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Classical Merton Problem

We are given a stochastic basis with an m-dimensional standard
Wiener process w. The market contains a non-risky security which
is the numéraire, i.e. its price is identically equal to unit, and m
risky securities with the price evolution

dS! = Si(u'dt + dMi),  i=1,...m, (1)
where M = X w is a (deterministic) linear transform of w. Thus, M
is a Gaussian martingale with (M), = At; the covariance matrix
A =2Y" is assumed to be non-degenerated.
The dynamics of the value process :

d\/t = thst - Ctdt, (2)

where the m-dimensional predictable process H defines the number
of shares in the portfolio, ¢ > 0 is the consumption process.
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Merton Problem : dynamics, constraints, and goal

It is convenient to choose as the control the process ™ = (a, ¢)
with oy 1= H{S;/V; (the proportion of the wealth invested in the
ith asset). Then the dynamics of the value process is :

th = VtOét(Mdt + th) — Ctdt, VO =X > 0, (3)

Constraints : « is bounded c is integrable, V = V*™ >0; 7 =0
after the bankruptcy.
Infinite horizon. The investor's goal :

EJ, — max, (4)
where

T = te_ﬁsuc s.
J? ._/O (cs)d (5)

where u is increasing and concave. For simplicity : u > 0, u(0) = 0.
A typical example : u(c) = ¢7 /v, v €]0,1[. The parameter 5 >0
shows that the agent prefers to consume sooner than later.
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Merton Problem : the Bellman function

Define the Bellman function

W(x):= sup EJI, x>0. (6)
TEA(x)

By convention, A(0) := {0} and W(0) := 0.
The Bellman function W inherits the properties of u. It is
increasing (as A(X) 2 A(x) when X > x) and concave (almost
obvious in H-parametrization). The process H = AH; + (1 — A\)H,
admits the representation via a with
_ 2} i 1=V
BN DY 1A A NV (R VLA
« is bounded when «; are bounded. Thus,
T = (a, c1 + (1 — AN)2) € A(x) with x = Axy + (1 — A)x2 and

W + (1 — \)xa) > EJT > MEJT + (1 — \)EJ™

due to concavity of u. We obtain the concavity of W by taking

supremum over ;.
Yuri Kabanov HJB equations 6 /83
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Merton Problem : the result

Let u(c) = c? /v, v €]0, 1[. Assume that
1 1 0 A-L/2,,2
= (g-= > 0. 7
o= 2 (8- 372 1A )
Then the optimal strategy w° = (a°, c®) is given by the formulae
1,

a®=60.=—
11—y

s C? = Kkm VL?’ (8)
where V° is the solution of the linear stochastic equation
dV° = VPO(udt + dM;) — ky V2 dt, Vi = x. (9)

The process V° is optimal and the Bellman function is

W(x) = (H;\’ﬂ_l/"/)X’y = mx". (10)
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Merton Problem - comments

For the two-asset model

1 1y 2
= — _—_— 0
o 1—v<ﬁ 21—702>>

Notice that we cannot guarantee without additional assumptions
that W is finite. If the latter property holds, then, due to the
concavity, W(x) is continuous for x > 0, but the question whether
it is continuous at zero should be investigated specially.

At last, when the utility v is a power function, the Bellman
function W, if finite, is proportional to u. Indeed, the linear
dynamics of the control system implies that W (vx) = v7W/(x)
whatever is v > 0, i.e. the Bellman function is positive
homogeneous of the same order as the utility function. In a scalar
case this homotheticity property defines, up to a multiplicative
constant, a unique finite function, namely x7.
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HJB equation and verification theorem,1
For our infinite horizon problem the HIB is :
1
sup | =|AY2a2X2F"(x) + auxf!(x) — Bf(x) — F'(x)c + u(c)| =0
(a,c)

where x > 0 and sup is taken over « € R? and c € R .
Simple observation : Let f : Ry — Ry and 7 € A(x). Put

XTom = X[ = e P (V) + Jf
where V = VX7 _If f is smooth, by the Ito formula
X! = f(x) + D: + Nq
where (with L(x,a, ¢) = [...] of the HIB equation)

t t
D, ::/ e P L(Vs, as, ¢5)ds, N, ::/ e P! (Vi) VsasdMs.
0 JO

The process N is a local martingale up to the bankruptcy time o. That
is, there are o, T o such that the stopped processes N are uniformly
integrable martingales. If ¢ = oo and N is a martingale we take o,-= n.
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HJB equation and verification theorem,?2

If sup(q,c)[--] <0, then N and X[ are supermartingales. Hence,

EJy = EX] — Ee Pt (Vi) < EX! < f(x).

Proposition

If f is a supersolution of the HJB, then W < f and, hence,
W € C(R4 \ {0}). If, moreover, f(0+) =0, then W € C(R.).

A\

Theorem

Let f € C(Ry) N C?(Ry \ {0}) be a positive concave function solving the
HJB equation, f(0) = 0. Suppose that sup is attained on «(x) and c(x)
where that « is bounded measurable, ¢ > 0 and the equation

dVe = V2a(Ve)(udt + dMy) — c(V2)dt, V¢ = x,

admits a strong solution V. If lim Ee Ao f(V2 ) =0, then W = f and
the optimal control 7° = (a(V°), c(V?)).

A\
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Proof of the Merton Theorem, 1

The verification theorem is very efficient if we have a guess about the
solution. It is the case when the utility is a power function : the problem
is to find the constant!
Put u*(p) := sup.>o[u(c) — cp]. For u(c) = c7 /v we have
* — 7 —
u*(p) = Tpw/(v 1),

Expecting that f” < 0, we find that the maximum of the quadratic form
over « is attained at

0*(x) = ~A e = A1),

Thus, the HJB equation is :

172, 2 (F(X))? 1—n .
|A 2yl i) Bf(x) + T('CI(X))”*1 =0.
Its solution f(x) = mx” should have m = &7, ' /~.
The function a°(x) is constant, c°(x) = kmx, and the equation

pretendine to describe the opntimal dvnamics is linear :
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Proof of the Merton Theorem, 2

dve i ALy
= A1/2 dt dM Ve = x.
Ve (1 —ATuE KM) e o=
Its solution is the geometric Brownian motion which never hits zero.
Noticing that (A~1uM), = |A~Y/2u|?t, we have that

1 1 1 Al
Ve = - = A~Y212 — kyt M, 5.
' XeXp{(lv 2(17)2>| ul'e = m I

Since E(V?)P = xPe"»! where k), is a constant, the process N for this
control is a true martingale; we o, = n.
For p = ~ the corresponding constant

1

IQ-Y:ElL—’)/K/\/]—ﬁ—KJM.

Thus,
e PEE(VP)Y = xTe ™Mt - 0, t — o0.

The Merton theorem is proven.
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Merton Problem - discussion, 1

@ The optimal strategy with the power utility prescribes to keep
constant proportions of wealth in each position. E.g., for m =1
where the quantities V2° := a®V{? and V}° = (1 — a®)V? the
optimal holdings in the risky and non-risky assets,

Thus,

o
« o 0

l—a° 't 1-90
The process (V°, V2°) evolves on the plain (v, v?) along the
straight line with slope 0/(1 — 6), the Merton line.

