FILIPPOV TYPE ESTIMATES FOR FULLY NONLINEAR DIFFERENTIAL INCLUSIONS

CARJA OVIDIU POSTOLACHE VICTOR

Alexandru Ioan Cuza University Iasi, Romania

PRELIMINARIES

Let X be a Banach space.
Let $A: D(A) \subseteq X \rightsquigarrow X$ be an m-dissipative operator, $\xi \in \overline{D(A)}$, $f \in L^{1}(0, T ; X)$ and let us consider the differential inclusion

$$
\begin{equation*}
u^{\prime}(t) \in A u(t)+f(t) \tag{1}
\end{equation*}
$$

PRELIMINARIES

Definition

A C^{0} - solution to the problem (1) is a function u in $C([0, T] ; X)$ satisfying: for each $0<c<T$ and $\varepsilon>0$ there exist
(i) $0=t_{0}<t_{1}<\cdots<c \leq t_{n}<T, t_{k}-t_{k-1} \leq \varepsilon$ for $k=1,2, \ldots, n$;
(ii) $f_{1}, \ldots, f_{n} \in X$ with $\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}}\left\|f(t)-f_{k}\right\| \leq \varepsilon ;$
(iii) $v_{0}, \ldots, v_{n} \in X$ satisfying :
$\frac{v_{k}-v_{k-1}}{t_{k}-t_{k-1}} \in A v_{k}+f_{k}$ for $k=1,2, \ldots, n$ and such that

$$
\left\|u(t)-v_{k}\right\| \leq \varepsilon \text { for } t \in\left[t_{k-1}, t_{k}\right), k=1,2, \ldots, n
$$

PRELIMINARIES

Theorem

[Lakshmikantham, Leela, p.116] Let X be a Banach space and let $A: D(A) \subseteq X \rightsquigarrow X$ be m-dissipative. Then, for each $\xi \in \overline{D(A)}$ and $f \in L^{1}(0, T ; X)$, there exists a unique C^{0}-solution $u:[0, T] \rightarrow \overline{D(A)}$, to (1), which satisfies $u(0)=\xi$.

We denote by $u(\cdot, 0, \xi, f):[0, T] \rightarrow \overline{D(A)}$ the unique C^{0}-solution to (1) satisfying $u(0,0, \xi, f)=\xi$.

PRELIMINARIES

Theorem
[Caria, Necula, Vrabie, p.18] If $A: D(A) \subseteq X \rightsquigarrow X$ is m-dissipative, $\xi, \eta \in \overline{D(A)}$ and $f, g \in L^{1}(0, T ; X)$, then $\tilde{u}=u(\cdot, 0, \xi, f)$ and $\tilde{v}=u(\cdot, 0, \eta, g)$ satisfy

$$
\begin{equation*}
\|\tilde{u}(t)-\tilde{v}(t)\| \leq\|\xi-\eta\|+\int_{0}^{t}\|f(s)-g(s)\| d s, \tag{2}
\end{equation*}
$$

for each $t \in[0, T]$.

PRELIMINARIES

Let $A: D(A) \subseteq X \mapsto X$ be the generator of a nonlinear semigroup of contractions, $\{S(t): \overline{D(A)} \mapsto \overline{D(A)} \mid t \geq 0\}$, K a nonempty subset in $\overline{D(A)}$ and $F: K \rightsquigarrow X$ a nonempty, closed, bounded and convex valued multi-function. We consider the Cauchy problem for the nonlinear perturbed differential inclusion

$$
\left\{\begin{array}{l}
u^{\prime}(t) \in A u(t)+F(u(t)) \\
u(0)=\xi
\end{array}\right.
$$

PRELIMINARIES

Definition

The function $u:[0, T] \mapsto K$ is a $C^{0}-$ solution to the above problem if $u(0)=\xi$ and there exists $f \in L^{1}(0, T ; X)$ with $f(t) \in F(u(t))$ a.e. $t \in[0, T]$, and such that u is a C^{0}-solution on $[0, T]$ to the equation (1) in the sense of Definition 1.

