Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient

EL HASSAN ESSAKY

Cadi Ayyad University Multidisciplinary Faculty Safi, Morocco ITN—Roscof, March 18-23, 2010

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \leq 1}, P)$ be a complete probability space $\mathcal{F}_t = \sigma(B_s, 0 \leq s \leq t) \lor \mathcal{N}$ be a filtration
- Consider the following ODE

$$\left\{ egin{array}{l} dY_t=0, t\in [0, \mathcal{T}], \ Y_\mathcal{T}=\xi\in R. \end{array}
ight.$$

(1)

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \leq 1}, P)$ be a complete probability space $\mathcal{F}_t = \sigma(B_s, 0 \leq s \leq t) \lor \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$\begin{aligned} dY_t &= 0, t \in [0, T], \\ Y_T &= \xi \in L^2(\Omega, \mathcal{F}_T; R). \end{aligned}$$

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \leq 1}, P)$ be a complete probability space $\mathcal{F}_t = \sigma(B_s, 0 \leq s \leq t) \lor \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$\begin{cases} dY_t = 0, t \in [0, T], \\ Y_T = \xi \in L^2(\Omega, \mathcal{F}_T; R). \end{cases}$$
(1)

We want to FIND \mathcal{F}_t -ADAPTED solution Y for equation (1).

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \leq 1}, P)$ be a complete probability space $\mathcal{F}_t = \sigma(B_s, 0 \leq s \leq t) \lor \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$\begin{cases} dY_t = 0, t \in [0, T], \\ Y_T = \xi \in L^2(\Omega, \mathcal{F}_T; R). \end{cases}$$
(1)

We want to FIND \mathcal{F}_t -ADAPTED solution Y for equation (1). This is IMPOSSIBLE, since the only solution is

$$Y_t = \xi, \text{ for all } t \in [0, T], \tag{2}$$

which is not \mathcal{F}_t -adapted.

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \leq 1}, P)$ be a complete probability space $\mathcal{F}_t = \sigma(B_s, 0 \leq s \leq t) \lor \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$\begin{cases} dY_t = 0, t \in [0, T], \\ Y_T = \xi \in L^2(\Omega, \mathcal{F}_T; R). \end{cases}$$
(1)

We want to FIND \mathcal{F}_t -ADAPTED solution Y for equation (1). This is IMPOSSIBLE, since the only solution is

$$Y_t = \xi, \text{ for all } t \in [0, T], \tag{2}$$

which is not \mathcal{F}_t -adapted. A natural way of making (2) \mathcal{F}_t -adapted is to redefine Y_t as follows

$$Y_t = E(\xi | \mathcal{F}_t), \ t \in [0, T].$$
(3)

Then Y_{t} is \mathcal{F}_{t} -adapted and satisfies $Y_{T} = \xi$, but not equation (1).

 $MRT \implies$ there exists an \mathcal{F}_t -adapted process Z square integrable s.t

$$Y_t = Y_0 + \int_0^t Z_s dB_s. \tag{4}$$

It follows that

$$Y_{T} = \xi = Y_{0} + \int_{0}^{T} Z_{s} dB_{s}.$$
 (5)

Combining (4) and (5), one has

$$Y_t = \xi - \int_t^T Z_s dB_s, \tag{6}$$

whose differential form is

$$\begin{cases} dY_t = Z_t dB_t, t \in [0, T], \\ Y_T = \xi. \end{cases}$$
(7)

Comparing (1) and (7), the term " $Z_t dB_t$ " has been added.

• BSDE is an equation of the following type:

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad 0 \le t \le T.$$
(8)

- T : TERMINAL TIME
- $f: \Omega \times [0, T] \times \mathbb{R}^d \times \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^d$: GENERATOR or COEFFICIENT
- ξ : TERMINAL CONDITION *F_T*-adapted process with value in *R^d*.
 UNKNOWNS ARE : *Y* ∈ *R^d* and *Z* ∈ *R^{d×n}*.

Denote by \mathbb{L} the set of $R^d \times R^{d \times n}$ -valued processes (Y, Z) defined on $R_+ \times \Omega$ which are \mathcal{F}_t -adapted and such that:

$$\|(\mathbf{Y},\mathbf{Z})\|^2 = \mathbf{E}\left(\sup_{0\leq t\leq T}|\mathbf{Y}_t|^2 + \int_0^T |\mathbf{Z}_s|^2 ds\right) < +\infty.$$

The couple $(\mathbb{L}, \|.\|)$ is then a Banach space.

Definition

A solution of equation (8) is a pair of processes (Y, Z) which belongs to the space $(\mathbb{L}, \|.\|)$ and satisfies equation (8).

2. BSDEs with Lipshitz coefficient

Consider the following assumptions:

- For all $(y, z) \in \mathbb{R}^d \times \mathbb{R}^{d \times n}$: $(\omega, t) \longrightarrow f(\omega, t, y, z)$ is \mathcal{F}_t progressively measurable
- $f(.,0,0) \in L^2([0,T] \times \Omega, \mathbb{R}^d)$
- f is Lipschitz : $\exists K > 0$ and $\forall y, y' \in \mathbb{R}^d, z, z' \in \mathbb{R}^{d \times n}$ and $(\omega, t) \in \Omega \times [0, T]$ s.t

$$\mid f(\omega,t,y,z) - f(\omega,t,y',z') \mid \leq K \left(\mid y - y' \mid + \mid z - z' \mid
ight).$$

• $\xi \in L^2(\Omega, \mathcal{F}_T; \mathbb{R}^d)$

Theorem : Pardoux and Peng 1990

Suppose that the above assumptions hold true. Then, there exists a unique solution for BSDE (15).

