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L0(Ω): the space of all B(Ω)-measurable real functions;

Bb(Ω): all bounded functions in L0(Ω);
Cb(Ω): all continuous functions in Bb(Ω).

All along this section, we consider a given subset P ⊆M.
We denote

c(A) := sup
P∈P

P(A), A ∈ B(Ω).
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One can easily verify the following theorem.

Theorem

The set function c(·) is a Choquet capacity, i.e. (see [?, ?]),

1 0 ≤ c(A) ≤ 1, ∀A ⊂ Ω.

2 If A ⊂ B, then c(A) ≤ c(B).
3 If (An)∞

n=1 is a sequence in B(Ω), then c(∪An) ≤ ∑ c(An).
4 If (An)∞

n=1 is an increasing sequence in B(Ω): An ↑ A = ∪An, then
c(∪An) = limn→∞ c(An).
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Furthermore, we have

Theorem

For each A ∈ B(Ω), we have

c(A) = sup{c(K ) : K compact K ⊂ A}.

Proof.

It is simply because

c(A) = sup
P∈P

sup
K compact

K⊂A

P(K ) = sup
K compact

K⊂A

sup
P∈P

P(K ) = sup
K compact

K⊂A

c(K ).
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Definition

We use the standard capacity-related vocabulary: a set A is polar if
c(A) = 0 and a property holds “quasi-surely” (q.s.)”qs if it holds outside
a polar set.
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We also have in a trivial way a Borel-Cantelli Lemma.

Lemma

Let (An)n∈N be a sequence of Borel sets such that

∞

∑
n=1

c(An) < ∞.

Then lim supn→∞ An is polar .

Proof.

Applying the Borel-Cantelli Lemma under each probability P ∈ P .

The following theorem is Prokhorov’s theorem.

Theorem

P is relatively compact if and only if for each ε > 0, there exists a
compact set K such that c(K c) < ε.
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The following two lemmas can be found in [?].

Lemma

P is relatively compact if and only if for each sequence of closed sets
Fn ↓ ∅, we have c(Fn) ↓ 0.

Proof.

We outline the proof for the convenience of readers.
“=⇒” part: It follows from Theorem –newth6 that for each fixed ε > 0,
there exists a compact set K such that c(K c) < ε. Note that Fn ∩K ↓ ∅,
then there exists an N > 0 such that Fn ∩K = ∅ for n ≥ N, which implies
limn c(Fn) < ε. Since ε can be arbitrarily small, we obtain c(Fn) ↓ 0.
“⇐=” part: For each ε > 0, let (Ak

i )
∞
i=1 be a sequence of open balls of

radius 1/k covering Ω. Observe that (∪n
i=1A

k
i )

c ↓ ∅, then there exists an

nk such that c((∪nk
i=1A

k
i )

c) < ε2−k . Set K = ∩∞
k=1 ∪

nk
i=1 Ak

i . It is easy to
check that K is compact and c(K c) < ε. Thus by Theorem –newth6, P is
relatively compact.
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Lemma

Let P be weakly compact. Then for each sequence of closed sets Fn ↓ F ,
we have c(Fn) ↓ c(F ).

Proof.

We outline the proof for the convenience of readers. For each fixed ε > 0,
by the definition of c(Fn), there exists a Pn ∈ P such that
Pn(Fn) ≥ c(Fn)− ε. Since P is weakly compact, there exist Pnk

and
P ∈ P such that Pnk

converge weakly to P. Thus

P(Fm) ≥ lim sup
k→∞

Pnk
(Fm) ≥ lim sup

k→∞
Pnk

(Fnk
) ≥ lim

n→∞
c(Fn)− ε.

Letting m → ∞, we get P(F ) ≥ limn→∞ c(Fn)− ε, which yields
c(Fn) ↓ c(F ).
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Following [?] (see also [?, ?]) the upper expectation of P is defined as
follows: for each X ∈ L0(Ω) such that EP [X ] exists for each P ∈ P ,

E[X ] = EP [X ] := sup
P∈P

EP [X ].
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It is easy to verify

Theorem

The upper expectation E[·] of the family P is a sublinear expectation on
Bb(Ω) as well as on Cb(Ω), i.e.,

1 for all X , Y in Bb(Ω), X ≥ Y =⇒ E[X ] ≥ E[Y ].
2 for all X , Y in Bb(Ω), E[X + Y ] ≤ E[X ] + E[Y ].
3 for all λ ≥ 0, X ∈ Bb(Ω), E[λX ] = λE[X ].
4 for all c ∈ R, X ∈ Bb(Ω) , E[X + c ] = E[X ] + c.

