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Introduction
The Navier Stokes equations

D bounded domain of R2, x = (x1, x2),
u(x , t) = (u1(x , t), u2(x , t)) fluid velocity, p(x , t) pressure
divergence: div u =

∑
i=1,2 ∂iui

Laplace operator: ∆u = (
∑

i=1,2 ∂
2
i uk , k = 1, 2) (Stokes operator if one

adds the incompressibility condition div u = 0 on D)
Find a pair (u, p) (u velocity, p pressure) such that

∂tu − ν∆u + u.∇u +∇p = f , div u = 0 in D, u = 0 on ∂D

ν > 0 viscosity, n outwards normal to ∂D and f (x , t) external force

H = {f ∈
[
L2(D)

]2
: div f = 0 in D and f . n = 0 on ∂D}

V ≡
[
H1

0 (D)
]2 ∩ H, V ⊂ H, (H, | |) and (V , ‖ ‖) Hilbert spaces

Project on divergence free fields (integration by parts: if, div u = 0
then (∇p, u) = 0 if div u = 0
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Introduction
The operators A and B

A : V → V ′ et B : V × V → V ′ defined by:

〈Au , v〉 = ν
∑
j=1,2

∫
D
∇uj · ∇v j dx

〈B(u, v),w〉 =

∫
D

[u ·∇v ] w dx ≡
∑

i ,j=1,2

∫
D

uj∂jv
iw i dx , ∀u, v ,w ∈ V

Properties of A and B
A = −ν∆ non-negative, unbounded, self-adjoint linear operator on H,
B : V × V → V ′ bilinear continuous ∀u1, u2, u3 ∈ V

〈B(u1, u2), u3〉 = −〈B(u1, u3), u2〉

(Proof:
∑

i ,j

∫
D uj∂jv

iw i dx = −
∑

i ,j

∫
D v i

[
w i∂ju

j + uj∂jw
i
]
dx

for fixed i ,
∑

j ∂ju
j = div u = 0 )
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Introduction
Interpolation space and B

V ⊂ L4(D) ⊂ H and for u ∈ V , ‖u‖2L4(D) ≤ |u| ‖u‖
(Proof: for real-valued functions f , g ‖fg‖1 ≤ 1

4‖∂1f ‖1∂2g‖1
with f 2 and g2, ‖f 2g2‖1 ≤ ‖f ∂1f ‖1‖g∂2g‖1
Schwarz’s inequality : ‖f 2g2‖1 ≤ ‖f ‖2‖∇f ‖2‖g‖2‖∇g‖2; then
f = g)

For η > 0 there exists Cη > 0 such that

|〈B(u1, u1) , u3〉| ≤ η ‖u1‖2 + Cη |u1|2 ‖u3‖4L4(D)

(Proof: Hölder’s inequality

|
∫
D u1∇u1u3| ≤ ‖u1‖L4(D)|∇u1|‖u3‖L4(D) ≤ ‖u1‖

3
2 |u1|

1
2 ‖u3‖L4(D)

Then Young’s inequality with exponents 4/3 and 4 yields
|〈B(u1, u1) , u3〉| ≤ 4α

3 ‖u1‖2 + 1
4α |u1|2 ‖u3‖4L4(D))

If B(u) := B(u, u) then
|〈B(u1)−B(u2) , u1− u2〉| ≤ η‖u1− u2‖2 + Cη|u1− u2|2 ‖u2‖4L4(D)

A. Millet On stochastic 2D NS equations



Introduction
Interpolation space and B

V ⊂ L4(D) ⊂ H and for u ∈ V , ‖u‖2L4(D) ≤ |u| ‖u‖
(Proof: for real-valued functions f , g ‖fg‖1 ≤ 1

4‖∂1f ‖1∂2g‖1
with f 2 and g2, ‖f 2g2‖1 ≤ ‖f ∂1f ‖1‖g∂2g‖1
Schwarz’s inequality : ‖f 2g2‖1 ≤ ‖f ‖2‖∇f ‖2‖g‖2‖∇g‖2; then
f = g)

For η > 0 there exists Cη > 0 such that

|〈B(u1, u1) , u3〉| ≤ η ‖u1‖2 + Cη |u1|2 ‖u3‖4L4(D)
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Introduction
General framework

Project on divergence free functions, suppress the pressure div∇p = 0
add a Coriolis term (replace the forcing term f by f − Ru where
R(u1, u2) = c0(−u2, u1), c0 constant. ∂tu − ν∆u + u.∇u + Ru = f
Abstract setting (H, |.|) Hilbert, R linear continuous operator on H
A non negative, self-adjoint operator (unbounded) operator on H

