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Classical Merton Problem

We are given a stochastic basis with an m-dimensional standard
Wiener process w . The market contains a non-risky security which
is the numéraire, i.e. its price is identically equal to unit, and m
risky securities with the price evolution

dS i
t = S i

t(µ
idt + dM i

t), i = 1, ...,m, (1)

where M = Σw is a (deterministic) linear transform of w . Thus, M
is a Gaussian martingale with 〈M〉t = At ; the covariance matrix
A = ΣΣ∗ is assumed to be non-degenerated.
The dynamics of the value process :

dVt = HtdSt − ctdt, (2)

where the m-dimensional predictable process H defines the number
of shares in the portfolio, c ≥ 0 is the consumption process.
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Merton Problem : dynamics, constraints, and goal

It is convenient to choose as the control the process π = (α, c)
with αi

t := H i
tS

i
t/Vt (the proportion of the wealth invested in the

ith asset). Then the dynamics of the value process is :

dVt = Vtαt(µdt + dMt) − ctdt, V0 = x > 0, (3)

Constraints : α is bounded c is integrable, V = V x ,π ≥ 0 ; π = 0
after the bankruptcy.
Infinite horizon. The investor’s goal :

EJπ
∞ → max, (4)

where

Jπ
t :=

∫ t

0
e−βsu(cs)ds. (5)

where u is increasing and concave. For simplicity : u ≥ 0, u(0) = 0.
A typical example : u(c) = cγ/γ, γ ∈]0, 1[. The parameter β > 0
shows that the agent prefers to consume sooner than later.
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Merton Problem : the Bellman function

Define the Bellman function

W (x) := sup
π∈A(x)

EJπ
∞, x > 0. (6)

By convention, A(0) := {0} and W (0) := 0.
The Bellman function W inherits the properties of u. It is
increasing (as A(x̃) ⊇ A(x) when x̃ ≥ x) and concave (almost
obvious in H-parametrization). The process H = λH1 + (1 − λ)H2

admits the representation via α with

αi = H iS i/V =
λV1

λV1 + (1 − λ)V2
αi

1 +
(1 − λ)V2

λV1 + (1 − λ)V2
αi

2;

α is bounded when αj are bounded. Thus,
π = (α, λc1 + (1 − λ)c2) ∈ A(x) with x = λx1 + (1 − λ)x2 and

W (λx1 + (1 − λ)x2) ≥ EJπ
∞ ≥ λEJπ1

∞ + (1 − λ)EJπ2
∞

due to concavity of u. We obtain the concavity of W by taking
supremum over πi .
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Merton Problem : the result

Theorem

Let u(c) = cγ/γ, γ ∈]0, 1[. Assume that

κM :=
1

1 − γ

(
β −

1

2

γ

1 − γ
|A−1/2µ|2

)
> 0. (7)

Then the optimal strategy πo = (αo , co) is given by the formulae

αo = θ :=
1

1 − γ
A−1µ, co

t = κMV o
t , (8)

where V o is the solution of the linear stochastic equation

dV o = V o
t θ(µdt + dMt) − κMV o

t dt, V o
0 = x . (9)

The process V o is optimal and the Bellman function is

W (x) =
(
κγ−1

M /γ
)
xγ = mxγ . (10)
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Merton Problem - comments

For the two-asset model

κM :=
1

1 − γ

(
β −

1

2

γ

1 − γ

µ2

σ2

)
> 0.

Notice that we cannot guarantee without additional assumptions
that W is finite. If the latter property holds, then, due to the
concavity, W (x) is continuous for x > 0, but the question whether
it is continuous at zero should be investigated specially.
At last, when the utility u is a power function, the Bellman
function W , if finite, is proportional to u. Indeed, the linear
dynamics of the control system implies that W (νx) = νγW (x)
whatever is ν > 0, i.e. the Bellman function is positive
homogeneous of the same order as the utility function. In a scalar
case this homotheticity property defines, up to a multiplicative
constant, a unique finite function, namely xγ .

Yuri Kabanov HJB equations 8 / 83



Consumption–investment without transaction costs Models with transaction costs Consumption–investment with Lévy processes

HJB equation and verification theorem,1

For our infinite horizon problem the HJB is :

sup
(α,c)

[
1

2
|A1/2α|2x2f ′′(x) + αµxf ′(x) − βf (x) − f ′(x)c + u(c)

]
= 0

where x > 0 and sup is taken over α ∈ Rd and c ∈ R+.
Simple observation : Let f : R+ → R+ and π ∈ A(x). Put

X f ,x,π = X f
t = e−βtf (Vt) + Jπ

t

where V = V x,π . If f is smooth, by the Ito formula

X f
t = f (x) + Dt + Ns

where (with L(x , α, c) = [...] of the HJB equation)

Dt :=

∫ t

0

e−βsL(Vs , αs , cs)ds, Nt :=

∫ t

0

e−βsf ′(Vs)VsαsdMs .

The process N is a local martingale up to the bankruptcy time σ. That
is, there are σn ↑ σ such that the stopped processes Nσn are uniformly
integrable martingales. If σ = ∞ and N is a martingale we take σn = n.

Yuri Kabanov HJB equations 9 / 83



Consumption–investment without transaction costs Models with transaction costs Consumption–investment with Lévy processes

HJB equation and verification theorem,2

If sup(α,c)[...] ≤ 0, then N and X f
t are supermartingales. Hence,

EJt = EX f
t − Ee−βtf (Vt) ≤ EX f

t ≤ f (x).

Proposition

If f is a supersolution of the HJB, then W ≤ f and, hence,
W ∈ C (R+ \ {0}). If, moreover, f (0+) = 0, then W ∈ C (R+).

Theorem

Let f ∈ C (R+)∩ C 2(R+ \ {0}) be a positive concave function solving the
HJB equation, f (0) = 0. Suppose that sup is attained on α(x) and c(x)
where that α is bounded measurable, c ≥ 0 and the equation

dV o
t = V o

t α(V o
t )(µdt + dMt) − c(V o

t )dt, V o
0 = x ,

admits a strong solution V o
t . If limEe−βσn f (V o

σn
) = 0, then W = f and

the optimal control πo = (α(V o ), c(V o)).
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Proof of the Merton Theorem, 1

The verification theorem is very efficient if we have a guess about the
solution. It is the case when the utility is a power function : the problem
is to find the constant !
Put u∗(p) := supc≥0[u(c) − cp]. For u(c) = cγ/γ we have

u∗(p) =
1 − γ

γ
pγ/(γ−1).

Expecting that f ′′ < 0, we find that the maximum of the quadratic form
over α is attained at

αo(x) = −A−1µ
f ′(x)

xf ′′(x)
== A−1µ/(1 − γ).

Thus, the HJB equation is :

−
1

2
|A−1/2µ|2

(f ′(x))2

f ′′(x)
− βf (x) +

1 − γ

γ
(f ′(x))

γ

γ−1 = 0.

Its solution f (x) = mxγ should have m = κγ−1
M /γ.

The function αo(x) is constant, co(x) = κMx , and the equation

pretending to describe the optimal dynamics is linear :
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Proof of the Merton Theorem, 2

dV o
t

V o
t

=

(
1

1 − γ
|A−1/2µ|2 − κM

)
dt +

A−1µ

1 − γ
dM , V o

0 = x .

Its solution is the geometric Brownian motion which never hits zero.
Noticing that 〈A−1µM〉t = |A−1/2µ|2t, we have that

V o
t = x exp

{(
1

1 − γ
−

1

2

1

(1 − γ)2

)
|A−1/2µ|2t − κM t +

A−1µ

1 − γ
Mt

}
.

Since E (V o
t )p = xpeκpt where κp is a constant, the process N for this

control is a true martingale ; we σn = n.
For p = γ the corresponding constant

κγ =
1

2

γ

1 − γ
− γκM = β − κM .

Thus,
e−βtE (V o

t )γ = xγe−κMt → 0, t → ∞.

The Merton theorem is proven.
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Merton Problem - discussion, 1

The optimal strategy with the power utility prescribes to keep
constant proportions of wealth in each position. E.g., for m = 1
where the quantities V 2o

t := αoV o
t and V 1o

t = (1 − αo)V o
t the

optimal holdings in the risky and non-risky assets,

αo = θ =
1

1 − γ

µ

σ2
.

Thus,

V 2o
t :=

αo

1 − αo
V 1o

t =
θ

1 − θ
V 1o

t .

The process (V 1o
t ,V 2o

t ) evolves on the plain (v1, v2) along the
straight line with slope θ/(1 − θ), the Merton line.

We consider the case where the non-risky asset pays no interest
(r = 0). For the power utility function models with zero interest rate
are not less general due to the identity u(erscs) = eγrsu(cs) : the
maximization problem where the consumption is measured in
“money” is the same as that where the consumption is measured in
“bonds”, but with β replaced by β̃ := β − γr .
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Merton Problem - discussion, 2

An analysis of the proof shows that, with minor changes, it works
also when γ < 0 and the same explicit formulae represent the
optimal solution in this case. The HJB approach can be extended to
the logarithmic utility function u(c) = ln c (corresponding to
γ = 0). Of course, one needs to impose an additional constraint on
the consumption to ensure the integrability of Jπ

∞.

