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1. Statement of the Problem

Motivated by uncertainty problems, risk measures and the superhedging
in finance, Peng introduced G-Brownian motion. The expectation E[·]
associated with G-Brownian motion is a sublinear expectation which is
called G-expectation. In the papers, Peng [2007] & Gao [2009], the
stochastic calculus with respect to the G-Brownian motion has been
established .

In this work, we study the solvability of the following stochastic
differential equation driven by G-Brownian motion:

X(t) = x+
∫ t

0
b(s,X(s))ds+

∫ t

0
h(s,X(s))d〈B,B〉s +

∫ t

0
σ(s,X(s))dBs, (1)

where t ∈ [0,T], the initial condition x ∈Rn is given and (〈B,B〉t)t≥0 is the
quadratic variation process of G-Brownian motion (Bt)t≥0.

The solvability of (1) has been studied in Peng [2007] & Gao [2009],
where the coefficients b, h and σ are subject to a Lipschitz condition, and
the existence and uniqueness of the solution to (1) has been obtained by
the contraction mapping principle and Picard iteration respectively.
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In this work, we establish the existence and uniqueness of the solution to
(1) under the following so-called integral-Lipschitz condition:

|b(t,x1)−b(t,x2)|2 + |h(t,x1)−h(t,x2)|2 + |σ(t,x1)−σ(t,x2)|2 ≤ ρ(|x1−x2|2), (2)

where ρ : (0,+∞)→ (0,+∞) is a continuous, increasing, concave function
satisfying

ρ(0+) = 0,
∫ 1

0

dr
ρ(r)

= +∞.

A typical example of (2) is:

|b(t,x1)−b(t,x2)|+ |h(t,x1)−h(t,x2)|+ |σ(t,x1)−σ(t,x2)| ≤ |x1−x2|(ln 1
|x1−x2| )

1
2 .

Furthermore, we also establish the existence and uniqueness of the
solution to equation (1) under a “weaker” condition on b and h, i.e.,

|b(t,x1)−b(t,x2)| ≤ ρ(|x1− x2|); |h(t,x1)−h(t,x2)| ≤ ρ(|x1− x2|). (3)

A typical example of (3) is:

|b(t,x1)−b(t,x2)| ≤ |x1− x2| ln
1

|x1− x2|
; |h(t,x1)−h(t,x2)| ≤ |x1− x2| ln

1
|x1− x2|

.
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Reference:

• Watanabe-Yamada [1971] & Yamada [1981] studied the solvability of
(1) under the condition (2) for classical finite dimensional case and the
uniqueness of solutions to (1) under the condition (3) for classical case.

• Hu-Lerner [2002] studied the solvability of (1) under the condition (2)
for classical infinite dimensional case and the existence of solutions to (1)
under the condition (3) for classical case.

In this work, we prove the existence and uniqueness of the solution to (1)
still hold under either condition (2) or condition (3)
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At the end of the work, we also consider the following type of G-BSDE:

Yt = E[ξ +
∫ T

t
f (s,Ys)ds+

∫ T

t
g(s,Ys)d〈B,B〉s|Ft], (4)

where t ∈ [0,T] and ξ ∈ L1
G(FT ;Rn). While the solvability for (4) under a

Lipschitz condition on the coefficients f and g has been given by Peng
[2007], we prove that under the integral-Lipschitz condition:

|g(s,y1)−g(s,y2)|+ |f (s,y1)− f (s,y2)| ≤ ρ(|y1− y2|),

the existence and uniqueness of the solution to (4) are obtained as well.
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2. G-Brownian Motion and G-Capacity

Adapting approach in Peng [2007], we have the following basic notions:

Ω: a given nonempty fundamental space.

H : a space of random variables which is a linear space of real functions
defined on Ω such that :

• 1 ∈H ;
• H is stable with respect to local Lipschitz functions, i.e., for all n ≥ 1,
and for all X1, . . . ,Xn ∈H , ϕ ∈ Cl,Lip(Rn), ϕ(X1, . . . ,Xn) ∈H .

E: a sublinear expectation which is a functional E : H → R with the
following properties : for all X,Y ∈H , we have

• Monotonicity: if X ≥ Y, then E[X]≥ E[Y];
• Preservation of constants: E[c] = c, for all c ∈ R;
• Sub-additivity: E[X]−E[Y]≤ E[X−Y];
• Positive homogeneity: E[λX] = λE[X], for all λ ≥ 0.
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Definition (Independent)

For arbitrary n,m ≥ 1, a random vector Y ∈H n is said to be independent
of X ∈H m under E[·] if for each test function ϕ ∈ Cl,Lip(Rn+m) we have

E[ϕ(X,Y)] = E[E[ϕ(x,Y)]x=X].

