B_{b}(\Omega)$. We have

$$
\mathbb{E}\left[\left|X-X_{n}\right|^{p}\right] \leq \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right] \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Thus $X \in \mathbb{L}_{b}^{p}$.
On the other hand, for each $X \in \mathbb{L}_{b}^{p}$, we can find a sequence $\left\{Y_{n}\right\}_{n=1}^{\infty}$ in $B_{b}(\Omega)$ such that $\mathbb{E}\left[\left|X-Y_{n}\right|^{p}\right] \rightarrow 0$. Let $y_{n}=\sup _{\omega \in \Omega}\left|Y_{n}(\omega)\right|$ and $X_{n}=\left(X \wedge y_{n}\right) \vee\left(-y_{n}\right)$. Since $\left|X-X_{n}\right| \leq\left|X-Y_{n}\right|$, we have $\mathbb{E}\left[\left|X-X_{n}\right|^{p}\right] \rightarrow 0$. This clearly implies that for any sequence $\left(\alpha_{n}\right)$ tending to $\infty, \lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X-\left(X \wedge \alpha_{n}\right) \vee\left(-\alpha_{n}\right)\right|^{p}\right]=0$.
Now we have, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
\mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right] & =\mathbb{E}\left[(|X|-n+n)^{p} \mathbf{1}_{\{|X|>n\}}\right] \\
& \leq\left(1 \vee 2^{p-1}\right)\left(\mathbb{E}\left[(|X|-n)^{p} \mathbf{1}_{\{|X|>n\}}\right]+n^{p} c(|X|>n)\right) .
\end{aligned}
$$

The first term of the right hand side tends to 0 since

Proposition.

Let $X \in \mathbb{L}_{b}^{1}$. Then for each $\varepsilon>0$, there exists a $\delta>0$, such that for all $A \in \mathcal{B}(\Omega)$ with $c(A) \leq \delta$, we have $\mathbb{E}\left[|X| \mathbf{1}_{A}\right] \leq \varepsilon$.

Proof.

For each $\varepsilon>0$, by Proposition =$\mathbb{E}\left[|X| \mathbf{1}_{\{|X|>N\}}\right] \leq \frac{\varepsilon}{2}$. Take $\delta=\frac{\varepsilon}{2 N}$. Then for a subset $A \in \mathcal{B}(\Omega)$ with $c(A) \leq \delta$, we have

$$
\begin{aligned}
\mathbb{E}\left[|X| \mathbf{1}_{A}\right] & \leq \mathbb{E}\left[|X| \mathbf{1}_{A} \mathbf{1}_{\{|X|>N\}}\right]+\mathbb{E}\left[|X| \mathbf{1}_{A} \mathbf{1}_{\{|X| \leq N\}}\right] \\
& \leq \mathbb{E}\left[|X| \mathbf{1}_{\{|X|>N\}}\right]+N c(A) \leq \varepsilon .
\end{aligned}
$$

It is important to note that not every element in \mathbb{L}^{p} satisfies the condition $\lim _{n \rightarrow \infty} \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right]=0$. We give the following two counterexamples to show that \mathbb{L}^{1} and \mathbb{L}_{b}^{1} are different spaces even under the case that \mathcal{P} is weakly compact.

Example

Let $\Omega=\mathbb{N}, \mathcal{P}=\left\{P_{n}: n \in \mathbb{N}\right\}$ where $P_{1}(\{1\})=1$ and
$P_{n}(\{1\})=1-\frac{1}{n}, P_{n}(\{n\})=\frac{1}{n}$, for $n=2,3, \cdots . \mathcal{P}$ is weakly compact. We consider a function X on \mathbb{N} defined by $X(n)=n, n \in \mathbb{N}$. We have $\mathbb{E}[|X|]=2$ but $\mathbb{E}\left[|X| \mathbf{1}_{\{|X|>n\}}\right]=1 \nrightarrow 0$. In this case, $X \in \mathbb{L}^{1}$ but $X \notin \mathbb{L}_{b}^{1}$.

Example

Let $\Omega=\mathbb{N}, \mathcal{P}=\left\{P_{n}: n \in \mathbb{N}\right\}$ where $P_{1}(\{1\})=1$ and $P_{n}(\{1\})=1-\frac{1}{n^{2}}, P_{n}(\{k n\})=\frac{1}{n^{3}}, k=1,2, \ldots, n$, for $n=2,3, \cdots . \mathcal{P}$ is weakly compact. We consider a function X on \mathbb{N} defined by $X(n)=n$, $n \in \mathbb{N}$. We have $\mathbb{E}[|X|]=\frac{25}{16}$ and $n \mathbb{E}\left[\mathbf{1}_{\{|X| \geq n\}}\right]=\frac{1}{n} \rightarrow 0$, but $\mathbb{E}\left[|X| \mathbf{1}_{\{|X| \geq n\}}\right]=\frac{1}{2}+\frac{1}{2 n} \nrightarrow 0$. In this case, X is in \mathbb{L}^{1}, continuous and $n \mathbb{E}\left[\mathbf{1}_{\{|X| \geq n\}}\right] \rightarrow 0$, but it is not in \mathbb{L}_{b}^{1}.