Turning back to the multi-asset case, we define the scalar process M̃
with dM̃ = θ(µdt + dMt). Consider the same
consumption-investment problem imposing the restriction that the
investments should be shared between money and the risky asset
which price follows the process M̃ . Any value process and
consumption process in this two-asset model are those of the
original one. One can imagine a financial institution (a mutual fund)
which offers such an artificial asset, called the market portfolio. This
allows the agent to allocate his wealth only in the non-risky asset
and the market portfolio. Due to this economical interpretation, the
Merton result sometimes is referred to as the mutual fund theorem.
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Robustness of the Merton solution, 1

The Merton solution is robust : a deviation of the order ε from the
Merton proportion θ leads to losses in the expected utility only of order
ε2. Suppose that in the two-asset model the investor’s strategy is to
maintain the proportion αo + ε and consume a constant part (1 + δ)κM

of the current wealth optimizing the expected utility in δ. Assume for
simplicity that x = 1. Now the dynamics is

dVt

Vt

= (αo + ε)(µdt + σdwt) − (1 + δ)κMdt,

and V is the geometric Brownian motion

Vt = exp

{
(αo + ε)µt −

1

2
(αo + ε)2σ2t − (1 + δ)κM t + (αo + ε)σwt

}
.

We have that
EV γ

t = eκγ(ε,δ)t

where

κγ(ε, δ) = β − κM −
1

2
γ(1 − γ)σ2ε2 − γκMδ

and, in particular, κγ(0, 0) = κγ = β − κM .
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Robustness of the Merton solution, 2

The coefficient at ε is zero and this is a crucial fact. It follows that

EJ∞ =
1

γ
κγ

M(1+δ)γ

∫ ∞

0

e−βtEV γ
t dt =

1

γ
κγ−1

M

(1 + δ)γ

1 + 1
2κM

γ(1 − γ)σ2ε2 + γδ
.

Maximization over δ gives us the optimal value δo = 1
2κM

γσ2ε2 for which

EJ∞ =
1

γ
κγ−1

M (1 + δo)γ−1 = m −
1

2
(1 − γ)κγ−2

M σ2 ε2 + O(ε4)

and we get the claimed asymptotic.
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Basic model in discrete time, 1

The portfolio contains d assets (currencies). Their quotes are given in
units of a numéraire, traded or not. security. At time t the quotes are
expressed by the vector of prices St = (S1

t , . . . ,S
d
t ) ; its components are

strictly positive.
The agent’s positions can be described either nominally (in“physical”

units) V̂t = (V̂ 1
t , . . . , V̂

d
t ) or as values invested in each asset

V = (V 1
t , . . . ,V

d
t ) with the obvious relation V̂ i

t = V i
t /S

i
t . This suggests

the notation V̂t = Vt/St . More formally, introducing the diagonal
operator

φt : (x1, ..., xd ) 7→ (x1/S1
t , ..., x

d/Sd
t ), (11)

we may write that V̂t = φtVt . So, any asset can be exchanged to any

other. At time t, the increase of the value of ith position in one unit of

the numéraire by changing the value of jth position requires diminishing

the value of the latter in 1 + λji units of the numéraire. The matrix of

transaction cost coefficients Λ = (λij ) has non-negative entries and the

zero diagonal.
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Basic model in discrete time, 2

In the dynamical multiperiod setting S = (St) is an adapted process ; it is
convenient to choose the scales to have all S i

0 = 1 and assume as a
convention that S i

0− = 1.
The portfolio evolution can be described by the initial condition V−0 = v
(the endowments of the agent entering the market) and the increments
at dates t ≥ 0 :

∆V i
t = V̂ i

t−1∆S i
t + ∆B i

t − c i
t ,

with
∆B i

t :=
∑

j≤d

∆Lji
t −

∑

j≤d

(1 + λij)∆Lij
t ,

where ∆Lji
t ∈ L0(R+,Ft) represents the net amount transferred from the

position j to the position i at the date t. The 1st term in the rhs comes

from the price movements. The 2nd corresponds to the agent’s actions at

the date t (made after the instant when the new prices were announced),

c i
t ≥ 0 is the wealth taken for consumption. The matrix (∆Lij) is the

investor order immediately executed by the trader.
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Basic model in discrete time, 3

Introducing the process Y (“stochastic logarithm”) with

∆Y i
t =

∆S i
t

S i
t−1

, Y i
0 = 1,

we rewrite the dynamics of the value process as the linear controlled
difference equation of a very simple structure with the components
connected only via controls :

∆V i
t = V i

t−1∆Y i
t + ∆B i

t − c i
t , V i

−1 = v i .

We can diminish the dimension of controls and choose B as the control
strategy. Indeed, any ∆Lt ∈ L0(Md

+,Ft) defines the Ft-measurable r.v.
∆Bt with values in the set −M where

M :=
{

x ∈ Rd : ∃ a ∈ Md
+ such that x i =

∑

j≤d

[(1 + λij)aij − aji ], i ≤ d
}
.

Vice versa, a simple measurable selection arguments show that any

portfolio increment ∆Bt ∈ L0(−Mt ,Ft) is generated by a certain (in

general, not unique)“order”∆Lt ∈ L0(Md
+,Ft).
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Basic model in discrete time, 3

We put K = M + Rd
+. It is easy to see that K is the solvency region. It

coincides with M if Λ 6= 0. One can check that K is a polyhedral cone

K = cone {(1 + λij)ei − ej , ei , 1 ≤ i , j ≤ d}.

Thus, in discrete time the dynamics of the vector-valued portfolio
processes is given by a linear difference equation with conic constraints
on the control. Of course, one can easily imagine other interesting models
falling in the scope of this scheme, e.g., one where all transactions charge
the money account. Mathematically, it is interesting to consider general
conic constraints, not only polyhedral (also, depending on t, price levels
etc.).
Apparently, such a model should be easily extended to the continuous
time setting as a controlled linear stochastic differential equations ...

Easily ?
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Continuous-time Wiener-driven model, 1

Let Y = (Yt) be an Rd -valued semimartingale on a stochastic basis
(Ω,F ,F,P) with the trivial initial σ-algebra. Let K and C be proper

cones in Rd such that C ⊆ intK 6= ∅. Define the set A of controls
π = (B,C ) as the set of adapted càdlàg processes of bounded variation
such that

Ḃ ∈ −K , Ċ ∈ C.

Let Aa be the set of controls with absolutely continuous C and ∆C0 = 0.
For the elements of Aa we have c := dC/dt ∈ C.
The controlled process V = V x,π is the solution of the linear system

dV i
t = V i

t−dY i
t + dB i

t − dC i
t , V i

0− = x i , i = 1, ..., d .

For x ∈ intK we consider the subsets Ax and Ax
a of“admissible”controls

for which the processes V x,π never leave the set intK ∪ {0} and has the

origin as an absorbing point.
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Continuous-time Wiener-driven model, 2

Let G := (−K ) ∩ ∂O1(0) where ∂O1(0) = {x ∈ Rd : |x | = 1} in
accordance with the notation for the open ball
Or (y) := {x ∈ Rd : |x − y | < r}.
The set G is a compact and −K = coneG . We denote by ΣG the
support function of G , given by the relation ΣG (p) := supx∈G px .

We shall work using the following assumption :

H. The process Y is a continuous process with independent increments
with mean EYt = µt, µ ∈ Rd , and the covariance DYt = At.

In our proof of the dynamic programming principle (needed to derive the

HJB equation) we shall assume that the stochastic basis is a canonical

one, that is the space of continuous functions with the Wiener measure.
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Continuous-time Wiener-driven model, 3

Proposition

There is a constant κ > 0 such that

E sup
t≤T

|Vt |
2 ≤ κ|x |2eκT 2

∀ V = V x,π , x ∈ intK , T ≥ 0.

Proof. The constant κ is “generic”. Take arbitrary p ∈ intK ∗ with
|p| = 1. Since pdB ≤ 0 and pdC ≥ 0 we get that

pVs ≤ px +

∫ s

0

p̃Vrdr +

∫ s

0

VrdM̃r ,

where p̃i := piµi and M̃ i = piM i , M is the martingale part of Y . The
crucial observation is that there is κ > 0 such that κ−1|y | ≤ py for any
y ∈ K . Since |py | ≤ |y | for any y ∈ Rd , we obtain that

|Vs | ≤ κ|x | + κ

∫ s

0

|Vr |dr + κ

∣∣∣∣
∫ s

0

VrdM̃r

∣∣∣∣ .

