Stochastic variational inequalities with oblique subgradients

Aurel Răşcanu

> Department of Mathematics, "Alexandru Ioan Cuza" University, Bd. Carol no. 9-11 $$
\&
$$ "Octav Mayer" Mathematics Institute of the Romanian Academy, Bd. Carol I, no.8, Iaşi, Romania

The paper is jointly with my ITN Phd Anuar GASSOUS

Object

We give an existence and uniqueness result on the SVI with oblique subgradients

$$
\left\{\begin{array}{l}
X_{t}+\int_{0}^{t} H\left(X_{s}\right) d K_{s}=x_{0}+\int_{0}^{t} f\left(s, X_{s}\right) d s+\int_{0}^{t} g\left(s, X_{s}\right) d B_{s}, \quad t \geq 0 \\
d K_{t}(\omega) \in \partial \varphi\left(X_{t}(\omega)\right)(d t), \quad \mathbb{P}-\text { a.s. } \omega \in \Omega
\end{array}\right.
$$

The approach is via a deterministic generalized Skorohod problem (a variational inequality with oblique subgradients):

$$
\left\{\begin{array}{l}
x(t)+\int_{0}^{t} H(x(s)) d k(s)=x_{0}+\int_{0}^{t} f(s, x(s)) d s+m(t), \quad t \geq 0 \\
d k(s) \in \partial \varphi(x(s))(d s)
\end{array}\right.
$$

where $m: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ is a continuous function.
Starting papers: Lions \& Sznitman (1984), Dupuis \& Ishii (1993)

Outline

\star Preliminaries
^ Variational inequalities with oblique subgradients
© Existence result ($m \in C\left([0, T] ; \mathbb{R}^{d}\right)$);
© Existence and uniqueness $\left(m \in m \in C\left([0, T] ; \mathbb{R}^{d}\right) \cap B V\left([0, T] ; \mathbb{R}^{d}\right)\right)$;
© Approximation result $\left(m \in C^{1}\left([0, T] ; \mathbb{R}^{d}\right)\right)$.
\star Stochastic variational inequalities with oblique subgradients
© Existence result (continuous coefficients)

- Existence and uniqueness (Lipschitz coefficients)
* Annex
^ A priori estimates;
- Yosida's regularization
^ Inequalities
- Tightness
* References

1 Preliminaries

Let $H=\left(h_{i, j}\right)_{d \times d} \in C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{2 d}\right)$ be such that for all $x \in \mathbb{R}^{d}$,

$$
\left(A_{1}\right): \begin{cases}(i) & h_{i, j}(x)=h_{j, i}(x), \quad \text { and } i, j \in \overline{1, d} \\ (i i) & \frac{1}{c}|u|^{2} \leq\langle H(x) u, u\rangle \leq c|u|^{2}, \quad \forall u \in \mathbb{R}^{d}(\text { for some } c \geq 1)\end{cases}
$$

Denote $b \stackrel{\text { def }}{=} \sup \left\{\left|H_{x}^{\prime}(x)\right|+\left|\left(H^{-1}\right)_{x}^{\prime}(x)\right|: x \in \mathbb{R}^{d}\right\}$.
Consider the multivalued differential equation

$$
\left\{\begin{array}{l}
d x(t)+H(x(t)) \partial \varphi(x(t))(d t) \ni d m(t), \quad t>0 \tag{1}\\
x(0)=x_{0}
\end{array}\right.
$$

where

$$
\left(A_{2}\right):\left\{\begin{aligned}
(i) & x_{0} \in \operatorname{Dom}(\varphi) \\
(i i) & m \in C\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right), \quad m(0)=0
\end{aligned}\right.
$$

and

$$
\left.\left.\left(A_{3}\right): \quad \varphi: \mathbb{R}^{d} \rightarrow\right]-\infty,+\infty\right] \text { is proper I.s.c. convex function. }
$$

If $E \subset \mathbb{R}^{d}$ and $\varepsilon>0$, we denote

$$
E_{\varepsilon}=\left\{x \in E: \operatorname{dist}\left(x, E^{c}\right) \geq \varepsilon\right\}=\overline{\{x \in E: B(x, \varepsilon) \subset E\}}
$$

the ε-interior of E.
We formulate the following supplementary assumptions

$$
\left(A_{4}\right): \begin{cases}(i) & D=\operatorname{Dom}(\varphi) \text { is a closed subset of } \mathbb{R}^{d}, \\ (i i) & \exists r_{0}>0, D_{r_{0}} \neq \emptyset \text { and } h_{0}=\sup _{z \in E} d\left(z, D_{r_{0}}\right)<\infty, \\ (i i i) & \exists L \geq 0, \text { such that }|\varphi(x)-\varphi(y)| \leq L+L|x-y|, \quad \text { for all } x, y \in D\end{cases}
$$

By $\partial \varphi$ it is denoted the subdifferential of φ :

$$
\partial \varphi(x) \stackrel{\text { def }}{=}\left\{\hat{x} \in \mathbb{R}^{d}:\langle\hat{x}, y-x\rangle+\varphi(x) \leq \varphi(y), \text { for all } y \in \mathbb{R}^{d}\right\} .
$$

A vector $\eta \in H(x) \partial \varphi(x)$ will be called H-oblique subgradient.
If E is a closed convex subset of \mathbb{R}^{d} then

$$
\varphi(x)=I_{E}(x)=\left\{\begin{array}{cc}
0, & \text { if } x \in E \\
+\infty, & \text { if } x \notin E
\end{array}\right.
$$

is a convex l.s.c. function and

$$
\partial I_{E}(x)=\left\{\hat{x} \in \mathbb{R}^{d}: \quad\langle\hat{x}, y-x\rangle \leq 0, \forall y \in E\right\}=N_{E}(x), \text { if } x \in E .
$$

In this case $\nu(x) \in H(x) \partial I_{E}(x)$ is a outward H-oblique direction to $B d(E)$ in the point x.
Definition 1 Given two functions $x, k: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$, we say that $d k(t) \in \partial \varphi(x(t))(d t)$ if
(a) $\quad x: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ is continuous,
(b) $\quad \int_{0}^{T} \varphi(x(r)) d r<\infty, \quad \forall T \geq 0$,
(c) $k \in B V_{l o c}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right), \quad k(0)=0$,
(d) $\quad \int_{s}^{t}\langle y(r)-x(r), d k(r)\rangle+\int_{s}^{t} \varphi(x(r)) d r \leq \int_{s}^{t} \varphi(y(r)) d r$, for all $0 \leq s \leq t \leq T \quad$ and $y \in C\left([0, T] ; \mathbb{R}^{d}\right)$.

We state the

Definition 2 A pair (x, k) is a solution of the Skorohod problem (1) with H-oblique subgradients (and we write $(x, k) \in \mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right)$) if $x, k: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ are continuous functions and

$$
\begin{cases}(j) & x(t)+\int_{0}^{t} H(x(r)) d k(r)=x_{0}+m(t), \quad \forall t \geq 0, \tag{2}\\ (j j) & d k(r) \in \partial \varphi(x(r))(d r) .\end{cases}
$$

In Annex, five technical lemmas are given to arrive of the following a priori estimate of the solutions $(x, k) \in \mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right)$:

Proposition 1 If $(x, k) \in \mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right)$, then under assumptions $\left(A_{1}-A_{4}\right)$ there exists a constant $C_{T}\left(\|m\|_{T}\right)=C\left(T,\|m\|_{T}, b, c, r_{0}, h_{0}\right)$ (increasing function with respect to $\left.\|m\|_{T}\right)$, such that for all $0 \leq$ $s \leq t \leq T$:

$$
\begin{array}{ll}
\text { (a) } & \|x\|_{T}+\uparrow k \uparrow_{T} \leq C_{T}\left(\|m\|_{T}\right) \\
\text { (b) } & |x(t)-x(s)|+\uparrow k \uparrow_{t}-\uparrow k \uparrow_{s} \leq C_{T}\left(\|m\|_{T}\right) \times \sqrt{(t-s)+\mathbf{m}_{m}(t-s)} \tag{3}
\end{array}
$$