Definition (Identically Distributed)

Given two sublinear expectation spaces (Ω,H ,E) and (Ω̃,H̃ , Ẽ), two

random vectors X ∈H n and Y ∈ H̃ n are said to be identically
distributed if for each test function ϕ ∈ Cl,Lip(Rn)

FX[ϕ] = F̃Y [ϕ],

where FX[ϕ] := E[ϕ(X)] and FY [ϕ] := E[ϕ(Y)] respectively.

8 / 42



Definition (G-Normal Distributed)

A d-dimensional random vector X in a sublinear expectation space
(Ω,H ,E) is called G-normal distributed if for each ϕ ∈ Cl,Lip(Rd),

u(t,x) := E[ϕ(x+
√

tX)], t ≥ 0,x ∈ Rd

is the viscosity solution of the following PDE defined on [0,∞)×Rd:

∂u
∂ t

−G(D2u) = 0, u|t=0 = ϕ,

where G = GX(A) : Sd → R is defined by

GX(A) :=
1
2

E[〈AX,X〉],A ∈ Sd,

and D2u = (∂ 2
xixj

u)d
i,j=1.
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Remark

In particular, E[ϕ(X)] = u(1,0), and by Peng [2007] it is easy to check
that, for a G-normal distributed random vector X, there exists a bounded,
convex and closed subset Γ of Rd, which is the space of all d×d
matrices, such that for each A ∈ Sd, G(A) = GX(A) can be represented as

G(A) =
1
2

sup
γ∈Γ

tr[γγ
TA].

Consequencely, we can denote the G-normal distribution by N(0,Σ),
where Σ := {γγT ,γ ∈ Γ}.

10 / 42



In order to establish the stochastic calculus in the framework of
G-expectation, we firstly give a more explicit definition of the triple
(Ω,H ,E):

Sample space:

Ω := {ω : [0,∞)→ Rd|(ωt)t≥0 is continuous and ω0 = 0}.

Distance on Ω:

ρ(ω1,ω2) :=
∞

∑
i=1

2−i[(max
t∈[0,i]

|ω1
t −ω

2
t |)∧1],

Ramdom variable space:

L0
ip(FT) := {ϕ(Bt1 , . . . ,Btn) : n ≥ 1, t1, . . . , tn ∈ [0,T],ϕ ∈ Cl,Lip(Rd×n)},

and

L0
ip(F ) :=

∞⋃
n=1

L0
ip(Fn),

where Bt(ω) = ωt, t ∈ [0,+∞) is the canonical process.
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Definition (G-Expectation)

Sublinear expectation E : L0
ip(F )→ R on (Ω,L0

ip(F ) is a G-expectation
if and only if (Bt)t≥0 is a G-Brownian motion under E, that is,

• B0(ω) = 0;
• Bt+s−Bt is N(0,sΣ)-distributed and independent of (Bt1 , . . . ,Btn), for
each n ∈ N, 0 ≤ t1 ≤ . . .≤ tn ≤ t, and t,s ≥ 0.

Remark

We denote by Lp
G(FT) (resp. Lp

G(F )) the topological completion of

L0
ip(FT) (resp. L0

ip(F )) under the Banach norm E[| · |p]
1
p , 1 ≤ p ≤ ∞.
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Definition

The related conditional expectation of X ∈ L0
ip(FT) under L0

ip(Ftj):

E[X|Ftj ] = E[ϕ(Bt1 ,Bt2 −Bt1 , . . . ,Btn −Btn−1)|Ftj ]

= E[ψ(Bt1 ,Bt2 −Bt1 , . . . ,Btj −Btj−1)],

where ψ(x1, . . . ,xj) = Ē[ϕ(x1, . . . ,xj,
√

tj+1− tjξj+1, . . . ,
√

tn− tn−1ξn)], and
0 ≤ t1 ≤ . . .≤ tn ≤ T, (ξ1, . . . ,ξn) are a sequence of G-normal distributed
random vectors.

