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Object
We give an existence and uniqueness result on the SVI with oblique subgradients

 Xt +

∫ t

0

H (Xs) dKs = x0 +

∫ t

0

f (s,Xs) ds +

∫ t

0

g (s,Xs) dBs, t ≥ 0,

dKt (ω) ∈ ∂ϕ (Xt (ω)) (dt) , P− a.s. ω ∈ Ω,

The approach is via a deterministic generalized Skorohod problem (a variational inequality with oblique

subgradients):  x (t) +

∫ t

0

H (x (s)) dk (s) = x0 +

∫ t

0

f (s, x (s)) ds + m (t) , t ≥ 0,

dk (s) ∈ ∂ϕ (x (s)) (ds) ,

where m : R+ → Rd is a continuous function.

Starting papers: Lions & Sznitman (1984), Dupuis & Ishii (1993)

.
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1 Preliminaries

Let H = (hi,j)d×d ∈ C2
b

(
Rd;R2d

)
be such that for all x ∈ Rd,

(A1) :


(i) hi,j (x) = hj,i (x) , and i, j ∈ 1, d,

(ii)
1

c
|u|2 ≤ 〈H (x)u, u〉 ≤ c |u|2 , ∀ u ∈ Rd (for some c ≥ 1),

Denote b
def
= sup

{
|H ′x (x)| +

∣∣∣(H−1
)′
x

(x)
∣∣∣ : x ∈ Rd

}
.

Consider the multivalued differential equation

{
dx (t) + H (x (t)) ∂ϕ (x (t)) (dt) 3 dm (t) , t > 0

x (0) = x0 ,
(1)

where

(A2) :

{
(i) x0 ∈ Dom (ϕ)

(ii) m ∈ C
(
R+;Rd

)
, m (0) = 0,

and

(A3) : ϕ : Rd → ]−∞,+∞] is proper l.s.c. convex function.
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If E ⊂ Rd and ε > 0, we denote

Eε = {x ∈ E : dist (x,Ec) ≥ ε} = {x ∈ E : B (x, ε) ⊂ E}

the ε−interior of E.

We formulate the following supplementary assumptions

(A4) :


(i) D = Dom (ϕ) is a closed subset of Rd,

(ii) ∃ r0 > 0, Dr0 6= ∅ and h0 = sup
z∈E

d (z,Dr0) <∞,

(iii) ∃ L ≥ 0, such that |ϕ (x)− ϕ (y)| ≤ L + L |x− y| , for all x, y ∈ D

By ∂ϕ it is denoted the subdifferential of ϕ :

∂ϕ (x)
def
=
{
x̂ ∈ Rd : 〈x̂, y − x〉 + ϕ (x) ≤ ϕ (y) , for all y ∈ Rd

}
.

A vector η ∈ H (x) ∂ϕ (x) will be called H−oblique subgradient.

If E is a closed convex subset of Rd then

ϕ (x) = IE (x) =

{
0, if x ∈ E,

+∞, if x /∈ E,
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is a convex l.s.c. function and

∂IE (x) = {x̂ ∈ Rd : 〈x̂, y − x〉 ≤ 0, ∀ y ∈ E} = NE (x) , if x ∈ E.

In this case ν (x) ∈ H (x) ∂IE (x) is a outward H−oblique direction to Bd (E) in the point x.

Definition 1 Given two functions x, k : R+ → Rd, we say that dk (t) ∈ ∂ϕ (x (t)) (dt) if

(a) x : R+ → Rd is continuous,

(b)

∫ T

0

ϕ (x (r)) dr <∞, ∀ T ≥ 0,

(c) k ∈ BVloc
(
R+;Rd

)
, k (0) = 0,

(d)

∫ t

s

〈y (r)− x(r), dk (r)〉 +

∫ t

s

ϕ (x (r)) dr ≤
∫ t

s

ϕ (y (r)) dr,

for all 0 ≤ s ≤ t ≤ T and y ∈ C
(
[0, T ] ;Rd

)
.
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Stochastic variational inequalities with oblique subgradients 7

We state the

Definition 2 A pair (x, k) is a solution of the Skorohod problem (1) with H−oblique subgradients (and

we write (x, k) ∈ SP (H∂ϕ;x0,m)) if x, k : R+ → Rd are continuous functions and (j) x (t) +

∫ t

0

H (x (r)) dk (r) = x0 + m (t) , ∀ t ≥ 0,

(jj) dk (r) ∈ ∂ϕ (x (r)) (dr) .

(2)

In Annex, five technical lemmas are given to arrive of the following a priori estimate of the solutions

(x, k) ∈ SP (H∂ϕ;x0,m) :

Proposition 1 If (x, k) ∈ SP (H∂ϕ;x0,m) , then under assumptions (A1 − A4) there exists a constant

CT (‖m‖T ) = C (T, ‖m‖T , b, c, r0, h0) (increasing function with respect to ‖m‖T ), such that for all 0 ≤
s ≤ t ≤ T :

(a) ‖x‖T + lklT ≤ CT (‖m‖T )

(b) |x (t)− x (s)| + lklt − lkls ≤ CT (‖m‖T )×
√

(t− s) +mm (t− s)
(3)
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2 Variational inequalities with oblique subgradients

2.1 Existence result : m ∈ C
(
[0, T ] ;Rd

)
.

