On stochastic 2D Navier Stokes equations and hydrodynamical models

Annie Millet (amillet@univ-paris1.fr*) SAMM, Université Paris 1

Workshop Stochastic control and finance Roscoff, March 19, 2010

Outline

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Outline

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Outline

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Introduction The Navier Stokes equations

D bounded domain of \mathbb{R}^2 , $x = (x_1, x_2)$, $u(x, t) = (u^1(x, t), u^2(x, t))$ fluid velocity, p(x, t) pressure divergence: div $u = \sum_{i=1,2} \partial_i u_i$ Laplace operator: $\Delta u = (\sum_{i=1,2} \partial_i^2 u^k, k = 1, 2)$ (Stokes operator if one adds the incompressibility condition div u = 0 on *D*) Find a pair (u, p) (*u* velocity, *p* pressure) such that

 $\partial_t u - \nu \Delta u + u \cdot \nabla u + \nabla p = f$, div u = 0 in D, u = 0 on ∂D

 $\nu > 0$ viscosity, *n* outwards normal to ∂D and f(x, t) external force

 $H = \{f \in [L^2(D)]^2 : \operatorname{div} f = 0 \text{ in } D \text{ and } f \cdot n = 0 \text{ on } \partial D\}$ $V \equiv [H_0^1(D)]^2 \cap H, \quad V \subset H, (H, ||) \text{ and } (V, |||) \text{ Hilbert spaces}$ Project on divergence free fields (integration by parts: if, div u = 0then $(\nabla p, u) = 0$ if div u = 0 Introduction The operators A and B

 $A: V \rightarrow V'$ et $B: V \times V \rightarrow V'$ defined by:

$$\langle \mathbf{A}\mathbf{u}, \mathbf{v} \rangle = \nu \sum_{j=1,2} \int_D \nabla u^j \cdot \nabla v^j \, dx$$

$$\langle B(u,v),w\rangle = \int_D [u \cdot \nabla v] w \, dx \equiv \sum_{i,j=1,2} \int_D u^j \partial_j v^i w^j \, dx, \, \forall u,v,w \in V$$

Properties of A and B

 $A = -\nu\Delta$ non-negative, unbounded, self-adjoint linear operator on H, $B: V \times V \rightarrow V'$ bilinear continuous $\forall u_1, u_2, u_3 \in V$

$$\langle B(u_1, u_2), u_3 \rangle = - \langle B(u_1, u_3), u_2 \rangle$$

(Proof: $\sum_{i,j} \int_D u^j \partial_j v^i w^i dx = -\sum_{i,j} \int_D v^i [w^i \partial_j u^j + u^j \partial_j w^i] dx$ for fixed *i*, $\sum_j \partial_j u^j = \operatorname{div} u = 0$)

Introduction Interpolation space and B

• $V \subset \mathcal{L}^4(D) \subset H$ and for $u \in V$, $||u||_{\mathcal{L}^4(D)}^2 \leq |u| ||u||$

(Proof: for real-valued functions $f, g ||fg||_1 \le \frac{1}{4} ||\partial_1 f||_1 ||\partial_2 g||_1$ with f^2 and g^2 , $||f^2 g^2||_1 \le ||f \partial_1 f||_1 ||g \partial_2 g||_1$ Schwarz's inequality : $||f^2 g^2||_1 \le ||f||_2 ||\nabla f||_2 ||g||_2 ||\nabla g||_2$; then f = g)

• For $\eta > 0$ there exists $C_{\eta} > 0$ such that

 $|\langle B(u_1, u_1), u_3 \rangle| \le \eta ||u_1||^2 + C_\eta ||u_1||^2 ||u_3||^4_{\mathcal{L}^4(D)}$

(Proof: Hölder's inequality

 $\begin{aligned} |\int_{D} u_{1} \nabla u_{1} u_{3}| &\leq ||u_{1}||_{\mathcal{L}^{4}(D)} |\nabla u_{1}|| ||u_{3}||_{\mathcal{L}^{4}(D)} \leq ||u_{1}||^{\frac{1}{2}} ||u_{1}||^{\frac{1}{2}} ||u_{3}||_{\mathcal{L}^{4}(D)} \\ \text{Then Young's inequality with exponents 4/3 and 4 yields} \\ |\langle B(u_{1}, u_{1}), u_{3} \rangle| &\leq \frac{4\alpha}{3} ||u_{1}||^{2} + \frac{1}{4\alpha} ||u_{1}|^{2} ||u_{3}||_{\mathcal{L}^{4}(D)}^{4}) \\ \text{If } B(u_{1}) = B(u, u) \text{ then} \end{aligned}$

If B(u) := B(u, u) then

 $|\langle B(u_1) - B(u_2), u_1 - u_2 \rangle| \le \eta ||u_1 - u_2||^2 + C_{\eta} ||u_1 - u_2||^2 ||u_2||_{\mathcal{L}^4(D)}^4$

• $V \subset \mathcal{L}^4(D) \subset H$ and for $u \in V$, $||u||_{\mathcal{L}^4(D)}^2 \leq |u| ||u||$

(Proof: for real-valued functions $f, g ||fg||_1 \le \frac{1}{4} ||\partial_1 f||_1 ||\partial_2 g||_1$ with f^2 and g^2 , $||f^2 g^2||_1 \le ||f \partial_1 f||_1 ||g \partial_2 g||_1$ Schwarz's inequality : $||f^2 g^2||_1 \le ||f||_2 ||\nabla f||_2 ||g||_2 ||\nabla g||_2$; then f = g)

• For $\eta > 0$ there exists $C_{\eta} > 0$ such that

 $|\langle B(u_1, u_1), u_3 \rangle| \leq \eta ||u_1||^2 + C_{\eta} ||u_1||^2 ||u_3||^4_{\mathcal{L}^4(D)}$

(Proof: Hölder's inequality

$$\begin{split} &|\int_{D} u_{1} \nabla u_{1} u_{3}| \leq \|u_{1}\|_{\mathcal{L}^{4}(D)} |\nabla u_{1}| \|u_{3}\|_{\mathcal{L}^{4}(D)} \leq \|u_{1}\|^{\frac{3}{2}} |u_{1}|^{\frac{1}{2}} \|u_{3}\|_{\mathcal{L}^{4}(D)} \\ &\text{Then Young's inequality with exponents 4/3 and 4 yields} \\ &|\langle B(u_{1}, u_{1}), u_{3} \rangle| \leq \frac{4\alpha}{3} \|u_{1}\|^{2} + \frac{1}{4\alpha} |u_{1}|^{2} \|u_{3}\|_{\mathcal{L}^{4}(D)}^{4} \end{split}$$
 $\bullet \quad \text{If } B(u) := B(u, u) \text{ then} \\ &|\langle B(u_{1}) - B(u_{2}), u_{1} - u_{2} \rangle| \leq \eta \|u_{1} - u_{2}\|^{2} + C_{\eta} |u_{1} - u_{2}|^{2} \|u_{2}\|_{\mathcal{L}^{4}(D)}^{4} \end{split}$

