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INTRODUCTION

In this work we consider the optimal problem:

Min
1

2

∫ T

0

(|y(t)− y0(t)|2 + |u(t)|2U
)
dt; (1)

y(t) ∈ K ,K is a closed convex subset in H. Here
y0(t) ∈ L2(0,T ;H), and (y(t), u(t)) is the solution to the
following equation:

{
y ′(t) + νAy(t) + By(t) = Du(t) + f ,
y(0) = y0

(2)

f (t) ∈ L2(0,T ;H), u(t) ∈ L2(0,T ;U), y0 ∈ V



INTRODUCTION

H = {y(t); y(t) ∈ (L2(Ω))2,∇ · y(t) = 0, y(t) · n = 0 on ∂Ω}
V = {y(t); y(t) ∈ (H1

0 (Ω))2,∇ · y(t) = 0}
and V ′is the dual space of V ,D(A) = (H2(Ω))2 ∩ V , Ω is a
bounded open subset with smooth boundary in R2, n is the
outward vector to ∂Ω and

A = −P4,By = P[(∇ · y)y ]

where P is the projection to H. We shall denote by the symbol | · |
the norm in R2,H and (L2(Ω))2, and ‖ · ‖ the norm of the space
V . Define the trilinear function b(y , z ,w) by

b(y , z ,w) =

∫

Ω

2∑

i ,j=1

yiDizjwjdx , ∀y , z ,w ∈ V

U is a Hilbert space and D ∈ L(U,H). We denote by | · |U the
norm in U, and (·, ·)U the scalar product in U.
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Lemma

(1) b(y , z ,w) = −b(y ,w , z) and there exists a positive constant
C, s.t.

|b(y , z ,w)| ≤ C‖y‖m1‖z‖m2+1‖w‖m3

where m1,m2,m3 are positive number, satisfy the inequality:

m1 + m2 + m3 ≥ 1,mi 6= 1

m1 + m2 + m3 > 1,∃mi = 1

(2)there exists a positive constant C, s.t.

‖y‖m ≤ C‖y‖1−α
l ‖y‖α

l+1

where α = m − l ∈ (0, 1). Here ‖ · ‖mi denotes the norm of the
space Hmi (Ω).
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Definition

Let E be a Banach space, and E ∗ is it’s dual space.
∀ω(t) ∈ BV (0,T ;E ∗), we define the continuous functional µω on
C ([0,T ];E ) by

µω(z(t)) =

∫ T

0
(z(t), dω(t))(E ,E∗)

(·, ·)(E ,E∗) denotes the dual product between E and E ∗, the
integral is the Riemann-Steiljes integral. Denote M(0,T ;E ∗) the
dual space of C ([0,T ];E ). For the closed convex subset K in E ,
denote K by K = {y(t) ∈ C ([0,T ];E ); y(t) ∈ E ,∀t ∈ [0,T ]}, and
the normal cone of K on y(t) is

NK(y(t)) = {µ ∈ M(0,T ;E ∗);µ(y(t)− z(t)) ≥ 0,∀z(t) ∈ K}



INTRODUCTION

The main results of this work is about the maximum principle of
the optimal control problem governed by Navier-Stokes equations
with state constraint in 2-D. To get the results, we make some
assumptions as following:
(A) ∃ z̃(t), ũ(t) such that z̃(t) ∈ intK , for t in a dense subset of
[0,T ], where z̃(t), ũ(t) satisfies the following equation:

{
z̃ ′(t) + νAz̃(t) + (B ′(y∗(t)))z̃(t) = B(y∗(t)) + Dũ(t) + f (t),
z̃(0) = y0

(3)
Here y∗(t) is the optimal state function for the optimal control
problem (1),(2).
(A’) ∃ z̃(t), ũ(t) such that z̃(t) ∈ intV K , for t in a dense subset of
[0,T ], where z̃(t), ũ(t) satisfies the equation (3)
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Theorem

Suppose that the pair (y∗(t), u∗(t)) is solution for optimal control
problem (1),(2). Then under the assumption (A), there are
p(t) ∈ L∞(0,T ;H) and ω(t) ∈ BV (0,T ;H), such that:

D∗p(t) = u∗(t) a.e.[0,T ] (4)

where p(t) satisfies the following equation

{
p′(t) = νAp(t) + (B ′(y∗(t))∗)p(t) + y∗(t)− y0(t) + dω(t),
p(T ) = 0

(5)



MAIN RESULTS

Theorem

The latter equation holds in the sense of

∫ T

t
〈p′(s)− νAp(s)− (B ′(y∗(s))∗)p(s), ψ(s)〉ds

=

∫ T

t
〈y∗(s)− y0(s), ψ(s)〉ds +

∫ T

t
〈dω(s), ψ(s)〉

∀ψ(t) ∈ C 1([0,T ];D(A)). Moreover,

µω ∈ NK(y∗(t)) (6)

where µω and NK(y∗(t)) are defined as in definition 1 in the case
that E = H. Here B ′(y) is the operator defined by

〈B ′(y)z ,w〉 = b(y , z ,w) + b(z , y ,w), ∀ z ,w ∈ V



MAIN RESULTS

Theorem

Suppose the pair (y∗(t), u∗(t)) is the solution for optimal control
problem (1),(2), then under (A’) there are p(t) ∈ L∞(0,T ;V ′),
ω(t) ∈ BV (0,T ;V ′), such that (4) holds, and (5) holds in the
sense of

∫ T

t
(p′(s)− νAp(s)− (B ′(y∗(s))∗)p(s), ψ(s))(V ′,V )ds

=

∫ T

t
(y∗(s)− y0(s), ψ(s))(V ′,V )ds +

∫ T

t
(dω(s), ψ(s))(V ′,V )

∀ψ(t) ∈ C 1([0,T ];D(A)), here (·, ·)(V ′,V ) is the dual product
between V ′ and V . Moreover,(6) also holds, where µω and
NK(y∗(t)) are defined as in definition 1 in the case that E = V



PROOF

Before the proof of the two theorems we define the approximating
cost function to the original one F (y , u) which is defined by (1) as

Fε(y , u) =

∫ T

0

1

2
[|y(t)−y0(t)|2+|u(t)|2+|u(t)−u∗(t)|2U ]+ϕε(yε(t))dt

(7)
where ϕε(y) is the regularization of ϕ, which is the characteristic
function of K , and the function ϕε(y) is defined by

ϕε(y) = inf {|y − x |2
2ε

+ ϕ(x); x ∈ H} (8)

Define

C = {(y , u) ∈ C ([0,T ];H)×L2(0,T ;U); (y(t), u(t))is the solution to (2)}

.
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Lemma

There exists at least one optimal pair for the optimal control
problem:

Min{Fε(y , u); (y , u) ∈ C } (9)

Lemma

Suppose zε(t) is the solution to the equation:

{
z ′ε(t) + νAzε(t) + (B ′(yε(t)))zε(t) = B(yε(t)) + Dũ(t) + f (t),
zε(0) = y0

(10)
then zε(t) → z̃(t) strongly in C ([0,T ];H) ∩ L2(0,T ;V ), where
z̃((t), ũ((t) is defined in equation (3), and yε(t) is the the optimal
solution in lemma 2.



PROOF

Proof of theorem 1:
step 1:(first order necessary condition for approximate problem)
Since (yε, uε) minimize the functional Fε(y , u), we know that

lim
h→0

Fε(uε + hu)− Fε(uε)

h
= 0, ∀u ∈ U

and this yields

〈yε − y0,wε〉+ (uε, u)U + (uε − u∗, u)U + 〈∂ϕε(yε),wε〉 = 0 (11)

where wε = limh→0
yh
ε−yε

h , (yh
ε , uε + hu) ∈ C and wε(t) is the

solution to the equation

w ′
ε(t) + νAwε(t) + B ′(yε(t))wε(t) = Du, wε(0) = 0 (12)



PROOF

suppose pε(t) is the solution to the backward equation

{
p′ε(t) = νApε(t) + (B ′(yε(t))

∗)pε(t) + yε(t)− y0(t) + ∂ϕε(yε(t))
pε(T ) = 0

(13)
By (11) together with (12),(13), we get by calculation that

〈p′ε(t),wε(t)〉+〈−Apε(t)−(B ′(yε(t))
∗)pε(t),wε(t)〉+(uε−u∗, u)U = 0.