V = Dom(A
1
2 ); for v ∈ V set ‖v‖ = |A

1
2 v |

H Banach space such that V ⊂ H ⊂ H and ‖v‖2H ≤ K0|v | ‖v‖
B : V × V → V ′ bilinear continuous such that ∀u1, u2, u3 ∈ V

〈B(u1, u2), u3〉 = −〈B(u1, u3), u2〉
for η > 0 there exists Cη > 0 such that

|〈B(u1, u1) , u3〉|≤ η ‖u1‖2 + Cη |u1|2 ‖u3‖4H

dtu(t) +
[
Au(t) + B

(
u(t)

)
+ Ru(t)

]
dt = σ(u(t))dWt , u(0) ∈ H
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Introduction
Other examples of evolution equations

D = (0, l)× (0, 1), x = (x1, x2) spatial variable
p pressure, φ = (u, θ, β) satisfy the coupled non-linear equations
u ∈ R2 velocity field, θ ∈ R temperature field, β ∈ R2 magnetic field
ν, κ, η and S physical constants,

∂

∂t
u + u·∇u − ν∆u +∇p

+∇
(1

2
|β|2)− Sβ·∇β−θe2 = σ1(t, φ) dW 1(t) ,

∂

∂t
θ + u·∇θ − κ∆θ − u2 = σ2(t, φ) dW 2(t) ,

∂

∂t
β − η∆β + u·∇β − β·∇u = σ3(t, φ) dW 3(t) ,

where ∆ is the Laplace operator (Stokes operator after Leray projection)
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Introduction
Examples of evolution equations - Conditions

div(u) = div(β) = 0

u = θ = β2 =
∂

∂x2
β1 = 0 on x2 ∈ {0, 1}

u, p, θ, β, ux1 , θx1 , βx1 period l in x1

H = L2(D)5 with divergence, periodicity and boundary conditions
V = H1(D)5 with the same conditions
V ↪→ H = H ′ ↪→ V ′ H = L4(D)5 ∩ H and ‖u‖2H ≤ K0|u| ‖u‖
B(φ) = (B1(u, u)− SB1(β, β) , B2(u, θ) , B1(u, β)− B1(β, u))

〈B1(u, v),w〉 =

∫
D

[u·∇v ]wdx :=
∑

i ,j=1,2

∫
D

ui ∂ivj wjdx ,

〈B2(u, θ), η〉 =

∫
D

[u·∇θ]ηdx :=
∑
i=1,2

∫
D

ui ∂i θ η dx .
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Introduction
The Leray model for the 3D Navier-Stokes equation

Studied by A. Cheskidov, D. Holm, E. Olson & E. Titi
D ⊂ R3 bounded domain, A Stokes operator

∂tu − ν∆u + v .∇u +∇p = f ,

(1− α∆)v = u, div u = 0, div v = 0 in D,

v = u = 0 on ∂D.

Gα = (1− α∆)−1 Green operator

H = {u ∈
[
L2(D)

]3
: divu = 0 in D and u . n = 0 on ∂D}

As H1/2(D) ⊂ L3(D), set H =
[
L3(D)

]3 ∩ H. Since H1(D) ⊂ L6(D)

and A
1
2 Gα is bounded on H, previous conditions fulfilled with

Bα(u1, u2) := B(Gαu1, u2)
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Introduction
Noise W with trace class covariance Q

Covariance operator Q symmetric non-negative on H, Trace(Q) < +∞
H0 = Q

1
2 H Hilbert space (φ, ψ)0 = (Q−

1
2φ,Q−

1
2ψ), ∀φ, ψ ∈ H0,

embedding i : H0 → H is Hilbert-Schmidt (hence compact), and
i i∗ = Q
W (t) H-valued Wiener process with covariance operator Q.
W is Gaussian, has independent time increments, for s, t ≥ 0, f , g ∈ H,

E(W (s), f ) = 0 and E(W (s), f )(W (t), g) =
(
s ∧ t) (Qf , g).

W has the representation

W (t) = lim
n→∞

Wn(t) in L2(Ω; H) with Wn(t) =
n∑

j=1

q
1/2
j βj(t)ej ,

where βj are independent (real) Wiener processes, {ej} is ONB in H of
eigen-elements of Q, with Qej = qjej .
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Introduction
The diffusion coefficient

LQ = {S ∈ L(H0,H) : SQ
1
2 Hilbert Schmidt from H to H},

‖S‖2LQ
= Trace(S Q S∗), where S∗ is the adjoint of S .

