Nonlinear Expectations and Stochastic Calculus under Uncertainty

-with Robust Central Limit Theorem and G-Brownian Motion

彭实戈Shige Peng

Shandong University

Presented at Spring School of Roscoff

- $L^0(\Omega)$: the space of all $\mathcal{B}(\Omega)$ -measurable real functions;
- $B_b(\Omega)$: all bounded functions in $L^0(\Omega)$;

()

• $C_b(\Omega)$: all continuous functions in $B_b(\Omega)$.

All along this section, we consider a given subset $\mathcal{P}\subseteq\mathcal{M}.$ We denote

$$c(A) := \sup_{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega).$$

March 13, 2010

67 / 186

One can easily verify the following theorem.

Theorem

The set function $c(\cdot)$ is a Choquet capacity, i.e. (see [?, ?]),

$$0 \le c(A) \le 1, \quad \forall A \subset \Omega.$$

- 2 If $A \subset B$, then $c(A) \leq c(B)$.
- **3** If $(A_n)_{n=1}^{\infty}$ is a sequence in $\mathcal{B}(\Omega)$, then $c(\cup A_n) \leq \sum c(A_n)$.
- If $(A_n)_{n=1}^{\infty}$ is an increasing sequence in $\mathcal{B}(\Omega)$: $A_n \uparrow A = \bigcup A_n$, then $c(\bigcup A_n) = \lim_{n \to \infty} c(A_n)$.

Furthermore, we have

Theorem

For each $A \in \mathcal{B}(\Omega)$, we have

$$c(A) = \sup\{c(K) : K \text{ compact } K \subset A\}.$$

Proof.

It is simply because

()

$$c(A) = \sup_{P \in \mathcal{P}} \sup_{\substack{K \in A}} P(K) = \sup_{\substack{K \text{ compact } \\ K \subset A}} \sup_{P \in \mathcal{P}} P(K) = \sup_{\substack{K \text{ compact } \\ K \subset A}} c(K).$$

э

/司 ▶ ◀

Definition

()

We use the standard capacity-related vocabulary: a set A is **polar** if c(A) = 0 and a property holds "**quasi-surely**" (q.s.)" qs if it holds outside a polar set.

March 13, 2010

70 / 186

We also have in a trivial way a Borel-Cantelli Lemma.

Lemma

Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of Borel sets such that

$$\sum_{n=1}^{\infty} c(A_n) < \infty.$$

Then $\limsup_{n\to\infty} A_n$ is polar.

Proof.

Applying the Borel-Cantelli Lemma under each probability $P \in \mathcal{P}$.

The following theorem is Prokhorov's theorem.

Theorem

 \mathcal{P} is relatively compact if and only if for each $\varepsilon > 0$, there exists a compact set K such that $c(K^c) < \varepsilon$.

March 13, 2010

71 / 186

The following two lemmas can be found in [?].

Lemma

 \mathcal{P} is relatively compact if and only if for each sequence of closed sets $F_n \downarrow \emptyset$, we have $c(F_n) \downarrow 0$.

Proof.

We outline the proof for the convenience of readers.

" \Longrightarrow " part: It follows from Theorem –newth6 that for each fixed $\varepsilon > 0$, there exists a compact set K such that $c(K^c) < \varepsilon$. Note that $F_n \cap K \downarrow \emptyset$, then there exists an N > 0 such that $F_n \cap K = \emptyset$ for $n \ge N$, which implies $\lim_n c(F_n) < \varepsilon$. Since ε can be arbitrarily small, we obtain $c(F_n) \downarrow 0$. " \Leftarrow "" part: For each $\varepsilon > 0$, let $(A_i^k)_{i=1}^{\infty}$ be a sequence of open balls of radius 1/k covering Ω . Observe that $(\bigcup_{i=1}^n A_i^k)^c \downarrow \emptyset$, then there exists an n_k such that $c((\bigcup_{i=1}^{n_k} A_i^k)^c) < \varepsilon 2^{-k}$. Set $K = \bigcap_{k=1}^{\infty} \bigcup_{i=1}^{n_k} A_i^k$. It is easy to check that K is compact and $c(K^c) < \varepsilon$. Thus by Theorem –newth6, \mathcal{P} is relatively compact.

-

< 日 > < 同 > < 三 > < 三 >

Lemma

Let \mathcal{P} be weakly compact. Then for each sequence of closed sets $F_n \downarrow F$, we have $c(F_n) \downarrow c(F)$.

Proof.

We outline the proof for the convenience of readers. For each fixed $\varepsilon > 0$, by the definition of $c(F_n)$, there exists a $P_n \in \mathcal{P}$ such that $P_n(F_n) \ge c(F_n) - \varepsilon$. Since \mathcal{P} is weakly compact, there exist P_{n_k} and $P \in \mathcal{P}$ such that P_{n_k} converge weakly to P. Thus

$$P(F_m) \geq \limsup_{k \to \infty} P_{n_k}(F_m) \geq \limsup_{k \to \infty} P_{n_k}(F_{n_k}) \geq \lim_{n \to \infty} c(F_n) - \varepsilon$$

Letting $m \to \infty$, we get $P(F) \ge \lim_{n \to \infty} c(F_n) - \varepsilon$, which yields $c(F_n) \downarrow c(F)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Following [?] (see also [?, ?]) the upper expectation of \mathcal{P} is defined as follows: for each $X \in L^0(\Omega)$ such that $E_P[X]$ exists for each $P \in \mathcal{P}$,

$$\mathbb{E}[X] = \mathbb{E}^{\mathcal{P}}[X] := \sup_{P \in \mathcal{P}} E_P[X].$$

It is easy to verify

()

Theorem

The upper expectation $\mathbb{E}[\cdot]$ of the family \mathcal{P} is a sublinear expectation on $B_b(\Omega)$ as well as on $C_b(\Omega)$, i.e.,

March 13, 2010

75 / 186

- for all X, Y in $B_b(\Omega)$, $X \ge Y \Longrightarrow \mathbb{E}[X] \ge \mathbb{E}[Y]$.
- **2** for all X, Y in $B_b(\Omega)$, $\mathbb{E}[X + Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$.
- for all $\lambda \geq 0$, $X \in B_b(\Omega)$, $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$.
- for all $c \in \mathbb{R}$, $X \in B_b(\Omega)$, $\mathbb{E}[X + c] = \mathbb{E}[X] + c$.