• $V \subset \mathcal{L}^4(D) \subset H$ and for $u \in V$, $||u||_{\mathcal{L}^4(D)}^2 \leq |u| ||u||$

(Proof: for real-valued functions $f, g ||fg||_1 \le \frac{1}{4} ||\partial_1 f||_1 ||\partial_2 g||_1$ with f^2 and g^2 , $||f^2 g^2||_1 \le ||f \partial_1 f||_1 ||g \partial_2 g||_1$ Schwarz's inequality : $||f^2 g^2||_1 \le ||f||_2 ||\nabla f||_2 ||g||_2 ||\nabla g||_2$; then f = g)

• For $\eta > 0$ there exists $C_{\eta} > 0$ such that

 $|\langle B(u_1, u_1), u_3 \rangle| \le \eta ||u_1||^2 + C_\eta ||u_1|^2 ||u_3||_{\mathcal{L}^4(D)}^4$

(Proof: Hölder's inequality

$$\begin{split} &|\int_{D} u_{1} \nabla u_{1} u_{3}| \leq \|u_{1}\|_{\mathcal{L}^{4}(D)} |\nabla u_{1}| \|u_{3}\|_{\mathcal{L}^{4}(D)} \leq \|u_{1}\|_{2}^{\frac{3}{2}} |u_{1}|^{\frac{1}{2}} \|u_{3}\|_{\mathcal{L}^{4}(D)} \\ &\text{Then Young's inequality with exponents 4/3 and 4 yields} \\ &|\langle B(u_{1}, u_{1}), u_{3} \rangle| \leq \frac{4\alpha}{3} \|u_{1}\|^{2} + \frac{1}{4\alpha} |u_{1}|^{2} \|u_{3}\|_{\mathcal{L}^{4}(D)}^{4}) \\ & \text{If } B(u) := B(u, u) \text{ then} \\ &|\langle B(u_{1}) - B(u_{2}), u_{1} - u_{2} \rangle| \leq \eta \|u_{1} - u_{2}\|^{2} + C_{\eta} |u_{1} - u_{2}|^{2} \|u_{2}\|_{\mathcal{L}^{4}(D)}^{4} \\ & \text{Then Young's inequality with exponents 4/3 and 4 yields} \end{split}$$

Introduction General framework

Project on divergence free functions, suppress the pressure div $\nabla p = 0$ add a Coriolis term (replace the forcing term f by f - Ru where $R(u^1, u^2) = c_0(-u^2, u^1)$, c_0 constant. $\partial_t u - \nu \Delta u + u \cdot \nabla u + Ru = f$ **Abstract setting** (H, |.|) Hilbert, R linear continuous operator on HA non negative, self-adjoint operator (unbounded) operator on H $V = Dom(A^{\frac{1}{2}})$; for $v \in V$ set $||v|| = |A^{\frac{1}{2}}v|$ \mathcal{H} Banach space such that $V \subset \mathcal{H} \subset H$ and $||v||_{\mathcal{H}}^2 \leq K_0 |v| ||v||$ $B : V \times V \to V'$ bilinear continuous such that $\forall u_1, u_2, u_3 \in V$

$$\langle B(u_1, u_2), u_3 \rangle = - \langle B(u_1, u_3), u_2 \rangle$$

for $\eta > 0$ there exists $C_{\eta} > 0$ such that

 $|\langle B(u_1, u_1), u_3 \rangle| \le \eta ||u_1||^2 + C_\eta ||u_1|^2 ||u_3||_{\mathcal{H}}^4$

$$d_t u(t) + \left[Au(t) + B(u(t)) + Ru(t)\right] dt = \sigma(u(t)) dW_t, \ u(0) \in H$$

 $D = (0, I) \times (0, 1), x = (x_1, x_2)$ spatial variable p pressure, $\phi = (u, \theta, \beta)$ satisfy the coupled non-linear equations $u \in \mathbb{R}^2$ velocity field, $\theta \in \mathbb{R}$ temperature field, $\beta \in \mathbb{R}^2$ magnetic field ν, κ, η and S physical constants,

$$\begin{split} \frac{\partial}{\partial t} u + u \cdot \nabla u - \nu \Delta u + \nabla p \\ &+ \nabla \left(\frac{1}{2}|\beta|^2\right) - S\beta \cdot \nabla \beta - \theta e_2 = \sigma_1(t,\phi) \ dW^1(t) \ , \\ &\frac{\partial}{\partial t} \theta + u \cdot \nabla \theta - \kappa \Delta \theta \ - u_2 = \sigma_2(t,\phi) \ dW^2(t) \ , \\ &\frac{\partial}{\partial t} \beta - \eta \Delta \beta + u \cdot \nabla \beta - \beta \cdot \nabla u = \sigma_3(t,\phi) \ dW^3(t) \ , \end{split}$$

where Δ is the Laplace operator (Stokes operator after Leray projection)

回 と く ヨ と く ヨ と …

Introduction Examples of evolution equations - Conditions

$$div(u) = div(\beta) = 0$$
$$u = \theta = \beta_2 = \frac{\partial}{\partial x_2} \beta_1 = 0 \quad \text{on } x_2 \in \{0, 1\}$$
$$u, p, \theta, \beta, u_{x_1}, \theta_{x_1}, \beta_{x_1} \text{ period } I \text{ in } x_1$$

 $H = L^{2}(D)^{5} \text{ with divergence, periodicity and boundary conditions}$ $V = H^{1}(D)^{5} \text{ with the same conditions}$ $V \hookrightarrow H = H' \hookrightarrow V' \quad \mathcal{H} = L^{4}(D)^{5} \cap H \text{ and } ||u||_{\mathcal{H}}^{2} \leq K_{0}|u| ||u||$ $B(\phi) = (B_{1}(u, u) - SB_{1}(\beta, \beta), B_{2}(u, \theta), B_{1}(u, \beta) - B_{1}(\beta, u))$ $\langle B_{1}(u, v), w \rangle = \int_{D} [u \cdot \nabla v] w dx := \sum_{i,j=1,2} \int_{D} u_{i} \partial_{i} v_{j} w_{j} dx,$ $\langle B_{2}(u, \theta), \eta \rangle = \int_{D} [u \cdot \nabla \theta] \eta dx := \sum_{i=1,2} \int_{D} u_{i} \partial_{i} \theta \eta dx.$ Studied by A. Cheskidov, D. Holm, E. Olson & E. Titi $D \subset \mathbb{R}^3$ bounded domain, A Stokes operator

$$\partial_t u - \nu \Delta u + \mathbf{v} \cdot \nabla u + \nabla p = f,$$

(1 - \alpha \Delta)\mathbf{v} = u, div \mathbf{u} = 0, div \mathbf{v} = 0 in D;
\mathbf{v} = u = 0 on \delta D.

