A NOTE ON HOMEOMORPHISM FOR BACKWARD DOUBLY SDES AND APPLICATIONS

A. AMAN

joint work with M. N'zi and J.M. Owo
Équipe de Probabilités et Statistiques

Université de Cocody, Abidjan

ITN Marie Curie Workshop: Stochastic control and Finance, Roscoff 18-23 March

Outline

(9) INTRODUCTION
(2) FORMULATION OF PROBLEM
(3) HOMOMORHISM RESULTS

4 APPLCATIONS
(5) APENDIX

INTRODUCTION

Presentation

$$
\begin{align*}
Y_{t}= & \xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d B_{s} \\
& -\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T] \tag{1}
\end{align*}
$$

- $d W$ is a forward Itô integral
- dB is a backward Itô integral
- ξ, a \mathcal{F}_{T}^{W}-measurable variable \equiv terminal condition
- The functions f and $g \equiv$ coefficients (also generators)
- $(Y, Z) \equiv$ unknowns

INTRODUCTION

Présentation

- BDSDE (1) \Rightarrow by Pardoux and Peng (1994): Existence et uniqueness result under Lipschitz condition on the coefficients
- The Lipschitz constant α of g with respect z satisfies $0<\alpha<1$, which is a very natural condition for many particular situations, e.g., g linear on z and does not depend on y.
- The solution (Y, Z) is adapted to $\mathcal{F}_{t}^{W} \otimes \mathcal{F}_{t, T}^{B}$ which is not a filtration.

INTRODUCTION

Motivation

- As application BDSDE (1) give in the Markovian framework the representation to SPDE

$$
\begin{align*}
u(t, x) & =h(x)+\int_{t}^{T}\left[\mathcal{L} u(s, x)+f\left(s, x, u(s, x),\left(\partial_{x} u . \sigma\right)(s, x)\right)\right] d s \\
& +\int_{t}^{T} g(s, x, u(s, x)) d B_{s}, 0 \leq t \leq T \tag{2}
\end{align*}
$$

-

$$
\mathcal{L}=\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma \sigma^{*}\right)_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i} \frac{\partial}{\partial x_{i}} .
$$

INTRODUCTION

Other results

- Bally and Matoussi (2001): Weak solutions of parabolic semilinear SPDEs in Sobolev spaces.
- Matoussi and Scheutzow (2002): SPDEs with nonlinear noise term give by Itô-Kunita stochastic integral.
- Buckdahn and Ma $(2001,2002)$: Notion of stochastic viscosity solution for SPDE
- Boufoussi and Mrhardy (2007, 2008): Stochastic viscosity solution for SPDE with Neuman-Dirichlet boundary condition and multivalued SPDE.
- Aman and Mrhardy (2008) : Obstacle problem for SPDE with Neuman-Dirichlet boundary condition

INTRODUCTION

Other works about BDSDE

- M. N'zi and J. M. Owo (2008, 2009): BDSDE with non-Lipschitz and discontinuous condition
- A. Aman (2009): L^{p}-solution of BDSDE with non Lipschitz condition
- L. Hu and Y. Ren (2009): GBDSDE with Lévy process and stochastic PDIE Neuman-Dirichlet boundary condition
- A. Aman and Y. Ren (2010): Viscosity solution for SPDIEs with nonlinear Neuman-Dirichlet boundary condition

BDSDE with parameter

$$
\begin{align*}
Y_{t}= & \xi(x)+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} g\left(s, Y_{s}\right) d B_{s} \\
& -\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T] \tag{3}
\end{align*}
$$

- Solution depends on x via $\xi(x) \Longrightarrow \quad\left(Y^{x}, Z^{x}\right)$.
- In the sequel g do not depend on z due to the use of strict comparison theorem for BDSDE, which works only in this case.

FORMULATION OF PROBLEM

Aim of topic

$x \mapsto \xi(x, \omega)$ homeomorphism on \mathbb{R} for almost all ω;
$x \mapsto Y^{X}(\omega)$ homeomorphism on \mathbb{R} for almost all ω ?