2. BSDEs with Lipshitz coefficient

Consider the following assumptions:

- For all $(y, z) \in \mathbb{R}^d \times \mathbb{R}^{d \times n}$: $(\omega, t) \longrightarrow f(\omega, t, y, z)$ is \mathcal{F}_t progressively measurable
- $f(.,0,0) \in L^2([0,T] \times \Omega, \mathbb{R}^d)$
- f is Lipschitz : $\exists K > 0$ and $\forall y, y' \in \mathbb{R}^d, z, z' \in \mathbb{R}^{d \times n}$ and $(\omega, t) \in \Omega \times [0, T]$ s.t

$$\mid f(\omega,t,y,z) - f(\omega,t,y',z') \mid \leq K \left(\mid y - y' \mid + \mid z - z' \mid \right).$$

• $\xi \in L^2(\Omega, \mathcal{F}_T; \mathbb{R}^d)$

Theorem : Pardoux and Peng 1990

Suppose that the above assumptions hold true. Then, there exists a unique solution for BSDE (15).

Consider a market where only two basic assets are traded.

- BOND :
- STOCK :

Consider a European call option whose payoff is

$$(X_T - K)^+$$
.

The option pricing problem is : fair price of this option at time t = 0?

Suppose that this option has a price y at time t = 0. Then the fair price for the option at time t = 0 should be such a y that the corresponding optimal investment would result in a wealth process Y_t satisfying

$$Y_T = (X_T - K)^+.$$

Consider a market where only two basic assets are traded.

- BOND : $dX_t^0 = rX_t^0 dt$
- STOCK :

Consider a European call option whose payoff is

$$(X_T - K)^+$$
.

The option pricing problem is : fair price of this option at time t = 0?

Suppose that this option has a price y at time t = 0. Then the fair price for the option at time t = 0 should be such a y that the corresponding optimal investment would result in a wealth process Y_t satisfying

$$Y_T = (X_T - K)^+.$$

Consider a market where only two basic assets are traded.

- BOND : $dX_t^0 = rX_t^0 dt$
- **STOCK** : $dX_t = bX_t dt + \sigma X_t dB_t$

Consider a European call option whose payoff is

$$(X_T - K)^+$$
.

The option pricing problem is : fair price of this option at time t = 0?

Suppose that this option has a price y at time t = 0. Then the fair price for the option at time t = 0 should be such a y that the corresponding optimal investment would result in a wealth process Y_t satisfying

$$Y_T = (X_T - K)^+.$$

Denote by

- R_t : the amount that the writer invests in the stock
- $Y_t R_t$: the remaining amount which is invested in the bond

 R_t determines a strategy of the investment which is called a portfolio. By setting $Z_t = \sigma R_t$, we obtain the following BSDE

$$\begin{pmatrix}
dX_t = bX_t dt + \sigma X_t dB_t \\
dY_t = \underbrace{(rY_t + \frac{b-r}{\sigma} Z_t)}_{f(t,Y_t,Z_t)} dt + Z_t dB_t, t \in [0, T], \\
X_0 = x, \quad Y_T = \underbrace{(X_T - K)^+}_{\xi}.
\end{cases}$$
(9)

Pardoux & Peng result \implies there exits a unique solution (Y_t, Z_t) . The option price at time t = 0 is given by Y_0 , and the portfolio is given by $R_t = \frac{Z_t}{\sigma}$.

Let u be the solution of the following system of semi-linear parabolic PDE's:

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) + \frac{1}{2}Tr(\sigma\sigma^*\Delta u)(t,x) + b\nabla u(t,x) + f(t,x,u(t,x),\nabla u\sigma(t,x)) = 0\\ u(T,x) = g(x). \end{cases}$$
(10)

Introducing $\{(Y^{s,x}, Z^{s,x}); s \le t \le T\}$ the adapted solution of the backward stochastic differential equation

$$\begin{cases} -dY_t = f(t, X_t^{s, x}, Y_t, Z_t)ds - Z_t^* dB_t \\ Y_T = g(X_T^{t, x}), \end{cases}$$
(11)

where $(X^{s,x})$ denotes the solution of the following stochastic differential equation

$$\begin{cases} dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t \\ X_s = x. \end{cases}$$
(12)

Then we have :

• u is a classical solution of PDE (10) \Longrightarrow

$$(Y_t^{s,x} = u(t, X_t^{s,x}), Z_t^{s,x} = \nabla u(t, X_t^{s,x})\sigma(s, X_t^{s,x}))$$

is a solution the BSDE (11).

• There exists a solution to the BSDE (11) $\Rightarrow u(t, x) = Y_t^{t,x}$, is a viscosity solution of PDE (10). This formula is a generalization of Feynman-Kac formula.