Hence we have

(−D∗pε(t) + 2uε − u∗, u)U = 0, ∀u ∈ U

so, we get

D∗pε(t) = 2uε(t)− u∗(t), a.e. t ∈ [0,T ] (14)



PROOF

step 2: (pass (yε, uε) to limit) By lemma 2,
∃(yε, uε) ∈ C , s.t. Fε(uε, yε) = inf Fε(u, y) = dε. since

Fε(yε, uε) ≤ Fε(y
∗, u∗) = F (y∗, u∗) = d

so |dε| ≤ C ,∀ε > 0,hence

‖uε‖L2(0,T ;H) ≤ C (15)

Multiply the equation

y ′ε(t) + νAyε(t) + Byε(t) = Duε(t) + f (t) (16)

by yε(t), Ayε(t), integrate from 0 to t, we get



PROOF

‖yε(t)‖2+

∫ T

0
|Ayε(t)|2dt+

∫ T

0
|Byε(t)|2dt+

∫ T

0
|(yε(t))

′|2dt ≤ C

(17)
hence, on a subsequence convergent to 0, again denoted by λ, we
have

yε(t) → y1(t) strongly in C ([0,T ;H]) ∩ L2(0,T ;V )

Ayε(t) → Ay1(t), (yε(t))
′ → y ′1(t) weakly in L2(0,T ;H)

uε(t) → u1(t) weakly in L2(0,T ;U)

Byε(t) → By1(t) strongly in L2(0,T ;H)

so (y1(t), u1(t)) is a solution to equation (2)
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ϕ(yε) =
ε

2
|∂ϕε(yε)|2 + ϕ(Jϕ

ε (yε)) ≥ ε

2
|∂ϕε(yε)|2

so {ε|∂ϕε(yε)|2} is bounded in L1(0,T ) and since
∂ϕε(yε)=

1
ε (yε − Jϕ

ε (yε)), where Jϕ
ε (yε) is the function satisfies

Jϕ
ε (yε)− yε + ∂ϕε(J

ϕ
ε (yε)) 3 0, we have

∫ T

0
|yε − Jϕ

ε (yε)|dt ≤ εT

∫ T

0
ε|∂ϕε(yε)|2dt → 0 as ε → 0

so yε − Jϕ
ε (yε) → 0 a.e. (0,T ).since Jϕ

ε (yε) ∈ K , ∀t ∈ [0,T ], so
y1(t) ∈ K . ∀t ∈ [0,T ], Inasmuch as

lim inf
ε→0

Fε(yε, uε) ≤ lim
ε→0

Fε(y
∗, u∗) = F (y∗, u∗)

we have u1 = u∗, y1 = y∗ and uε → u∗ strongly in L2(0,T ;H).
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step3: (pass ∂ϕε(yε), pε to limit) by assumption (A) and lemma 3,
we know, ∃ρ > 0, ε0 > 0 s.t. zε(t) + ρh ∈ K , for t in a dense
subset of [0,T], ∀|h| = 1,∀ε < ε0. For ε fixed, zε(t) is continuous
in [0,T ], so there exists a partition {ti}N

i=1 of [0,T ], s.t.
|zε(ti )− zε(ti−1)| < ρ

2 , zε(ti ) + ρh ∈ K ,∀1 ≤ i ≤ N. Since

N∑

i=1

∫ ti

ti−1

〈∂ϕε(yε(t)), yε(t)− zε(ti )− ρh〉dt

≥
N∑

i=1

∫ ti

ti−1

ϕε(yε(t))− ϕε(zε(ti ) + ρh)dt ≥ 0

so ρ
∫ T
0 |∂ϕε(yε)|dt ≤ ∑N

i=1

∫ ti
ti−1
〈∂ϕε(yε(t)), yε(t)− zε(ti )〉dt

=

∫ T

0
〈∂ϕε(yε(t)), yε(t)−zε(t)〉dt+

N∑

i=1

∫ ti

ti−1

〈∂ϕε(yε(t)), zε(t)−zε(ti )〉dt
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ρ

2

∫ T

0
|∂ϕε(yε)|dt ≤

∫ T

0
〈∂ϕε(yε(t)), yε(t)− zε(t)〉dt

=

∫ T

0
〈2uε(t)−u∗, ũ(t)−uε(t)〉−〈yε(t)−y0(t), yε(t)−zε(t)〉dt ≤ C

(18)
we set ωε(t) =

∫ t
0 ∂ϕε(yε(s))ds, t ∈ [0,T ], by (18) we see that

there exists a function ω(t) ∈ BV ([0, t];H), and a sequence
convergent to 0, again denoted by λ, s.t. ωε(t) → ω(t) weakly in
H for every t ∈ [0,T ], and ∀y(s) ∈ C ([t,T ];H),∀t ∈ [0,T ].

