Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient

EL HASSAN ESSAKY
Cadi Ayyad University
Multidisciplinary Faculty
Safi, Morocco
ITN—Roscof, March 18-23, 2010

1. BSDEs-Introduction

- $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \leq 1}, P\right)$ be a complete probability space $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right) \vee \mathcal{N}$ be a filtration
- Consider the following ODE

$$
\left\{\begin{array}{l}
d Y_{t}=0, t \in[0, T], \tag{1}\\
Y_{T}=\xi \in R .
\end{array}\right.
$$

1. BSDEs-Introduction

- $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t<1}, P\right)$ be a complete probability space $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right) \vee \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$
\left\{\begin{array}{l}
d Y_{t}=0, t \in[0, T] \tag{1}\\
Y_{T}=\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R\right) .
\end{array}\right.
$$

1. BSDEs-Introduction

- $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t<1}, P\right)$ be a complete probability space $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right) \vee \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$
\left\{\begin{array}{l}
d Y_{t}=0, t \in[0, T] \tag{1}\\
Y_{T}=\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R\right) .
\end{array}\right.
$$

We want to FIND \mathcal{F}_{t}-ADAPTED solution Y for equation (1).

1. BSDEs-Introduction

- $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \leq 1}, P\right)$ be a complete probability space $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right) \vee \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$
\left\{\begin{array}{l}
d Y_{t}=0, t \in[0, T] \tag{1}\\
Y_{T}=\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R\right) .
\end{array}\right.
$$

We want to FIND \mathcal{F}_{t}-ADAPTED solution Y for equation (1). This is IMPOSSIBLE, since the only solution is

$$
\begin{equation*}
Y_{t}=\xi, \text { for all } t \in[0, T] \tag{2}
\end{equation*}
$$

which is not \mathcal{F}_{t}-adapted.

1. BSDEs-Introduction

- $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \leq 1}, P\right)$ be a complete probability space $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right) \vee \mathcal{N}$ be a filtration
- Consider the following terminal value problem

$$
\left\{\begin{array}{l}
d Y_{t}=0, t \in[0, T] \tag{1}\\
Y_{T}=\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R\right)
\end{array}\right.
$$

We want to $\operatorname{FIND} \mathcal{F}_{t}$-ADAPTED solution Y for equation (1).
This is IMPOSSIBLE, since the only solution is

$$
\begin{equation*}
Y_{t}=\xi, \text { for all } t \in[0, T] \tag{2}
\end{equation*}
$$

which is not \mathcal{F}_{t}-adapted.
A natural way of making (2) \mathcal{F}_{t}-adapted is to redefine Y. as follows

$$
\begin{equation*}
Y_{t}=E\left(\xi \mid \mathcal{F}_{t}\right), t \in[0, T] . \tag{3}
\end{equation*}
$$

Then Y. is \mathcal{F}_{t}-adapted and satisfies $Y_{T}=\xi$, but not equation (1).

1. BSDEs-Introduction

MRT \Longrightarrow there exists an \mathcal{F}_{t}-adapted process Z square integrable s.t

$$
\begin{equation*}
Y_{t}=Y_{0}+\int_{0}^{t} Z_{s} d B_{s} \tag{4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
Y_{T}=\xi=Y_{0}+\int_{0}^{T} Z_{s} d B_{s} \tag{5}
\end{equation*}
$$

Combining (4) and (5), one has

$$
\begin{equation*}
Y_{t}=\xi-\int_{t}^{T} Z_{s} d B_{s} \tag{6}
\end{equation*}
$$

whose differential form is

$$
\left\{\begin{array}{l}
d Y_{t}=Z_{t} d B_{t}, t \in[0, T] \tag{7}\\
Y_{T}=\xi .
\end{array}\right.
$$

Comparing (1) and (7), the term " $Z_{t} d B_{t}$ " has been added.

- BSDE is an equation of the following type:

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T \tag{8}
\end{equation*}
$$

- T: TERMINAL TIME
- $f: \Omega \times[0, T] \times R^{d} \times R^{d \times n} \rightarrow R^{d}:$ GENERATOR or COEFFICIENT
- ξ : TERMINAL CONDITION \mathcal{F}_{T}-adapted process with value in R^{d}.
- UNKNOWNS ARE : $Y \in R^{d}$ and $Z \in R^{d \times n}$.

1. BSDEs-Introduction

Denote by \mathbb{L} the set of $R^{d} \times R^{d \times n}-$ valued processes (Y, Z) defined on $R_{+} \times \Omega$ which are \mathcal{F}_{t}-adapted and such that:

$$
\|(Y, Z)\|^{2}=E\left(\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{2}+\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)<+\infty
$$

The couple $(\mathbb{L},\|\cdot\|)$ is then a Banach space.

Definition

A solution of equation (8) is a pair of processes (Y, Z) which belongs to the space $(\mathbb{L},\|\cdot\|)$ and satisfies equation (8).

Consider the following assumptions:

- For all $(y, z) \in R^{d} \times R^{d \times n}:(\omega, t) \longrightarrow f(\omega, t, y, z)$ is \mathcal{F}_{t} - progressively measurable
- $f(., 0,0) \in L^{2}\left([0, T] \times \Omega, R^{d}\right)$
- f is Lipschitz : $\exists K>0$ and $\forall y, y^{\prime} \in R^{d}, z, z^{\prime} \in R^{d \times n}$ and $(\omega, t) \in \Omega \times[0, T]$ s.t

$$
\left|f(\omega, t, y, z)-f\left(\omega, t, y^{\prime}, z^{\prime}\right)\right| \leq K\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) .
$$

- $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R^{d}\right)$

$$
\begin{aligned}
& \text { Theorem : Pardoux and Peng } 1990 \\
& \text { Suppose that the above assumptions hold true. Then, there exists a unique } \\
& \text { solution for BSDE (15). }
\end{aligned}
$$