20 .__
V2o =

@ We consider the case where the non-risky asset pays no interest
(r = 0). For the power utility function models with zero interest rate
are not less general due to the identity u(e™c;) = " u(cs) : the
maximization problem where the consumption is measured in
“money" is the same as that where the consumption is measured in

“bonds"”, but with 3 replaced by B =3 —r.
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Merton Problem - discussion, 2

@ An analysis of the proof shows that, with minor changes, it works
also when v < 0 and the same explicit formulae represent the
optimal solution in this case. The HJB approach can be extended to
the logarithmic utility function u(c) = In ¢ (corresponding to
~v = 0). Of course, one needs to impose an additional constraint on
the consumption to ensure the integrability of J7..

@ Turning back to the multi-asset case, we define the scalar process M
with dM = 6(udt + dM,). Consider the same
consumption-investment problem imposing the restriction that the
investments should be shared between money and the risky asset
which price follows the process M. Any value process and
consumption process in this two-asset model are those of the
original one. One can imagine a financial institution (a mutual fund)
which offers such an artificial asset, called the market portfolio. This
allows the agent to allocate his wealth only in the non-risky asset
and the market portfolio. Due to this economical interpretation, the
Merton result sometimes is referred to as the mutual fund theorem.
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Robustness of the Merton solution, 1

The Merton solution is robust : a deviation of the order € from the
Merton proportion # leads to losses in the expected utility only of order
2. Suppose that in the two-asset model the investor's strategy is to
maintain the proportion a® 4+ € and consume a constant part (1 + 0)kpm
of the current wealth optimizing the expected utility in §. Assume for
simplicity that x = 1. Now the dynamics is

v,
Vi

and V is the geometric Brownian motion

= (a° +¢)(pdt + odwy) — (1 + 0)kmdt,

1
Vi = exp {(ao +e)ut — E(ao +)20%t — (14 8)kmt + (a° + z—:)awt} .

We have that
EVt'Y — emw(a,é)t
where

1
tiy(e:0) = B— kim = 57(1 = 7)o’ — yrmd
and, in particular, 5+(0,0) = Kk, = 8 — km.
Yuri Kabanov HJB equations 15 / 83
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Robustness of the Merton solution, 2

The coefficient at € is zero and this is a crucial fact. It follows that

1 o0 1 1+6)7
EJ. = _,@X/,(1+5)V/ e MEV) dt = —k) - (1+9) — .
ol 0 ot 1+ 5-9(1 = y)o2e? + 70

Maximization over § gives us the optimal value §° = ﬁ702s2 for which
L 41 oyy—1 1 y—2 2 2 4
EJOO:;F;M (1+5°) :m—E(l—V)FaM o“e”+ O0(e")

and we get the claimed asymptotic.
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Basic model in discrete time, 1

The portfolio contains d assets (currencies). Their quotes are given in
units of a numeéraire, traded or not. security. At time t the quotes are
expressed by the vector of prices S; = (S}, ...,S¢); its components are
strictly positive.

The agent'’s positions can be described either nominally (in “physical”
units) V, = (th, e th) or as values invested in each asset

V = (VZ,..., V) with the obvious relation Vi = V//Si. This suggests
the notation Vt = V;/S:. More formally, introducing the diagonal
operator

¢t : (Xla"'axd)H(Xl/st}v"'vxd/sg)) (11)

we may write that Vt = ¢¢V;. So, any asset can be exchanged to any
other. At time t, the increase of the value of ith position in one unit of
the numéraire by changing the value of jth position requires diminishing
the value of the latter in 1 + M units of the numéraire. The matrix of
transaction cost coefficients A = (\¥) has non-negative entries and the
zero diagonal.
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Basic model in discrete time, 2

In the dynamical multiperiod setting S = (S;) is an adapted process; it is
convenient to choose the scales to have all 55 =1 and assume as a
convention that Sg_ = 1.
The portfolio evolution can be described by the initial condition V_g = v
(the endowments of the agent entering the market) and the increments
at dates t > 0 : o ' _ _

AV} =V AS/+ AB; — ¢,
with

AB{ =Y AL} =) (1+ )AL,
j<d j<d

where ALJ;" € L9%(R,, F;) represents the net amount transferred from the
position j to the position i at the date t. The 1st term in the rhs comes
from the price movements. The 2nd corresponds to the agent’s actions at
the date t (made after the instant when the new prices were announced),
cl > 0 is the wealth taken for consumption. The matrix (ALY) is the
investor order immediately executed by the trader.
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Basic model in discrete time, 3

Introducing the process Y (“stochastic logarithm”) with

. AS/ .
Avi=22% yio,
t—1

we rewrite the dynamics of the value process as the linear controlled
difference equation of a very simple structure with the components
connected only via controls :

AV} =V AY] +ABl—cl, Vi =V
We can diminish the dimension of controls and choose B as the control

strategy. Indeed, any AL; € LO(Mi,}'t) defines the F;-measurable r.v.
AB; with values in the set —M where

M = {X € R?: Ja e M? such that x' = Z[(l+)\’j)a’jfaj"], i< d}.
j<d

Vice versa, a simple measurable selection arguments show that any

portfolio increment AB; € L°(—M,, F;) is generated by a certain (in

general, not unique) “order” AL, € LO(MY, F;).
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Basic model in discrete time, 3

We put K = M + Ri. It is easy to see that K is the solvency region. It
coincides with M if A # 0. One can check that K is a polyhedral cone

K =cone{(1+ \)e; — ¢, &, 1 <i,j<d}.

Thus, in discrete time the dynamics of the vector-valued portfolio
processes is given by a linear difference equation with conic constraints
on the control. Of course, one can easily imagine other interesting models
falling in the scope of this scheme, e.g., one where all transactions charge
the money account. Mathematically, it is interesting to consider general
conic constraints, not only polyhedral (also, depending on t, price levels
etc.).

Apparently, such a model should be easily extended to the continuous
time setting as a controlled linear stochastic differential equations ...

Easily 7
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Continuous-time Wiener-driven model, 1

Let Y = (Y;) be an R9-valued semimartingale on a stochastic basis
(2, F,F, P) with the trivial initial o-algebra. Let K and C be proper
cones in RY such that C C int K # (). Define the set A of controls
m = (B, C) as the set of adapted cadlag processes of bounded variation
such that

B e —K, Cec.
Let A, be the set of controls with absolutely continuous C and ACy = 0.
For the elements of A, we have ¢ := dC/dt € C.
The controlled process V = V*7 is the solution of the linear system

dVi =V dY] +dBi —dCl, Vi =x', i=1,..,d.

For x € int K we consider the subsets A* and A of “admissible” controls
for which the processes V*™ never leave the set int K U {0} and has the
origin as an absorbing point.
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Continuous-time Wiener-driven model, 2

Let G := (—K) N 00O1(0) where 901(0) = {x € R?: |x| =1} in
accordance with the notation for the open ball

O (y) ={xeR9: |x—y|<r}.

The set G is a compact and —K = cone G. We denote by ¥ ; the
support function of G, given by the relation X5 (p) := sup,c¢ px.

We shall work using the following assumption :

H. The process Y is a continuous process with independent increments
with mean EY; = ut, p € RY, and the covariance DY; = At.

