FILIPPOV TYPE ESTIMATES FOR FULLY NONLINEAR DIFFERENTIAL INCLUSIONS

CARJA OVIDIU POSTOLACHE VICTOR

Alexandru Ioan Cuza University Iasi, Romania

Let X be a Banach space. Let $A : D(A) \subseteq X \rightsquigarrow X$ be an m-dissipative operator, $\xi \in \overline{D(A)}$, $f \in L^1(0, T; X)$ and let us consider the differential inclusion

$$u'(t) \in Au(t) + f(t). \tag{1}$$

Definition

A C^0 – solution to the problem (1) is a function u in C([0, T]; X) satisfying: for each 0 < c < T and $\varepsilon > 0$ there exist

(i)
$$0 = t_0 < t_1 < \cdots < c \le t_n < T$$
, $t_k - t_{k-1} \le \varepsilon$ for $k = 1, 2, ..., n$;

(*ii*)
$$f_1, ..., f_n \in X$$
 with $\sum_{k=1}^n \int_{t_{k-1}}^{t_k} \|f(t) - f_k\| \le \varepsilon;$

(iii)
$$v_0, ..., v_n \in X$$
 satisfying :

 $\frac{v_k - v_{k-1}}{t_k - t_{k-1}} \in Av_k + f_k \text{ for } k = 1, 2, ..., n \text{ and such that}$ $\|u(t) - v_k\| \le \varepsilon \text{ for } t \in [t_{k-1}, t_k), \ k = 1, 2, ..., n.$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Theorem

[Lakshmikantham, Leela, p.116] Let X be a Banach space and let $A : D(A) \subseteq X \rightsquigarrow X$ be m-dissipative. Then, for each $\xi \in \overline{D(A)}$ and $f \in L^1(0, T; X)$, there exists a unique C^0 -solution $u : [0, T] \rightarrow \overline{D(A)}$, to (1), which satisfies $u(0) = \xi$.

We denote by $u(\cdot, 0, \xi, f) : [0, T] \to \overline{D(A)}$ the unique C^0 -solution to (1) satisfying $u(0, 0, \xi, f) = \xi$.

Theorem

[Carja, Necula, Vrabie, p.18] If $A : D(A) \subseteq X \rightsquigarrow X$ is *m*-dissipative, $\xi, \eta \in \overline{D(A)}$ and $f, g \in L^1(0, T; X)$, then $\tilde{u} = u(\cdot, 0, \xi, f)$ and $\tilde{v} = u(\cdot, 0, \eta, g)$ satisfy

$$\|\tilde{u}(t) - \tilde{v}(t)\| \le \|\xi - \eta\| + \int_0^t \|f(s) - g(s)\| ds,$$
 (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ◆ ◎

for each $t \in [0, T]$.

Let $A: D(A) \subseteq X \mapsto X$ be the generator of a nonlinear semigroup of contractions, $\{S(t): \overline{D(A)} \mapsto \overline{D(A)} | t \ge 0\}$, K a nonempty subset in $\overline{D(A)}$ and $F: K \rightsquigarrow X$ a nonempty, closed, bounded and convex valued multi-function. We consider the Cauchy problem for the nonlinear perturbed differential inclusion

$$\left\{\begin{array}{l}u'(t)\in Au(t)+F(u(t))\\u(0)=\xi\end{array}\right.$$

Definition

The function $u: [0, T] \mapsto K$ is a C^0 – solution to the above problem if $u(0) = \xi$ and there exists $f \in L^1(0, T; X)$ with $f(t) \in F(u(t))$ a.e. $t \in [0, T]$, and such that u is a C^0 -solution on [0, T] to the equation (1) in the sense of Definition 1.

Definition

The subset $K \subset D$ is C^0 – viable with respect to A + F if for each $\xi \in K$ there exist $T^0 > 0$ and a C^0 -solution $u : [0, T^0] \mapsto K$ to the above problem.