Definition

The subset $K \subset D$ is C^{0} - viable with respect to $A+F$ if for each $\xi \in K$ there exist $T^{0}>0$ and a C^{0}-solution $u:\left[0, T^{0}\right] \mapsto K$ to the above problem.

PRELIMINARIES

Let $E \subseteq X$ be nonempty and bounded. We denote by

$$
\mathcal{E}=\left\{f \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+} ; X\right) \mid f(s) \in E \text { a.e. } s \in \mathbb{R}_{+}\right\}
$$

Definition

Let K a subset in X and $\xi \in K$. The set $E \subseteq X$ is
A - quasi-tangent to the set K at the point $\xi \in K$ if we have

$$
\liminf _{h \downarrow 0} \frac{1}{h} \operatorname{dist}\left(S_{\mathcal{E}}(h) \xi ; K\right)=0,
$$

where

$$
S_{\mathcal{E}}(h) \xi=\{u(h, 0, \xi, f) \mid f \in \mathcal{E}\}
$$

PRELIMINARIES

We denote by $\mathcal{Q T} \mathcal{S}_{K}^{A}(\xi)$ the class of all A-quasi-tangent sets to K at $\xi \in K$.
Remark. Let $K \subseteq X, \xi \in K$ and $E \subseteq X$. Then $E \in \mathcal{Q T} \mathcal{S}_{K}^{A}(\xi)$ if and only if for each $\varepsilon>0$ there exist $h \in(0, \varepsilon], p \in X$ with $\|p\| \leq \varepsilon$ and $f \in \mathcal{E}$ such that

$$
u(h, 0, \xi, f)+h p \in K
$$

Equivalently, $E \in \mathcal{Q} \mathcal{T} \mathcal{S}_{K}^{A}(\xi)$ if and only if there exist three sequences, $\left(h_{n}\right)_{n}$ in \mathbb{R}_{+}with $h_{n} \downarrow 0,\left(p_{n}\right)_{n}$ in X with $\lim _{n} p_{n}=0$ and $\left(f_{n}\right)_{n}$ in \mathcal{E}, such that

$$
u\left(h_{n}, 0, \xi, f_{n}\right)+h_{n} p_{n} \in K
$$

for $n=1,2, \ldots$.

PRELIMINARIES

Definition

An m-dissipative operator $A: D(A) \subseteq X \rightsquigarrow X$ is called of complete continuous type if for each fixed $(\tau, \xi) \in \mathbb{R} \times \overline{D(A)}$ the graph of the C^{0}-solution operator, $f \mapsto u(\cdot, \tau, \xi, f)$, is weakly \times strongly sequentially closed in $L^{1}(\tau, T ; X) \times C([\tau, T] ; X)$.

Theorem

[Carja, Necula, Vrabie, p.226] Let X be a Banach space, $A: D(A) \subseteq X \rightsquigarrow X$ an m-dissipative operator of complete continuous type which generates a compact semigroup of contractions, let K be a nonempty, locally closed subset in $\overline{D(A)}$ and $F: K \rightsquigarrow X$ a nonempty, weakly compact and convex valued strongly-weakly u.s.c. multi-function. Then a sufficient condition in order that K be C^{0}-viable with respect to $A+F$ is that, for each $\xi \in K, F(\xi) \in \mathcal{Q} \mathcal{T} \mathcal{S}_{K}^{A}(\xi)$.

PRELIMINARIES

Let X be a separable Banach space.

Theorem

[Frankowska, p.105]. Let $U:[0, T] \rightsquigarrow X$ be a measurable multi-function with closed nonempty values and $g:[0, T] \mapsto X$, $k:[0, T] \mapsto \mathbb{R}_{+}$be measurable single-valued maps. Assume that

$$
W(t):=U(t) \cap(g(t)+k(t) B(0,1)) \neq \emptyset \quad \text { a.e. in }[0, T] .
$$

Then there exists a mesurable function $u:[0, T] \mapsto X$ such that $u(t) \in W(t)$ almost everywhere.