2 Variational inequalities with oblique subgradients

2.1 Existence result : $m \in C\left([0, T] ; \mathbb{R}^{d}\right)$.

Consider the differential equation

$$
\left\{\begin{array}{l}
d x(t)+H(x(t)) \partial \varphi(x(t))(d t) \ni f(t, x(t)) d t+d m(t), \quad t>0 \tag{4}\\
x(0)=x_{0}
\end{array}\right.
$$

where

$$
\left(A_{5}\right):\left\{\begin{array}{rr}
(i) \quad(t, x) & \longmapsto f(t, x): \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \text { is a Carathéodory function } \\
& \text { (i.e. measurable w.r. to and } t \text { continuous w.r. to } x
\end{array}\right.
$$

Theorem 1 Let the assumptions $\left(A_{1}-A_{5}\right)$ be satisfied. Then the differential equation (4) has at least one solution in the sense of Definition i.e. $x, k: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ are continuous functions and

$$
\left\{\begin{array}{l}
(j) \quad x(t)+\int_{0}^{t} H(x(r)) d k(r)=x_{0}+\int_{0}^{t} f(r, x(r)) d r+m(t), \quad \forall t \geq 0 \tag{5}\\
(j j) \quad d k(r) \in \partial \varphi(x(r))(d r)
\end{array}\right.
$$

Proof. Step 1. Case $m \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$.
It is sufficient to prove the existence of a solution on an interval $[0, T]$ arbitrary fixed.
Let $0<\varepsilon \leq 1$ and the extensions $f(s, x)=0$ and $m(s)=s \times m^{\prime}(0+)$ for $s<0$.
Consider the penalized problem

$$
\left\{\begin{array}{l}
x_{\varepsilon}(t)=x_{0}, \quad \text { if } t<0, \\
x_{\varepsilon}(t)+\int_{0}^{t} H\left(x_{\varepsilon}(s)\right) d k_{\varepsilon}(s)=x_{0}+\int_{0}^{t}\left[f\left(s-\varepsilon, \pi_{D}\left(x_{\varepsilon}(s-\varepsilon)\right)\right)+m^{\prime}(s-\varepsilon)\right] d s \\
t \in[0, T]
\end{array}\right.
$$

or equivalent

$$
\left\{\begin{array}{l}
x_{\varepsilon}(t)=x_{0}, \quad \text { if } t<0, \tag{6}\\
x_{\varepsilon}(t)+\int_{0}^{t} H\left(x_{\varepsilon}(s)\right) d k_{\varepsilon}(s)=x_{0}+\int_{-\varepsilon}^{t-\varepsilon}\left[f\left(s, \pi_{D}\left(x_{\varepsilon}(s)\right)\right)+m^{\prime}(s)\right] d s, \quad t \in[0, T],
\end{array}\right.
$$

where

$$
\begin{aligned}
k_{\varepsilon}(t) & =\int_{0}^{t} \nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right) d s \quad \text { and } \\
\pi_{D}(x) & =\text { the orthogonal projection of } x \text { on } D=\overline{\operatorname{Dom}(\varphi)}=\operatorname{Dom}(\varphi) .
\end{aligned}
$$

Since $x \longmapsto H(x) \nabla \varphi_{\varepsilon}(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a sublinear and locally Lipschitz continuous function and $\left|f\left(s, \pi_{D}(x)\right)\right| \leq f^{\#}(s)$ for all $(s, x) \in \mathbb{R} \times \mathbb{R}^{d}$, then recursively on the intervals $[i \varepsilon,(i+1) \varepsilon]$ the approximating equation has a unique solution $x_{\varepsilon} \in C\left([0, T] ; \mathbb{R}^{d}\right)$.
We have

$$
\begin{align*}
& \left|x_{\varepsilon}(t)-u_{0}\right|^{2}+\varphi_{\varepsilon}\left(x_{\varepsilon}(t)\right)+\int_{0}^{t}\left\langle H\left(x_{\varepsilon}(s)\right) \nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right), 2\left[x_{\varepsilon}(s)-u_{0}\right]+\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right)\right\rangle d s \\
& \quad=\left|x_{0}\right|^{2}+\varphi_{\varepsilon}\left(x_{0}\right)+\int_{0}^{t}\left\langle 2\left[x_{\varepsilon}(s)-u_{0}\right]+\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right), f\left(s-\varepsilon, \pi_{D}\left(x_{\varepsilon}(s-\varepsilon)\right)\right)+m^{\prime}(s-\varepsilon) d s\right\rangle . \tag{7}
\end{align*}
$$

Let $\left(u_{0}, \hat{u}_{0}\right) \in \partial \varphi, 0<\varepsilon \leq 1$. We have

- $\left|\varphi_{\varepsilon}\left(x_{\varepsilon}\right)-\varphi_{\varepsilon}\left(u_{0}\right)\right|+\varphi\left(u_{0}\right)-2\left|\hat{u}_{0}\right|^{2}-\left|x_{\varepsilon}-u_{0}\right|^{2} \leq \varphi_{\varepsilon}\left(x_{\varepsilon}\right)$,
- $\frac{1}{c}\left|\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}\right)\right|^{2} \leq\left\langle H\left(x_{\varepsilon}\right) \nabla \varphi_{\varepsilon}\left(x_{\varepsilon}\right), \nabla \varphi_{\varepsilon}\left(x_{\varepsilon}\right)\right\rangle$,

$$
\left\langle H\left(x_{\varepsilon}\right) \nabla \varphi_{\varepsilon}\left(x_{\varepsilon}\right), 2\left(x_{\varepsilon}-u_{0}\right)\right\rangle \geq-C \sup _{r \leq s}\left|x_{\varepsilon}(r)-u_{0}\right|^{2}-\frac{1}{4 c}\left|\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}\right)\right|^{2},
$$

$$
\begin{aligned}
& \left\langle 2\left(x_{\varepsilon}(s)-u_{0}\right)+\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right), f\left(s-\varepsilon, \pi_{D}\left(x_{\varepsilon}(s-\varepsilon)\right)\right)+m^{\prime}(s-\varepsilon)\right\rangle \\
& \leq \frac{1}{4 c}\left|\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right)\right|^{2}+\frac{1}{c}\left|x_{\varepsilon}(s)-u_{0}\right|^{2}+2 C\left[\left(f^{\#}(s-\varepsilon)\right)^{2}+\left|m^{\prime}(s-\varepsilon)\right|^{2}\right] .
\end{aligned}
$$

Using these estimates in (7) and Gronwall's inequality we obtain

$$
\begin{equation*}
\sup _{t \in[0, T]}\left|x_{\varepsilon}(t)\right|^{2}+\sup _{t \in[0, T]}\left|\varphi_{\varepsilon}\left(x_{\varepsilon}(t)\right)\right|+\int_{0}^{T}\left|\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right)\right|^{2} d s \leq C_{T} . \tag{8}
\end{equation*}
$$

Since $\nabla \varphi_{\varepsilon}(x)=\frac{1}{\varepsilon}\left(x-J_{\varepsilon} x\right)$, then we also infer

$$
\begin{equation*}
\int_{0}^{T}\left|x_{\varepsilon}(s)-J_{\varepsilon}\left(x_{\varepsilon}(s)\right)\right|^{2} d s \leq \varepsilon C_{T} . \tag{9}
\end{equation*}
$$

Now from the approximating equation, for all $0 \leq s \leq t \leq T$, we have

$$
\begin{aligned}
\left|x_{\varepsilon}(t)-x_{\varepsilon}(s)\right| & \leq \uparrow x_{\varepsilon} \uparrow_{[s, t]} \\
& \leq \int_{s}^{t}\left|H\left(x_{\varepsilon}(r)\right) \nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(r)\right)\right| d r+\int_{s-\varepsilon}^{t-\varepsilon}\left|f\left(r, \pi_{D}\left(x_{\varepsilon}(r)\right)\right)\right| d r+\int_{s-\varepsilon}^{t-\varepsilon}\left|m^{\prime}(r)\right| d r \\
& \leq C_{T} \sqrt{t-s} .
\end{aligned}
$$