In our proof of the dynamic programming principle (needed to derive the
HJB equation) we shall assume that the stochastic basis is a canonical
one, that is the space of continuous functions with the Wiener measure.
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Continuous-time Wiener-driven model, 3

Proposition

There is a constant k > 0 such that

Esup |Vi2 < klxPe"T ¥V V=V xeintK, T >0.
t<T

Proof. The constant k is “generic’. Take arbitrary p € int K* with
|p| = 1. Since pdB < 0 and pdC > 0 we get that

S S
pvs§px+/ ﬁvrdr+/ v, dit,,
0 0

where p' := p'ii/ and M’ = p'M’, M is the martingale part of Y. The
crucial observation is that there is x > 0 such that k~!|y| < py for any
y € K. Since |py| < |y| for any y € R?, we obtain that

s ~
/ V,.dM,
0

The rest is standard : localization and Gronwall-Bellman:
Yuri Kabanov HJB equations 24 / 83
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Goal functionals, 1

Let U:C — R4 be a concave function such that U(0) = 0 and
U(x)/|x] — 0 as |x| — co. With every m = (B, C) € A% we associate the
“utility process”

t
Jr ;:/ e PU(c)ds, t>0,
0

where 5 > 0. We consider the infinite horizon maximization problem with
the goal functional EJ7 and define its Bellman function

W(x):= sup EJ,, xeintK, W(x)=0, x<c K.
TEA

If m;, i = 1,2, are admissible strategies for the initial points x;, then the
strategy Amy + (1 — \)mz is an admissible strategy for the initial point
Ax1 + (1 — A)xz for any A € [0,1], and the corresponding absorbing time
dominates the maximum of the absorbing times for both ;. It follows
that the function W is concave on int K. Since A} C A2 when
x» — x1 € K, the function W is increasing with respect to the partial

ordering >y generated by the cone K.
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Goal functionals, 2

Remark 1. Usually, C = Ry e; and 0° = 0, i.e. the only first (non-risky)
asset is consumed. Our presentation is oriented to the scalar power utility
function u(c) = ¢7/~, v €]0, 1. As was already discussed, in this case
there is no need to consider a non-zero interest rate for the non-risky
asset which can be chosen as the numéraire.

Remark 2. We consider here a model with mixed “regular-singular”
controls. The assumption that the consumption has an intensity ¢ and
the agent’s utility depends on this intensity is not very satisfactory from
the economical point of view. One can consider models with an
intertemporal substitution and consumption by “gulps”, i.e. dealing with
“singular” controls of the class .A* and the utility processes

t
Jr= / e 05U(T,)ds,
0

where

G = / K(s, r)dC,
Jo

with a suitable kernel K (s, r), e.g., e V(s=r),
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The Hamilton—Jacobi—Bellman equation

We introduce a continuous function of four variables by putting
F(X,p, W,x) := max{Fo(X, p, W, x) + U*(p), Zs(p)},
X € 8y, the set of d x d symmetric matrices, p,x € RY, W € R,
Fo(X, p, W, x) := (1/2)tr A(x)X + u(x)p — BW
where A¥(x) 1= alxx/, pf(x) .= p'x’, 1 < i,j < d. In the detailed form

Fo(X,p, W,x) = Za”XXJX”JrZuprﬂW

ij=1 i=1
If ¢ is a smooth function, we put
Lo(x) = F(¢"(x), ¢’ (x), ¢(x), x).
In a similar way, £y corresponds to the function Fg.

We show, under mild hypotheses, that W is the unique viscosity solution
of the Dirichlet problem for the HJB equation

F(W"(x), W(x), W(x),x) =0, x€intK, W(x) =0, xe€IK.

Yuri Kabanov HJB equations 27 / 83
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Viscosity solutions, 1. Semijets.

The idea of viscosity solutions is to plug into F the derivatives and
Hessians of quadratic functions touching W from above and below.
Let f and g be functions defined in a neighborhood of zero. We shall
write £(.) < g(.) if f(h) < g(h) + o(|h|?) as |h| — 0. The notations
f()g el ) and f(.) = g(.) have the obvious meaning.

For p € R? and X € Sy we consider the quadratic function

Qox(2) i= pz + (1/2)(Xz,2), z€R?,
and define the super- and subjets of a function v at the point x :

Jv(x) = AP X): v(x+.) £ v(x) + Qux ()}
J7v(x) = AP, X) s vix+.) 2 v(x) + Qex()}-

In other words, J*v(x) (resp. J~v(x)) is the family of coefficients of
quadratic functions v(x) + Qp x(y — .) dominating the function v(.)
(resp., dominated by this function) in a neighborhood of x with precision
up to the 2nd order included and coinciding with v(x) at this point.
Yuri Kabanov HJB equations 28 / 83
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Viscosity solutions, 2. Basic definitions.

A function v € C(K) is called viscosity supersolution if
F(X,p,v(x),x) < V(p,X) € J v(x), x €intK.

A function v € C(K) is called viscosity subsolution of if
F(X,p,v(x),x) >0 V(p,X) € Jtv(x), x € int K.

A function v € C(K) is a viscosity solution if v is simultaneously a
viscosity super- and subsolution.

At last, a function v € C(K) is called classical supersolution if

v € C?(int K) and Lv < 0 on int K. We add the adjective strict when
Lv < 0 on the set int K.

The above notions can be formulated also for open subsets of K.

If v is smooth at a point x, then

Jtv(x) = {(p,X): p=V(x),X > V'(x)},
Jv(x) = {(p,X): p=Vv(x),X <V'(x)},
where the inequality between matrices is understood in the sense of

partial ordering induced by the cone of positive semidefinite matrices.
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Viscosity solutions, 3

The pair (v/(x), v"'(x)) is the unique element belonging to the
intersection of J~v(x) and JTv(x). Thus, any viscosity solution v which
is in C2(int K) is the classical solution. It is easy to check that a classical
solution solves the HJB equation in the viscosity sense : the needed
property that F is increasing in X with respect to the partial ordering
holds.

Remark on a mnemonic rule. In the smooth case for the second order
Taylor approximation, i.e. for the quadratic function (v/(x), v"’(x)) we
have the equality. Thus, if X > v"(x), for the pair (v/(x), X) which is an
element of J*v(x), we have obviously the inequality > 0. Note that in
the literature it is quite often the equation is written with the opposite
sign and so its lhs is decreasing in X ...

For the sake of simplicity and having in mind the specific case we shall
work on, the definitions includes the requirement that the viscosity super-
and subsolutions are continuous on K including the boundary.
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Viscosity solutions, 4. Alternative definitions.

Let v € C(K). The following conditions are equivalent :
(a) v is a viscosity supersolution ;
(b) for any ball O,(x) C int K and f € C?(O,(x)) such that v(x) = f(x)
and f < v on O,(x), the inequality Lf(x) < 0 holds.

Proof. (a) = (b) The pair (f'(x), f"(x)) € J~v(x) (the Taylor formula).
(b) = (a) Take (p, X) in J~v(x). We construct a smooth function f
with f/(x) = p, f”( ) = X satisfying the requirements of (b).

By definition,

v(x + h) = v(x) = Qox(h) > |hP%e(|h]),

where ¢(u) — 0 as u | 0. Consider on ]0, r[ the function

Hw)i= sup (kB = v() = Qo) < s ()
{h: \h|<u} {y: 0<y<u}

which is continuous, increasing and 6(u) — 0 as u | 0.
Yuri Kabanov HJB equations 31/83
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Viscosity solutions, 5

The function
2 2u 2n
M@= [ [ adcdn
3 u n

vanishes at zero with its two right derivatives;
u?6(u) < A(u) < u?6(4u). Thus the function x — A(|x|) belongs to
C?(0,(0)), its Hessian vanishes at zero, and

v(x + h) = v(x) = Qox(h) = —[h[*8(|Al) = —A(|A]).

So, f(y) == v(x) + Qp.x(y — x) — A(]y — x|) is the needed function. O

For subsolutions we have a similar result with the inverse inequalities.
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Viscosity solutions, 6

Suppose that v is a viscosity solution. If v is twice differentiable at xg,
then it satisfies the HJB equation at x in the classical sense.