Definition

The multi-function $F: X \rightsquigarrow X$ is L - lipschitzian, if there exists $L>0$, such that

$$
F(x) \subset F(y)+L\|x-y\| B(0,1), \quad \forall x, y \in X
$$

MAIN RESULT

Theorem

Let X be a separable Banach space, $A: D(A) \subseteq X \rightsquigarrow X$ an m-dissipative operator of complete continuous type which generates a compact semigroup of contractions, $F: \overline{D(A)} \rightsquigarrow X$ a nonempty, weakly compact and convex valued L-lipschitzian strongly-weakly u.s.c. multi-function. Let $x_{0}, \bar{x}_{0} \in \overline{D(A)}, T>0$, $y_{0}:[0, T] \rightarrow \overline{D(A)}$ a fixed C^{0}-solution to the problem

$$
\left\{\begin{array}{l}
y_{0}^{\prime}(t) \in A y_{0}(t)+F\left(y_{0}(t)\right) \\
y_{0}(0)=\bar{x}_{0} .
\end{array}\right.
$$

MAIN RESULT

Theorem

Then, there exists a C^{0}-solution $y:[0, T] \rightarrow \overline{D(A)}$ to the problem

$$
\left\{\begin{array}{l}
y^{\prime}(t) \in A y(t)+F(y(t)) \\
y(0)=x_{0},
\end{array}\right.
$$

such that

$$
\left\|y(t)-y_{0}(t)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L t}, \quad \forall t \in[0, T] .
$$

PROOF

Let us consider the problem

$$
\left\{\begin{array}{l}
t^{\prime}(s)=1 \\
y^{\prime}(s) \in A y(s)+F(y(s)) \\
z^{\prime}(s)=L\left\|y-y_{0}(t)\right\| \\
t(0)=t_{0} \\
y(0)=y_{0} \\
z(0)=z_{0} .
\end{array}\right.
$$

PROOF

We define the following set in the space $\mathbb{R} \times X \times \mathbb{R}$

$$
\mathcal{A}=\left\{(t, y, z) \in[0, T) \times \overline{D(A)} \times \mathbb{R}_{+} \mid\left\|y-y_{0}(t)\right\| \leq z\right\}
$$

the operator $\mathbb{A}=(0, A, 0)$ and the multi-function
$\mathcal{F}: \mathcal{A} \rightsquigarrow \mathbb{R} \times X \times \mathbb{R}$,

$$
\mathcal{F}(t, y, z)=\left(1, F(y), L\left\|y-y_{0}(t)\right\|\right)
$$

1. We will prove that the set \mathcal{A} is C^{0}-viable with respect to $\mathbb{A}+\mathcal{F}$. For this purpose, we take the point $\left(t_{0}, y_{0}, z_{0}\right) \in \mathcal{A}$, i. e., $\left\|y_{0}-y_{0}\left(t_{0}\right)\right\| \leq z_{0}$.

PROOF

2. Let us prove that the tangency condition is satisfied, i.e., $\left(1, F\left(y_{0}\right), L\left\|y_{0}-y_{0}\left(t_{0}\right)\right\|\right) \in \mathcal{Q} \mathcal{T} \mathcal{S}_{\mathcal{A}}^{\mathrm{A}}\left(t_{0}, y_{0}, z_{0}\right)$. We should prove that there exist the sequences $\left(h_{n}\right)_{n},\left(p_{n}\right)_{n},\left(p_{n}^{\prime}\right)_{n},\left(p_{n}^{\prime \prime}\right)_{n},\left(f_{n}\right)_{n}$, such that $h_{n} \downarrow 0, p_{n}, p_{n}^{\prime \prime} \rightarrow 0$ in $\mathbb{R}, p_{n}^{\prime} \rightarrow 0$ in $X,\left(f_{n}\right)_{n} \subset F\left(y_{0}\right)$ and

$$
\begin{gathered}
\left(t_{0}+h_{n}\left(1+p_{n}\right), y\left(h_{n}\left(1+p_{n}\right), 0, y_{0}, f_{n}\right)+h_{n} p_{n}^{\prime},\right. \\
\left.z_{0}+h_{n} L\left\|y_{0}-y_{0}\left(t_{0}\right)\right\|+h_{n} p_{n}^{\prime \prime}\right) \in \mathcal{A} .
\end{gathered}
$$

We can choose $\left(p_{n}\right)_{n}=(0)_{n}$.