Hence $\left\{x_{\varepsilon}: \varepsilon \in(0,1]\right\}$ is bounded and uniformly equicontinuous subset of $C\left([0, T] ; \mathbb{R}^{d}\right)$. From AcoliArzela's theorem it follows there exists $\varepsilon_{n} \rightarrow 0$, and $x \in C\left([0, T] ; \mathbb{R}^{d}\right)$ such that

$$
\lim _{n \rightarrow \infty}\left[\sup _{t \in[0, T]}\left|x_{\varepsilon_{n}}(t)-x(t)\right|\right]=0
$$

By (9), there exists $h \in L^{2}\left(0, T ; \mathbb{R}^{d}\right)$ such that on a subsequence denoted also ε_{n} we have

$$
J_{\varepsilon_{n}}\left(x_{\varepsilon_{n}}\right) \rightarrow x \quad \text { in } L^{2}\left(0, T ; \mathbb{R}^{d}\right) \text { and a.e. in }[0, T], \quad \text { as } \varepsilon_{n} \rightarrow 0,
$$

and

$$
\nabla \varphi\left(x_{\varepsilon_{n}}\right) \rightharpoonup h \text { weakly in } L^{2}\left(0, T ; \mathbb{R}^{d}\right) .
$$

Passing to $\lim \inf _{\varepsilon_{n} \rightarrow 0}$ in the subdifferential inequality

$$
\int_{s}^{t}\left\langle\nabla \varphi\left(x_{\varepsilon_{n}}(r)\right), y(r)-x_{\varepsilon_{n}}(r)\right\rangle d r+\int_{s}^{t} \varphi\left(J_{\varepsilon_{n}}\left(x_{\varepsilon_{n}}(r)\right)\right) d r \leq \int_{s}^{t} \varphi(y(r)) d r
$$

we infer

$$
\int_{s}^{t}\langle h(r), y(r)-x(r)\rangle d r+\int_{s}^{t} \varphi(x(r)) d r \leq \int_{s}^{t} \varphi(y(r)) d r
$$

for all $0 \leq s \leq t \leq T$ and $y \in C\left([0, T] ; \mathbb{R}^{d}\right)$, that is $h(r) \in \partial \varphi(x(r))$ a.e. $t \in[0, T]$.

Finally passing to limit for $\varepsilon=\varepsilon_{n} \rightarrow 0$ in the approximating equation (6) we conclude that

$$
x(t)+\int_{0}^{t} H(x(s)) d k(s)=x_{0}+\int_{0}^{t} f(s, x(s)) d s+m(t)
$$

where

$$
k(t)=\int_{0}^{t} h(s) d s
$$

Step 2. $m \in C\left([0, T] ; \mathbb{R}^{d}\right)$.
Extend $m(s)=0$ for $s \leq 0$ and define for $0<\varepsilon \leq 1$:

$$
m_{\varepsilon}(t)=\frac{1}{\varepsilon} \int_{t-\varepsilon}^{t} m(s) d s=\frac{1}{\varepsilon} \int_{0}^{\varepsilon} m(t+r-\varepsilon) d r
$$

Consider the approximating equation

$$
\left\{\begin{array}{l}
x_{\varepsilon}(t)+\int_{0}^{t} H\left(x_{\varepsilon}(r)\right) d k_{\varepsilon}(r)=x_{0}+\int_{0}^{t} f\left(r, x_{\varepsilon}(r)\right) d r+m_{\varepsilon}(t), t \geq 0 \\
d k_{\varepsilon}(r) \in \partial \varphi\left(x_{\varepsilon}(r)\right)(d r)
\end{array}\right.
$$

By the first step this equation has a unique solution $\left(x_{\varepsilon}, k_{\varepsilon}\right), d k_{\varepsilon}(s)=h_{\varepsilon}(s) d s \in \partial \varphi\left(x_{\varepsilon}(s)\right) d s$

If we denote

$$
M_{\varepsilon}(t)=\int_{0}^{t} f\left(r, x_{\varepsilon}(r)\right) d r+m_{\varepsilon}(t)
$$

then by Proposition 1

$$
\begin{gathered}
\left\|x_{\varepsilon}\right\|_{T}+\uparrow k_{\varepsilon} \uparrow_{T} \leq C_{T}\left(\left\|M_{\varepsilon}\right\|_{T}\right), \quad \text { and } \\
\left|x_{\varepsilon}(t)-x_{\varepsilon}(s)\right|+\uparrow k_{\varepsilon} \uparrow_{t}-\uparrow k_{\varepsilon} \imath_{s} \leq C_{T}\left(\left\|M_{\varepsilon}\right\|_{T}\right) \times \sqrt{(t-s)+\mathbf{m}_{M_{\varepsilon}}(t-s)} .
\end{gathered}
$$

Since

$$
\left\|M_{\varepsilon}\right\|_{T} \leq \int_{0}^{T} f^{\#}(r) d r+\|m\|_{T}
$$

and

$$
\mathbf{m}_{M_{\varepsilon}}(t-s) \leq \sqrt{t-s} \int_{0}^{T}\left(f^{\#}(r)\right)^{2} d r+\mathbf{m}_{m}(t-s)
$$

then by Acoli-Arzela's theorem there exists $\varepsilon_{n} \rightarrow 0$ and $x, k \in C\left([0, T] ; \mathbb{R}^{d}\right)$ such that

$$
x_{\varepsilon_{n}} \rightarrow x \quad \text { and } \quad k_{\varepsilon_{n}} \rightarrow k \quad \text { in } C\left([0, T] ; \mathbb{R}^{d}\right) .
$$

Using Helly-Bray theorem we infer $d k(r) \in \partial \varphi(x(r))(d r)$ and (x, k) is a solution of the equation (5).

2.2 Existence and uniqueness ($m \in B V\left([0, T] ; \mathbb{R}^{d}\right)$)

We introduce a new assumption

$$
\left(A_{6}\right):\left\{\begin{array}{l}
\exists \mu \in L_{l o c}^{1}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right) \text {s.t. } \forall x, y \in \mathbb{R}^{d} \\
\quad|f(t, x)-f(t, y)| \leq \mu(t)|x-y|, \quad \text { a.e. } t \geq 0
\end{array}\right.
$$

that will yield the uniqueness.

Proposition 2 Let the assumptions $\left(A_{1}-A_{6}\right)$ be satisfied. If moreover $m \in B V_{l o c}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$ then the generalized convex Skorohod problem with oblique subgradients (1) has a unique solution and moreover if (x, k) and (\hat{x}, \hat{k}) are two solutions, corresponding to m and, respectively, \hat{m}, then

$$
\begin{equation*}
|x(t)-\hat{x}(t)| \leq C e^{C V(t)}\left[\left|x_{0}-\hat{x}_{0}\right|+\uparrow m-\hat{m} \uparrow_{t}\right] . \tag{10}
\end{equation*}
$$

where $V(t)=\downarrow x \uparrow_{t}+\uparrow \hat{x} \uparrow_{t}+\uparrow k \uparrow_{t}+\uparrow \hat{k} \uparrow_{t}+\int_{0}^{t} \mu(r) d r$ and C is a constant depending only (b, c).
Proof. The existence was proved in Theorem 1. Let us prove the inequality (10) which yields the uniqueness, too.
Consider the symmetric and strict positive matrix

$$
u(r)=\left([H(x(r))]^{-1}+[H(\hat{x}(r))]^{-1}\right)^{1 / 2}(x(r)-\hat{x}(r))
$$

Then with technical calculus we can show that there exists C a constant depending only c and b such that

$$
\langle u(r), d u(r)\rangle \leq C|u(r)| d \uparrow m-\hat{m} \bigcap_{r}+C|u(r)|^{2} d V(r)
$$