Suppose that f(t, x, y, z) = c(t, x)y + h(t, x), we obtain

$$\begin{aligned} \mathbf{Y}_{t}^{t,x} = & E\left[g(X_{1}^{t,x})\exp\left(\int_{t}^{1}c(r,X_{r}^{t,x})dr\right)\right. \\ & \left.+\int_{t}^{1}h(s,X_{s}^{t,x})\exp\left(\int_{t}^{s}c(r,X_{r}^{t,x})dr\right)ds\right] \end{aligned}$$

which is the classical Feynman-Kac formula.

4. BSDEs with locally Lipschitz coefficient

Consider the following assumptions:

(A1) f is continuous in (y, z) for almost all (t, ω) .

(A2) There exist K > 0 and $0 \le \alpha \le 1$ such that

 $\mid f(t,\omega,y,z) \mid \leq K(1+\mid y \mid^{\alpha} + \mid z \mid^{\alpha}).$

(A3) For each N > 0, there exists L_N such that:

$$| f(t, y, z) - f(t, y', z') | \le L_N(|y - y'| + |z - z'|) | y |, |y'|, |z|, |z'| \le N.$$

(A4) $\xi \in L^2(\Omega, \mathcal{F}_T; \mathbb{R}^d)$

Theorem : Bahlali 2002

Assume moreover that there exists a positive constant L such that $L_N = L + \sqrt{\log N}$ then there exists a unique solution for the BSDE (1).

4. BSDEs with locally Lipschitz coefficient

Consider the following assumptions:

(A1) f is continuous in (y, z) for almost all (t, ω) .

(A2) There exist K > 0 and $0 \le \alpha \le 1$ such that

 $\mid f(t,\omega,y,z) \mid \leq K(1+\mid y \mid^{\alpha} + \mid z \mid^{\alpha}).$

(A3) For each N > 0, there exists L_N such that:

$$| f(t, y, z) - f(t, y', z') | \le L_N(|y - y'| + |z - z'|) | y |, |y'|, |z|, |z'| \le N.$$

(A4) $\xi \in L^2(\Omega, \mathcal{F}_T; \mathbb{R}^d)$

Theorem : Bahlali 2002

Assume moreover that there exists a positive constant *L* such that $L_N = L + \sqrt{\log N}$ then there exists a unique solution for the BSDE (1).

5. BSDEs with locally monotone coefficient-Question

Question

Let $f(y) := -y \log | y |$. Suppose that $\xi \in \mathbb{L}^2(\mathcal{F}_T)$ or $\xi \in \mathbb{L}^p(\mathcal{F}_T)$, p > 1 and consider the following BSDE with logarithmic nonlinearity

$$Y_t = \xi - \int_t^T Y_s \log |Y_s| ds - \int_t^T Z_s dW_s.$$

Does this equation has a unique solution?

5. BSDEs with locally monotone coefficient-Assumptions

Consider the following assumptions:

- (H1) f is continuous in (y, z) for almost all (t, ω) ,
- (H2) There exist $M > 0, \gamma < \frac{1}{2}$ and $\eta \in \mathbb{L}^1([0, T] \times \Omega)$ such that,

$$\langle y, f(t, \omega, y, z) \rangle \leq \eta + M |y|^2 + \gamma |z|^2 \quad P-a.s., a.e. t \in [0, T].$$

(H3) "Almost" quadratic growth : $\exists M_1 > 0, 0 \leq \alpha < 2, \alpha' > 1$ and $\overline{\eta} \in \mathbb{L}^{\alpha'}([0, T] \times \Omega)$ s.t :

$$| f(t, \omega, y, z) | \leq \overline{\eta} + M_1(| y |^{\alpha} + | z |^{\alpha}).$$

5. BSDEs with locally monotone coefficient

(H4) There exists a real valued sequence $(A_N)_{N>1}$ and constants M > 1, r > 1 such that: i) $\forall N > 1$, $1 < A_N \le N^r$. ii) $\lim_{N \to \infty} A_N = \infty$. iii) Locally monotone condition : For every $N \in N, \forall y, y', z, z'$ such that $|y|, |y'|, |z|, |z'| \le N$, we have $\langle y - y', f(t, y, z) - f(t, y', z') \rangle$ $\le M |y - y'|^2 \log A_N + M |y - y'|| z - z' |\sqrt{\log A_N} + MA_N^{-1}$.

Theorem : Bahlali-Essaky-Hassani-Pardoux, 2002

Let ξ be a square integrable random variable. Assume that (H1)–(H4) are satisfied. Then the BSDE has a unique solution.

1. L^{p} -solutions to BSDEs with super-Motivation

Let's mention some considerations which have motivated the present work.

- The growth conditions on the nonlinearity constitute a critical case. Indeed, it is known that for any $\varepsilon > 0$, the solutions of the ordinary differential equation $X_t = x + \int_0^t X_s^{1+\varepsilon} ds$ explode at a finite time.
- The logarithmic nonlinearities appear in some PDEs arising in physics.
- In terms of continuous-state branching processes, the logarithmic nonlinearity u log u corresponds to the Neveu branching mechanism. This process was introduced by Neveu. For instance, the super-process with Neveu's branching mechanism is related to the Cauchy problem,

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u + u \log u = 0 \quad \text{on} \quad (0, \ \infty) \times R^d \\ u(0^+) = \varphi > 0 \end{cases}$$
(13)

Hence, our result can be seen as an alternative approach to the PDEs.

