Brownian Bridge on Stochastic Interval Definition, First Properties and Applications

M. L. Bedini

ITN - UBO, Brest

March 20th, 2010

M. L. Bedini (ITN - UBO, Brest) Brownian Bridge on Stochastic Interval

In this work we give the definition of a stochastic process β named *Information process.* This process is a Brownian bridge between 0 and 0 on a stochastic interval $[0, \tau]$. The objective is to model the information regarding a *default time*.

Key words:

- Brownian bridge
- totally inaccessible stopping time
- local time
- Credit Risk

- 2 Definition and Basic Properties
- 3 Conditional Expectations
- (4) Local Time of eta and classification of au
- 5 First Application to Credit Risk
- 6 Conclusion and Further Development

- ② Definition and Basic Properties
- Onditional Expectations
- S First Application to Credit Risk
- Onclusion and Further Development

In Credit Risk literature there are two main class of models:

- Structural Models
- Reduced-form Models (*intensity based approach* and *hazard process approach*)

Brody, Hughston and Macrina in 2007 have introduced a new class of models called *Information-based* whose aim is to avoid some of the problems that are present in previous approaches without losing the advantages.

Information (\mathbb{F}) concerning the default time τ is equal to the information generated by some value-process Y observable on the market:

$$Y_t = y_0 + \nu t + \sigma W_t, \quad y_0, \nu > 0$$

 $\mathbb{F} = \mathbb{F}^W$

$$au \triangleq \inf \left\{ t \in \mathbb{R}_+ : Y_t = 0 \right\}$$

- The default time τ is an \mathbb{F} -predictable stopping time.
- (+) Approach referring to economic fundamentals. Valuation and hedging are easy.
- (-) In reality the value process is not observable. Possibility of null spreads for short maturities.

Reduced-form models

- Hazard-process approach: $\mathbb{H} = (\mathcal{H}_t)_{t \ge 0}$, $\mathcal{H}_t \triangleq \sigma(t \land \tau)_+$, $\mathbb{F} = \mathbb{H} \lor \tilde{\mathbb{F}}$
- Intensity-based approach: $\exists\;\lambda=\{\lambda_t\}_{t\geq 0}$ non-negative, $\mathbb F\text{-adapted}$ such that

$$M_t = \mathbb{I}_{\{t \ge \tau\}} - \int_0^{t \land \tau} \lambda_s ds$$

is $\mathbb F\text{-martingale}$

- The default time τ is an $\mathbb F\text{-totally}$ inaccessible stopping time.
- (+) The default occurs by "surprise".
- (-) Difficult pricing formulas. Necessity of some highly-technical assumptions.

Information based approach

• Explicit model of the information: $\xi_t = \sigma t H_T + \beta_{tT}$

$$\mathbb{F} = \mathbb{F}^{\xi}$$

where $H_T \sim B(1, p)$

- (+) Easy pricing formulas.
- (-) No default time.

Objective

Our approach aims to model the information on the default time allowing for tractable pricing formulas and preserving the "surprise" of the credit event.

Definition and Basic Properties

- Onditional Expectations
- S First Application to Credit Risk
- Onclusion and Further Development

 $(\Omega, \mathcal{F}, \mathbf{P})$ complete probability space, \mathcal{N}_P the collection of the **P**-null sets. $W = \{W_t\}_{t\geq 0}$ is a standard BM. $\tau : \Omega \to (0, +\infty)$ random variable. $F(t) \triangleq \mathbf{P} \{\tau \leq t\}.$

Assumption

 τ is independent of W.

Definition

The process $\beta = \{\beta_t\}_{t \ge 0}$ will be called *Information process* :

$$\beta_t \triangleq W_t - \frac{t}{\tau \vee t} W_{\tau \vee t} \tag{1}$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\mathbb{F}^{\beta} = \left(\mathcal{F}^{\beta}_{t}\right)_{t \geq 0}$ will denote the smallest filtration satisfying the usual condition (right-continuity and completeness) and containing the natural filtration of β .

Proposition

- τ is an $\mathbb{F}^{\beta}\text{-stopping time}$.
- For all t > 0, $\{\beta_t = 0\} = \{\tau \ge t\}$, **P**-a.s.
- β is an \mathbb{F}^{β} -Markov process.