 $\begin{aligned} G_{\alpha} &= (1 - \alpha \Delta)^{-1} \text{ Green operator} \\ H &= \{ u \in [L^2(D)]^3 : \operatorname{div} u = 0 \text{ in } D \text{ and } u \cdot n = 0 \text{ on } \partial D \} \\ \text{As } H^{1/2}(D) \subset L^3(D), \text{ set } \mathcal{H} &= [L^3(D)]^3 \cap H. \text{ Since } H^1(D) \subset L^6(D) \\ \text{and } A^{\frac{1}{2}}G_{\alpha} \text{ is bounded on } H, \text{ previous conditions fulfilled with} \\ B_{\alpha}(u_1, u_2) &:= B(G_{\alpha}u_1, u_2) \end{aligned}$

・回 ・ ・ ヨ ・ ・ ヨ ・

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Covariance operator Q symmetric non-negative on H, $Trace(Q) < +\infty$ $H_0 = Q^{\frac{1}{2}}H$ Hilbert space $(\phi, \psi)_0 = (Q^{-\frac{1}{2}}\phi, Q^{-\frac{1}{2}}\psi), \forall \phi, \psi \in H_0$, embedding $i : H_0 \to H$ is Hilbert-Schmidt (hence compact), and $i i^* = Q$ W(t) H-valued Wiener process with covariance operator Q. W is Gaussian, has independent time increments, for $s, t \ge 0$, $f, g \in H$,

 $\mathbb{E}(W(s), f) = 0$ and $\mathbb{E}(W(s), f)(W(t), g) = (s \wedge t)(Qf, g).$

W has the representation

$$\mathcal{W}(t) = \lim_{n \to \infty} W_n(t)$$
 in $L^2(\Omega; H)$ with $W_n(t) = \sum_{j=1}^n q_j^{1/2} \beta_j(t) e_j$,

where β_j are independent (real) Wiener processes, $\{e_j\}$ is ONB in H of eigen-elements of Q, with $Qe_j = q_je_j$.

 $L_Q = \{S \in L(H_0, H) : SQ^{\frac{1}{2}} \text{ Hilbert Schmidt from } H \text{ to } H\}, \\ \|S\|_{L_Q}^2 = Trace(S Q S^*), \text{ where } S^* \text{ is the adjoint of } S. \\ \text{For any BON } \{\psi_k\} \text{ in } H, \text{ the } L_Q\text{-norm can be written} \end{cases}$

$$|S|_{L_Q}^2 = tr([SQ^{1/2}][SQ^{1/2}]^*) = \sum_{k \ge 1} |SQ^{1/2}\psi_k|^2 = \sum_{k \ge 1} |[SQ^{1/2}]^*\psi_k|^2$$

 $\sigma \in C([0, T] \times V) \to L_Q$ There exist constants K_i and L_i such that for $t \in [0, T]$, $\phi, \psi \in V$ $|\sigma(t, \phi)|_{L_Q}^2 \leq K_0 + K_1 |\phi|^2 + K_2 ||\phi||^2$, $|\sigma(t, \phi) - \sigma(t, \psi)|_{L_Q}^2 \leq L_1 |\phi - \psi|^2 + L_2 ||\phi - \psi||^2$. (in the above examples, σ may depend on the gradient of the solution)

・ 回 と ・ ヨ と ・ ヨ と

With these notations, the above models (Bénard $\phi = (u, \theta, \beta)$, 2D Navier Stokes, "shell models" or 3D Leray Navier Stokes $\phi = u$) are written:

 $d\phi + [A\phi + B(\phi) + R\phi]dt = \sigma(\phi)dW(t), \quad \phi(0) = \xi \in H$ (1)

 $\xi \mathcal{F}_0$ -measurable, independent of W. Solution means: (ϕ_t) adapted for (\mathcal{F}_t) and for $\psi \in D(A)$,

$$egin{aligned} &(\phi(t),\psi)-(\phi(0),\psi)+\int_0^t \left[(\phi(s),A\psi)+\langle B(\phi(s)),\psi
ight>\ &+(R\phi(s),\psi)
ight]ds=\int_0^t \left(\sigma(\phi(s))\,dW(s)\,,\,\psi
ight). \end{aligned}$$

Weak solution for analysts and strong solution for probabilists

★ E ► ★ E ► E

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Well posedeness and apriori bounds The result

 $\sigma(u)$ estimated in terms of u in V with constants K_2 and L_2

Theorem

Let $E|\xi|^4 < +\infty$. Then for K_2 small enough and $L_2 < 2$, there exists $C = C(K_i, L_i, T)$ such that the evolution equation has a unique solution $\phi \in X = C([0, T], H) \cap L^2(0, T; V)$. Furthermore,

$$E\Big(\sup_{0 \le t \le T} |\phi(t)|^4 + \int_0^T \|\phi(t)\|^2 dt + \int_0^T \|\phi(t)\|_{\mathcal{H}}^4 dt\Big) \le C (1 + E|\xi|^4)$$

- Ferrario 1997 (Boussinesq equation) $\phi = (u, \theta)$, Barbu-Da Prato 2007 (MHD equation) $\phi = (u, \beta)$ for additive noise
- Sritharan-Sundar (Navier Stokes) $\phi = u$, Duan-M (Boussinesq) $\phi = (u, \theta)$, Chueshov-M., Manna-Shritharan-Sundar (shell models)

|▲□ ▶ ▲ 目 ▶ ▲ 目 ● の Q @

The well posedeness results General stochastic controlled equations

Set of controls

$$\mathcal{S}_{M} = \left\{ h \in L^{2}([0, T], H_{0}) : \int_{0}^{T} |h(s)|_{0}^{2} ds \leq M \right\}$$
$$\mathcal{A}_{M} = \left\{ h \quad (\mathcal{F}_{t}) \text{ predictable } : h(\omega) \in \mathcal{S}_{M} \text{ a.s.} \right\}$$

First idea: shift W a random element of \mathcal{A}_M and use Girsanov Need more general stochastic controls $\tilde{\sigma} \in C([0, T] \times V; L(H_0, H))$ there exist constants $\tilde{K}_{\mathcal{H}}$, \tilde{K}_i , and \tilde{L}_j , for i = 0, 1 and j = 1, 2 such that for $u, v \in V$, $t \in [0, T]$,

$$ert ilde{\sigma}(t,u)ert_{L(H_0,H)}^2 \leq ilde{\kappa}_0 + ilde{\kappa}_1ert uert^2 + ilde{\kappa}_{\mathcal{H}} ert uert^2_{\mathcal{H}},$$

 $ert ilde{\sigma}(t,u) - ilde{\sigma}(t,v)ert_{L(H_0,H)}^2 \leq ilde{L}_1ert u - vert^2 + ilde{L}_2ert u - vert^2.$

 $ilde{R}: [0, T] imes H \mapsto H$ is continuous global growth and Lipschitz

Recall that K_2 and L_2 are the growth and Lipshitz constants in front of the V norm.