• It is worth noting that our condition on the coefficient *f* is new even for the classical Itô's forward SDEs.

$$X_{s} = x + \int_{0}^{s} X_{r} \log |X_{r}| dr + \int_{0}^{s} X_{r} \sqrt{|\log |X_{r}||} dW_{r}, \qquad 0 \le s \le T.$$
(14)

For instance, the problem to establish the existence of a pathwise unique solution to the following équation (14) still remains open.

5. BSDEs with locally monotone coefficient-Example

Example

Let $f(y) := -y \log |y|$ then for all $\xi \in \mathbb{L}^2(\mathcal{F}_T)$ the following BSDE has a unique solution

$$Y_t = \xi - \int_t^T Y_s \log |Y_s| ds - \int_t^T Z_s dW_s.$$

Indeed, f satisfies (H.1)-(H.3) since $\langle y, f(y) \rangle \leq 1$ and $|f(y)| \leq 1 + \frac{1}{\varepsilon} |y|^{1+\varepsilon}$ for all $\varepsilon > 0$. (H.4) is satisfied for every N > e and $A_N = N$.

5. BSDEs with locally monotone coefficient-Idea of the proof

• We define a family of semi-norms $(\rho_n(f))_{n \in \mathbf{N}}$ by,

$$\rho_n(f) = E \int_0^T \sup_{|y|,|z| \le n} |f(s,y,z)| ds.$$

• We Approximate f by a sequence $(f_n)_{n>1}$ of Lipschitz functions :

Lemma

Let f be a process which satisfies (H.1)–(H.3). Then there exists a sequence of processes (f_n) such that, (a) For each n, f_n is bounded and globally Lipschitz in (y, z) a.e. t and P-a.s. ω . There exists M' > 0, such that: (b) $\sup_n |f_n(t, \omega, y, z)| \le \overline{\eta} + M' + M_1(|y|^{\alpha} + |z|^{\alpha})$. P-a.s., a.e. $t \in [0, T]$. (c) $\sup_n < y, f_n(t, \omega, y, z) > \le \eta + M' + M|y|^2 + \gamma |z|^2$ (d) For every $N, \rho_N(f_n - f) \longrightarrow 0$ as $n \longrightarrow \infty$.

5. BSDEs with locally monotone coefficient-Key steps of the proof

• We consider the following BSDE

$$Y_t^n = \xi + \int_t^T f_n(s, Y_s^n, Z_s^n) ds - \int_t^T Z_s^n dW_s, \qquad 0 \le t \le T.$$

Lemma

There exits a universal constant
$$\ell$$
 such that
a)

$$E \int_{0}^{T} e^{2Ms} |Z_{s}^{f_{n}}|^{2} ds \leq \frac{1}{1-2\gamma} \left[e^{2MT} E |\xi|^{2} + 2E \int_{0}^{T} e^{2Ms} (\eta + M') ds \right] = K_{1}$$
b) $E \sup_{0 \leq t \leq T} (e^{2Mt} |Y_{t}^{f_{n}}|^{2}) \leq \ell K_{1} = K_{2}$
c) $E \int_{0}^{T} e^{2Ms} |f_{n}(s, Y_{s}^{f_{n}}, Z_{s}^{f_{n}})|^{\overline{\alpha}} ds \leq 4^{\overline{\alpha}-1} \left[E \int_{0}^{T} e^{2Ms} ((\overline{\eta} + M')^{\overline{\alpha}} + 4) ds + M_{1}^{\overline{\alpha}} K_{1} + TM_{1}^{\overline{\alpha}} K_{2} \right] = K_{3}$
d) $E \int_{0}^{T} e^{2Ms} |f(s, Y_{s}^{f_{n}}, Z_{s}^{f_{n}})|^{\overline{\alpha}} ds \leq K_{3}$, where $\overline{\alpha} = \min(\alpha', \frac{2}{\alpha})$.

• Hence the following convergences hold true

$$Y^n \to Y$$
, weakly star in $\mathbb{L}^2(\Omega, L^{\infty}[0, T])$
 $Z^n \to Z$, weakly in $\mathbb{L}^2(\Omega \times [0, T])$
 $f_n(., Y^n, Z^n) \to \Gamma$, weakly in $\mathbb{L}^{\overline{\alpha}}(\Omega \times [0, T])$,

Moreover

$$Y_t = \xi + \int_t^T \Gamma_s ds - \int_t^T Z_s dW_s, \ \forall t \in [0, T].$$

• We Apply Itô's formula to $(|Y^n - Y^m|^2 + \varepsilon)^p$ for some $0 , instead of <math>|Y^n - Y^m|^2$:

$$\lim_{n \to +\infty} \left(E \sup_{0 \le t \le T} |Y_t^n - Y_t|^\beta + E \int_0^T |Z_s^n - Z_s| ds \right) = 0, \ 1 < \beta < 2.$$

• We Identify Γ_s by proving that : $\lim_{n} E \int_{0}^{T} |f_n(s, Y_s^n, Z_s^n) - f(s, Y_s, Z_s)| ds = 0.$

6. L^{p} -solutions to BSDEs with locally monotone coefficient-Definition

Let p > 1 is an arbitrary fixed real number and all the considered processes are (\mathcal{F}_t)-predictable.