Let $E \subseteq X$ be nonempty and bounded. We denote by

 $\mathcal{E} = \{ f \in L^1_{loc}(\mathbb{R}_+; X) | f(s) \in E \text{ a.e. } s \in \mathbb{R}_+ \}.$

Definition

Let K a subset in X and $\xi \in K$. The set $E \subseteq X$ is A -quasi-tangent to the set K at the point $\xi \in K$ if we have

$$\liminf_{h\downarrow 0} \frac{1}{h} \operatorname{dist}(S_{\mathcal{E}}(h)\xi; K) = 0,$$

where

$$S_{\mathcal{E}}(h)\xi = \{u(h,0,\xi,f) | f \in \mathcal{E}\}.$$

イロト (四) (日) (日) (日) (日) (日)

We denote by $\mathcal{QTS}_{K}^{A}(\xi)$ the class of all *A*-quasi-tangent sets to *K* at $\xi \in K$. **Remark.** Let $K \subseteq X$, $\xi \in K$ and $E \subseteq X$. Then $E \in \mathcal{QTS}_{K}^{A}(\xi)$ if and only if for each $\varepsilon > 0$ there exist $h \in (0, \varepsilon]$, $p \in X$ with $\|p\| \le \varepsilon$ and $f \in \mathcal{E}$ such that

 $u(h,0,\xi,f)+hp\in K.$

Equivalently, $E \in QTS_{K}^{A}(\xi)$ if and only if there exist three sequences, $(h_{n})_{n}$ in \mathbb{R}_{+} with $h_{n} \downarrow 0$, $(p_{n})_{n}$ in X with $\lim_{n} p_{n} = 0$ and $(f_{n})_{n}$ in \mathcal{E} , such that

 $u(h_n, 0, \xi, f_n) + h_n p_n \in K,$

for n = 1, 2,

Definition

An m-dissipative operator $A : D(A) \subseteq X \rightsquigarrow X$ is called of complete continuous type if for each fixed $(\tau, \xi) \in \mathbb{R} \times \overline{D(A)}$ the graph of the C^0 -solution operator, $f \mapsto u(\cdot, \tau, \xi, f)$, is weakly×strongly sequentially closed in $L^1(\tau, T; X) \times C([\tau, T]; X)$.

Theorem

[Carja, Necula, Vrabie, p.226] Let X be a Banach space, $A: D(A) \subseteq X \rightsquigarrow X$ an m-dissipative operator of complete continuous type which generates a compact semigroup of contractions, let K be a nonempty, locally closed subset in $\overline{D(A)}$ and $F: K \rightsquigarrow X$ a nonempty, weakly compact and convex valued strongly-weakly u.s.c. multi-function. Then a sufficient condition in order that K be C^0 -viable with respect to A + F is that, for each $\xi \in K$, $F(\xi) \in QTS_K^A(\xi)$.

PRELIMINARIES

Let X be a separable Banach space.

Theorem

[Frankowska, p.105]. Let $U : [0, T] \rightsquigarrow X$ be a measurable multi-function with closed nonempty values and $g : [0, T] \mapsto X$, $k : [0, T] \mapsto \mathbb{R}_+$ be measurable single-valued maps. Assume that

 $W(t) := U(t) \cap (g(t) + k(t)B(0,1)) \neq \emptyset$ a.e. in [0, T].

Then there exists a mesurable function $u : [0, T] \mapsto X$ such that $u(t) \in W(t)$ almost everywhere.

Definition

The multi-function $F : X \rightsquigarrow X$ is L – lipschitzian, if there exists L > 0, such that

$$F(x) \subset F(y) + L ||x - y|| B(0, 1), \quad \forall x, y \in X.$$

Theorem

Let X be a separable Banach space, $A : D(A) \subseteq X \rightsquigarrow X$ an m-dissipative operator of complete continuous type which generates a compact semigroup of contractions, $F : \overline{D(A)} \rightsquigarrow X$ a nonempty, weakly compact and convex valued L-lipschitzian strongly-weakly u.s.c. multi-function. Let $x_0, \overline{x}_0 \in \overline{D(A)}, T > 0$, $y_0 : [0, T] \rightarrow \overline{D(A)}$ a fixed C^0 -solution to the problem

$$\begin{cases} y_0'(t) \in Ay_0(t) + F(y_0(t)) \\ y_0(0) = \overline{x}_0. \end{cases}$$

Theorem

Then, there exists a C^0 -solution $y : [0, T] \to \overline{D(A)}$ to the problem

$$\begin{cases} y'(t) \in Ay(t) + F(y(t)) \\ y(0) = x_0, \end{cases}$$

such that

$$||y(t) - y_0(t)|| \le ||x_0 - \overline{x}_0||e^{Lt}, \quad \forall t \in [0, T].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ◆ ●

