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PRELIMINARIES

Let X be a Banach space.
Let A : D(A) ⊆ X  X be an m-dissipative operator, ξ ∈ D(A),
f ∈ L1(0,T ; X ) and let us consider the differential inclusion

u′(t) ∈ Au(t) + f (t). (1)



PRELIMINARIES

Definition

A C 0 − solution to the problem (1) is a function u in C ([0,T ]; X )
satisfying: for each 0 < c < T and ε > 0 there exist

(i) 0 = t0 < t1 < · · · < c ≤ tn < T , tk−tk−1 ≤ ε for k = 1, 2, ..., n;

(ii) f1, ..., fn ∈ X with
n∑

k=1

∫ tk

tk−1

‖f (t)− fk‖ ≤ ε;

(iii) v0, ..., vn ∈ X satisfying :

vk − vk−1

tk − tk−1
∈ Avk + fk for k = 1, 2, ..., n and such that

‖u(t)− vk‖ ≤ ε for t ∈ [tk−1, tk), k = 1, 2, ..., n.



PRELIMINARIES

Theorem

[Lakshmikantham, Leela, p.116] Let X be a Banach space and
let A : D(A) ⊆ X  X be m-dissipative. Then, for each ξ ∈ D(A)
and f ∈ L1(0,T ; X ), there exists a unique C 0-solution
u : [0,T ]→ D(A), to (1), which satisfies u(0) = ξ.

We denote by u(·, 0, ξ, f ) : [0,T ]→ D(A) the unique C 0-solution
to (1) satisfying u(0, 0, ξ, f ) = ξ.



PRELIMINARIES

Theorem

[Carja, Necula, Vrabie, p.18] If A : D(A) ⊆ X  X is
m-dissipative, ξ, η ∈ D(A) and f , g ∈ L1(0,T ; X ), then
ũ = u(·, 0, ξ, f ) and ṽ = u(·, 0, η, g) satisfy

‖ũ(t)− ṽ(t)‖ ≤ ‖ξ − η‖+

∫ t

0
‖f (s)− g(s)‖ds, (2)

for each t ∈ [0,T ].



PRELIMINARIES

Let A : D(A) ⊆ X 7→ X be the generator of a nonlinear semigroup
of contractions, {S(t) : D(A) 7→ D(A)| t ≥ 0}, K a nonempty
subset in D(A) and F : K  X a nonempty, closed, bounded and
convex valued multi-function. We consider the Cauchy problem for
the nonlinear perturbed differential inclusion{

u′(t) ∈ Au(t) + F (u(t))
u(0) = ξ



PRELIMINARIES

Definition

The function u : [0,T ] 7→ K is a C 0 − solution to the above
problem if u(0) = ξ and there exists f ∈ L1(0,T ; X ) with
f (t) ∈ F (u(t)) a.e. t ∈ [0,T ], and such that u is a C 0-solution on
[0,T ] to the equation (1) in the sense of Definition 1.

Definition

The subset K ⊂ D is C 0 − viable with respect to A + F if for each
ξ ∈ K there exist T 0 > 0 and a C 0-solution u : [0,T 0] 7→ K to the
above problem.



PRELIMINARIES

Let E ⊆ X be nonempty and bounded. We denote by

E = {f ∈ L1
loc(R+; X )| f (s) ∈ E a.e. s ∈ R+}.

Definition

Let K a subset in X and ξ ∈ K . The set E ⊆ X is
A− quasi-tangent to the set K at the point ξ ∈ K if we have

lim inf
h↓0

1

h
dist(SE(h)ξ; K ) = 0,

where
SE(h)ξ = {u(h, 0, ξ, f )| f ∈ E}.



PRELIMINARIES

We denote by QT SA
K (ξ) the class of all A-quasi-tangent sets to K

at ξ ∈ K .
Remark. Let K ⊆ X , ξ ∈ K and E ⊆ X . Then E ∈ QT SA

K (ξ) if
and only if for each ε > 0 there exist h ∈ (0, ε], p ∈ X with
‖p‖ ≤ ε and f ∈ E such that

u(h, 0, ξ, f ) + hp ∈ K .