FORMULATION OF PROBLEM

Additional assumptions

$\left(H_{f, g}^{2}\right)$ Let set $C_{1}>0$ and $\epsilon_{1}>0$.

For all $z \in \mathbb{R}^{d}, t \in[0, T]$ and any $y \in \mathbb{R}$ such that $|y| \leq \epsilon_{1}$,
(i) $y f(t, y, z) \geq-C_{1}\|z\|^{2}$,
(ii) $g(t, 0)=0$.

FORMULATION OF PROBLEM

Additional assumptions

(H_{ξ}^{1}) For almost $\omega, x \mapsto \xi(x, \omega)$ is increasing (or decreasing) and is an homeomorphism on \mathbb{R},
$\left(H_{\xi}^{2}\right)$ for any $R>0$, there are $\delta_{R}, C_{R}>0$ such that

$$
\mathbb{E}|\xi(x)-\xi(y)|^{2} \leq C_{R}|x-y|^{1+\delta_{R}}, \quad \forall|x|,|y| \leq R .
$$

$\left(H_{\xi}^{3}\right)$ For some $\beta<\frac{1-2 C_{1}}{2} \wedge 0$,

$$
\liminf _{|x| \rightarrow \infty} \mathbb{E}|\xi(x)|^{4 \beta}=0
$$

FORMULATION OF PROBLEM

Example

Let denote by

$$
f(y, z)=y+\arctan (y)(1+\sin (z))
$$

Then f satisfy $\left(H_{f, g}^{2}(i)\right)$
Moreover H_{ξ}^{3} holds if $\xi(x)$ verify this condition for some $R_{0}>0$ and $\varepsilon>0$,

$$
\inf _{\left\{|x| \geq R_{0}\right\}} \frac{\xi(x, \omega)}{g(x)} \geq \varepsilon
$$

$g: \mathbb{R} \rightarrow \mathbb{R}$ continuous such that
$\lim _{x \rightarrow \mp \infty} g(x)= \pm \infty$ or $\lim _{x \rightarrow \mp \infty} g(x)= \pm \infty$.

Main result

Theorem

Under Lipschitz condition on f and g

Under additional assumptions,
for almost $\omega \in \Omega$, the map $x \mapsto Y_{t}^{x}(\omega)$ is a homeomorphism on \mathbb{R}, for every $t \in[0, T]$.

Preliminaries results

Comparison theorem

Let $\left(Y^{1}, Z^{1}\right) \longrightarrow$ solutions of BDSDEs $\left(\xi^{1}, f^{1}, g\right)$ solution of BDSDEs
$\left(Y^{2}, Z^{2}\right) \longrightarrow$ solution of BDSDEs $\left(\xi^{2}, f^{2}, g\right)$.
If $\xi^{1}>\xi^{2}$, a.s.
$f^{1}\left(t, Y^{1}, Z^{1}\right)>f^{2}\left(t, Y^{1}, Z^{1}\right)$, a.s., $\forall t \in[0, T]$, then, $Y_{t}^{1}>Y_{t}^{2}$, a.s.

Preliminaries results

Injection property

For any $R>0$ and any $|x|,|y| \leq R$,

$$
\mathbb{E}\left(\sup _{t \in[0, T]}\left|Y_{t}^{x}-Y_{t}^{y}\right|^{2}\right) \leq C_{R}|x-y|^{1+\delta_{R}}
$$

In particular, $\left\{Y_{t}^{X},(t, x) \in[0, T] \times \mathbb{R}\right\}$ admits a continuous modification on $[0, T] \times \mathbb{R}$. and

$$
\mathbb{P}\left(\left\{\omega: Y_{t}^{x}(\omega)<Y_{t}^{y}(\omega), \forall x<y, t \in[0, T]\right\}\right)=1
$$

Preliminaries results

Property at infinity

Under Lipschitz condition on f and g, additional assumptions ($H_{f, g}^{2}$) and $\left(H_{\xi}^{3}\right)$, we have

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty} \mathbb{E}\left(\sup _{0 \leq t \leq T}\left|Y_{t}^{x}\right|^{4 \beta}\right)=0 \tag{4}
\end{equation*}
$$

Proof of main Theorem (Injection)

Assumption $\left(H_{\xi}^{1}\right)$,
Comparison theorem
Injection property
$\Longrightarrow x \mapsto Y_{t}^{x}(\omega)$ are continuous and injective a.s., for all $t \in[0, T]$.