For any BON {ψk} in H, the LQ-norm can be written

|S |2LQ
= tr([SQ1/2][SQ1/2]∗) =

∑
k≥1

|SQ1/2ψk |2 =
∑
k≥1

|[SQ1/2]∗ψk |2

σ ∈ C ([0,T ]× V )→ LQ

There exist constants Ki and Li such that for t ∈ [0,T ], φ, ψ ∈ V
|σ(t, φ)|2LQ

≤ K0 + K1|φ|2 + K2‖φ‖2,

|σ(t, φ)− σ(t, ψ)|2LQ
≤ L1|φ− ψ|2 + L2‖φ− ψ‖2.

(in the above examples, σ may depend on the gradient of the solution)
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Introduction
Rewriting the equations

With these notations, the above models (Bénard φ = (u, θ, β), 2D
Navier Stokes, ”shell models” or 3D Leray Navier Stokes φ = u) are
written:

dφ+ [Aφ+ B(φ) + Rφ]dt = σ(φ)dW (t) , φ(0) = ξ ∈ H (1)

ξ F0-measurable, independent of W .
Solution means: (φt) adapted for (Ft) and for ψ ∈ D(A),

(φ(t), ψ)− (φ(0), ψ) +

∫ t

0

[
(φ(s),Aψ) + 〈B(φ(s)), ψ〉

+ (Rφ(s), ψ)
]
ds =

∫ t

0

(
σ(φ(s)) dW (s) , ψ

)
.

Weak solution for analysts and strong solution for probabilists
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Well posedeness and apriori bounds
The result

σ(u) estimated in terms of u in V with constants K2 and L2

Theorem

Let E |ξ|4 < +∞. Then for K2 small enough and L2 < 2, there exists
C = C (Ki , Li ,T ) such that the evolution equation has a unique solution
φ ∈ X = C ([0,T ],H) ∩ L2(0,T ; V ). Furthermore,

E
(

sup
0≤t≤T

|φ(t)|4 +

∫ T

0
‖φ(t)‖2 dt +

∫ T

0
‖φ(t)‖4H dt

)
≤ C (1 + E |ξ|4)

• Ferrario 1997 (Boussinesq equation) φ = (u, θ), Barbu-Da Prato 2007
(MHD equation) φ = (u, β) for additive noise
• Sritharan-Sundar (Navier Stokes) φ = u, Duan-M (Boussinesq)
φ = (u, θ), Chueshov-M., Manna-Shritharan-Sundar (shell models)
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The well posedeness results
General stochastic controlled equations

Set of controls

SM =
{

h ∈ L2([0,T ],H0) :

∫ T

0
|h(s)|20 ds ≤ M

}
AM = {h (Ft) predictable : h(ω) ∈ SM a.s.}

First idea: shift W a random element of AM and use Girsanov
Need more general stochastic controls σ̃ ∈ C

(
[0,T ]× V ; L(H0,H)

)
there exist constants K̃H, K̃i , and L̃j , for i = 0, 1 and j = 1, 2 such that
for u, v ∈ V , t ∈ [0,T ],

|σ̃(t, u)|2L(H0,H) ≤ K̃0 + K̃1|u|2 + K̃H‖u‖2H,

|σ̃(t, u)− σ̃(t, v)|2L(H0,H) ≤ L̃1|u − v |2 + L̃2‖u − v‖2.

R̃ : [0,T ]× H 7→ H is continuous global growth and Lipschitz
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The well posedeness results
The result for stochastic controlled equation

Recall that K2 and L2 are the growth and Lipshitz constants in front of
the V norm.

Theorem

(Chueshov-M.) Suppose that either σ̃ = σ, or that σ̃ satisfies the above

conditions Let M > 0 , h such that
∫ T
0 |h(s)|20 ds ≤ M a.s., suppose

that K2 ≤ κ2 and L2 ≤ λ2 for small κ2, λ2. Let uh(0) = ξ be in F0 s.t.
E |ξ|4 < +∞.

duh + [Auh + B(uh, uh) + R̃uh]dt = σ(uh)dW (t) + σ̃(uh) h dt

has a unique solution in X = C ([0,T ],H) ∩ L2(0,T ; V ) s.t.

E
(

sup
0≤t≤T

|uh(t)|4 +

∫ T

0
‖uh(t) ‖2 dt

)
≤ C (M, κ2, λ2)

(
1 + E |ξ|4

)
.
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Proof of the well posedeness and apriori estimates
Galerkin approximations

F : [0,T ]× V → V ′ be defined by
F (t, u) = −Au − B(u, u)− R̃(t, u) , ∀t ∈ [0,T ], ∀u ∈ V .

〈F (u)− F (v) , u − v〉 ≤ −(1− η)‖u − v‖2 +
(
R1 + Cη‖v‖4H

)
|u − v |2.