() March 13, 2010 75 / 186



Moreover, it is also easy to check

Theorem

We have

1 Let E[Xn] and E[∑∞
n=1 Xn] be finite. Then

E[∑∞
n=1 Xn] ≤ ∑∞

n=1 E[Xn].
2 Let Xn ↑ X and E[Xn], E[X ] be finite. Then E[Xn] ↑ E[X ].
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Definition

The functional E[·] is said to be regular if for each {Xn}∞
n=1 in Cb(Ω)

such that Xn ↓ 0 on Ω, we have E[Xn] ↓ 0.

Similar to Lemma –Lemma1 we have:

Theorem

E[·] is regular if and only if P is relatively compact.
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Proof.

“=⇒” part: For each sequence of closed subsets Fn ↓ ∅ such that Fn,
n = 1, 2, · · · , are non-empty (otherwise the proof is trivial), there exists
{gn}∞

n=1 ⊂ Cb(Ω) satisfying

0 ≤ gn ≤ 1, gn = 1 on Fn and gn = 0 on {ω ∈ Ω : d(ω, Fn) ≥
1

n
}.

We set fn = ∧n
i=1gi , it is clear that fn ∈ Cb(Ω) and 1Fn ≤ fn ↓ 0. E[·] is

regular implies E[fn] ↓ 0 and thus c(Fn) ↓ 0. It follows from Lemma
–Lemma1 that P is relatively compact.
“⇐=” part: For each {Xn}∞

n=1 ⊂ Cb(Ω) such that Xn ↓ 0, we have

E[Xn] = sup
P∈P

EP [Xn] = sup
P∈P

∫ ∞

0
P({Xn ≥ t})dt ≤

∫ ∞

0
c({Xn ≥ t})dt.

For each fixed t > 0, {Xn ≥ t} is a closed subset and {Xn ≥ t} ↓ ∅ as
n ↑ ∞. By Lemma –Lemma1, c({Xn ≥ t}) ↓ 0 and thus∫ ∞
0 c({Xn ≥ t})dt ↓ 0. Consequently E[Xn] ↓ 0.
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We set, for p > 0,

Lp := {X ∈ L0(Ω) : E[|X |p ] = supP∈P EP [|X |p ] < ∞};
N p := {X ∈ L0(Ω) : E[|X |p ] = 0};
N := {X ∈ L0(Ω) : X = 0, c-q.s.}.

It is seen that Lp and N p are linear spaces and N p = N , for each p > 0.
We denote Lp := Lp/N . As usual, we do not take care about the
distinction between classes and their representatives.
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Lemma

Let X ∈ Lp. Then for each α > 0

c({|X | > α}) ≤ E[|X |p ]
αp

.
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Proof.

Just apply Markov inequality under each P ∈ P .

Similar to the classical results, we get the following proposition and the
proof is omitted which is similar to the classical arguments.

Proposition.

We have

1 For each p ≥ 1, Lp is a Banach space under the norm

‖X‖p := (E[|X |p ])
1
p .

2 For each p < 1, Lp is a complete metric space under the distance
d(X , Y ) := E[|X − Y |p ].
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We set

L∞ := {X ∈ L0(Ω) : ∃ a constant M, s.t. |X | ≤ M , q.s.};
L∞ := L∞/N .

Proposition.

Under the norm

‖X‖∞ := inf {M ≥ 0 : |X | ≤ M , q.s.} ,

L∞ is a Banach space.

Proof.

From {|X | > ‖X‖∞} = ∪∞
n=1

{
|X | ≥ ‖X‖∞ + 1

n

}
we know that

|X | ≤ ‖X‖∞, q.s., then it is easy to check that ‖·‖∞ is a norm. The proof
of the completeness of L∞ is similar to the classical result.
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With respect to the distance defined on Lp, p > 0, we denote by

L
p
b the completion of Bb(Ω).

L
p
c the completion of Cb(Ω).

By Proposition –Prop3, we have

Lp
c ⊂ L

p
b ⊂ Lp, p > 0.
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The following Proposition is obvious and the proof is left to the reader.

Proposition.

We have

1 Let p, q > 1, 1
p + 1

q = 1. Then X ∈ Lp and Y ∈ Lq implies

XY ∈ L1 and E[|XY |] ≤ (E[|X |p ])
1
p (E[|Y |q ])

1
q ;

Moreover X ∈ L
p
c and Y ∈ L

q
c implies XY ∈ L1

c ;

2 Lp1 ⊂ Lp2 , L
p1

b ⊂ L
p2

b , L
p1
c ⊂ L

p2
c , 0 < p2 ≤ p1 ≤ ∞;

3 ‖X‖p ↑ ‖X‖∞, for each X ∈ L∞.

Proposition.

Let p ∈ (0, ∞] and (Xn) be a sequence in Lp which converges to X in Lp.
Then there exists a subsequence (Xnk

) which converges to X quasi-surely
in the sense that it converges to X outside a polar set.
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Proof.