Proof of main Theorem (Surjection)

Since $\beta<0$, for any $n \in \mathbb{N}^{*}, x \in \mathbb{R}$ and $t \in[0, T]$, by Tchebychev's inequality,

$$
\begin{aligned}
& \mathbb{P}\left(\left|Y_{t}^{X}\right|>n\right)= \mathbb{P}\left(\left|Y_{t}^{x}\right|^{4 \beta}<n^{4 \beta}\right) \\
& \geq \mathbb{P}\left(\sup _{0 \leq t \leq T}\left|Y_{t}^{x}\right|^{4 \beta}<n^{4 \beta}\right) \\
&= 1-\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|Y_{t}^{x}\right|^{4 \beta}>n^{4 \beta}\right) \\
& \mathbb{E}\left(\sup _{0 \leq t \leq T}\left|Y_{t}^{x}\right|^{4 \beta}\right) \\
& n^{4 \beta}
\end{aligned}
$$

Proof of main Theorem (Surjection)

By virtue of Property at infinity, we have, for any $n \in \mathbb{N}^{*}$ and for all $t \in[0, T]$

$$
\liminf _{|x| \rightarrow \infty} \mathbb{P}\left(\left|Y_{t}^{x}\right|>n\right)=1
$$

Therefore

$$
\lim _{|x| \rightarrow+\infty}\left|Y_{t}^{x}\right|=+\infty, \quad \forall t \in[0, T], \quad \text { a.s. }
$$

Hence, by injectivity

$$
\lim _{x \uparrow+\infty} Y_{t}^{x}= \pm \infty, \quad \lim _{x \downarrow-\infty} Y_{t}^{x}=\mp \infty, \quad \forall t \in[0, T], \text { a.s. }
$$

Consequently, $x \mapsto Y_{t}^{x}(\omega)$ is surjective.

Standing Assumptions

On coefficients of SDE

$\left(A_{\sigma, b}^{1}\right)$ For all $t \in[0, T], \sigma(t,),. b(t,.) \in C_{l, b}^{3}(\mathbb{R}) ;$
$\left(A_{\sigma, b}^{2}\right)$ For some $C_{\sigma, b}>0$ and for all $(t, x) \in[0, T] \times \mathbb{R}$

$$
|\sigma(t, x)|+|b(t, x)| \leq C_{\sigma, b}|x| ;
$$

Standing Assumptions

On coefficients of BDSDE

(A_{f}^{1}) for all $t \in[0, T],(x, y, z) \mapsto f(t, x, y, z)$ is of class C^{3}, and their derivatives of order one and two are bounded on $[0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$;
$\left(A_{f}^{2}\right)$ for every $t \in[0, T]$, the function $x \mapsto f(t, x, 0,0)$ has polynomial growth at infinity together with all partial derivatives up order three;
(A_{f}^{3}) for some $C_{1}>0$ and $\epsilon_{1}>0$, it holds that
$y f(\omega, t, x, y, z) \geq-C_{1}|z|^{2}$, for all $(\omega, t) \in \Omega \times[0, T]$ and $|y| \leq \epsilon_{1}$, $x, z \in \mathbb{R}$;