 $t \geq 0$

$$
e^{-C V(t)}|u(t)| \leq\left|x_{0}-\hat{x}_{0}\right|+C \int_{0}^{t} e^{-C V(r)} d \upharpoonright m-\hat{m} \rrbracket_{r} .
$$

2.3 Approximation result $\left(m \in C^{1}\left([0, T] ; \mathbb{R}^{d}\right)\right)$

Proposition 3 Under the assumptions $\left(A_{1}-A_{6}\right)$ and $m \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, the solution $\left(x_{\varepsilon}\right)_{0<\varepsilon \leq 1}$ of the approximating equation

$$
\left\{\begin{array}{l}
x_{\varepsilon}(t)+\int_{0}^{t} H\left(x_{\varepsilon}(s)\right) d k_{\varepsilon}(s)=x_{0}+\int_{0}^{t} f\left(s, \pi_{D}\left(x_{\varepsilon}(s)\right)\right) d s+m(t), \quad t \geq 0, \tag{11}\\
d k_{\varepsilon}(s)=\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right) d s,
\end{array}\right.
$$

has the properties:
for all $T>0$, there exists a constant independent of $\varepsilon, \delta \in] 0,1]$ such that

$$
\begin{cases}(j) & \sup _{t \in[0, T]}\left|x_{\varepsilon}(t)\right|^{2}+\sup _{t \in[0, T]}\left|\varphi_{\varepsilon}\left(x_{\varepsilon}(t)\right)\right|+\int_{0}^{T}\left|\nabla \varphi_{\varepsilon}\left(x_{\varepsilon}(s)\right)\right|^{2} d s \leq C_{T} \\ (j j) & \downarrow x_{\varepsilon} \uparrow_{[s, t]} \leq C_{T} \sqrt{t-s}, \quad \text { for all } 0 \leq s \leq t \leq T \\ (j j j) & \left\|x_{\varepsilon}-x_{\delta}\right\|_{T} \leq C_{T} \sqrt{\varepsilon+\delta}\end{cases}
$$

Moreover there exist $x, k \in C\left([0, T] ; \mathbb{R}^{d}\right)$ and $h \in L^{2}\left(0, T ; \mathbb{R}^{d}\right)$ such that $d k(t)=h(t) d t$,

$$
\lim _{\varepsilon \rightarrow 0}\left[\left\|x_{\varepsilon}-x\right\|_{t}+\left|k_{\varepsilon}(t)-k(t)\right|\right]=0, \quad \forall t \in[0, T],
$$

and (x, k) is the unique solution of the variational inequality with oblique subgradients:

$$
\left\{\begin{array}{l}
(j) \quad x(t)+\int_{0}^{t} H(x(r)) d k(r)=x_{0}+\int_{0}^{t} f(r, x(r)) d r+m(t), \quad \forall t \geq 0 \\
(j j) \quad d k(r) \in \partial \varphi(x(r))(d r)
\end{array}\right.
$$

Proof. The proof is similar to those of Theorem 1. The Cauchy property is proved in a similar manner as the uniqueness. If we denote

$$
u_{\varepsilon, \delta}(s)=\left(\left[H\left(x_{\varepsilon}(s)\right)\right]^{-1}+\left[H\left(x_{\delta}(s)\right)\right]^{-1}\right)^{1 / 2}\left(x_{\varepsilon}(s)-x_{\delta}(s)\right)
$$

then, after some technical calculus, we deduce that

$$
\left\langle u_{\varepsilon, \delta}(s), d u_{\varepsilon, \delta}(s)\right\rangle \leq 4(\varepsilon+\delta)\left|\nabla \varphi\left(x_{\delta}(s)\right)\right|\left|\nabla \varphi\left(x_{\varepsilon}(s)\right)\right| d s+C\left|u_{\varepsilon, \delta}(s)\right|^{2} d V_{\varepsilon, \delta}(s)
$$

with

$$
V(s)=\uparrow x_{\varepsilon} \uparrow_{s}+\uparrow x_{\delta} \uparrow_{s}+\uparrow k_{\varepsilon} \uparrow_{s}+\uparrow k_{\delta} \uparrow_{s}+\int_{0}^{s} \mu(r) d r \leq C_{T}
$$

Corollary 1 If he assumptions $\left(A_{1}-A_{6}\right)$ are satisfied and

- $\left(\Omega, \mathcal{F}, \mathbb{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$ is a stochastic basis,
- $M: \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}^{d}$ is a p.m.s.p., $M .(\omega) \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, a.s. $\omega \in \Omega$,
then the SDE

$$
\left\{\begin{array}{l}
X_{t}(\omega)+\int_{0}^{t} H\left(X_{t}(\omega)\right) d K_{t}(\omega)=x_{0}+\int_{0}^{t} f\left(s, X_{s}(\omega)\right) d s+M_{t}(\omega), \quad t \geq 0 \\
d K_{t}(\omega) \in \partial \varphi\left(X_{t}(\omega)\right)(d t)
\end{array}\right.
$$

has a unique solution $\{(X .(\omega), K .(\omega)): \omega \in \Omega\}$. Moreover X and K are p.m.s.p.

3 Stochastic variational inequalities with oblique subgradients

Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$ be a stochastic basis and $\left\{B_{t}: t \geq 0\right\}$ a \mathbb{R}^{k}-valued Brownian motion. We consider the SDE

$$
\left\{\begin{array}{l}
X_{t}+\int_{0}^{t} H\left(X_{t}\right) d K_{t}=x_{0}+\int_{0}^{t} f\left(s, X_{s}\right) d s+\int_{0}^{t} g\left(s, X_{s}\right) d B_{s}, \quad t \geq 0 \tag{12}\\
d K_{t} \in \partial \varphi\left(X_{t}\right)(d t)
\end{array}\right.
$$

where $x_{0} \in \mathbb{R}^{d},(t, x) \longmapsto f(t, x): \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $(t, x) \longmapsto g(t, x): \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times k}$

$$
\left(A_{7}\right):\left\{\begin{array}{lr}
(i) & f \text { and } g \text { are Carathéodory functions } \\
& \text { (i.e. measurable w.r. to } t \text { and co } \\
(i i) \quad \int_{0}^{T}\left(f^{\#}(t)\right)^{2}+\int_{0}^{T}\left(g^{\#}(t)\right)^{4} d t<\infty,
\end{array}\right.
$$

where

$$
f^{\#}(t)=\sup _{x \in \operatorname{Dom}(\varphi)}|f(t, x)| \quad \text { and } \quad g^{\#}(t)=\sup _{x \in \operatorname{Dom}(\varphi)}|g(t, x)|
$$

Definition 3 (I) Given $\left(\Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_{t}, B_{t}\right)_{t>0}$ a \mathbb{R}^{k}-valued \mathcal{F}_{t}-Brownian motion, a pair $(X, K): \Omega \times$
$\left[0, \infty\left[\rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d}\right.\right.$ of continuous p.m.s.p. is a strong solution of the SVI (12) if $\mathbb{P}-$ a.s. $\omega \in \Omega$:

$$
\left\{\begin{aligned}
j) & \varphi(X .) \in L_{l o c}^{1}\left(\mathbb{R}_{+}\right) \\
j j) & K . \in B V_{\text {loc }}\left(\left[0, \infty\left[; \mathbb{R}^{d}\right), \quad K_{0}=0,\right.\right. \\
j j j) & X_{t}+\int_{0}^{t} H\left(X_{t}\right) d K_{t}=x_{0}+\int_{0}^{t} f\left(s, X_{s}\right) d s+\int_{0}^{t} g\left(s, X_{s}\right) d B_{s}, \forall t \geq 0, \\
j v) & \forall 0 \leq s \leq t, \forall y: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d} \text { continuous : } \\
& \int_{s}^{t}\left\langle y(r)-X_{r}, d K_{r}\right\rangle+\int_{s}^{t} \varphi\left(X_{r}\right) d r \leq \int_{s}^{t} \varphi(y(r)) d r
\end{aligned}\right.
$$

that is

$$
(X .(\omega), K .(\omega))=\mathcal{S P}\left(H \partial \varphi ; x_{0}, M .(\omega)\right), \quad \mathbb{P}-\text { a.s. } \omega \in \Omega,
$$

with

$$
M_{t}=\int_{0}^{t} f\left(s, X_{s}\right) d s+\int_{0}^{t} g\left(s, X_{s}\right) d B_{s}
$$

(II) If there exists a stochastic basis $\left(\Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_{t}\right)_{t \geq 0}$, a \mathbb{R}^{k}-valued \mathcal{F}_{t}-Brownian motion $\left\{B_{t}: t \geq 0\right\}$ and a pair $\left(X ., K\right.$.) : $\Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d}$ of continuous p.m.s.p. such that

$$
(X .(\omega), K .(\omega))=\mathcal{S P}\left(H \partial \varphi ; x_{0}, M .(\omega)\right), \quad \mathbb{P}-\text { a.s. } \omega \in \Omega,
$$

then the collection $\left(\Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_{t}, B_{t}, X_{t}, K_{t}\right)_{t \geq 0}$ is called a weak solution of the SVI (12).