Let us consider the problem

$$\begin{cases} t'(s) = 1\\ y'(s) \in Ay(s) + F(y(s))\\ z'(s) = L ||y - y_0(t)||\\ t(0) = t_0\\ y(0) = y_0\\ z(0) = z_0. \end{cases}$$

・ロト ・雪ト ・雪ト ・雪ト ・日・

We define the following set in the space $\mathbb{R} \times X \times \mathbb{R}$

 $\mathcal{A} = \{(t, y, z) \in [0, T) \times \overline{D(A)} \times \mathbb{R}_+ | \|y - y_0(t)\| \le z\},\$

the operator $\mathbf{A} = (0, A, 0)$ and the multi-function $\mathcal{F} : \mathcal{A} \rightsquigarrow \mathbb{R} \times X \times \mathbb{R}$,

$$\mathcal{F}(t, y, z) = (1, F(y), L ||y - y_0(t)||).$$

1. We will prove that the set \mathcal{A} is C^0 -viable with respect to $\mathbb{A} + \mathcal{F}$. For this purpose, we take the point $(t_0, y_0, z_0) \in \mathcal{A}$, i. e., $||y_0 - y_0(t_0)|| \le z_0$.

2. Let us prove that the tangency condition is satisfied, i.e., $(1, F(y_0), L || y_0 - y_0(t_0) ||) \in QTS^{\mathbb{A}}_{\mathcal{A}}(t_0, y_0, z_0)$. We should prove that there exist the sequences $(h_n)_n, (p_n)_n, (p'_n)_n, (f_n)_n$, such that $h_n \downarrow 0$, $p_n, p''_n \to 0$ in \mathbb{R} , $p'_n \to 0$ in X, $(f_n)_n \subset F(y_0)$ and

$$(t_0 + h_n(1 + p_n), y(h_n(1 + p_n), 0, y_0, f_n) + h_n p'_n)$$

 $z_0 + h_n L ||y_0 - y_0(t_0)|| + h_n p_n'') \in \mathcal{A}.$

We can choose $(p_n)_n = (0)_n$.

We will prove that there exist the sequences $(h_n)_n, (p_n)_n, (p'_n)_n, (p''_n)_n, (f_n)_n$, like above, such that $\|y(h_n, 0, y_0, f_n) + h_n p'_n - y_0(t_0 + h_n, 0, \overline{x}_0, g)\| \le z_0 + h_n L \|y_0 - y_0(t_0)\| + h_n p''_n$, which is equivalent with $\|y(h_n, 0, y_0, f_n) + h_n p'_n - y_0(h_n, 0, y_0(t_0), \tilde{g})\| \le z_0 + h_n L \|y_0 - y_0(t_0)\| + h_n p''_n$,

イロト (四) (日) (日) (日) (日) (日)

where $\tilde{g}(s) = g(s + t_0) \in F(y_0(s + t_0))$ a.e. $s \in [0, T - t_0]$.

3. In accordance with definition of a C^0 -solution, $\exists g \in L^1(0, T; X)$, with $g(t) \in F(y_0(t))$ a.e. $t \in [0, T]$, such that y_0 is a C^0 -solution to the problem

$$\left(egin{array}{l} y_0'(t)\in Ay_0(t)+g(t)\ y_0(0)=\overline{x}_0. \end{array}
ight.$$

Taking into account that the multi-function F is L-lipschitzian, we have

 $F(y_0(t+t_0)) \subset F(y_0) + L \|y_0(t+t_0) - y_0\|B(0,1), \quad \forall t \ge 0.$

Then, applying Theorem [Frankowska] for g, we obtain that there exist two measurable functions f, $w \in L^1(0, T; X)$, such that $f(t) \in F(y_0)$, $w(t) \in L ||y_0(t + t_0) - y_0||B(0, 1)$ and $\tilde{g}(t) = f(t) + w(t)$ a.e. $t \in [0, T - t_0]$. We put $(f_n)_n = (f)_n$.