Proof. It is not assumed that v/ is defined in a neighborhood of xg.
“Twice differentiable” means here that the Taylor formula at xp holds :

v(x) = v(xo) + (V' (x0), x — x0) + %(v”(xo)(xfxo),xfx@ +o(]x — xo0[?).

Let us consider the C2-function

f(x) = v(xo) + (vV'(x0), x — x0) + %(v"(xo)(x —Xp), X — Xo) +&|x — x0|2,

with f.(x0) = v(x). If £ < 0, then £ < v in a small neighborhood of xg.
Thus, by the previous lemma Lf(xp) < 0. Letting ¢ tend to zero, we
obtain that Lv(x) < 0. Taking € > 0 we get the opposite inequality. O
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Viscosity solutions, 7. “Modified inequality”.

A function v € C(K) is a viscosity supersolution iff for every x € int K
the inequality F(#"(x), #'(x), v(x),x) < 0 holds for any ¢ € C?(x) such
that at x the difference v — ¢ attains its local minimum.

Proof. One needs to check only that for a supersolution the inequality
holds when v — ¢ has a local minimum at x, i.e. when for all y from a
certain neighborhood O.(x) we have the bound

v(y) —oly) > vix) —o(x), ¥y #x
Let v be a C%function dominated by v and let g be a smooth function
on Ry with values in [0, 1] and such that g(t) = 1 when t <¢/2 and
g(t) = 0 when t > . Consider the C2-function ¢ = ¢(y) with

d(y) = [6(y) + v(x) — d(x)]g(Ix — y|) + (1 — g(Ix — y))¥(y).
The difference v — J) attains its minimal value, zero, x and, hence, by the

supersolution property the inequality holds for gz~5 as well as for ¢ because

the two derivatives of both functions coincide at x.-[]
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Viscosity solutions, 8. Scalar argument (ODE).

Let v € C(a, b) be the viscosity solution of " (z) = G(¢'(z), ¥(z), 2).
where G is a continuous function. Then 1) € C?(a, b) and the equation
holds in the classical sense.

Proof. Take [z1, z2] C]a, b[ and consider the C2-function 1).(z) such that

1/);/(2) = G(’L/)/(Z), 1/)(2),2) +¢, "Z)E(Zi) = 1/)(2,'), =12
We argue first with £ > 0. Suppose that ¢ — 1. attains a local minimum
at z €]z, z[. Then, necessarily, . (z) = 1)'(z). According to the above
criterion for the supersolution,

Ui(2) < G(¥L(2),4(2), 2) = G(¥'(2),¥(2), 2)
in contradiction with the definition of .. Thus, the difference v — 1. is
minimal at the extremities where it is equal to zero. l.e., ¥(z) > 9.(2)
for all z € [z1, z]. Letting & | 0 and noting that ¥.(z) — ¥o(z) (even

uniformly), we get that the inequality ¥(z) > vo(z). Arguing with ¢ < 0

and usine the subsolution propertv. we obtain the reverse ineaualitv. [
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Viscosity solutions, 9. The Ishii lemma

Lemma

Let v and  be two continuous functions on an open subset O C RY. Put
A(x,y) = v(x) — ¥(y) — 3n|x — y|> with n > 0. Suppose that A attains
a local maximum at (x,y). Then there are symmetric matrices X and Y
such that

(n(x-y),X) € J'v(x),  (n(x-y),Y)€ T Uy)

<)0< (1/)§3n(ll /I)' (12)/

Here I is the identity matrix and J*v(x) and J~v(x) are values of the
set-valued mappings whose graphs are closures of graphs of the set-value

and

mappings JTv and J™v, respectively. If v is smooth, the claim follows
directly from the necessary conditions of a local maximum (with
X =Vv"(x), Y =¥"(y) and the constant is 1 instead of .3).
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Viscosity solutions, 9. Linear algebra.

The inequality (21) implies that for any d X m matrices B and C

tr (BB'X — CC'Y) < 3n|B — C|°. (13)

Notice that A(x) = diag xA diag x. We denote by diag x the diagonal
matrix whose entries on the diagonal are the coordinates of the vector x.
Applying the above lemma with the matrices B = diag xA'/? and

C = diag yA'/? we obtain the following inequality which we need in the

sequel :
tr (A(X)X = A(y)Y) < 3n|AY2|x — y|?. (14)
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Uniqueness of the solution and Lyapunov functions

Definition. We say that a positive function £ € C(K) N C?(int K) is the
Lyapunov function if the following properties are satisfied :

1) £/(x) € int K* and Lof(x) < 0 for all x € int K,

2) £(x) — oo as |x| — oo.

Suppose that there exists a Lyapunov function ¢. Then the Dirichlet
problem for the HJB equation has at most one viscosity solution in the
class of continuous functions satisfying the growth condition

W(x)/l(x) — 0, |x| — oo. (15)
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Uniqueness. Proof, 1.

Let W and W be two viscosity solutions of (??) coinciding on JK.
Suppose that W(z) > W(z) for some z € K. Take € > 0 such that

W(z) — W(z) — 2ef(z) > 0.

We introduce continuous functions A, : K x K — R by putting
= 1
Dn(x,y) = W(x) = W(y) = Snlx = y[? = e[l() + £(y)],  n>0.

Note that A,(x, x) = Ag(x, x) for all x € K and Ag(x,x) < 0 when
x € OK. From the assumption that ¢ has a higher growth rate than W
we deduce that A,(x,y) — —o0 as |x| + |y| — oo. It follows that the
sets {A, > a} are compacts and the function A, attains its maximum.
le., there is (xn, yn) € K x K such that

An(Xm,yn) =Dp = sup  Ap(x,y) > A= sup Ag(x, x) > 0.

(x,y)eKxK xeK

All (xn, yn) belong to the compact set {(x,y): Ao(x,y) > 0}. It follows

that the sequence n|x, — yn|? is bounded.
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Uniqueness. Proof, 2.

We continue to argue with a subsequence along which (x,, y,) converge
to some limit (X,X). Necessarily, n|x, — y,|*> — 0 (otherwise

Ao(X,X) > A). It is easily seen that A, — Ag(X,X) = A. Thus,

X € int K as well as x, and y, for sufficiently large n.

By the Ishii lemma applied to v := W — &l and ¥ := W + &/ at the point
(Xn, yn) there exist matrices X" and Y satisfying (21) and such that

(n(xn — ¥n), X™) € JTv(xp), (n(xa — yn), Y") € J70(yp).
Putting pp := n(xn — ¥n) + €' (Xn), Gn = n(xa — yn) — l'(yn),
Xy = X"+ el (xn), Yn:=Y"—el'(yn), we rewrite this as :
(P Xa) € T*W(xa),  (Gn, Ya) € T~ W(yn). (16)

Since W and W are viscosity sub- and supersolutions,

F(Xa, Py W(xn), Xn) = 0> F(Yn, gn, W(¥n), ¥n)-

The 2nd inequality implies that mqg, < 0 for each
me G = (—K)NoO01(0). But ¢'(x) € int K* when x € int K. So,

mpp, = mq, +em(€'(x,) + €' (yn)) < 0.
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Uniqueness. Proof, 3.