Definition

A mapping X on Ω with values in a topological space is said to be quasi-continuous (q.c.) if
$\forall \varepsilon>0$, there exists an open set O with $c(O)<\varepsilon$ such that $\left.X\right|_{O^{c}}$ is continu

Definition

We say that $X: \Omega \rightarrow \mathbb{R}$ has a quasi-continuous version if there exists a quasi-continuous function $Y: \Omega \rightarrow \mathbb{R}$ with $X=Y$ q.s..

Proposition.

Let $p>0$. Then each element in \mathbb{L}_{c}^{p} has a quasi-continuous version.

Proof.

Let $\left(X_{n}\right)$ be a Cauchy sequence in $C_{b}(\Omega)$ for the distance on \mathbb{L}^{p}. Let us choose a subsequence $\left(X_{n_{k}}\right)_{k \geq 1}$ such that

$$
\mathbb{E}\left[\left|X_{n_{k+1}}-X_{n_{k}}\right|^{p}\right] \leq 2^{-2 k}, \quad \forall k \geq 1
$$

and set for all k,

$$
A_{k}=\bigcup_{i=k}^{\infty}\left\{\left|X_{n_{i+1}}-X_{n_{i}}\right|>2^{-i / p}\right\}
$$

Thanks to the subadditivity property and the Markov inequality, we have

$$
c\left(A_{k}\right) \leq \sum_{i=k}^{\infty} c\left(\left|X_{n_{i+1}}-X_{n_{i}}\right|>2^{-i / p}\right) \leq \sum_{i=k}^{\infty} 2^{-i}=2^{-k+1}
$$

The following theorem gives a concrete characterization of the space \mathbb{L}_{c}^{p}.

Theorem

$\overline{\text { For each }} p>0$,

$$
\mathbb{L}_{c}^{p}=\left\{X \in \mathbb{L}^{p}: X \text { has a q.-c. version, } \lim _{n \rightarrow \infty} \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right]=0\right\} .
$$

Proof.

We denote
$J_{p}=\left\{X \in \mathbb{L}^{p}: X\right.$ has a quasi-continuous version, $\lim _{n \rightarrow \infty} \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right]=0$
Let $X \in \mathbb{L}_{c}^{p}$, we know by Proposition -qc that X has a quasi-continuous version. Since $X \in \mathbb{L}_{b}^{p}$, we have by Proposition -Prop5 that $\lim _{n \rightarrow \infty} \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right]=0$. Thus $X \in J_{p}$.
On the other hand, let $X \in J_{p}$ be quasi-continuous. Define $Y_{n}=(X \wedge n) \vee(-n)$ for all $n \in \mathbb{N}$. As $\mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>n\}}\right] \rightarrow 0$, we have $\mathbb{E}\left[\left|X-Y_{n}\right|^{p}\right] \rightarrow 0$.
Moreover, for all $n \in \mathbb{N}$, as Y_{n} is quasi-continuous, there exists a closed set F_{n} such that $c\left(F_{n}^{c}\right)<\frac{1}{n^{p+1}}$ and Y_{n} is continuous on F_{n}. It follows from Tietze's extension theorem that there exists $Z_{n} \in C_{b}(\Omega)$ such that

$$
\left|Z_{n}\right| \leq n \text { and } Z_{n}=Y_{n} \text { on } F_{n}
$$

We then have

We give the following example to show that \mathbb{L}_{c}^{p} is different from \mathbb{L}_{b}^{p} even under the case that \mathcal{P} is weakly compact.

Example

Let $\Omega=[0,1], \mathcal{P}=\left\{\delta_{x}: x \in[0,1]\right\}$ is weakly compact. It is seen that $\mathbb{L}_{c}^{p}=C_{b}(\Omega)$ which is different from \mathbb{L}_{b}^{p}.

We denote $\mathbb{L}_{c}^{\infty}:=\left\{X \in \mathbb{L}^{\infty}: X\right.$ has a quasi-continuous version $\}$, we have

Proposition.

\mathbb{L}_{c}^{∞} is a closed linear subspace of \mathbb{L}^{∞}.

Proof.

For each Cauchy sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of \mathbb{L}_{c}^{∞} under $\|\cdot\|_{\infty}$, we can find a subsequence $\left\{X_{n_{i}}\right\}_{i=1}^{\infty}$ such that $\left\|X_{n_{i+1}}-X_{n_{i}}\right\|_{\infty} \leq 2^{-i}$. We may further assume that each X_{n} is quasi-continuous. Then it is easy to prove that for each $\varepsilon>0$, there exists an open set G such that $c(G)<\varepsilon$ and $\left|X_{n_{i+1}}-X_{n_{i}}\right| \leq 2^{-i}$ for all $i \geq 1$ on G^{c}, which implies that the limit belongs to \mathbb{L}_{c}^{∞}.