Theorem 2 Let the assumptions $\left(A_{1}, A_{3}, A_{4}, A_{7}\right)$ be satisfied. Then the SDE (12) has at least one weak solution $\left(\Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_{t}, B_{t}, X_{t}, K_{t}\right)_{t \geq 0}$.

Proof. The main ideas of the proof comes from Răşcanu [6].
We extend $f(t, x)=0$ and $g(t, x)=0$ for $t<0$.
Step 1. Approximating problem. Let $0<\varepsilon \leq 1$ and the approximating equation

$$
\left\{\begin{array}{l}
X_{t}^{n}=x_{0}, \quad \text { if } t<0 \tag{14}\\
X_{t}^{n}+\int_{0}^{t} H\left(X_{t}^{n}\right) d K_{t}^{n}=x_{0}+M_{t}^{n}, \quad t \geq 0 \\
d K_{t}^{n} \in \partial \varphi\left(X_{t}^{n}\right) d t
\end{array}\right.
$$

where

$$
\begin{aligned}
M_{t}^{n} & =\int_{0}^{t} f\left(s, \pi_{D}\left(X_{s-1 / n}^{n}\right)\right) d s+n \int_{t-1 / n}^{t}\left[\int_{0}^{s} g\left(r, \pi_{D}\left(X_{r-1 / n}^{n}\right)\right) d B_{r},\right] d s \\
& =\int_{0}^{t} f\left(s, \pi_{D}\left(X_{s-1 / n}^{n}\right)\right) d s+\int_{0}^{1}\left[\int_{0}^{t-\frac{1}{n}+\frac{1}{n} u} g\left(r, \pi_{D}\left(X_{r-1 / n}^{n}\right)\right) d B_{r}\right] d u
\end{aligned}
$$

and

$$
\pi_{D}(x) \text { is the orthogonal projection of } x \text { on } D=\overline{\operatorname{Dom}(\varphi)} \text {. }
$$

Since M^{n} is a C^{1}-continuous progressively measurable stochastic process, then by Corollary 1 the approximating equation (14) has a unique solution (X^{n}, K^{n}) of continuous p.m.s.p.
Step 2. Tightness. Let $T \geq 0$ be arbitrary fixed.

- $\left\{M^{n}: n \geq 1\right\}$ is tight on $C\left([0, T] ; \mathbb{R}^{d}\right)$ since

$$
\sup _{n \geq 1} \mathbb{E}\left[\sup _{0 \leq \theta \leq \varepsilon}\left|M_{t+\theta}^{n}-M_{t}^{n}\right|^{4}\right] \leq \varepsilon \gamma(\varepsilon),
$$

where $\gamma(\varepsilon) \rightarrow 0$,as $\varepsilon \rightarrow 0$.

- $U^{n}=\left(X^{n}, K^{n}, \uparrow K^{n} \uparrow\right), n \in \mathbb{N}^{*}$, is tight on $\mathbb{X}=C\left([0, T] ; \mathbb{R}^{2 d+1}\right)$ since by Proposition 1

$$
\begin{aligned}
\left\|U^{n}\right\|_{T} & \leq C_{T}\left(\left\|M^{n}\right\|_{T}\right) \\
\mathbf{m}_{U^{n}}(\varepsilon) & \leq C_{T}\left(\left\|M^{n}\right\|_{T}\right) \times \sqrt{\varepsilon+\mathbf{m}_{M^{n}}(\varepsilon)}
\end{aligned}
$$

and, then, from Lemma 6 the tightness follows.

- By Prohorov theorem there exists a subsequence (denoted also by n) such that as $n \rightarrow \infty$

$$
\left(X^{n}, K^{n}, \uparrow K^{n} \uparrow, B\right) \xrightarrow{\mathcal{L}}(X, K, V, B) \quad \text { (in law) on } C\left([0, T] ; \mathbb{R}^{2 d+1+k}\right) .
$$

- By Skorohod theorem there exist

$$
\left(\bar{X}^{n}, \bar{K}^{n}, \bar{V}^{n}, \bar{B}^{n}\right),(\bar{X}, \bar{K}, \bar{V}, \bar{B}):\left([0,1] ; \mathcal{B}_{[0,1]}, d t\right) \rightarrow C\left([0, T] ; \mathbb{R}^{2 d+1+k}\right)
$$

random variables such that
(a) $\left(\bar{X}^{n}, \bar{K}^{n}, \bar{V}^{n}, \bar{B}^{n}\right) \stackrel{\mathcal{L}}{=}\left(X^{n}, K^{n}, \uparrow K^{n} \uparrow, B\right)$,
(b) $(\bar{X}, \bar{K}, \bar{V}, \bar{B}) \stackrel{\mathcal{L}}{=}(X, K, V, B)$,
(c) $\quad\left(\bar{X}^{n}, \bar{K}^{n}, \bar{V}^{n}, \bar{B}^{n}\right) \xrightarrow{\mathbb{P}-a . s .}(\bar{X}, \bar{K}, \bar{V}, \bar{B})$.

- By Lemma 12, $\left(\bar{B}^{n},\left\{\mathcal{F}_{t}^{\bar{X}^{n}, \bar{K}^{n}, \bar{V}^{n}, \bar{B}^{n}}\right\}\right), n \geq 1$, and $\left(\bar{B},\left\{\mathcal{F}_{t}^{\bar{X}, \bar{K}, \overline{,}, \bar{B}}\right\}\right)$ are \mathbb{R}^{k}-Brownian motion. Step 3. Passing to the limit.
- Since $\left(X^{n}, K^{n}, \uparrow K^{n} \uparrow, B\right) \xrightarrow{\mathcal{L}}(\bar{X}, \bar{K}, \bar{V}, \bar{B})$, then by Lemma 9 for all $0 \leq s \leq t, \mathbb{P}-$ a.s.

$$
\begin{gathered}
\bar{X}_{0}=x_{0}, \quad \bar{K}_{0}=0 \\
\uparrow \bar{K} \uparrow_{t}-\uparrow \bar{K} \uparrow_{s} \leq \bar{V}_{t}-\bar{V}_{s} \quad \text { and } \quad 0=\bar{V}_{0} \leq \bar{V}_{s} \leq \bar{V}_{s}
\end{gathered}
$$

and from

$$
\int_{s}^{t} \varphi\left(X_{r}^{n}\right) d r \leq \int_{s}^{t} \varphi(y(r)) d r-\int_{s}^{t}\left\langle y(r)-X_{r}^{n}, d K_{r}^{n}\right\rangle \quad \text { a.s. }
$$

it follows

$$
\begin{equation*}
\int_{s}^{t} \varphi\left(\bar{X}_{r}\right) d r \leq \int_{s}^{t} \varphi(y(r)) d r-\int_{s}^{t}\left\langle y(r)-\bar{X}_{r}, d \bar{K}_{r}\right\rangle \tag{15}
\end{equation*}
$$

for all $0 \leq s<t$. Hence $d \bar{K}_{r} \in \partial \varphi\left(\bar{X}_{r}\right)(d r)$