Consider the differential equation{
dx (t) + H (x (t)) ∂ϕ (x (t)) (dt) 3 f (t, x (t)) dt + dm (t) , t > 0

x (0) = x0 ,
(4)

where

(A5) :


(i) (t, x) 7−→ f (t, x) : R+ × Rd → Rd is a Carathéodory function

(i.e. measurable w.r. to and t continuous w.r. to x;

(ii)

∫ T

0

(
f# (t)

)2
dt <∞, where f# (t) = sup

x∈Dom(ϕ)

|f (t, x)| .

Theorem 1 Let the assumptions (A1 − A5) be satisfied. Then the differential equation (4) has at least

one solution in the sense of Definition i.e. x, k : R+ → Rd are continuous functions and (j) x (t) +

∫ t

0

H (x (r)) dk (r) = x0 +

∫ t

0

f (r, x (r)) dr + m (t) , ∀ t ≥ 0,

(jj) dk (r) ∈ ∂ϕ (x (r)) (dr) .

(5)
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Proof. Step 1. Case m ∈ C1
(
R+;Rd

)
.

It is sufficient to prove the existence of a solution on an interval [0, T ] arbitrary fixed.

Let 0 < ε ≤ 1 and the extensions f (s, x) = 0 and m (s) = s×m′ (0+) for s < 0.

Consider the penalized problem
xε (t) = x0, if t < 0,

xε (t) +

∫ t

0

H (xε (s)) dkε (s) = x0 +

∫ t

0

[f (s− ε, πD (xε (s− ε))) + m′ (s− ε)] ds,

t ∈ [0, T ] ,

or equivalent
xε (t) = x0, if t < 0,

xε (t) +

∫ t

0

H (xε (s)) dkε (s) = x0 +

∫ t−ε

−ε
[f (s, πD (xε (s))) + m′ (s)] ds, t ∈ [0, T ] ,

(6)

where

kε (t) =

∫ t

0

∇ϕε (xε (s)) ds and

πD (x) = the orthogonal projection of x on D = Dom (ϕ) = Dom (ϕ) .
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Since x 7−→ H (x)∇ϕε (x) : Rd → Rd is a sublinear and locally Lipschitz continuous function and

|f (s, πD (x))| ≤ f# (s) for all (s, x) ∈ R× Rd, then recursively on the intervals [iε, (i + 1) ε] the approxi-

mating equation has a unique solution xε ∈ C
(
[0, T ] ;Rd

)
.

We have

|xε (t)− u0|2 + ϕε (xε (t)) +

∫ t

0

〈H (xε (s))∇ϕε (xε (s)) , 2 [xε (s)− u0] +∇ϕε (xε (s))〉 ds

= |x0|2 + ϕε (x0) +

∫ t

0

〈2 [xε (s)− u0] +∇ϕε (xε (s)) , f (s− ε, πD (xε (s− ε))) + m′ (s− ε) ds〉 .
(7)

Let (u0, û0) ∈ ∂ϕ, 0 < ε ≤ 1. We have

• |ϕε (xε)− ϕε (u0)| + ϕ (u0)− 2 |û0|2 − |xε − u0|2 ≤ ϕε (xε) ,

• 1

c
|∇ϕε (xε)|2 ≤ 〈H (xε)∇ϕε (xε) ,∇ϕε (xε)〉 ,

•

〈H (xε)∇ϕε (xε) , 2 (xε − u0)〉 ≥ −C sup
r≤s
|xε (r)− u0|2 −

1

4c
|∇ϕε (xε)|2 ,
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•

〈2 (xε (s)− u0) +∇ϕε (xε (s)) , f (s− ε, πD (xε (s− ε))) + m′ (s− ε)〉

≤ 1

4c
|∇ϕε (xε (s))|2 +

1

c
|xε (s)− u0|2 + 2C

[(
f# (s− ε)

)2
+ |m′ (s− ε)|2

]
.

Using these estimates in (7) and Gronwall’s inequality we obtain

sup
t∈[0,T ]

|xε (t)|2 + sup
t∈[0,T ]

|ϕε (xε (t))| +
∫ T

0

|∇ϕε (xε (s))|2 ds ≤ CT . (8)

Since ∇ϕε (x) =
1

ε
(x− Jεx) , then we also infer∫ T

0

|xε (s)− Jε (xε (s))|2 ds ≤ εCT . (9)

Now from the approximating equation, for all 0 ≤ s ≤ t ≤ T, we have

|xε (t)− xε (s)| ≤ lxεl[s,t]

≤
∫ t

s

|H (xε (r))∇ϕε (xε (r))| dr +

∫ t−ε

s−ε
|f (r, πD (xε (r)))| dr +

∫ t−ε

s−ε
|m′ (r)| dr

≤ CT
√
t− s.
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Hence {xε : ε ∈ (0, 1]} is bounded and uniformly equicontinuous subset of C
(
[0, T ] ;Rd

)
. From Acoli-

Arzela’s theorem it follows there exists εn → 0, and x ∈ C
(
[0, T ] ;Rd

)
such that

lim
n→∞

[
sup
t∈[0,T ]

|xεn (t)− x (t)|
]

= 0.