Since G is a compact, X¢(pn) < 0. It follows that
FO(Xnapn; W(X,,),Xn) + U*(pn) >0> FO(Yna an, W()/n)v)/n) + U*(qn)-

Recall that U* is decreasing with respect to the partial ordering
generated by C* hence also by K*. Thus, U*(p,) < U*(g,) and

b, = FO(mem W(Xn);Xn) - FO(Yna an, W()/n)v)/n) > 0.
Clearly,

d
S PinlX) = AV 0 Yl =)

|\>I|—l

755H|Xn - yn|2 - 6An(xm )/n) + 6(‘COK(Xn) + Eof()/n))-

By virtue of (14) the first sum is dominated by const x n|x, — y,|?; a
similar bound for the second sum is obvious; the last term is negative
according to the definition of Lyapunov function. It follows that
limsup by, < —A < 0. O
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Lyapunov functions and classical supersolutions, 1

Let u € C(RL) N C?(R; \ {0}) be an increasing strictly concave function
with u(0) = 0 and u(00) = co. Introduce the function R := —u"?/(u" u).
Assume that R := sup,., R(z) < oc.

For p € K* \ {0} we define the function f(x) = f,(x) := u(px) on K. If

y € K and x # 0, then yf’(x) = (py)u'(px) > 0. The inequality is strict

when p € int K*.

Recall that A(x) is the matrix with A¥(x) = AVx/x/ and the vector 1(x)

has the components u/x’. Suppose that (A(x)p, p) # 0. Putting z := px
for brevity, we isolate the full square :

B% 2 u/2 z
Loflx) = % (A(x)p, p)u"(2) + 2(u(x), p)u'(2) + {x), p)” u™(2)

1 {pu(x), p)?
+=-—————R(Z)u(z) — pu(z).
2 (Ax)p. p) )~ PUl2)
Since u” < 0, the expression [...] is negative. So, the rhs is negative if
B > n(p)R where
1 (u(x).p)?
= —sup ——————.
"(P) =3 sk (A()p. p)
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Lyapunov functions and classical supersolutions, 2

If (A(x)p, p) = 0 we cannot argue in this way, but if in such a case also
(u(x), p) =0, then Lof(x) = —fu(z) <0 for any 5 > 0.

Proposition

Let p € int K*. Suppose that (u(x), p) vanishes on the set
{xeintK: (A(x)p,p) =0}. If 3> n(p)R, then f, is a Lyapunov
function.

Proposition

Assume (A(x)p, p) # 0 for all x € int K and p € K* \ {0}. Suppose that
u*(av'(2)) < g(a)u(z) for every a,z > 0 with g(a) = o(a) as a — co. If
B > fiR, then there is ay such that for every a > ag the function af, is a
classical supersolution, whatever is p € K* with p* # 0. Moreover, if

p € int K*, then af, is a strict supersolution on any compact subset of
int K.
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Lyapunov functions and classical supersolutions, 3

For the power utility function u(z) = z7/v, v €]0, 1], we have

R(z)=~/(1-7) =R,

and u*(au'(2)) = (1 — ~)a?/ O Du(z).

If Y is such that o' = 0, u* = 0 (i.e. the first asset is the numéraire) and
o' # 0 for i # 1, then, by the Cauchy-Schwarz inequality applied to
{u(x), p),

The inequality

(implying the relation 5 > ﬁl_?) is a standing assumption in many studies
on the consumption-investment problem under transaction costs.
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Supersolutions and the Bellman function, 1

Let ® be the set of continuous functions f : K — R increasing with
respect to the partial ordering >k and such that for every x € int K and
7 € AX the positive process X/ = X" given by the formula

X[ = e PHF(Vy) + T, (17)

where V = VX7 is a supermartingale.

The set ® of f with this property is convex and stable under the
operation A (recall that the minimum of two supermartingales is a
supermartingale). Any continuous function which is a monotone limit
(increasing or decreasing) of functions from ® also belongs to ®.
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Supersolutions and the Bellman function, 1

(a) Iff € &, then W < f;
(b) if for any y € OK there exists f € ® such that f(y) =0, then W is
continuous on K.

Proof. (a) Using the positivity of f, the supermartingale property of X7,
and, finally, the monotonicity of f we get the following chain of
inequalities leading to the required property :

EJT < EX] < f(W) < f(Vo_) = f(x).

(b) Recall that a concave function is locally Lipschitz continuous on the
interior of its domain, i.e. on the interior of the set where it is finite.
Hence, if ® is not empty, then W is continuous (and even locally
Lipschitz continuous) on int K. The continuity at a point y € 9K follows
from the assumed property because 0 < W < f. O
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Supersolutions and the Bellman function, 2

If f : K — Ry is a classical supersolution, then f € .

Proof. A classical supersolution is increasing with respect to >. Indeed,
f(x+h)—f(x)=f'(x+DIh)h Vx,heintK

for some 1 € [0, 1]. The rhs is > 0 because for the supersolution f we
have X ¢(f'(y)) < 0 whatever is y € int K, or, equivalently, f'(y)h >0
for every h € K. By continuity, f(x + h) — f(x) > 0 for every x, h € K.
In order to apply the 1t6 formula we introduce the process

V = V7~ = Vljg o + Vo— 5, c[, Where o is the 1st hitting time of zero
by V. It coincides with V on [0, o but either always remains in int K
(due to the stopping at o if V,— € int K) or exits to the boundary in a
continuous way and stops there. Let X” correspond to V. Since

X' =X+ e P(F(Voo + ABy) = F(Vo ) o ool

by the monotonicity it is suffices to check that X is a supermartingale.
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Supersolutions and the Bellman function, 3
Applying the 1t formula to e~ #f(V,) we obtain on [0, o[ :
t
X = f(x) +/ e P [Lof(Va) — e (Vo) + U(c)]ds + Re + me, (18)
0

where m is a process such that m?" = (m;x,,) are continuous
martingales for some o, increasing to o, and

R := /t e P f (Ve )dBS + ) e P[f(Ve + ABs) — F(Ve)]. (19)
0 s<t
By definition of a supersolution, for any x € int K,
Lof(x) < —U*(f'(x)) < cf'(x) — U(c) VceK.
Thus, the integral in (18) is a decreasing process. The process R is also

decreasing because the terms in the sum are negative by monotonicity of
f while the integral is negative because

fl(\N/s—)stC = I{ABS:O}fI(Vs—)Bsd||B||S
where 1”(\75,)3S < 0 since B € K.
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Supersolutions and the Bellman function, 4

Taking into account that Xf > 0, we obtain from (18) that for each n
the negative decreasing process Rix,, dominates an integrable process
and so it is integrable. The same holds for the stopped integral. Being a
sum of integrable decreasing process and a martingale, the process )?{AU”
is a positive supermartingale and, by the Fatou lemma, X is a
supermartingale as well. [J
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Strict local supersolutions

The next result is of great importance. It plays the crucial role in
deducing from the Dynamic Programming Principle the property W to be
a subsolution of the HJB equation.
We fix a ball @,(x) C int K and define 7™ as the exit time of V™ from
O,(x), i.e.

Ti=inf{t>0: V[ —x|>r}.

For simplicity we assume that f is smooth in a neighborhood of O, (x).

Let f € C?(O,(x)) be such that Lf < —c < 0 on O,(x). Then there
exist a constantn > 0 and an interval |0, to] such that

sup EXJNT < f(x)—nt Vit €0, to].
TEAX
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Dynamic Programming Principle, 1

Let 7r and 7; be, respectively, the sets of all finite and bounded stopping

times.
We have
W(x) < sup inf E (JI + e FT W(Vvem) . (20)
TEAX TeTr

If W(x) < oo for all x € int K, then

W(x) < sup inf E (JI +e PTW(VXT)). (21)

neAx 7€,

Lemma

Assume that W(x) < oo for all x € int K. Then for any T € T¢

W(x) > sup E (JT +e PTW(V1T)). (22)
TEAS
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Dynamic Programming Principle, 2

The following property of the Bellman function is usually referred to as
the (weak) “dynamic programming principle” :

Assume that W(x) < oo for x € int K. Then for any T € T¢

W(x) = sup E (JT +e PTW(V2T)). (23)
TEAX

However, it seems that this nicely looking formulation is not sufficient...
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The Bellman function and the HJB equation, 1

If (22) holds then W is a viscosity supersolution of the HJB equation.