2. BSDEs with Lipshitz coefficient

Consider the following assumptions:

- For all $(y, z) \in R^{d} \times R^{d \times n}:(\omega, t) \longrightarrow f(\omega, t, y, z)$ is \mathcal{F}_{t} - progressively measurable
- $f(., 0,0) \in L^{2}\left([0, T] \times \Omega, R^{d}\right)$
- f is Lipschitz : $\exists K>0$ and $\forall y, y^{\prime} \in R^{d}, z, z^{\prime} \in R^{d \times n}$ and $(\omega, t) \in \Omega \times[0, T]$ s.t

$$
\left|f(\omega, t, y, z)-f\left(\omega, t, y^{\prime}, z^{\prime}\right)\right| \leq K\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) .
$$

- $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R^{d}\right)$

Theorem : Pardoux and Peng 1990

Suppose that the above assumptions hold true. Then, there exists a unique solution for BSDE (15).

3. APPLICATIONS OF BSDE : FINANCE \& PDE

Consider a market where only two basic assets are traded.

- BOND:
- STOCK :

Consider a European call option whose payoff is

$$
\left(X_{T}-K\right)^{+} .
$$

The option pricing problem is : fair price of this option at time $t=0$?
Suppose that this option has a price y at time $t=0$. Then the fair price for the option at time $t=0$ should be such a y that the corresponding optimal investment would result in a wealth process Y_{t} satisfying

$$
Y_{T}=\left(X_{T}-K\right)^{+} .
$$

3. APPLICATIONS OF BSDE : FINANCE \& PDE

Consider a market where only two basic assets are traded.

- BOND : $d X_{t}^{0}=r X_{t}^{0} d t$
- STOCK:

Consider a European call option whose payoff is

$$
\left(X_{T}-K\right)^{+} .
$$

The option pricing problem is : fair price of this option at time $t=0$?
Suppose that this option has a price y at time $t=0$. Then the fair price for the option at time $t=0$ should be such a y that the corresponding optimal investment would result in a wealth process Y_{t} satisfying

$$
Y_{T}=\left(X_{T}-K\right)^{+} .
$$

3. APPLICATIONS OF BSDE : FINANCE \& PDE

Consider a market where only two basic assets are traded.

- BOND : $d X_{t}^{0}=r X_{t}^{0} d t$
- STOCK : $d X_{t}=b X_{t} d t+\sigma X_{t} d B_{t}$

Consider a European call option whose payoff is

$$
\left(X_{T}-K\right)^{+} .
$$

The option pricing problem is : fair price of this option at time $t=0$?
Suppose that this option has a price y at time $t=0$. Then the fair price for the option at time $t=0$ should be such a y that the corresponding optimal investment would result in a wealth process Y_{t} satisfying

$$
Y_{T}=\left(X_{T}-K\right)^{+} .
$$

3. APPLICATIONS OF BSDE : FINANCE \& PDE

Denote by

- R_{t} : the amount that the writer invests in the stock
- $Y_{t}-R_{t}$: the remaining amount which is invested in the bond
R_{t} determines a strategy of the investment which is called a portfolio.
By setting $Z_{t}=\sigma R_{t}$, we obtain the following BSDE

$$
\left\{\begin{array}{l}
d X_{t}=b X_{t} d t+\sigma X_{t} d B_{t} \tag{9}\\
d Y_{t}=\underbrace{\left(r Y_{t}+\frac{b-r}{\sigma} Z_{t}\right)}_{f\left(t, Y_{t}, Z_{t}\right)} d t+Z_{t} d B_{t}, t \in[0, T] \\
X_{0}=x, Y_{T} \underbrace{\left(X_{T}-K\right)^{+}}_{\xi} .
\end{array}\right.
$$

Pardoux \& Peng result \Longrightarrow there exits a unique solution $\left(Y_{t}, Z_{t}\right)$. The option price at time $t=0$ is given by Y_{0}, and the portfolio is given by $R_{t}=\frac{Z_{t}}{\sigma}$.

3. APPLICATIONS OF BSDE : FINANCE \& PDE

Let u be the solution of the following system of semi-linear parabolic PDE's:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t, x)+\frac{1}{2} \operatorname{Tr}\left(\sigma \sigma^{*} \Delta u\right)(t, x)+b \nabla u(t, x)+f(t, x, u(t, x), \nabla u \sigma(t, x))=0 \tag{10}\\
u(T, x)=g(x)
\end{array}\right.
$$

Introducing $\left\{\left(Y^{s, x}, Z^{s, x}\right) ; s \leq t \leq T\right\}$ the adapted solution of the backward stochastic differential equation

$$
\left\{\begin{array}{l}
-d Y_{t}=f\left(t, X_{t}^{s, x}, Y_{t}, Z_{t}\right) d s-Z_{t}^{*} d B_{t} \tag{11}\\
Y_{T}=g\left(X_{T}^{t, x}\right)
\end{array}\right.
$$

where ($X^{s, x}$) denotes the solution of the following stochastic differential equation

$$
\left\{\begin{array}{l}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t} \tag{12}\\
X_{s}=x
\end{array}\right.
$$

3. APPLICATIONS OF BSDE : FINANCE \& PDE

Then we have :

- u is a classical solution of PDE $(10) \Longrightarrow$

$$
\left(Y_{t}^{s, x}=u\left(t, X_{t}^{s, x}\right), Z_{t}^{s, x}=\nabla u\left(t, X_{t}^{s, x}\right) \sigma\left(s, X_{t}^{s, x}\right)\right)
$$

is a solution the BSDE (11).

- There exists a solution to the $\operatorname{BSDE}(11) \Longrightarrow u(t, x)=Y_{t}^{t, x}$, is a viscosity solution of PDE (10). This formula is a generalization of Feynman-Kac formula.