PROOF

We will prove that there exist the sequences $\left(h_{n}\right)_{n},\left(p_{n}\right)_{n},\left(p_{n}^{\prime}\right)_{n},\left(p_{n}^{\prime \prime}\right)_{n},\left(f_{n}\right)_{n}$, like above, such that
$\left\|y\left(h_{n}, 0, y_{0}, f_{n}\right)+h_{n} p_{n}^{\prime}-y_{0}\left(t_{0}+h_{n}, 0, \bar{x}_{0}, g\right)\right\| \leq z_{0}+h_{n} L\left\|y_{0}-y_{0}\left(t_{0}\right)\right\|+h_{n} p_{n}^{\prime \prime}$, which is equivalent with
$\left\|y\left(h_{n}, 0, y_{0}, f_{n}\right)+h_{n} p_{n}^{\prime}-y_{0}\left(h_{n}, 0, y_{0}\left(t_{0}\right), \tilde{g}\right)\right\| \leq z_{0}+h_{n} L\left\|y_{0}-y_{0}\left(t_{0}\right)\right\|+h_{n} p_{n}^{\prime \prime}$,
where $\tilde{g}(s)=g\left(s+t_{0}\right) \in F\left(y_{0}\left(s+t_{0}\right)\right)$ a.e. $s \in\left[0, T-t_{0}\right]$.

PROOF

3. In accordance with definition of a C^{0}-solution, $\exists g \in L^{1}(0, T ; X)$, with $g(t) \in F\left(y_{0}(t)\right)$ a.e. $t \in[0, T]$, such that y_{0} is a C^{0}-solution to the problem

$$
\left\{\begin{array}{l}
y_{0}^{\prime}(t) \in A y_{0}(t)+g(t) \\
y_{0}(0)=\bar{x}_{0}
\end{array}\right.
$$

Taking into account that the multi-function F is L-lipschitzian, we have

$$
F\left(y_{0}\left(t+t_{0}\right)\right) \subset F\left(y_{0}\right)+L\left\|y_{0}\left(t+t_{0}\right)-y_{0}\right\| B(0,1), \quad \forall t \geq 0 .
$$

PROOF

Then, applying Theorem [Frankowska] for g, we obtain that there exist two measurable functions $f, w \in L^{1}(0, T ; X)$, such that $f(t) \in F\left(y_{0}\right), w(t) \in L\left\|y_{0}\left(t+t_{0}\right)-y_{0}\right\| B(0,1)$ and $\tilde{g}(t)=f(t)+w(t)$ a.e. $t \in\left[0, T-t_{0}\right]$. We put $\left(f_{n}\right)_{n}=(f)_{n}$.

PROOF

4. Next, we use the inequality (2) to obtain

$$
\begin{gathered}
\left\|y_{0}-y_{0}\left(t_{0}\right)\right\|+\int_{0}^{h_{n}}\|f(s)-\tilde{g}(s)\| d s+h_{n}\left\|p_{n}^{\prime}\right\| \leq\left\|y_{0}-y_{0}\left(t_{0}\right)\right\| \\
+L \int_{0}^{h_{n}}\left\|y_{0}\left(s+t_{0}\right)-y_{0}\right\| d s+h_{n}\left\|p_{n}^{\prime}\right\|=\left\|y_{0}-y_{0}\left(t_{0}\right)\right\|+L h_{n}\left\|y_{0}\left(t_{0}\right)-y_{0}\right\| \\
+h_{n}\left(L\left[\frac{1}{h_{n}} \int_{0}^{h_{n}}\left\|y_{0}\left(s+t_{0}\right)-y_{0}\right\| d s-\left\|y_{0}\left(t_{0}\right)-y_{0}\right\|\right]\right)+h_{n}\left\|p_{n}^{\prime}\right\| \\
\leq h_{n}\left(L\left[\frac{1}{h_{n}} \int_{0}^{h_{n}}\left\|y_{0}\left(s+t_{0}\right)-y_{0}\right\| d s-\left\|y_{0}\left(t_{0}\right)-y_{0}\right\|\right]\right) \\
z_{0}+L h_{n}\left\|y_{0}\left(t_{0}\right)-y_{0}\right\|+h_{n}\left\|p_{n}^{\prime}\right\|
\end{gathered}
$$