The rest is standard : localization and Gronwall–Bellman.
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Goal functionals, 1

Let U : C → R+ be a concave function such that U(0) = 0 and
U(x)/|x | → 0 as |x | → ∞. With every π = (B,C ) ∈ Ax

a we associate the
“utility process”

Jπ
t :=

∫ t

0

e−βsU(cs)ds , t ≥ 0 ,

where β > 0. We consider the infinite horizon maximization problem with
the goal functional EJπ

∞ and define its Bellman function

W (x) := sup
π∈Ax

a

EJπ
∞ , x ∈ intK , W (x) = 0, x ∈ ∂K .

If πi , i = 1, 2, are admissible strategies for the initial points xi , then the

strategy λπ1 + (1 − λ)π2 is an admissible strategy for the initial point

λx1 + (1 − λ)x2 for any λ ∈ [0, 1], and the corresponding absorbing time

dominates the maximum of the absorbing times for both πi . It follows

that the function W is concave on intK . Since Ax1
a ⊆ Ax2

a when

x2 − x1 ∈ K , the function W is increasing with respect to the partial

ordering ≥K generated by the cone K .
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Goal functionals, 2

Remark 1. Usually, C = R+e1 and σ0 = 0, i.e. the only first (non-risky)
asset is consumed. Our presentation is oriented to the scalar power utility
function u(c) = cγ/γ, γ ∈]0, 1[. As was already discussed, in this case
there is no need to consider a non-zero interest rate for the non-risky
asset which can be chosen as the numéraire.

Remark 2. We consider here a model with mixed“regular-singular”
controls. The assumption that the consumption has an intensity c and
the agent’s utility depends on this intensity is not very satisfactory from
the economical point of view. One can consider models with an
intertemporal substitution and consumption by“gulps”, i.e. dealing with
“singular”controls of the class Ax and the utility processes

Jπ
t :=

∫ t

0

e−βsU(C̄s)ds ,

where

C̄s =

∫ s

0

K (s, r)dCr

with a suitable kernel K (s, r), e.g., e−γ(s−r).
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The Hamilton–Jacobi–Bellman equation

We introduce a continuous function of four variables by putting

F (X , p,W , x) := max{F0(X , p,W , x) + U∗(p),ΣG (p)},

X ∈ Sd , the set of d × d symmetric matrices, p, x ∈ Rd , W ∈ R,

F0(X , p,W , x) := (1/2)trA(x)X + µ(x)p − βW

where Aij(x) := aijx ix j , µi (x) := µix i , 1 ≤ i , j ≤ d . In the detailed form

F0(X , p,W , x) =
1

2

d∑

i ,j=1

aijx ix jX ij +

d∑

i=1

µix ipi − βW .

If φ is a smooth function, we put

Lφ(x) := F (φ′′(x), φ′(x), φ(x), x).

In a similar way, L0 corresponds to the function F0.
We show, under mild hypotheses, that W is the unique viscosity solution
of the Dirichlet problem for the HJB equation

F (W ′′(x),W ′(x),W (x), x) = 0, x ∈ intK , W (x) = 0, x ∈ ∂K .
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Viscosity solutions, 1. Semijets.

The idea of viscosity solutions is to plug into F the derivatives and
Hessians of quadratic functions touching W from above and below.
Let f and g be functions defined in a neighborhood of zero. We shall
write f (.) / g(.) if f (h) ≤ g(h) + o(|h|2) as |h| → 0. The notations
f (.) ' g(.) and f (.) ≈ g(.) have the obvious meaning.
For p ∈ Rd and X ∈ Sd we consider the quadratic function

Qp,X (z) := pz + (1/2)〈Xz, z〉 , z ∈ Rd ,

and define the super- and subjets of a function v at the point x :

J+v(x) := {(p,X ) : v(x + .) / v(x) + Qp,X (.)},

J−v(x) := {(p,X ) : v(x + .) ' v(x) + Qp,X (.)}.

In other words, J+v(x) (resp. J−v(x)) is the family of coefficients of

quadratic functions v(x) + Qp,X (y − .) dominating the function v(.)

(resp., dominated by this function) in a neighborhood of x with precision

up to the 2nd order included and coinciding with v(x) at this point.
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Viscosity solutions, 2. Basic definitions.

A function v ∈ C (K ) is called viscosity supersolution if

F (X , p, v(x), x) ≤ 0 ∀ (p,X ) ∈ J−v(x), x ∈ intK .

A function v ∈ C (K ) is called viscosity subsolution of if

F (X , p, v(x), x) ≥ 0 ∀ (p,X ) ∈ J+v(x), x ∈ intK .

A function v ∈ C (K ) is a viscosity solution if v is simultaneously a
viscosity super- and subsolution.
At last, a function v ∈ C (K ) is called classical supersolution if
v ∈ C 2(intK ) and Lv ≤ 0 on intK . We add the adjective strict when
Lv < 0 on the set intK .
The above notions can be formulated also for open subsets of K .
If v is smooth at a point x , then

J+v(x) := {(p,X ) : p = v ′(x),X ≥ v ′′(x)},

J−v(x) := {(p,X ) : p = v ′(x),X ≤ v ′′(x)},

where the inequality between matrices is understood in the sense of

partial ordering induced by the cone of positive semidefinite matrices.
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Viscosity solutions, 3

The pair (v ′(x), v ′′(x)) is the unique element belonging to the
intersection of J−v(x) and J+v(x). Thus, any viscosity solution v which
is in C 2(intK ) is the classical solution. It is easy to check that a classical
solution solves the HJB equation in the viscosity sense : the needed
property that F is increasing in X with respect to the partial ordering
holds.

Remark on a mnemonic rule. In the smooth case for the second order
Taylor approximation, i.e. for the quadratic function (v ′(x), v ′′(x)) we
have the equality. Thus, if X ≥ v ′′(x), for the pair (v ′(x),X ) which is an
element of J+v(x), we have obviously the inequality ≥ 0. Note that in
the literature it is quite often the equation is written with the opposite
sign and so its lhs is decreasing in X ...

For the sake of simplicity and having in mind the specific case we shall

work on, the definitions includes the requirement that the viscosity super-

and subsolutions are continuous on K including the boundary.
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Viscosity solutions, 4. Alternative definitions.

Lemma

Let v ∈ C (K ). The following conditions are equivalent :
(a) v is a viscosity supersolution ;
(b) for any ball Or (x) ⊆ intK and f ∈ C 2(Or (x)) such that v(x) = f (x)
and f ≤ v on Or (x), the inequality Lf (x) ≤ 0 holds.

Proof. (a) ⇒ (b) The pair (f ′(x), f ′′(x)) ∈ J−v(x) (the Taylor formula).
(b) ⇒ (a) Take (p,X ) in J−v(x). We construct a smooth function f
with f ′(x) = p, f ′′(x) = X satisfying the requirements of (b).
By definition,

v(x + h) − v(x) − Qp,X (h) ≥ |h|2ϕ(|h|),

where ϕ(u) → 0 as u ↓ 0. Consider on ]0, r [ the function

δ(u) := sup
{h: |h|≤u}

1

|h|2
(v(x + h) − v(x) − Qp,X (h))− ≤ sup

{y : 0≤y≤u}

ϕ−(y)

which is continuous, increasing and δ(u) → 0 as u ↓ 0.
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Viscosity solutions, 5

The function

∆(u) :=
2

3

∫ 2u

u

∫ 2η

η

δ(ξ)dξdη

vanishes at zero with its two right derivatives ;
u2δ(u) ≤ ∆(u) ≤ u2δ(4u). Thus the function x 7→ ∆(|x |) belongs to
C 2(Or (0)), its Hessian vanishes at zero, and

v(x + h) − v(x) − Qp,X (h) ≥ −|h|2δ(|h|) ≥ −∆(|h|).

So, f (y) := v(x) + Qp,X (y − x) − ∆(|y − x |) is the needed function. �

For subsolutions we have a similar result with the inverse inequalities.
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Viscosity solutions, 6

Lemma

Suppose that v is a viscosity solution. If v is twice differentiable at x0,
then it satisfies the HJB equation at x in the classical sense.

Proof. It is not assumed that v ′ is defined in a neighborhood of x0.
“Twice differentiable”means here that the Taylor formula at x0 holds :

v(x) = v(x0)+ 〈v ′(x0), x − x0〉+
1

2
〈v ′′(x0)(x − x0), x − x0〉+ o(|x − x0|

2).

Let us consider the C 2-function

fε(x) = v(x0) + 〈v ′(x0), x − x0〉 +
1

2
〈v ′′(x0)(x − x0), x − x0〉 + ε|x − x0|

2,

with fε(x0) = v(x0). If ε < 0, then fε ≤ v in a small neighborhood of x0.

Thus, by the previous lemma Lfε(x0) ≤ 0. Letting ε tend to zero, we

obtain that Lv(x0) ≤ 0. Taking ε > 0 we get the opposite inequality. �
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Viscosity solutions, 7.“Modified inequality”.

Lemma

A function v ∈ C (K ) is a viscosity supersolution iff for every x ∈ intK
the inequality F (φ′′(x), φ′(x), v(x), x) ≤ 0 holds for any φ ∈ C 2(x) such
that at x the difference v − φ attains its local minimum.

