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Abstract

In this work we give the definition of a stochastic process β named
Information process. This process is a Brownian bridge between 0 and 0 on
a stochastic interval [0, τ ]. The objective is to model the information
regarding a default time.
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Motivation

In Credit Risk literature there are two main class of models:

Structural Models

Reduced-form Models (intensity based approach and hazard process
approach)

Brody, Hughston and Macrina in 2007 have introduced a new class of
models called Information-based whose aim is to avoid some of the
problems that are present in previous approaches without losing the
advantages.
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Structural Models

Information (F) concerning the default time τ is equal to the information
generated by some value-process Y observable on the market:

Yt = y0 + νt + σWt , y0, ν > 0

F = FW

τ , inf {t ∈ R+ : Yt = 0}

The default time τ is an F-predictable stopping time.

(+) Approach referring to economic fundamentals. Valuation and
hedging are easy.

(-) In reality the value process is not observable. Possibility of null
spreads for short maturities.
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Reduced-form models

Hazard-process approach: H = (Ht)t≥0 , Ht , σ(t ∧ τ)+,

F = H ∨ F̃

Intensity-based approach: ∃ λ = {λt}t≥0 non-negative, F-adapted
such that

Mt = I{t≥τ} −
t∧τˆ

0

λsds

is F-martingale

The default time τ is an F-totally inaccessible stopping time.

(+) The default occurs by“surprise”.

(-) Difficult pricing formulas. Necessity of some highly-technical
assumptions.
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Information based approach

Explicit model of the information: ξt = σtHT + βtT

F = Fξ

where HT ∼ B(1, p)

(+) Easy pricing formulas.

(-) No default time.

Objective

Our approach aims to model the information on the default time allowing
for tractable pricing formulas and preserving the“surprise”of the credit
event.
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Assumption and definition

(Ω,F ,P) complete probability space, NP the collection of the P-null sets.
W = {Wt}t≥0 is a standard BM. τ : Ω → (0,+∞) random variable.

F (t) , P {τ ≤ t}.

Assumption

τ is independent of W .

Definition

The process β = {βt}t≥0 will be called Information process :

βt , Wt −
t

τ ∨ t
Wτ∨t (1)
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Properties

Fβ =
(
Fβ

t

)
t≥0

will denote the smallest filtration satisfying the usual

condition (right-continuity and completeness) and containing the natural
filtration of β.

Proposition

τ is an Fβ-stopping time .

For all t > 0, {βt = 0} = {τ ≥ t}, P-a.s.

β is an Fβ-Markov process.
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Some notation

βr = {βr
t }0≤t≤r Brownian bridge between 0 and 0 on [0, r ]

Density of βr
t

ϕt (r , x) ,
√

r

2πt (r − t)
exp

[
− x2r

2t (r − t)

]
, r > t > 0, x ∈ R

Density of βr
u given βr

t

fβt (x , u, r) ,

√
r − t

2π (r − u) (u − t)
exp

−
(
x − r−u

r−t βr
t

)2

2 r−u
r−t (u − t)

 , u ∈ (t, r)
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Conditional Expectation (1/2)

Theorem

Let t > 0, g : R+ → R a Borel function such that E [|g (τ) |] < +∞.
Then, P-almost surely on {τ > t}

E
[
g (τ) I{τ>t}|F

β
t

]
=

´ +∞
t g (r) ϕt (t, βt) dF (r)´ +∞

t ϕt (t, βt) dF (r)
I{τ>t} (2)

P
{

τ > u|Fβ
t

}
I{τ>t} =

´ +∞
u ϕt (t, βt) dF (r)´ +∞
t ϕt (t, βt) dF (r)

I{τ>t} (3)
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Conditional Expectation (2/2)

Theorem

Let u > t > 0 and g a bounded Borel function defined on R+ × R such
that E [|g (τ, βu)|] < +∞. Then, P-almost surely

E
[
g (τ, βu) |Fβ

t

]
= g (τ, 0) I{τ≤t} + (4)

+

´ +∞
u

(´
R g (r , x) fβt (x , u, r) dx

)
ϕt (r , βt) dF (r)´ +∞

t ϕt (r , βt) dF (r)
I{τ>t}+

+

´ u
t g (r , 0) ϕt (r , βt) dF (r)´ +∞

t ϕt (r , βt) dF (r)
I{τ>t}
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Main Theorem

Theorem

Suppose F (t) admits a continuous density with respect to the Lebesgue
measure: dF (t) = f (t)dt. Then τ is a totally inaccessible stopping time
with respect to Fβ and its compensator K = {Kt}t≥0 is given by

Kt =

τ∧tˆ

0

f (r)dlr´ +∞
r ϕr (v , 0) f (v)dv

(5)

where lt is the local time at 0 of the process β at time t.
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Example: CDS (1/3).

Following Bielecki, Jeanblanc and Rutkowsky (2007) we consider the case
of pricing a Credit Default Swap (CDS) in an elementary market model.
D = {Dt}0≤t≤T is the dividend process on a certain lifespan [0,T ]. D is
of finite variation, D0 = 0 and

´
]t,T ] dDr is P-integrable for any t ∈ [0,T ].

Definition

The ex-dividend price process S of a contract expiring at T and paying
dividends according to a process D = {Dt}0≤t≤T equals, for every
t ∈ [0,T ]

St = E

 ˆ
(t,T ]

dDr |Ft


F = (Ft)t≥0 is the market filtration.
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Example: CDS (2/3).

Definition

A CDS with a constant rate k and a recovery at default is a defaultable
claim (0,A,Z , τ) where Z (t) = δ(t) and A(t) = −kt for every t ∈ [0,T ].
A function δ : [0,T ] → R represents the default protection and k is the
CDS rate. H = {Ht}t≥0 , Ht , I{t≥τ}

Let s ∈ [0,T ] be a fixed date. We consider a stylized T -maturity CDS
with a constant spread k and a constant protection δ, initiated at time s
and with maturity T . The dividend process D = {Dt}0≤t≤T equals

Dt =

ˆ

(s,t]

δ(r)dHr − k

ˆ

(s,t]

(1− Hr ) dr
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Example: CDS (3/3)

Lemma

If F = Fβ, for t ∈ [s,T ] we have

St (k, δ, T ) = I{τ>t}

− T̂

t

δ(r)dΨt(r)− k

T̂

t

Ψt(r)dr


Where Ψt(r) , P

{
τ > r |Fβ

t

}
.

Lemma

If F = H, for t ∈ [s,T ] we have

St (k, δ, T ) = I{τ>t}

− T̂

t

δ(r)dG (r)− k

T̂

t

G (r)dr


Where G (r) , P {τ > r}
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Conclusion and Further Development

Modeling the information regarding a default time τ with a Brownian
bridge on the stochastic interval [0, τ ], allows to reconcile the
Information-based approach to Credit-Risk with the reduced-form
models.

Explicit formulas can be obtained and they appear to be an intuitive
generalization of some simple models already present in literature.

Further development concerning the enlargement of a reference
filtration F with Fβ will be presented in another work.
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