Theorem

(Chueshov-M.) Suppose that either $\tilde{\sigma} = \sigma$, or that $\tilde{\sigma}$ satisfies the above conditions Let M > 0, h such that $\int_0^T |h(s)|_0^2 ds \leq M$ a.s., suppose that $K_2 \leq \kappa_2$ and $L_2 \leq \lambda_2$ for small κ_2 , λ_2 . Let $u_h(0) = \xi$ be in \mathcal{F}_0 s.t. $E|\xi|^4 < +\infty$.

$$du_h + [Au_h + B(u_h, u_h) + \tilde{R}u_h]dt = \sigma(u_h)dW(t) + \tilde{\sigma}(u_h)h\,dt$$

has a unique solution in $X = C([0, T], H) \cap L^2(0, T; V)$ s.t.

$$\mathbb{E}\Big(\sup_{0\leq t\leq \mathcal{T}}|u_h(t)|^4+\int_0^{\mathcal{T}}\|u_h(t)\|^2\,dt\Big)\leq C(M,\kappa_2,\lambda_2)\,\big(1+E|\xi|^4\big).$$

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Proof of the well posedeness and apriori estimates Galerkin approximations

 $\begin{aligned} F:[0,T]\times V\to V' \text{ be defined by}\\ F(t,u)&=-Au-B(u,u)-\tilde{R}(t,u), \quad \forall t\in[0,T], \; \forall u\in V.\\ \langle F(u)-F(v),\;u-v\rangle &\leq -(1-\eta)\|u-v\|^2+(R_1+C_\eta\|v\|_{\mathcal{H}}^4)\;|u-v|^2.\\ \{\varphi_n\}_{n\geq 1} \text{ ONB of } H \text{ such that } \varphi_n\in Dom(A). \text{ For } n\geq 1, \text{ let}\\ H_n&=span(\varphi_1,\cdots,\varphi_n)\subset Dom(A)\;,\; P_n:H\to H_n \text{ orthogonal projection}\\ \text{from } H \text{ onto } H_n,\; \sigma_n=P_n\sigma \text{ and } \tilde{\sigma}_n=P_n\tilde{\sigma}\\ \text{For } h\in\mathcal{A}_M, \text{ evolution equation on } (n\text{-dim. space})\; H_n \text{ defined by}\\ u_{n,h}(0)&=P_n\xi: \end{aligned}$

 $du_{n,h}(t) = \left[F(u_{n,h}(t)) + \tilde{\sigma}(u_{n,h}(t))h(t)\right]dt + \sigma(u_{n,h}(t))dW_n(t)$

and
$$W_n = \sum_{1 \le j \le n} \sqrt{q_j} \beta_j(t) e_j$$
. For $k = 1, \cdots, n$
 $d(u_{n,h}(t), \varphi_k) = [\langle F(u_{n,h}(t)), \varphi_k \rangle + (\tilde{\sigma}(u_{n,h}(t))h(t), \varphi_k)] dt$
 $+ \sum_{\substack{i=1 \\ A \text{ Millet}}^n q_j^{\frac{1}{2}} (\sigma(u_{n,h}(t))e_j, \varphi_k) d\beta_j(t).$

Proof of the well posedeness and apriori estimates Explosion time for the Galerkin approximation

B is bilinear and *F* locally Lipschitz. There exists a maximal solution $u_{n,h}$ and a stopping time $\tau_{n,h}$ such that the evolution equation for $u_{n,h}$ holds for $t < \tau_{n,h}$ and as $t \uparrow \tau_{n,h} < T$, $|u_{n,h}(t)| \to \infty$. **Prove that** $\tau_{n,h} = T$ **a.s.**

Proposition

Fix
$$M > 0$$
, $T > 0$, $h \in \mathcal{A}_M$, $0 \le K_2 \le \bar{K}_2$ and $\xi \in L^{2p}(\Omega, H)$.
 $|\tilde{\sigma}(t, u)|^2_{L(H_0, H)} \le \tilde{K}_0 + \tilde{K}_1 |u|^2 + \tilde{K}_2 ||u||^2$, $\forall t \in [0, T]$, $\forall u \in V$,
For $p \ge 1$ there exists $\bar{K}_2 = \bar{K}_2(p, T, M)$ and $C = C(p, K_2, M, T)$ such that for $0 \le K_2 < \bar{K}_2$: $\tau_{n,h} = T$ a.s. and a modification of the solution $u_{n,h} \in C([0, T], H_n)$

$$\sup_{n} \mathbb{E} \left(\sup_{0 \le t \le T} |u_{n,h}(t)|^{2p} + \int_{0}^{T} ||u_{n,h}(s)||^{2} |u_{n,h}(s)|^{2(p-1)} ds \right)$$

$$\le C \left(\mathbb{E} |\xi|^{2p} + 1 \right)$$

Proof of the well posedeness and a priori estimates $\langle B(u, u), u \rangle = 0$

Fix N > 0 and $\tau_N = \inf\{t : |u_{n,h}(t)| \ge N\} \land T$. Itô's formula for $|.|^2$ and $\langle B(u, u), u \rangle = 0$,

$$\begin{aligned} |u_{n,h}(t \wedge \tau_N)|^2 &= |P_n\xi|^2 + 2\int_0^{t \wedge \tau_N} (\sigma_n(u_{n,h}(s))dW_n(s), u_{n,h}(s)) \\ &- 2\int_0^{t \wedge \tau_N} ||u_{n,h}(s)||^2 ds + \int_0^{t \wedge \tau_N} |\sigma_n(u_{n,h}(s))\Pi_n|_{L_Q}^2 ds \\ &- 2\int_0^{t \wedge \tau_N} (\tilde{R}(u_{n,h}(s)) - \tilde{\sigma}_n(u_{n,h}(s))h(s), u_{n,h}(s)) ds \end{aligned}$$

Itô's formula for $z \to z^p$ with $p \ge 2$ and $z = |u_{n,h}(t \land \tau_N)|^2$ plus conditions on coefficients

・ 回 と ・ ヨ と ・ ヨ と

Proof of the well posedeness and apriori estimates Generalized Gronwall's lemma

Lemma

Let X, Y, I and φ be non-negative processes and Z be a non-negative integrable random variable. Assume that I is non-decreasing and there exist non-negative constants C, $\alpha, \beta, \gamma, \delta$ with $\int_0^T \varphi(s) ds \leq C$ a.s., $2\beta e^C \leq 1$, $2\delta e^C \leq \alpha$ and such that for $0 \leq t \leq T$,

$$\begin{aligned} X(t) + \alpha Y(t) &\leq Z + \int_0^t \varphi(r) X(r) \, dr + I(t), \text{ a.s.,} \\ \mathbb{E}(I(t)) &\leq \beta \, \mathbb{E}(X(t)) + \gamma \int_0^t \mathbb{E}(X(s)) \, ds + \delta \, \mathbb{E}(Y(t)) + \tilde{C} \end{aligned}$$

where $\tilde{C} > 0$ is a constant. If $X \in L^{\infty}([0, T] \times \Omega)$, then we have

$$\mathbb{E}\big[X(t) + \alpha Y(t)\big] \leq 2 \exp\big(C + 2t\gamma e^{C}\big) \left(\mathbb{E}(Z) + \tilde{C}\right), \quad t \in [0, T].$$