By (9), there exists h ∈ L2
(
0, T ;Rd

)
such that on a subsequence denoted also εn we have

Jεn (xεn)→ x in L2
(
0, T ;Rd

)
and a.e. in [0, T ] , as εn → 0,

and

∇ϕ (xεn) ⇀ h weakly in L2
(
0, T ;Rd

)
.

Passing to lim infεn→0 in the subdifferential inequality∫ t

s

〈∇ϕ (xεn (r)) , y (r)− xεn (r)〉 dr +

∫ t

s

ϕ (Jεn (xεn (r))) dr ≤
∫ t

s

ϕ (y (r)) dr

we infer ∫ t

s

〈h (r) , y (r)− x (r)〉 dr +

∫ t

s

ϕ (x (r)) dr ≤
∫ t

s

ϕ (y (r)) dr

for all 0 ≤ s ≤ t ≤ T and y ∈ C
(
[0, T ] ;Rd

)
, that is h (r) ∈ ∂ϕ (x (r)) a.e. t ∈ [0, T ] .
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Finally passing to limit for ε = εn → 0 in the approximating equation (6) we conclude that

x (t) +

∫ t

0

H (x (s)) dk (s) = x0 +

∫ t

0

f (s, x (s)) ds + m (t) ,

where

k (t) =

∫ t

0

h (s) ds.

Step 2. m ∈ C
(
[0, T ] ;Rd

)
.

Extend m (s) = 0 for s ≤ 0 and define for 0 < ε ≤ 1 :

mε (t) =
1

ε

∫ t

t−ε
m (s) ds =

1

ε

∫ ε

0

m (t + r − ε) dr

Consider the approximating equation
xε (t) +

∫ t

0

H (xε (r)) dkε (r) = x0 +

∫ t

0

f (r, xε (r)) dr + mε (t) , t ≥ 0,

dkε (r) ∈ ∂ϕ (xε (r)) (dr) .

By the first step this equation has a unique solution (xε, kε), dkε (s) = hε (s) ds ∈ ∂ϕ (xε (s)) ds
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Stochastic variational inequalities with oblique subgradients 14

If we denote

Mε (t) =

∫ t

0

f (r, xε (r)) dr + mε (t)

then by Proposition 1

‖xε‖T + lkεlT ≤ CT (‖Mε‖T ) , and

|xε (t)− xε (s)| + lkεlt − lkεls ≤ CT (‖Mε‖T )×
√

(t− s) +mMε
(t− s).

Since

‖Mε‖T ≤
∫ T

0

f# (r) dr + ‖m‖T

and

mMε
(t− s) ≤

√
t− s

∫ T

0

(
f# (r)

)2
dr +mm (t− s)

then by Acoli-Arzela’s theorem there exists εn → 0 and x, k ∈ C
(
[0, T ] ;Rd

)
such that

xεn → x and kεn → k in C
(
[0, T ] ;Rd

)
.

Using Helly-Bray theorem we infer dk (r) ∈ ∂ϕ (x (r)) (dr) and (x, k) is a solution of the equation (5).
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2.2 Existence and uniqueness (m ∈ BV
(
[0, T ] ;Rd

)
)

We introduce a new assumption

(A6) :

{
∃ µ ∈ L1

loc (R+;R+) s.t. ∀x, y ∈ Rd

|f (t, x)− f (t, y)| ≤ µ (t) |x− y| , a.e. t ≥ 0.

that will yield the uniqueness.

Proposition 2 Let the assumptions (A1−A6) be satisfied. If moreoverm ∈ BVloc
(
R+;Rd

)
then the gen-

eralized convex Skorohod problem with oblique subgradients (1) has a unique solution and moreover

if (x, k) and (x̂, k̂) are two solutions, corresponding to m and, respectively, m̂, then

|x (t)− x̂ (t)| ≤ CeCV (t) [|x0 − x̂0| + lm− m̂lt] . (10)

where V (t) = lxlt + l x̂lt + lklt + l k̂ lt +

∫ t

0

µ (r) dr and C is a constant depending only (b, c) .

Proof. The existence was proved in Theorem 1. Let us prove the inequality (10) which yields the

uniqueness, too.

Consider the symmetric and strict positive matrix

u (r) =
(

[H (x (r))]−1 + [H (x̂ (r))]−1
)1/2

(x (r)− x̂ (r)) .
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Then with technical calculus we can show that there exists C a constant depending only c and b such

that

〈u (r) , du (r)〉 ≤ C |u (r)| d lm− m̂lr + C |u (r)|2 dV (r)

with V (t) = lxlt + l x̂ lt + lklt + l k̂ lt +

∫ t

0

µ (r) dr. Now by Proposition 4 (Annex) we infer for all

t ≥ 0

e−CV (t) |u (t)| ≤ |x0 − x̂0| + C

∫ t

0

e−CV (r)d lm− m̂lr .