PROOF

We put $\left(p_{n}^{\prime}\right)_{n}=(0)_{n}$,
$\left(p_{n}^{\prime \prime}\right)_{n}=\left(\frac{1}{h_{n}} \int_{0}^{h_{n}}\left\|y_{0}\left(s+t_{0}\right)-y_{0}\right\| d s-\left\|y_{0}\left(t_{0}\right)-y_{0}\right\|\right)_{n}$.
Taking into account that the solution $y_{0}(t)$, defined on $[0, T]$, is from the space $C([0, T], X)$, choosing $\left(h_{n}\right)_{n}$ to be sufficiently small, we have

$$
\lim _{h_{n} \downarrow 0}\left(\frac{1}{h_{n}} \int_{0}^{h_{n}}\left\|y_{0}\left(s+t_{0}\right)-y_{0}\right\| d s\right)=\left\|y_{0}\left(t_{0}\right)-y_{0}\right\| .
$$

Hence, $p_{n}^{\prime \prime} \rightarrow 0$ in \mathbb{R}.

PROOF

5. We mention that under the hypotheses on F and A, the multi-function \mathcal{F} is a nonempty, weakly compact and convex valued strongly-weakly u.s.c. multi-function and the operator \mathbb{A} is a m-dissipative operator of complete continuous type which generates a compact semigroup of contractions.
It is obvious that the subset \mathcal{A} of $\mathbb{R} \times \overline{D(A)} \times \mathbb{R}$ is nonempty $\left(\left(0, x_{0},\left\|x_{0}-\bar{x}_{0}\right\|\right) \in \mathcal{A}\right)$ and locally closed.

PROOF

Therefore, taking into account that the tangency condition is satisfied, we can apply Theorem 3 (about the sufficient conditions for C^{0}-viability of the set \mathcal{A} with respect to $\mathbb{A}+\mathcal{F}$) and conclude that there exist $0<\tilde{T}<T$ and a C^{0}-solution $(\hat{t}, \hat{y}, \hat{z})$ to the above problem, such that

$$
(\hat{t}, \hat{y}(\hat{t}), \hat{z}(\hat{t})) \in \mathcal{A}, \quad \forall \hat{t} \in[0, \tilde{T}]
$$

Equivalently,

$$
\left\|\hat{y}(t)-y_{0}(t)\right\| \leq \hat{z}(t), \quad \forall t \in[0, \tilde{T}]
$$

PROOF

That is, taking into account the form of the solution $\hat{z}(t)$,

$$
\left\|\hat{y}(t)-y_{0}(t)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\|+L \int_{0}^{t}\left\|\hat{y}(s)-y_{0}(s)\right\| d s, \quad \forall t \in[0, \tilde{T}]
$$

Which implies, if we use Gronwall's Lemma,

$$
\left\|\hat{y}(t)-y_{0}(t)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L t}, \quad \forall t \in[0, \tilde{T}] .
$$

PROOF

The fact that the set \mathcal{A} is C^{0}-viable with respect to $\mathbb{A}+\mathcal{F}$ assures the existence of a noncontinuable C^{0}-solution
$(t, y, z):[0, a) \rightarrow \mathcal{A}$, where $0<a \leq T$ (see Theorem 11.7.1
[Carja, Necula, Vrabie]) and

$$
\begin{equation*}
\left\|y(t)-y_{0}(t)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L t}, \quad \forall t \in[0, a) \tag{3}
\end{equation*}
$$

In the following we prove that $a=T$.
Let us assume, by contradiction, that $a<T$.

PROOF

We define the function $y_{1}:[0, T-a] \rightarrow \overline{D(A)}$

$$
y_{1}(t) \equiv y_{0}(t+a), \quad \forall t \in[0, T-a]
$$

which, obviously, is a C^{0}-solution to the problem

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t) \in A y_{1}(t)+F\left(y_{1}(t)\right) \\
y_{1}(0)=y_{0}(a)
\end{array}\right.
$$

Let us prove that $\exists \lim _{t \uparrow a} y(t) \in \overline{D(A)}$.