Proof of the well posedeness and apriori estimates using the generalized Gronwall lemma

Apply the generalized Gronwall lemma to

$$X(t) = \sup_{s \le t \land \tau_N} |u_{n,h}(t \land \tau_N)|^{2p},$$

$$Y(t) = \int_0^{t \land \tau_N} |u_{n,h}(r)|^{2(p-1)} ||u_{n,h}(r)||^2 dr, \text{ for } t \in [0, T]$$

$$X(t) + pY(t) \le Z(|\xi|^{2p}, T, M) + \int_0^{t \land \tau_N} \varphi(r)X(r)dr + I(t)$$

where $\int_0^T \varphi(s) ds \leq C(T, M)$ a.s., $I(t) = \sup_{0 \leq s \leq t} |J(s)|$,

$$J(t) = 2p \bigg| \int_0^{t \wedge \tau_N} \big(\sigma_n(u_{n,h}(r)) \ dW_n(r), u_{n,h}(r) \ |u_{n,h}(r)|^{2(p-1)} \big) \bigg|$$

Use the BDG inequality: For β small enough and then K_2 small enough, there exist C, \tilde{C} such that for $t \in [0, T]$,

$$\mathbb{E}\big[X(t) + Y(t)\big] \leq 2 \exp\left(CM + \tilde{C}te^{CM}\right) \left(\mathbb{E}Z(|\xi|^{2p}, T, M) + C(p, T)\right)$$

Proof of the well posedeness and apriori estimates Weakly converging subsequences

 $N \to \infty$, $\tau_N \to \tau_{n,h}$ and upper estimate above independent of N and n. Hence on $\tau_{n,h} < T$, $\sup_{s \le \tau_N} |u_{n,h}(s)| = +\infty$. Contradiction. Let $\mathbb{E}|\xi|^4 < \infty$ and use interpolation $||u||_{\mathcal{H}}^4 \le C|u|^2 ||u||^2$. Set $\Omega_T = [0, T] \times \Omega$. There exists a subsequence of $u_{n,h}$ and

 $u_h \in \mathcal{X} := L^2(\Omega_T, V) \cap L^4(\Omega_T, \mathcal{H}) \cap L^4(\Omega, L^{\infty}([0, T], H)),$

$$\begin{split} F_h &\in L^2(\Omega_T, V') \text{ and } S_h, \tilde{S}_h \in L^2(\Omega_T, L_Q), \text{ and of r.v.} \\ \tilde{u}_h(T) &\in L^2(\Omega, H) \text{ such that:} \\ (i) & u_{n,h} \to u_h \text{ weakly in } L^2(\Omega_T, V), \\ (ii) & u_{n,h} \to u_h \text{ weakly in } L^4(\Omega_T, \mathcal{H}), \\ (iii) & u_{n,h} \text{ is weak star converging to } u_h \text{ in } L^4(\Omega, L^\infty([0, T], H)), \\ (iv) & u_{n,h}(T) \to \tilde{u}_h(T) \text{ weakly in } L^2(\Omega, H), \\ (v) & F(u_{n,h}) \to F_h \text{ weakly in } L^2(\Omega_T, V'), \\ (vi) & \sigma_n(u_{n,h})\Pi_n \to S_h \text{ weakly in } L^{\frac{4}{3}}(\Omega_T, H) \end{split}$$

Proof of the well posedeness and apriori estimates I dentification of the limit u_h

Pass evolution equation to the limit (inner product with $f_k(t)\varphi_j$) $f_k \in H^1(-\delta, T + \delta)$ such that $||f_k||_{\infty} = 1$, $f_k = 1$ on $(-\delta, t - \frac{1}{k})$ and $f_k = 0$ on $(t, T + \delta)$ implies

$$0 = \left(\xi - u_h(t), \varphi_j\right) + \int_0^t \left(S_h(s)dW(s), \varphi_j\right) + \int_0^t \langle F_h(s) + \tilde{S}_h(s), \varphi_j \rangle ds$$

j arbitrary and for $f = 1_{(-\delta, T+\delta)}$ yields $u_h(T) = \tilde{u}_h(T)$ where

$$u_h(t) = \xi + \int_0^t S_h(s) dW(s) + \int_0^t F_h(s) ds + \int_0^t \widetilde{S}_h(s) ds$$

Prove that $ds \otimes d\mathbb{P}a.s.$

 $S_h(s) = \sigma(u_h(s)), \ F_h(s) = F(u_h(s)) \ \text{and} \ \ \tilde{S}_h(s) = \tilde{\sigma}(u_h(s)) \ h(s)$

Proof of the well posedeness and apriori estimates I dentification of the limit u_h

Let $v \in \mathcal{X} = L^4(\Omega_T, \mathcal{H}) \cap L^4(\Omega, L^{\infty}([0, T], \mathcal{H})) \cap L^2(\Omega_T, V)$. Suppose that $L_2 < 2$ and let $0 < \eta < \frac{2-L_2}{3}$; set

$$r(t) = \int_0^t \left[2R_1 + 2C_\eta \|v(s)\|_{\mathcal{H}}^4 + L_1 + 2\sqrt{\tilde{L}_1}|h(s)|_0 + \frac{\tilde{L}_2}{\eta}|h(s)|_0^2 \right] ds,$$

Apply Itô's formula to $|u(t)|^2 e^{-r(t)}$ for $u = u_h$ and $u = u_{n,h}$ leads to prove that upper estimate $\liminf_n X_n$, where

$$\begin{split} X_{n} &= \mathbb{E} \int_{0}^{T} e^{-r(s)} \big[-r'(s) \big\{ \big| u_{n,h}(s) - v(s) \big|^{2} + 2 \big(u_{n,h}(s) - v(s) \,, \, v(s) \big) \big\} \\ &+ 2 \langle F(u_{n,h}(s)), u_{n,h}(s) \rangle + |\sigma_{n}(u_{n,h}(s)) \Pi_{n}|_{L_{Q}}^{2} + 2 \big(\tilde{\sigma}(u_{n,h}(s)) h(s), u_{n,h}(s) \big) \big] d \\ \text{Some coercivity and monoticity properties (only valid in 2D) based on} \\ &\langle F(u) - F(v) \,, \, u - v \rangle \leq -(1 - \eta) \| u - v \|^{2} + \big(R_{1} + C_{\eta} \| v \|_{\mathcal{H}}^{4} \big) \, |u - v|^{2} \end{split}$$

imply

▲圖▶ ★ 国▶ ★ 国▶

Proof of the well posedeness and apriori estimates $Identification of the limit u_h$