PROOF

4. Next, we use the inequality (2) to obtain

$$||y_0 - y_0(t_0)|| + \int_0^{h_n} ||f(s) - \tilde{g}(s)||ds + h_n||p'_n|| \le ||y_0 - y_0(t_0)||$$

$$\begin{split} + L \int_{0}^{h_{n}} \|y_{0}(s+t_{0})-y_{0}\|ds+h_{n}\|p_{n}'\| &= \|y_{0}-y_{0}(t_{0})\|+Lh_{n}\|y_{0}(t_{0})-y_{0}\|\\ + h_{n}\left(L\left[\frac{1}{h_{n}}\int_{0}^{h_{n}}\|y_{0}(s+t_{0})-y_{0}\|ds-\|y_{0}(t_{0})-y_{0}\|\right]\right)+h_{n}\|p_{n}'\|\\ &\leq h_{n}\left(L\left[\frac{1}{h_{n}}\int_{0}^{h_{n}}\|y_{0}(s+t_{0})-y_{0}\|ds-\|y_{0}(t_{0})-y_{0}\|\right]\right)\\ &z_{0}+Lh_{n}\|y_{0}(t_{0})-y_{0}\|+h_{n}\|p_{n}'\|. \end{split}$$

We put $(p'_n)_n = (0)_n$, $(p''_n)_n = \left(\frac{1}{h_n}\int_0^{h_n} ||y_0(s+t_0) - y_0||ds - ||y_0(t_0) - y_0||\right)_n$. Taking into account that the solution $y_0(t)$, defined on [0, T], is from the space C([0, T], X), choosing $(h_n)_n$ to be sufficiently small, we have

$$\lim_{h_n\downarrow 0}\left(\frac{1}{h_n}\int_0^{h_n}\|y_0(s+t_0)-y_0\|ds\right)=\|y_0(t_0)-y_0\|.$$

イロト (四) (日) (日) (日) (日) (日)

Hence, $p''_n \to 0$ in \mathbb{R} .

5. We mention that under the hypotheses on F and A, the multi-function \mathcal{F} is a nonempty, weakly compact and convex valued strongly-weakly u.s.c. multi-function and the operator A is a m-dissipative operator of complete continuous type which generates a compact semigroup of contractions. It is obvious that the subset \mathcal{A} of $\mathbb{R} \times \overline{D(A)} \times \mathbb{R}$ is nonempty $((0, x_0, ||x_0 - \overline{x}_0||) \in \mathcal{A})$ and locally closed.

(ロ)、(型)、(E)、(E)、(E)、(O)への

Therefore, taking into account that the tangency condition is satisfied, we can apply Theorem 3 (about the sufficient conditions for C^0 -viability of the set \mathcal{A} with respect to $\mathbb{A} + \mathcal{F}$) and conclude that there exist $0 < \tilde{T} < T$ and a C^0 -solution $(\hat{t}, \hat{y}, \hat{z})$ to the above problem, such that

$$(\hat{t},\hat{y}(\hat{t}),\hat{z}(\hat{t}))\in\mathcal{A},\quad orall\hat{t}\in[0, ilde{\mathcal{T}}].$$

Equivalently,

$$\|\hat{y}(t) - y_0(t)\| \leq \hat{z}(t), \quad \forall t \in [0, \tilde{T}]$$

That is, taking into account the form of the solution $\hat{z}(t)$,

$$\|\hat{y}(t)-y_0(t)\|\leq \|x_0-\overline{x}_0\|+L\int_0^t\|\hat{y}(s)-y_0(s)\|ds,\quad \forall t\in[0,\,\widetilde{T}].$$

Which implies, if we use Gronwall's Lemma,

$$\|\hat{y}(t)-y_0(t)\|\leq \|x_0-\overline{x}_0\|e^{Lt},\quad\forall t\in[0,\,\widetilde{T}].$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 二目 - のへで

The fact that the set \mathcal{A} is C^0 -viable with respect to $\mathbb{A} + \mathcal{F}$ assures the existence of a noncontinuable C^0 -solution $(t, y, z) : [0, a) \to \mathcal{A}$, where $0 < a \leq \mathcal{T}$ (see Theorem 11.7.1 [Carja, Necula, Vrabie]) and

$$\|y(t) - y_0(t)\| \le \|x_0 - \overline{x}_0\|e^{Lt}, \quad \forall t \in [0, a).$$
 (3)

In the following we prove that a = T. Let us assume, by contradiction, that a < T.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

We define the function $y_1: [0, T-a] \rightarrow \overline{D(A)}$

$$y_1(t) \equiv y_0(t+a), \quad \forall t \in [0, T-a],$$

which, obviously, is a C^0 -solution to the problem

$$\begin{cases} y_1'(t) \in Ay_1(t) + F(y_1(t)) \\ y_1(0) = y_0(a). \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let us prove that $\exists \lim_{t\uparrow a} y(t) \in \overline{D(A)}$.