Remark

Since, for X, Y ∈ L0
ip(Ftj),

E[|E[X|Ftj ]−E[Y|Ftj ]|]≤ E[|X−Y|],

the mapping E[·|Ftj ] : L0
ip(FT)→ L0

ip(Ftj) can be continuously extended

to L1
G(FT)→ L1

G(Ftj).
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From the above definition, we know each G-expectation is determined by
the parameter G, which coincides with Γ, so we have the following
representation theorem according to Denis-Hu-Peng [2008].

Let A Γ
0,∞ be the collection of all Γ−valued natural filtration {Ft, t ≥ 0}

adapted processes on the interval [0,∞). For each fixed θ ∈A Γ
0,∞, set Pθ

be the law of the process (
∫ t

0 θsdBs)t≥0 under the Wiener measure P, and
P := {Pθ : θ ∈A Γ

0,∞}.

Definition (Quasi-Surely)

For each A ∈B(Ω), we define

C̄(A) := sup
P∈P

P(A),

then a set A is called polar if C̄(A) = 0. Moreover, a property is said to
hold “quasi-surely” (q.s.) if it holds outside a polar set.
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Theorem (Denis-Hu-Peng [2008])

For each X ∈ L0(Ω), we define

Ē[X] := sup
P∈P

EP(X),

then we have

L1
G(F ) = {X ∈∈ L0(Ω) : X is q.s.continuous and lim

n→+∞
Ē[|X|I{|X|>n}] = 0}.

Furthermore for all X ∈ L1
G(F ), E[X] = Ē[X].

From Denis-Hu-Peng [2008] and Gao [2009], we also have the following
monotone convergence theorem:

Theorem

Xn ∈ L1
G(F ), Xn ↓ X, q.s.⇒ E[Xn] ↓ Ē[X].

Xn ∈B(Ω), Xn ↑ X, q.s., EP(X1) >−∞ for all P ∈P ⇒ Ē[Xn] ↑ Ē[X]. (5)
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In Gao [2009], a generalized Itô integral and a generalized Itô formula
with respect to G-Brownian motion are established:

A partion of [0,T]:

π
N
T = {t0, t1, . . . , tN},0 = t0 < t1 < .. . < tN = T.

A collection of simple processes Mp,0
G (0,T;R), p ≥ 1:

Mp,0
G (0,T;R) := {ηt =

N−1

∑
j=0

ξjI[tj,tj+1)(t);ξj ∈ Lp
G(Ftj), j = 0,1, , ...,N−1}.

Norm on Mp,0
G (0,T;R):(∫ T

0
E[|ηt|p]dt

) 1
p

=
(N−1

∑
j=0

E[|ξj|p](tj+1− tj)
) 1

p

.

We denote by Mp
G(0,T;R) the topological completion of Mp,0

G (0,T;R)

under the Banach norm (
∫ T

0 E[|ηt|p]dt)
1
p .
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Let a = (a1, . . . ,ad)T be a given vector in Rd, we set (Ba
t )t≥0 = (a,Bt)t≥0,

where (a,Bt) denotes the scalar product of a and Bt.

Definition

For each η ∈ M2,0
G ([0,T]) with the form

ηt(ω) =
N−1

∑
j=0

ξjI[tj,tj+1)(t),

we define

I (η) =
∫ T

0
ηsdBa

s :=
N−1

∑
j=0

ξj(Ba
tj+1

−Ba
tj),

the mapping can be continuously extended to I : M2
G([0,T])→ L2

G(FT).
Then, for each η ∈ M2

G([0,T]), the stochastic integral is defined by∫ T

0
ηsdBa

s := I (η).
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Denote by (〈Ba〉t)t≥0 the quadratic variation process of process (Ba
t )t≥0,

we know from Peng [2007] that (〈Ba〉t)t≥0 is an increasing process with
〈Ba〉0 = 0, and for each fixed s ≥ 0,

〈Ba〉t+s−〈Ba〉s = 〈(Bs)a〉t,

where Bs
t = Bt+s−Bs, t ≥ 0,(Bs)a

t = (a,Bs
t ).

The mutual variation process of Ba and Bā is defined by

〈Ba,Bā〉t := 1
4 (〈Ba +Bā〉t −〈Ba−Bā〉t).

Definition

Define the mapping M1,0
G ([0,T])→ L1

G(FT) as follows:

Q(η) =
∫ T

0
η(s)d〈Ba〉s :=

N−1

∑
k=0

ξk(〈Ba〉tk+1 −〈Ba〉tk ).

