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Introduction

@ Let (Q,F,P) be a complete probabiltiy space equipped
with a filtration [F satisfying the usual conditions.

@ Consider a continuous local martingale (in short, CLM)
(X, T) such that Xy = 0 and its associated increasing
process (X).

@ The stochastic exponential or Doléans exponential of X is
defined by

(1) E(X) :=exp (X—;<X>> .

@ Applying Itd’s formula it can easily be seen that (£(X),F) is
again a CLM, with £(X)o = 1.
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Introduction

@ Using Fatou’s lemma, we see that the nonnegative local
martingale (£(X),F) is a supermartingale. It follows that:

(2) (&(X),F)isamartingale <= E[E(X)]=1,t>0.

)

@ A.A. Novikov (1972) proved that the condition

exp <;<X>t>] < 400, t>0,

is sufficient for (£(X),F) to be a martingale.
@ N. KAzAMAKI (1977) showed that the condition

3) E

2

also implies that (£(X), F) is a martingale if (X, F) is a
martingale, otherwise it should be required that
(exp(3X),F) is a submartingale.

(4) E {exp <1Xt>} < 400, t>0,
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Introduction

@ The KAazamAki condition (4) follows from the Novikov
condition (3) by the Schwarz inequality, but the converse
does not hold.

@ N. KazAMAKI and T. SEKIGUCHI (1979) gave another
sufficient condition for (£(X),F) to be a martingale:
(X,F) belongs locally to BMO, i.e., if

G)  E((X) — (X)s| Fs) <c(t), s<t, Ps.

for allt > 0, where c(t) is a constant.

@ Note that, in general, the KazamMAKI condition (4) and the
BMO-condition (5) are not comparable each other.

@ In the case that (X) is bounded it is clear that all conditions
(3), (4) and (5) are satisfied.

@ For most applications, however, (X) is not bounded and in
concrete cases it is more difficult and, as a rule, hardly
possible to verify that one of the sufficient conditions (3),
(4) or (5) is fulfilled.
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Introduction

The main goal of this talk is to derive conditions on a CLM
(X, TF) such that:

@ (&(X),F) is a martingale
@ The conditions are necessary and sufficient for this
property to be true.

@ The conditions can effectively be verified in concrete
situations.
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The Basic Observation

The following useful result is taken from:

[§ Engelbert, H.-J.; Senf, T.:

On Functionals of a Wiener Process with Drift and
Exponential Local Martingales.
Proceedings of the 8th Winter School on Stochastic
Processes and Optimal Control, Georgenthal, January
22—-26 (1990), pp. 45-58, Akademie-Verlag, Berlin 1991

@ Let (X,FF)to be a CLM and A = (X) the associated
increasing process.

@ Itis well-known that there exists a Brownian motion (W, G)
(on a, possibly, enlarged probability space) such that
A = (At)i>0 is a G-time change and

X¢=W,p, t>0.

@ Of course, (£(W), G) is a nonnegative martingale with
expectation E[E(W )] =1, t > 0.
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The Basic Observation

@ Hence we can define probability measures Q; on G; by

dQ; = &(W)dP, t>0.

@ The consistent family (Qt):>o can be extended to an
additive set function Q on the algebra |J;~q Gt

The process (£(X),F) is a martingale if and only if

(6) nﬂrpoo Q({At<n})=1 forallt>0.
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The Basic Observation: The Proof

Proof.

Jim QA <)) = Ol <A <k +1)
k=0

= Z/ E(W )k41dP
= Jik<Aa<k+1}

o0

= > / E(W)a, dP
o {k<A<k+1}

_ / £(W)a, dP
A[<OO}

:/5

-  — ES(C)

which proves the equivalence. O
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The Basic Observation: An Equivalent Formulation

Now we consider the right inverse T = (T);>o Of A, i.e.,
Ti:=inf{s >0:As >t}, t>0,

We also put T := sup;~q Tt.

Theorem

Suppose that Q is o-additive on the algebra J;~ Gt and,
hence, can be extended to a probability measure on
G = 0(Us>0 Gt)- Then the following statements are equivalent:

(i) (£(X),F) is a martingale.
(i) Q({At < o0})=1,vt >0.
(i) Q({Too = +o0}) =1.
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The Basic Observation: Generalization

Generalization:

The theorem remains true if (X, F) is only a CLM up to T..
This means that, possibly, T, < oo with strictly positive
probability and (X, F) is exploding at explosion time T ...