Moreover, it is also easy to check

Theorem

We have

()

- Let $\mathbb{E}[X_n]$ and $\mathbb{E}[\sum_{n=1}^{\infty} X_n]$ be finite. Then $\mathbb{E}[\sum_{n=1}^{\infty} X_n] \le \sum_{n=1}^{\infty} \mathbb{E}[X_n].$
- **2** Let $X_n \uparrow X$ and $\mathbb{E}[X_n]$, $\mathbb{E}[X]$ be finite. Then $\mathbb{E}[X_n] \uparrow \mathbb{E}[X]$.

March 13, 2010

76 / 186

Definition

The functional $\mathbb{E}[\cdot]$ is said to be **regular** if for each $\{X_n\}_{n=1}^{\infty}$ in $C_b(\Omega)$ such that $X_n \downarrow 0$ on Ω , we have $\mathbb{E}[X_n] \downarrow 0$.

Similar to Lemma -Lemma1 we have:

Theorem

()

 $\mathbb{E}[\cdot]$ is regular if and only if \mathcal{P} is relatively compact.

" \Longrightarrow " part: For each sequence of closed subsets $F_n \downarrow \emptyset$ such that F_n , $n = 1, 2, \cdots$, are non-empty (otherwise the proof is trivial), there exists $\{g_n\}_{n=1}^{\infty} \subset C_b(\Omega)$ satisfying

$$0 \leq g_n \leq 1$$
, $g_n = 1$ on F_n and $g_n = 0$ on $\{\omega \in \Omega : d(\omega, F_n) \geq \frac{1}{n}\}$.

We set $f_n = \wedge_{i=1}^n g_i$, it is clear that $f_n \in C_b(\Omega)$ and $\mathbf{1}_{F_n} \leq f_n \downarrow 0$. $\mathbb{E}[\cdot]$ is regular implies $\mathbb{E}[f_n] \downarrow 0$ and thus $c(F_n) \downarrow 0$. It follows from Lemma –Lemma1 that \mathcal{P} is relatively compact. " \leftarrow " part: For each $\{X_n\}_{n=1}^{\infty} \subset C_b(\Omega)$ such that $X_n \downarrow 0$, we have

$$\mathbb{E}[X_n] = \sup_{P \in \mathcal{P}} E_P[X_n] = \sup_{P \in \mathcal{P}} \int_0^\infty P(\{X_n \ge t\}) dt \le \int_0^\infty c(\{X_n \ge t\}) dt.$$

For each fixed t > 0, $\{X_n \ge t\}$ is a closed subset and $\{X_n \ge t\} \downarrow \emptyset$ as $n \uparrow \infty$. By Lemma –Lemma1, $c(\{X_n \ge t\}) \downarrow 0$ and thus $\int_0^\infty c(\{X_n \ge t\}) dt \downarrow 0$. Consequently $\mathbb{E}[X_n] \downarrow 0$.

We set, for p > 0,

•
$$\mathcal{L}^{p} := \{ X \in L^{0}(\Omega) : \mathbb{E}[|X|^{p}] = \sup_{P \in \mathcal{P}} E_{P}[|X|^{p}] < \infty \};$$

• $\mathcal{N}^{p} := \{ X \in L^{0}(\Omega) : \mathbb{E}[|X|^{p}] = 0 \};$
• $\mathcal{N} := \{ X \in L^{0}(\Omega) : X = 0, c-q.s. \}.$

It is seen that \mathcal{L}^p and \mathcal{N}^p are linear spaces and $\mathcal{N}^p = \mathcal{N}$, for each p > 0. We denote $\mathbb{L}^p := \mathcal{L}^p / \mathcal{N}$. As usual, we do not take care about the distinction between classes and their representatives.

Lemma

Let $X \in \mathbb{L}^p$. Then for each $\alpha > 0$

$$c(\{|X| > \alpha\}) \leq \frac{\mathbb{E}[|X|^{\rho}]}{\alpha^{\rho}}$$

()

Just apply Markov inequality under each $P \in \mathcal{P}$.

Similar to the classical results, we get the following proposition and the proof is omitted which is similar to the classical arguments.

Proposition.

We have

- For each $p \ge 1$, \mathbb{L}^p is a Banach space under the norm $||X||_p := (\mathbb{E}[|X|^p])^{\frac{1}{p}}$.
- Por each p < 1, L^p is a complete metric space under the distance d(X, Y) := 𝔼[|X − Y|^p].

March 13, 2010

81 / 186

We set

$$\mathcal{L}^{\infty} := \{ X \in L^{0}(\Omega) : \exists \text{ a constant } M, \text{ s.t. } |X| \leq M, \text{ q.s.} \};$$

 $\mathbb{L}^{\infty} := \mathcal{L}^{\infty} / \mathcal{N}.$

Proposition.

Under the norm

$$\|X\|_{\infty} := \inf \{M \ge 0 : |X| \le M, \ q.s.\},\$$

 \mathbb{L}^{∞} is a Banach space.

Proof.

From $\{|X| > ||X||_{\infty}\} = \bigcup_{n=1}^{\infty} \{|X| \ge ||X||_{\infty} + \frac{1}{n}\}$ we know that $|X| \le ||X||_{\infty}$, q.s., then it is easy to check that $\|\cdot\|_{\infty}$ is a norm. The proof of the completeness of \mathbb{L}^{∞} is similar to the classical result.

< 日 > < 同 > < 三 > < 三 >

With respect to the distance defined on \mathbb{L}^p , p > 0, we denote by

- \mathbb{L}_{b}^{p} the completion of $B_{b}(\Omega)$.
- \mathbb{L}_{c}^{p} the completion of $C_{b}(\Omega)$.

By Proposition -Prop3, we have

$$\mathbb{L}^p_c \subset \mathbb{L}^p_b \subset \mathbb{L}^p, \quad p > 0.$$

The following Proposition is obvious and the proof is left to the reader.

Proposition.