Then Q can be uniquely extended to M1
G([0,T]). We still use Q(η) to

denote the mapping
∫ T

0 η(s)d〈Ba〉s, η ∈ M1
G([0,T]).
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We introduce two important inequalities for G-stochastic integrals which
we will need in the sequel.

Theorem (Gao [2009], BDG Inequality)

Let p ≥ 2 and η = {ηs,s ∈ [0,T]} ∈ Mp
G([0,T]). For a ∈ Rd, set

Xt =
∫ t

0 ηsdBa
s . Then there exists a continuous modification X̃ of X, i.e.,

on some Ω̃ ⊂ Ω, with C̄(Ω̃c) = 0, X̃·(ω) ∈ C0[0,T] and
C̄(|Xt − X̃t| 6= 0) = 0 for all t ∈ [0,T], such that

Ē[ sup
s≤u≤t

|X̃u− X̃s|p]≤ Cpσ
p/2
aaT E[

(∫ t

s
|ηu|2du

)p/2
],

where 0 < Cp < ∞ is a positive constant independent of a, η and Γ.
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Theorem (Gao [2009])

Let p ≥ 1 and a, ā ∈ Rd. Let η ∈ Mp
G([0,T]). Then there exists a

continuous modification X̃a,ā
t of Xa,ā

t :=
∫ t

0 ηsd〈Ba,Bā〉s such that for any
0 ≤ s ≤ t ≤ T,

E[ sup
u∈[s,t]

|X̃a,ā
u − X̃a,ā

s |p]

≤
(

1
4

σ(a+ā)(a+ā)T +
1
4

σ(a−ā)(a−ā)T

)p

(t− s)p−1E[
∫ t

s
|ηu|pdu].

Remark

By the above two Theorems, we can assume that the stochastic integrals∫ t
0 ηsdBa

s ,
∫ t

0 ηsd〈Ba,Bā〉s and
∫ t

0 ηsds are continuous in t for all ω ∈ Ω.
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Theorem (G-Itô’s formula)

Let αν , ην ij and β ν j ∈ M2
G([0,T]), ν = 1, . . . ,n, i, j = 1, . . . ,d be bounded

processes and consider

Xν
t = Xν

0 +
∫ t

0
α

ν
s ds+

d

∑
i,j=1

∫ t

0
η

ν ij
s d〈Bi,Bj〉s +

d

∑
j=1

∫ t

0
β

ν j
s dBj

s,

where Xν
0 ∈ R, ν = 1, . . . ,n. Let Φ ∈ C2(Rn) be a real function with

bounded derivatives such that {∂ 2
xµ xν Φ}n

µ,ν=1 are uniformly Lipschitz.

Then for each s, t ∈ [0,T], in L2
G(Ft)

Φ(Xt)−Φ(Xs) =
∫ t

s
∂xν Φ(Xu)αν

u du+
∫ t

s
∂xν Φ(Xu)ην ij

u d〈Bi,Bj〉u

+
1
2

∫ t

s
∂

2
xµ xν Φ(Xu)β

µi
u β

ν j
u d〈Bi,Bj〉u

+
∫ t

s
∂xν Φ(Xu)β ν j

u dBj
u,

where the repeated indices ν , µ, i and j imply the summation.
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3. Solvability of G-SDE with Integral-Lipschitz Coefficients

Consider the following stochastic differential equation (1) driven by a
d-dimensional G-Brownian motion, and we rewrite it in an equivalent
form:

Xt = x+
∫ t

0
b(s,Xs)ds+

d

∑
i,j=1

∫ t

0
hij(s,Xs)d〈Bi,Bj〉s +

d

∑
j=1

∫ t

0
σj(s,Xs)dBj

s, (6)

• b(·,x), hij(·,x), σj(·,x) ∈ M2
G([0,T];Rn);

• |b(t,x)|2 +∑
d
i,j=1 |hij(t,x)|2 +∑

d
j=1 |σj(t,x)|2 ≤ β 2

1 (t)+β 2
2 (t)|x|2; (H1)

• |b(t,x1)−b(t,x2)|2 +∑
d
i,j=1 |hij(t,x1)−hij(t,x2)|2 +∑

d
j=1 |σj(t,x1)−σj(t,x2)|2 ≤

β 2(t)ρ(|x1− x2|2), (H2)

where β1 ∈ M2
G([0,T]), β : [0,T]→ R+, β2 : [0,T]→ R+ are square

integrable, and ρ : (0,+∞)→ (0,+∞) is continuous, increasing, concave
function satisfying

ρ(0+) = 0,
∫ 1

0

dr
ρ(r)

= +∞. (7)
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Theorem 1

We suppose (H1) and (H2), then there exists a unique continuous
process X(·;x) ∈ L2

G([0,T];Rn) (for all t ≥ 0, X(t;x) ∈ L2
G(Ft;Rn)) which

satisfies (6).