Standing Assumptions

On coefficients of BDSDE

$\left(A_{g}^{1}\right)$ for all $t \in[0, T],(t, x, y) \longrightarrow g(t, x, y)$ is of class C^{3}, and all derivatives are bounded on $[0, T] \times \mathbb{R} \times \mathbb{R}$.
$\left(A_{g}^{2}\right)$ for all $(t, x) \in[0, T] \times \mathbb{R}, g(t, x, 0)=0$,
$\left(A_{h}^{1}\right) h \in C_{p}^{3}(\mathbb{R})$,
$\left(A_{h}^{2}\right) x \mapsto h(x)$ is increasing (or decreasing) and a homeomorphism on \mathbb{R}.
$\left(A_{h}^{3}\right)$ there are constants $c_{1}, \delta>0$ such that $|h(x)| \geq c_{1}|x|^{\delta}$.

Main result

Theorem

Under the assumptions (A) and for any $t \in[0, T]$, the map $x \mapsto Y_{s}^{t, x}$ is a homeomorphism on \mathbb{R} for all $s \in[t, T]$, a.s.

In particular, denoting $Y_{t}^{t, x}=u(t, x)$ the unique solution to SPDEs (2),
$x \mapsto u(\omega, t, x)$ is a homeomorphism on \mathbb{R} for almost all ω and
$t \in[0, T]$.

Proof of Preliminaries results

Proof of comparison theorem

Define

$$
\begin{aligned}
\bar{\xi} & =\xi^{1}-\xi^{2}, \quad \bar{Y}_{t}=Y_{t}^{1}-Y_{t}^{2}, \quad \bar{Z}_{t}^{(i)}=Z_{t}^{1(i)}-Z_{t}^{2(i)} \\
\bar{f}_{t} & =f^{1}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)-f^{2}\left(s, Y_{s}^{2}, Z_{s}^{2}\right)
\end{aligned}
$$

and
$a_{t}=\frac{f^{1}\left(s, Y_{s}^{1}, Z_{s}^{1}\right)-f^{1}\left(s, Y_{s}^{2}, Z_{s}^{1}\right)}{\left(Y_{t}^{1}-Y_{t}^{2}\right) \mathbf{1}_{\left\{Y_{t}^{1} \neq Y_{t}^{2}\right\}}} b_{t}^{i}=\frac{f^{1}\left(s, Y_{s}^{2}, \tilde{Z}_{s}^{(i-1)}\right)-f^{1}\left(s, Y_{s}^{2}, \tilde{Z}_{s}^{(i)}\right)}{\left.\left(Z_{t}^{(i)}-Z_{t}^{2(i)}\right) \mathbf{1}_{\left\{Z_{t}^{1(i)} \neq Z_{t}^{2(i)}\right\}}\right\}}$
$c_{t}=\frac{g\left(s, Y_{s}^{1}\right)-g\left(s, Y_{s}^{2}\right)}{\left(Y_{t}^{1}-Y_{t}^{2}\right) \mathbf{1}_{\left\{Y_{t}^{1} \neq Y_{t}^{2}\right\}}}$,
where $\tilde{Z}^{(i)}=\left(Z^{2(1)}, Z^{2(2)}, \ldots, Z^{2(i)}, Z^{1(i+1)}, \ldots, Z^{1(d)}\right)$

Proof of Preliminaries results

Proof of comparison theorem

(\bar{Y}, \bar{Z}) is a unique solution of the following linear BDSDE

$$
\begin{aligned}
\bar{Y}_{t}= & \bar{\xi}+\int_{t}^{T}\left[a_{s} \bar{Y}_{s}+b_{s} \bar{Z}_{s}+\bar{f}_{s}\right] d s \\
& +\int_{t}^{T} c_{s} \bar{Y}_{s} d B_{s}-\int_{t}^{T} \bar{Z}_{s} d W_{s}, \quad t \in[0, T] .
\end{aligned}
$$

Now, by the explicit expression for linear BDSDE

$$
\bar{Y}_{t}=\widetilde{\mathbb{E}}\left(\Gamma_{t, T} \bar{\xi}+\int_{t}^{T} \Gamma_{t, r} \bar{f}_{r} d r \mid \mathcal{F}_{t}\right),
$$