2.3 Approximation result
(
m ∈ C1

(
[0, T ] ;Rd

))
Proposition 3 Under the assumptions (A1 − A6) and m ∈ C1

(
R+;Rd

)
, the solution (xε)0<ε≤1 of the

approximating equation xε (t) +

∫ t

0

H (xε (s)) dkε (s) = x0 +

∫ t

0

f (s, πD (xε (s))) ds + m (t) , t ≥ 0,

dkε (s) = ∇ϕε (xε (s)) ds,

(11)

has the properties:
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Stochastic variational inequalities with oblique subgradients 17

for all T > 0, there exists a constant independent of ε, δ ∈]0, 1] such that
(j) sup

t∈[0,T ]

|xε (t)|2 + supt∈[0,T ] |ϕε (xε (t))| +
∫ T

0

|∇ϕε (xε (s))|2 ds ≤ CT ,

(jj) lxεl[s,t] ≤ CT
√
t− s, for all 0 ≤ s ≤ t ≤ T ,

(jjj) ‖xε − xδ‖T ≤ CT
√
ε + δ .

Moreover there exist x, k ∈ C
(
[0, T ] ;Rd

)
and h ∈ L2

(
0, T ;Rd

)
such that dk (t) = h (t) dt,

lim
ε→0

[‖xε − x‖t + |kε (t)− k (t)|] = 0, ∀ t ∈ [0, T ] ,

and (x, k) is the unique solution of the variational inequality with oblique subgradients: (j) x (t) +

∫ t

0

H (x (r)) dk (r) = x0 +

∫ t

0

f (r, x (r)) dr + m (t) , ∀ t ≥ 0,

(jj) dk (r) ∈ ∂ϕ (x (r)) (dr) .

Proof. The proof is similar to those of Theorem 1 . The Cauchy property is proved in a similar manner

as the uniqueness. If we denote

uε,δ (s) =
(

[H (xε (s))]−1 + [H (xδ (s))]−1
)1/2

(xε (s)− xδ (s))
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then, after some technical calculus, we deduce that

〈uε,δ (s) , duε,δ (s)〉 ≤ 4 (ε + δ) |∇ϕ (xδ (s))| |∇ϕ (xε (s))| ds + C |uε,δ (s)|2 dVε,δ (s)

with

V (s) = lxεls + lxδls + lkεls + lkδls +

∫ s

0

µ (r) dr ≤ CT

Corollary 1 If he assumptions (A1 − A6) are satisfied and

• (Ω,F ,P, {Ft}t≥0) is a stochastic basis,

• M : R+ × Ω→ Rd is a p.m.s.p., M· (ω) ∈ C1
(
R+;Rd

)
, a.s. ω ∈ Ω,

then the SDE Xt (ω) +

∫ t

0

H (Xt (ω)) dKt (ω) = x0 +

∫ t

0

f (s,Xs (ω)) ds + Mt (ω) , t ≥ 0,

dKt (ω) ∈ ∂ϕ (Xt (ω)) (dt)

has a unique solution{(X· (ω) , K· (ω)) : ω ∈ Ω} . Moreover X and K are p.m.s.p.
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Stochastic variational inequalities with oblique subgradients 19

3 Stochastic variational inequalities with oblique subgradients

Let (Ω,F ,P, {Ft}t≥0) be a stochastic basis and {Bt : t ≥ 0} a Rk−valued Brownian motion. We con-

sider the SDE  Xt +

∫ t

0

H (Xt) dKt = x0 +

∫ t

0

f (s,Xs) ds +

∫ t

0

g (s,Xs) dBs, t ≥ 0

dKt ∈ ∂ϕ (Xt) (dt)

(12)

where x0 ∈ Rd, (t, x) 7−→ f (t, x) : R+ × Rd → Rd and (t, x) 7−→ g (t, x) : R+ × Rd → Rd×k

(A7) :


(i) f and g are Carathéodory functions

(i.e. measurable w.r. to t and continuous w.r. to x

(ii)

∫ T

0

(
f# (t)

)2
+

∫ T

0

(
g# (t)