Suppose that $f(t, x, y, z)=c(t, x) y+h(t, x)$, we obtain

$$
\begin{aligned}
Y_{t}^{t, x}= & E\left[g\left(X_{1}^{t, x}\right) \exp \left(\int_{t}^{1} c\left(r, X_{r}^{t, x}\right) d r\right)\right. \\
& \left.+\int_{t}^{1} h\left(s, X_{s}^{t, x}\right) \exp \left(\int_{t}^{s} c\left(r, X_{r}^{t, x}\right) d r\right) d s\right]
\end{aligned}
$$

which is the classical Feynman-Kac formula.

4. BSDEs with locally Lipschitz coefficient

Consider the following assumptions:
(A1) f is continuous in (y, z) for almost all (t, ω).
(A2) There exist $K>0$ and $0 \leq \alpha \leq 1$ such that

$$
|f(t, \omega, y, z)| \leq K\left(1+|y|^{\alpha}+|z|^{\alpha}\right)
$$

(A3) For each $N>0$, there exists L_{N} such that:

$$
\begin{aligned}
\left|f(t, y, z)-f\left(t, y^{\prime}, z^{\prime}\right)\right| & \leq L_{N}\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) \\
& |y|,\left|y^{\prime}\right|,|z|,\left|z^{\prime}\right| \leq N .
\end{aligned}
$$

(A4) $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R^{d}\right)$

Theorem : Bahlali 2002

Assume moreover that there exists a positive constant L such that $L_{N}=L+\sqrt{\log N}$ then there exists a unique solution for the BSDE (1)

4. BSDEs with locally Lipschitz coefficient

Consider the following assumptions:
(A1) f is continuous in (y, z) for almost all (t, ω).
(A2) There exist $K>0$ and $0 \leq \alpha \leq 1$ such that

$$
|f(t, \omega, y, z)| \leq K\left(1+|y|^{\alpha}+|z|^{\alpha}\right) .
$$

(A3) For each $N>0$, there exists L_{N} such that:

$$
\begin{aligned}
\left|f(t, y, z)-f\left(t, y^{\prime}, z^{\prime}\right)\right| & \leq L_{N}\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) \\
& |y|,\left|y^{\prime}\right|,|z|,\left|z^{\prime}\right| \leq N .
\end{aligned}
$$

(A4) $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T} ; R^{d}\right)$

Theorem : Bahlali 2002

Assume moreover that there exists a positive constant L such that $L_{N}=L+\sqrt{\log N}$ then there exists a unique solution for the BSDE (1).

5. BSDEs with locally monotone coefficient-Question

Question

Let $f(y):=-y \log |y|$. Suppose that $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}\right)$ or $\xi \in \mathbb{L}^{p}\left(\mathcal{F}_{T}\right), p>1$ and consider the following BSDE with logarithmic nonlinearity

$$
Y_{t}=\xi-\int_{t}^{T} Y_{s} \log \left|Y_{s}\right| d s-\int_{t}^{T} Z_{s} d W_{s}
$$

Does this equation has a unique solution?

5. BSDEs with locally monotone coefficient-Assumptions

Consider the following assumptions:
(H1) f is continuous in (y, z) for almost all (t, ω),
(H2) There exist $M>0, \gamma<\frac{1}{2}$ and $\eta \in \mathbb{L}^{1}([0, T] \times \Omega)$ such that,

$$
\langle y, f(t, \omega, y, z)\rangle \leq \eta+M|y|^{2}+\gamma|z|^{2} \quad P-\text { a.s., a.e. } t \in[0, T] \text {. }
$$

(H3) "Almost" quadratic growth: $\exists M_{1}>0,0 \leq \alpha<2, \alpha^{\prime}>1$ and $\bar{\eta} \in \mathbb{L}^{\alpha^{\prime}}([0, T] \times \Omega)$ s.t :

$$
|f(t, \omega, y, z)| \leq \bar{\eta}+M_{1}\left(|y|^{\alpha}+|z|^{\alpha}\right) .
$$

5. BSDEs with locally monotone coefficient
(H4) There exists a real valued sequence $\left(A_{N}\right)_{N>1}$ and constants $M>1, r>1$ such that:
i) $\forall N>1, \quad 1<A_{N} \leq N^{r}$.
ii) $\lim _{N \rightarrow \infty} A_{N}=\infty$.
iii) Locally monotone condition : For every
$N \in N, \forall y, y^{\prime}, z, z^{\prime}$ such that $|y|,\left|y^{\prime}\right|,|z|,\left|z^{\prime}\right| \leq N$, we have

$$
\begin{aligned}
& \left\langle y-y^{\prime}, f(t, y, z)-f\left(t, y^{\prime}, z^{\prime}\right)\right\rangle \\
& \leq M\left|y-y^{\prime}\right|^{2} \log A_{N}+M\left|y-y^{\prime}\right|\left|z-z^{\prime}\right| \sqrt{\log A_{N}}+M A_{N}^{-1} .
\end{aligned}
$$

Theorem : Bahlali-Essaky-Hassani-Pardoux, 2002

Let ξ be a square integrable random variable. Assume that $(\mathrm{H} 1)-(\mathrm{H} 4)$ are satisfied. Then the BSDE has a unique solution.

1. L^{p}-solutions to BSDEs with super-Motivation

Let's mention some considerations which have motivated the present work.

- The growth conditions on the nonlinearity constitute a critical case. Indeed, it is known that for any $\varepsilon>0$, the solutions of the ordinary differential equation $X_{t}=x+\int_{0}^{t} X_{s}^{1+\varepsilon} d s$ explode at a finite time.
- The logarithmic nonlinearities appear in some PDEs arising in physics.
- In terms of continuous-state branching processes, the logarithmic nonlinearity $u \log u$ corresponds to the Neveu branching mechanism. This process was introduced by Neveu. For instance, the super-process with Neveu's branching mechanism is related to the Cauchy problem,

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\Delta u+u \log u=0 \text { on }(0, \infty) \times R^{d} \tag{13}\\
u\left(0^{+}\right)=\varphi>0
\end{array}\right.
$$

Hence, our result can be seen as an alternative approach to the PDEs.