{ϕn}n≥1 ONB of H such that ϕn ∈ Dom(A). For n ≥ 1, let
Hn = span(ϕ1, · · · , ϕn) ⊂ Dom(A) , Pn : H → Hn orthogonal projection
from H onto Hn, σn = Pnσ and σ̃n = Pnσ̃
For h ∈ AM , evolution equation on (n-dim. space) Hn defined by
un,h(0) = Pnξ:

dun,h(t) =
[
F (un,h(t)) + σ̃(un,h(t))h(t)

]
dt + σ(un,h(t))dWn(t)

and Wn =
∑

1≤j≤n
√

qjβj(t)ej . For k = 1, · · · , n

d(un,h(t), ϕk) =
[
〈F (un,h(t)), ϕk〉+ (σ̃(un,h(t))h(t), ϕk)

]
dt

+
n∑

j=1

q
1
2
j

(
σ(un,h(t))ej , ϕk

)
dβj(t).
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Proof of the well posedeness and apriori estimates
Explosion time for the Galerkin approximation

B is bilinear and F locally Lipschitz. There exists a maximal solution
un,h and a stopping time τn,h such that the evolution equation for un,h

holds for t < τn,h and as t ↑ τn,h < T , |un,h(t)| → ∞.
Prove that τn,h = T a.s.

Proposition

Fix M > 0, T > 0, h ∈ AM , 0 ≤ K2 ≤ K̄2 and ξ ∈ L2p(Ω,H).
|σ̃(t, u)|2L(H0,H) ≤ K̃0 + K̃1|u|2 + K̃2‖u‖2, ∀t ∈ [0,T ], ∀u ∈ V ,

For p ≥ 1 there exists K̄2 = K̄2(p,T ,M) and C = C (p,K2,M,T ) such
that for 0 ≤ K2 < K̄2: τn,h = T a.s. and a modification of the solution
un,h ∈ C ([0,T ],Hn)

sup
n

E
(

sup
0≤t≤T

|un,h(t)|2p +

∫ T

0
‖un,h(s)‖2 |un,h(s)|2(p−1)ds

)
≤ C

(
E|ξ|2p + 1

)
A. Millet On stochastic 2D NS equations



Proof of the well posedeness and apriori estimates
〈B(u, u), u〉 = 0

Fix N > 0 and τN = inf{t : |un,h(t)| ≥ N} ∧ T . Itô’s formula for |.|2
and 〈B(u, u), u〉 = 0,

|un,h(t ∧ τN)|2 = |Pnξ|2 + 2

∫ t∧τN

0

(
σn(un,h(s))dWn(s), un,h(s)

)
− 2

∫ t∧τN

0
‖un,h(s)‖2ds +

∫ t∧τN

0
|σn(un,h(s)) Πn|2LQ

ds

− 2

∫ t∧τN

0

(
R̃(un,h(s))− σ̃n(un,h(s))h(s), un,h(s)

)
ds

Itô’s formula for z → zp with p ≥ 2 and z = |un,h(t ∧ τN)|2 plus
conditions on coefficients
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Proof of the well posedeness and apriori estimates
Generalized Gronwall’s lemma

Lemma

Let X , Y , I and ϕ be non-negative processes and Z be a non-negative
integrable random variable. Assume that I is non-decreasing and there
exist non-negative constants C , α, β, γ, δ with

∫ T
0 ϕ(s) ds ≤ C a.s.,

2βeC ≤ 1, 2δeC ≤ α and such that for 0 ≤ t ≤ T ,

X (t) + αY (t) ≤ Z +

∫ t

0
ϕ(r) X (r) dr + I (t), a.s.,

E(I (t)) ≤ β E(X (t)) + γ

∫ t

0
E(X (s)) ds + δ E(Y (t)) + C̃ ,

where C̃ > 0 is a constant. If X ∈ L∞([0,T ]× Ω), then we have

E
[
X (t) + αY (t)

]
≤ 2 exp

(
C + 2tγeC

) (
E(Z ) + C̃

)
, t ∈ [0,T ].
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Proof of the well posedeness and apriori estimates
using the generalized Gronwall lemma

Apply the generalized Gronwall lemma to
X (t) = sups≤t∧τN |un,h(t ∧ τN)|2p,

Y (t) =
∫ t∧τN
0 |un,h(r)|2(p−1) ‖un,h(r)‖2 dr , for t ∈ [0,T ]

X (t) + pY (t) ≤ Z (|ξ|2p,T ,M) +

∫ t∧τN

0
ϕ(r)X (r)dr + I (t)

where
∫ T
0 ϕ(s)ds ≤ C (T ,M) a.s.,

I (t) = sup0≤s≤t |J(s)| ,

J(t) = 2p
∣∣∣ ∫ t∧τN

0

(
σn(un,h(r)) dWn(r), un,h(r) |un,h(r)|2(p−1)