As an application of Theorem -Thm8, we can easily get the following results.

Proposition.

Assume that $X: \Omega \rightarrow \mathbb{R}$ has a quasi-continuous version and that there exists a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying $\lim _{t \rightarrow \infty} \frac{f(t)}{t^{p}}=\infty$ and $\mathbb{E}[f(|X|)]<\infty$. Then $X \in \mathbb{L}_{c}^{p}$.

Proof.

For each $\varepsilon>0$, there exists an $N>0$ such that $\frac{f(t)}{t^{p}} \geq \frac{1}{\varepsilon}$, for all $t \geq N$. Thus

$$
\mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>N\}}\right] \leq \varepsilon \mathbb{E}\left[f(|X|) \mathbf{1}_{\{|X|>N\}}\right] \leq \varepsilon \mathbb{E}[f(|X|)]
$$

Hence $\lim _{N \rightarrow \infty} \mathbb{E}\left[|X|^{p} \mathbf{1}_{\{|X|>N\}}\right]=0$. From Theorem -Thm8 we infer $X \in$ \mathbb{L}_{c}^{p}.

Lemma

Let $\left\{P_{n}\right\}_{n=1}^{\infty} \subset \mathcal{P}$ converge weakly to $P \in \mathcal{P}$. Then for each $X \in \mathbb{L}_{c}^{1}$, we have $E_{P_{n}}[X] \rightarrow E_{P}[X]$.

Proof.

We may assume that X is quasi-continuous, otherwise we can consider its quasi-continuous version which does not change the value E_{Q} for each $Q \in \mathcal{P}$. For each $\varepsilon>0$, there exists an $N>0$ such that $\mathbb{E}\left[|X| \mathbf{1}_{\{|X|>N\}}\right]<\frac{\varepsilon}{2}$. Set $X_{N}=(X \wedge N) \vee(-N)$. We can find an open subset G such that $c(G)<\frac{\varepsilon}{4 N}$ and X_{N} is continuous on G^{c}. By Tietze's extension theorem, there exists $Y \in C_{b}(\Omega)$ such that $|Y| \leq N$ and $Y=X_{N}$ on G^{c}. Obviously, for each $Q \in \mathcal{P}$,

$$
\begin{aligned}
\left|E_{Q}[X]-E_{Q}[Y]\right| & \leq E_{Q}\left[\left|X-X_{N}\right|\right]+E_{Q}\left[\left|X_{N}-Y\right|\right] \\
& \leq \frac{\varepsilon}{2}+2 N \frac{\varepsilon}{4 N}=\varepsilon
\end{aligned}
$$

It then follows that

$$
\limsup _{n \rightarrow \infty} E_{P_{n}}[X] \leq \lim _{n \rightarrow \infty} E_{P_{n}}[Y]+\varepsilon=E_{P}[Y]+\varepsilon \leq E_{P}[X]+2 \varepsilon
$$

and similarly $\lim \inf _{n \rightarrow \infty} E_{P_{n}}[X] \geq E_{P}[X]-2 \varepsilon$. Since ε can be arbitrarily small, we then have $E_{P_{n}}[X] \rightarrow E_{P}[X]$.

Remark.

For continuous X, the above lemma is Lemma 3.8.7 in [?].
Now we give an extension of Theorem -Thm2.

Theorem

Let \mathcal{P} be weakly compact and let $\left\{X_{n}\right\}_{n=1}^{\infty} \subset \mathbb{L}_{c}^{1}$ be such that $X_{n} \downarrow X$, q.s.. Then $\mathbb{E}\left[X_{n}\right] \downarrow \mathbb{E}[X]$.

Remark.

It is important to note that \underline{X} does not necessarily belong to \mathbb{L}_{C}^{1}.

Proof.

For the case $\mathbb{E}[X]>-\infty$, if there exists a $\delta>0$ such that $\mathbb{E}\left[X_{n}\right]>\mathbb{E}[X]+\delta, n=1,2, \cdots$, we then can find a $P_{n} \in \mathcal{P}$ such that $E_{P_{n}}\left[X_{n}\right]>\mathbb{E}[X]+\delta-\frac{1}{n}, n=1,2, \cdots$. Since \mathcal{P} is weakly compact, we then can find a subsequence $\left\{P_{n_{i}}\right\}_{i=1}^{\infty}$ that converges weakly to some $P \in \mathcal{P}$. From which it follows that

$$
\begin{aligned}
E_{P}\left[X_{n_{i}}\right] & =\lim _{j \rightarrow \infty} E_{P_{n_{j}}}\left[X_{n_{i}}\right] \geq \limsup _{j \rightarrow \infty} E_{P_{n_{j}}}\left[X_{n_{j}}\right] \\
& \geq \limsup _{j \rightarrow \infty}\left\{\mathbb{E}[X]+\delta-\frac{1}{n_{j}}\right\}=\mathbb{E}[X]+\delta, \quad i=1,2, \cdots .
\end{aligned}
$$

Thus $E_{P}[X] \geq \mathbb{E}[X]+\delta$. This contradicts the definition of $\mathbb{E}[\cdot]$. The proof for the case $\mathbb{E}[X]=-\infty$ is analogous.