- It is worth noting that our condition on the coefficient f is new even for the classical Itô's forward SDEs.

$$
\begin{equation*}
X_{s}=x+\int_{0}^{s} X_{r} \log \left|X_{r}\right| d r+\int_{0}^{s} X_{r} \sqrt{|\log | X_{r}| |} d W_{r}, \quad 0 \leq s \leq T \tag{14}
\end{equation*}
$$

For instance, the problem to establish the existence of a pathwise unique solution to the following équation (14) still remains open.

5. BSDEs with locally monotone coefficient-Example

Example

Let $f(y):=-y \log |y|$ then for all $\xi \in \mathbb{L}^{2}\left(\mathcal{F}_{T}\right)$ the following BSDE has a unique solution

$$
Y_{t}=\xi-\int_{t}^{T} Y_{s} \log \left|Y_{s}\right| d s-\int_{t}^{T} Z_{s} d W_{s} .
$$

Indeed, f satisfies (H.1)-(H.3) since $\langle y, f(y)\rangle \leq 1$ and $|f(y)| \leq 1+\frac{1}{\varepsilon}|y|^{1+\varepsilon}$ for all $\varepsilon>0$. (H.4) is satisfied for every $N>e$ and $A_{N}=N$.
5. BSDEs with locally monotone coefficient-Idea of the proof

- We define a family of semi-norms $\left(\rho_{n}(f)\right)_{n \in N}$ by,

$$
\rho_{n}(f)=E \int_{0}^{T} \sup _{|y|,|z| \leq n}|f(s, y, z)| d s
$$

- We Approximate f by a sequence $\left(f_{n}\right)_{n>1}$ of Lipschitz functions:

Lemma

Let f be a process which satisfies (H.1)-(H.3). Then there exists a sequence of processes $\left(f_{n}\right)$ such that,
(a) For each n, f_{n} is bounded and globally Lipschitz in (y, z) a.e. t and P-a.s.w.
There exists $M^{\prime}>0$, such that:
(b) $\sup _{n}\left|f_{n}(t, \omega, y, z)\right| \leq \bar{\eta}+M^{\prime}+M_{1}\left(|y|^{\alpha}+|z|^{\alpha}\right) . \quad P$-a.s., a.e. $t \in[0, T]$.
(c)

$$
\sup _{n}<y, f_{n}(t, \omega, y, z)>\leq \eta+M^{\prime}+M|y|^{2}+\gamma|z|^{2}
$$

(d) For every $N, \rho_{N}\left(f_{n}-f\right) \longrightarrow 0$ as $n \longrightarrow \infty$.
5. BSDEs with locally monotone coefficient-Key steps of the proof

- We consider the following BSDE

$$
Y_{t}^{n}=\xi+\int_{t}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d W_{s}, \quad 0 \leq t \leq T
$$

Lemma

There exits a universal constant ℓ such that
a)
$E \int_{0}^{T} e^{2 M s}\left|Z_{s}^{f_{n}}\right|^{2} d s \leq \frac{1}{1-2 \gamma}\left[e^{2 M T} E|\xi|^{2}+2 E \int_{0}^{T} e^{2 M s}\left(\eta+M^{\prime}\right) d s\right]=K_{1}$
b) $E \sup _{0 \leq t \leq T}\left(e^{2 M t}\left|Y_{t}^{f_{n}}\right|^{2}\right) \leq \ell K_{1}=K_{2}$
c) $E \int_{0}^{T} e^{2 M s}\left|f_{n}\left(s, Y_{s}^{f_{n}}, Z_{s}^{f_{n}}\right)\right|^{\bar{\alpha}} d s \leq$
$4^{\bar{\alpha}-1}\left[E \int_{0}^{T} e^{2 M s}\left(\left(\bar{\eta}+M^{\prime}\right)^{\bar{\alpha}}+4\right) d s+M_{1}^{\bar{\alpha}} K_{1}+T M_{1}^{\bar{\alpha}} K_{2}\right]=K_{3}$
d) $E \int_{0}^{T} e^{2 M s}\left|f\left(s, Y_{s}^{f_{n}}, Z_{s}^{f_{n}}\right)\right|^{\bar{\alpha}} d s \leq K_{3}$, where $\bar{\alpha}=\min \left(\alpha^{\prime}, \frac{2}{\alpha}\right)$.

- Hence the following convergences hold true

$$
\begin{aligned}
& Y^{n} \rightharpoonup Y, \text { weakly star in } \mathbb{L}^{2}\left(\Omega, L^{\infty}[0, T]\right) \\
& Z^{n} \rightharpoonup Z, \text { weakly in } \mathbb{L}^{2}(\Omega \times[0, T]) \\
& f_{n}\left(., Y^{n}, Z^{n}\right) \rightharpoonup \Gamma . \text { weakly in } \mathbb{L}^{\bar{\alpha}}(\Omega \times[0, T])
\end{aligned}
$$

Moreover

$$
Y_{t}=\xi+\int_{t}^{T} \Gamma_{s} d s-\int_{t}^{T} Z_{s} d W_{s}, \forall t \in[0, T]
$$

- We Apply Itô's formula to $\left(\left|Y^{n}-Y^{m}\right|^{2}+\varepsilon\right)^{p}$ for some $0<p<1$, instead of $\left|Y^{n}-Y^{m}\right|^{2}$:

$$
\lim _{n \rightarrow+\infty}\left(E \sup _{0 \leq t \leq T}\left|Y_{t}^{n}-Y_{t}\right|^{\beta}+E \int_{0}^{T}\left|Z_{s}^{n}-Z_{s}\right| d s\right)=0,1<\beta<2
$$

We Identify Γ_{s} by proving that : $\lim _{n} E \int_{0}^{T}\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f\left(s, Y_{s}, Z_{s}\right)\right| d s=0$
6. L^{p}-solutions to BSDEs with locally monotone coefficient-Definition

Let $p>1$ is an arbitrary fixed real number and all the considered processes are $\left(\mathcal{F}_{t}\right)$-predictable.