)4
dt <∞,

where

f# (t) = sup
x∈Dom(ϕ)

|f (t, x)| and g# (t) = sup
x∈Dom(ϕ)

|g (t, x)|

Definition 3 (I) Given (Ω,F ,P,Ft, Bt)t≥0 a Rk−valued Ft−Brownian motion, a pair (X,K) : Ω ×
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[0,∞[→ Rd × Rd of continuous p.m.s.p. is a strong solution of the SVI (12) if P− a.s. ω ∈ Ω :

j) ϕ (X·) ∈ L1
loc (R+)

jj) K· ∈ BVloc
(
[0,∞[ ;Rd

)
, K0 = 0,

jjj) Xt +

∫ t

0

H (Xt) dKt = x0 +

∫ t

0

f (s,Xs) ds +

∫ t

0

g (s,Xs) dBs, ∀ t ≥ 0,

jv) ∀ 0 ≤ s ≤ t, ∀y : R+ → Rd continuous :∫ t

s

〈y (r)−Xr, dKr〉 +

∫ t

s

ϕ (Xr) dr ≤
∫ t

s

ϕ (y (r)) dr

(13)

that is

(X· (ω) , K· (ω)) = SP (H∂ϕ;x0,M· (ω)) , P− a.s. ω ∈ Ω,

with

Mt =

∫ t

0

f (s,Xs) ds +

∫ t

0

g (s,Xs) dBs .

(II) If there exists a stochastic basis (Ω,F ,P,Ft)t≥0 , a Rk−valued Ft−Brownian motion {Bt : t ≥ 0}
and a pair (X·, K·) : Ω× R+ → Rd × Rd of continuous p.m.s.p. such that

(X· (ω) , K· (ω)) = SP (H∂ϕ;x0,M· (ω)) , P− a.s. ω ∈ Ω,
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then the collection (Ω,F ,P,Ft, Bt, Xt, Kt)t≥0 is called a weak solution of the SVI (12).

Theorem 2 Let the assumptions (A1, A3, A4, A7) be satisfied. Then the SDE (12) has at least one

weak solution (Ω,F ,P,Ft, Bt, Xt, Kt)t≥0 .

Proof. The main ideas of the proof comes from Răşcanu [6].

We extend f (t, x) = 0 and g (t, x) = 0 for t < 0.

Step 1. Approximating problem. Let 0 < ε ≤ 1 and the approximating equation
Xn
t = x0, if t < 0,

Xn
t +

∫ t

0

H (Xn
t ) dKn

t = x0 + Mn
t , t ≥ 0,

dKn
t ∈ ∂ϕ (Xn

t ) dt.

(14)

where

Mn
t =

∫ t

0

f
(
s, πD

(
Xn
s−1/n

))
ds + n

∫ t

t−1/n

[∫ s

0

g
(
r, πD

(
Xn
r−1/n

))
dBr,

]
ds

=

∫ t

0

f
(
s, πD

(
Xn
s−1/n

))
ds +

∫ 1

0

[∫ t− 1
n
+ 1
n
u

0

g
(
r, πD

(
Xn
r−1/n

))
dBr

]
du.
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and

πD (x) is the orthogonal projection of x on D = Dom (ϕ).

Since Mn is a C1−continuous progressively measurable stochastic process, then by Corollary 1 the

approximating equation (14) has a unique solution (Xn, Kn) of continuous p.m.s.p.

Step 2. Tightness. Let T ≥ 0 be arbitrary fixed.

• {Mn : n ≥ 1} is tight on C
(
[0, T ] ;Rd

)
since

sup
n≥1

E
[

sup
0≤θ≤ε

|Mn
t+θ −Mn

t |
4

]
≤ ε γ (ε) ,

where γ (ε)→ 0,as ε→ 0.

• Un = (Xn, Kn, lKnl) , n ∈ N∗, is tight on X = C
(
[0, T ] ;R2d+1

)
since by Proposition 1

‖Un‖T ≤ CT (‖Mn‖T )

mUn (ε) ≤ CT (‖Mn‖T )×
√
ε +mMn (ε)

and, then, from Lemma 6 the tightness follows.

• By Prohorov theorem there exists a subsequence (denoted also by n) such that as n→∞

(Xn, Kn, lKnl , B)
L→ (X,K, V,B) (in law) on C

(
[0, T ] ;R2d+1+k

)
.
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• By Skorohod theorem there exist

(X̄n, K̄n, V̄ n, B̄n), (X̄, K̄, V̄ , B̄) :
(
[0, 1] ;B[0,1], dt

)
→ C

(
[0, T ] ;R2d+1+k

)
random variables such that

(a) (X̄n, K̄n, V̄ n, B̄n)
L
= (Xn, Kn, lKnl , B) ,

(b) (X̄, K̄, V̄ , B̄)
L
= (X,K, V,B),

(c) (X̄n, K̄n, V̄ n, B̄n)
P−a.s.−−−→ (X̄, K̄, V̄ , B̄).

• By Lemma 12,
(
B̄n, {F X̄n,K̄n,V̄ n,B̄n

t }
)
, n ≥ 1, and

(
B̄, {F X̄,K̄,V̄ ,B̄

t }
)

are Rk−Brownian motion.

Step 3. Passing to the limit.

• Since (Xn, Kn, lKnl , B)
L→ (X̄, K̄, V̄ , B̄), then by Lemma 9 for all 0 ≤ s ≤ t, P− a.s.