2 Definition and Basic Properties

<u>Conditional Expectations</u>

- $\textbf{9} \ \ \text{Local time of } \beta \text{ and classification of } \tau$
- S First Application to Credit Risk
- Occurrent Conclusion and Further Development

 $\beta^r = \{\beta^r_t\}_{0 \leq t \leq r}$ Brownian bridge between 0 and 0 on [0,r]

Density of β_t^r

$$\varphi_t(r,x) \triangleq \sqrt{\frac{r}{2\pi t (r-t)}} \exp\left[-\frac{x^2 r}{2t (r-t)}\right], \ r > t > 0, \ x \in \mathbb{R}$$

Density of $\beta_{\textit{u}}^{\textit{r}}$ given $\beta_{t}^{\textit{r}}$

$$f_{\beta_t}(x, u, r) \triangleq \sqrt{\frac{r-t}{2\pi (r-u) (u-t)}} \exp \left[-\frac{\left(x - \frac{r-u}{r-t} \beta_t^r\right)^2}{2\frac{r-u}{r-t} (u-t)}\right], \ u \in (t, r)$$

3

글 에 에 글 어

< 4³ ► <

Theorem

Let t > 0, $g : \mathbb{R}^+ \to \mathbb{R}$ a Borel function such that $\mathbf{E}[|g(\tau)|] < +\infty$. Then, **P**-almost surely on $\{\tau > t\}$

$$\mathbf{E}\left[g\left(\tau\right)\mathbb{I}_{\{\tau>t\}}|\mathcal{F}_{t}^{\beta}\right] = \frac{\int_{t}^{+\infty}g\left(r\right)\varphi_{t}\left(t,\beta_{t}\right)dF(r)}{\int_{t}^{+\infty}\varphi_{t}\left(t,\beta_{t}\right)dF(r)}\mathbb{I}_{\{\tau>t\}}$$
(2)
$$\mathbf{P}\left\{\tau>u|\mathcal{F}_{t}^{\beta}\right\}\mathbb{I}_{\{\tau>t\}} = \frac{\int_{u}^{+\infty}\varphi_{t}\left(t,\beta_{t}\right)dF(r)}{\int_{t}^{+\infty}\varphi_{t}\left(t,\beta_{t}\right)dF(r)}\mathbb{I}_{\{\tau>t\}}$$
(3)

э

Theorem

Let u > t > 0 and g a bounded Borel function defined on $\mathbb{R}^+ \times \mathbb{R}$ such that $\mathbf{E}[|g(\tau, \beta_u)|] < +\infty$. Then, **P**-almost surely

$$\mathbf{E}\left[g\left(\tau,\beta_{u}\right)|\mathcal{F}_{t}^{\beta}\right] = g\left(\tau,0\right)\mathbb{I}_{\left\{\tau \leq t\right\}} +$$
(4)

$$+\frac{\int_{u}^{+\infty} \left(\int_{\mathbb{R}} g(r,x) f_{\beta_{t}}(x,u,r) dx\right) \varphi_{t}(r,\beta_{t}) dF(r)}{\int_{t}^{+\infty} \varphi_{t}(r,\beta_{t}) dF(r)} \mathbb{I}_{\{\tau > t\}} + \frac{\int_{t}^{u} g(r,0) \varphi_{t}(r,\beta_{t}) dF(r)}{\int_{t}^{+\infty} \varphi_{t}(r,\beta_{t}) dF(r)} \mathbb{I}_{\{\tau > t\}}$$

э

- Motivation
- 2 Definition and Basic Properties
- Onditional Expectations

• Local time of β and classification of τ

- S First Application to Credit Risk
- Onclusion and Further Development

Theorem

Suppose F(t) admits a continuous density with respect to the Lebesgue measure: dF(t) = f(t)dt. Then τ is a totally inaccessible stopping time with respect to \mathbb{F}^{β} and its compensator $K = \{K_t\}_{t>0}$ is given by

$$K_t = \int_0^{\tau \wedge t} \frac{f(r)dl_r}{\int_r^{+\infty} \varphi_r(v,0) f(v)dv}$$
(5)

where I_t is the local time at 0 of the process β at time t.