Proof of Preliminaries results

Proof of comparison theorem

where

$$
\Gamma_{s, t}=\exp \left(\int_{s}^{t} a_{r} d r+\int_{s}^{t} c_{r} d B_{r}-\frac{1}{2} \int_{s}^{t}\left\|c_{r}\right\|^{2} d r\right)
$$

Therefore, since $\bar{\xi}>0$ and $\bar{f}_{t}>0, \forall t \in[0, T]$,
we have $\bar{Y}_{t}>0$, a.s. i.e. $Y_{t}^{1}>Y_{t}^{2}$, a.s. for each $t \in[0, T]$

Proof of injection property

(Y^{x}, Z^{x}) and (Y^{y}, Z^{y}) be respectively the unique solution of BDSDE associated to $\xi(x)$ and $\xi(y)$
Define

$$
\bar{\xi}=\xi(x)-\xi(y), \bar{Y}_{t}=Y_{t}^{x}-Y_{t}^{y}, \bar{Z}_{t}=Z_{t}^{x}-Z_{t}^{y}
$$

By virtue of Itô's formula, taking expectation, using $\left(H_{f, g}^{1}\right)$, Young's inequality, Gronwall's inequality and $\left(H_{\xi}^{2}\right)$

$$
\begin{equation*}
\mathbb{E}\left(\left|\bar{Y}_{t}\right|^{2}+\int_{t}^{T}\left\|\bar{Z}_{s}\right\|^{2} d s\right) \leq C|x-y|^{1+\delta_{R}} \tag{5}
\end{equation*}
$$

Proof of injection property

Applying again Itô's formula, taking the sup and hence expectation, it follows by Young inequality, Burkhölder-Davis-Gundy inequality and (5), we get

$$
\begin{align*}
\mathbb{E}\left(\sup _{t \in[0, T]}\left|\bar{Y}_{t}\right|^{2}\right) & \leq C\left(\mathbb{E}|\bar{\xi}|^{2}+\mathbb{E} \int_{0}^{T}\left|\bar{Y}_{s}\right|^{2} d s+\mathbb{E} \int_{t}^{T}\left\|\bar{Z}_{s}\right\|^{2} d s\right) \\
& \leq C|x-y|^{1+\delta_{R}} \tag{6}
\end{align*}
$$

Proof of property at infinity

Assume that for all $x \in \mathbb{R} \mathbb{E}|\xi(x)|^{4 \beta}<+\infty$. For any $0<\epsilon<\varepsilon_{1}$ and $\alpha<0$,

$$
\begin{align*}
\left(\left|Y_{t}^{x}\right|^{2}+\epsilon\right)^{\alpha}= & \left(\left|Y_{T}^{x}\right|^{2}+\epsilon\right)^{\alpha}+2 \alpha \int_{t}^{T}\left(\left|Y_{s}^{x}\right|^{2}+\epsilon\right)^{\alpha-1} Y_{s}^{x} f\left(s, Y_{s}^{x}, Z_{s}^{x}\right) d s \\
& +2 \alpha \int_{t}^{T}\left(\left|Y_{s}^{x}\right|^{2}+\epsilon\right)^{\alpha-1} Y_{s}^{x} g\left(s, Y_{s}^{x}\right) d B_{s} \tag{7}\\
& -2 \alpha \int_{t}^{T}\left(\left|Y_{s}^{x}\right|^{2}+\epsilon\right)^{\alpha-1} Y_{s}^{x} Z_{s}^{x} d W_{s} \\
& +2 \alpha(\alpha-1) \int_{t}^{T}\left|Y_{s}^{x}\right|^{2}\left(\left|Y_{s}^{x}\right|^{2}+\epsilon\right)^{\alpha-2}\left\|g\left(s, Y_{s}^{x}\right)\right\|^{2} d s \\
& +A_{\alpha} .
\end{align*}
$$