The stochastic exponential (£(X),F) of (X, F) is then defined
as

exp(X; — (X)), if t<Teo,
E(X) = P(Xt — 5(X)t)
limgr, exp(X; — 3(X)) =0, if T <t.

Then (£(X),F) is again a proper CLM (without explosion).
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The Basic Observation: The Crucial Problem

Problem ‘
Can we always extend Q to a probability measure on G?

@ This mainly depends on the choice of the probability space
(Q, F,P) and the Brownian (W, G) on it. But the
martingale property of (£(X),F) is a distributional property
and does not depend on this choice.

@ Before solving the problem in a general way, we will
discuss several examples.

“Stochastic Control and Finance®, Roscoff, March 18-23, 2010 Hans-Jurgen Engelbert: On Stochastic Exponentials



The First Example: Solutions of an SDE

This example was given in:

[§ Engelbert, H.-J.; Senf, T.:
On Functionals of a Wiener Process with Drift and
Exponential Local Martingales.
Proceedings of the 8th Winter School on Stochastic
Processes and Optimal Control, Georgenthal, January
22—-26 (1990), pp. 45-58, Akademie-Verlag, Berlin 1991

@ We consider the one-dimensional SDE
@) dX; =b(X{)dBy, t>0, Xo=0,

where (B, F) is a Brownian motion and b some real Borel
function.

@ Note that every solution (X, F) is a CLM.

o 1.
@ For the sake of simplicity, let us assume thatb=2 := = is
locally integrable.
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The First Example: Solutions of an SDE

@ Then there exists a solution (X, F) which has no sojourn
time in the set {b = 0}:

/0 1{b:0}(Xu) du=0 P-as.

@ Such a solution is called fundamental solution, and the
fundamental solution is unique in law.
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The First Example: Construction of the Solution

Construction of the Solution: Let (C, C) be the space of
continuous real functions on [0, co) equipped with the Wiener
measure P. Let W = (W, );>o be the coordinate mapping on C.
Then (W, G) is a Brownian motion where G = (Gi)i>o is the
smallest right-continuous filtration (not completed!) with respect
to which W is adapted. We define

‘t+
Ty = b=2(Wy)du, tel0,o],
0

and let A = (A)i>o be the right inverse of T:
Ar=inf{s>0:Ts >t}, t>0.

Because T is strictly increasing and T, = oo P-a.s., Ais a
continuous and finite G-time change. It can be shown that the
process (X, ) defined by X; = Wy, F = (Ft)i>0 := (Ga, )i>0 iS
a fundamental solution of Eq. (7).
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The First Example: The Result

Now we can apply our second theorem from above:
@ Defining Q; = £(W); dP on G;, we observe that (Qt);>o can
be extended to a probability measure Q on C = o({J;~o Gt)-
@ The probability measure Q on (C,C) is just the -
P-distribution of (W; + t)>o.
@ This yields

Too = / b=2(W,)du = / b-2(W, + u)du Q-as.
Jo Jo

where W = (VNVt)tZO) is a Q-Brownian motion. Hence W is
a Q-Brownian motion with drift.

@ Integral functionals of a Brownian motion with drift have
been studied in the paper cited above. The result is

o0

Q{Tw =00}) =1 <= b™2(x)dx = oo Ve>0.
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The First Example: The Result

Summarizing we obtain the following purely analytical criterion.

Theorem
The stochastic exponential (£(X), F) associated with a
fundamental solution of SDE (7) is a martingale if and only if

b2(x)dx = oo Ve>0.

J —£

“Stochastic Control and Finance®, Roscoff, March 18-23, 2010 Hans-Jirgen Engelbert: On Stochastic Exponentials



The Second Example: Strong Markov CLM

The following result is taken from:

[@ Blei, S.; Engelbert, H.-J.:
On Exponential Local Martingales Associated with Strong
Markov Continuous Local Martingales.
Stoch. Proc. Appl. 119 (2009), 2859-2880

@ A strong Markov CLM (X, TF) is in law uniquely determined
by its speed measure m.