From definition of a C^0 -solution, $\exists \varphi \in L^1([0, a), X)$, with $\varphi(t) \in F(y(t))$ a.e. $t \in [0, a)$, such that $y : [0, a) \to \overline{D(A)}$ is a C^0 -solution to the problem

$$\begin{cases} y'(t) \in Ay(t) + \varphi(t) \\ y(0) = x_0. \end{cases}$$

The estimation (3) implies that y is bounded on [0, a).

F, being *L*-lipschitzian, maps bounded subsets from $\overline{D(A)}$ to bounded subsets from *X*. Therefore, φ is bounded on [0, a), which implies the existence of $\lim_{t\uparrow a} y(t) \in \overline{D(A)}$. Let us put

 $y(a)\equiv \lim_{t\uparrow a}y(t).$

Using the fact that $y \in C([0, a), \overline{D(A)})$ and $y_0 \in C([0, T], \overline{D(A)})$, from (3) we have

 $||y(a) - y_0(a)|| \le ||x_0 - \overline{x}_0||e^{La}.$

Applying the similar procedure like above for y_1 , we state that there exist 0 < b < T - a and a C^0 -solution $y_2 : [0, b] \rightarrow \overline{D(A)}$ to the problem

$$\begin{cases} y'_{2}(t) \in Ay_{2}(t) + F(y_{2}(t)) \\ y_{2}(0) = y(a), \end{cases}$$

such that

 $||y_2(t) - y_1(t)|| \le ||y_0(a) - y(a)||e^{Lt}, \quad \forall t \in [0, b].$

Let us define the function $y_3: [0, a+b] \rightarrow \overline{D(A)}$

$$y_3(t) \equiv \begin{cases} y(t), & \forall t \in [0, a], \\ y_2(t-a), & \forall t \in [a, a+b], \end{cases}$$

which, obviously, is a C^0 -solution to the problem

$$\begin{cases} y'_3(t) \in Ay_3(t) + F(y_3(t)) \\ y_3(0) = x_0. \end{cases}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 二目 - のへで

Let us mention that

 $\begin{aligned} \|y_3(t) - y_0(t)\| &= \|y(t) - y_0(t)\| \le \|x_0 - \overline{x}_0\|e^{Lt}, \quad \forall t \in [0, a]. \end{aligned}$ Moreover, for all $t \in [a, a + b]$ we have $\|y_3(t) - y_0(t)\| &= \|y_2(t - a) - y_1(t - a)\| \le \|y_0(a) - y(a)\|e^{L(t - a)} \\ &\le \|x_0 - \overline{x}_0\|e^{La}e^{L(t - a)} = \|x_0 - \overline{x}_0\|e^{Lt}. \end{aligned}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Hence,

$$||y_3(t) - y_0(t)|| \le ||x_0 - \overline{x}_0||e^{Lt}, \quad \forall t \in [0, a+b],$$

which contradicts the statement that $(t, y, z) : [0, a) \to \mathcal{A}$ is a noncontinuable C^0 -solution. The contradiction is eliminated, if a = T. Similarly, we prove that $\exists \lim_{t\uparrow T} y(t) \in \overline{D(A)}$ and, if we put $y(T) \equiv \lim_{t\uparrow T} y(t)$, (3) implies

$$||y(T) - y_0(T)|| \le ||x_0 - \overline{x}_0||e^{LT}.$$

1. Carja, O., Necula, M., Vrabie, I. I., Viability, invariance and applications, North-Holland Mathematics Studies, 207, *Elsevier Science B.V., Amsterdam*, 2007, xii+344 pp.

 Frankowska, H., A priori estimates for operational differential inclusions, J. Differential Equations 84 (1990), no. 1, 100–128.
 Lakshmikantham, V., Leela, S., Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford-New York, 1981, x+258 pp.