- By Lebesgue theorem and Lemma 12, as $n \rightarrow \infty$

$$
\begin{aligned}
\bar{M}_{\cdot}^{n} & =x_{0}+\int_{0} f\left(s, \pi_{D}\left(\bar{X}_{s-1 / n}^{n}\right)\right) d s+n \int_{-1 / n}\left[\int_{0}^{s} g\left(r, \pi_{D}\left(\bar{X}_{r-1 / n}^{n}\right)\right) d B_{r},\right] d s \\
& \longrightarrow \bar{M} .=x_{0}+\int_{0} f\left(s, \bar{X}_{s}\right) d s+\int_{0} g\left(s, \bar{X}_{s}\right) d \bar{B}_{s}, \quad \text { in } S_{d}^{0}[0, T]
\end{aligned}
$$

- By Lemma 10

$$
\mathcal{L}\left(\bar{X}^{n}, \bar{K}^{n}, \bar{B}^{n}, \bar{M}^{n}\right)=\mathcal{L}\left(X^{n}, K^{n}, B^{n}, M^{n}\right) \quad \text { on } C\left(\mathbb{R}_{+} ; \mathbb{R}^{d+d+k+d}\right)
$$

and therefore, by Lemma 9, from

$$
X_{t}^{n}+\int_{0}^{t} H\left(X_{s}^{n}\right) d K_{s}^{n}-M_{t}^{n}=0, \text { a.s. }
$$

we have

$$
\bar{X}_{t}^{n}+\int_{0}^{t} H\left(\bar{X}_{s}^{n}\right) d \bar{K}_{s}^{n}-\bar{M}_{t}^{n}=0, \text { a.s. }
$$

and letting $n \rightarrow \infty$,

$$
\bar{X}_{t}+\int_{0}^{t} H\left(\bar{X}_{s}\right) d \bar{K}_{s}-\bar{M}_{t}=0, \quad \text { a.s. }
$$

that is $\mathbb{P}-$ a.s.

$$
\bar{X}_{t}+\int_{0}^{t} H\left(\bar{X}_{s}\right) d \bar{K}_{s}=x_{0}+\int_{0}^{t} f\left(s, \bar{X}_{s}\right) d s+\int_{0}^{t} g\left(s, \bar{X}_{s}\right) d \bar{B}_{s}, \forall t \in[0, T] .
$$

Consequently $\left(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}}, \mathcal{F}_{t}^{\bar{B}, \bar{X}}, \bar{X}_{t}, \bar{K}_{t}, \bar{B}_{t}\right)_{t \geq 0}$ is a weak solution of the SDE (12). The proof is complete.
We also add continuity Lipschitz conditions:

$$
\begin{align*}
& \exists \mu \in L_{l o c}^{1}\left(\mathbb{R}_{+}\right), \quad \exists \ell \in L_{l o c}^{2}\left(\mathbb{R}_{+}\right) \text {s.t. } \forall x, y \in \mathbb{R}^{d}, \quad \text { a.e. } t \geq 0, \\
\left(A_{8}\right): \quad(i) & |f(t, x)-f(t, y)| \leq \mu(t)|x-y| \tag{i}\\
(i i) & |g(t, x)-g(t, y)| \leq \ell(t)|x-y|
\end{align*}
$$

Theorem 3 Let the assumptions $\left(A_{1}, A_{3}, A_{4}, A_{7}, A_{8}\right)$ be satisfied. Then then the SDE (12) has a unique strong solution $(X, K) \in S_{d}^{0} \times S_{d}^{0}$.

Proof. It is sufficient to prove the pathwise uniqueness, since by Theorem 1.1 page 149 in Ikeda \&Watanabe [3] the existence of a weak solution + the pathwise uniqueness implies the existence of a strong solution.
Let $(X, K),(\hat{X}, \hat{K}) \in S_{d}^{0} \times S_{d}^{0}$ two solutions. Let

$$
U_{r}=\left(H^{-1}\left(X_{r}\right)+H^{-1}\left(\hat{X}_{r}\right)\right)^{1 / 2}\left(X_{r}-\hat{X}_{r}\right) .
$$

Then

$$
d U_{r}=d \mathcal{K}_{r}+\mathcal{G}_{r} d B_{r},
$$

where

$$
\begin{aligned}
d \mathcal{K}_{r} & =\left(d N_{r}\right) Q_{r}^{-1 / 2} U_{r}+Q_{r}^{1 / 2}\left[H\left(\hat{X}_{r}\right) d \hat{K}_{r}-H\left(X_{r}\right) d K_{r}\right] \\
& +Q_{r}^{1 / 2}\left[f\left(r, X_{r}\right)-f\left(r, \hat{X}_{r}\right)\right] d r+\sum_{j=1}^{k} \beta_{r}^{(j)}\left(g\left(r, X_{r}\right)-g\left(r, \hat{X}_{r}\right)\right) e_{j} \\
\mathcal{G}_{r} & =\Gamma_{r}+Q_{r}^{1 / 2}\left[g\left(r, X_{r}\right)-g\left(r, \hat{X}_{r}\right)\right]
\end{aligned}
$$

where for each $j \in \overline{1, k}, \beta^{(j)}$ is a $\mathbb{R}^{d \times d}$-valued \mathcal{P}-m.s.p. such that $\int_{0}^{T}\left|\beta_{r}^{(j)}\right|^{2} d r<\infty$, a.s. and Γ_{r} is a $\mathbb{R}^{d \times k}$ matrix with the columns $\beta_{r}^{(1)}\left(X_{r}-\hat{X}_{r}\right), \ldots, \beta_{r}^{(k)}\left(X_{r}-\hat{X}_{r}\right)$.
Hence

$$
\left\langle U_{r}, d \mathcal{K}_{r}\right\rangle+\frac{1}{2}\left|\mathcal{G}_{r}\right|^{2} d t \leq\left|U_{r}\right|^{2} d V_{r}
$$

with

$$
d V_{r}=C \times\left(\mu(r) d r+\ell^{2}(r) d r+d \uparrow N \uparrow_{r}+d \uparrow K \downarrow_{r}+d \uparrow \hat{K} \uparrow_{r}+\sum_{j=1}^{k}\left|\beta_{r}^{(j)}\right|^{2} d r\right)
$$

By Lemma 7 we infer

$$
\mathbb{E} \frac{e^{-2 V_{s}}\left|U_{s}\right|^{2}}{1+e^{-2 V_{s}}\left|U_{s}\right|^{2}} \leq \mathbb{E} \frac{e^{-2 V_{0}}\left|U_{0}\right|^{2}}{1+e^{-2 V_{0}}\left|U_{0}\right|^{2}}=0
$$

Consequently $Q_{s}^{1 / 2}\left(X_{s}-\hat{X}_{s}\right)=U_{s}=0, \mathbb{P}-$ a.s., for all $s \geq 0$ and by the continuity of X and \hat{X} we conclude that \mathbb{P} - a.s.,

$$
X_{s}=\hat{X}_{s} \quad \text { for all } s \geq 0
$$

4 Annex

4.1 A priori estimates

Lemma 1 If $(x, k)=\mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right)$ and $(\hat{x}, \hat{k})=\mathcal{S P}\left(H \partial \varphi ; \hat{x}_{0}, \hat{m}\right)$ then for all $0 \leq s \leq t:$

$$
\int_{s}^{t}\langle x(r)-\hat{x}(r), d k(r)-d \hat{k}(r)\rangle \geq 0
$$

Lemma 2 Let the assumptions $\left(A_{1}-A_{4}\right)$ be satisfied. If $(x, k) \in \mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right)$, then for all $0 \leq s \leq$ $t \leq T$

$$
\begin{array}{r}
\mathbf{m}_{x}(t-s) \leq\left[(t-s)+\mathbf{m}_{m}(t-s)+\sqrt{\mathbf{m}_{m}(t-s)\left(\uparrow k \imath_{t}-\uparrow k \uparrow_{s}\right)}\right] \\
\times \exp \left\{C\left[1+(t-s)+\left(\uparrow k \uparrow_{t}-\uparrow k \uparrow_{s}+1\right)\left(\uparrow k \uparrow_{t}-\uparrow k \uparrow_{s}\right)\right]\right\}
\end{array}
$$

where $C=C(b, c, L)>0$ and

$$
\mathbf{m}_{m}(\varepsilon) \stackrel{\text { def }}{=} \sup \{|m(u)-g(v)|: u, v \in[0, T],|u-v| \leq \varepsilon\}
$$