Lemma 1 (Hu-Lerner [2002])

Let ρ : (0,+∞)→ (0,+∞) be a continuous, increasing function satisfying
(7) and let u be a measurable, non-negative function defined on (0,+∞)
satisfying

u(t)≤ a+
∫ t

0
β (s)ρ(u(s))ds, t ∈ (0,+∞),

where a ∈ [0,+∞), and β : [0,T]→ R+ is Lebesgue integrable. We have:

• If a = 0, then u(t) = 0, for t ∈ [0,+∞);
• If a > 0, we define v(t) =

∫ t
t0(ds/ρ(s)), t ∈ [0,+∞), where t0 ∈ (0,+∞),

then

u(t)≤ v−1(v(a)+
∫ t

0
β (s)ds). (8)
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Lemma 2 (Jensen’s Inequality)

Let ρ : R→ R be a continuous increasing, concave function defined on
R, then for each X ∈ L1

G(F ), by a classical argument, the following
inequality holds,

ρ(Ē[X])≥ Ē[ρ(X)].

Proof to Theorem 1: Uniqueness

|X(t;x1)−X(t;x2)|2 ≤ 4|x1− x2|2 +4|
∫ t

0
b(s,X(s;x1))−b(s,X(s;x2))ds|2

+4|
d

∑
i,j=1

∫ t

0
hij(s,X(s;x1))−hij(s,X(s;x2))d〈Bi,Bj〉s|2

+4|
d

∑
j=1

∫ t

0
σj(s,X(s;x1))−σj(s,X(s;x2))dBj

s|2.

24 / 42



From the theorems in Gao [2009], we notice that

Ē[ sup
0≤r≤t

|
∫ r

0
(b(s,X(s;x1))−b(s,X(s;x2)))ds|2]

≤ K1t
∫ t

0
β

2(s)Ē[ρ(|X(s,x1)−X(s,x2)|2)]ds;

Ē[ sup
0≤r≤t

|
∫ r

0
(hij(s,X(s;x1))−hij(s,X(s;x2)))d〈Bi,Bj〉s|2]

≤ K2t
∫ t

0
β

2(s)Ē[ρ(|X(s,x1)−X(s,x2)|2)]ds;

Ē[ sup
0≤r≤t

|
∫ r

0
(σj(s,X(s;x1))−σj(s,X(s;x2)))dBj

s|2]

≤ K3

∫ t

0
β

2(s)Ē[ρ(|X(s;x1)−X(s;x2)|2)]ds.
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Let
u(t) = Ē[ sup

0≤r≤t
|X(r;x1)−X(r;x2)|2],

due to the sub-additivity property of Ē[·] and Lemma 2, we have

u(t)≤ C1|x1− x2|2 +C2

∫ t

0
β

2(s)Ē[ρ(|X(s;x1)−X(s;x2)|2)]ds

≤ C1|x1− x2|2 +C2

∫ t

0
β

2(s)ρ(Ē[|X(s;x1)−X(s;x2)|2])ds

≤ C1|x1− x2|2 +C2

∫ t

0
β

2(s)ρ(u(s))ds.

In particular, if x1 = x2, we obtain the uniqueness of the solution to (6).�
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Proof to Theorem 1: Existence

Picard Iteration:

Xm+1(t) = x+
∫ t

0
b(s,Xm(s))ds+

d

∑
i,j=1

∫ t

0
hij(s,Xm(s))d〈Bi,Bj〉s

+
d

∑
j=1

∫ t

0
σj(s,Xm(s))dBj

s, t ∈ [0,T]. (9)

Priori estimate for {Ē[|Xm(t)|2],m ≥ 0} :

Ē[|Xm+1(t)|2]≤ C1|x|2 +C2

∫ t

0
Ē[β 2

1 (s)+β
2
2 (s)|Xm(s)|2]ds.

