Radonifying Operators and Stochastic Integration

Markus Riedle

Lévy Processes

- U, V Banach spaces
- $(L(t): t \in [0,T])$ Lévy process with values in U
- $N(t,\Lambda) := \sum_{s \in [0,t]} \mathbb{1}_{\Lambda}(\Delta(L(s)) \text{ for } \Lambda \in \mathfrak{B}(U) \text{ with } 0 \notin \overline{\Lambda};$

= number of jumps of L of size in Λ

- $\nu(\Lambda) := E[N(1,\Lambda)]$ for $\Lambda \in \mathfrak{B}(U)$ with $0 \notin \Lambda$ (Lévy measure)
- $M(t,\Lambda) := N(t,\Lambda) t\nu(\Lambda)$ (compensated Poisson random measure)
- $B := \{u \in U : ||u|| \leq 1\}$ (ball in U)

Integration

Definition A function

 $F:[0,T]\times B\to V$

is called stochastically Pettis integrable of order α if

(1)
$$\int_{[0,T]\times B} |\langle F(s,u), v^* \rangle|^2 \ \nu(du)ds < \infty \text{ for all } v^* \in V^*$$

(2) there exists a V-valued random variable Y with $E \|Y\|^{\alpha} < \infty$ s.t.

$$\langle Y, v^* \rangle = \int_{[0,T] \times B} \langle F(s,u), v^* \rangle M(ds, du)$$

for all $v^* \in V^*$.

Application: Lévy-Itô Decomposition

Theorem (SPA 2009)

For every Lévy Process $(L(t) : t \in [0,T])$ there exists

 $\bullet \ b \in U$

• Wiener process $(W(t) : t \in [0,T])$ in U

such that P-a.s.

$$L(t) = bt + W(t) + \underbrace{\int_{[0,T]\times B} u M(dt, du)}_{\text{Pettis integral}} + \underbrace{\int_{[0,T]\times B^c} u N(dt, du)}_{\text{Poisson sum}}$$

for all $t \in [0, T]$.

Excursion: Cylindrical Measures I

A linear mapping $T: V^* \to L^0(\Omega, P)$ is called cylindrical random variable. For $v_1^*, \ldots, v_n^* \in V^*$ and $C \in \mathfrak{B}(\mathbb{R}^n)$ define

$$Z := \{ v \in V : (\langle v, v_1^* \rangle, \dots, \langle v, v_n^* \rangle) \in C \}.$$

Define a set function by

$$\mu_T(Z) := P\Big((Tv_1^*, \dots, Tv_n^*) \in C\Big).$$

Then μ_T is \bullet a set function on the set of all sets of the form Z.

- called cylindrical distribution of T.
- finite additive.
- in general not a measure on $\mathfrak{B}(U)$ but maybe extendable.

Excursion: Cylindrical Measures II

Definition For a cylindrical distribution μ the function

$$\varphi_{\mu}: V^* \to \mathbb{C}, \qquad \varphi_{\mu}(v^*) := \int_{V} e^{i \langle v, v^* \rangle} \, \mu(dv)$$

is called *characteristic function*.

Theorem (Levy continuity theorem) For two cylindrical measures μ and ϱ the following are equivalent:

(a) $\mu = \varrho$;

(b) $\varphi_{\mu} = \varphi_{\varrho}$.

Excursion: Cylindrical Measures III

Theorem: (Bochner's Theorem)

Let $\varphi: V^* \to \mathbb{C}$ be a function. Then the following are equivalent:

(a) there exists a cylindrical distribution with characteristic function φ ; (b) the function φ satisfies:

(i) $\varphi(0) = 1;$

(ii) φ is postive definite;

(iii) φ is continuous on every finite-dimensional subspace $G \subseteq V^*$.

Factorising

For $F: [0,T] \times B \to V$ define the cylindrical random variable

$$Z: V^* \to L^0(\Omega, P), \qquad Zv^* := \int_{[0,T] \times B} \langle F(s,u), v^* \rangle \, M(ds, du)$$

and let Q be its covariance operator

$$Q: V^* \to V, \qquad (Qv^*)(w^*) := E[(Zv^*)(Zw^*)],$$

where $V \subseteq V^{**}$. It follows that $Q = RR^*$ for an operator R with

$$V^* \xrightarrow{\mathbf{R}^*} L^2([0,T] \times B, \nu \otimes \mathsf{leb}) \xrightarrow{\mathbf{R}} V$$

and there exists a cylindrical measure m on $L^2([0,T] \times B, \nu \otimes \text{leb})$ s.t.

$$P_Z = m \circ R^{-1}$$

Conclusion

The relation $P_Z = m \circ R^{-1}$ results in:

Theorem: For a function $F : [0, T] \times B \to V$ the following are equivalent:

(a) F is stochastically integrable of order α , i.e.

$$\langle Y, v^* \rangle = \int_{[0,T] \times B} \langle F(s,u), v^* \rangle M(ds, du) = Zv^*$$

for a V-valued random variable Y with $E \|Y\|^{\alpha} < \infty$.