Let us assume p ∈ (0, ∞), the case p = ∞ is obvious since the
convergence in L∞ implies the convergence in Lp for all p.
One can extract a subsequence (Xnk

) such that

E[|X − Xnk
|p ] ≤ 1/kp+2, k ∈ N.

We set for all k
Ak = {|X − Xnk

| > 1/k},

then as a consequence of the Markov property (Lemma –markov) and the
Borel-Cantelli Lemma –BorelC, c(limk→∞Ak) = 0. As it is clear that on
(limk→∞Ak)c , (Xnk

) converges to X , the proposition is proved.
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We now give a description of L
p
b.

Proposition.

”Prop5For each p > 0,

L
p
b = {X ∈ Lp : lim

n→∞
E[|X |p1{|X |>n}] = 0}.
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Proof.

We denote Jp = {X ∈ Lp : limn→∞ E[|X |p1{|X |>n}] = 0}. For each
X ∈ Jp let Xn = (X ∧ n) ∨ (−n) ∈ Bb(Ω). We have

E[|X − Xn|p ] ≤ E[|X |p1{|X |>n}] → 0, as n → ∞.

Thus X ∈ L
p
b.

On the other hand, for each X ∈ L
p
b, we can find a sequence {Yn}∞

n=1 in
Bb(Ω) such that E[|X − Yn|p ] → 0. Let yn = supω∈Ω |Yn(ω)| and
Xn = (X ∧ yn) ∨ (−yn). Since |X − Xn| ≤ |X − Yn|, we have
E[|X −Xn|p ] → 0. This clearly implies that for any sequence (αn) tending
to ∞, limn→∞ E[|X − (X ∧ αn) ∨ (−αn)|p ] = 0.
Now we have, for all n ∈ N,

E[|X |p1{|X |>n}] = E[(|X | − n + n)p1{|X |>n}]

≤ (1∨ 2p−1)
(
E[(|X | − n)p1{|X |>n}] + npc(|X | > n)

)
.

The first term of the right hand side tends to 0 since

E[(|X | − n)p1{|X |>n}] = E[|X − (X ∧ n) ∨ (−n)|p ] → 0.

For the second term, since

np

2p
1{|X |>n} ≤ (|X | − n

2
)p1{|X |>n} ≤ (|X | − n

2
)p1{|X |> n

2 },

we have

np

2p
c(|X | > n) =

np

2p
E[1{|X |>n}] ≤ E[(|X | − n

2
)p1{|X |> n

2 }] → 0.

Consequently X ∈ Jp.
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Proposition.

Let X ∈ L1
b. Then for each ε > 0, there exists a δ > 0, such that for all

A ∈ B(Ω) with c(A) ≤ δ, we have E[|X |1A] ≤ ε.
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Proof.

For each ε > 0, by Proposition –Prop5, there exists an N > 0 such that
E[|X |1{|X |>N}] ≤ ε

2 . Take δ = ε
2N . Then for a subset A ∈ B(Ω) with

c(A) ≤ δ, we have

E[|X |1A] ≤ E[|X |1A1{|X |>N}] + E[|X |1A1{|X |≤N}]

≤ E[|X |1{|X |>N}] + Nc(A) ≤ ε.
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It is important to note that not every element in Lp satisfies the condition
limn→∞ E[|X |p1{|X |>n}] = 0. We give the following two counterexamples

to show that L1 and L1
b are different spaces even under the case that P is

weakly compact.

Example

Let Ω = N, P = {Pn : n ∈ N} where P1({1}) = 1 and
Pn({1}) = 1− 1

n , Pn({n}) = 1
n , for n = 2, 3, · · · . P is weakly compact.

We consider a function X on N defined by X (n) = n, n ∈ N. We have
E[|X |] = 2 but E[|X |1{|X |>n}] = 1 6→ 0. In this case, X ∈ L1 but

X 6∈ L1
b.
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Example

Let Ω = N, P = {Pn : n ∈ N} where P1({1}) = 1 and
Pn({1}) = 1− 1

n2 , Pn({kn}) = 1
n3 , k = 1, 2, . . . , n,for n = 2, 3, · · · . P is

weakly compact. We consider a function X on N defined by X (n) = n,
n ∈ N. We have E[|X |] = 25

16 and nE[1{|X |≥n}] = 1
n → 0, but

E[|X |1{|X |≥n}] = 1
2 + 1

2n 6→ 0. In this case, X is in L1, continuous and

nE[1{|X |≥n}] → 0, but it is not in L1
b.
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Definition

A mapping X on Ω with values in a topological space is said to be
quasi-continuous (q.c.) if

∀ε > 0, there exists an open set O with c(O) < ε such that X |Oc is continuous.
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Definition

We say that X : Ω → R has a quasi-continuous version if there exists a
quasi-continuous function Y : Ω → R with X = Y q.s..
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Proposition.

