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Spaces and operators

H, K denote Hilbert spaces. All Hilbert spaces are assumed to be real sepa-
rable. Scalar product is denoted 〈·, ·〉.

L(K,H) is the space of linear bounded operators T : K → H. L(H):=L(H,H).

L2(K,H) is the subspace of Hilbert-Schmidt operators, i.e. of all T ∈ L(K,H)
such that

‖T‖2
L2(K,H) =

∞∑
i=1

‖Tei‖2
H <∞,

where (ei) is an arbitrary basis of K (i.e. a complete orthonormal system).
L2(K,H) is a separable Hilbert space with scalar product

〈T, S〉L2(K,H) =
∞∑
i=1

〈Tei, Sei〉H =
∞∑
i=1

〈S∗Tei, ei〉H = Trace[S∗T ].

Other notation:

• L2(Ω;K) is the Hilbert space of random variables X : Ω→ K on a probability
space (Ω,F ,P) such that

‖X‖2
L2(Ω;K) = E ‖X‖2

K <∞.

• C(I;K), for I ⊂ R, is the space of continuous functions f : I → K.

• etc.
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Wiener process in Hilbert spaces

On a probability space (Ω,F ,P) take a sequence of independent standard
brownian motions

βi = (βit)t≥0, i ∈ N.
Given a basis of K, a cylindrical Wiener process (Wt)t≥0 in K is defined as

Wt =
∞∑
i=1

βit ei, t ≥ 0.

The series is convergent (in L2(Ω;K1) and P-a.s.) in an arbitrary Hilbert
space K1 such that K ⊂ K1 with Hilbert-Schmidt embedding.

For G ∈ L(K) define

GWt =
∞∑
i=1

βitGei, t ≥ 0.

Then the series converges (in L2(Ω;K) and P-a.s.) if and only if G ∈ L2(K).

Suppose Gei =
√
λiei for a basis (ei) and numbers 0 ≤ λi ≤ supi λi <∞. Then

GWt =
∞∑
i=1

βit
√
λi ei, t ≥ 0

and the series converges as above if and only if
∑

i λi < ∞ ⇐⇒ G ∈ L2(K).
This happens in particular if λi = 0 for all i large (finite-dimensional Wiener
process).
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Stochastic integrals in Hilbert spaces

Let (Wt) be a cylindrical Wiener process in K. One can define the stochastic
integral

It =

∫ t

0
Φs dWs, t ∈ [0, T ]

as a process in H, under the following conditions:

1) (Φt)t∈[0,T ] is a stochastic process in L2(K,H) (Φt(ω) ∈ L2(K,H)).

2) (Φt) is progressive with respect to (Ft)t≥0, the natural completed filtration
of W : denoting by N the P-null sets,

F0
t = σ(βis : s ∈ [0, t], i ∈ N), Ft = σ(F0

t ,N ).

3)
∫ T

0 ‖Φs‖2
L2(K,H) ds <∞, P-a.s.

Then (It)t∈[0,T ] is a stochastic process in H with continuous paths and it is a
local martingale: there exist (Ft) stopping times τn ↑ ∞ such that the stopped
processes

Φt∧τn, t ∈ [0, T ]

are martingales in H.
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If (Φt) is an (Ft)-progressive process in L2(K,H) satisfying the stronger con-
dition

E
∫ T

0
‖Φs‖2

L2(K,H) ds <∞, (1)

then (It)t∈[0,T ] is a mean-zero, continuous martingale in H and the Ito isometry
holds:

E
∥∥∥∥∫ T

0
Φs dWs

∥∥∥∥2

H

= E
∫ T

0
‖Φs‖2

L2(K,H) ds.

Three basic tools: representation theorem, Ito’s formula, Girsanov’s theorem.

• Representation theorem: if (Ψt) is an (Ft)-martingale in H and ΨT ∈
L2(Ω;H) then

Ψt = Ψ0 +

∫ t

0
Φs dWs, t ∈ [0, T ],

for an appropriate (Ft)-progressive process (Φt) with values in L2(K,H) sat-
isfying (1).

• The Ito formula will be recalled later, when needed, in appropriate form.
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• The Girsanov theorem: let (ut)t∈[0,T ] be an (Ft)-progressive process in K

satisfying
∫ T

0 ‖us‖
2
K ds <∞, P-a.s. Define

ρt = exp

(∫ t

0
u∗s dWs −

1

2

∫ t

0
‖us‖2

K ds

)
, t ∈ [0, T ],

where u∗s(ω) denotes k 7→ 〈us(ω), k〉U , belonging to L2(K,R).

If E ρT = 1 then (ρt)t∈[0,T ] is a martingale and the process

W̄t = Wt −
∫ t

0
us ds, t ∈ [0, T ],

is a cylindrical Wiener process in K with respect to the probability Q defined
on (Ω,F) by the formula Q(dω) = ρT(ω) P(dω).
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Evolution equations

The “obvious” generalization for an SDE in H would be:

dXt = F (Xt) dt+G(Xt) dWt, X0 = x ∈ H,
for an unknown process (Xt)t∈[0,T ] in H.
W is a cylindrical Wiener process in K, the equation is understood as

Xt = x+

∫ t

0
F (Xs) ds+

∫ t

0
G(Xs) dWs, t ∈ [0, T ],

and

F : H → H, G : H → L2(K,H),

are appropriate coefficients.

However, the useful form of the equation is

dXt = AXt dt+ F (Xt) dt+G(Xt) dWt, X0 = x ∈ H,
where A is a linear unbounded operator in H:

A : D(A)→ H, D(A) ⊂ H.
So we will first address the simpler equation

dXt = AXt, X0 = x ∈ H,
i.e. the deterministic abstract Cauchy problem

d

dt
y(t) = Ay(t), y(0) = x ∈ H,

with unknown y : [0, T ]→ H.
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Semigroups of operators

d

dt
y(t) = Ay(t), y(0) = x ∈ H, t ∈ [0, T ].

If A ∈ L(H) then the solution is given by the power series formula

y(t) = etAx =
∞∑
n=0

tn

n!
Anx.

Setting S(t) = etA one has, for t, s ≥ 0, x ∈ H,

S(0) = I, S(t+ s) = S(t)S(s), S(t)x→ x in H as t→ 0. (2)

Note that, for all x ∈ H,

Ax = lim
t→0

S(t)x− x
t

in H. (3)

Definition. (S(t))t≥0 ⊂ L(H) is called a strongly continuous semigroup of
linear bounded operators on H if (2) holds.
Its infinitesimal generator is the operator A given by (3) and defined on

D(A) = {x ∈ H : the limit (3) exists in H}.

Note that in general D(A) ( H and A is not H-continuous on D(A).

Standing notation: from now on, A denotes the generator of a semigroup
S and we use the exponential notation etA instead of S(t) (even if the power
series formula does not hold).

8



Deterministic evolution equations

Given a generator A, we ask whether the function

y(t) = etAx

is a solution to the homogeneous abstract Cauchy problem

d

dt
y(t) = Ay(t), y(0) = x ∈ H, t ∈ [0, T ].

One can prove that if x ∈ D(A) then y is a strict solution, i.e. y ∈ C1([0, T ];H),
y(t) ∈ D(A) and the equation holds. The strict solution is unique.
If only x ∈ H then y ∈ C([0, T ];H) and it is called mild solution.