We immediately have the following corollary.

Corollary

Let \mathcal{P} be weakly compact and let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathbb{L}_{c}^{1} decreasingly converging to 0 q.s.. Then $\mathbb{E}\left[X_{n}\right] \downarrow 0$.

Definition

Let I be a set of indices, $\left(X_{t}\right)_{t \in I}$ and $\left(Y_{t}\right)_{t \in I}$ be two processes indexed by I. We say that Y is a quasi-modification of X if for all $t \in I, X_{t}=Y_{t}$ q.s..

Remark.

In the above definition, quasi-modification is also called modification in some papers.

We now give a Kolmogorov criterion for a process indexed by \mathbb{R}^{d} with $d \in \mathbb{N}$.

Theorem

Let $p>0$ and $\left(X_{t}\right)_{t \in[0,1]^{d}}$ be a process such that for all $t \in[0,1]^{d}, X_{t}$ belongs to \mathbb{L}^{p}. Assume that there exist positive constants \mathbb{C} and $\underline{\varepsilon}$ such that

$$
\mathbb{E}\left[\left|X_{t}-X_{s}\right|^{p}\right] \leq c|t-s|^{d+\varepsilon}
$$

Then X admits a modification \tilde{X} such that

$$
\mathbb{E}\left[\left(\sup _{s \neq t} \frac{\left|\tilde{X}_{t}-\tilde{X}_{s}\right|}{|t-s|^{\alpha}}\right)^{p}\right]<\infty
$$

for every $\alpha \in[0, \varepsilon / p]$. As a consequence, paths of \tilde{X} are quasi-surely Höder continuous of order α for every $\alpha<\varepsilon / p$ in the sense that there exists a Borel set N of capacity 0 such that for all $w \in N^{c}$, the map $t \rightarrow \tilde{X}(w)$ is Höder continuous of order α for every $\alpha<\varepsilon / p$. Moreover, if $X_{t} \in \mathbb{L}_{c}^{p}$ for each t, then we also have $\tilde{X}_{t} \in \mathbb{L}_{c}^{p}$.

Proof.

Let D be the set of dyadic points in $[0,1]^{d}$:

$$
D=\left\{\left(\frac{i_{1}}{2^{n}}, \cdots, \frac{i_{d}}{2^{n}}\right) ; n \in \mathbb{N}, i_{1}, \cdots, i_{d} \in\left\{0,1, \cdots, 2^{n}\right\}\right\}
$$

Let $\alpha \in[0, \varepsilon / p)$. We set

$$
M=\sup _{s, t \in D, s \neq t} \frac{\left|X_{t}-X_{s}\right|}{|t-s|^{\alpha}}
$$

Thanks to the classical Kolmogorov's criterion (see Revuz-Yor [?]), we know that for any $P \in \mathcal{P}, E_{P}\left[M^{p}\right]$ is finite and uniformly bounded with respect to P so that

$$
\mathbb{E}\left[M^{p}\right]=\sup _{P \in \mathcal{P}} E_{P}\left[M^{p}\right]<\infty .
$$

As a consequence, the map $t \rightarrow X_{t}$ is uniformly continuous on D quasi-surely and so we can define

Sec. G-expectation as an Upper Expectation

In the following sections of this Chapter, let $\Omega=C_{0}^{d}\left(\mathbb{R}^{+}\right)$denote the space of all \mathbb{R}^{d}-valued continuous functions $\left(\omega_{t}\right)_{t \in \mathbb{R}^{+}}$, with $\omega_{0}=0$, equipped with the distance

$$
\rho\left(\omega^{1}, \omega^{2}\right):=\sum_{i=1}^{\infty} 2^{-i}\left[\left(\max _{t \in[0, i]}\left|\omega_{t}^{1}-\omega_{t}^{2}\right|\right) \wedge 1\right],
$$