Dominated by the solution p of:

p(t) = C1|x|2 +C2

∫ t

0
Ē[β 2

1 (s)]ds+C2

∫ t

0
β

2
2 (s)p(s)ds,

which is bounded from the explicit form.
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Set
uk+1,m(t) = sup

0≤r≤t
Ē[|Xk+1+m(r)−Xk+1(r)|2].

From the definition of the sequence {Xm(·),m ≥ 0}, we have

uk+1,m(t)≤ C
∫ t

0
β

2(s)ρ(uk,m(s))ds.

Set
vk(t) = sup

m
uk,m(t), 0 ≤ t ≤ T,

then,

0 ≤ vk+1(t)≤ C
∫ t

0
β

2(s)ρ(vk(s))ds.

Finally, we have:
limsup
k→+∞

vk(t) = 0, 0 ≤ t ≤ T.

Hence, {Xm(·),m ≥ 0} is a Cauchy sequence in L2
G([0,T];Rn), set

X(t) =
∞

∑
m=1

(Xm(t)−Xm−1(t)),

after checking the right side of the iteration, the proof of the existence is
complete. �
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Theorem 2

We assume the following one-sided integral-Lipschitz conditions for b, h
and σ , i.e., for all x,x1,x2 ∈ Rn and i, j = 1, . . .d,

(H1’) b(·,x), hij(·,x), σj(·,x) ∈ M2
G([0,T];Rn) are uniformly bounded;

(H2’) 2〈x1− x2,b(t,x1)−b(t,x2)〉 ≤ β 2(t)ρ(|x1− x2|2);
2〈x1− x2,hij(t,x1)−hij(t,x2)〉 ≤ β 2(t)ρ(|x1− x2|2);
|σj(t,x1)−σj(t,x2)|2 ≤ β 2(t)ρ(|x1− x2|2)

where β : [0,T]→ R+ is square integrable. Then there exists at most one
solution X(·) in L2

G([0,T],Rn) to (6).
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Proof to Theorem 2: Applying G-Itô’s formula to |X1(t)−X2(t)|2, we
obtain:

d(|X1(t)−X2(t)|2)

=2〈X1(t)−X2(t),b(t,X1(t))−b(t,X2(t))〉dt

+2〈X1(t)−X2(t),hij(t,X1(t))−hij(t,X2(t))〉d〈Bi,Bj〉t
+(σi(t,X1(t))−σi(t,X2(t)))k(σj(t,X1(t))−σj(t,X2(t)))kd〈Bi,Bj〉t
+2〈X1(t)−X2(t),σj(t,X1(t))−σj(t,X2(t))〉dBj

t,

where the repeated indices k, i and j imply the summation and
σj = ((σj)1, · · · ,(σj)n)T .

From the theorems in Gao [2009], we can deduce that

Ē[|X1(t)−X2(t)|2]≤ C
∫ t

0
β

2(s)ρ(Ē[|X1(s)−X2(s)|2])ds.

Finally, Lemma 1 gives the uniqueness result. �
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Theorem 3

We suppose (H1’) and the following condition: for any x1, x2 ∈ Rn

|b(t,x1)−b(t,x2)| ≤ β (t)ρ1(|x1− x2|);
(H2”) |hij(t,x1)−hij(t,x2)| ≤ β (t)ρ1(|x1− x2|);

|σj(t,x1)−σj(t,x2)|2 ≤ β (t)ρ2(|x1− x2|2),

where β : [0,T]→ R+ is square integrable, ρ1, ρ2 : (0,+∞)→ (0,+∞) are
continuous, concave and increasing, and both of them satisfy (7).
Furthermore, we assume that

ρ3(r) =
ρ2(r2)

r
, r ∈ (0,+∞)

is also continuous, concave and increasing, and

ρ3(0+) = 0,
∫ 1

0

dr
ρ1(r)+ρ3(r)

= +∞.

Then there exists a unique solution to the equation (6).
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Example

ρ1(r) = r ln
1
r

;

ρ2(r) = r ln
1
r
.

As for existence, we need some stronger conditions, nevertheless, the
example above satisfies the conditions of Theorem 3 but not Theorem 1.
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Proof of Theorem 3:

Picard Iteration:

Xm+1(t) =x+
∫ t

0
b(s,Xm(s))ds

+
d

∑
i,j=1

∫ t

0
hij(s,Xm(s))d〈Bi,Bj〉s +

d

∑
j=1

∫ t

0
σj(s,Xm+1(s))dBj

s.

Because of the assumptions of this theorem and thanks to Theorem 1,
the sequence {Xm(·),m ≥ 0} is well defined.