Given a generator A and f : [0, T ] → H, we consider the nonhomogeneous
abstract Cauchy problem

d

dt
y(t) = Ay(t) + f(t), y(0) = x ∈ H, t ∈ [0, T ].

One can prove that if

x ∈ D(A), f ∈ C1([0, T ];H),

then there exists a unique strict solution given by the variation of costants
formula

y(t) = etAx+

∫ t

0
e(t−s)Af(s) ds,

i.e. y ∈ C1([0, T ];H), y(t) ∈ D(A) and the equation holds.
If only x ∈ H and f ∈ C([0, T ];H) (or even f ∈ L1([0, T ];H)) then y ∈
C([0, T ];H) is called mild solution.
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Example 1: the heat semigroup

We take O ⊂ Rd open bounded with smooth boundary and set

H = L2(O).

Thus x ∈ H is a real function x(ξ), ξ ∈ O in L2(O), and y : [0, T ] → H is a
real function y(t, ξ), t ∈ [0, T ], ξ ∈ O such that y(t, ·) ∈ L2(O).

We define an unbounded linear operator in H = L2(O) setting

A = ∆ξ, D(A) = H2(O) ∩H1
0(O),

where ∆ξ is the Laplace operator with respect to the space variable ξ ∈ O.
The equation

d

dt
y(t) = Ay(t), y(0) = x ∈ H, t ∈ [0, T ]

is an abstract form of the heat equation with homogeneous Dirichlet boundary
conditions:  ∂ty(t, ξ) = ∆ξy(t, ξ), ξ ∈ O, t ∈ [0, T ],

y(0, ξ) = x(ξ), ξ ∈ O,
y(t, ξ) = 0, ξ ∈ ∂O, t ∈ [0, T ].

A is a positive self-adjoint operator in H and generate a semigroup. There
exists a basis (ei) of H and numbers 0 < αi ↑ ∞ such that

Aei = −αiei,
and we have etAx =

∑
i e
−αit〈x, ei〉H ei for all x ∈ H, t ≥ 0.
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Stochastic evolution equations: a special case

Consider the linear equation with additive noise (Langevin equation)

dXt = AXt dt+GdWt, X0 = x ∈ H, t ∈ [0, T ],

where A is a generator in H, W is a cylindrical Wiener process in K,
G ∈ L(K,H). We define the mild solution as

Xt = etAx+

∫ t

0
e(t−s)AGdWs,

provided the (deterministic) integrand Φs = e(t−s)AG satisfies (P-a.s.)∫ T

0
‖Φs‖2

L2(K,H) ds =

∫ T

0
‖esAG‖2

L2(K,H) ds <∞.

X is called the Ornstein-Uhlenbeck process in H.
One proves that if there exists γ ∈ [0,1/2) and K > 0 such that

‖etAG‖L2(K,H) ≤ Kt−γ, t ∈ (0, T ].

then X has continuous paths in H, P-a.s.
This condition always holds (with γ = 0) if G ∈ L2(K,H).
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Stochastic evolution equations: general case

Given F : H → H, G : H → L(K,H) and a generator A consider

dXt = AXt dt+ F (Xt) dt+G(Xt) dWt, X0 = x ∈ H, t ∈ [0, T ].

We call X a mild solution if it is an (Ft)-adapted process in H with continuous
paths, satisfying P-a.s.

Xt = etAx+

∫ t

0
e(t−s)AF (Xs) ds+

∫ t

0
e(t−s)AG(Xs) dWs, t ∈ [0, T ].

Standing assumptions:
• A is a generator in H, W is a cylindrical Wiener process in K.
• F : H → H and G : H → L(K,H) satisfy, for all t ∈ (0, T ], x, y ∈ H,

‖etA(G(x)−G(y))‖L2(K,H) ≤ Lt−γ‖x− y‖H, ‖etAG(x)‖L2(K,H) ≤ Kt−γ(1 + ‖x‖H),

‖F (x)− F (y)‖H ≤ L‖x− y‖H, ‖F (x)‖H ≤ K(1 + ‖x‖H),

for some γ ∈ [0,1/2) and K,L > 0.

One can prove that there exists a unique mild solution satisfying, for every
p ∈ [1,∞),

E sup
t∈[0,T ]

‖Xt‖pH ≤ C(1 + ‖x‖)p,

with C = C(p, L,K, γ,A, T ).

Generalizations to time-dependent or stochastic coefficients are possible.
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Example 1 revisited: the stochastic heat equation

We take O ⊂ Rd as before and H = L2(O). Thus a process (Xt) in H is in
particular a real process {Xt(ω, ξ) ; ω ∈ Ω, t ∈ [0, T ], ξ ∈ O} depending on a
spatial parameter ξ.

Define the Laplace operator A = ∆ξ, D(A) = H2(O)∩H1
0(O) and let W be a

cylindrical Wiener process in K = L2(O). Then the equation

dXt = AXt dt+GdWt, X0 = x ∈ H, t ∈ [0, T ],

is an abstract form of the stochastic heat equation dXt(ξ) = ∆ξXt(ξ) dt+GdWt(ξ), ξ ∈ O, t ∈ [0, T ],
X0(ξ) = x(ξ), ξ ∈ O,
Xt(ξ) = 0, ξ ∈ ∂O, t ∈ [0, T ].

Warning: Wt(ω, ·) /∈ L2(O), but Wt(ω, ·) ∈ H−m(O) for suitable m ≥ 0.

It remains to define G ∈ L(K,H) = L(L2(O)) satisfying

‖etAG‖L2(K,H) ≤ Kt−γ, t ∈ (0, T ],

for some γ ∈ [0,1/2) and K > 0, and the mild solution given by

Xt = etAx+

∫ t

0
e(t−s)AGdWs,

will be well-defined, and P-a.s. continuous in H.
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Recall that Aei = −αiei,
for a basis (ei) of H and numbers 0 < αi ↑ ∞. Define G ∈ L(L2(O)) setting

Gei =
√
qiei, i.e. Gx =

∑
i

qi〈x, ei〉H ei, x ∈ H,

where (qi) is a numerical sequence, 0 ≤ qi ≤ C for some C > 0.
We finally require

‖etAG‖L2(K,H) = (
∑

i qie
−2αit)1/2 ≤ Kt−γ, t ∈ (0, T ],

for some γ ∈ [0,1/2) and K > 0.
Special case: if d = 1 (O = (a, b) ⊂ R) then αi = Ci2 and we can take qi ≡ 1,
i.e. G = I, obtaining γ = 1/4 and solving the equation

dXt(ξ) = ∂ξξXt(ξ) dt+ dWt(ξ), ξ ∈ (a, b), t ∈ [0, T ].

driven by the space-time white noise on (a, b).

In the general case O ⊂ Rd we can consider the nonlinear heat equation dXt(ξ) = ∆ξXt(ξ) dt+ f(Xt(ξ)) dt+GdWt(ξ), ξ ∈ O, t ∈ [0, T ],
X0(ξ) = x(ξ), ξ ∈ O,
Xt(ξ) = 0, ξ ∈ ∂O, t ∈ [0, T ].

with f : R→ R Lipschitz. We define F : H → H setting

F (x)(ξ) = f(x(ξ)), ξ ∈ O, x ∈ H = L2(O),

and we obtain a unique mild solution of the equation

dXt = AXt dt+ F (Xt) dt+GdWt, X0 = x ∈ H, t ∈ [0, T ].
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Example 2: delay equations (hereditary systems)

Given a delay r > 0, the prototype of a (scalar) delay equation is

d

dt
z(t) = z(t− r), t > 0.