and let $\bar{\Omega}=\left(\mathbb{R}^{d}\right)^{[0, \infty)}$ denote the space of all \mathbb{R}^{d}-valued functions $\left(\bar{\omega}_{t}\right)_{t \in \mathbb{R}^{+}}$. Let $\mathcal{B}(\Omega)$ denote the σ-algebra generated by all open sets and let $\mathcal{\mathcal { B } (\overline { \Omega })}$ denote the σ-algebra generated by all finite dimensional cylinder sets. The corresponding canonical process is $B_{t}(\omega)=\omega_{t}$ (respectively, $\left.\bar{B}_{t}(\bar{\omega})=\bar{\omega}_{t}\right), t \in[0, \infty)$ for $\omega \in \Omega$ (respectively, $\left.\bar{\omega} \in \bar{\Omega}\right)$. The spaces of Lipschitzian cylinder functions on Ω and $\bar{\Omega}$ are denoted respectively by

$$
\begin{aligned}
& L_{i p}(\Omega):=\left\{\varphi\left(B_{t_{1}}, B_{t_{2}}, \cdots, B_{t_{n}}\right): \forall n \geq 1, t_{1}, \cdots, t_{n} \in[0, \infty), \forall \varphi \in C_{L i p}\left(\mathbb{R}^{d\rangle}\right.\right. \\
& L_{i p}(\bar{\Omega}):=\left\{\varphi\left(\bar{B}_{t_{1}}, \bar{B}_{t_{2}}, \cdots, \bar{B}_{t_{n}}\right): \forall n \geq 1, t_{1}, \cdots, t_{n} \in[0, \infty), \forall \varphi \in C_{L i p}\left(\mathbb{R}^{d}\right)\right.
\end{aligned}
$$

Let $G(\cdot): S(d) \rightarrow \mathbb{R}$ be a given continuous monotonic and sublinear function. Following Sec. 2 in Chap.-ch3, we can construct the corresponding G-expectation $\hat{\mathbb{E}}$ on $\left(\Omega, L_{i p}(\Omega)\right)$. Due to the natural correspondence of $L_{i p}(\bar{\Omega})$ and $L_{i p}(\Omega)$, we also construct a sublinear expectation $\overline{\mathbb{E}}$ on $\left(\bar{\Omega}, L_{i p}(\bar{\Omega})\right)$ such that $\left(\bar{B}_{t}(\bar{\omega})\right)_{t \geq 0}$ is a G-Brownian motion.
The main objective of this section is to find a weakly compact family of (σ-additive) probability measures on $(\Omega, \mathcal{B}(\Omega))$ to represent G-expectation $\hat{\mathbb{E}}$. The following lemmas are a variety of Lemma -l-le3 and -l-le4.

Lemma

Let $0 \leq t_{1}<t_{2}<\cdots<t_{m}<\infty$ and $\left\{\varphi_{n}\right\}_{n=1}^{\infty} \subset C_{\text {Lip }}\left(\mathbb{R}^{d \times m}\right)$ satisfy $\varphi_{n} \downarrow 0$. Then $\mathbb{E}\left[\varphi_{n}\left(\bar{B}_{t_{1}}, \bar{B}_{t_{2}}, \cdots, \bar{B}_{t_{m}}\right)\right] \downarrow 0$.

We denote
$\mathcal{T}:=\left\{\underline{t}=\left(t_{1}, \ldots, t_{m}\right): \forall m \in \mathbb{N}, 0 \leq t_{1}<t_{2}<\cdots<t_{m}<\infty\right\}$.

Lemma

Let E be a finitely additive linear expectation dominated by $\overline{\mathbb{E}}$ on $L_{i p}(\bar{\Omega})$. Then there exists a unique probability measure Q on $(\bar{\Omega}, \mathcal{B}(\bar{\Omega}))$ such that $E[X]=E_{Q}[X]$ for each $X \in L_{i p}(\bar{\Omega})$.

Proof.

For each fixed $\underline{t}=\left(t_{1}, \ldots, t_{m}\right) \in \mathcal{T}$, by Lemma -le3, for each sequence $\left\{\varphi_{n}\right\}_{n=1}^{\infty} \subset C_{L i p}\left(\mathbb{R}^{d \times m}\right)$ satisfying $\varphi_{n} \downarrow 0$, we have $E\left[\varphi_{n}\left(\bar{B}_{t_{1}}, \bar{B}_{t_{2}}, \cdots, \bar{B}_{t_{m}}\right)\right] \downarrow 0$. By Daniell-Stone's theorem (see Appendix $\mathrm{B})$, there exists a unique probability measure Q_{t} on $\left(\mathbb{R}^{d \times m}, \mathcal{B}\left(\mathbb{R}^{d \times m}\right)\right)$ such that $\underline{E}_{Q_{t}}[\varphi]=E\left[\varphi\left(\bar{B}_{t_{1}}, \bar{B}_{t_{2}}, \cdots, \bar{B}_{t_{m}}\right)\right]$ for each $\varphi \in C_{L i p}\left(\mathbb{R}^{d \times m}\right)$. Thus we get a family of finite dimensional distributions $\left\{Q_{\underline{t}}: \underline{t} \in \mathcal{T}\right\}$. It is easy to check that $\left\{Q_{\underline{t}}: \underline{t} \in \mathcal{T}\right\}$ is consistent. Then by Kolmogorov's consistent theorem, there exists a probability measure Q on $(\bar{\Omega}, \mathcal{B}(\bar{\Omega}))$ such that $\left\{Q_{\underline{t}}: \underline{t} \in \mathcal{T}\right\}$ is the finite dimensional distributions of Q. Assume that there exists another probability measure \bar{Q} satisfying the condition, by Daniell-Stone's theorem, Q and \bar{Q} have the same finite-dimensional distributions. Then by monotone class theorem, $Q=\bar{Q}$. The proof is complete.