)∣∣∣
Use the BDG inequality: For β small enough and then K2 small enough,
there exist C , C̃ such that for t ∈ [0,T ],

E
[
X (t) + Y (t)

]
≤ 2 exp

(
CM + C̃ teCM

) (
EZ (|ξ|2p,T ,M) + C (p,T )

)
.
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Proof of the well posedeness and apriori estimates
Weakly converging subsequences

N →∞, τN → τn,h and upper estimate above independent of N and n.
Hence on τn,h < T , sups≤τN |un,h(s)| = +∞. Contradiction.
Let E|ξ|4 <∞ and use interpolation ‖u‖4H ≤ C |u|2‖u‖2.
Set ΩT = [0,T ]× Ω. There exists a subsequence of un,h and

uh ∈ X := L2(ΩT ,V ) ∩ L4(ΩT ,H) ∩ L4(Ω, L∞([0,T ],H)),

Fh ∈ L2(ΩT ,V
′) and Sh, S̃h ∈ L2(ΩT , LQ), and of r.v.

ũh(T ) ∈ L2(Ω,H) such that:
(i) un,h → uh weakly in L2(ΩT ,V ),
(ii) un,h → uh weakly in L4(ΩT ,H),
(iii) un,h is weak star converging to uh in L4(Ω, L∞([0,T ],H)),
(iv) un,h(T )→ ũh(T ) weakly in L2(Ω,H),
(v) F (un,h)→ Fh weakly in L2(ΩT ,V

′),
(vi) σn(un,h)Πn → Sh weakly in L2(ΩT , LQ),

(vii) σ̃n(un,h)h→ S̃h weakly in L
4
3 (ΩT ,H)
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Proof of the well posedeness and apriori estimates
Identification of the limit uh

Pass evolution equation to the limit (inner product with fk(t)ϕj)
fk ∈ H1(−δ,T + δ) such that ‖fk‖∞ = 1, fk = 1 on (−δ, t − 1

k ) and
fk = 0 on

(
t,T + δ

)
implies

0 =
(
ξ − uh(t), ϕj

)
+

∫ t

0

(
Sh(s)dW (s), ϕj

)
+

∫ t

0
〈Fh(s) + S̃h(s), ϕj〉ds

j arbitrary and for f = 1(−δ,T+δ) yields uh(T ) = ũh(T ) where

uh(t) = ξ +

∫ t

0
Sh(s)dW (s) +

∫ t

0
Fh(s)ds +

∫ t

0
S̃h(s)ds

Prove that ds ⊗ dPa.s.

Sh(s) = σ(uh(s)), Fh(s) = F (uh(s)) and S̃h(s) = σ̃(uh(s)) h(s)
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Proof of the well posedeness and apriori estimates
Identification of the limit uh

Let v ∈ X = L4(ΩT ,H)∩ L4
(
Ω, L∞([0,T ],H)

)
∩ L2(ΩT ,V ) . Suppose

that L2 < 2 and let 0 < η < 2−L2
3 ; set

r(t) =

∫ t

0

[
2 R1 + 2 Cη ‖v(s)‖4H + L1 + 2

√
L̃1|h(s)|0 +

L̃2

η
|h(s)|20

]
ds,

Apply Itô’s formula to |u(t)|2 e−r(t) for u = uh and u = un,h leads to
prove that upper estimate lim infn Xn, where

Xn = E
∫ T

0
e−r(s)

[
− r ′(s)

{∣∣un,h(s)− v(s)
∣∣2 + 2

(
un,h(s)− v(s) , v(s)

)}
+ 2〈F (un,h(s)), un,h(s)〉+ |σn(un,h(s))Πn|2LQ

+ 2
(
σ̃(un,h(s))h(s), un,h(s)

)]
ds.

Some coercivity and monoticity properties (only valid in 2D) based on

〈F (u)−F (v) , u − v〉 ≤ −(1− η)‖u − v‖2 +
(
R1 + Cη‖v‖4H

)
|u − v |2

imply
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Proof of the well posedeness and apriori estimates
Identification of the limit uh

For any v ∈ X ,

E
∫ T

0
e−r(s)

{
− r ′(s)|uh(s)− v(s)|2 + 2〈Fh(s)− F (v(s)), uh(s)− v(s)〉

+ |Sh(s)− σ(v(s))|2LQ
+ 2
(

S̃h(s)− σ̃(v(s))h(s) , uh(s)− v(s)
)}

ds ≤ 0.