We have

• Let
$$p, q > 1$$
, $\frac{1}{p} + \frac{1}{q} = 1$. Then $X \in \mathbb{L}^p$ and $Y \in \mathbb{L}^q$ implies

 $XY \in \mathbb{L}^1$ and $\mathbb{E}[|XY|] \le (\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|Y|^q])^{\frac{1}{q}}$;

Moreover $X \in \mathbb{L}^p_c$ and $Y \in \mathbb{L}^q_c$ implies $XY \in \mathbb{L}^1_c$; **2** $\mathbb{L}^{p_1} \subset \mathbb{L}^{p_2}, \mathbb{L}^{p_1}_b \subset \mathbb{L}^{p_2}_b, \mathbb{L}^{p_1}_c \subset \mathbb{L}^{p_2}_c, 0 < p_2 \le p_1 \le \infty$; **3** $\|X\|_p \uparrow \|X\|_{\infty}$, for each $X \in \mathbb{L}^{\infty}$.

Proposition.

Let $p \in (0, \infty]$ and (X_n) be a sequence in \mathbb{L}^p which converges to X in \mathbb{L}^p . Then there exists a subsequence (X_{n_k}) which converges to X quasi-surely in the sense that it converges to X outside a polar set.

Let us assume $p \in (0, \infty)$, the case $p = \infty$ is obvious since the convergence in \mathbb{L}^{∞} implies the convergence in \mathbb{L}^{p} for all p. One can extract a subsequence $(X_{n_{k}})$ such that

$$\mathbb{E}[|X-X_{n_k}|^p] \leq 1/k^{p+2}, \quad k \in \mathbb{N}.$$

We set for all k

$$A_k = \{ |X - X_{n_k}| > 1/k \},\$$

then as a consequence of the Markov property (Lemma –markov) and the Borel-Cantelli Lemma –BorelC, $c(\overline{\lim}_{k\to\infty}A_k) = 0$. As it is clear that on $(\overline{\lim}_{k\to\infty}A_k)^c$, (X_{n_k}) converges to X, the proposition is proved.

March 13, 2010

85 / 186

We now give a description of \mathbb{L}_{b}^{p} .

Proposition.

"Prop5For each p > 0,

$$\mathbb{L}_b^p = \{ X \in \mathbb{L}^p : \lim_{n \to \infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X| > n\}}] = 0 \}.$$

3

・ロン ・四と ・ヨン・モン

()

We denote $J_p = \{X \in \mathbb{L}^p : \lim_{n \to \infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X| > p\}}] = 0\}$. For each $X \in J_n$ let $X_n = (X \wedge n) \vee (-n) \in B_b(\Omega)$. We have $\mathbb{E}[|X - X_n|^p] \leq \mathbb{E}[|X|^p \mathbf{1}_{\{|X| > n\}}] \to 0, \text{ as } n \to \infty.$ Thus $X \in \mathbb{L}_{h}^{p}$. On the other hand, for each $X \in \mathbb{L}_{h}^{p}$, we can find a sequence $\{Y_{n}\}_{n=1}^{\infty}$ in $B_b(\Omega)$ such that $\mathbb{E}[|X - Y_n|^p] \to 0$. Let $y_n = \sup_{\omega \in \Omega} |Y_n(\omega)|$ and $X_n = (X \wedge y_n) \vee (-y_n)$. Since $|X - X_n| < |X - Y_n|$, we have $\mathbb{E}[|X - X_n|^p] \to 0$. This clearly implies that for any sequence (α_n) tending to ∞ . $\lim_{n\to\infty} \mathbb{E}[|X - (X \wedge \alpha_n) \vee (-\alpha_n)|^p] = 0.$ Now we have, for all $n \in \mathbb{N}$.

$$\begin{split} \mathbb{E}[|X|^{p}\mathbf{1}_{\{|X|>n\}}] &= \mathbb{E}[(|X|-n+n)^{p}\mathbf{1}_{\{|X|>n\}}] \\ &\leq (1\vee 2^{p-1})\left(\mathbb{E}[(|X|-n)^{p}\mathbf{1}_{\{|X|>n\}}] + n^{p}c(|X|>n)\right). \end{split}$$

March 13, 2010

87 / 186

The first term of the right hand side tends to 0 since

()

Proposition.

Let $X \in \mathbb{L}_b^1$. Then for each $\varepsilon > 0$, there exists a $\delta > 0$, such that for all $A \in \mathcal{B}(\Omega)$ with $c(A) \leq \delta$, we have $\mathbb{E}[|X|\mathbf{1}_A] \leq \varepsilon$.

For each $\varepsilon > 0$, by Proposition -Prop5, there exists an N > 0 such that $\mathbb{E}[|X|\mathbf{1}_{\{|X|>N\}}] \leq \frac{\varepsilon}{2}$. Take $\delta = \frac{\varepsilon}{2N}$. Then for a subset $A \in \mathcal{B}(\Omega)$ with $c(A) \leq \delta$, we have

$$\mathbb{E}[|X|\mathbf{1}_{A}] \leq \mathbb{E}[|X|\mathbf{1}_{A}\mathbf{1}_{\{|X|>N\}}] + \mathbb{E}[|X|\mathbf{1}_{A}\mathbf{1}_{\{|X|\leq N\}}]$$
$$\leq \mathbb{E}[|X|\mathbf{1}_{\{|X|>N\}}] + Nc(A) \leq \varepsilon.$$

It is important to note that not every element in \mathbb{L}^p satisfies the condition $\lim_{n\to\infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X|>n\}}] = 0$. We give the following two counterexamples to show that \mathbb{L}^1 and \mathbb{L}^1_b are different spaces even under the case that \mathcal{P} is weakly compact.

Example

Let $\Omega = \mathbb{N}$, $\mathcal{P} = \{P_n : n \in \mathbb{N}\}$ where $P_1(\{1\}) = 1$ and $P_n(\{1\}) = 1 - \frac{1}{n}$, $P_n(\{n\}) = \frac{1}{n}$, for $n = 2, 3, \dots$. \mathcal{P} is weakly compact. We consider a function X on \mathbb{N} defined by X(n) = n, $n \in \mathbb{N}$. We have $\mathbb{E}[|X|] = 2$ but $\mathbb{E}[|X|\mathbf{1}_{\{|X|>n\}}] = 1 \not\rightarrow 0$. In this case, $X \in \mathbb{L}^1$ but $X \notin \mathbb{L}_b^1$.