Let p > 0. Then each element in L
p
c has a quasi-continuous version.

Proof.

Let (Xn) be a Cauchy sequence in Cb(Ω) for the distance on Lp. Let us
choose a subsequence (Xnk

)k≥1 such that

E[|Xnk+1
− Xnk

|p ] ≤ 2−2k , ∀k ≥ 1,

and set for all k,

Ak =
∞⋃

i=k

{|Xni+1 − Xni | > 2−i/p}.

Thanks to the subadditivity property and the Markov inequality, we have

c(Ak) ≤
∞

∑
i=k

c(|Xni+1 − Xni | > 2−i/p) ≤
∞

∑
i=k

2−i = 2−k+1.

As a consequence, limk→∞ c(Ak) = 0, so the Borel set A =
⋂∞

k=1 Ak is
polar.
As each Xnk

is continuous, for all k ≥ 1, Ak is an open set. Moreover, for
all k, (Xni ) converges uniformly on Ac

k so that the limit is continuous on
each Ac

k . This yields the result.
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The following theorem gives a concrete characterization of the space L
p
c .

Theorem

For each p > 0,

Lp
c = {X ∈ Lp : X has a q.-c. version, lim

n→∞
E[|X |p1{|X |>n}] = 0}.
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Proof.

We denote

Jp = {X ∈ Lp : X has a quasi-continuous version, lim
n→∞

E[|X |p1{|X |>n}] = 0}.

Let X ∈ L
p
c , we know by Proposition –qc that X has a quasi-continuous

version. Since X ∈ L
p
b, we have by Proposition –Prop5 that

limn→∞ E[|X |p1{|X |>n}] = 0. Thus X ∈ Jp.
On the other hand, let X ∈ Jp be quasi-continuous. Define
Yn = (X ∧ n) ∨ (−n) for all n ∈ N. As E[|X |p1{|X |>n}] → 0, we have
E[|X − Yn|p ] → 0.
Moreover, for all n ∈ N, as Yn is quasi-continuous , there exists a closed
set Fn such that c(F c

n ) < 1
np+1 and Yn is continuous on Fn. It follows from

Tietze’s extension theorem that there exists Zn ∈ Cb(Ω) such that

|Zn| ≤ n and Zn = Yn on Fn.

We then have

E[|Yn − Zn|p ] ≤ (2n)pc(F c
n ) ≤ (2n)p

np+1
.

So E[|X − Zn|p ] ≤ (1∨ 2p−1)(E[|X − Yn|p ] + E[|Yn − Zn|p ]) → 0, and
X ∈ L

p
c .
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We give the following example to show that L
p
c is different from L

p
b even

under the case that P is weakly compact.

Example

Let Ω = [0, 1], P = {δx : x ∈ [0, 1]} is weakly compact. It is seen that
L

p
c = Cb(Ω) which is different from L

p
b.
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We denote L∞
c := {X ∈ L∞ : X has a quasi-continuous version}, we have

Proposition.

L∞
c is a closed linear subspace of L∞.

() March 13, 2010 98 / 186



Proof.

For each Cauchy sequence {Xn}∞
n=1 of L∞

c under ‖·‖∞, we can find a
subsequence {Xni }

∞
i=1 such that ‖Xni+1 − Xni ‖∞ ≤ 2−i . We may further

assume that each Xn is quasi-continuous. Then it is easy to prove that for
each ε > 0, there exists an open set G such that c(G ) < ε and
|Xni+1 − Xni | ≤ 2−i for all i ≥ 1 on G c , which implies that the limit
belongs to L∞

c .
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As an application of Theorem –Thm8, we can easily get the following
results.

Proposition.

Assume that X : Ω → R has a quasi-continuous version and that there

exists a function f : R+ → R+ satisfying limt→∞
f (t)
tp = ∞ and

E[f (|X |)] < ∞. Then X ∈ L
p
c .
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Proof.

For each ε > 0, there exists an N > 0 such that f (t)
tp ≥ 1

ε , for all t ≥ N.
Thus

E[|X |p1{|X |>N}] ≤ εE[f (|X |)1{|X |>N}] ≤ εE[f (|X |)].

Hence limN→∞ E[|X |p1{|X |>N}] = 0. From Theorem –Thm8 we infer X ∈
L

p
c .
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Lemma

Let {Pn}∞
n=1 ⊂ P converge weakly to P ∈ P . Then for each X ∈ L1

c , we
have EPn [X ] → EP [X ].
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Proof.