@ m can be an arbitrary measure on the real line which
assigns strictly positive measure to every non-empty open
set.
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The Second Example: The Construction

The construction of a strong Markov CLM (X, ) with given
speed measure m is similar as above: Let (C,C, P) be the
Wiener space, W = (W;);>o the coordinate mappings and
G = (Gt)i>0 the smallest right-continuous filtration (not
completed!) with respect to which W is adapted. We define

thALW(t,a)m(da), t € [0,0],

where LY (t, a) is the local time of W, and let A = (A;);>o be
the right inverse of T:

Ar=inf{s>0:Tg >t}, t>0.
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The Second Example: Strong Markov CLM

Because T is strictly increasing and T, = oo P-a.s., Ais a
continuous and finite G-time change. It can be shown that the
process (X, F) defined by

Xt =Wy, F=(F)>0:=(9a)t>0

is a strong Markov CLM with speed measure m. As above, we
define Q on (C, C) as the P-distribution of (W; + t);>o.
Integral functionals of type T, with

Tt:/RLW(t,a)m(da),

where W is a Q-Brownian motion with drift have been studied
in the paper cited above. The result is

QT =0})=1<=m((—¢,x)) =00 Ve>D0.
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The Second Example: The Result

Summarizing we obtain the following purely analytical criterion.

Theorem

The stochastic exponential (£(X), F) associated with a strong
Markov CLM (X, F), Xo = 0, having speed measure m is a
martingale if and only if

m((—e,00)) =0 Ve >0.

A
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The Problem

Problem

What happens for general CLMs (X, F)?
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A Canonical Setting: Definitions

We now prepare the general case and introduce a canonical
representation for CLMs.

@ As before, by (C,C) we denote the space of continuous
functions on [0, o) and by W = (W;);>( the coordinate
mappings. By C = (Ct)i>o0 We denote the filtration
generated by W. Let 1 be the Wiener measure on (C, C).

@ (C,C, ) will serve as canonical space for Brownian
trajectories.

@ Let V denote the space of nondecreasing continuous
functions [0, c0) — [0, o] starting from 0. By A = (At)i>0
we denote the canonical process on V.

@ We introduce the o-fields

Vi=o({{As<u}:se0,00)ucot]}), V=\ 1.

t>0

@ Note that V = (W;)i>0 is the smallest filtration with respect
to which A = (A¢)>0 is a time-change.
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A Canonical Setting: Definitions

@ The filtered space (V,V; V) will serve as canonical space
for trajectories of a continuous time-change.

@ Weset 2" =C xV, " =C®V and denote by (G;")i>o the
smallest right-continuous filtration containing (C; ® Vt)t>o.

@ W and A will be considered as defined on (Q*,G*).
@ We introduce the process X and the filtration [F by

X =Wa, F=0x, t>0.

As always, T = (Tt)t>0 denotes the right inverse of

A= (At)i>o0: Tt :=inf{s > 0:As > t},t € [0, 00]. Note that

the filtration V = (V;)i>0 is just generated by the process T.
@ The process X on (Q2*, G*) will serve as a canonical

representation for CLMs up to T..
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A Canonical Setting: Characterization of CLMs
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Let us consider a probability kernel K from (C,C) into (V, V)
satisfying the condition

(8) K(-,E) is Ci-measurable VE € V;, t>0.
We say that K is nonanticipative.
Given a nonanticipative probability kernel K from (C, C) into

(V,V), by P we denote the unique probability measure on
(Q2*, G*) which satisfies

9) P(DXE):/I;K(W,E)d/L(W), DxEecC®V.
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A Canonical Setting: Characterization of CLMs

(i) X isa CLM on (2*,G*,P) up to time T, and (X) = A.
(i) X isaCLMifand only if P({To = o0}) = 1.

Theorem

For any CLM >~<gp to time 'Foo starting from 0 defined on an
arbitrary (Q, F, P), there exists a nonanticipative probability
kernel K such that

Lawp(X) = Lawg(X),

where P is defined through K as in (9). If K and K’ are two
such kernels, then they are p-indistinguishable.
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A Canonical Setting: Characterization of CLMs

Remark: The kernel K from the above theorem can be
constructed as a regular conditional distribution

K(b,E)=P({(X)€E}B=b), beC,EcV,

where

X =B = By )itn
Jis any DAMBIS—DUBINS—SCHWARZ representation of the CLM
X up to T, as a time-changed Brownian motion B, possibly, on

an enlargement of (Q, F,P).