Example

Let $\Omega = \mathbb{N}$, $\mathcal{P} = \{P_n : n \in \mathbb{N}\}$ where $P_1(\{1\}) = 1$ and $P_n(\{1\}) = 1 - \frac{1}{n^2}$, $P_n(\{kn\}) = \frac{1}{n^3}$, k = 1, 2, ..., n, for $n = 2, 3, \cdots$. \mathcal{P} is weakly compact. We consider a function X on \mathbb{N} defined by X(n) = n, $n \in \mathbb{N}$. We have $\mathbb{E}[|X|] = \frac{25}{16}$ and $n\mathbb{E}[\mathbf{1}_{\{|X| \ge n\}}] = \frac{1}{n} \to 0$, but $\mathbb{E}[|X|\mathbf{1}_{\{|X| \ge n\}}] = \frac{1}{2} + \frac{1}{2n} \not\to 0$. In this case, X is in \mathbb{L}^1 , continuous and $n\mathbb{E}[\mathbf{1}_{\{|X| \ge n\}}] \to 0$, but it is not in \mathbb{L}^1_b .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

()

A mapping X on Ω with values in a topological space is said to be quasi-continuous (q.c.) if

 $\forall \varepsilon > 0$, there exists an open set O with $c(O) < \varepsilon$ such that $X|_{O^c}$ is continu

March 13, 2010

92 / 186

Definition

We say that $X : \Omega \to \mathbb{R}$ has a <u>quasi-continuous version</u> if there exists a quasi-continuous function $Y : \Omega \to \mathbb{R}$ with X = Y q.s..

Proposition.

Let p > 0. Then each element in \mathbb{L}_{c}^{p} has a quasi-continuous version.

Proof.

Let (X_n) be a Cauchy sequence in $C_b(\Omega)$ for the distance on \mathbb{L}^p . Let us choose a subsequence $(X_{n_k})_{k\geq 1}$ such that

$$\mathbb{E}[|X_{n_{k+1}} - X_{n_k}|^p] \le 2^{-2k}, \quad \forall k \ge 1,$$

and set for all k,

$$A_{k} = \bigcup_{i=k}^{\infty} \{ |X_{n_{i+1}} - X_{n_{i}}| > 2^{-i/p} \}.$$

Thanks to the subadditivity property and the Markov inequality, we have

$$c(A_k) \le \sum_{i=k}^{\infty} c(|X_{n_{i+1}} - X_{n_i}| > 2^{-i/p}) \le \sum_{i=k}^{\infty} 2^{-i} = 2^{-k+1}.$$

The following theorem gives a concrete characterization of the space \mathbb{L}_{c}^{p} .

Theorem
For each
$$p > 0$$
,
 $\mathbb{L}_{c}^{p} = \{X \in \mathbb{L}^{p} : X \text{ has a } q.\text{-}c. \text{ version}, \lim_{n \to \infty} \mathbb{E}[|X|^{p} \mathbf{1}_{\{|X| > n\}}] = 0\}.$

March 13, 2010

95 / 186

()

We denote

 $J_p = \{X \in \mathbb{L}^p : X \text{ has a quasi-continuous version, } \lim_{n \to \infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X| > n\}}] = 0$

Let $X \in \mathbb{L}_{c}^{p}$, we know by Proposition –qc that X has a quasi-continuous version. Since $X \in \mathbb{L}_{b}^{p}$, we have by Proposition –Prop5 that $\lim_{n\to\infty} \mathbb{E}[|X|^{p}\mathbf{1}_{\{|X|>n\}}] = 0$. Thus $X \in J_{p}$. On the other hand, let $X \in J_{p}$ be quasi-continuous. Define $Y_{n} = (X \wedge n) \lor (-n)$ for all $n \in \mathbb{N}$. As $\mathbb{E}[|X|^{p}\mathbf{1}_{\{|X|>n\}}] \to 0$, we have $\mathbb{E}[|X - Y_{n}|^{p}] \to 0$. Moreover, for all $n \in \mathbb{N}$, as Y_{n} is quasi-continuous , there exists a closed set F_{n} such that $c(F_{n}^{c}) < \frac{1}{n^{p+1}}$ and Y_{n} is continuous on F_{n} . It follows from Tietze's extension theorem that there exists $Z_{n} \in C_{b}(\Omega)$ such that

$$|Z_n| \leq n$$
 and $Z_n = Y_n$ on F_n

(2n)^p

March 13, 2010

96 / 186

We then have

()

We give the following example to show that \mathbb{L}^p_c is different from \mathbb{L}^p_b even under the case that \mathcal{P} is weakly compact.

Example

Let $\Omega = [0,1]$, $\mathcal{P} = \{\delta_x : x \in [0,1]\}$ is weakly compact. It is seen that $\mathbb{L}^p_c = C_b(\Omega)$ which is different from \mathbb{L}^p_b .

We denote $\mathbb{L}^{\infty}_{c} := \{X \in \mathbb{L}^{\infty} : X \text{ has a quasi-continuous version}\}$, we have

Proposition.

 \mathbb{L}^{∞}_{c} is a closed linear subspace of \mathbb{L}^{∞} .

For each Cauchy sequence $\{X_n\}_{n=1}^{\infty}$ of \mathbb{L}_c^{∞} under $\|\cdot\|_{\infty}$, we can find a subsequence $\{X_{n_i}\}_{i=1}^{\infty}$ such that $\|X_{n_{i+1}} - X_{n_i}\|_{\infty} \leq 2^{-i}$. We may further assume that each X_n is quasi-continuous. Then it is easy to prove that for each $\varepsilon > 0$, there exists an open set G such that $c(G) < \varepsilon$ and $|X_{n_{i+1}} - X_{n_i}| \leq 2^{-i}$ for all $i \geq 1$ on G^c , which implies that the limit belongs to \mathbb{L}_c^{∞} .

As an application of Theorem –Thm8, we can easily get the following results.

Proposition.

Assume that $X : \Omega \to \mathbb{R}$ has a quasi-continuous version and that there exists a function $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\lim_{t\to\infty} \frac{f(t)}{t^{\rho}} = \infty$ and $\mathbb{E}[f(|X|)] < \infty$. Then $X \in \mathbb{L}^{\rho}_c$.