We may assume that X is quasi-continuous, otherwise we can consider its
quasi-continuous version which does not change the value EQ for each
Q ∈ P . For each ε > 0, there exists an N > 0 such that
E[|X |1{|X |>N}] < ε

2 . Set XN = (X ∧N) ∨ (−N). We can find an open
subset G such that c(G ) < ε

4N and XN is continuous on G c . By Tietze’s
extension theorem, there exists Y ∈ Cb(Ω) such that |Y | ≤ N and
Y = XN on G c . Obviously, for each Q ∈ P ,

|EQ [X ]− EQ [Y ]| ≤ EQ [|X − XN |] + EQ [|XN − Y |]

≤ ε

2
+ 2N

ε

4N
= ε.

It then follows that

lim sup
n→∞

EPn [X ] ≤ lim
n→∞

EPn [Y ] + ε = EP [Y ] + ε ≤ EP [X ] + 2ε,

and similarly lim infn→∞ EPn [X ] ≥ EP [X ]− 2ε. Since ε can be arbitrarily
small, we then have EPn [X ] → EP [X ].
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Remark.

For continuous X , the above lemma is Lemma 3.8.7 in [?].

Now we give an extension of Theorem –Thm2.

Theorem

Let P be weakly compact and let {Xn}∞
n=1 ⊂ L1

c be such that Xn ↓ X,
q.s.. Then E[Xn] ↓ E[X ].
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Remark.

It is important to note that X does not necessarily belong to L1
c .
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Proof.

For the case E[X ] > −∞, if there exists a δ > 0 such that
E[Xn] > E[X ] + δ, n = 1, 2, · · · , we then can find a Pn ∈ P such that
EPn [Xn] > E[X ] + δ− 1

n , n = 1, 2, · · · . Since P is weakly compact, we
then can find a subsequence {Pni }

∞
i=1 that converges weakly to some

P ∈ P . From which it follows that

EP [Xni ] = lim
j→∞

EPnj
[Xni ] ≥ lim sup

j→∞
EPnj

[Xnj ]

≥ lim sup
j→∞

{E[X ] + δ− 1

nj
} = E[X ] + δ, i = 1, 2, · · · .

Thus EP [X ] ≥ E[X ] + δ. This contradicts the definition of E[·]. The
proof for the case E[X ] = −∞ is analogous.
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We immediately have the following corollary.

Corollary

Let P be weakly compact and let {Xn}∞
n=1 be a sequence in L1

c

decreasingly converging to 0 q.s.. Then E[Xn] ↓ 0.
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Definition

Let I be a set of indices, (Xt)t∈I and (Yt)t∈I be two processes indexed by
I . We say that Y is a quasi-modification of X if for all t ∈ I , Xt = Yt

q.s..
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Remark.

In the above definition, quasi-modification is also called modification in
some papers.
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We now give a Kolmogorov criterion for a process indexed by Rd with
d ∈ N.

Theorem

Let p > 0 and (Xt)t∈[0,1]d be a process such that for all t ∈ [0, 1]d , Xt

belongs to Lp . Assume that there exist positive constants c and ε such
that

E[|Xt − Xs |p ] ≤ c |t − s |d+ε.

Then X admits a modification X̃ such that

E

[(
sup
s 6=t

|X̃t − X̃s |
|t − s |α

)p]
< ∞,

for every α ∈ [0, ε/p). As a consequence, paths of X̃ are quasi-surely
Höder continuous of order α for every α < ε/p in the sense that there
exists a Borel set N of capacity 0 such that for all w ∈ Nc , the map
t → X̃ (w) is Höder continuous of order α for every α < ε/p. Moreover, if
Xt ∈ L

p
c for each t, then we also have X̃t ∈ L

p
c .
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Proof.

Let D be the set of dyadic points in [0, 1]d :

D =
{

(
i1
2n

, · · · ,
id
2n

); n ∈ N, i1, · · · , id ∈ {0, 1, · · · , 2n}
}

.

Let α ∈ [0, ε/p). We set

M = sup
s ,t∈D,s 6=t

|Xt − Xs |
|t − s |α .

Thanks to the classical Kolmogorov’s criterion (see Revuz-Yor [?]), we
know that for any P ∈ P , EP [Mp ] is finite and uniformly bounded with
respect to P so that

E[Mp ] = sup
P∈P

EP [Mp ] < ∞.

As a consequence, the map t → Xt is uniformly continuous on D
quasi-surely and so we can define

∀t ∈ [0, 1]d , X̃t = lim
s→t,s∈D

Xs .