Lemma 3 Let the assumptions $\left(A_{1}-A_{4}\right)$ be satisfied. If $(x, k) \in \mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right), 0 \leq s \leq t \leq T$ and

$$
\sup _{r \in[s, t]}|x(r)-x(s)| \leq 2 \delta_{0}=\frac{\rho_{0}}{2 b c} \wedge \rho_{0} \quad \text { with } \rho_{0}=\frac{r_{0}}{2\left(1+r_{0}+h_{0}\right)},
$$

then

$$
\mathfrak{\imath k \uparrow _ { t } - \uparrow k \uparrow _ { s } \leq \frac { 1 } { \rho _ { 0 } } | k (t) - k (s) | + \frac { 3 L } { \rho _ { 0 } } (t - s) ; ~ ; ~}
$$

and

$$
|x(t)-x(s)|+\uparrow k \bigcap_{t}-\uparrow k \imath_{s} \leq \sqrt{t-s+\mathbf{m}_{m}(t-s)} \times e^{C_{T}\left(1+\|m\|_{T}^{2}\right)}
$$

where $C_{T}=C\left(b, c, r_{0}, h_{0}, L, T\right)>0$.

Lemma 4 Let the assumptions $\left(A_{1}-A_{4}\right)$ be satisfied. Let $(x, k) \in \mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right), 0 \leq s \leq t \leq T$ and $x(r) \in D_{\delta_{0}}$ for all $r \in[s, t]$. Then

$$
\uparrow k \uparrow_{t}-\uparrow k \uparrow_{s} \leq L\left(1+\frac{2}{\delta_{0}}\right)(t-s) .
$$

and

$$
\mathbf{m}_{x}(t-s) \leq C_{T} \times\left[(t-s)+\mathbf{m}_{m}(t-s)\right]
$$

where $C=C\left(b, c, r_{0}, h_{0}, L, T\right)>0$.

Lemma 5 Let the assumptions $\left(A_{1}-A_{4}\right)$ be satisfied and $(x, k) \in \mathcal{S P}\left(H \partial \varphi ; x_{0}, m\right)$. Then there exists a positive constant $C_{T}\left(\|m\|_{T}\right)=C\left(x_{0}, b, c, r_{0}, h_{0}, L, T,\|m\|_{T}\right)$, increasing function with respect to $\|m\|_{T}$, such that for all $0 \leq s \leq t \leq T$:
(a) $\|x\|_{T}+\uparrow k \uparrow_{T} \leq C_{T}\left(\|m\|_{T}\right)$,
(b) $\quad|x(t)-x(s)|+\uparrow k \uparrow_{t}-\uparrow k \imath_{s} \leq C_{T}\left(\|m\|_{T}\right) \times \sqrt{t-s+\mathbf{m}_{m}(t-s)}$.

4.2 Yosida's regularization of a convex function

By $\nabla \varphi_{\varepsilon}$ is denoted the gradient of the Yosida's regularization φ_{ε} of the function φ,

$$
\begin{aligned}
\varphi_{\varepsilon}(x) & =\inf \left\{\frac{1}{2 \varepsilon}|z-x|^{2}+\varphi(z): z \in \mathbb{R}^{d}\right\} \\
& =\frac{1}{2 \varepsilon}\left|x-J_{\varepsilon} x\right|^{2}+\varphi\left(J_{\varepsilon} x\right)
\end{aligned}
$$

where $J_{\varepsilon} x=x-\varepsilon \nabla \varphi_{\varepsilon}(x)$. The function $\varphi_{\varepsilon}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a convex and differentiable. Then for all
$x, y \in \mathbb{R}^{d}, \varepsilon>0:$
a) $\quad \nabla \varphi_{\varepsilon}(x)=\partial \varphi_{\varepsilon}(x) \in \partial \varphi\left(J_{\varepsilon} x\right)$, and $\varphi\left(J_{\varepsilon} x\right) \leq \varphi_{\varepsilon}(x) \leq \varphi(x)$,
b) $\quad\left|\nabla \varphi_{\varepsilon}(x)-\nabla \varphi_{\varepsilon}(y)\right| \leq \frac{1}{\varepsilon}|x-y|$,
c) $\left\langle\nabla \varphi_{\varepsilon}(x)-\nabla \varphi_{\varepsilon}(y), x-y\right\rangle \geq 0$,
d) $\left\langle\nabla \varphi_{\varepsilon}(x)-\nabla \varphi_{\delta}(y), x-y\right\rangle \geq-(\varepsilon+\delta)\left\langle\nabla \varphi_{\varepsilon}(x), \nabla \varphi_{\delta}(y)\right\rangle$

In the case $0=\varphi(0) \leq \varphi(x)$ for all $x \in \mathbb{R}^{d}$, then we moreover have
(a) $\quad 0=\varphi_{\varepsilon}(0) \leq \varphi_{\varepsilon}(x) \quad$ and $\quad J_{\varepsilon}(0)=\nabla \varphi_{\varepsilon}(0)=0$,
(b) $\quad \frac{\varepsilon}{2}\left|\nabla \varphi_{\varepsilon}(x)\right|^{2} \leq \varphi_{\varepsilon}(x) \leq\left\langle\nabla \varphi_{\varepsilon}(x), x\right\rangle, \quad \forall x \in \mathbb{R}^{d}$.

4.3 Inequalities

Lemma 6 Let $x \in B V_{l o c}\left(\left[0, \infty\left[; \mathbb{R}^{d}\right)\right.\right.$ and $V \in B V_{l o c}([0, \infty[; \mathbb{R})$ be continuous functions. Let R, N : $[0, \infty[\rightarrow[0, \infty[$ continuous increasing functions. If

$$
\langle x(t), d x(t)\rangle \leq d R(t)+|x(t)| d N(t)+|x(t)|^{2} d V(t)
$$

as signed measures on $[0, \infty[$, then for all $0 \leq t \leq T$:

$$
\left\|e^{-V} x\right\|_{[t, T]} \leq 2\left[\left|e^{-V(t)} x(t)\right|+\left(\int_{t}^{T} e^{-2 V(s)} d R(s)\right)^{1 / 2}+\int_{t}^{T} e^{-V(s)} d N(s)\right]
$$

If $R=0$ then for all $0 \leq t \leq s$:

$$
|x(s)| \leq e^{V(s)-V(t)}|x(t)|+\int_{t}^{s} e^{V(s)-V(r)} d N(r)
$$

We give from Pardoux\&Răşcanu [5] an estimate on the local semimartingale $X \in S_{d}^{0}$ of the form

$$
X_{t}=X_{0}+K_{t}+\int_{0}^{t} G_{s} d B_{s}, \quad t \geq 0, \quad \mathbb{P}-a . s .
$$

where $G \in \Lambda_{d \times k}^{0}$ and $K \in S_{d}^{0} ; K . \in B V_{l o c}\left(\left[0, \infty\left[; \mathbb{R}^{d}\right), K_{0}=0, \mathbb{P}-\right.\right.$ a.s.;