Note that the initial condition z(0) = x0 ∈ R is not enough to have a well-
posed problem. We need to specify a function x1(θ), θ ∈ [−r,0], and require

z(θ) = x1(θ), θ ∈ [−r,0].

We will assume x1 ∈ C([−r,0]) for the moment.

Note that the equation can be written in the form z′(t) =
∫ 0
−r z(t+ θ) δ−r(dθ).

More generally we will consider the problem
d
dt
z(t) =

∫ 0
−r z(t+ θ) a(dθ), t > 0,

z(0) = x0,
z(θ) = x1(θ), θ ∈ [−r,0],

where a(dθ) is a signed finite measure on [−r,0].

By direct methods one proves that there exists a unique classical solution
z : [−r,∞) → R provided x1(0) = x0. We look for a Hilbert space setting for
the equation, useful for dealing with control problems and for a more general
initial datum x1 ∈ L2(−r,0).
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d
dt
z(t) =

∫ 0
−r z(t+ θ) a(dθ), t > 0,

z(0) = x0,
z(θ) = x1(θ), θ ∈ [−r,0],

(4)

Suppose that z is a classical solution and define

y(t) :=

(
z(t)

z(t+ ·)

)
∈ R× L2(−r,0) =: H.

Then
d

dt
y(t) =

(
d
dt
z(t)

d
dt
z(t+ ·)

)
=

( ∫ 0
−r z(t+ θ) a(dθ)

d
dθ
z(t+ ·)

)
=: Ay(t)

provided we define an operator A in H = R× L2(−r,0) by

A

(
x0

x1(·)

)
=

( ∫ 0
−r x1(t+ θ) a(dθ)

d
dθ
x1(·)

)
,

with domain D(A) = {(x0, x1(·)) ∈ H : x1(·) ∈ H1(−r,0), x1(0) = x0}.
It can be proved that A is a generator of a semigroup (etA) in H.
If x1 ∈ C([−r,0]) and x1(0) = x0 then the first component of

y(t) := etA
(

x0

x1(·)

)
is a classical solution to (4).

In the general case x0 ∈ R, x1 ∈ L2(−r,0), y is called mild solution to (4).
Note that x0 is not determined by x1(·).
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Next we consider the general case of a stochastic nonlinear delay equation
dz(t) =

(∫ 0
−r z(t+ θ) a(dθ)

)
dt+ f(z(t)) dt+ dWt, t ∈ [0, T ],

z(0) = x0,
z(θ) = x1(θ), θ ∈ [−r,0],

(5)

where W is a Wiener process in K = R, f : R→ R is Lipschitz.
We recall that x0∈R, x1∈L2(−r,0), a(dθ) is a signed finite measure on [−r,0].

We will write this equation as an abstract evolution equation of the form

dXt = AXt dt+ F (Xt) dt+GdWt, X0 = x ∈ H,
in the space H = R× L2(−r,0).
We define A as before, F : H → H and G : R→ H as

F

(
x0

x1(·)

)
=

(
f(x0)

0

)
, Gu =

(
u
0

)
,

and the initial datum x =

(
x0

x1(·)

)
.

The standard assumptions are satified and the mild solution X (or its first
component) will be called a mild solution to (5).
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Controlled stochastic evolution equations

dXt = AXt dt+ F (Xt, ut) dt+G(Xt, ut) dWt, X0 = x0 ∈ H, t ∈ [0, T ].
The solution depends on a process u(·) with values in another (measurable)
space U , called the action space. We assume that u(·) belongs to the set of
admissible controls U:

U = {(Ft)−progressive processes with values in U}.

Standing assumptions:
• A is a generator in H, W is a cylindrical Wiener process in K.
• F : H × U → H and G : H × U → L(K,H) satisfy, for all t ∈ (0, T ], x, y ∈ H,
u ∈ U and for some γ ∈ [0,1/2) and K,L > 0,

‖etA(G(x, u)−G(y, u))‖L2(K,H) ≤ Lt−γ‖x− y‖H,

‖etAG(x, u)‖L2(K,H) ≤ Kt−γ(1 + ‖x‖H),

‖F (x, u)− F (y, u)‖H ≤ L‖x− y‖H, ‖F (x, u)‖H ≤ K(1 + ‖x‖H).

For u(·) ∈ U we call trajectory the corresponding mild solution Xu i.e. an
(Ft)-adapted continuous process in H satisfying P-a.s.

Xu
t = etAx+

∫ t

0
e(t−s)AF (Xu

s , us) ds+

∫ t

0
e(t−s)AG(Xu

s , us) dWs, t ∈ [0, T ].

Xu is unique satisfying, for every p ∈ [1,∞), and some C = C(p, L,K, γ,A, T ),

E sup
t∈[0,T ]

‖Xt‖pH ≤ C(1 + ‖x‖)p.
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Optimal control problem

We introduce the cost functional

J(u(·)) = E
∫ T

0
l(Xu

s , us) ds+ Eφ(Xu
T),

where the running cost l : H×U → R and the final cost φ : H → R are assumed
to safisfy (as part of the Standing Assumptions), for some K > 0 and m ≥ 0,

|l(x, u)|+ |φ(x)| ≤ K(1 + ‖x‖H)m, x ∈ H, u ∈ U.

The optimal control problem consists in giving conditions for the existence
and to characterize an optimal control, i.e. an element u∗(·) ∈ U such that

J(u∗(·)) ≤ J(u(·)), u(·) ∈ U .
Note that given data of the optimal control problem are:

H,K,A, F,G, l, φ, x0, T,

and also

Ω,F ,P,W.
We then minimize J(u(·)) for u(·) ∈ U.

Remark. Other formulations of the control problem are also possible, where
the set-up (Ω,F ,P,W ) is not fixed in advance. Note that the cost depends
only on the law of (X,u) and not on the particular set-up (provided uniqueness
in law holds for the state equation).

19



Dynamic programming and the HJB equation

The optimal control problem can be embedded in a family of optimal control
problems parameterized by the starting point t ∈ [0, T ] and the initial condition
x ∈ H:

dXs = AXs ds+F (Xs, us) ds+G(Xs, us) dWs, Xt = x ∈ H, s ∈ [t, T ] ⊂ [0, T ],

J t,x(u(·)) = E
∫ T

t

l(Xs, us) ds+ Eφ(XT).

We then define the value function:

V (t, x) = inf
u(·)∈U

J t,x(u(·)), t ∈ [0, T ], x ∈ H.

The function V is often a solution to a deterministic partial differential equa-
tion on [0, T ]×H, called the Hamilton-Jacobi-Bellman equation (HJB).

If uniqueness holds, HJB determines the value function. In many cases, the
study of HJB a preliminary step to prove that an optimal control actually
exists, and a certain relation between optimal controls and the value function
can be established.

To present HJB we need to introduce some differential operators on H.
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Spaces of Gâteaux differentiable functions

g : H → B (Banach space) is said to be G-differentiable if there exists
∇g : H → L(H,B) such that∥∥∥∥g(x+ εh)− g(x)

ε
−∇g(x)h

∥∥∥∥
B

→ 0, as ε ↓ 0, x, h ∈ H.

g is said to be twice G-differentiable if ∇g : H → L(H,K) is G-differentiable.
In particular ∇2g : H → L(H,L(H,B)) ' continuous bilinear forms H×H → B.