Proof. Let x € O C int K. We choose a test function ¢ € C2(O) such
that ¢(x) = W(x) and W > ¢ in O.

At first, we fix m € K and argue with € > 0 small enough to ensure that
x —em € O. The function W is increasing with respect >x. Thus,

o(x) = W(x) > W(x —em) > ¢(x —em).

It follows that —m¢’(x) < 0 and, therefore, X(¢'(x)) < 0.
Take now 7w with B; = 0 and ¢; = ¢ € C. Let 7, be the exit time of the
continuous process V = V*™ from the ball O,(x) C int K.
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The Bellman function and the HJB equation, 2
The identity (22) implies that
W(x) > E (J;fm + e~ AEAT) W(VMT,))

and this inequality holds true if replace W by ¢. Writing all terms of the
latter in the rhs and applying the 1t6 formula we get that

0 > E </OMT, efﬁSU(CS)dS + eﬁ(tAT')¢(VtATr)) — ¢(x)
- / e P#[Lod(Va) — cd! (Vi) + U(c)]ds
> min [Lod(y) — cd(y) + U(Q)IE [g (1—eﬁ““'>)]

ye®, (x)

Dividing the resulting inequality by t and taking successively the limits as
t and r converge to zero we infer that Log(x) — c¢’(x) + U(c) < 0.
Maximizing over ¢ € C yields the bound Lo¢(x) + U*(¢'(x)) < 0. Hence,
W is a supersolution. [
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The Bellman function and the HJB equation, 3

If (20) holds then W is a viscosity subsolution of the HJB equation.

Proof. Let x € O C int K. Let ¢ € C2(O) be a function such that

d(x) = W(x) and W < ¢ on O. Assume that the subsolution inequality

for ¢ fails at x. Thus, there exists € > 0 such that L¢$ < —e on some ball
O,(x) C O. By virtue of Lemma 18 (applied to the function ¢) there are
to > 0 and 1 > 0 such that on the interval ]0, to] for any strategy m € A%

E (e + 77 0(V1)) < 006) -,

where 7™ is the exit time of the process V™ from the ball O,(x). Fix
t €]0, to]. By the second claim of Lemma 19) there exists m € AX such
that

W(x) < E (S5, + e 7TW(VED) + (1/2)nt,
for every stopping time 7, in particular for 77.
Using the inequality W < ¢ and applying Lemma 18 we obtain that
W(x) < ¢(x) — (1/2)nt. A contradiction because W (x).= ¢(x). O
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The Bellman function and the HJB equation, 4

Assume that the Bellman function W is in C(K). Then W is a viscosity
solution of the HJB equation.

Proof. The claim follows from the two lemmas above. J
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Model

Let Y = (Y;) be an R%valued Lévy process modelling relative
price movements (i.e. dY{ = dS}/Si_ or Si = Si&(Y")) :

dY: = put + =dwy + /z(p(dz, dt) — MN(dz)dt)

w is a Wiener process and p(dt, dx) is a Poisson random measure
with the compensator I(dz)dt where 1(dz) is concentrated on
] — 1,00]. The matrix = is such that A = ==* is non-degenerated,

/(|z|2 Az)N(dz) < oo.

Let K and C be proper cones in RY such that C C int K # ). The
set A, of controls m = (B, C) is the set of predictable cadlag
processes of bounded variation such that dC; = ¢;dt and

Be —K, ceC.
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Dynamics
The process V = V*7 is the solution of the linear system
dVi= V. dY+dBi—dCl, Vj_ =x', i=1,..,d.
This solution can be expressed explicitly using the Doléans-Dade

exponentials S/ = & (Y') (we assume that Sp = 1) :

. o . 1 . .
Vi=Six + 5 / L B —dCh), i=1...d
[

0,1 Si-
We introduce the stopping time
=07 :=inf{t: V" ¢ intK}.

For x € int K we consider the subset A% of “admissible” controls
for which m = g gx.<7, i.e. the process V™ stops at the moment
of ruin : no more consumption.

Yuri Kabanov HJB equations

59 / 83



Consumption—investment without transaction costs Models with transaction costs Consumption—investment with Lévy processes

Goal Functional

Let U : C — R4 be a concave function such that U(0) = 0 and
U(X)/’X‘ — 0 as ’X‘ — 00. For m = (B7 C) c A; we put

t
Jr ::/ e P U(cs)ds
0

and consider the infinite horizon maximization problem with the
goal functional EJ_ . The Bellman function
W(x) := sup EJ

T, x€intK,
TEAX
is increasing with respect to the partial ordering > .
The process VAat(1=A)xAm+(1=MNm2 is the convex combination of
VXi:Ti with the same coefficients. For continuous Y the ruin time
is the maximum of 6%°™ and the concavity of u implies the
concavity of W. But if Y has jumps, the ruin times are not related
in this way and we cannot guarantee (at least, by the above
argument) that the Bellman function is concave.
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The Hamilton—Jacobi—Bellman Equation, |

Let G := (—K) N 0O1(0) where O,(y) :={x €RY: |x —y| < r}
Then —K = cone G. We denote by ¥ ¢ the support function of G,
i.e. Xg(p) = supyeg px. Put

F(X,p,Z(f,x), W,x) =max{Fo(X, p, Z(f,x), W,x) + U*(p), Zs(p)},

where X € Sy, the set of d X d symmetric matrices, p, x € RY,
W € R, f € Ci(K) N C?(x) and the function Fy is given by

Fo(X,p,Z(f,x),W,x) = %trA(x)X + u(x)p+ Z(f, x) — W (x)

5 Za”X’XJX’J + Zu’x‘p’ +Z(f,x) — BW(x)

iJ i

where A(x) is the matrix with AV(x) = alx'x/, u/(x) = p'x’,
I(f,x)= /(f(x—l—diagxz)—f(x)—diagxzf’(x))l(z,x)l_l(dz)7 x € int K,
I(z,x) = I{z: xtdiag xzek} = Ik(x + diag xz).
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The Hamilton—Jacobi—Bellman Equation, Il

If ¢ is a smooth function, we put
L(x) = F(¢"(x), &' (x), Z($, x), $(x), x).

In a similar way, Lo corresponds to the function Fg.
We show, under mild hypotheses, that W is the unique viscosity
solution of the Dirichlet problem for the HJB equation

F(W"(x), W'(x),Z(W,x), W(x),x) = 0, x¢cintK,
W(x) = 0, x € 0K.
In general, W has no derivatives at some points x € intK and the

notation above needs to be interpreted. The idea of viscosity
solutions is to substitute W in F by suitable test functions.
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Viscosity Solutions

@ A function v € C(K) is called viscosity supersolution (of HJB)
if for every x € int K and every f € C1(K) N C?(x) such that
v(x) = f(x) and v > f the inequality £f(x) < 0 holds.

@ A function v € C(K) is called viscosity subsolution of if for
every x € int K and every f € C1(K) N C?(x) such that
v(x) = f(x) and v < f the inequality £f(x) > 0 holds.

o v € C(K) is viscosity solution of if v is simultaneously a
viscosity super- and subsolution.

o v € Ci(K) N C?(int K) is classical supersolution of HIB if
Lv <0 on int K. We add the adjective strict when Lv < 0 on
the set int K.