Definition

A solution of equation (8 is an $\left(\mathcal{F}_{t}\right)$-adapted and $R^{d+d r}$-valued process (Y, Z) such that

$$
E \sup _{t \leq T}\left|Y_{t}\right|^{p}+E\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]^{\frac{p}{2}}+E \int_{0}^{T}\left|f\left(s, Y_{s}, Z_{s}\right)\right| d s<+\infty
$$

and satisfies

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T \tag{15}
\end{equation*}
$$

6. L^{p}-solutions to BSDEs with locally monotone coefficient-Assumptions

We consider the following assumptions on (ξ, f) :
(H.0)
\int There are $M \in \mathbb{L}^{0}\left(\Omega ; \mathbb{L}^{1}\left([0, T] ; R_{+}\right)\right), K \in \mathbb{L}^{0}\left(\Omega ; \mathbb{L}^{2}\left([0, T] ; R_{+}\right)\right)$and $\left.\gamma \in\right] 0, \frac{1 \wedge(p-1)}{2}[$
such that: $E|\xi|^{p} e^{\frac{p}{2}} \int_{0}^{T} \lambda_{s} d s$
(H.1) f is continuous in (y, z) for almost all (t, ω).
(H.2)

There are η and $f^{0} \in \mathbb{L}^{0}\left(\Omega \times[0, T] ; R_{+}\right)$satisfying $E\left(\int_{0}^{T} e^{\int_{0}^{s} \lambda_{r} d r} \eta_{s} d s\right)^{\frac{p}{2}}<\infty$
and $E\left(\int_{0}^{T} e^{\frac{1}{2}} \int_{0}^{s} \lambda_{r} d r f_{s}^{0} d s\right)^{p}<\infty$, where λ is defined in assumption (H.0), such that:

$$
\langle y, f(t, y, z)\rangle \leq \eta_{t}+f_{t}^{0}|y|+M_{t}|y|^{2}+K_{t}|y||z| .
$$

6. L^{p}-solutions to BSDEs with locally monotone coefficient-Assumptions
(H.3) $\left\{\begin{array}{l}\left.\left.\text { There are } \bar{\eta} \in \mathbb{L}^{q}\left(\Omega \times[0, T] ; R_{+}\right)\right)(\text {for some } q>1) \text { and } \alpha \in\right] 1, p\left[, \alpha^{\prime} \in\right] 1, p \wedge 2[\\ \text { such that: }\end{array}\right.$ $|f(t, \omega, y, z)| \leq \bar{\eta}_{t}+|y|^{\alpha}+|z|^{\alpha^{\prime}}$.
There are $v \in \mathbb{L}^{q^{\prime}}\left(\Omega \times[0, T] ; R_{+}\right)$) (for some $\left.q^{\prime}>0\right)$ and $K^{\prime} \in R_{+}$such that for every $N \in N$ and every $y, y^{\prime} z, z^{\prime}$ satisfying $|y|,\left|y^{\prime}\right|,|z|,\left|z^{\prime}\right| \leq N$
(H.4) $\left\{\begin{array}{l}1_{v_{t}(\omega) \leq N}\left\langle y-y^{\prime}, f(t, \omega, y, z)-f\left(t, \omega, y^{\prime}, z^{\prime}\right)\right\rangle \\ \leq K^{\prime} \log A_{N}\left|y-y^{\prime}\right|^{2}+\sqrt{K^{\prime} \log A_{N}}\left|y-y^{\prime} \| z-z^{\prime}\right|+K^{\prime} \frac{\log A_{N}}{A_{N}}\end{array}\right.$ where A_{N} is a increasing sequence and satisfies $A_{N}>1, \lim _{N \rightarrow \infty} A_{N}=\infty$ and $A_{N} \leq N^{\mu}$ for some $\mu>0$.
7. L^{p}-solutions to BSDEs with locally monotone coefficient-Existence and Uniqueness

Theorem : Bahlali-Essaky-Hassani

If (H.0)-(H.4) hold then (8) has a unique solution (Y, Z). Moreover we have

$$
\begin{aligned}
& E \sup _{t}\left|Y_{t}\right|^{p} e^{\frac{p}{2} \int_{0}^{t} \lambda_{s} d s}+E\left[\int_{0}^{T} e^{\int_{0}^{s} \lambda_{r} d r}\left|Z_{s}\right|^{2} d s\right]^{\frac{p}{2}} \\
\leq & C\left\{E|\xi|^{p} e^{\frac{p}{2} \int_{0}^{T} \lambda_{s} d s}+E\left(\int_{0}^{T} e^{\int_{0}^{s} \lambda_{r} d r} \eta_{s} d s\right)^{\frac{p}{2}}+E\left(\int_{0}^{T} e^{\frac{1}{2} \int_{0}^{s} \lambda_{r} d r} f_{s}^{0} d s\right)^{p}\right\} .
\end{aligned}
$$

for some constant C depending only on p and γ.
6. L^{p}-solutions to BSDEs with locally monotone coefficient-Examples

Example 1

Let $f(y):=-y \log |y|$ then for all $\xi \in \mathbb{L}^{p}\left(\mathcal{F}_{T}\right)$ the following BSDE has a unique solution

$$
Y_{t}=\xi-\int_{t}^{T} Y_{s} \log \left|Y_{s}\right| d s-\int_{t}^{T} Z_{s} d W_{s}
$$