v = uh ∈ X implies Sh(s) = σ(uh(s))
ṽ ∈ L∞([0,T ]× Ω) and vλ = uh − λṽ previous result with vλ and rλ
Let λ→ 0 and divide the inequality for vλ and rλ by λ > 0 (resp.
λ < 0) yields

E
∫ T

0
e−r0(s)

[〈
Fh(s)−F (uh(s)), ṽ(s)

〉
+
(
S̃h(s)−σ̃(uh(s))h(s), ṽ(s)

)]
ds = 0

Hence uh(t) = ξ +
∫ t
0 σ(uh(s))dW (s) +

∫ t
0

[
F (uh(s)) + σ̃(uh(s))h(s)

]
ds
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Proof of the well posedeness and apriori estimates
Time regularity of uh ; uniqueness

For δ > 0, e−δA maps H to V and V ′ to H. For δ > 0

e−δAuh ∈ C ([0,T ],H) a.s.

Set Gδ = Id − e−δA, apply Itô’s formula to |Gδuh(t)|2
As δ → 0,

E
(

sup
0≤t≤T

|Gδ(uh(t))|2
)

= 0

Let v ∈ C ([0,T ],H) be another solution, set U = uh − v and
τN = inf{t ≥ 0 : |uh(t)| ≥ N} ∧ inf{t ≥ 0 : |v(t)| ≥ N} ∧ T
Apply Itô’s formula for

exp
(
− a

∫ s∧τN

0
‖uh(r)‖4Hdr

)
|U(s ∧ τN)|2

Apply the extended Gronwall lemma
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Some ”weak” control of time increments

Given M > 0, N > 0, h ∈ AM , let uh denote the solution to

duh(t) + [Auh(t) + B(uh(t)) + R̃(t, uh(t))] dt =

σ(t, uh(t)) dW (t) + σ̃(t, uh(t)) h(t) dt

GN(t) =
{
ω :

(
sup

0≤s≤t
|uh(s)(ω)|2

)
∨
(∫ t

0
‖uh(s)(ω)‖2ds

)
≤ N

}
.

Lemma

Under the conditions of the well-posedeness theorem, if the initial
condition ξ ∈ L4(Ω; H), there exists a positive constant C such that for
any h ∈ AM , if ψn : [0,T ]→ [0,T ] is a Borel function with
s ≤ ψn(s) ≤ s + c2−n or s − c2−n ≤ ψn(s) ≤ s

In(h) := E
[
1GN(T )

∫ T

0
|uh(s)− uh(ψn(s))|2 ds

]
≤ C 2−

n
2 .
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Large deviation principles
Small perturbation

Evolution equation perturbed by a ”small” parameter ε

dφε + [Aφε + B(φε) + Rφε] dt =
√
ε σ(φε)dW (t),

φ(0) = ξ ∈ H. Solution exists if ε ≤ ε0 for all Ki

Prove a LDP as ε→ 0 in X := C
(
[0,T ]; H

)
∩ L2

(
(0,T ); V

)
‖φ‖X =

{
sup

0≤s≤T
|φ(s)|2 +

∫ T

0
‖φ(s)‖2ds

} 1
2
.

For every closed (resp. open) set F (resp. G ) of X :

lim sup
ε→0

ε log P(φε ∈ F ) ≤ − inf{I (ψ), ψ ∈ F}.

lim inf
ε→0

ε log P(φε ∈ G ) ≥ − inf{I (ψ), ψ ∈ G}.

with a good rate function I : X → [0,+∞] , i.e., level sets
{ψ ∈ X : I (ψ) ≤ M} are compact subsets of X .
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Formulation of LDP
Statement of the LDP - Small perturbation

Let h ∈ L2([0,T ],H0) ; let φh = G 0(
∫ .
0 h(s)ds) = G0(h) denote the

deterministic controlled equation

dφh(t)+
[
Aφh(t)+B(φh(t))+Rφh(t)

]
dt = σ(φh(t))h(t)dt, φh(0) = ξ

Theorem

(Chueshov-M.) Let ξ ∈ H and K2 = L2 = 0. The solution φε of

dφε + [Aφε + B(φε) + Rφε]dt =
√
ε σ(φε)dW (t), φε(0) = ξ ∈ H.

satisfies a LDP in X = C ([0,T ]; H) ∩ L2(0,T ; V ) with good r.f.