Suppose that the function v is a viscosity solution. If v is twice
differentiable at xg € int K, then it satisfies HJB at this point in

the classical sense.
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Jets
For p € R? and X € Sy we put Q, x(z) = pz + (1/2)(Xz, z) and
define the super- and of a function v at the point x :
Jv(x) = {(p.X): v(x+h) < v(x)+ Qux(h)+o(|h)},
JTv(x) = {(p,X) 1 v(x+h) = v(x) + Qox(h) + o(|h*)}.
lLe. JTv(x) is the family of coefficients of quadratic

functions v(x) + Qp x(y — .) dominating v(.)

near x up to the 2nd order and coinciding with v(.) at x.
For integro-differential operators viscosity solution does not admit
an equivalent formulation in terms of jets.

Let v be a viscosity supersolution, x € int K, and (p, X) € J~v(x).
Then there is a function f € C;(K) N C?(x) such that f'(x) = p,
f"(x) =X, f(x) = v(x), f > v on K and, hence,

F(X,p,Z(f,x), W(x),x) <O0.
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Supermaringales and Majorants of W

Put V = V7= = Vijg g + Vir—l[g,0o[ Where 0 is the ruin time.
Let ® be the set of continuous functions f : K — R increasing
with respect to >k and such that for each x € int K, m € A

X = XTxm = e P (V) + U,

is a supermartingale. This set is convex and stable under the
operation A. Any continuous function which is a monotone limit of
functions from @ also belongs to ¢.

(a) If f € ®, then W < f;
(b) if a point y € OK is such that there is f € ® with f(y) =0,
then W is continuous at y.

Proof. Indeed : EJF < EXI < f(Vg) = F(Vo) < F(Vo_) = F(x).
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Supermaringales and Supersolutions of HJB, |

Let f : K — Ry be a function in C;(K) N C?(int K). If f is a
classical supersolution of HJB, then f is a monotone function and
X is a supermartingale, i.e. f € .

Proof. A classical supersolution is increasing with respect to >.
Indeed, for any x, h € int K there is ¥ € [0, 1] such that

f(x+h)—f(x)=Ff(x+9h)h>0

because for the supersolution X(f’(y)) < 0 when y € int K, or,
equivalently, f'(y)h > 0 for every h € K. By continuity,
f(x+ h) —f(x) > 0 for every x, h € K.
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Supermaringales and Supersolutions of HJB, Il

Using the It6 formula we have :
tAl . .
X = f(x) +/ e P[Lof (Vo) — csf' (V) 4 U(cs)]ds + R: + my,
0
where the integral is a decreasing process (since [...] < Lf(V)),

tAO
R = / e PF (Ve )dBS + > e P[F(Ve + ABs) — F(V,)]
0

s<t

is also decreasing and m is the local martingale with
tAO . .
m, = / e P5f'(V,_)diag V. =dws
0
t
b [ [ e T+ ding Vi2) = A (Vs 2, ).
0

p(dz, ds) = p(dz, ds) — MN(dz)ds.
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Strict Local Supersolutions

We fix a ball O,(x) C int K and define 77 as the exit time of V7~
from O,(x), i.e.

T =inf{t>0: |V —x|>r}.

Let f € Ci(K) N C%(O,(x)) be such that Lf < —& < 0 on O,(x).
Then there exist a constant n > 0 and an interval |0, to] such that

sup EthA’);’f < f(x) —nt Vt €]0, to].
TeA
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Dynamic Programming Principle

For the following two assertions we need to assume that € is a
path space.

Lemma

Let Tr and T} be, respectively, the sets of all finite and bounded
stopping times. Then

W(x) < sup inf E (J;r + e T VTXLW)) :
ey TETr

Assume that W(x) is continuous on int K. Then for any T € T¢

W(x) > sup E (J;f +e BT W(Vf;”)) .
TeA
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Bellman Function and HJB

Assume that the Bellman function W is in C(K). Then W is a
viscosity solution of the HJB equation).

Proof.
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Uniqueness Theorem for HIB

Definition. We say that a positive function £ € C(K) N C?(int K)
is the Lyapunov function if the following properties are satisfied :
1) ¢(x) € int K* and Lol(x) < 0 for all x € int K,

2) {(x) — o0 as |x| — oc.

Theorem

Assume that the jump measure Il does not charge

(d — 1)-dimensional surfaces. Suppose that there exists a Lyapunov
function ¢. Then the Dirichlet problem for the HJB equation has at
most one viscosity solution in the class of continuous functions
satisfying the growth condition

W(x)/l(x) — 0, |x| — oo.
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Uniqueness Theorem for HIB. Idea of the proof, |

Let W and W be two viscosity solutions of HJB coinciding on K.
Suppose that W(z) > W(z) for some z € K. Take € > 0 such that

W(z) — W(z) — 2ef(z) > 0.
Define continuous functions A, : K x K — R
- 1
Bo(x,y) = W(x) = W(y) = 5alx =y = cl() + £y)], n >0,

Note that Ap(x, x) = Ao(x, x) for all x € K and Ag(x, x) < 0 when

x € OK. Since ¢ has a higher growth rate than W we deduce that
Ap(x,y) = —o0 as |x| + |y| — co. The sets {A, > a} are compacts and
A, attains its maximum. l.e., there is (x,, y,) € K x K such that

An(Xnayn) = An = sup An(va) > A= sup A0(X7X) > 0.
(x,y)EKXK x€K
All (xn, yn) belong to the compact {(x,y) : Ao(x,y) > 0}. Thus, the

sequence n|x, — y,|? is bounded. We assume wlg that (x,, y,) converge
to (X,X). Also, n|x, — ya|?> — 0 (otherwise we Ag(X,X) > A). Clearly,
A, — Np(X,X) = A. Thus, X is in the interior of K-and so are x, and y,
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Uniqueness Theorem for HJB. The Ishii Lemma.

Lemma

Let v and Vv be two continuous functions on an open subset

O C RY. Consider the function A(x,y) = v(x )= V(y) - Injx—y?
with n > 0. Suppose that A attains a local maximum at (x y).
Then there are symmetric matrices X and Y such that

(n(x =9),X) € J'v(x),  (n(X=7),Y) €I ),

(5 & )=on(5 7).

Here J*v(x) and J~v(x) are values of the set-valued mappings
whose graphs are closures of graphs of J*v and J™v.
The matrix inequality implies the bound

r (AG)X — AY)Y) < 3n]AY2|x — y P2
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Uniqueness Theorem for HIB. Idea of the proof, Il

By the Ishii lemma applied to v = W — el and ¥ = W + ¢f at the
point (xn, yn) there exist matrices X” and Y such that

(n(xn — yn), X") € Jtv(xy), (n(xn = yn), Y") € J7V(yn)-

Using the notations p, = n(xn Yn) + €l (xn),
Gn = n(xn —yn) —l'(yn), Xn = X"+l (xn), Yo =Y"—el"(yn),
we may rewrite the last relatlons in the following equivalent form :

(pn, Xn) € JTW(xp), (Gn, Yn) € I~ W(yp).