For any $v \in \mathcal{X}$,

$$\mathbb{E}\int_0^T e^{-r(s)}\Big\{-r'(s)|u_h(s)-v(s)|^2+2\langle F_h(s)-F(v(s)),u_h(s)-v(s)\rangle \\ +|S_h(s)-\sigma(v(s))|_{L_Q}^2+2\Big(\tilde{S}_h(s)-\tilde{\sigma}(v(s))h(s),\,u_h(s)-v(s)\Big)\Big\}ds\leq 0.$$

 $v = u_h \in \mathcal{X}$ implies $S_h(s) = \sigma(u_h(s))$ $\tilde{v} \in L^{\infty}([0, T] \times \Omega)$ and $v_{\lambda} = u_h - \lambda \tilde{v}$ previous result with v_{λ} and r_{λ} Let $\lambda \to 0$ and divide the inequality for v_{λ} and r_{λ} by $\lambda > 0$ (resp. $\lambda < 0$) yields

$$\mathbb{E}\int_0^T e^{-r_0(s)} \Big[\langle F_h(s) - F(u_h(s)), \tilde{v}(s) \rangle + (\tilde{S}_h(s) - \tilde{\sigma}(u_h(s))h(s), \tilde{v}(s)) \Big] ds = 0$$

Hence $u_h(t) = \xi + \int_0^t \sigma(u_h(s)) dW(s) + \int_0^t \left[F(u_h(s)) + \tilde{\sigma}(u_h(s)) h(s) \right] ds$

Proof of the well posedeness and apriori estimates Time regularity of u_h ; uniqueness

For
$$\delta > 0$$
, $e^{-\delta A}$ maps H to V and V' to H . For $\delta > 0$
 $e^{-\delta A}u_h \in C([0, T], H)$ a.s.

Set
$$G_{\delta} = Id - e^{-\delta A}$$
, apply Itô's formula to $|G_{\delta}u_h(t)|^2$
As $\delta \to 0$,
 $\mathbb{E}\Big(\sup_{0 \le t \le T} |G_{\delta}(u_h(t))|^2\Big) = 0$

• Let $v \in C([0, T], H)$ be another solution, set $U = u_h - v$ and $\tau_N = \inf\{t \ge 0 : |u_h(t)| \ge N\} \land \inf\{t \ge 0 : |v(t)| \ge N\} \land T$ Apply Itô's formula for

$$\exp\Big(-a\int_0^{s\wedge\tau_N}\|u_h(r)\|_{\mathcal{H}}^4dr\Big)|U(s\wedge\tau_N)|^2$$

Apply the extended Gronwall lemma

イロン イヨン イヨン イヨン

Proof of the well posedeness and apriori estimates Time regularity of u_h ; uniqueness

For
$$\delta > 0$$
, $e^{-\delta A}$ maps H to V and V' to H . For $\delta > 0$
 $e^{-\delta A}u_h \in C([0, T], H)$ a.s.

Set
$$G_{\delta} = Id - e^{-\delta A}$$
, apply Itô's formula to $|G_{\delta}u_h(t)|^2$
As $\delta \to 0$,
 $\mathbb{E}\Big(\sup_{0 \le t \le T} |G_{\delta}(u_h(t))|^2\Big) = 0$

• Let $v \in C([0, T], H)$ be another solution, set $U = u_h - v$ and $\tau_N = \inf\{t \ge 0 : |u_h(t)| \ge N\} \land \inf\{t \ge 0 : |v(t)| \ge N\} \land T$ Apply Itô's formula for

$$\exp\Big(-a\int_0^{s\wedge\tau_N}\|u_h(r)\|_{\mathcal{H}}^4dr\Big)|U(s\wedge\tau_N)|^2$$

Apply the extended Gronwall lemma

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

3 Further results

Some control of time increments

- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Some "weak" control of time increments

Given
$$M > 0$$
, $N > 0$, $h \in \mathcal{A}_M$, let u_h denote the solution to
 $du_h(t) + [Au_h(t) + B(u_h(t)) + \tilde{R}(t, u_h(t))] dt =$
 $\sigma(t, u_h(t)) dW(t) + \tilde{\sigma}(t, u_h(t)) h(t) dt$
 $G_N(t) = \left\{ \omega : \left(\sup_{0 \le s \le t} |u_h(s)(\omega)|^2 \right) \lor \left(\int_0^t ||u_h(s)(\omega)||^2 ds \right) \le N \right\}.$

Lemma

Under the conditions of the well-posedeness theorem, if the initial condition $\xi \in L^4(\Omega; H)$, there exists a positive constant C such that for any $h \in \mathcal{A}_M$, if $\psi_n : [0, T] \to [0, T]$ is a Borel function with $s \leq \psi_n(s) \leq s + c2^{-n}$ or $s - c2^{-n} \leq \psi_n(s) \leq s$

$$I_n(h) := \mathbb{E}\Big[\mathbb{1}_{G_N(\mathcal{T})} \int_0^{\mathcal{T}} |u_h(s) - u_h(\psi_n(s))|^2 ds \Big] \leq C \, 2^{-\frac{n}{2}}.$$

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

3 Further results

Some control of time increments

Large Deviations

- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Large deviation principles Small perturbation

Evolution equation perturbed by a "small" parameter ε

$$d\phi^{\varepsilon} + [A\phi^{\varepsilon} + B(\phi^{\varepsilon}) + R\phi^{\varepsilon}] dt = \sqrt{\varepsilon} \sigma(\phi^{\varepsilon}) dW(t),$$

φ(0) = ξ ∈ H. Solution exists if $ε ≤ ε_0$ for all K_i ■ Prove a LDP as ε → 0 in $X := C([0, T]; H) ∩ L^2((0, T); V)$

$$\|\phi\|_{X} = \left\{\sup_{0 \le s \le T} |\phi(s)|^{2} + \int_{0}^{T} \|\phi(s)\|^{2} ds\right\}^{\frac{1}{2}}.$$

For every closed (resp. open) set F (resp. G) of X:

 $\limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P}(\phi^{\varepsilon} \in F) \le -\inf\{I(\psi), \psi \in F\}.$

 $\lim \inf_{\varepsilon \to 0} \varepsilon \log \mathbb{P}(\phi^{\varepsilon} \in G) \ge -\inf\{I(\psi), \psi \in G\}.$

with a good rate function $I : X \to [0, +\infty]$, i.e., level sets $\{\psi \in X : I(\psi) \le M\}$ are compact subsets of X.