- 2 Definition and Basic Properties
- Onditional Expectations
- First Application to Credit Risk
- Occurrent Conclusion and Further Development

Following Bielecki, Jeanblanc and Rutkowsky (2007) we consider the case of pricing a Credit Default Swap (CDS) in an elementary market model. $D = \{D_t\}_{0 \le t \le T}$ is the *dividend process* on a certain lifespan [0, T]. D is of finite variation, $D_0 = 0$ and $\int_{[t, T]} dD_r$ is **P**-integrable for any $t \in [0, T]$.

Definition

The ex-dividend price process S of a contract expiring at T and paying dividends according to a process $D = \{D_t\}_{0 \le t \le T}$ equals, for every $t \in [0, T]$

$$S_t = \mathbf{E} \left[\int\limits_{(t,T]} dD_r |\mathcal{F}_t
ight]$$

 $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ is the market filtration.

Example: CDS (2/3).

Definition

A CDS with a constant rate k and a recovery at default is a defaultable claim $(0, A, Z, \tau)$ where $Z(t) = \delta(t)$ and A(t) = -kt for every $t \in [0, T]$. A function $\delta : [0, T] \to \mathbb{R}$ represents the default protection and k is the CDS rate. $H = \{H_t\}_{t \ge 0}, H_t \triangleq \mathbb{I}_{\{t \ge \tau\}}$

Let $s \in [0, T]$ be a fixed date. We consider a stylized *T*-maturity CDS with a constant spread *k* and a constant protection δ , initiated at time *s* and with maturity *T*. The dividend process $D = \{D_t\}_{0 \le t \le T}$ equals

$$D_t = \int_{(s,t]} \delta(r) dH_r - k \int_{(s,t]} (1 - H_r) dr$$

Example: CDS (3/3)

Lemma

If $\mathbb{F} = \mathbb{F}^{\beta}$, for $t \in [s, T]$ we have

$$S_t(k,\delta,T) = \mathbb{I}_{\{\tau > t\}} \left[-\int_t^T \delta(r) d\Psi_t(r) - k \int_t^T \Psi_t(r) dr \right]$$

Where
$$\Psi_t(r) \triangleq \mathbf{P}\left\{\tau > r | \mathcal{F}_t^\beta\right\}.$$

Lemma

If $\mathbb{F} = \mathbb{H}$, for $t \in [s, T]$ we have

$$S_t(k,\delta,T) = \mathbb{I}_{\{\tau > t\}} \left[-\int_t^T \delta(r) dG(r) - k \int_t^T G(r) dr \right]$$

Where $G(r) \triangleq \mathbf{P} \{ \tau > r \}$

M. L. Bedini (ITN - UBO, Brest)

2

21 / 23

< 日 > < 同 > < 三 > < 三 >

- ② Definition and Basic Properties
- Onditional Expectations
- ${\small {\small {\bullet}}} {\small {\small {\bullet}}} {\small {\rm Local time of } \beta {\rm \ and \ classification \ of } \tau}$
- First Application to Credit Risk

• Conclusion and Further Development

- Modeling the information regarding a default time τ with a Brownian bridge on the stochastic interval [0, τ], allows to reconcile the Information-based approach to Credit-Risk with the reduced-form models.
- Explicit formulas can be obtained and they appear to be an intuitive generalization of some simple models already present in literature.
- Further development concerning the enlargement of a reference filtration F with F^β will be presented in another work.

- Bielecki, Jeanblanc, Rutkowski. *Hedging of Basket of Credit Derivatives in Credit Default Swap Market*. Journal of Credit Risk, 3:91-132, 2007.
- F. Black, J. C. Cox. Valuing corporate securities: Some effects of bond indenture provisions. J. Finance 31, 351-367, 1976.
- D. C. Brody, L. P. Hughston & A. Macrina. *Beyond hazard rates: a new framework for credit-risk modeling*. Advances in Mathematical Finance, Festschrift volume in honor of Dilip Madan. Birkhauser, Basel, 2007.
- R. Elliot, M. Jeanblanc, M. Yor. On Models of Default Risk. Mathematical Finance 10, 179-195, 2000.
- D. Lando. *On Cox Processes and Credit Risky Securities*. Review of Derivatives Research 2, 99-120, 1998.
- R. C. Merton. *On the pricing of corporate debt: The risk structure of interest rates.* J. Finance 29, 449-470, 1974.