Definition

A solution of equation (8 is an (\mathcal{F}_t) -adapted and R^{d+dr} -valued process (Y, Z) such that

$$E\sup_{t\leq T}|Y_t|^p+E\left[\int_0^T|Z_s|^2ds\right]^{\frac{p}{2}}+E\int_0^T|f(s,Y_s,Z_s)|ds<+\infty$$

and satisfies

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s, \quad 0 \le t \le T.$$
(15)

21/34

6. L^{p} -solutions to BSDEs with locally monotone coefficient-Assumptions

We consider the following assumptions on
$$(\xi, f)$$
:
(H.0)

$$\begin{cases}
\text{There are } M \in \mathbb{L}^{0}(\Omega; \mathbb{L}^{1}([0, T]; R_{+})), K \in \mathbb{L}^{0}(\Omega; \mathbb{L}^{2}([0, T]; R_{+})) \text{ and } \gamma \in]0, \frac{1 \land (p-1)}{2} \\
\text{such that: } E \mid \xi \mid^{p} e^{\frac{p}{2}} \int_{0}^{T} \lambda_{s} ds \\
\text{such that: } E \mid \xi \mid^{p} e^{\frac{p}{2}} \int_{0}^{T} \lambda_{s} ds \\
< \infty, \text{ where } \lambda_{s} := 2M_{s} + \frac{K_{s}^{2}}{2\gamma} \\
\text{(H.1) } f \text{ is continuous in } (y, z) \text{ for almost all } (t, \omega). \\
\text{(H.2)}
$$\begin{cases}
\text{There are } \eta \text{ and } f^{0} \in \mathbb{L}^{0}(\Omega \times [0, T]; R_{+}) \text{ satisfying } E\left(\int_{0}^{T} e^{\int_{0}^{s} \lambda_{r} dr} \eta_{s} ds\right)^{\frac{p}{2}} < \infty \\
\text{ and } E\left(\int_{0}^{T} e^{\frac{1}{2}} \int_{0}^{s} \lambda_{r} dr} f_{s}^{0} ds\right)^{p} < \infty, \text{ where } \lambda \text{ is defined in assumption (H.0),} \\
\text{ such that: } \\
\langle y, f(t, y, z) \rangle \leq \eta_{t} + f_{t}^{0} |y| + M_{t} |y|^{2} + K_{t} |y| |z|.
\end{cases}$$$$

$$(H.3) \begin{cases} \text{There are } \overline{\eta} \in \mathbb{L}^{q}(\Omega \times [0, T]; R_{+})) \text{ (for some } q > 1) \text{ and } \alpha \in]1, p[, \alpha' \in]1, p \land 2[\text{ such that:} \\ | f(t, \omega, y, z) | \leq \overline{\eta}_{t} + |y|^{\alpha} + |z|^{\alpha'} . \\ \text{There are } v \in \mathbb{L}^{q'}(\Omega \times [0, T]; R_{+})) \text{ (for some } q' > 0) \text{ and } K' \in R_{+} \text{ such that} \\ \text{for every } N \in N \text{ and every } y, y' z, z' \text{ satisfying } |y|, |y'|, |z|, |z'| \leq N \\ 1_{v_{t}(\omega) \leq N} \langle y - y', f(t, \omega, y, z) - f(t, \omega, y', z') \rangle \\ \leq K' \log A_{N} |y - y'|^{2} + \sqrt{K' \log A_{N}} |y - y'|| z - z' | + K' \frac{\log A_{N}}{A_{N}} \\ \text{where } A_{N} \text{ is a increasing sequence and satisfies } A_{N} > 1, \lim_{N \to \infty} A_{N} = \infty \\ \text{ and } A_{N} \leq N^{\mu} \text{ for some } \mu > 0. \end{cases}$$

6. L^{p} -solutions to BSDEs with locally monotone coefficient-Existence and Uniqueness

Theorem : Bahlali-Essaky-Hassani

If (H.0)-(H.4) hold then (8) has a unique solution (Y, Z). Moreover we have

$$E \sup_{t} |Y_{t}|^{p} e^{\frac{p}{2} \int_{0}^{t} \lambda_{s} ds} + E \left[\int_{0}^{T} e^{\int_{0}^{s} \lambda_{r} dr} |Z_{s}|^{2} ds \right]^{\frac{p}{2}}$$

$$\leq C \left\{ E |\xi|^{p} e^{\frac{p}{2} \int_{0}^{T} \lambda_{s} ds} + E \left(\int_{0}^{T} e^{\int_{0}^{s} \lambda_{r} dr} \eta_{s} ds \right)^{\frac{p}{2}} + E \left(\int_{0}^{T} e^{\frac{1}{2} \int_{0}^{s} \lambda_{r} dr} f_{s}^{0} ds \right)^{p} \right\}.$$

for some constant C depending only on p and γ .