Proof. One needs to check only that for a supersolution the inequality
holds when v − φ has a local minimum at x , i.e. when for all y from a
certain neighborhood Oε(x) we have the bound

v(y) − φ(y) > v(x) − φ(x), y 6= x .

Let v̄ be a C 2-function dominated by v and let g be a smooth function
on R+ with values in [0, 1] and such that g(t) = 1 when t ≤ ε/2 and
g(t) = 0 when t ≥ ε. Consider the C 2-function φ̃ = φ̃(y) with

φ̃(y) = [φ(y) + v(x) − φ(x)]g(|x − y |) + (1 − g(|x − y |))v̄ (y).

The difference v − φ̃ attains its minimal value, zero, x and, hence, by the

supersolution property the inequality holds for φ̃ as well as for φ because

the two derivatives of both functions coincide at x . �
Yuri Kabanov HJB equations 34 / 83



Consumption–investment without transaction costs Models with transaction costs Consumption–investment with Lévy processes

Viscosity solutions, 8. Scalar argument (ODE).

Lemma

Let ψ ∈ C 1(a, b) be the viscosity solution of ψ′′(z) = G(ψ′(z), ψ(z), z).
where G is a continuous function. Then ψ ∈ C 2(a, b) and the equation
holds in the classical sense.

Proof. Take [z1, z2] ⊂]a, b[ and consider the C 2-function ψε(z) such that

ψ′′
ε (z) = G(ψ′(z), ψ(z), z) + ε, ψε(zi ) = ψ(zi ), i = 1, 2.

We argue first with ε > 0. Suppose that ψ − ψε attains a local minimum
at z ∈]z1, z2[. Then, necessarily, ψ′

ε(z) = ψ′(z). According to the above
criterion for the supersolution,

ψ′′
ε (z) ≤ G(ψ′

ε(z), ψ(z), z) = G(ψ′(z), ψ(z), z)

in contradiction with the definition of ψε. Thus, the difference ψ − ψε is

minimal at the extremities where it is equal to zero. I.e., ψ(z) ≥ ψε(z)

for all z ∈ [z1, z2]. Letting ε ↓ 0 and noting that ψε(z) → ψ0(z) (even

uniformly), we get that the inequality ψ(z) ≥ ψ0(z). Arguing with ε < 0

and using the subsolution property, we obtain the reverse inequality. �
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Viscosity solutions, 9. The Ishii lemma

Lemma

Let v and ṽ be two continuous functions on an open subset O ⊆ Rd . Put
∆(x , y) := v(x) − ṽ(y) − 1

2n|x − y |2 with n > 0. Suppose that ∆ attains
a local maximum at (x̂ , ŷ). Then there are symmetric matrices X and Y
such that

(n(x̂ − ŷ ),X ) ∈ J̄+v(x̂), (n(x̂ − ŷ),Y ) ∈ J̄−ṽ(ŷ ),

and (
X 0
0 −Y

)
≤ 3n

(
I −I

−I I

)
. (12)

Here I is the identity matrix and J̄+v(x) and J̄−v(x) are values of the

set-valued mappings whose graphs are closures of graphs of the set-value

mappings J+v and J−v , respectively. If v is smooth, the claim follows

directly from the necessary conditions of a local maximum (with

X = v ′′(x̂), Y = ṽ ′′(ŷ) and the constant is 1 instead of 3).

Yuri Kabanov HJB equations 36 / 83



Consumption–investment without transaction costs Models with transaction costs Consumption–investment with Lévy processes

Viscosity solutions, 9. Linear algebra.

Lemma

The inequality (21) implies that for any d × m matrices B and C

tr (BB ′X − CC ′Y ) ≤ 3n|B − C |2. (13)

Notice that A(x) = diag xAdiag x . We denote by diag x the diagonal
matrix whose entries on the diagonal are the coordinates of the vector x .
Applying the above lemma with the matrices B = diag xA1/2 and
C = diag yA1/2 we obtain the following inequality which we need in the
sequel :

tr (A(x)X − A(y)Y ) ≤ 3n|A1/2|2|x − y |2. (14)
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Uniqueness of the solution and Lyapunov functions

Definition. We say that a positive function ℓ ∈ C (K ) ∩ C 2(intK ) is the
Lyapunov function if the following properties are satisfied :
1) ℓ′(x) ∈ intK ∗ and L0ℓ(x) ≤ 0 for all x ∈ intK ,
2) ℓ(x) → ∞ as |x | → ∞.

Theorem

Suppose that there exists a Lyapunov function ℓ. Then the Dirichlet
problem for the HJB equation has at most one viscosity solution in the
class of continuous functions satisfying the growth condition

W (x)/ℓ(x) → 0, |x | → ∞. (15)
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Uniqueness. Proof, 1.

Let W and W̃ be two viscosity solutions of (??) coinciding on ∂K .
Suppose that W (z) > W̃ (z) for some z ∈ K . Take ε > 0 such that

W (z) − W̃ (z) − 2εℓ(z) > 0.

We introduce continuous functions ∆n : K × K → R by putting

∆n(x , y) := W (x) − W̃ (y) −
1

2
n|x − y |2 − ε[ℓ(x) + ℓ(y)], n ≥ 0.

Note that ∆n(x , x) = ∆0(x , x) for all x ∈ K and ∆0(x , x) ≤ 0 when
x ∈ ∂K . From the assumption that ℓ has a higher growth rate than W
we deduce that ∆n(x , y) → −∞ as |x | + |y | → ∞. It follows that the
sets {∆n ≥ a} are compacts and the function ∆n attains its maximum.
I.e., there is (xn, yn) ∈ K × K such that

∆n(xn, yn) = ∆̄n := sup
(x,y)∈K×K

∆n(x , y) ≥ ∆̄ := sup
x∈K

∆0(x , x) > 0.

All (xn, yn) belong to the compact set {(x , y) : ∆0(x , y) ≥ 0}. It follows
that the sequence n|xn − yn|2 is bounded.
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Uniqueness. Proof, 2.

We continue to argue with a subsequence along which (xn, yn) converge
to some limit (x̂ , x̂). Necessarily, n|xn − yn|2 → 0 (otherwise
∆0(x̂ , x̂) > ∆̄). It is easily seen that ∆̄n → ∆0(x̂ , x̂) = ∆̄. Thus,
x̂ ∈ intK as well as xn and yn for sufficiently large n.
By the Ishii lemma applied to v := W − εℓ and ṽ := W̃ + εℓ at the point
(xn, yn) there exist matrices X n and Y n satisfying (21) and such that

(n(xn − yn),X
n) ∈ J̄+v(xn), (n(xn − yn),Y

n) ∈ J̄−ṽ(yn).

Putting pn := n(xn − yn) + εℓ′(xn), qn := n(xn − yn) − εℓ′(yn),
Xn := X n + εℓ′′(xn), Yn := Y n − εℓ′′(yn), we rewrite this as :

(pn,Xn) ∈ J̄+W (xn), (qn,Yn) ∈ J̄−W̃ (yn). (16)

Since W and W̃ are viscosity sub- and supersolutions,

F (Xn, pn,W (xn), xn) ≥ 0 ≥ F (Yn, qn, W̃ (yn), yn).

The 2nd inequality implies that mqn ≤ 0 for each
m ∈ G = (−K ) ∩ ∂O1(0). But ℓ′(x) ∈ intK ∗ when x ∈ intK . So,

mpn = mqn + εm(ℓ′(xn) + ℓ′(yn)) < 0.
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Uniqueness. Proof, 3.

Since G is a compact, ΣG (pn) < 0. It follows that

F0(Xn, pn,W (xn), xn) + U∗(pn) ≥ 0 ≥ F0(Yn, qn, W̃ (yn), yn) + U∗(qn).

Recall that U∗ is decreasing with respect to the partial ordering
generated by C∗ hence also by K ∗. Thus, U∗(pn) ≤ U∗(qn) and

bn := F0(Xn, pn,W (xn), xn) − F0(Yn, qn, W̃ (yn), yn) ≥ 0.

Clearly,

bn =
1

2

d∑

i ,j=1

(aijx i
nx

j
nX

n
ij − aijy i

ny
j
nY

n
ij ) + n

d∑

i=1

µi (x i
n − y i

n)
2

−
1

2
βn|xn − yn|

2 − β∆n(xn, yn) + ε(L0ℓ(xn) + L0ℓ(yn)).