Note that as |x| is not C2, we approximate |x| by Fε ∈ C2, where

Fε (x) = (|x|2 + ε)
1
2 , x ∈ Rn.

We notice that

|F′ε (x)| ≤ 1, |F′′ε (x)| ≤ 2

(|x|2 + ε)
1
2

,

and F′
ε(x), F′′

ε (x) are bounded and uniformly Lipschitz.
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Applying G-Itô formula to Fε(Xk+1+m(t)−Xk+1(t)), and taking the
G-expectation, we get from Theorem 16 that, for some positive constant
K,

Ē[Fε (Xk+1+m(t)−Xk+1(t))]≤Ē[
∫ t

0
|b(s,Xk+m(s))−b(s,Xk(s))|ds]

+K
d

∑
i,j=1

Ē[
∫ t

0
|hij(s,Xk+m(s))−hij(s,Xk(s))|ds]

+K
d

∑
j=1

Ē[
∫ t

0

|σj(s,Xk+m+1(s))−σj(s,Xk+1(s))|2

(|Xk+m+1(s)−Xk+1(s)|2 + ε)
1
2

ds].

Letting ε → 0, we deduce from Lemma 1 and (5) that, for some positive
constant C,

uk+1,m(t) = sup
0≤r≤t

Ē[|Xk+1+m(r)−Xk+1(r)|]

≤ C
∫ t

0
β (s)(ρ1(uk,m(s))+ρ3(uk+1,m(s)))ds.
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Set
vk(t) = sup

m
uk,m(t), 0 ≤ t ≤ T,

then,

0 ≤ vk+1(t)≤ C
∫ t

0
β (s)(ρ1(vk(s))+ρ3(vk+1(s)))ds.

By Lemma 1, we deduce that

limsup
k→+∞

vk(t) = 0, t ∈ [0,T].

Hence, {Xm(·),m ≥ 0} is a Cauchy sequence in L1
G([0,T],Rn). Then there

exists X(·)⊂ L1
G([0,T],Rn) and a subsequence {Xml(·), l ≥ 1} ⊂ {Xm(·),m

≥ 1} such that
Xml → X, as l →+∞, q.s..
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Since b, hij and σj are bounded, it is easy to check that, for some positive
constant M > 0,

sup
m≥0

sup
0≤t≤T

Ē[|Xm(t)|p]≤ M, where p > 2,

and for each P∈P,

EP(|X(t)|p) =EP(liminf
l→+∞

|Xml(t)|p)≤ liminf
l→+∞

EP(|Xml(t)|p)

≤ liminf
l→+∞

sup
P∈P

EP(|Xml(t)|p) = liminf
l→+∞

Ē[|Xml(t)|p]

≤M.

Hence,
sup

0≤t≤T
Ē[|X(t)|p] = sup

0≤t≤T
( sup
P∈P

EP(|X(t)|p))≤ M

and

sup
0≤t≤T

Ē[|Xm(t)−X(t)|p]≤ 2p sup
0≤t≤T

Ē[|Xm(t)|p]+2p sup
0≤t≤T

Ē[|X(t)|p]≤ 2p+1M.
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Consequencely, for a fixed ε > 0,

limsup
m→+∞

Ē[|Xm(t)−X(t)|2]

≤ limsup
m→+∞

(ε2Ē[I{|Xm(t)−X(t)|≤ε}]+ Ē[|Xm(t)−X(t)|2I{|Xm(t)−X(t)|≥ε}])

≤ε
2 + limsup

m→+∞

(Ē[|Xm(t)−X(t)|p])
2
p (Ē[|I{|Xm(t)−X(t)|≥ε}|

p
p−2 ])

p−2
p

≤ε
2 +8M

2
p limsup

m→+∞

(Ē[I{|Xm(t)−X(t)|≥ε}])
p−2

p

=ε
2.