Example 1

Let $f(y) := -y \log |y|$ then for all $\xi \in \mathbb{L}^p(\mathcal{F}_T)$ the following BSDE has a unique solution

$$Y_t = \xi - \int_t^T Y_s \log |Y_s| ds - \int_t^T Z_s dW_s.$$

Indeed, f satisfies (H.1)-(H.3) since $\langle y, f(y) \rangle \leq 1$ and $|f(y)| \leq 1 + \frac{1}{\varepsilon} |y|^{1+\varepsilon}$ for all $\varepsilon > 0$. (H.4) is satisfied for every N > e with $v_s = 0$ and $A_N = N$.

Example 2

Let $g(y) := y \log \frac{|y|}{1+|y|}$ and $h \in \mathcal{C}(\mathbb{R}^{dr};\mathbb{R}_+) \bigcap \mathcal{C}^1(\mathbb{R}^{dr} - \{0\};\mathbb{R}_+)$ be such that : $h(z) = \begin{cases} |z|\sqrt{-\log|z|} & \text{if } |z| < 1 - \varepsilon_0 \\ |z|\sqrt{\log|z|} & \text{if } |z| > 1 + \varepsilon_0, \end{cases}$

where $\varepsilon_0 \in]0, 1[$. Finally, we put f(y, z) := g(y)h(z). Then for every $\xi \in \mathbb{L}^p(\mathcal{F}_T)$ the following BSDE has a unique solution

$$Y_t = \xi + \int_t^T f(Y_s, Z_s) ds - \int_t^T Z_s dW_s.$$

(H.4) is satisfied for every $N > \sqrt{e}$ with $v_s = 0$ and $A_N = N$

Example 3

Let $(X_t)_{t \leq T}$ be an (\mathcal{F}_t) -adapted and R^k -valued process satisfying :

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s,$$

where $X_0 \in \mathbb{R}^k$ and $\sigma, b : [0, T] \times \mathbb{R}^k \to \mathbb{R}^{kr} \times \mathbb{R}^k$ are measurable functions such that $\|\sigma(s, x)\| \leq c$ and $|b(s, x)| \leq c(1 + |x|)$, for some constant c.

Consider the following BSDE $Y_t = g(X_T) + \int_t^T (|X_s|^{\overline{q}} Y_s - Y_s \log |Y_s|) ds - \int_t^T Z_s dW_s.$

where $\overline{q} \in]0, 2[$ and g is a measurable function satisfying $|g(x)| \le c \exp c |x|^{\overline{q}'}$, for some constants c > 0, $\overline{q}' \in [0, 2[$.

The previous BSDE has a unique solution (Y, Z) such that

$$E \sup_{t} |Y_{t}|^{p} + E \left[\int_{0}^{T} |Z_{s}|^{2} ds \right]^{\frac{p}{2}} \leq C \exp(C |X_{0}|^{2}).$$

(H.4) is satisfied with $v_s = \exp |X_s|^{\overline{q}}$ and $A_N = N$.

Example 4 Let (ξ, f) satisfying (H.0)-(H.3) and (H'.4) $\begin{cases}
There are a positive process C satisfying <math>E \int_{0}^{T} e^{q'C_s} ds < \infty \text{ and } K' \in R_+ \text{ such that:} \\
\langle y - y', f(t, \omega, y, z) - f(t, \omega, y', z') \rangle \leq K' | y - y' |^2 \left(C_t(\omega) + |\log||y - y'||) \right) \\
+K' | y - y' || z - z' | \sqrt{C_t(\omega) + |\log||z - z'||}.
\end{cases}$ Then the following BSDE has a unique solution

 $Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s.$

(H.4) is satisfied with $v_s = \exp(C_s)$ and $A_N = N$.

28/34

6. L^{p} -solutions to BSDEs with locally monotone coefficient-Idea of the proof

• We Approximate f by a sequence $(f_n)_{n>1}$ of Lipschitz functions :

$$f_{n}(t, y, z) = (c_{1}e)^{2} \mathbb{1}_{\{\overline{\Lambda}_{t} \leq n\}} \psi(n^{-2}|y|^{2}) \psi(n^{-2}|z|^{2}) \times \\ m^{(d+dr)} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{dr}} f(t, y - u, z - v) \Pi_{i=1}^{d} \psi(mu_{i}) \Pi_{i=1}^{d} \Pi_{j=1}^{r} \psi(mv_{ij}) du dv,$$

with $m := \frac{n^{2p}}{h_t}$ and $\overline{\Lambda}_t := \eta_t + \overline{\eta}_t + f_t^0 + M_t + K_t + \frac{1}{h_t}$ where h_t is a predictable process such that $0 < h_t \le 1$.

We consider the following BSDE

$$Y_t^n = \xi \mathbf{1}_{\{|\xi| \le n\}} + \int_t^T f_n(s, Y_s^n, Z_s^n) ds - \int_t^T Z_s^n dW_s, \qquad 0 \le t \le T.$$

• We Apply Itô's formula to $(\{|Y^n - Y^m|^2 + \varepsilon\}(\frac{1}{\varepsilon})^{2Ct})^{\frac{\beta}{2}}$ for some $1 < \beta < p \land 2$, instead of $|Y^n - Y^m|^2$ we have: For every p' < p, $(Y^n, Z^n) \to (Y, Z)$ strongly in $\mathbb{L}^{p'}(\Omega; \mathcal{C}([0, T]; R^d)) \times \mathbb{L}^{p'}(\Omega; \mathbb{L}^2([0, T]; R^{dr}))$. • For every $\hat{\beta} < \frac{2}{\alpha'} \land \frac{p}{\alpha} \land \frac{p}{\alpha'} \land q$ $\lim_{n \to \infty} E \int_0^T |f_n(s, Y^n_s, Z^n_s) - f(s, Y_s, Z_s)|^{\hat{\beta}} ds = 0$.