Equivalently, E ∈ QT SA
K (ξ) if and only if there exist three

sequences, (hn)n in R+ with hn ↓ 0, (pn)n in X with limn pn = 0
and (fn)n in E , such that

u(hn, 0, ξ, fn) + hnpn ∈ K ,

for n = 1, 2, ....



PRELIMINARIES

Definition

An m-dissipative operator A : D(A) ⊆ X  X is called of
complete continuous type if for each fixed (τ, ξ) ∈ R× D(A) the
graph of the C 0-solution operator, f 7→ u(·, τ, ξ, f ), is
weakly×strongly sequentially closed in L1(τ,T ; X )× C ([τ,T ]; X ).

Theorem

[Carja, Necula, Vrabie, p.226] Let X be a Banach space,
A : D(A) ⊆ X  X an m-dissipative operator of complete
continuous type which generates a compact semigroup of
contractions, let K be a nonempty, locally closed subset in D(A)
and F : K  X a nonempty, weakly compact and convex valued
strongly-weakly u.s.c. multi-function. Then a sufficient condition
in order that K be C 0-viable with respect to A + F is that, for
each ξ ∈ K , F (ξ) ∈ QT SA

K (ξ).



PRELIMINARIES

Let X be a separable Banach space.

Theorem

[Frankowska, p.105]. Let U : [0,T ] X be a measurable
multi-function with closed nonempty values and g : [0,T ] 7→ X ,
k : [0,T ] 7→ R+ be measurable single-valued maps. Assume that

W (t) := U(t) ∩ (g(t) + k(t)B(0, 1)) 6= ∅ a.e. in [0,T ].

Then there exists a mesurable function u : [0,T ] 7→ X such that
u(t) ∈W (t) almost everywhere.

Definition

The multi-function F : X  X is L− lipschitzian, if there exists
L > 0, such that

F (x) ⊂ F (y) + L‖x − y‖B(0, 1), ∀x , y ∈ X .



MAIN RESULT

Theorem

Let X be a separable Banach space, A : D(A) ⊆ X  X an
m-dissipative operator of complete continuous type which
generates a compact semigroup of contractions, F : D(A) X a
nonempty, weakly compact and convex valued L-lipschitzian
strongly-weakly u.s.c. multi-function. Let x0, x0 ∈ D(A), T > 0,
y0 : [0,T ]→ D(A) a fixed C 0-solution to the problem{

y ′0(t) ∈ Ay0(t) + F (y0(t))
y0(0) = x0.



MAIN RESULT

Theorem

Then, there exists a C 0-solution y : [0,T ]→ D(A) to the
problem {

y ′(t) ∈ Ay(t) + F (y(t))
y(0) = x0,

such that

‖y(t)− y0(t)‖ ≤ ‖x0 − x0‖eLt , ∀t ∈ [0,T ].



PROOF

Let us consider the problem

t ′(s) = 1
y ′(s) ∈ Ay(s) + F (y(s))
z ′(s) = L‖y − y0(t)‖
t(0) = t0
y(0) = y0

z(0) = z0.



PROOF

We define the following set in the space R× X × R

A = {(t, y , z) ∈ [0,T )× D(A)× R+| ‖y − y0(t)‖ ≤ z},

the operator A = (0,A, 0) and the multi-function
F : A R× X × R,

F(t, y , z) = (1,F (y), L‖y − y0(t)‖).

1. We will prove that the set A is C 0-viable with respect to
A+ F . For this purpose, we take the point (t0, y0, z0) ∈ A, i. e.,
‖y0 − y0(t0)‖ ≤ z0 .



PROOF

2. Let us prove that the tangency condition is satisfied, i.e.,
(1,F (y0), L‖y0 − y0(t0)‖) ∈ QT SAA(t0, y0, z0). We should prove
that there exist the sequences (hn)n, (pn)n, (p′n)n, (p′′n)n, (fn)n, such
that hn ↓ 0 , pn, p

′′
n → 0 in R, p′n → 0 in X , (fn)n ⊂ F (y0) and

(t0 + hn(1 + pn), y(hn(1 + pn), 0, y0, fn) + hnp′n,

z0 + hnL‖y0 − y0(t0)‖+ hnp′′n) ∈ A.