It is now clear that X̃ satisfies the enounced properties.
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Sec. G -expectation as an Upper Expectation

In the following sections of this Chapter, let Ω = Cd
0 (R+) denote the

space of all Rd−valued continuous functions (ωt)t∈R+ , with ω0 = 0,
equipped with the distance

ρ(ω1, ω2) :=
∞

∑
i=1

2−i [( max
t∈[0,i ]

|ω1
t −ω2

t |) ∧ 1],

and let Ω̄ = (Rd )[0,∞) denote the space of all Rd−valued functions
(ω̄t)t∈R+ . Let B(Ω) denote the σ-algebra generated by all open sets and
let B(Ω̄) denote the σ-algebra generated by all finite dimensional cylinder
sets. The corresponding canonical process is Bt(ω) = ωt (respectively,
B̄t(ω̄) = ω̄t), t ∈ [0, ∞) for ω ∈ Ω (respectively, ω̄ ∈ Ω̄). The spaces of
Lipschitzian cylinder functions on Ω and Ω̄ are denoted respectively by

Lip(Ω) := {ϕ(Bt1 , Bt2 , · · · , Btn) : ∀n ≥ 1, t1, · · · , tn ∈ [0, ∞), ∀ϕ ∈ CLip(Rd×n)},

Lip(Ω̄) := {ϕ(B̄t1 , B̄t2 , · · · , B̄tn) : ∀n ≥ 1, t1, · · · , tn ∈ [0, ∞), ∀ϕ ∈ CLip(Rd×n)}.

() March 13, 2010 113 / 186

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条

Administrator
线条



Let G (·) : S(d) → R be a given continuous monotonic and sublinear
function. Following Sec.2 in Chap.–ch3, we can construct the
corresponding G -expectation Ê on (Ω, Lip(Ω)). Due to the natural
correspondence of Lip(Ω̄) and Lip(Ω), we also construct a sublinear
expectation Ē on (Ω̄, Lip(Ω̄)) such that (B̄t(ω̄))t≥0 is a G -Brownian
motion.
The main objective of this section is to find a weakly compact family of
(σ-additive) probability measures on (Ω,B(Ω)) to represent
G -expectation Ê. The following lemmas are a variety of Lemma –I-le3 and
–I-le4.
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Lemma

Let 0 ≤ t1 < t2 < · · · < tm < ∞ and {ϕn}∞
n=1 ⊂ CLip(Rd×m) satisfy

ϕn ↓ 0. Then Ē[ϕn(B̄t1 , B̄t2 , · · · , B̄tm)] ↓ 0.
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We denote
T := {t = (t1, . . . , tm) : ∀m ∈ N, 0 ≤ t1 < t2 < · · · < tm < ∞}.

Lemma

Let E be a finitely additive linear expectation dominated by Ē on Lip(Ω̄).
Then there exists a unique probability measure Q on (Ω̄,B(Ω̄)) such that
E [X ] = EQ [X ] for each X ∈ Lip(Ω̄).
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Proof.

For each fixed t = (t1, . . . , tm) ∈ T , by Lemma –le3, for each sequence
{ϕn}∞

n=1 ⊂ CLip(Rd×m) satisfying ϕn ↓ 0, we have
E [ϕn(B̄t1 , B̄t2 , · · · , B̄tm)] ↓ 0. By Daniell-Stone’s theorem (see Appendix
B), there exists a unique probability measure Qt on (Rd×m,B(Rd×m))
such that EQt [ϕ] = E [ϕ(B̄t1 , B̄t2 , · · · , B̄tm)] for each ϕ ∈ CLip(Rd×m).
Thus we get a family of finite dimensional distributions {Qt : t ∈ T }. It is
easy to check that {Qt : t ∈ T } is consistent. Then by Kolmogorov’s
consistent theorem, there exists a probability measure Q on (Ω̄,B(Ω̄))
such that {Qt : t ∈ T } is the finite dimensional distributions of Q.
Assume that there exists another probability measure Q̄ satisfying the
condition, by Daniell-Stone’s theorem, Q and Q̄ have the same
finite-dimensional distributions. Then by monotone class theorem, Q = Q̄.
The proof is complete.
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Lemma

There exists a family of probability measures Pe on (Ω̄,B(Ω̄)) such that

Ē[X ] = max
Q∈Pe

EQ [X ], for X ∈ Lip(Ω̄).
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Proof.

By the representation theorem of sublinear expectation and Lemma –le4, it
is easy to get the result.

() March 13, 2010 119 / 186



For this Pe , we define the associated capacity:

c̃(A) := sup
Q∈Pe

Q(A), A ∈ B(Ω̄),

and the upper expectation for each B(Ω̄)-measurable real function X
which makes the following definition meaningful:

Ẽ[X ] := sup
Q∈Pe

EQ [X ].

Theorem

For (B̄)t≥0 , there exists a continuous modification (B̃)t≥0 of B̄ (i.e.,
c̃({B̃t 6= B̄t}) = 0, for each t ≥ 0) such that B̃0 = 0.
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Proof.