Proof of property at infinity

$$
\begin{aligned}
A_{\alpha}= & \alpha \int_{t}^{T}\left(\left|Y_{s}^{x}\right|^{2}+\epsilon\right)^{\alpha-1}\left\|g\left(s, Y_{s}^{x}\right)\right\|^{2} d s \\
& -2 \alpha(\alpha-1) \int_{t}^{T}\left|Y_{s}^{x}\right|^{2}\left(\left|Y_{s}^{x}\right|^{2}+\epsilon\right)^{\alpha-2}\left\|Z_{s}^{x}\right\|^{2} d s \\
& -\alpha \int_{t}^{T}\left(\left|Y_{s}^{x}\right|^{2}+\epsilon\right)^{\alpha-1}\left\|Z_{s}^{x}\right\|^{2} d s
\end{aligned}
$$

First for each $x \in \mathbb{R}$

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \mathbb{E}\left|Y_{t}^{X}\right|^{4 \beta}<+\infty \tag{8}
\end{equation*}
$$

Proof of property at infinity

$\left(H_{f, g}^{2}\right)$ implies $f(s, 0,0)=0$, which together with $\left(H_{f, g}^{1}\right)$ gives

$$
|f(t, y, z)| \leq C_{f}(|y|+\|z\|) \text { and }\|g(t, y)\|^{2} \leq C_{g}|y|^{2} .
$$

For $0<\epsilon<\epsilon_{1}$, putting $\alpha=2 \beta$, taking expectation, using (5) and letting $\epsilon \downarrow 0$,

$$
\mathbb{E}\left|Y_{t}^{x}\right|^{4 \beta} \leq \mathbb{E}|\xi(x)|^{4 \beta}+C^{\prime} \int_{t}^{T} \mathbb{E}\left|Y_{s}^{x}\right|^{4 \beta} d s
$$

Therefore it follows from Gronwall's inequality

$$
\mathbb{E}\left|Y_{t}^{x}\right|^{4 \beta} \leq C \mathbb{E}|\xi(x)|^{2},
$$

which proves (8)

Proof of property at infinity

Now, starting from (7), using Young's inequality with property of β and Gronwall's inequality

$$
\mathbb{E}\left(\left|Y_{t}^{x}\right|^{4 \beta}+\int_{t}^{T}\left|Y_{s}^{x}\right|^{2(2 \beta-1)}\left\|Z_{s}^{x}\right\|^{2} d s\right) \leq C \mathbb{E}|\xi(x)|^{4 \beta}
$$

Similar to the above calculations, from (7) with Doob's maximal inequality

$$
\begin{aligned}
\mathbb{E}\left(\sup _{0 \leq t \leq T}\left|Y_{t}^{x}\right|^{4 \beta}\right) \leq & C \mathbb{E}\left(|\xi(x)|^{4 \beta}+\int_{0}^{T}\left|Y_{s}^{x}\right|^{4 \beta} d s\right. \\
& \left.+\int_{0}^{T}\left|Y_{s}^{x}\right|^{4 \beta-2}\left\|Z_{s}^{x}\right\|^{2} d s\right) \\
\leq & C \mathbb{E}|\xi(x)|^{4 \beta},
\end{aligned}
$$

Reference

- Aman, A.; N'zi,M. and Owo, J. M., A note on homeomorphism for backward doubly SDEs and Applications, accepted to publication to stochastic and dynamics
- Pardoux, E. and Peng, S., Backward doubly stochastic differential equations and systems of quasilnear SPDEs Probab. Theory Related Fields. 98 (1994), no. 2, 209-227.
- Qiao, H.and Zhang, X. Homeomorphism of solutions to backward SDEs and applications. Stochastic Process. Appl. 117 (2007), no. 3, 399-408.
- Yamada, T. and Y. Ogura, Y., On the strong comparison theorems for solutions of stochastic differential equations, Z. W. verw. Gebiete 56 (1981) 3-19.

THANK FOR YOUR ATTENTION GOD BLESS US