For each $\varepsilon > 0$, there exists an N > 0 such that $\frac{f(t)}{t^{\rho}} \ge \frac{1}{\varepsilon}$, for all $t \ge N$. Thus $\mathbb{E}[|X|^{\rho}\mathbf{1}_{\{|X|>N\}}] \le \varepsilon \mathbb{E}[f(|X|)\mathbf{1}_{\{|X|>N\}}] \le \varepsilon \mathbb{E}[f(|X|)].$

Hence $\lim_{N\to\infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X|>N\}}] = 0$. From Theorem –Thm8 we infer $X \in \mathbb{L}^p_c$.

Lemma

Let $\{P_n\}_{n=1}^{\infty} \subset \mathcal{P}$ converge weakly to $P \in \mathcal{P}$. Then for each $X \in \mathbb{L}^1_c$, we have $E_{P_n}[X] \to E_P[X]$.

-

3 K K 3 K -

We may assume that X is quasi-continuous, otherwise we can consider its quasi-continuous version which does not change the value E_Q for each $Q \in \mathcal{P}$. For each $\varepsilon > 0$, there exists an N > 0 such that $\mathbb{E}[|X|\mathbf{1}_{\{|X|>N\}}] < \frac{\varepsilon}{2}$. Set $X_N = (X \wedge N) \lor (-N)$. We can find an open subset G such that $c(G) < \frac{\varepsilon}{4N}$ and X_N is continuous on G^c . By Tietze's extension theorem, there exists $Y \in C_b(\Omega)$ such that $|Y| \leq N$ and $Y = X_N$ on G^c . Obviously, for each $Q \in \mathcal{P}$,

$$\begin{aligned} |E_Q[X] - E_Q[Y]| &\leq E_Q[|X - X_N|] + E_Q[|X_N - Y|] \\ &\leq \frac{\varepsilon}{2} + 2N\frac{\varepsilon}{4N} = \varepsilon. \end{aligned}$$

It then follows that

$$\limsup_{n\to\infty} E_{P_n}[X] \leq \lim_{n\to\infty} E_{P_n}[Y] + \varepsilon = E_P[Y] + \varepsilon \leq E_P[X] + 2\varepsilon,$$

and similarly $\liminf_{n\to\infty} E_{P_n}[X] \ge E_P[X] - 2\varepsilon$. Since ε can be arbitrarily small, we then have $E_{P_n}[X] \to E_P[X]$.

Remark.

For continuous X, the above lemma is Lemma 3.8.7 in [?].

Now we give an extension of Theorem –Thm2.

Theorem

()

Let \mathcal{P} be weakly compact and let $\{X_n\}_{n=1}^{\infty} \subset \mathbb{L}^1_c$ be such that $X_n \downarrow X$, *q.s.*. Then $\mathbb{E}[X_n] \downarrow \mathbb{E}[X]$.

Remark.

It is important to note that <u>X does not necessarily belong to \mathbb{L}^1_c </u>.

з

5 × 4 5 ×

< □ > < 同 >

()

For the case $\mathbb{E}[X] > -\infty$, if there exists a $\delta > 0$ such that $\mathbb{E}[X_n] > \mathbb{E}[X] + \delta$, $n = 1, 2, \cdots$, we then can find a $P_n \in \mathcal{P}$ such that $E_{P_n}[X_n] > \mathbb{E}[X] + \delta - \frac{1}{n}$, $n = 1, 2, \cdots$. Since \mathcal{P} is weakly compact, we then can find a subsequence $\{P_{n_i}\}_{i=1}^{\infty}$ that converges weakly to some $P \in \mathcal{P}$. From which it follows that

$$E_{P}[X_{n_{i}}] = \lim_{j \to \infty} E_{P_{n_{j}}}[X_{n_{i}}] \ge \limsup_{j \to \infty} E_{P_{n_{j}}}[X_{n_{j}}]$$
$$\ge \limsup_{j \to \infty} \{\mathbb{E}[X] + \delta - \frac{1}{n_{j}}\} = \mathbb{E}[X] + \delta, \quad i = 1, 2, \cdots.$$

Thus $E_P[X] \ge \mathbb{E}[X] + \delta$. This contradicts the definition of $\mathbb{E}[\cdot]$. The proof for the case $\mathbb{E}[X] = -\infty$ is analogous.

We immediately have the following corollary.

Corollary

Let \mathcal{P} be weakly compact and let $\{X_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{L}^1_c decreasingly converging to 0 q.s.. Then $\mathbb{E}[X_n] \downarrow 0$.

Definition

Let *I* be a set of indices, $(X_t)_{t \in I}$ and $(Y_t)_{t \in I}$ be two processes indexed by *I*. We say that *Y* is a quasi-modification of *X* if for all $t \in I$, $X_t = Y_t$

q.s..

Remark.

In the above definition, quasi-modification is also called modification in some papers.

3

We now give a Kolmogorov criterion for a process indexed by \mathbb{R}^d with $d \in \mathbb{N}$.

Theorem

Let p > 0 and $(X_t)_{t \in [0,1]^d}$ be a process such that for all $t \in [0,1]^d$, X_t belongs to \mathbb{L}^p . Assume that there exist positive constants c and ε such that

$$\mathbb{E}[|X_t-X_s|^p] \leq c|t-s|^{d+\varepsilon}.$$

Then X admits a modification \tilde{X} such that

$$\mathbb{E}\left[\left(\sup_{s\neq t}\frac{|\tilde{X}_t-\tilde{X}_s|}{|t-s|^{\alpha}}\right)^p\right]<\infty,$$

for every $\underline{\alpha} \in [0, \varepsilon/p)$. As a consequence, paths of \tilde{X} are quasi-surely Höder continuous of order α for every $\alpha < \varepsilon/p$ in the sense that there exists a Borel set N of capacity 0 such that for all $w \in N^c$, the map $t \to \tilde{X}(w)$ is Höder continuous of order α for every $\alpha < \varepsilon/p$. Moreover, if $X_t \in \mathbb{L}_c^p$ for each t, then we also have $\tilde{X}_t \in \mathbb{L}_c^p$.