By virtue of (14) the first sum is dominated by const × n|xn − yn|2 ; a

similar bound for the second sum is obvious ; the last term is negative

according to the definition of Lyapunov function. It follows that

lim sup bn ≤ −β∆̄ < 0. �
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Lyapunov functions and classical supersolutions, 1

Let u ∈ C (R+) ∩ C 2(R+ \ {0}) be an increasing strictly concave function
with u(0) = 0 and u(∞) = ∞. Introduce the function R := −u′2/(u′′u).
Assume that R̄ := supz>0 R(z) <∞.
For p ∈ K ∗ \ {0} we define the function f (x) = fp(x) := u(px) on K . If
y ∈ K and x 6= 0, then yf ′(x) = (py)u′(px) ≥ 0. The inequality is strict
when p ∈ intK ∗.
Recall that A(x) is the matrix with Aij(x) = Aijx ix j and the vector µ(x)
has the components µix i . Suppose that 〈A(x)p, p〉 6= 0. Putting z := px
for brevity, we isolate the full square :

L0f (x) =
1

2

[
〈A(x)p, p〉u′′(z) + 2〈µ(x), p〉u′(z) +

〈µ(x), p〉2

〈A(x)p, p〉

u′2(z)

u′′(z)

]

+
1

2

〈µ(x), p〉2

〈A(x)p, p〉
R(z)u(z) − βu(z).

Since u′′ ≤ 0, the expression [...] is negative. So, the rhs is negative if
β ≥ η(p)R̄ where

η(p) :=
1

2
sup
x∈K

〈µ(x), p〉2

〈A(x)p, p〉
.
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Lyapunov functions and classical supersolutions, 2

If 〈A(x)p, p〉 = 0 we cannot argue in this way, but if in such a case also
〈µ(x), p〉 = 0, then L0f (x) = −βu(z) ≤ 0 for any β ≥ 0.

Proposition

Let p ∈ intK ∗. Suppose that 〈µ(x), p〉 vanishes on the set
{x ∈ intK : 〈A(x)p, p〉 = 0}. If β ≥ η(p)R̄, then fp is a Lyapunov
function.

Proposition

Assume 〈A(x)p, p〉 6= 0 for all x ∈ intK and p ∈ K ∗ \ {0}. Suppose that
u∗(au′(z)) ≤ g(a)u(z) for every a, z > 0 with g(a) = o(a) as a → ∞. If
β > η̄R̄, then there is a0 such that for every a ≥ a0 the function afp is a
classical supersolution, whatever is p ∈ K ∗ with p1 6= 0. Moreover, if
p ∈ intK ∗, then afp is a strict supersolution on any compact subset of
intK.
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Lyapunov functions and classical supersolutions, 3

For the power utility function u(z) = zγ/γ, γ ∈]0, 1[, we have

R(z) = γ/(1 − γ) = R̄,

and u∗(au′(z)) = (1 − γ)aγ/(γ−1)u(z).
If Y is such that σ1 = 0, µ1 = 0 (i.e. the first asset is the numéraire) and
σi 6= 0 for i 6= 1, then, by the Cauchy–Schwarz inequality applied to
〈µ(x), p〉,

η(p) ≤
1

2

d∑

i=2

(
µi

σi

)2

.

The inequality

β >
γ

1 − γ

1

2

d∑

i=2

(
µi

σi

)2

(implying the relation β > η̄R̄) is a standing assumption in many studies

on the consumption-investment problem under transaction costs.
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Supersolutions and the Bellman function, 1

Let Φ be the set of continuous functions f : K → R+ increasing with
respect to the partial ordering ≥K and such that for every x ∈ intK and
π ∈ Ax

a the positive process X f = X f ,x,π given by the formula

X f
t := e−βtf (Vt) + Jπ

t , (17)

where V = V x,π , is a supermartingale.

The set Φ of f with this property is convex and stable under the

operation ∧ (recall that the minimum of two supermartingales is a

supermartingale). Any continuous function which is a monotone limit

(increasing or decreasing) of functions from Φ also belongs to Φ.
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Supersolutions and the Bellman function, 1

Lemma

(a) If f ∈ Φ, then W ≤ f ;
(b) if for any y ∈ ∂K there exists f ∈ Φ such that f (y) = 0, then W is
continuous on K.

Proof. (a) Using the positivity of f , the supermartingale property of X f ,
and, finally, the monotonicity of f we get the following chain of
inequalities leading to the required property :

EJπ
t ≤ EX f

t ≤ f (V0) ≤ f (V0−) = f (x).

(b) Recall that a concave function is locally Lipschitz continuous on the

interior of its domain, i.e. on the interior of the set where it is finite.

Hence, if Φ is not empty, then W is continuous (and even locally

Lipschitz continuous) on intK . The continuity at a point y ∈ ∂K follows

from the assumed property because 0 ≤ W ≤ f . �
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Supersolutions and the Bellman function, 2

Lemma

If f : K → R+ is a classical supersolution, then f ∈ Φ.

Proof. A classical supersolution is increasing with respect to ≥K . Indeed,

f (x + h) − f (x) = f ′(x + ϑh)h ∀ x , h ∈ intK

for some ϑ ∈ [0, 1]. The rhs is ≥ 0 because for the supersolution f we
have ΣG (f ′(y)) ≤ 0 whatever is y ∈ intK , or, equivalently, f ′(y)h ≥ 0
for every h ∈ K . By continuity, f (x + h) − f (x) ≥ 0 for every x , h ∈ K .
In order to apply the Itô formula we introduce the process
Ṽ = V σ− = VI[0,σ[ + Vσ−I[σ,∞[, where σ is the 1st hitting time of zero
by V . It coincides with V on [0, σ[ but either always remains in intK
(due to the stopping at σ if Vσ− ∈ intK ) or exits to the boundary in a
continuous way and stops there. Let X̃ f correspond to Ṽ . Since

X f = X̃ f + e−βσ(f (Vσ− + ∆Bσ) − f (Vσ−))I[σ,∞[,

by the monotonicity it is suffices to check that X̃ f is a supermartingale.
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Supersolutions and the Bellman function, 3

Applying the Itô formula to e−βt f (Ṽt) we obtain on [0, σ[ :

X̃ f
t = f (x) +

∫ t

0

e−βs [L0f (Vs) − cs f
′(Vs) + U(cs)]ds + Rt + mt , (18)

where m is a process such that mσn = (mt∧σn
) are continuous

martingales for some σn increasing to σ, and

Rt :=

∫ t

0

e−βsf ′(Ṽs−)dBc
s +

∑

s≤t

e−βs [f (Ṽs− + ∆Bs) − f (Ṽs−)]. (19)

By definition of a supersolution, for any x ∈ intK ,

L0f (x) ≤ −U∗(f ′(x)) ≤ cf ′(x) − U(c) ∀ c ∈ K .

Thus, the integral in (18) is a decreasing process. The process R is also
decreasing because the terms in the sum are negative by monotonicity of
f while the integral is negative because

f ′(Ṽs−)dBc
s = I{∆Bs=0}f

′(Ṽs−)Ḃsd ||B||s

where f ′(Ṽs−)Ḃs ≤ 0 since Ḃ ∈ K .
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Supersolutions and the Bellman function, 4

Taking into account that X̃ f ≥ 0, we obtain from (18) that for each n

the negative decreasing process Rt∧σn
dominates an integrable process

and so it is integrable. The same holds for the stopped integral. Being a

sum of integrable decreasing process and a martingale, the process X̃ f
t∧σn

is a positive supermartingale and, by the Fatou lemma, X̃ f is a

supermartingale as well. �
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Strict local supersolutions

The next result is of great importance. It plays the crucial role in
deducing from the Dynamic Programming Principle the property W to be
a subsolution of the HJB equation.
We fix a ball Ōr (x) ⊆ intK and define τπ as the exit time of V π,x from
Or (x), i.e.

τπ := inf{t ≥ 0 : |V π,x
t − x | ≥ r}.

For simplicity we assume that f is smooth in a neighborhood of Ōr (x).

Lemma

Let f ∈ C 2(Ōr (x)) be such that Lf ≤ −ε < 0 on Ōr (x). Then there
exist a constant η > 0 and an interval ]0, t0] such that

sup
π∈Ax

a

EX f ,x,π
t∧τπ ≤ f (x) − ηt ∀ t ∈]0, t0].
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Dynamic Programming Principle, 1

Let Tf and Tb be, respectively, the sets of all finite and bounded stopping
times.

Lemma

We have
W (x) ≤ sup

π∈Ax
a

inf
τ∈Tf

E
(
Jπ

τ + e−βτW (V x,π
τ− )

)
. (20)

If W (x) <∞ for all x ∈ intK, then

W (x) ≤ sup
π∈Ax

a

inf
τ∈Tb

E
(
Jπ

τ + e−βτW (V x,π
τ )

)
. (21)

Lemma

Assume that W (x) <∞ for all x ∈ intK. Then for any τ ∈ Tf

W (x) ≥ sup
π∈Ax

a

E
(
Jπ

τ + e−βτW (V x,π
τ− )

)
. (22)
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Dynamic Programming Principle, 2

The following property of the Bellman function is usually referred to as
the (weak)“dynamic programming principle” :

Theorem

Assume that W (x) <∞ for x ∈ intK. Then for any τ ∈ Tf

W (x) = sup
π∈Ax

a

E
(
Jπ

τ + e−βτW (V x,π
τ− )

)
. (23)

However, it seems that this nicely looking formulation is not sufficient...
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The Bellman function and the HJB equation, 1

Lemma

If (22) holds then W is a viscosity supersolution of the HJB equation.