By Lemma –le5, we know that Ē = Ẽ on Lip(Ω̄). On the other hand, we
have

Ẽ[|B̄t − B̄s |4] = Ē[|B̄t − B̄s |4] = d |t − s |2 for s , t ∈ [0, ∞),

where d is a constant depending only on G . By Theorem –ch6t128, there
exists a continuous modification B̃ of B̄. Since c̃({B̄0 6= 0}) = 0, we can
set B̃0 = 0. The proof is complete.
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For each Q ∈ Pe , let Q ◦ B̃−1 denote the probability measure on
(Ω,B(Ω)) induced by B̃ with respect to Q. We denote
P1 = {Q ◦ B̃−1 : Q ∈ Pe}. By Lemma –le6, we get

Ẽ[|B̃t − B̃s |4] = Ẽ[|B̄t − B̄s |4] = d |t − s |2, ∀s , t ∈ [0, ∞).

Applying the well-known result of moment criterion for tightness of
Kolmogorov-Chentsov’s type (see Appendix B), we conclude that P1 is
tight. We denote by P = P1 the closure of P1 under the topology of
weak convergence, then P is weakly compact.
Now, we give the representation of G -expectation.

Theorem

For each continuous monotonic and sublinear function G : S(d) → R, let
Ê be the corresponding G-expectation on (Ω, Lip(Ω)). Then there exists a
weakly compact family of probability measures P on (Ω,B(Ω)) such that

Ê[X ] = max
P∈P

EP [X ] for X ∈ Lip(Ω).
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Proof.

By Lemma –le5 and Lemma –le6, we have

Ê[X ] = max
P∈P1

EP [X ] for X ∈ Lip(Ω).

For each X ∈ Lip(Ω), by Lemma –le3, we get
Ê[|X − (X ∧N) ∨ (−N)|] ↓ 0 as N → ∞. Noting that P = P1, by the
definition of weak convergence, we get the result.
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Remark.

In fact, we can construct the family P in a more explicit way: Let
(Wt)t≥0 = (W i

t )d
i=1,t≥0 be a d-dimensional Brownian motion in this

space. The filtration generated by W is denoted by FW
t . Now let Γ be the

bounded, closed and convex subset in Rd×d such that

G (A) = sup
γ∈Γ

tr[AγγT ], A ∈ S(d),

(see (–GaChII) in Ch. II) and AΓ the collection of all Θ-valued
(FW

t )t≥0-adapted process [0, ∞). We denote

B
γ
t :=

∫ T

0
γsdWs , t ≥ 0, γ ∈ AΓ.

and P0 the collection of probability measures on the canonical space
(Ω,B(Ω)) induced by {Bγ : γ ∈ AΓ}. Then P = P0 (see [?] for
details).
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Sec. G -capacity and Paths of G -Brownian Motion

According to Theorem –Gt34, we obtain a weakly compact family of
probability measures P on (Ω,B(Ω)) to represent G -expectation Ê[·].
For this P , we define the associated G -capacity:

ĉ(A) := sup
P∈P

P(A), A ∈ B(Ω)

and upper expectation for each X ∈ L0(Ω) which makes the following
definition meaningful:

Ē[X ] := sup
P∈P

EP [X ].

By Theorem –Gt34, we know that Ē = Ê on Lip(Ω), thus the
Ê[| · |]-completion and the Ē[| · |]-completion of Lip(Ω) are the same.
For each T > 0, we also denote by ΩT = Cd

0 ([0, T ]) equipped with the
distance

ρ(ω1, ω2) =
∥∥ω1 −ω2

∥∥
Cd

0 ([0,T ]) := max
0≤t≤T

|ω1
t −ω2

t |.

We now prove that L1
G (Ω) = L1

c , where L1
c is defined in Sec.1. First, we

need the following classical approximation lemma.
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Lemma

For each X ∈ Cb(Ω) and n = 1, 2, · · · , we denote

X (n)(ω) := inf
ω′∈Ω

{X (ω′) + n
∥∥ω −ω′∥∥

Cd
0 ([0,n])} for ω ∈ Ω.

Then the sequence {X (n)}∞
n=1 satisfies:

(i) −M ≤ X (n) ≤ X (n+1) ≤ · · · ≤ X, M = supω∈Ω |X (ω)|;
(ii) |X (n)(ω1)− X (n)(ω2)| ≤ n ‖ω1 −ω2‖Cd

0 ([0,n]) for ω1, ω2 ∈ Ω;

(iii) X (n)(ω) ↑ X (ω) for ω ∈ Ω.
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Proof.