PROOF

From definition of a C^{0}-solution, $\exists \varphi \in L^{1}([0, a), X)$, with $\varphi(t) \in F(y(t))$ a.e. $t \in[0, a)$, such that $y:[0, a) \rightarrow \overline{D(A)}$ is a C^{0}-solution to the problem

$$
\left\{\begin{array}{l}
y^{\prime}(t) \in A y(t)+\varphi(t) \\
y(0)=x_{0}
\end{array}\right.
$$

The estimation (3) implies that y is bounded on $[0, a)$.

PROOF

F, being L-lipschitzian, maps bounded subsets from $\overline{D(A)}$ to bounded subsets from X. Therefore, φ is bounded on $[0, a)$, which implies the existence of $\lim _{t \uparrow a} y(t) \in \overline{D(A)}$. Let us put

$$
y(a) \equiv \lim _{t \uparrow a} y(t)
$$

Using the fact that $y \in C([0, a), \overline{D(A)})$ and $y_{0} \in C([0, T], \overline{D(A)})$, from (3) we have

$$
\left\|y(a)-y_{0}(a)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L a} .
$$

PROOF

Applying the similar procedure like above for y_{1}, we state that there exist $0<b<T-a$ and a C^{0}-solution $y_{2}:[0, b] \rightarrow \overline{D(A)}$ to the problem

$$
\left\{\begin{array}{l}
y_{2}^{\prime}(t) \in A y_{2}(t)+F\left(y_{2}(t)\right) \\
y_{2}(0)=y(a),
\end{array}\right.
$$

such that

$$
\left\|y_{2}(t)-y_{1}(t)\right\| \leq\left\|y_{0}(a)-y(a)\right\| e^{L t}, \quad \forall t \in[0, b] .
$$

PROOF

Let us define the function $y_{3}:[0, a+b] \rightarrow \overline{D(A)}$

$$
y_{3}(t) \equiv\left\{\begin{array}{l}
y(t), \quad \forall t \in[0, a], \\
y_{2}(t-a), \quad \forall t \in[a, a+b]
\end{array}\right.
$$

which, obviously, is a C^{0}-solution to the problem

$$
\left\{\begin{array}{l}
y_{3}^{\prime}(t) \in A y_{3}(t)+F\left(y_{3}(t)\right) \\
y_{3}(0)=x_{0}
\end{array}\right.
$$

PROOF

Let us mention that

$$
\left\|y_{3}(t)-y_{0}(t)\right\|=\left\|y(t)-y_{0}(t)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L t}, \quad \forall t \in[0, a] .
$$

Moreover, for all $t \in[a, a+b]$ we have

$$
\begin{gathered}
\left\|y_{3}(t)-y_{0}(t)\right\|=\left\|y_{2}(t-a)-y_{1}(t-a)\right\| \leq\left\|y_{0}(a)-y(a)\right\| e^{L(t-a)} \\
\leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L a} e^{L(t-a)}=\left\|x_{0}-\bar{x}_{0}\right\| e^{L t}
\end{gathered}
$$

PROOF

Hence,

$$
\left\|y_{3}(t)-y_{0}(t)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L t}, \quad \forall t \in[0, a+b],
$$

which contradicts the statement that $(t, y, z):[0, a) \rightarrow \mathcal{A}$ is a noncontinuable C^{0}-solution. The contradiction is eliminated, if $a=T$.
Similarly, we prove that $\exists \lim _{t \uparrow T} y(t) \in \overline{D(A)}$ and, if we put $y(T) \equiv \lim _{t \uparrow T} y(t)$, (3) implies

$$
\left\|y(T)-y_{0}(T)\right\| \leq\left\|x_{0}-\bar{x}_{0}\right\| e^{L T} .
$$

BIBLIOGRAPHY

1. Carja, O., Necula, M., Vrabie, I. I., Viability, invariance and applications, North-Holland Mathematics Studies, 207, Elsevier Science B. V., Amsterdam, 2007, xii+344 pp.
2. Frankowska, H., A priori estimates for operational differential inclusions, J. Differential Equations 84 (1990), no. 1, 100-128.
3. Lakshmikantham, V., Leela, S., Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford-New York, 1981, x+258 pp.