Indeed, f satisfies (H.1)-(H.3) since $\langle y, f(y)\rangle \leq 1$ and $|f(y)| \leq 1+\frac{1}{\varepsilon}|y|^{1+\varepsilon}$ for all $\varepsilon>0$.
(H.4) is satisfied for every $N>e$ with $v_{s}=0$ and $A_{N}=N$.
6. L^{p}-solutions to BSDEs with locally monotone coefficient-Examples

Example 2

Let $g(y):=y \log \frac{|y|}{1+|y|}$ and $h \in \mathcal{C}\left(R^{d r} ; R_{+}\right) \bigcap \mathcal{C}^{1}\left(R^{d r}-\{0\} ; R_{+}\right)$be such that :

$$
h(z)= \begin{cases}|z| \sqrt{-\log |z|} & i f|z|<1-\varepsilon_{0} \\ |z| \sqrt{\log |z|} & i f|z|>1+\varepsilon_{0}\end{cases}
$$

where $\left.\varepsilon_{0} \in\right] 0,1\left[\right.$. Finally, we put $f(y, z):=g(y) h(z)$. Then for every $\xi \in \mathbb{L}^{p}\left(\mathcal{F}_{T}\right)$ the following BSDE has a unique solution

$$
Y_{t}=\xi+\int_{t}^{T} f\left(Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
$$

(H.4) is satisfied for every $N>\sqrt{e}$ with $v_{s}=0$ and $A_{N}=N$
6. L^{p}-solutions to BSDEs with locally monotone coefficient-Examples

Example 3

Let $\left(X_{t}\right)_{t \leq T}$ be an $\left(\mathcal{F}_{t}\right)$-adapted and R^{k}-valued process satisfying :

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}
$$

where $X_{0} \in R^{k}$ and $\sigma, b:[0, T] \times R^{k} \rightarrow R^{k r} \times R^{k}$ are measurable functions such that $\|\sigma(s, x)\| \leq c$ and $|b(s, x)| \leq c(1+|x|)$, for some constant c.
Consider the following BSDE $Y_{t}=g\left(X_{T}\right)+\int_{t}^{T}\left(\left|X_{s}\right|^{\bar{q}} Y_{s}-Y_{s} \log \left|Y_{s}\right|\right) d s-\int_{t}^{T} Z_{s} d W_{s}$. where $\bar{q} \in] 0,2\left[\right.$ and g is a measurable function satisfying $|g(x)| \leq c \exp c|x|^{\bar{q}^{\prime}}$, for some constants $c>0, \bar{q}^{\prime} \in[0,2[$.
The previous BSDE has a unique solution (Y, Z) such that

$$
E \sup _{t}\left|Y_{t}\right|^{p}+E\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]^{\frac{p}{2}} \leq C \exp \left(C\left|X_{0}\right|^{2}\right)
$$

(H.4) is satisfied with $v_{s}=\exp \left|X_{s}\right|^{\bar{q}}$ and $A_{N}=N$.
6. L^{p}-solutions to BSDEs with locally monotone coefficient-Examples

Example 4

Let (ξ, f) satisfying (H.0)-(H.3) and (H’.4)
\int There are a positive process C satisfying $E \int_{0}^{T} e^{q^{\prime} C_{s}} d s<\infty$ and $K^{\prime} \in R_{+}$such that:

$$
\begin{aligned}
\left\langle y-y^{\prime}, f(t, \omega, y, z)-f\left(t, \omega, y^{\prime}, z^{\prime}\right)\right\rangle \leq & K^{\prime}\left|y-y^{\prime}\right|^{2}\left(C_{t}(\omega)+\left|\log \left(\left|y-y^{\prime}\right|\right)\right|\right) \\
& +K^{\prime}\left|y-y^{\prime} \| z-z^{\prime}\right| \sqrt{C_{t}(\omega)+|\log | z-z^{\prime}| |}
\end{aligned}
$$

Then the following BSDE has a unique solution

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
$$

(H.4) is satisfied with $v_{s}=\exp \left(C_{s}\right)$ and $A_{N}=N$.
6. L^{p}-solutions to BSDEs with locally monotone coefficient-Idea of the proof

- We Approximate f by a sequence $\left(f_{n}\right)_{n>1}$ of Lipschitz functions:

$$
\begin{aligned}
f_{n}(t, y, z)= & \left(c_{1} e\right)^{2} 1_{\left\{\bar{\Lambda}_{t}\right.} \leq{ }_{n\}} \psi\left(n^{-2}|y|^{2}\right) \psi\left(n^{-2}|z|^{2}\right) \times \\
& m^{(d+d r)} \int_{R^{d}} \int_{R^{d r}} f(t, y-u, z-v) \Pi_{i=1}^{d} \psi\left(m u_{i}\right) \Pi_{i=1}^{d} \Pi_{j=1}^{r} \psi\left(m v_{i j}\right) d u d v
\end{aligned}
$$

with $m:=\frac{n^{2 p}}{h_{t}}$ and $\bar{\Lambda}_{t}:=\eta_{t}+\bar{\eta}_{t}+f_{t}^{0}+M_{t}+K_{t}+\frac{1}{h_{t}}$ where h_{t} is a predictable process such that $0<h_{t} \leq 1$.

