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PRELIMINARIES

Let X be a Banach space.
Let A: D(A) C X ~» X be an m-dissipative operator, £ € D(A),
f € L1(0, T; X) and let us consider the differential inclusion

u'(t) € Au(t) + f(t). (1)



PRELIMINARIES

Definition
A C° — solution to the problem (1) is a function v in C([0, T]; X)
satisfying: for each 0 < ¢ < T and ¢ > 0 there exist

(N0=t<ti< - <c<ta<T, ty—ty1<ecfork=12 ..,

(i) fi,...,fy € X with Z/ IF(t) = fill <e;
tk—1

(iii) vo, ..., vp € X satisfying :

Vk — Vk—1
te — tk—1
lu(t) — vkl < eforte[tk—1,tk), k=1,2,...,n

€ Avy + fi for k =1,2,....,n and such that

n;



PRELIMINARIES

Theorem
[Lakshmikantham, Leela, p.116] Let X be a Banach space and

let A: D(A) C X ~» X be m-dissipative. Then, for each £ € D(A)
and f € L1(0, T; X), there exists a unique C°-solution
u: [0, T] — D(A), to (1), which satisfies u(0) = &.

We denote by u(-,0,&,f) : [0, T] — D(A) the unique C°-solution
to (1) satisfying u(0,0,&, f) = ¢&.



PRELIMINARIES

Theorem
[Carja, Necula, Vrabie, p.18] If A: D(A) C X ~ X is

m-dissipative, £, € D(A) and f,g € L}(0, T; X), then
i=u(-,0,¢,f) and v = u(-,0,n, g) satisfy

la(e) - w(o)] < i€ - nu+/||f gs)lds,  (2)

for each t € [0, T].



PRELIMINARIES

Let A: D(A) C X — X be the generator of a nonlinear semigroup
of contractions, {S(t) : D(A) — D(A)| t > 0}, K a nonempty
subset in D(A) and F : K ~» X a nonempty, closed, bounded and
convex valued multi-function. We consider the Cauchy problem for
the nonlinear perturbed differential inclusion

{ u'(t) € Au(t) + F(u(t))
u(0) =¢




PRELIMINARIES

Definition

The function v : [0, T] — K is a C° — solution to the above
problem if u(0) = & and there exists f € L1(0, T; X) with

f(t) € F(u(t)) a.e. t € [0, T], and such that v is a C%-solution on
[0, T] to the equation (1) in the sense of Definition 1.

Definition

The subset K C D is C° — viable with respect to A + F if for each
€ € K there exist T° > 0 and a C%solution v : [0, T°] — K to the
above problem.



PRELIMINARIES

Let E C X be nonempty and bounded. We denote by

E={fecl(Ry;X)| f(s) €EE ae scR.}.

Definition
Let K a subset in X and £ € K. Theset E C X is
A — quasi-tangent to the set K at the point £ € K if we have

NS DN
I|Tl|0nf 7 dist(Sg(h)§; K) =0,

where

Se(h)¢ = {u(h,0,¢,1)| f e}



PRELIMINARIES

We denote by Q7 S7(€) the class of all A-quasi-tangent sets to K
at £ e K.

Remark. Let K C X, £ € K and E C X. Then E € QT S%(¢) if
and only if for each € > 0 there exist h € (0,¢], p € X with

llp|l < e and f € € such that

u(h,0,&,f)+ hp € K.
Equivalently, £ € QT S7%(€) if and only if there exist three
sequences, (h,), in Ry with h, | 0, (pn)n in X with lim, p, =0
and (f,)n in &, such that
u(hn,0,&, 1) + hppn € K,

forn=1,2,....



PRELIMINARIES

Definition

An m-dissipative operator A : D(A) C X ~» X is called of
complete continuous type if for each fixed (7,£) € R x D(A) the
graph of the CC-solution operator, f — u(-,7,&, f), is

weakly x strongly sequentially closed in LY(7, T; X) x C([r, T]; X).

Theorem

[Carja, Necula, Vrabie, p.226] Let X be a Banach space,

A: D(A) C X ~ X an m-dissipative operator of complete
continuous type which generates a compact semigroup of
contractions, let K be a nonempty, locally closed subset in W
and F : K ~ X a nonempty, weakly compact and convex valued
strongly-weakly u.s.c. multi-function. Then a sufficient condition
in order that K be C°-viable with respect to A+ F is that, for

each & € K, F(€) € QT SK(¢).