∫ T

t
〈∂ϕε(yε(s)), y(s)〉ds =

∫ T

t
〈dω(s), y(s)〉. (19)



PROOF

Multiply equation 13) by signpε(t) = pε(t)
|pε(t)| , we have

d

dt
|pε(t)| = ν‖pε(t)‖2

|pε(t)|

+
b(pε(t), yε(t), pε(t))

|pε(t)| +
〈yε(t)− y0(t), pε(t)〉

|pε(t)| +
〈∂ϕε(yε), pε(t)〉

|pε(t)|
since|b(pε(t), yε(t), pε(t))| ≤ C |pε(t)|‖pε(t)‖‖yε(t)‖, we get

d

dt
|pε(t)| ≥ ν‖pε(t)‖2

|pε(t)| −C
‖pε(t)‖

√
|pε(t)|√

|pε(t)|
−|yε(t)−y0(t)|−|∂ϕε(yε)|

integrate from 0 to t, by (18) and using Young’s inequality

|pε(t)|+ ν

2

∫ T

t
‖pε(s)‖ds ≤ C1 + C2

∫ T

t
|pε(s)|ds

By Gronwall’s inequality, we know that ‖pε(t)‖L∞(0,T ;H) < C , by
Alaoglu’s theorem,

pε(t) → p(t) w∗ − L∞(0,T ;H)
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so ∀ψ(t) ∈ C 1(0,T ;D(A)), multiply the equation (13) by ψ(t),
letting ε pass to 0, we have
∫ T

t
〈p(s),−ψ′(s)− νAψ(s)− B ′(y∗(s))ψ(s)〉ds − 〈p(t),−ψ(t)〉

=

∫ T

t
〈ψ(s), y∗(s)− y0(s)〉ds +

∫ T

t
〈ψ(s), dω(s)〉

so p(t) satisfies the equation (4), and (5) also holds by passing ε
to 0. Since

∫ T

0
〈∂ϕε(yε(t)), yε(t)− z(t)〉dt ≥ ϕε(yε(t))− ϕε(z(t)) ≥ 0

∀z(t) ∈ K, by (19), pass ε to 0, we get
∫ T

0
〈dω(t), y∗(t)− z(t)〉 ≥ 0

i .e. µω ∈ NK(y∗(t)). the proof is completed. ]
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Lemma

The solution to equation (10) zε(t) convergent to the solution to
equation (3) z̃(t) in C ([0,T ];V ). yε(t) → y∗(t) strongly in
C ([0,T ];V )
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Proof of Th.2: By (A’) and lemma 4, ∃ρ, ε0, s.t.zε(t) + ρh ∈ K ,
for t in a dense subset of [0,T], ∀ε < ε0, ‖h‖ = 1. For ε fixed, ∃ a
partition of [0,T ], s.t. ‖zε(ti )− zε(ti−1)‖ < ρ

2 , zε(ti ) + ρh ∈ K .

N∑

i=1

∫ ti

ti−1

〈∂ϕε(yε(t)), yε(t)− zε(ti )− ρh〉(V ′,V )dt

≥
N∑

i=1

∫ ti

ti−1

ϕε(yε(t))− ϕε(zε(ti ) + ρh)dt ≥ 0

ρ

∫ T

0
‖∂ϕε(yε)‖V ′dt ≤

N∑

i=1

∫ ti

ti−1

〈∂ϕε(yε(t)), yε(t)− zε(ti )〉(V ′,V )dt

=

∫ T

0
〈∂ϕε(yε(t)), yε(t)− zε(t)〉(V ′,V )dt

+
N∑

i=1

∫ ti

ti−1

〈∂ϕε(yε(t)), zε(t)− zε(ti )〉(V ′,V )dt
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so