For f : H → R we have ∇f(x) ∈ L(H,R) ' H∗, ∇2f(x) ∈ L(H,H∗) ' L(H) (via
the Riesz isometry).
If H = Rn (column vectors) then ∇f(x) is a row vector and ∇2f(x) is the
hessian matrix.

We write g ∈ C1(H;B) if g is continuous, G-differentiable, and x 7→ ∇g(x)h is
continuous H → B for every fixed h ∈ H.
Example: H = B = L2(a, b), φ : R→ R Lipschitz of class C1, g(x) = φ ◦ x.
We set C1(H) := C1(H; R).

We say that v = v(t, x) : [0, T ]×H → R is in C0,1([0, T ]×H) if v is continuous,
G-differentiable with respect to x, and x 7→ ∇xv(t, x)h is continuous [0, T ]×H
for every fixed h ∈ H.
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Recall the state equation

dXs = AXs ds+F (Xs, us) ds+G(Xs, us) dWs, Xt = x ∈ H, s ∈ [t, T ] ⊂ [0, T ],

For a “test function” f : H → R we define

Luf(x) =
1

2
Trace [∇2f(x)G(x, u)G(x, u)∗] +∇f(x)Ax+∇f(x)F (x, u).

Here we assume that the indicated derivatives of f exist, that the trace is
well-defined, and that the functional x 7→ ∇f(x)Ax is continuous for the norm
of H and can thus be uniquely extended from D(A) to the whole H.
If no control occurs in the equation for X, L is called the Kolmogorov operator
of X.

Lu plays a role in the following version of the Ito formula: if u(·) ∈ U and X
is the corresponding trajectory then

df(Xs) = Lu(s)f(Xs) ds+∇f(Xs)G(Xs, us) dWs.

If v(t, x) is likewise regular then

dv(s,Xs) = ∂sv(s,Xs) ds+ Lu(s)v(s,Xs) ds+∇xv(s,Xs)G(Xs, us) dWs.

For an unknown real function v(t, x) (t ∈ [0, T ], x ∈ H) the HJB equation is{
∂tv(t, x) + infu∈U {Luv(t, x) + l(x, u)} = 0, t ∈ [0, T ], x ∈ H,
v(T, x) = φ(x) x ∈ H.
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Verification theorem

Theorem. Assume that v is a regular solution of HJB. Then v ≤ V .
Moreover let u : [0, T ] × H → U be a measurable function such that for all
t ∈ [0, T ], x ∈ H

inf
u∈U
{Luv(t, x) + l(x, u)} is attained at u = u(t, x).

Also assume that some u∗(·) ∈ U and its trajectory Xu∗ satisfy

u∗t = u(t,Xu∗

t ).

Then u∗(·) is optimal and v ≡ V .

u is called optimal feedback law.
We remark that to find a pair (u∗(·), Xu∗) related by the optimal feedback one
tries to solve the closed-loop equation:

dXs = AXs ds+F (Xs, u(s,Xs)) ds+G(Xs, u(s,Xs)) dWs, X0 = x ∈ H, s ∈ [t, T ],

obtained formally replacing us by u(s,Xs) in the state equation. If there exists
a mild solution set

u∗(s) := u(s,Xs)

By the closed-loop equation, X is the trajectory corresponding to u∗(·):

Xs = Xu∗

s ,

so that we have u∗(s) = u(s,Xu∗
s ) by construction.

For later use note that from HJB ∂tv + infu∈U {Luv + l} = 0 we have: ∀t, x, u

∂tv(t, x) + Luv(t, x) + l(x, u) ≥ 0, ∂tv(t, x) + Lu(t,x)v(t, x) + l(x, u(t, x)) = 0.
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Proof of the theorem. Let u(·) ∈ U be arbitrary, Xs = Xu
s starting at (t, x).

dv(s,Xs) = ∂sv(s,Xs) ds+ Lu(s)v(s,Xs) ds+∇xv(s,Xs)G(Xs, us) dWs.

v(T,XT)− v(t, x) = φ(XT)− v(t, x) =

∫ T

t

{∂sv + Lu(s)v} ds+

∫ T

t

∇vGdWs.

Taking expectation and rearranging

v(t, x) = Eφ(XT)− E
∫ T

t

{∂sv + Lu(s)v} ds.

Since J t,x(u(·)) = Eφ(XT) + E
∫ T
t
l(Xs, us) ds, we arrive at the so-called

fundamental relation:

v(t, x) = J t,x(u(·))− E
∫ T

t

{∂sv(s,Xs) ds+ Lu(s)v(s,Xs) + l(Xs, us)} ds.

1) By HJB, ∂tv(t, x) + Luv(t, x) + l(x, u) ≥ 0, ∀t, x, u, so

v(t, x) ≤ J t,x(u(·)) =⇒ v(t, x) ≤ inf
u(·)∈U

J t,x(u(·)) = V (t, x).

2) For u as above we have, as noted earlier,

∂tv(t, x) + Lu(t,x)v(t, x) + l(x, u(t, x)) = 0, ∀t, x.
If u∗(·) ∈ U and u∗t = u(t,Xu∗

t ), replacing t by s and x by Xu∗
s ,

∂sv(s,Xu∗

s ) + Lu∗sv(s,Xu∗

s x) + l(x, u∗s) = 0,

and we obtain v(t, x) = J t,x(u∗(·)).
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Various forms of the HJB equation

Cost functional: J = E
∫ T
t
l(Xs, us) ds+ Eφ(XT)

1) General case: dXs = AXs ds+ F (Xs, us) dt+G(Xs, us) dWs

Setting

Luf(x) =
1

2
Trace [∇2f(x)G(x, u)G(x, u)∗] +∇f(x) (Ax+ F (Xt, ut)),

the HJB equation is fully non-linear:

∂tv(t, x) + inf
u∈U
{Luv(t, x) + l(x, u)} = 0.

In general no regular (i.e. classical) solution exists and the verification theo-
rem does not apply.

A viscosity solution approach is useful here. It allows weak assumptions on the
coefficients. Existence results follow from the so-called Bellman’s optimality
principle. Uniqueness results are analytic in character, and difficult.

In general, one obtains a solution v(t, x) which is only continuous and coincides
with the value function. Existence of an optimal control does not follow
immediately. Optimal controls are not generally characterized by feedback
laws.

The verification theorem can be applied in the special case of linear state
equation and quadratic cost: it leads to the so-called Riccati equation.

In special cases other approaches are possible: we will first consider the case

dXs = AXs ds+ F (Xs) dt+B(Xs, us) ds+G(Xs) dWs
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2) First special case: dXs = AXs ds+ F (Xs) dt+B(Xs, us) ds+G(Xs) dWs

Here we have

Luf(x) =
1

2
Trace [∇2f(x)G(x)G(x)∗] +∇f(x) (Ax+ F (x))︸ ︷︷ ︸+∇f(x)B(x, u)

= Lf(x) +∇f(x)B(x, u),

where L is the Kolmogorov operator in the case B ≡ 0. The HJB equation is

∂tv(t, x) + Lv(t, x) + inf
u∈U
{∇xv(t, x)B(x, u) + l(x, u)} = 0,

∂tv(t, x) + Lv(t, x) = h(x,∇xv(t, x)),

where the Hamiltonian h is defined by

h(x, p) = − inf
u∈U
{pB(x, u) + l(x, u)} , x ∈ H, p ∈ H∗.