X̄0 = x0 , K̄0 = 0,xyK̄xy
t
−
xyK̄xy

s
≤ V̄t − V̄s and 0 = V̄0 ≤ V̄s ≤ V̄s

and from ∫ t

s

ϕ (Xn
r ) dr ≤

∫ t

s

ϕ (y (r)) dr −
∫ t

s

〈y (r)−Xn
r , dK

n
r 〉 a.s.
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it follows ∫ t

s

ϕ
(
X̄r

)
dr ≤

∫ t

s

ϕ (y (r)) dr −
∫ t

s

〈
y (r)− X̄r, dK̄r

〉
(15)

for all 0 ≤ s < t. Hence dK̄r ∈ ∂ϕ
(
X̄r

)
(dr)

• By Lebesgue theorem and Lemma 12, as n→∞

M̄n
· = x0 +

∫ ·
0

f
(
s, πD

(
X̄n
s−1/n

))
ds + n

∫ ·
·−1/n

[∫ s

0

g
(
r, πD

(
X̄n
r−1/n

))
dBr,

]
ds

−→ M̄· = x0 +

∫ ·
0

f
(
s, X̄s

)
ds +

∫ ·
0

g
(
s, X̄s

)
dB̄s, in S0

d [0, T ] .

• By Lemma 10

L
(
X̄n, K̄n, B̄n, M̄n

)
= L (Xn, Kn, Bn,Mn) on C

(
R+;Rd+d+k+d

)
and therefore, by Lemma 9, from

Xn
t +

∫ t

0

H (Xn
s ) dKn

s −Mn
t = 0, a.s.,
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we have

X̄n
t +

∫ t

0

H
(
X̄n
s

)
dK̄n

s − M̄n
t = 0, a.s.

and letting n→∞,

X̄t +

∫ t

0

H
(
X̄s

)
dK̄s − M̄t = 0, a.s. .

that is P− a.s.

X̄t +

∫ t

0

H
(
X̄s

)
dK̄s = x0 +

∫ t

0

f
(
s, X̄s

)
ds +

∫ t

0

g
(
s, X̄s

)
dB̄s, ∀ t ∈ [0, T ] .

Consequently
(

Ω̄, F̄ , P̄,F B̄,X̄
t , X̄t, K̄t, B̄t

)
t≥0

is a weak solution of the SDE (12). The proof is complete.

We also add continuity Lipschitz conditions:

(A8) :

∃ µ ∈ L1
loc (R+) , ∃ ` ∈ L2

loc (R+) s.t. ∀ x, y ∈ Rd, a.e. t ≥ 0,

(i) |f (t, x)− f (t, y)| ≤ µ (t) |x− y| ,
(ii) |g (t, x)− g (t, y)| ≤ ` (t) |x− y| .

(16a)
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Theorem 3 Let the assumptions (A1, A3, A4, A7, A8) be satisfied. Then then the SDE (12) has a unique

strong solution (X,K) ∈ S0
d × S0

d.

Proof. It is sufficient to prove the pathwise uniqueness, since by Theorem 1.1 page 149 in Ikeda

&Watanabe [3] the existence of a weak solution + the pathwise uniqueness implies the existence of a

strong solution.

Let (X,K), (X̂, K̂) ∈ S0
d × S0

d two solutions. Let

Ur =
(
H−1 (Xr) + H−1(X̂r)

)1/2 (
Xr − X̂r

)
.

Then

dUr = dKr + GrdBr,

where

dKr = (dNr)Q
−1/2
r Ur + Q1/2

r

[
H
(
X̂r

)
dK̂r −H (Xr) dKr

]
+ Q1/2

r

[
f (r,Xr)− f

(
r, X̂r

)]
dr +

k∑
j=1

β(j)
r

(
g (r,Xr)− g

(
r, X̂r

))
ej

Gr = Γr + Q1/2
r

[
g (r,Xr)− g

(
r, X̂r

)]
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where for each j ∈ 1, k, β(j) is a Rd×d−valued P−m.s.p. such that

∫ T

0

∣∣∣β(j)
r

∣∣∣2 dr < ∞, a.s. and Γr is a

Rd×k matrix with the columns β(1)
r (Xr − X̂r), . . . , β(k)

r (Xr − X̂r).

Hence

〈Ur, dKr〉 +
1

2
|Gr|2 dt ≤ |Ur|2dVr

with

dVr = C ×

µ (r) dr + `2 (r) dr + d lNlr + d lKlr + d lK̂ lr +

k∑
j=1

∣∣∣β(j)
r

∣∣∣2 dr
 .