29/34

1. L^{p} -solutions to BSDEs with super-linear growth coefficient-Application to PDEs

Consider the following system of semilinear PDE
$$(\mathcal{P}^{(g,F)})$$

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} + \mathcal{L}u(t,x) + F(t,x,u(t,x),\sigma^*\nabla u(t,x)) = 0 \ t \in]0, T[,x \in \mathbb{R}^k \\ u(T,x) = g(x) \quad x \in \mathbb{R}^k \end{cases}$$
where $\mathcal{L} := \frac{1}{2} \sum (\sigma \sigma^*)_{i:} \partial_x^2 + \sum b_i \partial_i, \quad \sigma \in C_*^3(\mathbb{R}^k, \mathbb{R}^{kr}), \quad b \in C_*^2(\mathbb{R}^k, \mathbb{R}^k).$

where
$$\mathcal{L} := \frac{1}{2} \sum_{i,j} (\sigma \sigma^*)_{ij} \partial_{ij}^2 + \sum_i b_i \partial_i, \quad \sigma \in \mathcal{C}^3_b(\mathcal{R}^{\kappa}, \mathcal{R}^{\kappa r}), \quad b \in \mathcal{C}^2_b(\mathcal{R}^{\kappa}, \mathcal{R}^{\kappa}).$$

Let

$$\mathcal{H}^{1+} := \bigcup_{\delta \ge 0, \beta > 1} \left\{ v \in \mathcal{C}([0, T]; \mathbb{L}^{\beta}(\mathbb{R}^{k}, e^{-\delta |x|} dx; \mathbb{R}^{d})) : \int_{0}^{T} \int_{\mathbb{R}^{k}} |\sigma^{*} \nabla v(s, x)|^{\beta} e^{-\delta |x|} dx ds < \infty \right\}.$$

Definition

A (weak) solution of $(\mathcal{P}^{(g,F)})$ is a function $u \in \mathcal{H}^{1+}$ such that for every $\varphi \in C_c^1$ $\int_t^T \langle u(s), \frac{\partial \varphi(s)}{\partial s} \rangle ds + \langle u(t), \varphi(t) \rangle$ $= \langle g, \varphi(T) \rangle + \int_t^T \langle F(s, ., u(s), \sigma^* \nabla u(s)), \varphi(s) \rangle ds + \int_t^T \langle Lu(s), \varphi(s) \rangle ds,$ where $\langle f(s), h(s) \rangle = \int_{\mathbb{R}^k} f(s, x)h(s, x)dx.$ 1. L^{p} -solutions to BSDEs with super-linear growth coefficient-Application to PDE

$$\begin{array}{l} \textbf{(A.0)} \ g(x) \in \mathbb{L}^{\overline{p}}(R^{k}, e^{-\delta|x|} dx; R^{d}).\\ \textbf{(A.1)} \ F(t, x, ., .) \ \text{is continuous} \qquad \text{a.e. } (t, x)\\ \textbf{(A.2)} \ \begin{cases} \ \text{There are } \eta' \in \mathbb{L}^{\frac{\overline{p}}{2} \vee 1}([0, T] \times R^{k}, e^{-\delta|x|} dtdx; R_{+})),\\ f^{0'} \in \mathbb{L}^{\overline{p}}([0, T] \times R^{k}, e^{-\delta|x|} dtdx; R_{+})), \ \text{and} \ M, M' \in R_{+} \ \text{such that} \\ \langle y, F(t, x, y, z) \rangle \leq \eta'(t, x) + f^{0'}(t, x)|y| + (M + M'|x|)|y|^{2} + \sqrt{M + M'|x|}|y||z|.\\ \textbf{(A.3)} \ \begin{cases} \ \text{There are } \overline{\eta}' \in \mathbb{L}^{q}([0, T] \times R^{k}, e^{-\delta|x|} dtdx; R_{+})) \ \text{(for some } q > 1), \ \alpha \in]1, \overline{p}[\\ \text{and } \alpha' \in]1, \overline{p} \wedge 2[\ \text{such that} \\ |F(t, x, y, z)| \leq \overline{\eta}'(t, x) + |y|^{\alpha} + |z|^{\alpha'}. \end{cases} \end{cases}$$

$$\begin{cases} \text{ Ihere are } K, r \in R_+ \text{ such that } \forall N \in N \text{ and every } e^{r|x|}, |y|, |y'|, |z|, |z'| \le N \\ \langle y - y'; F(t, x, y, z) - F(t, x, y', z') \rangle \\ \le K \log N \left(\frac{1}{N} + |y - y'|^2\right) + \sqrt{K \log N} |y - y'| |z - z'|. \end{cases}$$