@ The two theorems state that the correspondence between
nonanticipative kernels K and distributions of CLMs is
one-to-one.

@ The described canonical setting can be viewed as a
converse to the DAMBIS—DUBINS—SCHWARZ theorem,
which states that each CLM is a time-changed Brownian
motion.
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A Canonical Setting: References

The above theorems are slight generalizations of results from:

@ Walther, Mario:
Eindimensionale stochastische Differentialgleichungen mit
verallgemeinerter Drift bezlglich stetiger lokaler Martingale.
PhD-thesis, Friedrich-Schiller-University of Jena (2007)

[§ Engelbert,H.-J.; Urusov, M.A.; Walther, M.:
A Canonical Setting and Separating Times for Continuous
Local Martingales.
Stoch. Proc. Appl. 119 (2009), 1039-1054
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A Canonical Setting: Stochastic Exponentials

We now apply the canonical setting to stochastic exponentials
of CLMs.

Similar as above, given the canonical CLM X on (Q*,G*,P), we
define
1

th = E(W)tdp = exp(Wt — >

t)dP on G .

The family (Qt):>o can uniquely be extended to a probability
measure Q on (Q*, G*).

Proof. 1) (Q*,G;) are standard Borel spaces.

2) For every decreasing family G, of atoms of G its
intersection is non-empty.

3) It remains to apply Thm. V.4.1 of Parthasarathy (1967). 1
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A Canonical Setting: Stochastic Exponentials

Using this probability measure Q, we now arrive at the following
result:

Theorem

The following conditions are equivalent:
(i) (£(X),F)is a martingale.
(i) Q({Ar < o0}) =1, Wt>O0.
(iii) Q({Too = ¢}) = 1where T, =inf{t > 0: A; = co}.
(iv) (X —A,F)is a proper CLM such that (X —A) = Aon
(Q*,G*,Q).
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A Canonical Setting: Stochastic Exponentials

Remark: After having the existence of Q on (Q*,G*), it can
easily be verified that:

Q(DxE):/DK(W,E)dz/(W), DxEeC®V,

where v is the distribution of a Brownian motion with drift on
(C,C). Hence the kernel K disintegrates P w.r.t. ;. as well as Q
w.r.t. v.

From this we obtain another characterization:

Conditions (i)—(iv) are also equivalent to each of the following
conditions:

(v) K(w,{At <o0})=1 v-as.,Vt>0.
i) Kw,{Tooc =0}) =1 v-as.
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A Canonical Setting: Stochastic Exponentials

Changing the roles of P and Q, we obtain the following result
where T, again appears as exploding time.

Corollary
Suppose that (X, F) is a CLM on (Q*, G*, P).

1) Then, on (2*,G*,Q), the process (—X + A,F) is a CLM up
to the stopping time T, such that (X — A) = A.

2) The stochastic exponential (£(—X + A),F) is always a
Q-martingale.
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Application: Some More Examples

Consider the SDE
t t
0 0
and the (possibly, exploding) CLM
t
0

with Brownian motion B.

Problem: We ask for conditions on the coefficients b, a and o
for £(X) being a martingale.

“Stochastic Control and Finance®, Roscoff, March 18-23, 2010 Hans-Jurgen Engelbert: On Stochastic Exponentials



Application: Some More Examples

Solution of the Problem:  Investigate integral functionals of

type
t
/ b2(Y,)du
0

of a solution Y of the SDE (10) and find analytical criteria for
t
/ b%(Yy)du < oo Vt>0 Q-as.
Jo

Note that w.r.t. Q the drift for the SDE of Y changes from a to
a+ ob.

Under reasonable conditions on the coefficients b, a and o, this
plan can always be successfully realized.
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Application: Some More Examples

In their paper

[@ Mijatovi¢, A.; Urusov, M.A.:
On the Martingale Property of Certain Local Martingales:
Criteria and Applications.
Preprint 2009

MiJATOVIC and URusov followed another approach, using the
concept of separating times of the second author and
non-explosive criteria for solutions of SDEs given in:

¥ Cherny, A.; Engelbert, H.-J.:
Singular Stochastic Differential Equations.
Lecture Notes in Mathematics 1858, Springer, 2005
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THANK YOU!
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