(i) is obvious.
For (ii), we have

X (n)(ω1)− X (n)(ω2)
≤ supω′∈Ω{[X (ω′) + n ‖ω1 −ω′‖Cd

0 ([0,n])]− [X (ω′) + n ‖ω2 −ω′‖Cd
0 ([0,n])]}

≤ n ‖ω1 −ω2‖Cd
0 ([0,n])

and, symmetrically, X (n)(ω2)− X (n)(ω1) ≤ n ‖ω1 −ω2‖Cd
0 ([0,n]). Thus

(ii) follows.
We now prove (iii). For each fixed ω ∈ Ω, let ωn ∈ Ω be such that

X (ωn) + n ‖ω −ωn‖Cd
0 ([0,n]) ≤ X (n)(ω) +

1

n
.

It is clear that n ‖ω −ωn‖Cd
0 ([0,n]) ≤ 2M + 1 or

‖ω −ωn‖Cd
0 ([0,n]) ≤ 2M+1

n . Since X ∈ Cb(Ω), we get X (ωn) → X (ω) as
n → ∞. We have

X (ω) ≥ X (n)(ω) ≥ X (ωn) + n ‖ω −ωn‖Cd
0 ([0,n]) −

1

n
,

thus

n ‖ω −ωn‖Cd
0 ([0,n]) ≤ |X (ω)− X (ωn)|+

1

n
.

We also have

X (ωn)− X (ω) + n ‖ω −ωn‖Cd
0 ([0,n]) ≥ X (n)(ω)− X (ω)

≥ X (ωn)− X (ω) + n ‖ω −ωn‖Cd
0 ([0,n]) −

1

n
.

From the above two relations, we obtain

|X (n)(ω)− X (ω)| ≤ |X (ωn)− X (ω)|+ n ‖ω −ωn‖Cd
0 ([0,n]) +

1

n

≤ 2(|X (ωn)− X (ω)|+ 1

n
) → 0 as n → ∞.

Thus (iii) is obtained.
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Proposition.

For each X ∈ Cb(Ω) and ε > 0, there exists Y ∈ Lip(Ω) such that
Ē[|Y − X |] ≤ ε.
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Proof.

We denote M = supω∈Ω |X (ω)|. By Theorem –Thm2 and Lemma –le10,
we can find µ > 0, T > 0 and X̄ ∈ Cb(ΩT ) such that Ē[|X − X̄ |] < ε/3,
supω∈Ω |X̄ (ω)| ≤ M and

|X̄ (ω)− X̄ (ω′)| ≤ µ
∥∥ω −ω′∥∥

Cd
0 ([0,T ]) for ω, ω′ ∈ Ω.

Now for each positive integer n, we introduce a mapping
ω(n)(ω) : Ω → Ω:

ω(n)(ω)(t) =
n−1

∑
k=0

1[tn
k ,tn

k+1)
(t)

tn
k+1 − tn

k

[(tn
k+1− t)ω(tn

k )+ (t− tn
k )ω(tn

k+1)]+1[T ,∞)(t)ω(t),

where tn
k = kT

n , k = 0, 1, · · · , n. We set X̄ (n)(ω) := X̄ (ω(n)(ω)), then

|X̄ (n)(ω)− X̄ (n)(ω′)| ≤ µ sup
t∈[0,T ]

|ω(n)(ω)(t)−ω(n)(ω′)(t)|

= µ sup
k∈[0,··· ,n]

|ω(tn
k )−ω′(tn

k )|.

We now choose a compact subset K ⊂ Ω such that Ē[1KC ] ≤ ε/6M.
Since supω∈K supt∈[0,T ] |ω(t)−ω(n)(ω)(t)| → 0, as n → ∞, we can
choose a sufficiently large n0 such that

sup
ω∈K

|X̄ (ω)− X̄ (n0)(ω)| = sup
ω∈K

|X̄ (ω)− X̄ (ω(n0)(ω))|

≤ µ sup
ω∈K

sup
t∈[0,T ]

|ω(t)−ω(n0)(ω)(t)|

< ε/3.

Set Y := X̄ (n0), it follows that

Ē[|X − Y |] ≤ Ē[|X − X̄ |] + Ē[|X̄ − X̄ (n0)|]
≤ Ē[|X − X̄ |] + Ē[1K |X̄ − X̄ (n0)|] + 2MĒ[1KC ]
< ε.

The proof is complete.
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By Proposition –pr11, we can easily get L1
G (Ω) = L1

c . Furthermore, we
can get Lp

G (Ω) = L
p
c , ∀p > 0.

Thus, we obtain a pathwise description of Lp
G (Ω) for each p > 0:

Lp
G (Ω) = {X ∈ L0(Ω) : X has a quasi-continuous version and lim

n→∞
Ē[|X |pI{|X |>n}] = 0}.

Furthermore, Ē[X ] = Ê[X ], for each X ∈ L1
G (Ω).

Exercise.

Show that, for each p > 0,

Lp
G (ΩT ) = {X ∈ L0(ΩT ) : X has a quasi-continuous version and lim

n→∞
Ē[|X |pI{|X |>n}] = 0}.
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