Proof. Let x ∈ O ⊆ intK . We choose a test function φ ∈ C 2(O) such
that φ(x) = W (x) and W ≥ φ in O.
At first, we fix m ∈ K and argue with ε > 0 small enough to ensure that
x − εm ∈ O. The function W is increasing with respect ≥K . Thus,

φ(x) = W (x) ≥ W (x − εm) ≥ φ(x − εm).

It follows that −mφ′(x) ≤ 0 and, therefore, ΣG (φ′(x)) ≤ 0.

Take now π with Bt = 0 and ct = c ∈ C. Let τr be the exit time of the

continuous process V = V x,π from the ball Ōr (x) ⊆ intK .
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The Bellman function and the HJB equation, 2

The identity (22) implies that

W (x) ≥ E
(
Jπ
t∧τr

+ e−β(t∧τr)W (Vt∧τr
)
)

and this inequality holds true if replace W by φ. Writing all terms of the
latter in the rhs and applying the Itô formula we get that

0 ≥ E

(∫ t∧τr

0

e−βsU(cs)ds + e−β(t∧τr)φ(Vt∧τr
)

)
− φ(x)

≥ E

∫ t∧τr

0

e−βs [L0φ(Vs) − cφ′(Vs) + U(c)]ds

≥ min
y∈Ōr (x)

[L0φ(y) − cφ′(y) + U(c)]E

[
1

β

(
1 − e−β(t∧τr)

)]
.

Dividing the resulting inequality by t and taking successively the limits as

t and r converge to zero we infer that L0φ(x) − cφ′(x) + U(c) ≤ 0.

Maximizing over c ∈ C yields the bound L0φ(x) + U∗(φ′(x)) ≤ 0. Hence,

W is a supersolution. �
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The Bellman function and the HJB equation, 3

Lemma

If (20) holds then W is a viscosity subsolution of the HJB equation.

Proof. Let x ∈ O ⊆ intK . Let φ ∈ C 2(O) be a function such that
φ(x) = W (x) and W ≤ φ on O. Assume that the subsolution inequality
for φ fails at x . Thus, there exists ε > 0 such that Lφ ≤ −ε on some ball
Ōr (x) ⊆ O. By virtue of Lemma 18 (applied to the function φ) there are
t0 > 0 and η > 0 such that on the interval ]0, t0] for any strategy π ∈ Ax

a

E
(
Jπ
t∧τπ + e−βτπ

φ(V x,π
t∧τπ )

)
≤ φ(x) − ηt,

where τπ is the exit time of the process V x,π from the ball Ōr (x). Fix
t ∈]0, t0]. By the second claim of Lemma 19) there exists π ∈ Ax

a such
that

W (x) ≤ E
(
Jπ
t∧τ + e−βτW (V x,π

t∧τ )
)

+ (1/2)ηt,

for every stopping time τ , in particular for τπ .
Using the inequality W ≤ φ and applying Lemma 18 we obtain that
W (x) ≤ φ(x) − (1/2)ηt. A contradiction because W (x) = φ(x). �
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The Bellman function and the HJB equation, 4

Theorem

Assume that the Bellman function W is in C (K ). Then W is a viscosity
solution of the HJB equation.

Proof. The claim follows from the two lemmas above. �
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Outline

1 Consumption–investment without transaction costs

2 Models with transaction costs

3 Consumption–investment with Lévy processes
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Model

Let Y = (Yt) be an Rd -valued Lévy process modelling relative

price movements (i.e. dY i
t = dS i

t/S
i
t− or S i

t = S i
0Et(Y

i )) :

dYt = µt + Ξdwt +

∫
z(p(dz , dt) − Π(dz)dt)

w is a Wiener process and p(dt, dx) is a Poisson random measure
with the compensator Π(dz)dt where Π(dz) is concentrated on
]− 1,∞]d . The matrix Ξ is such that A = ΞΞ∗ is non-degenerated,

∫
(|z |2 ∧ |z |)Π(dz) <∞.

Let K and C be proper cones in Rd such that C ⊆ intK 6= ∅. The
set Aa of controls π = (B,C ) is the set of predictable càdlàg
processes of bounded variation such that dCt = ctdt and

Ḃ ∈ −K , c ∈ C.
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Dynamics

The process V = V x ,π is the solution of the linear system

dV i
t = V i

t−dY i
t + dB i

t − dC i
t , V i

0− = x i , i = 1, ..., d .

This solution can be expressed explicitly using the Doléans-Dade
exponentials S i

t = Et(Y
i) (we assume that S0 = 1) :

V i
t = S i

tx
i + S i

t

∫

[0,t]

1

S i
s−

(dB i
s − dC i

s ), i = 1, ..., d .

We introduce the stopping time

θ = θx ,π := inf{t : V x ,π
t /∈ intK}.

For x ∈ intK we consider the subset Ax
a of“admissible”controls

for which π = I[0,θx,π]π, i.e. the process V x ,π stops at the moment
of ruin : no more consumption.
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Goal Functional

Let U : C → R+ be a concave function such that U(0) = 0 and
U(x)/|x | → 0 as |x | → ∞. For π = (B,C ) ∈ Ax

a we put

Jπ
t :=

∫ t

0
e−βsU(cs)ds

and consider the infinite horizon maximization problem with the
goal functional EJπ

∞. The Bellman function

W (x) := sup
π∈Ax

a

EJπ
∞ , x ∈ intK ,

is increasing with respect to the partial ordering ≥K .
The process V λx1+(1−λ)x2,λπ1+(1−λ)π2 is the convex combination of
V xi ,πi with the same coefficients. For continuous Y the ruin time
is the maximum of θxi ,πi and the concavity of u implies the
concavity of W . But if Y has jumps, the ruin times are not related
in this way and we cannot guarantee (at least, by the above
argument) that the Bellman function is concave.

Yuri Kabanov HJB equations 60 / 83



Consumption–investment without transaction costs Models with transaction costs Consumption–investment with Lévy processes

The Hamilton–Jacobi–Bellman Equation, I

Let G := (−K ) ∩ ∂O1(0) where Or (y) := {x ∈ Rd : |x − y | < r}
Then −K = cone G . We denote by ΣG the support function of G ,
i.e. ΣG (p) = supx∈G px . Put

F (X , p, I(f , x),W , x) = max{F0(X , p, I(f , x),W , x) + U∗(p),ΣG (p)},

where X ∈ Sd , the set of d × d symmetric matrices, p, x ∈ Rd ,
W ∈ R, f ∈ C1(K ) ∩ C 2(x) and the function F0 is given by

F0(X , p, I(f , x),W , x) =
1

2
trA(x)X + µ(x)p + I(f , x) − βW (x)

=
1

2

∑

i ,j

aijx ix jX ij +
∑

i

µix ipi + I(f , x) − βW (x)

where A(x) is the matrix with Aij(x) = aijx ix j , µi(x) = µix i ,

I(f , x) =

∫
(f (x+diag xz)−f (x)−diag xzf ′(x))I (z, x)Π(dz), x ∈ intK ,

I (z, x) = I{z : x+diag xz∈K} = IK (x + diag xz).
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The Hamilton–Jacobi–Bellman Equation, II

If φ is a smooth function, we put

Lφ(x) := F (φ′′(x), φ′(x),I(φ, x), φ(x), x).

In a similar way, L0 corresponds to the function F0.
We show, under mild hypotheses, that W is the unique viscosity
solution of the Dirichlet problem for the HJB equation

F (W ′′(x),W ′(x),I(W , x),W (x), x) = 0, x ∈ intK ,

W (x) = 0, x ∈ ∂K .

In general, W has no derivatives at some points x ∈ intK and the
notation above needs to be interpreted. The idea of viscosity
solutions is to substitute W in F by suitable test functions.
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Viscosity Solutions

A function v ∈ C (K ) is called viscosity supersolution (of HJB)
if for every x ∈ intK and every f ∈ C1(K ) ∩ C 2(x) such that
v(x) = f (x) and v ≥ f the inequality Lf (x) ≤ 0 holds.
A function v ∈ C (K ) is called viscosity subsolution of if for
every x ∈ intK and every f ∈ C1(K ) ∩ C 2(x) such that
v(x) = f (x) and v ≤ f the inequality Lf (x) ≥ 0 holds.
v ∈ C (K ) is viscosity solution of if v is simultaneously a
viscosity super- and subsolution.
v ∈ C1(K ) ∩ C 2(intK ) is classical supersolution of HJB if
Lv ≤ 0 on intK . We add the adjective strict when Lv < 0 on
the set intK .