(b) $m \circ R^{-1}$ extends to a genuine measure with α -th moment.

Review: Gaussian case

Let $(W(t) : t \in [0,T])$ be a real-valued Wiener process and define

$$Z: V^* \to L^0(\Omega, P), \qquad Zv^* := \int_{[0,T]} \langle F(s), v^* \rangle W(ds).$$

Then Z is a cylindrical r.v. and its covariance operator satisfies

$$Q: V^* \to V,$$
 $(Qv^*)(w^*) := E[(Zv^*)(Zw^*)],$

where $V \subseteq V^{**}$. It follows that $Q = RR^*$ where

$$V^* \stackrel{R^*}{\longrightarrow} L^2([0,T],\mathsf{leb}) \stackrel{R}{\longrightarrow} V$$

and for the canonical Gaussian cylindrical measure γ on $L^2([0,T],{\rm leb})$ it holds

$$P_Z = \gamma \circ R^{-1}$$

Review: Gaussian case

Theorem: For a function $F : [0, T] \to V$ the following are equivalent:

(a) F is stochastically integrable of order α , i.e.

$$\langle Y, v^* \rangle = \int_{[0,T]} \langle F(s,u), v^* \rangle \, W(ds) = Z v^*$$

for V-valued random variable Y.

(b) $\gamma \circ R^{-1}$ extends to a genuine measure with α -th moment.

Review: canonical Gaussian cylindrical measure γ

Definition: Let *H* be a Hilbert space. The cylindrical distribution γ with characteristic function

$$\varphi: H \to \mathbb{C}, \qquad \varphi(h) := e^{-\frac{1}{2} \|h\|^2}$$

is called *canonical Gaussian cylindrical distribution*.

Well considered:

 $\{R: L^2([0,T],\mathsf{leb}) \to V: \gamma \circ R^{-1} \text{ extends to a measure}\}$

is a Banach space, left and right ideal property,.....

Back to Lévy processes

For $F: [0,T] \times B \rightarrow V$ define the cylindrical random variable

$$Z: V^* \to L^0(\Omega, P), \qquad Zv^* := \int_{[0,T] \times B} \langle F(s,u), v^* \rangle M(ds, du)$$

and let Q be its covariance operator

$$Q: V^* \to V, \qquad (Qv^*)(w^*) := E[(Zv^*)(Zw^*)],$$

where $V \subseteq V^{**}$. It follows that $Q = RR^*$ for an operator R with

$$V^* \xrightarrow{\mathbf{R}^*} L^2([0,T] \times B, \nu \otimes \mathsf{leb}) \xrightarrow{\mathbf{R}} V$$

and there exists a cylindrical distribution m on $L^2([0,T]\times B,\nu\otimes {\rm leb})$ s.t.

$$P_Z = m \circ R^{-1}$$

The canonical infinitely divisible cylindrical measure m

Theorem: Properties of the cylindrical distribution m:

(a) the characteristic function $\varphi_m : L^2([0,T] \times B, \nu \otimes \mathsf{leb}) \to \mathbb{C}$:

$$\varphi_m(f) = \exp\left(\int_{[0,T]\times B} \left(e^{if(s,u)} - 1 - if(s,u)\right)\nu(du)ds\right).$$

(b) For every Lévy process the cylindrical distribution m is not σ -additive. (c) Some more properties...

m-radonifying

Define the linear space and norms

$$\begin{split} \mathscr{R}_m^{\alpha} &:= \{R : L^2([0,T] \times B, \nu \otimes \mathsf{leb}) \to V : m\text{-radonifying of order } \alpha\} \\ \|R\|_1 &:= \left(\int_V \|v\|^{\alpha} \ (m \circ R^{-1})(dv) \right)^{1/\alpha} \\ \|R\|_2 &:= \sup_{\|v^*\| \leqslant 1} \left(\int_{[0,T] \times B} |R^*v^*(t,u)|^2 \ \nu(du) dt \right)^{1/2} \end{split}$$

Theorem:

The space \mathscr{R}_m^{α} with $\|\cdot\|_1 + \|\cdot\|_2$ is a Banach space.