Lemma

There exists a family of probability measures \mathcal{P}_{e} on $(\bar{\Omega}, \mathcal{B}(\bar{\Omega}))$ such that

$$
\overline{\mathbb{E}}[X]=\max _{Q \in \mathcal{P}_{e}} E_{Q}[X], \quad \text { for } X \in L_{i p}(\bar{\Omega})
$$

Proof.

By the representation theorem of sublinear expectation and Lemma -le4, it is easy to get the result.

For this \mathcal{P}_{e}, we define the associated capacity:

$$
\tilde{c}(A):=\sup _{Q \in \mathcal{P}_{e}} Q(A), \quad A \in \mathcal{B}(\bar{\Omega})
$$

and the upper expectation for each $\mathcal{B}(\bar{\Omega})$-measurable real function X which makes the following definition meaningful:

$$
\tilde{\mathbb{E}}[X]:=\sup _{Q \in \mathcal{P}_{e}} E_{Q}[X] .
$$

Theorem

For $(\bar{B})_{t \geq 0}$, there exists a continuous modification $(\tilde{B})_{t \geq 0}$ of \bar{B} (i.e., $\tilde{c}\left(\left\{\tilde{B}_{t} \neq \bar{B}_{t}\right\}\right)=0$, for each $\left.t \geq 0\right)$ such that $\tilde{B}_{0}=0$.

Proof.

By Lemma -le5, we know that $\overline{\mathbb{E}}=\tilde{\mathbb{E}}$ on $L_{i p}(\bar{\Omega})$. On the other hand, we have

$$
\underline{\mathbb{E}\left[\left|\bar{B}_{t}-\bar{B}_{s}\right|^{4}\right]=\overline{\mathbb{E}}\left[\left|\bar{B}_{t}-\bar{B}_{s}\right|^{4}\right]=d|t-s|^{2} \quad \text { for } s, t \in[0, \infty),}
$$

where d is a constant depending only on G. By Theorem -ch6t128, there exists a continuous modification \tilde{B} of \bar{B}. Since $\tilde{c}\left(\left\{\bar{B}_{0} \neq 0\right\}\right)=0$, we can set $\tilde{B}_{0}=0$. The proof is complete.

For each $Q \in \mathcal{P}_{e}$, let $Q \circ \tilde{B}^{-1}$ denote the probability measure on $(\Omega, \mathcal{B}(\Omega))$ induced by \tilde{B} with respect to Q. We denote $\mathcal{P}_{1}=\left\{Q \circ \tilde{B}^{-1}: Q \in \mathcal{P}_{e}\right\}$. By Lemma -le6, we get

$$
\tilde{\mathbb{E}}\left[\left|\tilde{B}_{t}-\tilde{B}_{s}\right|^{4}\right]=\tilde{\mathbb{E}}\left[\left|\bar{B}_{t}-\bar{B}_{s}\right|^{4}\right]=d|t-s|^{2}, \forall s, t \in[0, \infty) .
$$

Applying the well-known result of moment criterion for tightness of Kolmogorov-Chentsov's type (see Appendix B), we conclude that \mathcal{P}_{1} is tight. We denote by $\mathcal{P}=\overline{\mathcal{P}}_{1}$ the closure of \mathcal{P}_{1} under the topology of weak convergence, then \mathcal{P} is weakly compact.
Now, we give the representation of G-expectation.

Theorem

For each continuous monotonic and sublinear function $G: S(d) \rightarrow \mathbb{R}$, let $\hat{\mathbb{E}}$ be the corresponding G-expectation on $\left(\Omega, L_{i p}(\Omega)\right)$. Then there exists a weakly compact family of probability measures \mathcal{P} on $(\Omega, \mathcal{B}(\Omega))$ such that

$$
\hat{\mathbb{E}}[X]=\max _{P \in \mathcal{P}} E_{P}[X] \quad \text { for } X \in L_{i p}(\Omega) .
$$

Proof.