Here the HJB equation is semilinear.

Another approach is possible, based on the concept of mild solutions to
HJB. A mild solution v(t, x) is (generally) continuous together with its space
derivative ∇xv(t, x). Under some conditions, direct analytic proofs of existence
and uniqueness results are possible.

They generally allow to show that v(t, x) coincides with the value function
and that an optimal control exists in feedback form.

This approach requires some non-degeneracy assumptions on the diffusion
coefficients G. These assumptions can be removed in a more particular case:

dXs = AXs ds+ F (Xs) dt+G(Xs)R(Xs, us) ds+G(Xs) dWs.
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3) Second special case: dXs = AXs ds+F (Xs) dt+G(Xs) (R(Xs, us) ds+ dWs)
We have

Luf(x) = Lf(x) +∇f(x)G(x)R(x, u),

where L is the Kolmogorov operator in the case R ≡ 0:

Lf(x) =
1

2
Trace [∇2f(x)G(x)G(x)∗] +∇f(x) (Ax+ F (x)),

The HJB equation ∂tv + infu∈U {Luv + l} = 0 becomes

∂tv(t, x) + Lv(t, x) + inf
u∈U
{∇xv(t, x)G(x)R(x, u) + l(x, u)} = 0,

∂tv(t, x) + Lv(t, x) = ψ(x,∇xv(t, x)G(x)),

where Hamiltonian ψ is now defined by

ψ(x, z) = − inf
u∈U
{z R(x, u) + l(x, u)} , x ∈ H, z ∈ K∗.

The HJB equation is semilinear of special form, i.e. the nonlinear term
depends on ∇xvG, not simply ∇xv.

The concept of mild solution v(t, x) will be introduced and used (v and ∇xv
continuous functions).

A probabilistic approach based on backward stochastic differential equations
(BSDEs) allows to prove existence and uniqueness, to show that v coincides
with the value function and that an optimal control exists in feedback form.

Non-degeneracy assumptions on G are removed, at the expense of a more
particular form of the state equation.
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Parabolic PDEs on Hilbert spaces

We consider again the general evolution equation of the form

dXt = AXt dt+ F (Xt) dt+G(Xt) dWt, X0 = x ∈ H, t ∈ [0, T ].

Standing assumptions:
• A is a generator in H, W is a cylindrical Wiener process in K.
• F : H → H and G : H → L(K,H) satisfy, for all t ∈ (0, T ], x, y ∈ H,

‖etA(G(x)−G(y))‖L2(K,H) ≤ Lt−γ‖x− y‖H, ‖etAG(x)‖L2(K,H) ≤ Kt−γ(1 + ‖x‖H),

‖F (x)− F (y)‖H ≤ L‖x− y‖H, ‖F (x)‖H ≤ K(1 + ‖x‖H),

for some γ ∈ [0,1/2) and K,L > 0.

We look for a solution X in the space Sp (1 ≤ p < ∞), i.e. an (Ft)-adapted
process in H with continuous paths, satisfying

‖X‖pSp := E sup
t∈[0,T ]

‖Xt‖pH <∞.

There exists a unique mild solution X, i.e. a process in Sp for every p ∈ [1,∞)
satisfying P-a.s.

Xt = etAx+

∫ t

0
e(t−s)AF (Xs) ds+

∫ t

0
e(t−s)AG(Xs) dWs, t ∈ [0, T ].
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For every starting point t ∈ [0, T ] and initial condition x ∈ H we solve{
dXs = AXs ds+ F (Xs) ds+G(Xs) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xt = x ∈ H.

The mild solution X = {Xt,x
s , 0 ≤ t ≤ s ≤ T, x ∈ H} defines a Markov process

in H, whose transition semigroup we denote {Pt,s : 0 ≤ t ≤ s ≤ T}.

This means the following: each Pt,s is an operator acting on bounded mea-
surable functions φ : H → R by the formula:

Pt,s[φ](x) = Eφ(Xt,x
s ), x ∈ H.

and the Markov property is: for x ∈ H, u ≤ t ≤ s,

E [φ(Xu,x
s ) | Ft] = Pt,s[φ](Xu,x

t ), P− a.s.

We denote L the Kolmogorov operator of X: for regular f ,

Lf(x) =
1

2
Trace [∇2f(x)G(x)G(x)∗] +∇f(x) (Ax+ F (x)),

The (linear) Kolmogorov equation is{
∂tu(t, x) + Lu(t, x) = 0, t ∈ [0, T ], x ∈ H,
u(T, x) = φ(x), x ∈ H.

It is known that the function u(t, x) = Pt,T [φ](x),
is a candidate solution of the Kolmogorov equation. (see precise statements
in [Da Prato-Zabczyk 2002, book, 2nd order PDEs on Hilbert spaces]).
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More generally, the solution of the linear nonhomogeneous equation{
∂tu(t, x) + Lu(t, x) = f(t, x), t ∈ [0, T ], x ∈ H,
u(T, x) = φ(x), x ∈ H.

has the candidate solution given by the variation of constants formula:

u(t, x) = Pt,T [φ](x)−
∫ T

t

Pt,s [f(s, ·)] (x) ds.

Now let us consider a semilinear parabolic PDE on H of the form{
∂tv(t, x) + Lv(t, x) = ψ(x, v(t, x),∇v(t, x)G(x)), t ∈ [0, T ], x ∈ H,
v(T, x) = φ(x), x ∈ H,

for some ψ : H × R×K∗ → R.
The HJB equation was a special case, with ψ given by the Hamiltonian of a
control problem (and independent of v).

In analogy with the variation of constants formula, we call v a mild solution
if it satisfies, for t ∈ [0, T ], x ∈ H,

v(t, x) = Pt,T [φ](x)−
∫ T

t

Pt,s [ψ(·, v(s, ·),∇v(s, ·)G(s, ·))] (x) ds.

We will require the existence of ∇v(t, x) and appropriate continuity and growth
conditions for v and ψ.
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The backward stochastic differential equation

With {Xt,x
s , s ∈ [t, T ]} we consider the backward differential equation for the

unknown process {(Ys, Zs), s ∈ [t, T ]}, in the sense of Pardoux and Peng 1990:{
dYs = ψ(Xt,x

s , Ys, Zs) ds+ Zs dWs, s ∈ [t, T ],
YT = φ(Xt,x

T ).

Y is real and Z takes values in K∗.

Standing assumptions on φ and ψ:
• φ : H → R, ψ : H × R×K∗ → R satisfy, for some L > 0, m ≥ 0,

|φ(x1)− φ(x2)| ≤ L |x1 − x2|,
|ψ(x, y1, z1)− ψ(x, y2, z2)| ≤ L (|y1 − y2|+ |z1 − z2|),
|ψ(x1, y, z)− ψ(x2, y, z)| ≤ L |x2 − x1|(1 + |z|)(1 + |x1|+ |x2|+ |y|)m,

for all x, x1, x2 ∈ H, y, y1, y2 ∈ R, z, z1, z2 ∈ K∗.

We recall some facts from the standard theory of BSDEs.