Hilbert spaces

Theorem If V is a Hilbert space the following are equivalent:

(a) $R: L^2([0,T] \times B, \nu \otimes \mathsf{leb}) \to V$ is *m*-radonifying of order $\alpha \in [1,2]$;

(b) $R: L^2([0,T] \times B, \nu \otimes \mathsf{leb}) \to V$ is Hilbert-Schmidt;

(c)
$$\int_{[0,T]\times B} \left\|F(s,u)\right\|^2 \nu(du)ds < \infty.$$

p-type Banach spaces

Definition A Banach space V is of type $p \in [1, 2]$ if there exists a constant $C_p > 0$ such that:

 $X_1, \dots, X_n \text{ } V\text{-valued, independent random variables,}$ $E \|X_k\|^p < \infty \text{ and } E \|X_k\| = 0$ $\implies E \left\| \sum_{k=1}^n X_k \right\|^p \leqslant C_p \sum_{k=1}^n E \|X_k\|^p.$

Examples: Hilbert spaces are of type 2 Every Banach space is of type 1 L^p is of type p for $p \in [1, 2]$ l^p is of type p for $p \in [1, 2]$

q-cotype Banach spaces

Definition A Banach space V is of cotype $q \in [2, \infty]$ if there exists a constant $C_q > 0$ such that:

 $X_1, \dots, X_n \text{ } V\text{-valued, independent random variables,}$ $E \|X_k\|^q < \infty \text{ and } E \|X_k\| = 0$ $\implies E \left\| \sum_{k=1}^n X_k \right\|^q \ge C_q \sum_{k=1}^n E \|X_k\|^q.$

Examples: Every Hilbert space is of cotype 2 L^q is of cotype q for $q \in [2, \infty)$ l^q for of cotype q for $q \in [2, \infty)$

type and cotype Banach spaces

Theorem

(a) If V is a Banach space of type $p\in [1,2]$ then

$$\int_{[0,T]\times B} \left\| F(t,u) \right\|^p \nu(du) dt < \infty$$

implies that R is m-radonifying of order p.

(b) If V is a Banach space of cotype $q\in [2,\infty)$ then

$$\int_{[0,T]\times B} \left\| F(t,u) \right\|^q \nu(du) dt < \infty$$

is necessary that R is m-radonifying of order q.

Evolution equation on Banach spaces

$$dX(t) = AX(t) dt$$
$$+ F dW(t) + \int_{[0,T]\times B} G(u) M(dt, du) + \int_{[0,T]\times B^c} H(u) N(dt, du)$$
$$X(0) = x_0$$

- A is generator of C_0 -semigroup $(T(t))_{t \ge 0}$;
- $F: U \to V$ linear bounded operator
- $G: U \to V$ with $\int_{[0,T] \times B} \langle G(u), v^* \rangle \, \nu(du) < \infty$ for all $v^* \in V^*$;
- $H: U \rightarrow V$ measurable;
- $x_0 \in V$.

Evolution equation on Banach spaces

Definition:

A V-valued process $(Y(t) : t \ge 0)$ is called weak solution if P-a.s.

$$\begin{split} \langle Y(t), v^* \rangle &= \langle y_0, v^* \rangle + \int_0^t \langle Y(s), A^* v^* \rangle \, ds + \langle FW(t), v^* \rangle \\ &+ \int_{[0,t] \times B} \langle G(u), v^* \rangle \, M(ds, du) \\ &+ \int_{[0,t] \times B^c} \langle H(u), v^* \rangle \, N(ds, du) \end{split}$$

for every $v^* \in \mathsf{D}(A^*)$ and $t \ge 0$.

Evolution equation on Banach spaces

Theorem: The following are equivalent:

(a) there exists a weak solution $(Y(t): t \ge 0)$;

(b) (i) $t \mapsto T(t)F$ is stochastically Pettis integrable with respect to W

(ii) $(t, u) \mapsto T(t)G(u)$ is stochastically Pettis integrable with respect to M

In this situation, the solution Y is represented P-a.s. by

$$\begin{split} Y(t) &= T(t)y_0 + \int_0^t T(t-s)FW(ds) \\ &+ \int_{[0,t] \times D} T(t-s)G(u)\,M(ds,du) \\ &+ \int_{[0,t] \times \{u: \ \|u\| \ge 1\}} T(t-s)H(u)\,N(ds,du). \end{split}$$