Let D be the set of dyadic points in $[0, 1]^d$:

$$D=\left\{\left(\frac{i_1}{2^n},\cdots,\frac{i_d}{2^n}\right);\ n\in\mathbb{N},i_1,\cdots,i_d\in\{0,1,\cdots,2^n\}\right\}.$$

Let $\alpha \in [0, \varepsilon/p)$. We set

$$M = \sup_{s,t\in D, s\neq t} \frac{|X_t - X_s|}{|t - s|^{\alpha}}$$

Thanks to the classical Kolmogorov's criterion (see Revuz-Yor [?]), we know that for any $P \in \mathcal{P}$, $E_P[M^p]$ is finite and uniformly bounded with respect to P so that

$$\mathbb{E}[M^p] = \sup_{P \in \mathcal{P}} E_P[M^p] < \infty.$$

As a consequence, the map $t \rightarrow X_t$ is uniformly continuous on D quasi-surely and so we can define

March 13, 2010 112 / 186

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

()

Sec. G-expectation as an Upper Expectation

In the following sections of this Chapter, let $\underline{\Omega} = C_0^d(\mathbb{R}^+)$ denote the space of all \mathbb{R}^d -valued continuous functions $(\omega_t)_{t\in\mathbb{R}^+}$, with $\omega_0 = 0$, equipped with the distance

$$\rho(\omega^1,\omega^2):=\sum_{i=1}^\infty 2^{-i}[(\max_{t\in[0,i]}|\omega^1_t-\omega^2_t|)\wedge 1],$$

and let $\overline{\Omega} = (\mathbb{R}^d)^{[0,\infty)}$ denote the space of all \mathbb{R}^d -valued functions $(\overline{\omega}_t)_{t\in\mathbb{R}^+}$. Let $\mathcal{B}(\Omega)$ denote the σ -algebra generated by all open sets and let $\underline{\mathcal{B}}(\overline{\Omega})$ denote the σ -algebra generated by all finite dimensional cylinder sets. The corresponding canonical process is $B_t(\omega) = \omega_t$ (respectively, $\overline{B}_t(\overline{\omega}) = \overline{\omega}_t$), $t \in [0,\infty)$ for $\omega \in \Omega$ (respectively, $\overline{\omega} \in \overline{\Omega}$). The spaces of Lipschitzian cylinder functions on Ω and $\overline{\Omega}$ are denoted respectively by

$$L_{ip}(\Omega) := \{\varphi(B_{t_1}, B_{t_2}, \cdots, B_{t_n}) : \forall n \ge 1, t_1, \cdots, t_n \in [0, \infty), \forall \varphi \in C_{Lip}(\mathbb{R}^d)$$
$$L_{ip}(\overline{\Omega}) := \{\varphi(\overline{B}_{t_1}, \overline{B}_{t_2}, \cdots, \overline{B}_{t_n}) : \forall n \ge 1, t_1, \cdots, t_n \in [0, \infty), \forall \varphi \in C_{Lip}(\mathbb{R}^d)$$

Let $G(\cdot) : S(d) \to \mathbb{R}$ be a given continuous monotonic and sublinear function. Following Sec.2 in Chap.-ch3, we can construct the corresponding *G*-expectation $\hat{\mathbb{E}}$ on $(\Omega, L_{ip}(\Omega))$. Due to the natural correspondence of $L_{ip}(\bar{\Omega})$ and $L_{ip}(\Omega)$, we also construct a sublinear expectation $\bar{\mathbb{E}}$ on $(\bar{\Omega}, L_{ip}(\bar{\Omega}))$ such that $(\bar{B}_t(\bar{\omega}))_{t\geq 0}$ is a *G*-Brownian motion.

The main objective of this section is to find a weakly compact family of (σ -additive) probability measures on (Ω , $\mathcal{B}(\Omega)$) to represent *G*-expectation $\hat{\mathbb{E}}$. The following lemmas are a variety of Lemma –I-le3 and –I-le4.

Lemma

Let $0 \leq t_1 < t_2 < \cdots < t_m < \infty$ and $\{\varphi_n\}_{n=1}^{\infty} \subset C_{Lip}(\mathbb{R}^{d \times m})$ satisfy $\varphi_n \downarrow 0$. Then $\mathbb{E}[\varphi_n(\bar{B}_{t_1}, \bar{B}_{t_2}, \cdots, \bar{B}_{t_m})] \downarrow 0$.

- 4 戸 2 4 三 2 4 三 3 三 三

We denote

()

$$\mathcal{T} := \{\underline{t} = (t_1, \ldots, t_m) : \forall m \in \mathbb{N}, 0 \le t_1 < t_2 < \cdots < t_m < \infty\}.$$

Lemma

Let <u>E</u> be a finitely additive linear expectation dominated by \mathbb{E} on $L_{ip}(\overline{\Omega})$. Then there exists a unique probability measure Q on $(\overline{\Omega}, \mathcal{B}(\overline{\Omega}))$ such that $E[X] = E_Q[X]$ for each $X \in L_{ip}(\overline{\Omega})$.

For each fixed $\underline{t} = (t_1, \ldots, t_m) \in \mathcal{T}$, by Lemma –le3, for each sequence $\{\varphi_n\}_{n=1}^{\infty} \subset C_{Lip}(\mathbb{R}^{d \times m})$ satisfying $\varphi_n \downarrow 0$, we have $E[\varphi_n(\bar{B}_{t_1}, \bar{B}_{t_2}, \cdots, \bar{B}_{t_m})] \downarrow 0.$ By Daniell-Stone's theorem (see Appendix B), there exists a unique probability measure Q_t on $(\mathbb{R}^{d \times m}, \mathcal{B}(\mathbb{R}^{d \times m}))$ such that $E_{Q_t}[\varphi] = E[\varphi(\bar{B}_{t_1}, \bar{B}_{t_2}, \cdots, \bar{B}_{t_m})]$ for each $\varphi \in C_{Lip}(\mathbb{R}^{d \times m})$ Thus we get a family of finite dimensional distributions $\{Q_t : t \in \mathcal{T}\}$. It is easy to check that $\{Q_t : \underline{t} \in \mathcal{T}\}$ is consistent. Then by Kolmogorov's consistent theorem, there exists a probability measure Q on $(\overline{\Omega}, \mathcal{B}(\overline{\Omega}))$ such that $\{Q_t : t \in \mathcal{T}\}$ is the finite dimensional distributions of Q. Assume that there exists another probability measure \bar{Q} satisfying the condition, by Daniell-Stone's theorem, Q and \bar{Q} have the same finite-dimensional distributions. Then by monotone class theorem, $Q = \overline{Q}$. The proof is complete.