• There exists a unique solution (Y, Z) ∈ Sp ×Hp for all 1 ≤ p <∞.
This means Y and Z are (Ft)-adapted processes in R and K∗ satisfying

‖Y ‖pSp := E sup
s∈[t,T ]

|Ys|p <∞, ‖Z‖pHp
:= E

(∫ T

t

‖Zs‖2
K∗ds

)p
<∞.

• Yt is deterministic.
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{
dYs = ψ(Xt,x

s , Ys, Zs) ds+ Zs dWs, s ∈ [t, T ],
YT = φ(Xt,x

T ).

We denote Ys = Y t,x
s , Zs = Zt,xs and we set

v(t, x) = Y t,x
t , t ∈ [0, T ], x ∈ H.

• There exists a Borel function ζ(t, x) such that for 0 ≤ t ≤ s ≤ T, x ∈ H,

Y t,x
s = v(s,Xt,x

s ), Zt,xs = ζ(s,Xt,x
s ).

In Peng 1992, Pardoux-Peng 1992, in the case H = Rn it was proved that if
the coefficients are sufficiently regular then the function v(t, x) is a classical
solution to our semilinear PDE:{

∂tv(t, x) + Lv(t, x) = ψ(x, v(t, x),∇xv(t, x)G(x)), t ∈ [0, T ], x ∈ H,
v(T, x) = φ(x), x ∈ H,

It was also proved that if the coefficients are not smooth then v(t, x) is the
unique viscosity solution of the PDE.

In the case of a Hilbert space we will prove that v is the unique mild solution,
under appropriate conditions. In particular, v(t, ·) ∈ C1.
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Regularity of v and identification of Z

Given (t, x) ∈ [0, T ]×H we set v(t, x) = Y t,x
t , where

dXt,x
s = AXt,x

s ds+ F (Xt,x
s ) ds+G(Xt,x

s ) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xt,x
t = x,

dY t,x
s = ψ(Xt,x

s , Y t,x
s , Zt,xs ) ds+ Zt,xs dWs,

Y t,x
T = φ(Xt,x

T ).

Regularity assumptions:

F (·) ∈ C1(H;H), etAG(·) ∈ C1(H;L2(K,H)),

φ(·) ∈ C1(H; R), ψ(·, ·, ·) ∈ C1(H × R×K∗; R).

Theorem (regularity of v) Under the standard and the regularity assumptions
we have

v ∈ C0,1([0, T ]×H),

and v, ∇xv have polynomial growth in x uniformly with respect to t.

The last assertion means that for some C > 0, r ≥ 0 we have

|v(t, x)|+ ‖∇xv(t, x)‖H∗ ≤ C(1 + ‖x‖H)r t ∈ [0, T ], x ∈ H.
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Idea of the proof. One proves the differentiability of the maps

x 7→ (Xt,x
s )s, x 7→ (Y t,x

s )s, x 7→ (Zt,xs )s,

from H to Sp, Sp, Hp respectively. Differentiability of x 7→ Y t,x
t = v(t, x) then

follows immediately.
[Note: this does not imply that the maps

x 7→ Xt,x
s , x 7→ Y t,x

s , x 7→ Zt,xs ,

are differentiable P-a.s. from H to H, R, K∗ respectively, for any fixed t, s:
no stochastic flow exists in general in infinite dimensions!]

One formally differentiates the forward-backward system
dXt,x

s = AXt,x
s ds+ F (Xt,x

s ) ds+G(Xt,x
s ) dWs, s ∈ [t, T ],

Xt,x
t = x,

dY t,x
s = ψ(Xt,x

s , Y t,x
s , Zt,xs ) ds+ Zt,xs dWs,

Y t,x
T = φ(Xt,x

T ).

and proves that (∇X,∇Y,∇Z) solve the forward-backward system
d∇Xt,x

s = A∇Xt,x
s ds+∇F (Xt,x

s )∇Xt,x
s ds+∇G(Xt,x

s )∇Xt,x
s dWs,

∇Xt,x
t = I,

d∇Y t,x
s = ∇xψ(Xt,x

s , Y t,x
s , Zt,xs )∇Xt,x

s ds+∇yψ(Xt,x
s , Y t,x

s , Zt,xs )∇Y t,x
s ds

+∇zψ(Xt,x
s , Y t,x

s , Zt,xs )∇Zt,xs ds+∇Zt,xs dWs,

∇Y t,x
T = ∇φ(Xt,x

T )∇Xt,x
T .

The other properties of (∇X,∇Y,∇Z) also follow from the forward-backward
system.
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Theorem (identification of Z) Under the standard and the regularity as-
sumptions we have

Zt,xs = ∇xv(s,Xt,x
s )G(Xt,x

s ), a.e. s ∈ [t, T ], x ∈ H.
Justification. By the BSDE

v(s,Xt,x
s ) = Y t,x

s = Y t,x
t +

∫ s

t

ψ(Xt,x
r , Y t,x

r , Zt,xr ) dr +

∫ s

t

Zt,xr dWr,

so that, recalling that Wt =
∑

i β
i
tei,

〈v(·, Xt,x
· ), βi〉s =

∫ s

t

Zt,xr ei dr.

If we could apply the Ito formula to v:

v(s,Xt,x
s ) = v(t, x) +

∫ s

t

(∂tv(r,Xt,x
r ) +Lv(r,Xt,x

r ) dr+

∫ s

t

∇xv(r,Xt,x
r )G(Xr) dWr,

we would obtain

〈v(·, Xt,x
· ), βi〉s =

∫ s

t

∇xv(r,Xt,x
r )G(Xr)ei dr, (6)

and we would conclude Zt,xs ei = ∇xv(s,Xt,x
s )G(Xs)ei.

Even if the Ito formula does not apply, (6) still holds by the following:

Lemma. (6) is true for every v ∈ C0,1([0, T ] × H) with v and ∇xv having
polynomial growth in x uniformly with respect to t.

The proof of the lemma uses the Malliavin calculus.

39



Existence and uniqueness of the mild solution

We say that v is a mild solution of the PDE{
∂tv(t, x) + Lv(t, x) = ψ(x, v(t, x),∇xv(t, x)G(x)), t ∈ [0, T ], x ∈ H,
v(T, x) = φ(x), x ∈ H,

if v ∈ C0,1([0, T ]×H), v and ∇xv have polynomial growth in x uniformly with
respect to t, and for t ∈ [0, T ], x ∈ H,

v(t, x) = Pt,T [φ](x)−
∫ T

t

Pt,s [ψ(·, v(s, ·),∇xv(s, ·)G(s, ·))] (x) ds.

Theorem Assume the standard and the regularity conditions and for x ∈ H,
t ∈ [0, T ] consider the system

dXt,x
s = AXt,x

s ds+ F (Xt,x
s ) ds+G(Xt,x

s ) dWs, s ∈ [t, T ] ⊂ [0, T ],
Xt,x
t = x,

dY t,x
s = ψ(Xt,x

s , Y t,x
s , Zt,xs ) ds+ Zt,xs dWs,

Y t,x
T = φ(Xt,x

T ).

Setting v(t, x) = Y t,x
t , then v is the unique mild solution.
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Proof. Existence. Mild solution:

v(t, x) = Pt,T [φ](x)−
∫ T

t

Pt,s [ψ(·, v(s, ·),∇xv(s, ·)G(s, ·))] (x) ds.