ρ

2

∫ T

0
‖∂ϕε(yε)‖V ′dt ≤

∫ T

0
〈∂ϕε(yε(t)), yε(t)− zε(t)〉(V ′,V )dt

=

∫ T

0
〈2uε(t)− u∗, ũ(t)− uε(t)〉 − 〈yε(t)− y0(t), yε − zε〉dt ≤ C

(20)
we set ωε(t) =

∫ t
0 ∂ϕε(yε(s))ds, t ∈ [0,T ], by (20) we see that

there exists a function ω(t) ∈ BV ([0, t];V ′), and a sequence
convergent to 0, again denoted by ε s.t. ωε(t) → ω(t) weakly in
V ′ for every t ∈ [0,T ], and ∀y(s) ∈ C ([t,T ];V ),∀t ∈ [0,T ]

∫ T

t
(∂ϕε(yε(s)), y(s))(V ′,V )ds →

∫ T

t
(dw(s), y(s))(V ′,V ). (21)
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Multiply equation (13) by A−1pλ(t)
‖pε(t)‖V ′

in the sense of the dual product

between V ′ and V , denote qε(t) = A−1pε(t), we have

d

dt
‖pε(t)‖V ′ =

ν|pε(t)|2
‖pε(t)‖V ′

+
b(qε, yε, pε) + b(yε, qε, pε)

‖pε(t)‖V ′

+
〈yε(t)− y0(t), qε(t)〉

‖pε(t)‖V ′
+
〈∂ϕε(yε), qε(t)〉
‖pε(t)‖V ′

integrate from 0 to t

‖pλ(t)‖V ′ +
ν

2

∫ T

t

|pε(s)|2
‖pε(s)‖V ′

ds ≤ C1 + C2

∫ T

t
‖pε(s)‖V ′ds

By Gronwall’s inequality, we get

‖pε(t)‖L∞(0,T ;V ′) ≤ C

by Alaogu’s theorem,

pε(t) → p(t) w∗ − L∞(0,T ;V ′)
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so ∀ψ(t) ∈ C 1(0,T ;D(A)), multiply the equation (13) by ψ(t),
letting ε pass to 0, we have

∫ T

t
〈p(s),−ψ′(s)−νAψ(s)−B ′(y∗(s))ψ(s)〉(V ′,V )ds−〈p(t),−ψ(t)〉(V ′,V )

=

∫ T

t
〈ψ(s), y∗(s)− y0(s)〉(V ,V ′)ds +

∫ T

t
〈ψ(s), dw(s)〉(V ,V ′)

so p(t) satisfies the equation in theorem 2, (5) also holds by
passing ε to 0. (6) follows by the same arguments in the proof of
theoerm 1. the proof is completed. ]



EXAMPLE

Example 1. Let K be the set K = {y ∈ H; |y | ≤ ρ}, then K is a
closed convex set in H, since

‖z̃(t)‖C([0,T ];H) ≤ C (‖B(y∗(t)) + Dũ(t) + f (t)‖L(0,T ;H)))

so it is feasible to apply theorem 1 to get the necessary condition
of the optimal control pair after checking whether condition (A) is
satisfied or not.



EXAMPLE

Example 2. Let K be so called the Enstrophy set

K = {y ∈ V ; |∇ × y | ≤ ϕ(|y |2) + ρ}

where ∇× y = curl y(x), and it is true that |∇× y | = |∇y | = ‖y‖.
Enstrophy set plays an important role in fluid mechanics. Since

‖z̃(t)‖C([0,T ];V ) ≤ C (‖B(y∗(t)) + Dũ(t) + f (t)‖L(0,T ;H)))

so it is feasible to apply theorem 2 to get the necessary condition
of the optimal control pair after checking whether condition (A’) is
satisfied or not.



EXAMPLE

Example 3. Let K be the so called Helicity set,

K = {y ∈ V ; 〈y , curl y〉2 + λ‖y‖2 ≤ ρ2}

where λ, ρ are positive constants. The helicity set plays an
important role in fluid mechanics and in particular, it is an
invariant set of Euler’s equation. By the same argument as in
Example 2, we know that it is feasible to apply theorem 2 to get
the necessary condition of the optimal pair when the state
constrained set is Helicity set.
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