The last step above can be easily deduced from
limm→+∞(sup0≤t≤T Ē|Xm(t)−X(t)|) = 0. Since ε can be arbitrary small,

we have limm→+∞ Ē[|Xm(t)−X(t)|2] = 0.
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On the other hand, since ρ1 : (0,+∞)→ (0,+∞) are continuous, concave
and increasing, then for arbitrary fixed ε > 0, there exists a constant Kε ,
such that |ρ1(x)| ≤ Kε |x|, for x > ε. Hence, for some positive constant C,
we have

lim
m→∞

Ē[ sup
0≤t≤T

|
∫ t

0
(b(s,Xm(s))−b(s,X(s)))ds|2]

≤C lim
m→∞

∫ T

0
β

2(s)Ē[ρ2
1 (|Xm(s)−X(s)|)]ds,

≤C lim
m→∞

(∫ T

0
β

2(s)Ē[ρ2
1 (|Xm(s)−X(s)|)I{|Xm(s)−X(s)|>ε}]ds

+ρ
2
1 (ε2)

∫ T

0
β

2(s)Ē[I{|Xm(s)−X(s)|≤ε}]ds
)

≤C lim
m→∞

(∫ T

0
β

2(s)Ē[K2
ε |Xm(s)−X(s)|2]]ds

)
+Cρ

2
1 (ε2)

∫ T

0
β

2(s)ds

=Cρ
2
1 (ε2)

∫ T

0
β

2(s)ds
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Notice that ρ1 is continuous, ρ1(0+) = 0 and ε can arbitrary small, then
we have

lim
m→∞

Ē[ sup
0≤t≤T

|
∫ t

0
(b(s,Xm(s))−b(s,X(s)))ds|2] = 0.

Similarly we get

lim
m→∞

Ē[ sup
0≤t≤T

|
∫ t

0
(hij(s,Xm(s))−hij(s,X(s)))d〈Bi,Bj〉s|2] = 0

and

lim
m→+∞

Ē[ sup
0≤t≤T

|
∫ t

0
(σj(s,Xm(s))−σj(s,X(s)))dBj

s|2]

≤ lim
m→+∞

C
∫ T

0
β

2(s)ρ2(Ē[|Xm(s)−X(s)|2])ds

=0.

Then the proof of the existence of the solution to (6) is complete. �
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4. Solvability of G-BSDE with Integral-Lipschitz Coefficients

Consider the following type of G-backward stochastic differential
equation (G-BSDE):

Yt = E[ξ +
∫ T

t
f (s,Ys)ds+

d

∑
i,j=1

∫ T

t
gij(s,Ys)d〈Bi,Bj〉s|Ft], t ∈ [0,T]. (10)

• f (·,x),gij(·,x) ∈ M1
G([0,T];Rn);

• |g(s,y)|+ |f (s,y)| ≤ β (t)+ c|y|;
• |g(s,y1)−g(s,y2)|+ |f (s,y1)− f (s,y2)| ≤ ρ(|y1− y2|).

where c > 0, β ∈ M1
G([0,T];R+) and ρ : (0,+∞)→ (0,+∞) is a

continuous, concave, increasing function satisfying (7).

Theorem 4

Under the assumptions above, (10) admits a unique solution
Y ∈ L1

G([0,T],Rn).
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Proof to Theorem 4: Due to the sub-additivity property of E[·|Ft], we
obtain:

|Y1
t −Y2

t | ≤ E[|
∫ T

t
(f (s,Y1

s )− f (s,Y2
s ))ds|

+
d

∑
i,j=1

|
∫ T

t
(gij(s,Y1

s )−gij(s,Y2
s ))d〈Bi,Bj〉s||Ft]

Taking the G-expectation on both sides, we have from theorem in Gao
[2009] and Lemma 2 that

E[|Y1
t −Y2

t |]≤ (E[|
∫ T

t
(f (s,Y1

s )− f (s,Y2
s ))ds|

+
d

∑
i,j=1

E[|
∫ T

t
(gij(s,Y1

s )−gij(s,Y2
s ))d〈Bi,Bj〉s|])

≤ KE
∫ T

t
ρ(|Y1

s −Y2
s |)ds

≤ K
∫ T

t
ρ(E[|Y1

s −Y2
s |])ds.
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Set
u(t) = E[|Y1

t −Y2
t |],

then

u(t)≤ K
∫ T

t
ρ(u(s))ds,

and we deduce from Lemma 1 that u(t) = 0.

Then the uniqueness of the solution can be now easily proved.

As for the existence of solution, we proceed as Theorem 1: define a
sequence of (Ym,m ≥ 0), as follows:

Ym+1
t = E[ξ +

∫ T

t
f (s,Ym

s )ds+
d

∑
i,j=1

∫ T

t
gij(s,Ym

s )d〈Bi,Bj〉s|Ft], Y0 = 0.

Then the rest of the proof goes in a similar way as that in Theorem 1. �
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