Iξ(ψ) = inf{‖h‖2L2([0,T ],H0)
/2 : h ∈ L2(0,T ; H0), ψ = G0(h)}

Proved for 2D NS (Shritharan-Sundar), Boussinesq (Duan-M.), small
perturbed shell models (Manna, Shritharan & Sundar)
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Proof of the LDP
Weak convergence

The main step is the following:

Proposition

Suppose K2 = L2 = 0, let ξ be F0-measurable such that E |ξ|4H < +∞.
Let hε converge to h0 in distribution as random elements taking values
in AM (predictable elements which a.s.¡belong to the ball SM of the
RKHS), and endowed with the weak topology of L2(0,T ; H0). Then as
ε→ 0, the solution uhε of the stochastic controlled equation converges
in distribution to the solution uh0 of the controlled equation in
X = C ([0,T ]; H) ∩ L2((0,T ); V ), where for ε ≥ 0: uhε(0) = ξ and

duhε +[Auhε +B(uhε)+ R̃(t, uhε)]dt = σ(uhε)hε(t)dt +
√
ε σ(uhε)dW (t)
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Formulation of the LDP
Inviscid LDP

Let the positive viscosity coefficient ν → 0 and

dtuν(t) +
[
νAuν(t) + B(uν(t))

]
dt =

√
ν σ(t, uν(t)) dW (t), uν(0) = ξ

Prove exponential decay of P(uν(.) ∈ Γ) as ν → 0 for Γ ⊂ Y that is

lim
ν→0

ν ln P(uν ∈ Γ)

in terms of some rate function and interior (resp. closure) of Γ for some
topology which is not the ”optimal” one
Why ? The rate function is formulated in terms of the ”irregular”
inviscid case, for h in the RKHS of the noise,

du0
h(t) + B(u0

h(t)) dt = σ(t, u0
h(t)) h(t) dt , u0

h(0) = ξ

Requires some more hypothesis on σ with Radonifying operators
(extend trace-class operators for non Hilbert Sobolev spaces)
One can extend the stochastic calculus (Itô’s formula and BDG
inequality) to Radonifying operators
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Formulation of the LDP
Inviscid NS equations

Theorem

(Bessaih-M.) Let ξ ∈ V satisfy curl ξ = ∂1ξ2 − ∂2ξ1 ∈ L∞(D),
σ ∈ C (V ; LQ(H0,V )) be such that curl σ ∈ C (H1,q; R(H0, L

q(D)))
with q > 2 satisfies ”growth and Lipschitz conditions”. Then as
ν → 0, the distribution of the solution uν to
duνt + [νAuνt + B(uνt , u

ν
t )] dt =

√
νσ(uνt ) dW (t)

with the initial condition uν0 = ξ satisfies in X = C ([0,T ]; Lq(D) ∩ H)
endowed with the norm ‖u‖X := sup0≤t≤T |ut |q satisfies a LDP with
the good rate function

I (u) = inf{‖h‖2L2([0,T ],H0)
/2 : u = u0

h , h ∈ L2(0,T ; H0} and

and u0
h is the unique solution to the control equation

du0
h(t) + B(u0

h(t), u0
h(t)) dt = σ(u0

h(t)) h(t) dt, u0
h(0) = ξ

Similar result proved by Mariani (σ multiplied by
√
ε, ε coefficient of an

operator) for conservation laws
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The ”Stroock-Varadhan” theorem
The problem

Prove a ”Stroock-Varadhan” theorem to characterize the support in
X = C ([0,T ]; H) ∩ L2([0,T ],V ) of the distribution of general 2D
hydrodynamical models

du(t)+
[
Au(t)+B

(
u(t)

)
+Ru(t)

]
dt = σ(u(t)) dW (t), u(0) = ξ ∈ H,

SPDE setting, for hyperbolic, wave, parabolic, Burgers, ”mild solutions”
in Hilbert spaces, similar results proved by Bally-M.-Sanz Solé, M.-Sanz
Solé, Twardowska-Zabczyck, Cardon-Weber-M, Nakayama
Condition (R) Recall that V ⊂ H ⊂ H
(i) t ∈ [0,T ] 7→ ‖u(t)‖H is continuous a.s.
(ii) there exists q > 0 such that for any constant C > 0 and
τC := inf{t : sups≤t |u(s)|2 +

∫ t
0 ‖u(s)‖2ds ≥ C} ∧ T

E
(

sup
[0,τC ]

‖u(t)‖qH
)
<∞

A. Millet On stochastic 2D NS equations



Support theorem
characterization for hydrodynamical models

σ : H → LQ(H0,H), (ej , j ≥ 1) CONS of H such that Qej = qj ej with∑
j qj = Trace(Q) < +∞, σj : H → H defined by

σj(u) := σ(u)ej , ∀u ∈ H
• For any j , σj twice (Fréchet) differentiable, with bounded derivatives.
• Stratonovich correction ρ(u) =