We can choose (pn)n = (0)n.



PROOF

We will prove that there exist the sequences
(hn)n, (pn)n, (p′n)n, (p′′n)n, (fn)n, like above, such that

‖y(hn, 0, y0, fn)+hnp′n−y0(t0+hn, 0, x0, g)‖ ≤ z0+hnL‖y0−y0(t0)‖+hnp′′n ,

which is equivalent with

‖y(hn, 0, y0, fn)+hnp′n−y0(hn, 0, y0(t0), g̃)‖ ≤ z0+hnL‖y0−y0(t0)‖+hnp′′n ,

where g̃(s) = g(s + t0) ∈ F (y0(s + t0)) a.e. s ∈ [0,T − t0].



PROOF

3. In accordance with definition of a C 0-solution,
∃g ∈ L1(0,T ; X ), with g(t) ∈ F (y0(t)) a.e. t ∈ [0,T ], such
that y0 is a C 0-solution to the problem{

y ′0(t) ∈ Ay0(t) + g(t)
y0(0) = x0.

Taking into account that the multi-function F is L-lipschitzian, we
have

F (y0(t + t0)) ⊂ F (y0) + L‖y0(t + t0)− y0‖B(0, 1), ∀t ≥ 0.



PROOF

Then, applying Theorem [Frankowska] for g , we obtain that there
exist two measurable functions f , w ∈ L1(0,T ; X ), such that
f (t) ∈ F (y0), w(t) ∈ L‖y0(t + t0)− y0‖B(0, 1) and
g̃(t) = f (t) + w(t) a.e. t ∈ [0,T − t0]. We put (fn)n = (f )n.



PROOF

4. Next, we use the inequality (2) to obtain

‖y0 − y0(t0)‖+

∫ hn

0
‖f (s)− g̃(s)‖ds + hn‖p′n‖ ≤ ‖y0 − y0(t0)‖

+L

∫ hn

0
‖y0(s+t0)−y0‖ds+hn‖p′n‖ = ‖y0−y0(t0)‖+Lhn‖y0(t0)−y0‖

+hn

(
L

[
1

hn

∫ hn

0
‖y0(s + t0)− y0‖ds − ‖y0(t0)− y0‖

])
+ hn‖p′n‖

≤ hn

(
L

[
1

hn

∫ hn

0
‖y0(s + t0)− y0‖ds − ‖y0(t0)− y0‖

])
z0 + Lhn‖y0(t0)− y0‖+ hn‖p′n‖.



PROOF

We put (p′n)n = (0)n,

(p′′n)n =
(

1
hn

∫ hn

0 ‖y0(s + t0)− y0‖ds − ‖y0(t0)− y0‖
)

n
.

Taking into account that the solution y0(t), defined on [0,T ], is
from the space C ([0,T ],X ), choosing (hn)n to be sufficiently
small, we have

lim
hn↓0

(
1

hn

∫ hn

0
‖y0(s + t0)− y0‖ds

)
= ‖y0(t0)− y0‖.

Hence, p′′n → 0 in R.



PROOF

5. We mention that under the hypotheses on F and A, the
multi-function F is a nonempty, weakly compact and convex
valued strongly-weakly u.s.c. multi-function and the operator A is
a m-dissipative operator of complete continuous type which
generates a compact semigroup of contractions.
It is obvious that the subset A of R× D(A)× R is nonempty
((0, x0, ‖x0 − x0‖) ∈ A) and locally closed.



PROOF

Therefore, taking into account that the tangency condition is
satisfied, we can apply Theorem 3 (about the sufficient conditions
for C 0-viability of the set A with respect to A+ F) and conclude
that there exist 0 < T̃ < T and a C 0-solution (t̂, ŷ , ẑ) to the
above problem, such that

(t̂, ŷ(t̂), ẑ(t̂)) ∈ A, ∀t̂ ∈ [0, T̃ ].