1. Existence and uniqueness of solutions to PDE

Consider the diffusion process with infinitesimal operator $\ensuremath{\mathcal{L}}$

$$X_s^{t,x} = x + \int_t^s b(X_r^{t,x}) dr + \int_t^s \sigma(X_r^{t,x}) dW_r, \qquad t \le s \le T$$

Theorem : Bahlali-Essaky-Hassani

Under assumption (A.0)-(A.4) we have 1) The PDE $(\mathcal{P}^{(g,F)})$ has a unique solution u on [0, T]2) For all $t \in [0, T]$ there exists $D_t \subset \mathbb{R}^k$ such that i) $\int_{D_t^c} 1 \, dx = 0$ ii) For all $t \in [0, T]$ and all $x \in D_t (\mathbb{E}^{(\xi^{t,x}, f^{t,x})})$ has a unique solution $(Y^{t,x}, Z^{t,x})$ on [t, T]where $\xi^{t,x} := g(X_T^{t,x})$ and $f^{t,x}(s, y, z) := 1_{\{s > t\}}F(s, X_s^{t,x}, y, z)$ 3) For all $t \in [0, T]$ $\left(u(s, X_s^{t,x}), \sigma^* \nabla u(s, X_s^{t,x})\right) = \left(Y_s^{t,x}, Z_s^{t,x}\right)$ a.e. (s, x, ω)

32/34

1. Existence and uniqueness of solutions to PDE-Idea of the proof

• We Approximate F by a sequence $(F_n)_{n>1}$ of Lipschitz functions :

$$\begin{split} F_n(t,x,y,z) &= (n^{2p}e^{|x|})^{(d+dr)}(c_1e)^{21} {}_{\{\eta'(t,x)+\overline{\eta}'(t,x)+f^{0'}(t,x)+|x|\leq n\}} \psi(n^{-2}|y|^2)\psi(n^{-2}|z|^2) \\ \int_{\mathcal{R}^d} \int_{\mathcal{R}^{dr}} F(t,x,y-u,z-v) \Pi_{i=1}^d \psi(n^{2p}e^{|x|}u_i) \Pi_{i=1}^d \Pi_{j=1}^r \psi(n^{2p}e^{|x|}v_{ij}) dudv, \end{split}$$

- We consider $(Y^{t,x,n}, Z^{t,x,n})$ be the unique solution of BSDE (1) avec $\xi_n^{t,x} := g_n(X_T^{t,x})$ and $f_n^{t,x}(s, y, z) := \mathbb{1}_{\{s>t\}} F_n(s, X_s^{t,x}, y, z)$, with $g_n(x) := g(x)\mathbb{1}_{\{|g(x)| \le n\}}$.
- There exists a unique solution u^n of PDE $(\mathcal{P}^{(g_n,F_n)})$

$$\frac{\partial u^n(t,x)}{\partial t} + \mathcal{L}u^n(t,x) + F_n(t,x,u^n(t,x),\sigma^*\nabla u^n(t,x)) = 0t \in]0, T[,x \in \mathbb{R}^k$$
$$u^n(T,x) = g_n(x) \quad x \in \mathbb{R}^k$$

such that for all t

$$u^n(s, X^{t,x}_s) = Y^{t,x,n}_s$$
 and $\sigma^* \nabla u^n(s, X^{t,x}_s) = Z^{t,x,n}_s$ a.e (s, ω, x) .

We have the following convergence :

$$\lim_{\substack{n,m \ 0 \le t \le T}} \sup_{\substack{R^k \ 0 < n \le t \le T}} \int_{R^k} |u^n(t,x) - u^m(t,x)|^{p'} e^{-\delta'|x|} dx = 0$$
$$\lim_{n,m \ 0} \int_0^T \int_{R^k} |\sigma^* \nabla u^n(t,x) - \sigma^* \nabla u^m(t,x)|^{p' \land 2} e^{-\delta'|x|} dt dx = 0.$$

1. Existence and uniqueness of solutions to PDE-Idea of the proof

For uniqueness we prove that the system of semilinear PDEs

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} + \mathcal{L}u(t,x) + f(t,x,u(t,x),\nabla u(t,x)) = 0, \quad t \in]0, T[, x \in \mathbb{R}^k \\ u(T,x) = g(x), \quad x \in \mathbb{R}^k \end{cases}$$

has a unique solution if and only if 0 is the unique solution of the linear system

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} + \mathcal{L}u(t,x) = 0, \quad t \in]0, T[, x \in \mathbb{R}^k \\ u(T,x) = 0, \quad x \in \mathbb{R}^k \end{cases}$$

For Further Reading

K. Bahlali

 $\ensuremath{\mathsf{Existence}}$ and uniqueness of solutions for BSDEs with locally Lipschitz coefficient.

Electron. Comm. Probab., 7, 169–179, 2002.

- K. Bahlali, E.H. Essaky, M. Hassani, E. Pardoux
 Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient.
 C. R. Acad. Sci., Paris 335, no. 9, 757–762, 2002.
 - K. Bahlali, E.H. Essaky, M. Hassani, E. Pardoux *p*-integrable solutions to multidimensional BSDEs and degenerate systems of PDEs with logarithmic nonlinearities. Preprint.