By Lemma 7 we infer

E
e−2Vs |Us|2

1 + e−2Vs |Us|2
≤ E e−2V0 |U0|2

1 + e−2V0 |U0|2
= 0

Consequently Q
1/2
s

(
Xs − X̂s

)
= Us = 0, P − a.s., for all s ≥ 0 and by the continuity of X and X̂ we

conclude that P− a.s.,

Xs = X̂s for all s ≥ 0.
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4 Annex

4.1 A priori estimates

Lemma 1 If (x, k) = SP (H∂ϕ;x0,m) and (x̂, k̂) = SP (H∂ϕ; x̂0, m̂) then for all 0 ≤ s ≤ t :∫ t

s

〈
x (r)− x̂ (r) , dk (r)− dk̂ (r)

〉
≥ 0;

Lemma 2 Let the assumptions (A1 − A4) be satisfied. If (x, k) ∈ SP (H∂ϕ;x0,m) , then for all 0 ≤ s ≤
t ≤ T

mx (t− s) ≤
[
(t− s) +mm (t− s) +

√
mm (t− s) (lklt − lkls)

]
× exp {C [1 + (t− s) + (lklt − lkls + 1) (lklt − lkls)]}

where C = C (b, c, L) > 0 and

mm (ε)
def
= sup {|m (u)− g (v)| : u, v ∈ [0, T ] , |u− v| ≤ ε} .

ITN Workshop "Stochastic Control and Finance", March 18-23, 2010, Roscoff, France Aurel Răşcanu, "Alexandru Ioan Cuza" University, Iaşi
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Lemma 3 Let the assumptions (A1 − A4) be satisfied. If (x, k) ∈ SP (H∂ϕ;x0,m) , 0 ≤ s ≤ t ≤ T and

sup
r∈[s,t]

|x (r)− x (s)| ≤ 2δ0 =
ρ0

2bc
∧ ρ0 with ρ0 =

r0

2 (1 + r0 + h0)
,

then

lklt − lkls ≤
1

ρ0

|k (t)− k (s)| + 3L

ρ0

(t− s) ;

and

|x (t)− x (s)| + lklt − lkls ≤
√
t− s +mm (t− s)× eCT(1+‖m‖2T)

where CT = C (b, c, r0, h0, L, T ) > 0.

Lemma 4 Let the assumptions (A1 − A4) be satisfied. Let (x, k) ∈ SP (H∂ϕ;x0,m) , 0 ≤ s ≤ t ≤ T

and x (r) ∈ Dδ0 for all r ∈ [s, t]. Then

lklt − lkls ≤ L

(
1 +

2

δ0

)
(t− s) .

and

mx (t− s) ≤ CT × [(t− s) +mm (t− s)]
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where C = C (b, c, r0, h0, L, T ) > 0.

Lemma 5 Let the assumptions (A1 − A4) be satisfied and (x, k) ∈ SP (H∂ϕ;x0,m) . Then there ex-

ists a positive constant CT (‖m‖T ) = C (x0, b, c, r0, h0, L, T, ‖m‖T ) , increasing function with respect to

‖m‖T ,such that for all 0 ≤ s ≤ t ≤ T :

(a) ‖x‖T + lklT ≤ CT (‖m‖T ) ,

(b) |x (t)− x (s)| + lklt − lkls ≤ CT (‖m‖T )×
√
t− s +mm (t− s).

4.2 Yosida’s regularization of a convex function

By ∇ϕε is denoted the gradient of the Yosida’s regularization ϕε of the function ϕ,

ϕε(x) = inf { 1

2ε
|z − x|2 + ϕ(z) : z ∈ Rd}

=
1

2ε
|x− Jεx|2 + ϕ(Jεx)

where Jεx = x − ε∇ϕε(x). The function ϕε : Rd → R is a convex and differentiable. Then for all
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x, y ∈ Rd, ε > 0 :

a) ∇ϕε(x) = ∂ϕε (x) ∈ ∂ϕ(Jεx), and ϕ(Jεx) ≤ ϕε(x) ≤ ϕ(x),

b) |∇ϕε(x)−∇ϕε(y)| ≤ 1

ε
|x− y| ,

c) 〈∇ϕε(x)−∇ϕε(y), x− y〉 ≥ 0,

d) 〈∇ϕε(x)−∇ϕδ(y), x− y〉 ≥ −(ε + δ) 〈∇ϕε(x),∇ϕδ(y)〉

In the case 0 = ϕ (0) ≤ ϕ (x) for all x ∈ Rd, then we moreover have

(a) 0 = ϕε(0) ≤ ϕε(x) and Jε (0) = ∇ϕε (0) = 0,

(b)
ε

2
|∇ϕε(x)|2 ≤ ϕε(x) ≤ 〈∇ϕε(x), x〉 , ∀x ∈ Rd.

4.3 Inequalities

Lemma 6 Let x ∈ BVloc
(
[0,∞[ ;Rd

)
and V ∈ BVloc ([0,∞[ ;R) be continuous functions. Let R,N :

[0,∞[→ [0,∞[ continuous increasing functions. If

〈x (t) , dx (t)〉 ≤ dR (t) + |x (t)| dN (t) + |x (t)|2 dV (t)
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as signed measures on [0,∞[ , then for all 0 ≤ t ≤ T :

∥∥e−V x∥∥
[t,T ]
≤ 2

[∣∣∣e−V (t)x (t)
∣∣∣ +

(∫ T

t

e−2V (s)dR (s)

)1/2

+

∫ T

t

e−V (s)dN (s)

]
If R = 0 then for all 0 ≤ t ≤ s :

|x (s)| ≤ eV (s)−V (t) |x (t)| +
∫ s

t

eV (s)−V (r)dN (r) .