Large deviation principles Small perturbation

Evolution equation perturbed by a "small" parameter ε

$$d\phi^{\varepsilon} + [A\phi^{\varepsilon} + B(\phi^{\varepsilon}) + R\phi^{\varepsilon}] dt = \sqrt{\varepsilon} \sigma(\phi^{\varepsilon}) dW(t),$$

 $\phi(0) = \xi \in H$. Solution exists if $\varepsilon \leq \varepsilon_0$ for all K_i

Prove a LDP as $\varepsilon \to 0$ in $X := C([0, T]; H) \cap L^2((0, T); V)$

$$\|\phi\|_{\mathbf{X}} = \Big\{\sup_{0 \le s \le T} |\phi(s)|^2 + \int_0^T \|\phi(s)\|^2 ds\Big\}^{\frac{1}{2}}.$$

For every closed (resp. open) set F (resp. G) of X:

$$\limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P}(\phi^{\varepsilon} \in F) \le -\inf\{I(\psi), \psi \in F\}.$$

 $\lim_{\varepsilon \to 0} \inf \varepsilon \log \mathbb{P}(\phi^{\varepsilon} \in \mathbf{G}) \geq -\inf\{I(\psi), \psi \in \mathbf{G}\}.$

with a good rate function $I : X \to [0, +\infty]$, i.e., level sets $\{\psi \in X : I(\psi) \le M\}$ are compact subsets of X.

Formulation of LDP Statement of the LDP - Small perturbation

Let $h \in L^2([0, T], H_0)$; let $\phi_h = G^0(\int_0^{\cdot} h(s)ds) = \mathcal{G}^0(h)$ denote the deterministic controlled equation

 $d\phi_h(t) + \left[A\phi_h(t) + B(\phi_h(t)) + R\phi_h(t)\right]dt = \sigma(\phi_h(t))h(t)dt, \quad \phi_h(0) = \xi$

Theorem

(Chueshov-M.) Let $\xi \in H$ and $K_2 = L_2 = 0$. The solution ϕ^{ε} of

$$d\phi^{\varepsilon} + [A\phi^{\varepsilon} + B(\phi^{\varepsilon}) + R\phi^{\varepsilon}]dt = \sqrt{\varepsilon} \ \sigma(\phi^{\varepsilon})dW(t), \ \phi^{\varepsilon}(0) = \xi \in H.$$

satisfies a LDP in $X = C([0, T]; H) \cap L^2(0, T; V)$ with good r.f.

 $I_{\xi}(\psi) = \inf\{\|h\|_{L^{2}([0,T],H_{0})}^{2}/2 : h \in L^{2}(0,T;H_{0}), \ \psi = \mathcal{G}^{0}(h)\}$

Proved for 2D NS (Shritharan-Sundar), Boussinesq (Duan-M.), small perturbed shell models (Manna, Shritharan & Sundar)

The main step is the following:

Proposition

Suppose $K_2 = L_2 = 0$, let ξ be \mathcal{F}_0 -measurable such that $E|\xi|_H^4 < +\infty$. Let h_{ε} converge to h_0 in distribution as random elements taking values in \mathcal{A}_M (predictable elements which a.s. ibelong to the ball S_M of the RKHS), and endowed with the weak topology of $L_2(0, T; H_0)$. Then as $\varepsilon \to 0$, the solution $u_{h_{\varepsilon}}$ of the stochastic controlled equation converges in distribution to the solution u_{h_0} of the controlled equation in $X = C([0, T]; H) \cap L^2((0, T); V)$, where for $\varepsilon \ge 0$: $u_{h_{\varepsilon}}(0) = \xi$ and

 $du_{h_{\varepsilon}} + [Au_{h_{\varepsilon}} + B(u_{h_{\varepsilon}}) + \tilde{R}(t, u_{h_{\varepsilon}})]dt = \sigma(u_{h_{\varepsilon}})h_{\varepsilon}(t)dt + \sqrt{\varepsilon} \sigma(u_{h_{\varepsilon}})dW(t)$

イロン イ部ン イヨン イヨン 三日

Formulation of the LDP Inviscid LDP

Let the positive viscosity coefficient $\nu \to 0$ and $d_t u^{\nu}(t) + \left[\nu A u^{\nu}(t) + B(u^{\nu}(t))\right] dt = \sqrt{\nu} \sigma(t, u^{\nu}(t)) dW(t), u^{\nu}(0) = \xi$ Prove exponential decay of $P(u^{\nu}(.) \in \Gamma)$ as $\nu \to 0$ for $\Gamma \subset Y$ that is $\lim_{\nu \to 0} \nu \ln P(u^{\nu} \in \Gamma)$

in terms of some rate function and interior (resp. closure) of Γ for some **topology which is not the "optimal"** one **Why ?** The rate function is formulated in terms of the "irregular" inviscid case, for *h* in the RKHS of the noise,

$$du_h^0(t) + B(u_h^0(t)) dt = \sigma(t, u_h^0(t)) h(t) dt, \quad u_h^0(0) = \xi$$

Requires some more hypothesis on σ with Radonifying operators (extend trace-class operators for non Hilbert Sobolev spaces) One can **extend the stochastic calculus** (Itô's formula and BDG inequality) to Radonifying operators

Formulation of the LDP Inviscid NS equations

Theorem

(Bessaih-M.) Let $\xi \in V$ satisfy curl $\xi = \partial_1 \xi_2 - \partial_2 \xi_1 \in L^{\infty}(D)$, $\sigma \in C(V; L_Q(H_0, V))$ be such that curl $\sigma \in C(H^{1,q}; R(H_0, L^q(D)))$ with q > 2 satisfies "growth and Lipschitz conditions". Then as $\nu \to 0$, the distribution of the solution u^{ν} to $du_t^{\nu} + [\nu A u_t^{\nu} + B(u_t^{\nu}, u_t^{\nu})] dt = \sqrt{\nu}\sigma(u_t^{\nu}) dW(t)$ with the initial condition $u_0^{\nu} = \xi$ satisfies in $\mathcal{X} = C([0, T]; L^q(D) \cap H)$ endowed with the norm $||u||_{\mathcal{X}} := \sup_{0 \le t \le T} |u_t|_q$ satisfies a LDP with the good rate function

$$\mathcal{U}(u) = \inf\{\|h\|_{L^2([0,T],H_0)}^2 : u = u_h^0, h \in L^2(0,T;H_0\}$$
 and

and u_h^0 is the unique solution to the control equation

 $du_h^0(t) + B(u_h^0(t), u_h^0(t)) dt = \sigma(u_h^0(t)) h(t) dt, \ u_h^0(0) = \xi$

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

3 Further results

- Some control of time increments
- Large Deviations

Support characterization

- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

Prove a "Stroock-Varadhan" theorem to characterize the support in $X = C([0, T]; H) \cap L^2([0, T], V)$ of the distribution of general 2D hydrodynamical models

 $du(t)+[Au(t)+B(u(t))+Ru(t)] dt = \sigma(u(t)) dW(t), \quad u(0) = \xi \in H,$

SPDE setting, for hyperbolic, wave, parabolic, Burgers, "mild solutions" in Hilbert spaces, similar results proved by Bally-M.-Sanz Solé, M.-Sanz Solé, Twardowska-Zabczyck, Cardon-Weber-M, Nakayama **Condition (R)** Recall that $V \subset \mathcal{H} \subset \mathcal{H}$ (i) $t \in [0, T] \mapsto ||u(t)||_{\mathcal{H}}$ is continuous a.s.