イロト 不得 とうせん きょうしゅ

Lemma

There exists a family of probability measures \mathcal{P}_e on $(\overline{\Omega}, \mathcal{B}(\overline{\Omega}))$ such that

$$\mathbb{E}[X] = \max_{Q \in \mathcal{P}_e} E_Q[X], \quad \textit{for } X \in L_{\textit{ip}}(\bar{\Omega}).$$

By the representation theorem of sublinear expectation and Lemma –le4, it is easy to get the result. $\hfill\square$

For this \mathcal{P}_e , we define the associated capacity:

$$ilde{c}(A) := \sup_{Q \in \mathcal{P}_e} Q(A), \quad A \in \mathcal{B}(\bar{\Omega}),$$

and the upper expectation for each $\mathcal{B}(\bar{\Omega})$ -measurable real function X which makes the following definition meaningful:

$$\tilde{\mathbb{E}}[X] := \sup_{Q \in \mathcal{P}_e} E_Q[X].$$

Theorem

For $(\bar{B})_{t\geq 0}$, there exists a continuous modification $(\tilde{B})_{t\geq 0}$ of \bar{B} (i.e., $\tilde{c}(\{\tilde{B}_t\neq\bar{B}_t\})=0$, for each $t\geq 0$) such that $\tilde{B}_0=0$.

By Lemma –le5, we know that $\mathbb{E} = \mathbb{E}$ on $L_{ip}(\overline{\Omega})$. On the other hand, we have

$$ilde{\mathbb{E}}[|ar{B}_t-ar{B}_s|^4]=ar{\mathbb{E}}[|ar{B}_t-ar{B}_s|^4]=d|t-s|^2 ext{ for } s,t\in[0,\infty),$$

where *d* is a constant depending only on *G*. By <u>Theorem</u>-ch6t128, there exists a continuous modification \tilde{B} of \bar{B} . Since $\tilde{c}(\{\bar{B}_0 \neq 0\}) = 0$, we can set $\tilde{B}_0 = 0$. The proof is complete.

For each $Q \in \mathcal{P}_e$, let $Q \circ \tilde{B}^{-1}$ denote the probability measure on $(\Omega, \mathcal{B}(\Omega))$ induced by \tilde{B} with respect to Q. We denote $\mathcal{P}_1 = \{Q \circ \tilde{B}^{-1} : Q \in \mathcal{P}_e\}$. By Lemma –le6, we get

$$\mathbb{\tilde{E}}[|\tilde{B}_t - \tilde{B}_s|^4] = \mathbb{\tilde{E}}[|\bar{B}_t - \bar{B}_s|^4] = d|t - s|^2, \forall s, t \in [0, \infty).$$

Applying the well-known result of moment criterion for tightness of Kolmogorov-Chentsov's type (see Appendix B), we conclude that \mathcal{P}_1 is tight. We denote by $\mathcal{P} = \overline{\mathcal{P}}_1$ the closure of \mathcal{P}_1 under the topology of weak convergence, then \mathcal{P} is weakly compact.

Now, we give the representation of G-expectation.

Theorem

For each continuous monotonic and sublinear function $G : S(d) \to \mathbb{R}$, let $\hat{\mathbb{E}}$ be the corresponding *G*-expectation on $(\Omega, L_{ip}(\Omega))$. Then there exists a weakly compact family of probability measures \mathcal{P} on $(\Omega, \mathcal{B}(\Omega))$ such that

$$\hat{\mathbb{E}}[X] = \max_{P \in \mathcal{P}} E_P[X] \text{ for } X \in L_{ip}(\Omega).$$

By Lemma -le5 and Lemma -le6, we have

$$\hat{\mathbb{E}}[X] = \max_{P \in \mathcal{P}_1} E_P[X] \quad \text{for } X \in L_{ip}(\Omega).$$

For each $X \in L_{ip}(\Omega)$, by Lemma –le3, we get $\hat{\mathbb{E}}[|X - (X \wedge N) \vee (-N)|] \downarrow 0$ as $N \to \infty$. Noting that $\mathcal{P} = \overline{\mathcal{P}}_1$, by the definition of weak convergence, we get the result.

Remark.

In fact, we can construct the family \mathcal{P} in a more explicit way: Let $(W_t)_{t\geq 0} = (W_t^i)_{i=1,t\geq 0}^d$ be a *d*-dimensional Brownian motion in this space. The filtration generated by W is denoted by \mathcal{F}_t^W . Now let Γ be the bounded, closed and convex subset in $\mathbb{R}^{d\times d}$ such that

$$G(A) = \sup_{\gamma \in \Gamma} \operatorname{tr}[A\gamma\gamma^T], \ A \in \mathbb{S}(d),$$

(see (–GaChII) in Ch. II) and \mathcal{A}_{Γ} the collection of all Θ -valued $(\mathcal{F}_t^W)_{t\geq 0}$ -adapted process $[0,\infty)$. We denote

$$B_t^\gamma:=\int_0^T\gamma_s dW_s,\ t\geq 0,\ \gamma\in \mathcal{A}_\Gamma.$$

and \mathcal{P}_0 the collection of probability measures on the canonical space $(\Omega, \mathcal{B}(\Omega))$ induced by $\{B^{\gamma} : \gamma \in \mathcal{A}_{\Gamma}\}$. Then $\mathcal{P} = \overline{\mathcal{P}}_0$ (see [?] for details).