Lemma

Suppose that the function v is a viscosity solution. If v is twice
differentiable at x0 ∈ intK, then it satisfies HJB at this point in
the classical sense.
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Jets

For p ∈ Rd and X ∈ Sd we put Qp,X (z) = pz + (1/2)〈Xz , z〉 and
define the super- and subjets of a function v at the point x :

J+v(x) = {(p,X ) : v(x + h) ≤ v(x) + Qp,X (h) + o(|h|2)},

J−v(x) = {(p,X ) : v(x + h) ≥ v(x) + Qp,X (h) + o(|h|2)}.

I.e. J+v(x) (resp. J−v(x)) is the family of coefficients of quadratic
functions v(x) + Qp,X (y − .) dominating v(.) (resp., dominated by
v(.)) near x up to the 2nd order and coinciding with v(.) at x .
For integro-differential operators viscosity solution does not admit
an equivalent formulation in terms of jets.

Lemma

Let v be a viscosity supersolution, x ∈ intK, and (p,X ) ∈ J−v(x).
Then there is a function f ∈ C1(K ) ∩ C 2(x) such that f ′(x) = p,
f ′′(x) = X, f (x) = v(x), f ≥ v on K and, hence,

F (X , p,I(f , x),W (x), x) ≤ 0.
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Supermaringales and Majorants of W

Put Ṽ = V θ− = VI[0,θ[ + Vσ−I[θ,∞[ where θ is the ruin time.
Let Φ be the set of continuous functions f : K → R+ increasing
with respect to ≥K and such that for each x ∈ intK , π ∈ Ax

a

X f = X f ,x ,π = e−βt f (Ṽ ) + Jπ,

is a supermartingale. This set is convex and stable under the
operation ∧. Any continuous function which is a monotone limit of
functions from Φ also belongs to Φ.

Lemma

(a) If f ∈ Φ, then W ≤ f ;
(b) if a point y ∈ ∂K is such that there is f ∈ Φ with f (y) = 0,
then W is continuous at y .

Proof. Indeed : EJπ
t ≤ EX f

t ≤ f (Ṽ0) = f (V0) ≤ f (V0−) = f (x).
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Supermaringales and Supersolutions of HJB, I

Lemma

Let f : K → R+ be a function in C1(K ) ∩ C 2(intK ). If f is a
classical supersolution of HJB, then f is a monotone function and
X f is a supermartingale, i.e. f ∈ Φ.

Proof. A classical supersolution is increasing with respect to ≥K .
Indeed, for any x , h ∈ intK there is ϑ ∈ [0, 1] such that

f (x + h) − f (x) = f ′(x + ϑh)h ≥ 0

because for the supersolution ΣG (f ′(y)) ≤ 0 when y ∈ intK , or,
equivalently, f ′(y)h ≥ 0 for every h ∈ K . By continuity,
f (x + h) − f (x) ≥ 0 for every x , h ∈ K .
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Supermaringales and Supersolutions of HJB, II

Using the Itô formula we have :

X f
t = f (x) +

∫ t∧θ

0
e−βs [L0f (Ṽs)− cs f

′(Ṽs) + U(cs)]ds + Rt + mt ,

where the integral is a decreasing process (since [...] ≤ Lf (Ṽs)),

Rt =

∫ t∧θ

0

e−βsf ′(Vs−)dBc
s +

∑

s≤t

e−βs [f (Ṽs− + ∆Bs) − f (Ṽs−)]

is also decreasing and m is the local martingale with

mt =

∫ t∧θ

0

e−βs f ′(Ṽs−)diag ṼsΞdws

+

∫ t

0

∫
e−βs [f (Ṽs− + diag Ṽs−z) − f (Ṽs−)]I (Ṽs−, z)p̃(dz, ds).

p̃(dz , ds) = p(dz , ds) − Π(dz)ds.
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Strict Local Supersolutions

We fix a ball Ōr (x) ⊆ intK and define τπ as the exit time of V π,x

from Or (x), i.e.

τπ = inf{t ≥ 0 : |V π,x
t − x | ≥ r}.

Lemma

Let f ∈ C1(K ) ∩ C 2(Ōr (x)) be such that Lf ≤ −ε < 0 on Ōr (x).
Then there exist a constant η > 0 and an interval ]0, t0] such that

sup
π∈Ax

a

EX f ,x ,π
t∧τπ ≤ f (x) − ηt ∀ t ∈]0, t0].
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Dynamic Programming Principle

For the following two assertions we need to assume that Ω is a
path space.

Lemma

Let Tf and Tb be, respectively, the sets of all finite and bounded
stopping times. Then

W (x) ≤ sup
π∈Ax

a

inf
τ∈Tf

E
(
Jπ
τ + e−βτW (V x ,π

τ− )
)
.

Lemma

Assume that W (x) is continuous on intK. Then for any τ ∈ Tf

W (x) ≥ sup
π∈Ax

a

E
(
Jπ
τ + e−βτW (V x ,π

τ− )
)
.
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Bellman Function and HJB

Theorem

Assume that the Bellman function W is in C (K ). Then W is a
viscosity solution of the HJB equation).

Proof.

Yuri Kabanov HJB equations 70 / 83



Consumption–investment without transaction costs Models with transaction costs Consumption–investment with Lévy processes

Uniqueness Theorem for HJB

Definition. We say that a positive function ℓ ∈ C (K ) ∩ C 2(intK )
is the Lyapunov function if the following properties are satisfied :
1) ℓ′(x) ∈ intK ∗ and L0ℓ(x) ≤ 0 for all x ∈ intK ,
2) ℓ(x) → ∞ as |x | → ∞.

Theorem

Assume that the jump measure Π does not charge
(d − 1)-dimensional surfaces. Suppose that there exists a Lyapunov
function ℓ. Then the Dirichlet problem for the HJB equation has at
most one viscosity solution in the class of continuous functions
satisfying the growth condition

W (x)/ℓ(x) → 0, |x | → ∞.
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Uniqueness Theorem for HJB. Idea of the proof, I

Let W and W̃ be two viscosity solutions of HJB coinciding on ∂K .
Suppose that W (z) > W̃ (z) for some z ∈ K . Take ε > 0 such that

W (z) − W̃ (z) − 2εℓ(z) > 0.

Define continuous functions ∆n : K × K → R

∆n(x , y) := W (x) − W̃ (y) −
1

2
n|x − y |2 − ε[ℓ(x) + ℓ(y)], n ≥ 0.

Note that ∆n(x , x) = ∆0(x , x) for all x ∈ K and ∆0(x , x) ≤ 0 when
x ∈ ∂K . Since ℓ has a higher growth rate than W we deduce that
∆n(x , y) → −∞ as |x | + |y | → ∞. The sets {∆n ≥ a} are compacts and
∆n attains its maximum. I.e., there is (xn, yn) ∈ K × K such that

∆n(xn, yn) = ∆̄n := sup
(x,y)∈K×K

∆n(x , y) ≥ ∆̄ := sup
x∈K

∆0(x , x) > 0.

All (xn, yn) belong to the compact {(x , y) : ∆0(x , y) ≥ 0}. Thus, the

sequence n|xn − yn|2 is bounded. We assume wlg that (xn, yn) converge

to (x̂ , x̂). Also, n|xn − yn|2 → 0 (otherwise we ∆0(x̂ , x̂) > ∆̄). Clearly,

∆̄n → ∆0(x̂ , x̂) = ∆̄. Thus, x̂ is in the interior of K and so are xn and yn.
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Uniqueness Theorem for HJB. The Ishii Lemma.

Lemma

Let v and ṽ be two continuous functions on an open subset
O ⊆ Rd . Consider the function ∆(x , y) = v(x)− ṽ(y)− 1

2n|x − y |2

with n > 0. Suppose that ∆ attains a local maximum at (x̂ , ŷ).
Then there are symmetric matrices X and Y such that

(n(x̂ − ŷ ),X ) ∈ J̄+v(x̂), (n(x̂ − ŷ),Y ) ∈ J̄−ṽ(ŷ ),

and (
X 0
0 −Y

)
≤ 3n

(
I −I

−I I

)
.

Here J̄+v(x) and J̄−v(x) are values of the set-valued mappings
whose graphs are closures of graphs of J+v and J−v .
The matrix inequality implies the bound

tr (A(x)X − A(y)Y ) ≤ 3n|A|1/2|x − y |2.
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Uniqueness Theorem for HJB. Idea of the proof, II

By the Ishii lemma applied to v = W − εℓ and ṽ = W̃ + εℓ at the
point (xn, yn) there exist matrices X n and Y n such that

(n(xn − yn),X
n) ∈ J̄+v(xn), (n(xn − yn),Y

n) ∈ J̄−ṽ(yn).

Using the notations pn = n(xn − yn) + εℓ′(xn),
qn = n(xn − yn)− εℓ′(yn), Xn = X n + εℓ′′(xn), Yn = Y n − εℓ′′(yn),
we may rewrite the last relations in the following equivalent form :

(pn,Xn) ∈ J̄+W (xn), (qn,Yn) ∈ J̄−W̃ (yn).