(ii) there exists q > 0 such that for any constant C > 0 and $\tau_C := \inf\{t : \sup_{s \le t} |u(s)|^2 + \int_0^t ||u(s)||^2 ds \ge C\} \land T$

 $\mathbb{E}\Big(\sup_{[0,\tau_C]}\|u(t)\|_{\mathcal{H}}^q\Big)<\infty$

(ロ) (同) (E) (E) (E)

 $\sigma: H \to L_Q(H_0, H), \ (e_j, j \ge 1)$ CONS of H such that $Qe_j = q_j e_j$ with $\sum_j q_j = Trace(Q) < +\infty, \ \sigma_j : H \to H$ defined by $\sigma_j(u) := \sigma(u)e_j, \ \forall u \in H$

• For any j, σ_j twice (Fréchet) differentiable, with bounded derivatives.

• Stratonovich correction $\rho(u) = \sum_{j>1} D\sigma_j(u) \sigma_j(u)$

Then if $\xi \in H$ and condition **(R)** holds, the support of the distribution of the solution u to

$$du(t) + [Au(t) + B(u(t)) + Ru(t)] dt = \sigma(u(t))dW(t), u_0 = \xi,$$

is the closure in X of $S(L^2([0, T], H_0))$ where $S(h)_0 = \xi$ and

 $dS(h)_t + [AS(h)_t + B(S(h)_t) + RS(h)_t] dt = \sigma(S(h)_t)h(t)dt - \frac{1}{2}\rho(S(h)_t)dt$

ロト (日) (日) (日) (日)

The support characterization follows from one result of convergence in probability of some general sequence of evolution equations driven by W, a finite-dimensional, linear adapted time interpolation W^n of W and an element h of the RKHS of W. (Mackevičius, Aida Kusuoka & Stroock and M. & Sanz-Solé for diffusion processes) In general, condition (R) holds for $\mathcal{H} = Dom(A^{\frac{1}{4}})$ when:

$$egin{aligned} &|\sigma(u)|^2_{L_Q} \leq \mathcal{K}_0 + \mathcal{K}_1 |u|^2, \; |\sigma(u) - \sigma(v)|^2_{L_Q} \leq L |u-v|^2 \ &|A^{rac{1}{4}} \sigma(t,u)|^2_{L_Q(\mathcal{H}_0,\mathcal{H})} \leq \mathcal{K}(1+\|u\|^2_{\mathcal{H}}), \; |A^{rac{1}{4}} R(u)| \leq ar{R}_0(1+\|u\|_{\mathcal{H}}) \,. \end{aligned}$$

In first examples, condition (R) holds:

- for 2D Navier-Stokes equation on periodic domains with no restriction if (B(u), Au) = 0
- for Boussinesq or 2D MHD models for $\mathcal{H} = Dom(A^{\frac{1}{4}}) \subset L^4(D)$
- for GOY or Sabra shell models for $\mathcal{H} = Dom(A^s)$ and $0 \le s \le \frac{1}{4}$

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

$$d_t u(t) + [B(u(t), u(t)) + \nabla p] dt = f(t, u) + \sigma(t, u(t)) dW_t$$

with div u = 0 in D, $\langle u, n \rangle = 0$ on ∂D

Theorem

(Brzezniak-Peszat) Suppose that the noise W(t, x) is space homogeneous with RKHS H_0 . Let $u_0 \in H^{1,q}$ for some q > 2, $f : [0, T] \times H^{1,a} \to W^{1,a}$ for a = 2, q, $\sigma : [0, T] \times H^{1,2} \to L_{\mathcal{HS}}(H_0, W^{1,2})$ and $\sigma : [0, T] \times H^{1,2} \to Radonifying(H_0, W^{1,q})$. Then there exists a triple (Ω, W, u) such that W is a has the imposed spectral measure (related to the covariance structure) and $u(0) = u_0$, for every $p \in [1, \infty)$, $u \in L^p(\Omega; L^\infty(0, T; H^{1,2} \cap H^{1,q}))$ and u(t)satisfies the stochastic Euler equation.

イロン イヨン イヨン イヨン

æ

No smoothing effect of the Stokes operator: viscosity $\nu=0$ Remarks:

- stronger conditions on initial condition and diffusion coefficient
- \bullet Weak probabilistic solution : prove tightness of approximations with a viscosity coefficient $\nu \to 0$
- Use again $\langle B(u, u), u \rangle = 0$ and the equation satisfied by $curlu = \partial_1 u_2 \partial_2 u_1$ with

 $\langle \operatorname{curl} B(u, v), \operatorname{curl} v | \operatorname{curl} v |^{q-2} \rangle = 0$

for $u, v \in H^{2,q}$

(4回) (注) (注) (注) (注)

1 Introduction

- The evolution equations
- Random perturbation

2 Well posedeness and apriori estimates

- The well posedeness results
- Proof of the well posedeness and apriori estimates

- Some control of time increments
- Large Deviations
- Support characterization
- Stochastic 2D Euler equation
- Stochastic 3D Navier Stokes equations

The coercivity argument used in the identification fails. Spatially homogeneous noise with diffusion coefficient on \mathbb{R}^3 and use some weighted $L^p(a)$ spaces (with $a > \frac{3}{2}$)

$$\|f\|_{L^{p}(a)}^{p} = \int_{\mathbb{R}^{3}} |f(x)|^{p} (1+|x|^{2})^{-a} dx$$

• Capinsky-Peszat: get rid on the pressure by "testing solution on appropriate functions" involving the weight. Give an initial distribution on $L^2(a)$ and prove the existence of a triple (Ω, W, u) such that for $a > \frac{3}{2}$, there exists a solution $u \in L^p(\Omega, L^{\infty}(0, T; L^2(a)))$ They approximate the solution by an auxilliary equation u^{ϵ} and prove tightness

$$d_{t}u^{\epsilon} + \left[-\Delta u^{\epsilon} + B(u^{\epsilon}, u^{\epsilon}) + \epsilon |u^{\epsilon}|^{4}u^{\epsilon} - \frac{1}{\epsilon}\nabla \operatorname{div} u^{\epsilon} \right] dt$$

= $f(t, u^{\epsilon})dt + \sigma(t, u^{\epsilon})dW(t)$

• Basson has an additive divergence free noise homogeneous noise on $L^2(r)$ with $r > \frac{3}{2}$ and an initial spatially homogeneous distribution on $L^2(r)$ with null divergence.

He approximates by periodic solutions (proving the tightness) He solves first the equation $d_t z(t) = \Delta z(t)dt + W(t)$ (which is divergence free) and then uses deterministic estimates for

 $d_t v(t) - \Delta v(t) dt + B(v(t) + z(t), v(t) + z(t)) dt + \nabla p = 0$

He proves energy estimates involving the pressure for a solution $u \in \bigcap_{b>3} L^{\infty}(0, T; L^{2}(b)) \cap L^{2}(0, T; H^{1,2}(a))$ for $b > \frac{3}{2}$

비가 소리가 소문가 소문가 드문