By Lemma -le5 and Lemma -le6, we have

$$
\hat{\mathbb{E}}[X]=\max _{P \in \mathcal{P}_{1}} E_{P}[X] \quad \text { for } X \in L_{i p}(\Omega)
$$

For each $X \in L_{i p}(\Omega)$, by Lemma -le3, we get $\hat{\mathbb{E}}[|X-(X \wedge N) \vee(-N)|] \downarrow 0$ as $N \rightarrow \infty$. Noting that $\mathcal{P}=\overline{\mathcal{P}}_{1}$, by the definition of weak convergence, we get the result.

Remark.

In fact, we can construct the family \mathcal{P} in a more explicit way: Let $\left(W_{t}\right)_{t \geq 0}=\left(W_{t}^{i}\right)_{i=1, t \geq 0}^{d}$ be a d-dimensional Brownian motion in this space. The filtration generated by W is denoted by \mathcal{F}_{t}^{W}. Now let Γ be the bounded, closed and convex subset in $\mathbb{R}^{d \times d}$ such that

$$
G(A)=\sup _{\gamma \in \Gamma} \operatorname{tr}\left[A \gamma \gamma^{T}\right], \quad A \in S(d)
$$

(see (-GaChlI) in Ch. II) and \mathcal{A}_{Γ} the collection of all Θ-valued $\left(\mathcal{F}_{t}^{W}\right)_{t \geq 0}$-adapted process $[0, \infty)$. We denote

$$
B_{t}^{\gamma}:=\int_{0}^{T} \gamma_{s} d W_{s}, t \geq 0, \quad \gamma \in \mathcal{A}_{\Gamma}
$$

and \mathcal{P}_{0} the collection of probability measures on the canonical space $(\Omega, \mathcal{B}(\Omega))$ induced by $\left\{B^{\gamma}: \gamma \in \mathcal{A}_{\Gamma}\right\}$. Then $\mathcal{P}=\overline{\mathcal{P}}_{0}$ (see [?] for details).

Sec. G-capacity and Paths of G-Brownian Motion

According to Theorem -Gt34, we obtain a weakly compact family of probability measures \mathcal{P} on $(\Omega, \mathcal{B}(\Omega))$ to represent G-expectation $\hat{\mathbb{E}}[\cdot]$. For this \mathcal{P}, we define the associated G-capacity:

$$
\hat{c}(A):=\sup _{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega)
$$

and upper expectation for each $X \in L^{0}(\Omega)$ which makes the following definition meaningful:

$$
\overline{\mathbb{E}}[X]:=\sup _{P \in \mathcal{P}} E_{P}[X] .
$$

By Theorem -Gt34, we know that $\overline{\mathbb{E}}=\hat{\mathbb{E}}$ on $L_{i p}(\Omega)$, thus the $\hat{\mathbb{E}}[|\cdot|]$-completion and the $\overline{\mathbb{E}}[|\cdot|]$-completion of $L_{i p}(\Omega)$ are the same. For each $T>0$, we also denote by $\Omega_{T}=C_{0}^{d}([0, T])$ equipped with the distance

$$
\rho\left(\omega^{1}, \omega^{2}\right)=\left\|\omega^{1}-\omega^{2}\right\|_{C_{0}^{d}([0, T])}:=\max _{0 \leq t \leq T}\left|\omega_{t}^{1}-\omega_{t}^{2}\right| .
$$

We now prove that $L_{G}^{1}(\Omega)=\mathbb{L}_{c}^{1}$, where \mathbb{L}_{c}^{1} is defined in Sec.1. First, we need the following classical approximation lemma.

Lemma

For each $X \in C_{b}(\Omega)$ and $n=1,2, \cdots$, we denote

$$
X^{(n)}(\omega):=\inf _{\omega^{\prime} \in \Omega}\left\{X\left(\omega^{\prime}\right)+n\left\|\omega-\omega^{\prime}\right\|_{C_{0}^{d}([0, n])}\right\} \quad \text { for } \omega \in \Omega
$$

Then the sequence $\left\{X^{(n)}\right\}_{n=1}^{\infty}$ satisfies:
(i) $-M \leq X^{(n)} \leq X^{(n+1)} \leq \cdots \leq X, M=\sup _{\omega \in \Omega}|X(\omega)|$;
(ii) $\left|X^{(n)}\left(\omega_{1}\right)-X^{(n)}\left(\omega_{2}\right)\right| \leq n\left\|\omega_{1}-\omega_{2}\right\|_{C_{0}^{d}([0, n])}$ for $\omega_{1}, \omega_{2} \in \Omega$;
(iii) $X^{(n)}(\omega) \uparrow X(\omega)$ for $\omega \in \Omega$.

Proof.

(i) is obvious.