∑
j≥1 Dσj(u)σj(u)

Then if ξ ∈ H and condition (R) holds, the support of the distribution
of the solution u to

du(t) + [Au(t) + B(u(t)) + Ru(t)] dt = σ(u(t))dW (t), u0 = ξ,

is the closure in X of S(L2([0,T ],H0)) where S(h)0 = ξ and

dS(h)t+[AS(h)t+B(S(h)t)+RS(h)t ] dt = σ(S(h)t)h(t)dt−1

2
ρ(S(h)t)dt

A. Millet On stochastic 2D NS equations



Support Theorem
Wong-Zakai approximation

The support characterization follows from one result of convergence in
probability of some general sequence of evolution equations driven by
W , a finite-dimensional, linear adapted time interpolation W n of W
and an element h of the RKHS of W . (Mackevičius, Aida Kusuoka &
Stroock and M. & Sanz-Solé for diffusion processes)

In general, condition (R) holds for H = Dom(A
1
4 ) when:

|σ(u)|2LQ
≤ K0 + K1|u|2, |σ(u)− σ(v)|2LQ

≤ L|u − v |2

|A
1
4σ(t, u)|2LQ(H0,H) ≤ K (1 + ‖u‖2H), |A

1
4 R(u)| ≤ R̄0(1 + ‖u‖H) .

In first examples, condition (R) holds:
• for 2D Navier-Stokes equation on periodic domains with no restriction
if (B(u),Au) = 0

• for Boussinesq or 2D MHD models for H = Dom(A
1
4 ) ⊂ L4(D)

• for GOY or Sabra shell models for H = Dom(As) and 0 ≤ s ≤ 1
4
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Stochastic 2D Euler equation
The result

dtu(t) + [B(u(t), u(t)) +∇p]dt = f (t, u) + σ(t, u(t))dWt

with div u = 0 in D, 〈u, n〉 = 0 on ∂D

Theorem

(Brzezniak-Peszat) Suppose that the noise W (t, x) is space
homogeneous with RKHS H0. Let u0 ∈ H1,q for some q > 2,
f : [0,T ]× H1,a →W 1,a for a = 2, q,
σ : [0,T ]× H1,2 → LHS(H0,W

1,2) and
σ : [0,T ]× H1,2 → Radonifying(H0,W

1,q).
Then there exists a triple (Ω,W , u) such that W is a has the imposed
spectral measure (related to the covariance structure) and u(0) = u0,
for every p ∈ [1,∞), u ∈ Lp

(
Ω; L∞(0,T ; H1,2 ∩ H1,q)

)
and u(t)

satisfies the stochastic Euler equation.
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Stochastic 2D Euler equation
Comments

No smoothing effect of the Stokes operator: viscosity ν = 0
Remarks:
• stronger conditions on initial condition and diffusion coefficient
• Weak probabilistic solution : prove tightness of approximations with a
viscosity coefficient ν → 0
• Use again 〈B(u, u), u〉 = 0 and the equation satisfied by
curlu = ∂1u2 − ∂2u1 with

〈curl B(u, v), curl v |curl v |q−2〉 = 0

for u, v ∈ H2,q
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Stochastic 3D NS equations

The coercivity argument used in the identification fails.
Spatially homogeneous noise with diffusion coefficient on R3 and use
some weighted Lp(a) spaces ( with a > 3

2)

‖f ‖pLp(a) =

∫
R3

|f (x)|p(1 + |x |2)−adx

• Capinsky-Peszat: get rid on the pressure by ”testing solution on
appropriate functions” involving the weight. Give an initial distribution
on L2(a) and prove the existence of a triple (Ω,W , u) such that for
a > 3

2 , there exists a solution u ∈ Lp(Ω, L∞(0,T ; L2(a))
They approximate the solution by an auxilliary equation uε and prove
tightness

dtuε +
[
−∆uε + B(uε, uε) + ε|uε|4uε − 1

ε
∇div uε

]
dt

= f (t, uε)dt + σ(t, uε)dW (t)
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Stochastic 3D NS equations

• Basson has an additive divergence free noise homogeneous noise
on L2(r) with r > 3

2 and an initial spatially homogeneous distribution
on L2(r) with null divergence.
He approximates by periodic solutions (proving the tightness)
He solves first the equation dtz(t) = ∆z(t)dt + W (t) (which is
divergence free) and then uses deterministic estimates for

dtv(t)−∆v(t)dt + B(v(t) + z(t), v(t) + z(t))dt +∇p = 0

He proves energy estimates involving the pressure for a solution
u ∈ ∩b>3L∞(0,T ; L2(b)) ∩ L2(0,T ; H1,2(a)) for b > 3

2
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