Since W and W̃ are viscosity sub- and supersolutions, one can
find, the functions fn ∈ C1(K ) ∩ C 2(xn) and f̃n ∈ C1(K ) ∩ C 2(yn)
such that f ′n(xn) = pn, f ′′n (xn) = Xn, fn(xn) = W (xn), fn ≤ W on
K , and f̃ ′n(yn) = qn, f̃ ′′n (yn) = Yn, f̃n(yn) = W̃ (yn), f̃n ≥ W̃ on K ,

F (Xn, pn,I(fn, xn),W (xn), xn) ≥ 0 ≥ F (Yn, qn,I(f̃n, yn), W̃ (yn), yn).
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Uniqueness Theorem for HJB. Idea of the proof, III

The second inequality implies that mqn ≤ 0 for each
m ∈ G = (−K ) ∩ ∂O1(0). But for the Lyapunov function
ℓ′(x) ∈ intK ∗ when x ∈ intK and, therefore,

mpn = mqn + εm(ℓ′(xn) + ℓ′(yn)) < 0.

Since G is a compact, ΣG (pn) < 0. It follows that

F0(Xn, pn,I(fn, xn),W (xn), xn) + U∗(pn) ≥ 0,

F0(Yn, qn,I(f̃n, yn), W̃ (yn), yn) + U∗(qn) ≤ 0.

Recall that U∗ is decreasing with respect to the partial ordering
generated by C∗ hence also by K ∗. Thus, U∗(pn) ≤ U∗(qn) and we
obtain the inequality

bn = F0(Xn, pn,I(fn, xn),W (xn), xn)−F0(Yn, qn,I(f̃n, yn), W̃ (yn), yn) ≥ 0
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Uniqueness Theorem for HJB. Idea of the proof, IV

Clearly,

bn =
1

2

d∑

i ,j=1

(aijx i
nx

j
nX

n
ij − aijy i

ny
j
nY

n
ij ) + n

d∑

i=1

µi (x i
n − y i

n)
2

−
1

2
βn|xn − yn|

2 − β∆n(xn, yn) + I(fn − εℓ, xn) − I(f̃n + εℓ, yn)

+ε(L0ℓ(xn) + L0ℓ(yn)).

The first term in the rhs is dominated by a constant multiplied by
n|xn − yn|

2 ; a similar bound for the second sum is obvious ; the last
term is negative according to the definition of the Lyapunov
function. To complete the proof, it remains to show that

lim sup
n

(I(fn − εℓ, xn) − I(f̃n + εℓ, yn)) ≤ 0.

Indeed, with this we have that lim sup bn ≤ −β∆̄ < 0.
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Uniqueness Theorem for HJB. Idea of the proof, V

Let

Fn(z) =
[
(fn − εℓ)(xn + diag xnz) − (fn − εℓ)(xn)

−diag xnz(f ′n − εℓ′)(xn)
]
I (z , xn),

F̃n(z) =
[
(f̃n + εℓ)(yn + diag ynz) − (f̃n + εℓ)(yn)

−diag ynz(f̃ ′n + εℓ′)(yn)
]
I (z , yn).

and Hn(z) = Fn(z) − F̃n(z) With this notation

I(fn − εℓ, xn) − I(f̃n + εℓ, yn) =

∫
Hn(z)Π(dz)

and the needed inequality will follow from the Fatou lemma if we
show that there is a constant C such that for all sufficiently large n

Hn(z) ≤ C (|z | ∧ |z |2) for all z ∈ K (24)

and
lim sup

n
Hn(z) ≤ 0 Π-a.s. (25)
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Uniqueness Theorem for HJB. Idea of the proof, VI

Using the properties of fn we get the bound :

Fn(z) ≤
[
(W − εℓ)(xn + diag xnz) − (W − εℓ)(xn)

−diag xnzn(xn − yn)
]
I (z , xn)

Since the continuous function W and l are of sublinear growth and
the sequences xn and n(xn − yn) are converging (hence bounded),
absolute value of the function in the right-hand side of this
inequality is dominated by a function c(1 + |z |). The arguments for
−F̃n(z) are similar. So, the function Hn is of sublinear growth.
We have the following identity :

Hn(z) = (∆n(xn + diag xnz, yn + diag ynz) − ∆n(xn, yn)

+(1/2)n|diag (xn − yn)z|
2)I (z, xn)I (z, yn)

+(fn(xn + diag xnz) − W (xn + diag xnz))I (z, xn)I (z, yn)

−(f̃n(yn + diag ynz) − W̃ (yn + diag ynz))I (z, xn)I (z, yn)

+Fn(z)(1 − I (z, yn)) − F̃n(z)(1 − I (z, xn)).
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Uniqueness Theorem for HJB. Idea of the proof, VII

The function ∆(x , y) attains its maximum at (xn, yn) and fn ≤ W ,
f̃n ≥ W̃ . It follows that

Hn(z) ≤ (1/2)n|xn−yn|
2|z |2+Fn(z)(1−I (z , yn))−F̃n(z)(1−I (z , xn)).

Let δ > 0 be the distance between x̂ from and ∂K . Then
xn, yn ∈ 0̧δ/2(x̂) for large n and, hence, the second and the third
terms in the rhs above are functions vanishing on O1(0). So, for
such n the function Hn is dominated from above on O1(0) by
cn|z |

2 where cn := (1/2)n|xn − yn|
2 → 0 as n → ∞. Therefore,

(24) holds. The relation (24) also holds because the second and
the first terms tends to zero (stationarily) for all z except the set
{z : x̂ + diag x̂z ∈ ∂K}. The coordinates of points of ∂K \ {0}
are non-zero. So this set is empty if x̂ has a zero coordinate. If all
components x̂ are nonzero, the operator x̂ is non-degenerated and
the set in question is of zero measure Π in virtue of our assumption.
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Lyapunov Functions, I

Let u ∈ C (R+) ∩ C 2(R+ \ {0}) be increasing strictly concave,
u(0) = 0, u(∞) = ∞. Define R = −u′2/(u′′u) and assume that
R̄ = supz>0 R(z) <∞.
For p ∈ K ∗ \ {0} define the function f (x) = fp(x) := u(px). If
y ∈ K and x 6= 0, then yf ′(x) = (py)u′(px) ≤ 0. The inequality is
strict when p ∈ intK ∗.
Recall that Aij(x) = Aijx ix j and µi(x) = µix i . Suppose that
〈A(x)p, p〉 6= 0. Isolating the full square we get that L0f (x) is
equal to

1

2

[
〈A(x)p, p〉u′′(px) + 2〈µ(x), p〉u′(px) +

〈µ(x), p〉2

〈A(x)p, p〉

u′2(px)

u′′(px)

]

+
1

2

〈µ(x), p〉2

〈A(x)p, p〉
R(px)u(px) + I(f , x) − βu(px).

Note that

(f (x + diag xz)− f (x) − diag xzf ′(x)) = (1/2)u′′(...)(px)2 ≤ 0.
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Lyapunov Functions, II

It follows that L0f (x) ≤ 0 if β ≥ η(p)R̄ where

η(p) :=
1

2
sup
x∈K

〈µ(x), p〉2

〈A(x)p, p〉
.

If 〈A(x)p, p〉 = 0 and 〈µ(x), p〉 = 0, then L0f (x) = −βu(px) ≤ 0
for any β ≥ 0.

Proposition

Let p ∈ intK ∗. Suppose that 〈µ(x), p〉 vanishes on the set
{x ∈ intK : 〈A(x)p, p〉 = 0}. If β ≥ η(p)R̄ , then fp is a Lyapunov
function.
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Existence of Classical Supersolutions

The same ideas are useful also in the search of supersolutions.
Since Lf = L0f + U∗(f ′), it is natural to choose u related to U.
For the case where C = Rd

+ and U(c) = u(e1c), with u satisfying
the postulated properties and assuming, moreover, the inequality

u∗(au′(z)) ≤ g(a)u(z)

we get, using the homogeneity of L0, the following result.

Proposition

Assume 〈A(x)p, p〉 6= 0 for all x ∈ intK and p ∈ K ∗ \{0}. Suppose
that g(a) = o(a) as a → ∞. If β > η̄R̄, then there is a0 such that
for every a ≥ a0 the function afp is a classical supersolution of
HJB, whatever is p ∈ K ∗ with p1 6= 0. Moreover, if p ∈ intK ∗,
then afp is a strict supersolution on any compact subset of intK.
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Power Utility Function

For the power utility function u(z) = zγ/γ, γ ∈]0, 1[, we have :

R(z) = γ/(1 − γ) = R̄,

u∗(au′(z)) = (1 − γ)aγ/(γ−1)u(z) = g(a)u(z).

If A = diag σ, σ1 = 0, µ1 = 0 (the first asset is the numéraire) and
σi 6= 0 for i 6= 1, then, by the Cauchy–Schwarz inequality,

η(p) ≤
1

2

d∑

i=2

(
µi

σi

)2

.

The inequality

β >
γ

1 − γ

1

2

d∑

i=2

(
µi

σi

)2

(implying the bound β > η̄R̄) ensures the existence of a classical
supersolution.
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