- We consider the following BSDE

$$
Y_{t}^{n}=\xi 1_{\{|\xi| \leq n\}}+\int_{t}^{T} f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s-\int_{t}^{T} Z_{s}^{n} d W_{s}, \quad 0 \leq t \leq T
$$

- We Apply Itô's formula to $\left(\left\{\left|Y^{n}-Y^{m}\right|^{2}+\varepsilon\right\}\left(\frac{1}{\varepsilon}\right)^{2 C t}\right)^{\frac{\beta}{2}}$ for some $1<\beta<p \wedge 2$, instead of $\left|Y^{n}-Y^{m}\right|^{2}$ we have:
For every $p^{\prime}<p$,
$\left(Y^{n}, Z^{n}\right) \rightarrow(Y, Z)$ strongly in $\mathbb{L}^{p^{\prime}}\left(\Omega ; \mathcal{C}\left([0, T] ; R^{d}\right)\right) \times \mathbb{L}^{p^{\prime}}\left(\Omega ; \mathbb{L}^{2}\left([0, T] ; R^{d r}\right)\right)$.
- For every $\hat{\beta}<\frac{2}{\alpha^{\prime}} \wedge \frac{p}{\alpha} \wedge \frac{p}{\alpha^{\prime}} \wedge q$

$$
\lim _{n \rightarrow \infty} E \int_{0}^{T}\left|f_{n}\left(s, Y_{s}^{n}, Z_{s}^{n}\right)-f\left(s, Y_{s}, Z_{s}\right)\right|^{\hat{\beta}} d s=0
$$

1. L^{p}-solutions to BSDEs with super-linear growth coefficient-Application to PDEs

Consider the following system of semilinear PDE ($\mathcal{P}^{(g, F)}$)
$\left\{\begin{array}{l}\left.\frac{\partial u(t, x)}{\partial t}+\mathcal{L} u(t, x)+F\left(t, x, u(t, x), \sigma^{*} \nabla u(t, x)\right)=0 t \in\right] 0, T\left[, x \in R^{k}\right.\end{array}\right.$
where $\mathcal{L}:=\frac{1}{2} \sum_{i, j}\left(\sigma \sigma^{*}\right)_{i j} \partial_{i j}^{2}+\sum_{i} b_{i} \partial_{i}, \quad \sigma \in \mathcal{C}_{b}^{3}\left(R^{k}, R^{k r}\right), \quad b \in \mathcal{C}_{b}^{2}\left(R^{k}, R^{k}\right)$.
Let
$\mathcal{H}^{1+}:=\bigcup_{\delta \geq 0, \beta>1}\left\{v \in \mathcal{C}\left([0, T] ; \mathbb{L}^{\beta}\left(R^{k}, e^{-\delta|x|} d x ; R^{d}\right)\right): \int_{0}^{T} \int_{R^{k}}\left|\sigma^{*} \nabla v(s, x)\right|^{\beta} e^{-\delta|x|} d x d s<\infty\right\}$

Definition

A (weak) solution of $\left(\mathcal{P}^{(g, F)}\right)$ is a function $u \in \mathcal{H}^{1+}$ such that for every $\varphi \in C_{c}^{1}$

$$
\begin{aligned}
& \quad \int_{t}^{T}<u(s), \frac{\partial \varphi(s)}{\partial s}>d s+<u(t), \varphi(t)> \\
& \quad=<g, \varphi(T)>+\int_{t}^{T}<F\left(s, ., u(s), \sigma^{*} \nabla u(s)\right), \varphi(s)>d s+\int_{t}^{T}<L u(s), \varphi(s)>d s, \\
& \text { where }<f(s), h(s)>=\int_{R^{k}} f(s, x) h(s, x) d x .
\end{aligned}
$$

1. L^{p}-solutions to BSDEs with super-linear growth coefficient-Application to PDE
(A.0) $g(x) \in \mathbb{L}^{\bar{p}}\left(R^{k}, e^{-\delta|x|} d x ; R^{d}\right)$.
(A.1) $F(t, x, .,$.$) is continuous$ a.e. (t, x)
(A.2) $\left\{\begin{array}{l}\left.\text { There are } \eta^{\prime} \in \mathbb{L}^{\frac{\bar{p}}{2}} \vee 1\left([0, T] \times R^{k}, e^{-\delta|x|} d t d x ; R_{+}\right)\right), \\ \left.f^{0^{\prime}} \in \mathbb{L}^{\bar{p}}\left([0, T] \times R^{k}, e^{-\delta|x|} d t d x ; R_{+}\right)\right), \text {and } M, M^{\prime} \in R_{+} \text {such that } \\ \langle y, F(t, x, y, z)\rangle \leq \eta^{\prime}(t, x)+f^{0^{\prime}}(t, x)|y|+\left(M+M^{\prime}|x|\right)|y|^{2}+\sqrt{M+M^{\prime}|x|}|y||z| .\end{array}\right.$
(A.3)

There are $\bar{\eta}^{\prime} \in \mathbb{L}^{q}\left([0, T] \times R^{k}, e^{-\delta|x|} d t d x ; R_{+}\right)$) (for some $q>1$), $\left.\alpha \in\right] 1, \bar{p}[$ and $\left.\alpha^{\prime} \in\right] 1, \bar{p} \wedge 2[$ such that

$$
|F(t, x, y, z)| \leq \bar{\eta}^{\prime}(t, x)+|y|^{\alpha}+|z|^{\alpha^{\prime}} .
$$

(A.4)
(There are $K, r \in R_{+}$such that $\forall N \in N$ and every $e^{r|x|},|y|,\left|y^{\prime}\right|,|z|,\left|z^{\prime}\right| \leq N$, $\left\langle y-y^{\prime} ; F(t, x, y, z)-F\left(t, x, y^{\prime}, z^{\prime}\right)\right\rangle$
$\leq K \log N\left(\frac{1}{N}+\left|y-y^{\prime}\right|^{2}\right)+\sqrt{K \log N}\left|y-y^{\prime}\right|\left|z-z^{\prime}\right|$.