Sec. G-capacity and Paths of G-Brownian Motion

According to Theorem –Gt34, we obtain a weakly compact family of probability measures \mathcal{P} on $(\Omega, \mathcal{B}(\Omega))$ to represent *G*-expectation $\hat{\mathbb{E}}[\cdot]$. For this \mathcal{P} , we define the associated *G*-capacity:

$$\hat{c}(A) := \sup_{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega)$$

and upper expectation for each $X \in L^0(\Omega)$ which makes the following definition meaningful:

$$\overline{\mathbb{E}}[X] := \sup_{P \in \mathcal{P}} E_P[X].$$

By Theorem –Gt34, we know that $\overline{\mathbb{E}} = \widehat{\mathbb{E}}$ on $L_{ip}(\Omega)$, thus the $\widehat{\mathbb{E}}[|\cdot|]$ -completion and the $\overline{\mathbb{E}}[|\cdot|]$ -completion of $L_{ip}(\Omega)$ are the same. For each T > 0, we also denote by $\Omega_T = C_0^d([0, T])$ equipped with the distance

$$\rho(\omega^1,\omega^2) = \left\|\omega^1-\omega^2\right\|_{C^d_0([0,T])} := \max_{0\leq t\leq T} |\omega^1_t-\omega^2_t|.$$

We now prove that $L^1_G(\Omega) = \mathbb{L}^1_c$, where \mathbb{L}^1_c is defined in Sec.1. First, we need the following classical approximation lemma.

March 13, 2010

125 / 186

Lemma

For each $X \in C_b(\Omega)$ and $n = 1, 2, \cdots$, we denote

$$X^{(n)}(\omega) := \inf_{\omega' \in \Omega} \{X(\omega') + n \left\| \omega - \omega' \right\|_{C^d_0([0,n])} \} \quad \text{for } \omega \in \Omega.$$

Then the sequence $\{X^{(n)}\}_{n=1}^{\infty}$ satisfies: (i) $-M \leq X^{(n)} \leq X^{(n+1)} \leq \cdots \leq X$, $M = \sup_{\omega \in \Omega} |X(\omega)|$; (ii) $|X^{(n)}(\omega_1) - X^{(n)}(\omega_2)| \leq n \|\omega_1 - \omega_2\|_{C_0^d([0,n])}$ for $\omega_1, \omega_2 \in \Omega$; (iii) $X^{(n)}(\omega) \uparrow X(\omega)$ for $\omega \in \Omega$.

(i) is obvious. For (ii), we have

()

$$X^{(n)}(\omega_{1}) - X^{(n)}(\omega_{2}) \\\leq \sup_{\omega' \in \Omega} \{ [X(\omega') + n \| \omega_{1} - \omega' \|_{C_{0}^{d}([0,n])}] - [X(\omega') + n \| \omega_{2} - \omega' \|_{C_{0}^{d}} \\\leq n \| \omega_{1} - \omega_{2} \|_{C_{0}^{d}([0,n])}$$

and, symmetrically, $X^{(n)}(\omega_2) - X^{(n)}(\omega_1) \leq n \|\omega_1 - \omega_2\|_{C_0^d([0,n])}$. Thus (ii) follows.

We now prove (iii). For each fixed $\omega \in \Omega$, let $\omega_n \in \Omega$ be such that

$$X(\omega_n) + n \|\omega - \omega_n\|_{C_0^d([0,n])} \le X^{(n)}(\omega) + \frac{1}{n}.$$

It is clear that $n \|\omega - \omega_n\|_{C_0^d([0,n])} \le 2M + 1$ or $\|\omega - \omega_n\|_{C_0^d([0,n])} \le \frac{2M+1}{n}$. Since $X \in C_b(\Omega)$, we get $X(\omega_n) \to X(\omega)$ as $n \to \infty$. We have

186

Proposition.

For each $X \in C_b(\Omega)$ and $\varepsilon > 0$, there exists $Y \in L_{ip}(\Omega)$ such that $\overline{\mathbb{E}}[|Y-X|] \leq \varepsilon.$

-

We denote $M = \sup_{\omega \in \Omega} |X(\omega)|$. By Theorem –Thm2 and Lemma –le10, we can find $\mu > 0$, T > 0 and $\bar{X} \in C_b(\Omega_T)$ such that $\mathbb{E}[|X - \bar{X}|] < \varepsilon/3$, $\sup_{\omega \in \Omega} |\bar{X}(\omega)| \le M$ and

$$|\bar{X}(\omega) - \bar{X}(\omega')| \leq \mu \left\| \omega - \omega' \right\|_{C^d_0([0,T])} \quad \text{for } \omega, \omega' \in \Omega.$$

Now for each positive integer *n*, we introduce a mapping $\omega^{(n)}(\omega): \Omega \to \Omega$:

$$\omega^{(n)}(\omega)(t) = \sum_{k=0}^{n-1} \frac{\mathbf{1}_{[t_k^n, t_{k+1}^n)}(t)}{t_{k+1}^n - t_k^n} [(t_{k+1}^n - t)\omega(t_k^n) + (t - t_k^n)\omega(t_{k+1}^n)] + \mathbf{1}_{[T,\infty)}$$

where $t_k^n = \frac{kT}{n}$, $k = 0, 1, \cdots, n$. We set $\bar{X}^{(n)}(\omega) := \bar{X}(\omega^{(n)}(\omega))$, then

$$\begin{split} |\bar{X}^{(n)}(\omega) - \bar{X}^{(n)}(\omega')| &\leq \mu \sup_{t \in [0,T]} |\omega^{(n)}(\omega)(t) - \omega^{(n)}(\omega')(t)| \\ &= \mu \quad \sup \quad |\omega(t_k^n) - \omega'(t_k^n)|. \end{split}$$

 $k \in [0, \cdots, n]$

By Proposition -pr11, we can easily get $L^1_G(\Omega) = \mathbb{L}^1_c$. Furthermore, we can get $L^p_G(\Omega) = \mathbb{L}^p_c$, $\forall p > 0$. Thus, we obtain a pathwise description of $L^p_G(\Omega)$ for each p > 0:

 $L^p_G(\Omega) = \{ X \in L^0(\Omega) : X \text{ has a quasi-continuous version and } \lim_{n \to \infty} \bar{\mathbb{E}}[|X|^p I_{\{x\}} \in L^p(\Omega) \}$

Furthermore, $\mathbb{E}[X] = \mathbb{E}[X]$, for each $X \in L^1_G(\Omega)$.

Exercise.

Show that, for each p > 0,

()

 $L^{p}_{G}(\Omega_{T}) = \{ X \in L^{0}(\Omega_{T}) : X \text{ has a quasi-continuous version and } \lim_{n \to \infty} \bar{\mathbb{E}}[|X|]$

▲冊▶ ▲目▶ ▲目▶ 目 のQ@

130 / 186

March 13, 2010