PRELIMINARIES

Let X be a separable Banach space.
Theorem

[Frankowska, p.105]. Let U : [0, T| ~ X be a measurable
multi-function with closed nonempty values and g : [0, T] — X,
k : [0, T] — R4 be measurable single-valued maps. Assume that

W(t) == U(t) N (g(t) + k(t)B(0,1)) £0 a.e. in [0, T].

Then there exists a mesurable function u : [0, T| — X such that
u(t) € W(t) almost everywhere.

Definition
The multi-function F : X ~» X is L — lipschitzian, if there exists
L > 0, such that

F(x) C F(y) + Lilx = ylB(0,1), Vx,y € X.



MAIN RESULT

Theorem

Let X be a separable Banach space, A: D(A) C X ~» X an
m-dissipative operator of complete continuous type which
generates a compact semigroup of contractions, F : D(A) ~ X a
nonempty, weakly compact and convex valued L-lipschitzian

strongly-weakly u.s.c. multi-function. Let xo,Xo € D(A), T >0,
¥o : [0, T] — D(A) a fixed C%-solution to the problem

{ Yo(t) € Ayo(t) + F(yo(t))

~—

yo(O X0-



MAIN RESULT

Theorem
Then, there exists a C%-solution y : [0, T] — D(A) to the
problem
{ y'(t) € Ay(t) + F(y(t))
¥(0) = xo,
such that

ly(2) = yo(B)ll < [0 —Xolle™, Vvt e [0, T].



PROOF

Let us consider the problem

t'(s)=1

Y'(s) € Ay(s) + F(¥(s))
Z'(s) = Llly = vo(t)
t(0) =to

y(0) = yo

z(0) = z.




PROOF

We define the following set in the space R x X x R

A={(t,y,z) €[0, T) x D(A) x Ry| |ly = no(t)[| < z},

the operator A = (0,A,0) and the multi-function
F:A~RxX xR,

F(t,y,z) = (L F(y), Llly = yo(t)])-

1. We will prove that the set A is C%-viable with respect to
A + F. For this purpose, we take the point (to, yo,20) € A, i. e.,
Iyo — yo(to)ll < 2o -



PROOF

2. Let us prove that the tangency condition is satisfied, i.e.,

(1, F(y0), Lllyo — yo(to)|]) € QT S’ (to, yo, 20). We should prove
that there exist the sequences (hn)n, (Pn)ns (Ph)n, (P2)ns (fa)n, such
that h, | 0, pp,p — 0in R, p,, — 0in X, (f3)n C F(yo) and

(tO + hn(]- + Pn),)/(hn(]- + pn)a 0, yo, fn) + th;n

29 + hnL||)/0 - yO(tO)H + hnpx) €A
We can choose (pn)n = (0),.



PROOF

We will prove that there exist the sequences
(hn)ny (Pn)ny (Ph)ny (P2)ns (fa)n, like above, such that

ly(hn, 0, yo, fa)+hnpp—yo(to+hn, 0, %0, &)l < zo+haLllyo—yo(to)||+hnpy,
which is equivalent with
||y(hna 07y07 fn)+hnp;)7y0(hn7 O?yO(tO)vg)|| S ZO‘thLH)/O*YO(tO)||+hnpf1,a

where g(s) = g(s+ to) € F(yo(s + tp)) a.e. s€ [0, T — to].



PROOF

3. In accordance with definition of a C%solution,
Jg € LY0, T; X), with g(t) € F(yo(t)) a.e. t €0, T], such
that yg is a C%solution to the problem

{ ¥o(t) € Ayo(t) + (1)
yo(O) = Xp.

Taking into account that the multi-function F is L-lipschitzian, we
have

Flyo(t + 1)) C F(yo) + Llvo(t + to) = yoll B(0, 1), ¥t > 0.



PROOF

Then, applying Theorem [Frankowska] for g, we obtain that there
exist two measurable functions f, w € L1(0, T; X), such that
f(t) € F(yo), w(t) € L||yo(t + to) — y0||B(0,1) and
g(t)y=1(t)+w(t) ae te€[0, T —ty]. We put (f,)n = ()n-



PROOF

4. Next, we use the inequality (2) to obtain

hn
1Yo = yo(to) | +/0 1£(s) = &(s)llds + hnllpnll < llvo — yo(to) ]

i
+L/ lyo(s+t0)—yollds+hall P, ]l = llyo—yo(to)l|l+Lhnllyo(to)—yoll
0

1 [h
o (L [ Ioats + 1) sl ds = alte) = ol ) + ol
n

< (t]x ] " lvols + t0) — yollds — 1ot )

20 + Lhn|lyo(to) — yoll + hnllppll-



PROOF

We put (pp,)n = (0)n,
hn
(Pi)n = (i J3" I1vo(s + o) = yollds = llyo(to) = yoll) -
Taking into account that the solution yp(t), defined on [0, T], is

from the space C([0, T], X), choosing (h,), to be sufficiently
small, we have

(L
tim ([ s+ 10) =l ) = (e ~ sl

Hence, p/ — 0in R.