1. Existence and uniqueness of solutions to PDE

Consider the diffusion process with infinitesimal operator \mathcal{L}

$$
X_{s}^{t, x}=x+\int_{t}^{s} b\left(X_{r}^{t, x}\right) d r+\int_{t}^{s} \sigma\left(X_{r}^{t, x}\right) d W_{r}, \quad t \leq s \leq T
$$

Theorem: Bahlali-Essaky-Hassani

Under assumption (A.0)-(A.4) we have

1) The $\operatorname{PDE}\left(\mathcal{P}^{(g, F)}\right)$ has a unique solution u on $[0, T]$
2) For all $t \in[0, T]$ there exists $D_{t} \subset R^{k}$ such that
i) $\int_{D_{t}^{c}} 1 d x=0$
ii) For all $t \in[0, T]$ and all $x \in D_{t}\left(E^{\left(\xi^{t, x}, f^{t, x}\right)}\right)$ has a unique solution ($Y^{t, x}, Z^{t, x}$) on $[t, T]$
where $\xi^{t, x}:=g\left(X_{T}^{t, x}\right)$ and $f^{t, x}(s, y, z):=1_{\{s>t\}} F\left(s, X_{s}^{t, x}, y, z\right)$
3) For all $t \in[0, T]$

$$
\left(u\left(s, X_{s}^{t, x}\right), \sigma^{*} \nabla u\left(s, X_{s}^{t, x}\right)\right)=\left(Y_{s}^{t, x}, Z_{s}^{t, x}\right) \quad \text { a.e. }(s, x, \omega)
$$

1. Existence and uniqueness of solutions to PDE-Idea of the proof

- We Approximate F by a sequence $\left(F_{n}\right)_{n>1}$ of Lipschitz functions:

$$
\begin{aligned}
& \left.F_{n}(t, x, y, z)=\left(n^{2 p} e^{|x|}\right)^{(d+d r)}\left(c_{1} e\right)^{2} 1_{\left\{\eta^{\prime}(t, x)+\bar{\eta}^{\prime}(t, x)+f^{\prime}\right.}(t, x)+|x| \leq n\right\} \\
& \int_{R^{d}} \int_{R^{d r}} F(t, x, y-u, z-v) \Pi_{i=1}^{d} \psi\left(n^{2 p} e^{|x|} u_{i}\right) \Pi_{i=1}^{d} \Pi_{j=1}^{d} \psi\left(n^{2 p} e^{2}\right) \psi\left(n^{-2}|z|^{2}\right) \\
& \left.v_{i j}\right) d u d v,
\end{aligned}
$$

- We consider $\left(Y^{t, x, n}, Z^{t, x, n}\right)$ be the unique solution of BSDE (1) avec $\xi_{n}^{t, x}:=g_{n}\left(X_{T}^{t, x}\right)$ and $f_{n}^{t, x}(s, y, z):=1_{\{s>t\}} F_{n}\left(s, X_{s}^{t, x}, y, z\right)$, with $g_{n}(x):=g(x) 1_{\{|g(x)| \leq n\}}$.
- There exists a unique solution u^{n} of $\operatorname{PDE}\left(\mathcal{P}^{\left(g_{n}, F_{n}\right)}\right)$

$$
\left\{\begin{array}{l}
\left.\frac{\partial u^{n}(t, x)}{\partial t}+\mathcal{L} u^{n}(t, x)+F_{n}\left(t, x, u^{n}(t, x), \sigma^{*} \nabla u^{n}(t, x)\right)=0 t \in\right] 0, T\left[, x \in R^{k}\right. \\
u^{n}(T, x)=g_{n}(x) \quad x \in R^{k}
\end{array}\right.
$$

such that for all t

$$
u^{n}\left(s, X_{s}^{t, x}\right)=Y_{s}^{t, x, n} \quad \text { and } \quad \sigma^{*} \nabla u^{n}\left(s, X_{s}^{t, x}\right)=Z_{s}^{t, x, n} \quad \text { a.e }(s, \omega, x)
$$

- We have the following convergence :

$$
\begin{aligned}
& \lim _{n, m} \sup _{0 \leq t \leq T} \int_{R^{k}}\left|u^{n}(t, x)-u^{m}(t, x)\right|^{p^{\prime}} e^{-\delta^{\prime}|x|} d x=0 \\
& \lim _{n, m} \int_{0}^{T} \int_{R^{k}}\left|\sigma^{*} \nabla u^{n}(t, x)-\sigma^{*} \nabla u^{m}(t, x)\right|^{p^{\prime} \wedge 2} e^{-\delta^{\prime}|x|} d t d x=0 .
\end{aligned}
$$

1. Existence and uniqueness of solutions to PDE-Idea of the proof

For uniqueness we prove that the system of semilinear PDEs

$$
\left\{\begin{array}{l}
\left.\frac{\partial u(t, x)}{\partial t}+\mathcal{L} u(t, x)+f(t, x, u(t, x), \nabla u(t, x))=0, \quad t \in\right] 0, T\left[, x \in R^{k}\right. \\
u(T, x)=g(x), \quad x \in R^{k}
\end{array}\right.
$$

has a unique solution if and only if 0 is the unique solution of the linear system

$$
\left\{\begin{array}{l}
\frac{\partial u(t, x)}{\partial t}+\mathcal{L} u(t, x)=0, \\
u(T, x)=0, \quad x \in R^{k}
\end{array} \quad t \in\right] 0, T\left[, x \in R^{k}\right.
$$

For Further Reading

國 K. Bahlali

Existence and uniqueness of solutions for BSDEs with locally Lipschitz coefficient.
Electron. Comm. Probab., 7, 169-179, 2002.
K. Bahlali, E.H. Essaky, M. Hassani, E. Pardoux

Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient.
C. R. Acad. Sci., Paris 335, no. 9, 757-762, 2002.
E. K. Bahlali, E.H. Essaky, M. Hassani, E. Pardoux p-integrable solutions to multidimensional BSDEs and degenerate systems of PDEs with logarithmic nonlinearities. Preprint.