Since W and W are viscosity sub- and supersolutions, one can

find, the functions f, € C1(K) N C2(x,) and f, € Ci(K) N C3(y,)
such that £)(xp) = pn, £/ (xn) = Xn, fa(xn) = (xn) f, < W on
K, and f/(y,) = qn, /(vn) = Y Falyn) = W(yn), f, > W on K,

F(Xnvpnvz.(fnvxn)7 W(Xn)vxn) Z O Z F(Yl‘h qnv-,z.(?nhyn)? W(yn)7yn)
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Uniqueness Theorem for HIB. Idea of the proof, IlI

The second inequality implies that mg, < 0 for each
mée G = (—K)NdO01(0). But for the Lyapunov function
?'(x) € int K* when x € int K and, therefore,

mp, = mq, + 5m(£,(xn) + El(Yn)) <0.
Since G is a compact, Xg(pn) < 0. It follows that

FO(Xnvme(fn’Xﬂ)v W(Xn),X,-,) + U*(p”)

FO(Ym qnaI(men)a W(Yn)ayn) + U*(qn)

IN IV

Recall that U* is decreasing with respect to the partial ordering
generated by C* hence also by K*. Thus, U*(p,) < U*(qgn) and we
obtain the inequality

b, = FO(Xname(men)v W(Xn)axn)_FO(an qnaz—(?nv)/n)a W(Yn)vyn) >0
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Uniqueness Theorem for HIB. Idea of the proof, IV

Clearly,
A o d
b = 5 > (@xpdXE = alyiyl Vi) + 0> (= yi)
ij=1 i=1
*%ﬁnlxn — Ynl? = B (Xn, yn) + L(fa — b, xn) — Z(Fo + €L, y1)
+e(Lol(xn) + Lol(yn))-

The first term in the rhs is dominated by a constant multiplied by
n|xn — ya|?; a similar bound for the second sum is obvious; the last
term is negative according to the definition of the Lyapunov
function. To complete the proof, it remains to show that

limsup (Z(f, — e, xp) — Z(Fy + €, yn)) < 0.

n

Indeed, with this we have that limsup b, < —3A < 0.
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Uniqueness Theorem for HIB. Idea of the proof, V

Let
Fo(z) = [(f,, —el)(xn + diag xpz) — (f, — €€)(xn)
—diag xpz(f; — 5(’)(xn)] 1(z,%n),
’N:n(z) = [(’?n + el)(yn + diag ynz) — (’?n + &) (vn)

—diag Ynz(?n/ + 56/)(%)] I(z,yn).

and H,(z) = F,(z) — Fn(z) With this notation
I(fn - €€,Xn) - I(?n + e, Yn) = /Hn(z)n(dz)
and the needed inequality will follow from the Fatou lemma if we
show that there is a constant C such that for all sufficiently large n
Ho(z) < C(|z| A |z|?) forall z € K (24)

and
limsup Hy(z) <0 [l-as. (25)
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Uniqueness Theorem for HIB. Idea of the proof, VI

Using the properties of f, we get the bound :
Fo(z) < [(W —el)(xp + diag xpz) — (W — &) (xp)
—diag ann(Xn - Yn)] /(Z, Xn)

Since the continuous function W and / are of sublinear growth and

the sequences x, and n(x, — y,) are converging (hence bounded),
absolute value of the function in the right-hand side of this

inequality is dominated by a function c(1 + |z[). The arguments for
—F,(2) are similar. So, the function H,, is of sublinear growth.

We have the following identity :
Ho(z) = (An(xn + diag x,z, yn + diag ynz) — An(Xn, yn)
+(1/2)n|diag (x, — ya)z|*)I(z,x2)1(2, yn)
+(fa(xn + diag xnz) — W(x, + diag x.2))/(z, xa)! (2, yn)
—(Falyn + diag ynz) — W(yn + diag ya2))/ (2, X2) (2, yn)
+Fa(2)(1 = 1(z,yn)) = Fa(2)(1 = 1(2,%0))-
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Uniqueness Theorem for HJB. Idea of the proof, VII

The function A(x, y) attains its maximum at (x,,y,) and f, < W,
f, > W. It follows that

Hn(2) < (1/2)n|x0—yal*|2*+Fa(2)(1~1(2, yn))~ Fa(2) (11 (2, x0)).

Let 6 > 0 be the distance between X from and K. Then

Xn, ¥n € 05/2(X) for large n and, hence, the second and the third
terms in the rhs above are functions vanishing on 01(0). So, for
such n the function H, is dominated from above on O;(0) by
cn|z|? where ¢, := (1/2)n|x, — y,|*> — 0 as n — co. Therefore,
(24) holds. The relation (24) also holds because the second and
the first terms tends to zero (stationarily) for all z except the set
{z: X+ diagxz € OK}. The coordinates of points of 9K \ {0}
are non-zero. So this set is empty if X has a zero coordinate. If all
components X are nonzero, the operator X is non-degenerated and
the set in question is of zero measure 1 in virtue of our assumption.
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Lyapunov Functions, |

Let u € C(Ry) N C?(R; \ {0}) be increasing strictly concave,
u(0) = 0, u(co) = co. Define R = —u'?/(u"u) and assume that
R = sup,- R(2) < <.

For p € K*\ {0} define the function f(x) = f, (x) = u(px). If

y € K and x # 0, then yf'(x) = (py)u'(px) < 0. The inequality is
strict when p € int K*. . o

Recall that AY(x) = AUx'x/ and p'(x) = p'x’. Suppose that
(A(x)p, p) # 0. Isolating the full square we get that Lof(x) is
equal to

(AP, e (<) + 20u(x). ) (o) + fﬁgg}fij o

2

1 (u(x),p)°
T2 AP p)
Note that
(f(x + diag xz) — f(x) — diag xzf'(x)) = (1/2)u"(...)(px)? < 0.
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Lyapunov Functions, Il

It follows that Lof(x) < 0 if 8> n(p)R where

If (A(x)p, p) =0 and (u(x), p) =0, then Lof(x) = —Pu(px) <0
for any 3 > 0.

Proposition

Let p € int K*. Suppose that (u(x), p) vanishes on the set
{x eint K: (A(x)p,p) =0}. If 8 > n(p)R, then f, is a Lyapunov
function.
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Existence of Classical Supersolutions

The same ideas are useful also in the search of supersolutions.

Since Lf = Lof + U*(f'), it is natural to choose u related to U.
For the case where C = R{ and U(c) = u(eic), with u satisfying
the postulated properties and assuming, moreover, the inequality

u*(au'(2)) < g(a)u(2)
we get, using the homogeneity of Ly, the following result.

Proposition

Assume (A(x)p, p) # 0 for all x € int K and p € K*\ {0}. Suppose
that g(a) = o(a) as a — oo. If B > 7R, then there is ag such that
for every a > ag the function af, is a classical supersolution of
HJB, whatever is p € K* with p* # 0. Moreover, if p € int K*,
then af, is a strict supersolution on any compact subset of int K.

-

Yuri Kabanov HJB equations 82 /83



Consumption—investment without transaction costs Models with transaction costs Consumption—investment with Lévy processes

Power Utility Function

For the power utility function u(z) = z7/~, v €]0, 1], we have :
R(z)=7/(1-7) =R,
u*(ad'(2) = (1= 1) 07 Vu(z) = g(a)u(2).

If A= diago, o' =0, u! = 0 (the first asset is the numéraire) and
o' # 0 for i # 1, then, by the Cauchy-Schwarz inequality,

14 2
n(p) < 5 ; <;> .
The inequality
B> v 1 i (”—I>2
1—~2 =\’
(implying the bound /3 > 7jR) ensures the existence of a classical

supersolution.
Yuri Kabanov HJB equations 83 /83



	Consumption–investment without transaction costs
	Models with transaction costs
	Consumption–investment with Lévy processes