Fix t, x and denote Xs = Xt,x
s , Ys = Y t,x

s , Zs = Zt,xs , s ∈ [t, T ].
We know v ∈ C0,1 with appropriate growth and

Ys = v(s,Xs), Zs = ∇xv(s,Xs)G(s,Xs).

Then

Pt,T [φ](x) = Eφ(XT)

and
Pt,s[ψ(·, v(s, ·),∇xv(s, ·)G(s, ·))](x)

= Eψ
(
Xs, v(s,Xs),∇v(s,Xs)G(s,Xs)

)
= Eψ

(
Xs, Ys, Zs

)
.

Next we recall the backward equation

Yt +

∫ T

t

ZsdWs = φ(XT)−
∫ T

t

ψ(Xs, Ys, Zs)ds,

and we take expectation:

v(t, x) = Yt = Eφ(XT)−
∫ T

t

Eψ(Xs, Ys, Zs)ds

= Pt,T [φ](x)−
∫ T

t

Pt,s[ψ(·, v(s, ·),∇xv(s, ·)G(s, ·))](x) ds.
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Uniqueness Let v be a mild solution: for 0 ≤ s ≤ T , y ∈ H,

v(s, y) = Ps,T [φ](y)−
∫ T

s

Ps,r [ψ(·, v(r, ·),∇xv(r, ·)G(·))] (y) dr.

Now take 0 ≤ t ≤ s and x ∈ H and replace y with Xt,x
s = Xs to get

v(s,Xs) = Ps,T [φ](Xs)−
∫ T

s

Ps,r [ψ(·, v(r, ·),∇xv(r, ·)G(·))] (Xs) dr.

So by the Markov property Ps,T [φ](Xs) = EFs [φ(XT)] and

Ps,r [ψ(·, v(r, ·),∇xv(r, ·)G(·))] (Xs) = EFs ψ(Xr, v(r,Xr),∇xv(r,Xr)G(Xr)).

So we obtain

v(s,Xs) = EFs [φ(XT)]− EFs
[∫ T

s

ψ(Xr, v(r,Xr),∇xv(r,Xr)G(Xr)) dr

]
= EFs [χ] +

∫ s

t

ψ(Xr, v(r,Xr),∇xv(r,Xr)G(Xr)) dr,

where χ = φ(XT)−
∫ T
t
ψ(Xr, u(r,Xr),∇xv(r,Xr)G(Xr)) dr.

By the representation theorem there exists Z̃ for which

v(s,Xs) =

∫ s

t

Z̃r dWr + v(t, x) +

∫ s

t

ψ(Xr, u(r,Xr),∇xv(r,Xr)G(Xr)) dr.
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v(s,Xs) =

∫ s

t

Z̃r dWr + v(t, x) +

∫ s

t

ψ(Xr, u(r,Xr),∇xv(r,Xr)G(Xr)) dr, (7)

Computing the joint quadratic variation with βi we get

〈v(·, X·), βi〉s =

∫ s

t

∇xv(r,Xr)G(Xr)ei dr, by a previous lemma, and

〈v(·, X·), βi〉s =

∫ s

t

Z̃rei dr, by (7).

Comparing we conclude that P-a.s.

∇xv(s,Xs)G(Xs) = Z̃s, for a.e. s ∈ [t, T ].

Substituting into (7) we obtain

dv(s,Xs) = ∇xv(s,Xs)G(Xs) dWs + ψ(Xs, v(s,Xs),∇xv(s,Xs)G(Xs)) ds,

Comparing with the backward equation

dYs = Zs dWs + ψ(Xs, Ys, Zs) ds,

we see that the pairs

(v(s,Xs),∇xv(s,Xs)G(Xs)), (Ys, Zs),

solve the same equation and, by uniqueness, they coincide. In particular,

v(s,Xt,x
s ) = Y t,x

s , s ∈ [t, T ],

and setting s = t we finally obtain v(t, x) = Y t,x
t .
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The optimal control problem and the HJB equation

State equation: for t ∈ [0, T ], x ∈ H,{
dXs = AXs ds+ F (Xs) dt+G(Xs) (R(Xs, us) ds+ dWs), s ∈ [t, T ] ⊂ [0, T ],
Xt = x ∈ H.

Here u(·) ∈ U = {(Ft)-progressive U-valued processes}. Then X = Xt,x,u.

Cost functional and value function: for t ∈ [0, T ], x ∈ H,

J t,x(u(·)) = E
∫ T

t

l(Xs, us) ds+ Eφ(XT), V (t, x) = inf
u(·)∈U

J t,x(u(·)).

We assume that l : H × U → R and R : H × U → K are measurable and

|l(x, u)| ≤ C(1 + ‖x‖H)m, ‖R(x, u)‖K ≤ C, x ∈ H,u ∈ U,
for some C > 0, m ≥ 0.

The Hamiltonian ψ is

ψ(x, z) = − inf
u∈U
{z R(x, u) + l(x, u)} , x ∈ H, z ∈ K∗.

We assume that A,F,G, φ, ψ satisfy the standard and regularity assumptions.
[Note: it is not very satisfactory to impose assumptions directly on ψ.]
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ψ(x, z) = − inf
u∈U
{z R(x, u) + l(x, u)} , x ∈ H, z ∈ K∗.

The HJB equation is

∂tv(t, x) + Lv(t, x) = ψ(x,∇xv(t, x)G(x)),

where L is the Kolmogorov operator in the case R ≡ 0:

Lf(x) =
1

2
Trace [∇2f(x)G(x)G(x)∗] +∇f(x) (Ax+ F (x)).

We know that HJB has a unique mild solution v.

We will also assume that there exist nonempty Γ(x, z) ⊂ U such that for
x ∈ H, z ∈ K∗,

inf
u∈U
{z R(x, u) + l(x, u)} is attained at u ∈ Γ(x, z),

and that there exists a measurable function γ : H ×K∗ → U such that

γ(x, z) ∈ Γ(x, z), x ∈ H, z ∈ K∗.

For later use note that ψ(x, z) + z R(x, u) + l(x, u) ≥ 0 and

ψ(x, z) + z R(x, u) + l(x, u) = 0 ⇐⇒ u ∈ Γ(x, z),

and ψ(x, z) + z R(x, γ(x, z)) + l(x, γ(x, z)) = 0.
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Theorem For every t ∈ [0, T ], x ∈ H, u(·) ∈ U we have

v(t, x) ≤ J t,x(u(·)).

In particular, v(t, x) ≤ V (t, x).

A control u∗(·) attains the lower bound: v(t, x) = J t,x(u∗(·)) if and only if

u∗(s) ∈ Γ(Xt,x,u∗

s ,∇xv(s,Xt,x,u∗

s )), a.e. s,

and in this case it is optimal.

Let us define the feedback law

u(t, x) = γ(x,∇xv(t, x)), t ∈ [0, T ], x ∈ H.
and the closed-loop equation:

dXs = AXs ds+F (Xs) ds+G(Xs)(R(Xs, u(s,Xs))ds+dWs), Xt = x ∈ H, s ∈ [t, T ],

obtained formally replacing us by u(s,Xs) in the state equation.

Corollary If the closed-loop equation has a solution then the control

u∗(s) := u(s,Xs)

is optimal.

Proof of the Corollary. By the closed-loop equation, X is the trajectory
corresponding to u∗(·):

Xs = Xu∗

s ,

so we have u∗(s) = u(s,Xu∗
s ) = γ(Xu∗

s ,∇xv(s,Xu∗
s )) ∈ Γ(Xt,x,u∗

s ,∇xv(s,Xt,x,u∗
s )).