Equivalently,

‖ŷ(t)− y0(t)‖ ≤ ẑ(t), ∀t ∈ [0, T̃ ].



PROOF

That is, taking into account the form of the solution ẑ(t),

‖ŷ(t)− y0(t)‖ ≤ ‖x0− x0‖+ L

∫ t

0
‖ŷ(s)− y0(s)‖ds, ∀t ∈ [0, T̃ ].

Which implies, if we use Gronwall’s Lemma,

‖ŷ(t)− y0(t)‖ ≤ ‖x0 − x0‖eLt , ∀t ∈ [0, T̃ ].



PROOF

The fact that the set A is C 0-viable with respect to A+F assures
the existence of a noncontinuable C 0-solution
(t, y , z) : [0, a)→ A, where 0 < a ≤ T (see Theorem 11.7.1
[Carja, Necula, Vrabie]) and

‖y(t)− y0(t)‖ ≤ ‖x0 − x0‖eLt , ∀t ∈ [0, a). (3)

In the following we prove that a = T .
Let us assume, by contradiction, that a < T .



PROOF

We define the function y1 : [0,T − a]→ D(A)

y1(t) ≡ y0(t + a), ∀t ∈ [0,T − a],

which, obviously, is a C 0-solution to the problem{
y ′1(t) ∈ Ay1(t) + F (y1(t))
y1(0) = y0(a).

Let us prove that ∃ limt↑a y(t) ∈ D(A).



PROOF

From definition of a C 0-solution, ∃ϕ ∈ L1([0, a),X ), with
ϕ(t) ∈ F (y(t)) a.e. t ∈ [0, a), such that y : [0, a)→ D(A) is a
C 0-solution to the problem{

y ′(t) ∈ Ay(t) + ϕ(t)
y(0) = x0.

The estimation (3) implies that y is bounded on [0, a).



PROOF

F , being L-lipschitzian, maps bounded subsets from D(A) to
bounded subsets from X . Therefore, ϕ is bounded on [0, a), which
implies the existence of limt↑a y(t) ∈ D(A). Let us put

y(a) ≡ lim
t↑a

y(t).

Using the fact that y ∈ C ([0, a),D(A)) and
y0 ∈ C ([0,T ],D(A)), from (3) we have

‖y(a)− y0(a)‖ ≤ ‖x0 − x0‖eLa.



PROOF

Applying the similar procedure like above for y1, we state that
there exist 0 < b < T − a and a C 0-solution y2 : [0, b]→ D(A)
to the problem {

y ′2(t) ∈ Ay2(t) + F (y2(t))
y2(0) = y(a),

such that

‖y2(t)− y1(t)‖ ≤ ‖y0(a)− y(a)‖eLt , ∀t ∈ [0, b].



PROOF

Let us define the function y3 : [0, a + b]→ D(A)

y3(t) ≡
{

y(t), ∀t ∈ [0, a],
y2(t − a), ∀t ∈ [a, a + b],

which, obviously, is a C 0-solution to the problem{
y ′3(t) ∈ Ay3(t) + F (y3(t))
y3(0) = x0.



PROOF

Let us mention that

‖y3(t)− y0(t)‖ = ‖y(t)− y0(t)‖ ≤ ‖x0 − x0‖eLt , ∀t ∈ [0, a].

Moreover, for all t ∈ [a, a + b] we have

‖y3(t)− y0(t)‖ = ‖y2(t − a)− y1(t − a)‖ ≤ ‖y0(a)− y(a)‖eL(t−a)

≤ ‖x0 − x0‖eLaeL(t−a) = ‖x0 − x0‖eLt .



PROOF

Hence,

‖y3(t)− y0(t)‖ ≤ ‖x0 − x0‖eLt , ∀t ∈ [0, a + b],

which contradicts the statement that (t, y , z) : [0, a)→ A is a
noncontinuable C 0-solution. The contradiction is eliminated, if
a = T .
Similarly, we prove that ∃ limt↑T y(t) ∈ D(A) and, if we put
y(T ) ≡ limt↑T y(t), (3) implies

‖y(T )− y0(T )‖ ≤ ‖x0 − x0‖eLT .
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