Lemma 7 Let $X \in S_{d}^{0}$ be a local semimartingale of the form (??). Assume there exist $p \geq 1$ and V a $\mathcal{P}-$ m.b-v.c.s.p., $V_{0}=0$, such that as signed measures on $[0, \infty[$

$$
\left\langle X_{t}, d K_{t}\right\rangle+\frac{1 \vee(p-1)}{2}\left|G_{t}\right|^{2} d t \leq\left|X_{t}\right|^{2} d V_{t}, \quad \mathbb{P}-\text { a.s. }
$$

then for all $\delta \geq 0,0 \leq t \leq s$:

$$
\mathbb{E}^{\mathcal{F}_{t}} \frac{\left|e^{-V_{s}} X_{s}\right|^{p}}{\left(1+\delta\left|e^{-V_{s}} X_{s}\right|^{2}\right)^{p / 2}} \leq \frac{\left|e^{-V_{t}} X_{t}\right|^{p}}{\left(1+\delta\left|e^{-V_{t}} X_{t}\right|^{2}\right)^{p / 2}}, \mathbb{P}-\text { a.s.. }
$$

4.4 Tightness

Lemma 8 Let $\left\{X_{t}^{n}: t \geq 0\right\}, n \in \mathbb{N}^{*}$, be a family of \mathbb{R}^{d}-valued continuous stochastic processes defined on probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that for every $T \geq 0$, there exist $\alpha=\alpha_{T}>0$ and $b=b_{T} \in$ $C\left(\mathbb{R}_{+}\right)$with $b(0)=0$, (both independent of n) such that

$$
\begin{array}{ll}
(j) & \lim _{N \rightarrow \infty}\left[\sup _{n \in \mathbb{N}^{*}} \mathbb{P}\left(\left\{\left|X_{0}^{n}\right| \geq N\right\}\right)\right]=0, \\
(j j) & \mathbb{E}\left[1 \wedge \sup _{0 \leq s \leq \varepsilon}\left|X_{t+s}^{n}-X_{t}^{n}\right|^{\alpha}\right] \leq \varepsilon \cdot b(\varepsilon), \forall \varepsilon>0, n \geq 1, t \in[0, T],
\end{array}
$$

Then $\left\{X^{n}: n \in \mathbb{N}^{*}\right\}$ is tight in $C\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$.

Lemma $\left.\left.9 \varphi: \mathbb{R}^{d} \rightarrow\right]-\infty,+\infty\right]$ is a l.s.c. function. Let $(X, K, V),\left(X^{n}, K^{n}, V^{n}\right), n \in \mathbb{N}$, be $C\left([0, T] ; \mathbb{R}^{d}\right)^{2} \times$
$C([0, T] ; \mathbb{R})$ - valued random variables, such that

$$
\left(X^{n}, K^{n}, V^{n}\right) \xrightarrow[n \rightarrow \infty]{l a w}(X, K, V)
$$

and for all $0 \leq s<t$, and $n \in \mathbb{N}^{*}$,

$$
\begin{aligned}
\downarrow K^{n} \uparrow_{t}-\uparrow K^{n} \uparrow_{s} & \leq V_{t}^{n}-V_{s}^{n} \quad \text { a.s. } \\
\int_{s}^{t} \varphi\left(X_{r}^{n}\right) d r & \leq \int_{s}^{t}\left\langle X_{r}^{n}, d K_{r}^{n}\right\rangle, \quad \text { a.s. }
\end{aligned}
$$

then $\uparrow K \uparrow_{t}-\uparrow K \uparrow_{s} \leq V_{t}-V_{s}$ a.s. and

$$
\int_{s}^{t} \varphi\left(X_{r}\right) d r \leq \int_{s}^{t}\left\langle X_{r}, d K_{r}\right\rangle, \text { a.s.. }
$$

Lemma 10 Let $X, \hat{X} \in S_{d}^{0}[0, T]$ and B, \hat{B} be two \mathbb{R}^{k}-Brownian motions and $g: \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times k}$ be a function satisfying

$$
\begin{aligned}
& g(\cdot, y) \text { is measurable } \forall y \in \mathbb{R}^{d}, \quad \text { and } \\
& y \mapsto g(t, y) \text { is continuous } d t-\text { a.e.. }
\end{aligned}
$$

If

$$
\mathcal{L}(X, B)=\mathcal{L}(\hat{X}, \hat{B}), \text { on } C\left(\mathbb{R}_{+}, \mathbb{R}^{d+k}\right)
$$

then

$$
\mathcal{L}\left(X, B, \int_{0} g\left(s, X_{s}\right) d B_{s}\right)=\mathcal{L}\left(\hat{X}, \hat{B}, \int_{0} g\left(s, \hat{X}_{s}\right) d \hat{B}_{s}\right), \text { on } C\left(\mathbb{R}_{+}, \mathbb{R}^{d+k+d}\right) \text {. }
$$

Lemma 11 Let $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a continuous function satisfying $g(0)=0$ and $G: C\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{+}$ be a mapping which is bounded on compact subsets of $C\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$. Let $X^{n}, Y^{n}, n \in \mathbb{N}^{*}$, be random variables with values in $C\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$. If $\left\{Y^{n}: n \in \mathbb{N}^{*}\right\}$ is tight and for all $n \in \mathbb{N}^{*}$
(i) $\left|X_{0}^{n}\right| \leq G\left(Y^{n}\right)$, a.s.
(ii) $\quad \mathbf{m}_{X^{n}}(\varepsilon ;[0, T]) \leq G\left(Y^{n}\right) g\left(\mathbf{m}_{Y^{n}}(\varepsilon ;[0, T])\right)$, a.s., $\forall \varepsilon, T>0$,
then $\left\{X^{n}: n \in \mathbb{N}^{*}\right\}$ is tight.

Lemma 12 Let $B, B^{n}, \bar{B}^{n}: \Omega \times\left[0, \infty\left[\rightarrow \mathbb{R}^{k}\right.\right.$ and $X, X^{n}, \bar{X}^{n}: \Omega \times\left[0, \infty\left[\rightarrow \mathbb{R}^{d \times k}\right.\right.$, be c.s.p. such that

- B^{n} is $\mathcal{F}_{t}^{B^{n}, X^{n}}$-Brownian motion $\forall n \geq 1$;
- $\mathcal{L}\left(X^{n}, B^{n}\right)=\mathcal{L}\left(\bar{X}^{n}, \bar{B}^{n}\right)$ on $C\left(\mathbb{R}_{+}, \mathbb{R}^{d \times k} \times \mathbb{R}^{k}\right)$ for all $n \geq 1$;
- $\int_{0}^{T}\left|\bar{X}_{s}^{n}-\bar{X}_{s}\right|^{2} d s+\sup _{t \in[0, T]}\left|\bar{B}_{t}^{n}-\bar{B}_{t}\right|$ in probability, as $n \rightarrow \infty$, for all $T>0$.

Then $\left(\bar{B}^{n},\left\{\mathcal{F}_{t}^{\bar{B}^{n}, \bar{X}^{n}}\right\}\right), n \geq 1$, and $\left(\bar{B},\left\{\mathcal{F}_{t}^{\bar{B}, \bar{X}}\right\}\right)$ are Brownian motions and as $n \rightarrow \infty$

$$
\sup _{t \in[0, T]}\left|\int_{0}^{t} \bar{X}_{s}^{n} d \bar{B}_{s}^{n} \longrightarrow \int_{0}^{t} \bar{X}_{s} d \bar{B}_{s}\right| \longrightarrow 0 \quad \text { in probability. }
$$

[1] Barbu, Viorel \& Rǎşcanu, Aurel : Parabolic variational inequalities with singular inputs, Differential Integral Equations 10 (1997), no. 1, 67-83.
[2] Dupuis, Paul \& Ishii, Hitoshi : SDEs with oblique reflection on nonsmooth domains, Ann. Probab. 21 (1993), no. 1, 554-580.
[3] Ikeda, Nobuyuki ; Watanabe, Shinzo : Stochastic differential equations and diffusion processes, North-Holland/Kodansha, 1981.
[4] Lions, Pierre-Louis \& Sznitman, Alain-Sol : Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), no. 4, 511-537.
[5] Pardoux, Etienne \& Răşcanu, Aurel : SDEs, BSDEs and PDEs (book, submitted)
[6] Răşcanu, Aurel : Stochastic variational inequalities in non-convex domains, (submitted)

Thank you for your attention!