Remark The closed loop equation always has a weak solution. Consequently,
the optimal control problem has a solution in an appropriate weak formulation.
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Proof of the Theorem. Fix u(·) ∈ U and recall the state equation for
X = Xt,x,u = Xt,x:{

dXs = AXs ds+ F (Xs) dt+G(Xs) (R(Xs, us) ds+ dWs), s ∈ [t, T ] ⊂ [0, T ],
Xt = x ∈ H.

By the Girsanov theorem the process (W u)s∈[t,T ] defined by

dW u
s = R(Xs, us) ds+ dWs,

is a Wiener process under another probability Qu on (Ω,F), equivalent to P.
Then

dXt,x
s = AXt,x

s ds+ F (Xt,x
s ) ds+G(Xt,x

s ) dW u
s , Xt = x,

and we consider the associated BSDE

dY t,x
s = ψ(Xt,x

s , Zt,xs ) ds+ Zt,xs dW u
s , Y t,x

T = φ(Xt,x
T ).

here (X,Y, Z) depend on u(·) but its law does not, so

v(t, x) = Y t,x
t = EuY t,x

t does not depend on u(·)
(it is determined by A,F,G, φ, ψ, T ). By the BSDE

v(t, x) = Yt = φ(Xt,x
T )−

∫ T

t

ψ(Xt,x
s , Zt,xs ) ds−

∫ T

t

Zt,xs (R(Xt,x
s , us) ds+ dWs).

Add and subtract
∫ T
t
l(Xs, us) ds and take E:

v(t, x) = J t,x(u(·))−
∫ T

t

{ψ(Xt,x
s , Zt,xs ) + Zt,xs R(Xt,x

s , us) + l(Xt,x
s , us)} ds.

This is called the fundamental relation.
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v(t, x) = J(u(·))−
∫ T

t

{ψ(Xs, Zs) + ZsR(Xs, us) + l(Xs, us)} ds.

We noticed that ψ(x, z) + z R(x, u) + l(x, u) ≥ 0 and

ψ(x, z) + z R(x, u) + l(x, u) = 0 ⇐⇒ u ∈ Γ(x, z).

First we have {. . .} ≥ 0 which implies

v(t, x) ≤ J(u(·)), u(·) ∈ U ,
and so v(t, x) ≤ V (t, x).

Then we have v(t, x) = J(u∗(·)) for some u∗(·) ∈ U if and only if {. . .} = 0,
i.e.

ψ(Xs, Zs) + ZsR(Xs, u
∗(s)) + l(Xs, u

∗(s)) = 0 ⇐⇒ u∗(s) ∈ Γ(Xs, Zs).
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Example 1: the controlled stochastic heat equation

We take O ⊂ Rd open bounded regular, and the cylindrical Wiener process W
in K = L2(O). dXt(ξ) = ∆ξXt(ξ) dt+ f(Xt(ξ)) dt+G (u(t, ξ) dt+ dWt(ξ)), ξ ∈ O, t ∈ [0, T ],

X0(ξ) = x(ξ), ξ ∈ O,
Xt(ξ) = 0, ξ ∈ ∂O, t ∈ [0, T ].

We assume that (u(t, ·)) takes values in U = {u ∈ H : ‖u‖H ≤ r} = Br(0) ⊂ H.

Cost functional

J(u(·)) = E
∫ T

0

∫
O

[l0(Xt(ξ)) + |u(t, ξ)|2] dξ dt+ E
∫
O
φ0(XT(ξ)) dξ.

The functions f , l0, φ0 are real-valued and belong to Lip(R) ∩ C1(R).

We define H = L2(O), A = ∆ξ, D(A) = H2(O) ∩ H1
0(O) so that for a basis

(ei) of H we have Aei = −αiei, for 0 < αi ↑ ∞.

We take G satisfying Gei =
√
qiei with

0 ≤ qi ≤ K, (
∑
i

qie
−2αit)1/2 ≤ Kt−γ, t ∈ (0, T ],

for some γ ∈ [0,1/2) and K > 0.
[If d = 1 we can take G = I. ]
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State equation and cost:

dXt(ξ) = ∆ξXt(ξ) dt+ f(Xt(ξ)) dt+G (u(t, ξ) dt+ dWt(ξ)),

J(u(·)) = E
∫ T

0

∫
O

[l0(Xt(ξ)) + |u(t, ξ)|2] dξ dt+ E
∫
O
φ0(XT(ξ)) dξ.

We define F : H → H, l : H × U → H, φ : H → R setting

F (x)(ξ) = f(x(ξ)) (ξ ∈ O), l(x, u) =

∫
O

[l0(x(ξ)) + |u(ξ)|2] dξ,

φ(x) =

∫
O
φ0(XT(ξ)) dξ,

and we obtain

dXt = AXt dt+ F (Xt) dt+G (u(t) dt+ dWt),

J(u(·)) = E
∫ T

0
l(Xt, ut) dt+ Eφ(XT).

All the required assumptions are satisfied and the previous results apply.
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Example 2: controlled stochastic delay equations


dz(t) =

(∫ 0
−r z(t+ θ) a(dθ)

)
dt+ f(z(t)) dt+ u(t) dt+ dWt, t ∈ [0, T ],

z(0) = x0,
z(θ) = x1(θ), θ ∈ [−r,0],

where W is a Wiener process in K = R, x0 ∈ R, x1 ∈ L2(−r,0), a(dθ) is a
signed finite measure on [−r,0].

We assume that u(·) takes values in a compact interval U ⊂ R.

Cost functional

J(u(·)) = E
∫ T

0
[l0(z(t)) + |u(t)|2] ds+ Eφ0(z(T )).

The functions f , l0, φ0 are real-valued and belong to Lip(R) ∩ C1(R).

We introduced the state space H = R× L2(−r,0) and the generator

A

(
x0

x1(·)

)
=

( ∫ 0
−r x1(t+ θ) a(dθ)

d
dθ
x1(·)

)
,

with domain D(A) = {(x0, x1(·)) ∈ H : x1(·) ∈ H1(−r,0), x1(0) = x0}.
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State equation and cost:
dz(t) =

(∫ 0
−r z(t+ θ) a(dθ)

)
dt+ f(z(t)) dt+ u(t) dt+ dWt, t ∈ [0, T ],

z(0) = x0,
z(θ) = x1(θ), θ ∈ [−r,0],

J(u(·)) = E
∫ T

0
[l0(z(t)) + |u(t)|2] dt+ Eφ0(z(T )).

In the space H = R× L2(−r,0) we define

F : H → H, G : R→ H, x ∈ H, l : H × U → H, φ : H → R,
setting

F

(
x0

x1(·)

)
=

(
f(x0)

0

)
, Gu =

(
u
0

)
, x =

(
x0

x1(·)

)
,

l

((
x0

x1(·)

)
, u

)
= l0(x0) + |u|2, φ

(
x0

x1(·)

)
= φ0(x0),

and we obtain

dXt = AXt dt+ F (Xt) dt+G (u(t) dt+ dWt), X0 = x ∈ H,

J(u(·)) = E
∫ T

0
l(Xt, ut) dt+ Eφ(XT).

All the required assumptions are satisfied and the previous results apply.
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