PROOF

5. We mention that under the hypotheses on F and A, the
multi-function F is a nonempty, weakly compact and convex
valued strongly-weakly u.s.c. multi-function and the operator A is
a m-dissipative operator of complete continuous type which
generates a compact semigroup of contractions.

It is obvious that the subset A of R x D(A) x R is nonempty
((0, %0, ||x0 — Xol|) € A) and locally closed.



PROOF

Therefore, taking into account that the tangency condition is
satisfied, we can apply Theorem 3 (about the sufficient conditions
for CO-viability of the set A with respect to A + F) and conclude
that there exist 0 < T < T and a C%solution (%, 7, 2) to the
above problem, such that

(t,9(1),2(1) € A, Vielo, Tl
Equivalently,

19(t) = yo(t)ll < 2(t), vte[o, Tl



PROOF

That is, taking into account the form of the solution 2(t),

t
15~ (O] < o =0l +L [ 13(5) = ol s, Ve e [0, 71
Which implies, if we use Gronwall's Lemma,

19(£) = yo(t)] < llx0 —Xolle™?, vt &[0, T].



PROOF

The fact that the set A is C%-viable with respect to A + F assures
the existence of a noncontinuable C%-solution

(t,y,z):[0,a) — A, where 0 <a<T (see Theorem 11.7.1
[Carja, Necula, Vrabie]) and

ly(t) = yo(t)l| < llx0 —Xolle™?, vt €[0,a). (3)

In the following we prove that a=T.
Let us assume, by contradiction, that a < T.



PROOF

We define the function y; : [0, T — a] — D(A)
yi(t)=w(t+a), Vtelo, T —al,
which, obviously, is a C%solution to the problem

{ y1(t) € Ayi(t) + F(yi(t))
y1(0) = yo(a).

Let us prove that Flimsy, y(t) € D(A).



PROOF

From definition of a C%-solution, ¢ € L1([0,a), X), with
o(t) € F(y(t)) a.e. t €]0,a), such that y:[0,a) — D(A) isa
CO-solution to the problem

{ y'(t) € Ay(t) + ¢(t)
y(O) = X0-

The estimation (3) implies that y is bounded on [0, a).



PROOF

F, being L-lipschitzian, maps bounded subsets from D(A) to
bounded subsets from X. Therefore, ¢ is bounded on [0, a), which
implies the existence of limy, y(t) € D(A). Let us put

y(a) = lggy(t)-

Using the fact that y € C([0,a), D(A)) and
yo € C([0, T], D(A)), from (3) we have

ly(a) = yo(a)ll < [Ix0 — Xolle".



PROOF

Applying the similar procedure like above for y;, we state that

there exist 0 < b < T —a and a C%solution y» : [0, b] — D(A)
to the problem

{ y5(t) € Aya(t) + F(ya(t))
¥2(0) = y(a),

such that

Iy2(t) = ()]l < llyo(a) — y(a)lle™t, V€ [0, .



PROOF

Let us define the function y3:[0,a+ b] — D(A)

_ [ y(t), vte]o,al,
y3(t) = { yo(t—a), Vtelaa+ bl

which, obviously, is a C%solution to the problem

{ y3(t) € Ays(t) + F(ys(t))
y3(0) = X0-



PROOF

Let us mention that

lys(t) = yo ()l = lly(£) = yo(t)l < 0 — Xolle"*, V¢ € [0, a].
Moreover, for all t € [a,a+ b] we have

lys(t) = yo(t)ll = lly2(t = a) = ya(t = a)l| < lIyo(a) — y(a) ")

LaeL(t—a) _

< [[x0 — Xolle X0 — Xolle"*



PROOF

Hence,

lys(£) = yo(t)ll < llxo — Xolle™, ¥t € [0,a+ b,

which contradicts the statement that (t,y,z):[0,a) — A is
noncontinuable C%solution. The contradiction is eliminated, if
a=1T.

Similarly, we prove that 3lim. 1 y(t) € D(A) and, if we put
y(T) = limgp7 y(t), (3) implies

5]

Iy(T) = yo(T)]l < lIxo — xofle"T
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