For (ii), we have

$$
\begin{aligned}
& X^{(n)}\left(\omega_{1}\right)-X^{(n)}\left(\omega_{2}\right) \\
\leq & \sup _{\omega^{\prime} \in \Omega}\left\{\left[X\left(\omega^{\prime}\right)+n\left\|\omega_{1}-\omega^{\prime}\right\|_{C_{0}^{d}([0, n])}\right]-\left[X\left(\omega^{\prime}\right)+n\left\|\omega_{2}-\omega^{\prime}\right\|_{C_{0}^{d}}\right.\right. \\
\leq & n\left\|\omega_{1}-\omega_{2}\right\|_{C_{0}^{d}([0, n])}
\end{aligned}
$$

and, symmetrically, $X^{(n)}\left(\omega_{2}\right)-X^{(n)}\left(\omega_{1}\right) \leq n\left\|\omega_{1}-\omega_{2}\right\|_{C_{0}^{d}([0, n])}$. Thus
(ii) follows.

We now prove (iii). For each fixed $\omega \in \Omega$, let $\omega_{n} \in \Omega$ be such that

$$
X\left(\omega_{n}\right)+n\left\|\omega-\omega_{n}\right\|_{C_{0}^{d}([0, n])} \leq X^{(n)}(\omega)+\frac{1}{n}
$$

It is clear that $n\left\|\omega-\omega_{n}\right\|_{C_{0}^{d}([0, n])} \leq 2 M+1$ or
$\left\|\omega-\omega_{n}\right\|_{C_{0}^{d}([0, n])} \leq \frac{2 M+1}{n}$. Since $X \in C_{b}(\Omega)$, we get $X\left(\omega_{n}\right) \rightarrow X(\omega)$ as $n \rightarrow \infty$. We have

Proposition.

For each $X \in C_{b}(\Omega)$ and $\varepsilon>0$, there exists $Y \in L_{i p}(\Omega)$ such that $\overline{\bar{E}}[|Y-X|] \leq \varepsilon$.

Proof.

We denote $M=\sup _{\omega \in \Omega}|X(\omega)|$. By Theorem -Thm2 and Lemma -le10, we can find $\mu>0, T>0$ and $\bar{X} \in C_{b}\left(\Omega_{T}\right)$ such that $\overline{\mathbb{E}}[|X-\bar{X}|]<\varepsilon / 3$, $\sup _{\omega \in \Omega}|\bar{X}(\omega)| \leq M$ and

$$
\left|\bar{X}(\omega)-\bar{X}\left(\omega^{\prime}\right)\right| \leq \mu\left\|\omega-\omega^{\prime}\right\|_{C_{0}^{d}([0, T])} \text { for } \omega, \omega^{\prime} \in \Omega
$$

Now for each positive integer n, we introduce a mapping $\omega^{(n)}(\omega): \Omega \rightarrow \Omega$:
$\omega^{(n)}(\omega)(t)=\sum_{k=0}^{n-1} \frac{\mathbf{1}_{\left[t_{k}^{n}, t_{k+1}^{n}\right)}(t)}{t_{k+1}^{n}-t_{k}^{n}}\left[\left(t_{k+1}^{n}-t\right) \omega\left(t_{k}^{n}\right)+\left(t-t_{k}^{n}\right) \omega\left(t_{k+1}^{n}\right)\right]+\mathbf{1}_{[T, \infty)}$
where $t_{k}^{n}=\frac{k T}{n}, k=0,1, \cdots, n$. We set $\bar{X}^{(n)}(\omega):=\bar{X}\left(\omega^{(n)}(\omega)\right)$, then

$$
\begin{aligned}
\left|\bar{X}^{(n)}(\omega)-\bar{X}^{(n)}\left(\omega^{\prime}\right)\right| & \leq \mu \sup _{t \in[0, T]}\left|\omega^{(n)}(\omega)(t)-\omega^{(n)}\left(\omega^{\prime}\right)(t)\right| \\
& =\mu \sup _{k \in[0, \cdots, n]}\left|\omega\left(t_{k}^{n}\right)-\omega^{\prime}\left(t_{k}^{n}\right)\right| .
\end{aligned}
$$

By Proposition -pr11, we can easily get $L_{G}^{1}(\Omega)=\mathbb{L}_{c}^{1}$. Furthermore, we can get $L_{G}^{p}(\Omega)=\mathbb{L}_{c}^{p}, \forall p>0$.
Thus, we obtain a pathwise description of $L_{G}^{p}(\Omega)$ for each $p>0$:
$L_{G}^{p}(\Omega)=\left\{X \in L^{0}(\Omega): X\right.$ has a quasi-continuous version and $\lim _{n \rightarrow \infty} \overline{\mathbb{E}}\left[|X|^{p} I_{\{ }\right.$
Furthermore, $\overline{\mathbb{E}}[X]=\hat{\mathbb{E}}[X]$, for each $X \in L_{G}^{1}(\Omega)$.

Exercise.

Show that, for each $p>0$,
$L_{G}^{p}\left(\Omega_{T}\right)=\left\{X \in L^{0}\left(\Omega_{T}\right): X\right.$ has a quasi-continuous version and $\lim _{n \rightarrow \infty} \overline{\mathbb{E}}[|X|$