We give from Pardoux&Răşcanu [5] an estimate on the local semimartingale X ∈ S0
d of the form

Xt = X0 + Kt +

∫ t

0

GsdBs, t ≥ 0, P− a.s.

where G ∈ Λ0
d×k and K ∈ S0

d; K· ∈ BVloc
(
[0,∞[ ;Rd

)
, K0 = 0, P− a.s.;

Lemma 7 Let X ∈ S0
d be a local semimartingale of the form (??). Assume there exist p ≥ 1 and V a

P−m.b-v.c.s.p., V0 = 0, such that as signed measures on [0,∞[

〈Xt, dKt〉 + 1∨(p−1)
2 |Gt|2 dt ≤ |Xt|2dVt, P− a.s.,
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then for all δ ≥ 0, 0 ≤ t ≤ s :

EFt
∣∣e−VsXs

∣∣p(
1 + δ |e−VsXs|2

)p/2 ≤
∣∣e−VtXt

∣∣p(
1 + δ |e−VtXt|2

)p/2 , P− a.s..

4.4 Tightness

Lemma 8 Let {Xn
t : t ≥ 0}, n ∈ N∗, be a family of Rd−valued continuous stochastic processes defined

on probability space (Ω,F ,P) . Suppose that for every T ≥ 0, there exist α = αT > 0 and b = bT ∈
C (R+) with b(0) = 0, (both independent of n) such that

(j) lim
N→∞

[
sup
n∈N∗

P({|Xn
0 | ≥ N})

]
= 0,

(jj) E
[

1 ∧ sup
0≤s≤ε

|Xn
t+s −Xn

t |
α

]
≤ ε · b(ε), ∀ ε > 0, n ≥ 1, t ∈ [0, T ] ,

Then {Xn : n ∈ N∗} is tight in C(R+;Rd).

Lemma 9 ϕ : Rd →]−∞,+∞] is a l.s.c. function. Let (X,K, V ), (Xn, Kn, V n) , n ∈ N, beC
(
[0, T ] ;Rd

)2×
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C ([0, T ] ;R)−valued random variables, such that

(Xn, Kn, V n)
law−−−→
n→∞

(X,K, V )

and for all 0 ≤ s < t, and n ∈ N∗,

lKnlt − lKnls ≤ V n
t − V n

s a.s.∫ t

s

ϕ (Xn
r ) dr ≤

∫ t

s

〈Xn
r , dK

n
r 〉 , a.s.,

then lKlt − lKls ≤ Vt − Vs a.s. and∫ t

s

ϕ (Xr) dr ≤
∫ t

s

〈Xr , dKr〉 , a.s..

Lemma 10 Let X, X̂ ∈ S0
d [0, T ] and B, B̂ be two Rk−Brownian motions and g : R+ × Rd → Rd×k be a

function satisfying

g (·, y) is measurable ∀ y ∈ Rd, and

y 7→ g (t, y) is continuous dt− a.e..
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If

L (X,B) = L(X̂, B̂), on C
(
R+,Rd+k

)
then

L
(
X,B,

∫ ·
0

g (s,Xs) dBs

)
= L

(
X̂, B̂,

∫ ·
0

g
(
s, X̂s

)
dB̂s

)
, on C

(
R+,Rd+k+d

)
.

Lemma 11 Let g : R+ → R+ be a continuous function satisfying g (0) = 0 and G : C
(
R+;Rd

)
→ R+

be a mapping which is bounded on compact subsets of C
(
R+;Rd

)
. Let Xn, Y n, n ∈ N∗, be random

variables with values in C
(
R+;Rd

)
. If {Y n : n ∈ N∗} is tight and for all n ∈ N∗

(i) |Xn
0 | ≤ G (Y n) , a.s.

(ii) mXn (ε; [0, T ]) ≤ G (Y n) g (mY n (ε; [0, T ])) , a.s., ∀ ε, T > 0,

then {Xn : n ∈ N∗} is tight.

Lemma 12 Let B,Bn, B̄n : Ω× [0,∞[→ Rk and X,Xn, X̄n : Ω× [0,∞[→ Rd×k, be c.s.p. such that

• Bn is FBn,Xn

t −Brownian motion ∀ n ≥ 1;

• L(Xn, Bn) = L
(
X̄n, B̄n

)
on C(R+,Rd×k × Rk) for all n ≥ 1;
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•
∫ T

0

∣∣X̄n
s − X̄s

∣∣2 ds + sup
t∈[0,T ]

∣∣B̄n
t − B̄t

∣∣ in probability, as n→∞, for all T > 0.

Then
(
B̄n, {F B̄n,X̄n

t }
)
, n ≥ 1, and

(
B̄, {F B̄,X̄

t }
)

are Brownian motions and as n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

X̄n
s dB̄

n
s −→

∫ t

0

X̄sdB̄s

∣∣∣∣ −→ 0 in probability.
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