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Lévy Processes

• U , V Banach spaces

• (L(t) : t ∈ [0, T ] ) Lévy process with values in U

• N(t,Λ) :=
∑
s∈[0,t]

1Λ(∆(L(s)) for Λ ∈ B(U) with 0 /∈ Λ̄;

= number of jumps of L of size in Λ

• ν(Λ) := E[N(1,Λ)] for Λ ∈ B(U) with 0 /∈ Λ (Lévy measure)

• M(t,Λ) := N(t,Λ)− tν(Λ) (compensated Poisson random measure)

• B := {u ∈ U : ‖u‖ 6 1} (ball in U)
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Integration

Definition A function

F : [0, T ]×B → V

is called stochastically Pettis integrable of order α if

(1)

∫
[0,T ]×B

|〈F (s, u), v∗〉|2 ν(du)ds <∞ for all v∗ ∈ V ∗.

(2) there exists a V -valued random variable Y with E ‖Y ‖α <∞ s.t.

〈Y, v∗〉 =

∫
[0,T ]×B

〈F (s, u), v∗〉M(ds, du)

for all v∗ ∈ V ∗.
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Application: Lévy-Itô Decomposition

Theorem (SPA 2009)

For every Lévy Process (L(t) : t ∈ [0, T ]) there exists

• b ∈ U

• Wiener process (W (t) : t ∈ [0, T ]) in U

such that P -a.s.

L(t) = bt+W (t) +

∫
[0,T ]×B

uM(dt, du)︸ ︷︷ ︸
Pettis integral

+

∫
[0,T ]×Bc

uN(dt, du)︸ ︷︷ ︸
Poisson sum

for all t ∈ [0, T ].
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Excursion: Cylindrical Measures I

A linear mapping T : V ∗ → L0(Ω, P ) is called cylindrical random variable.

For v∗1, . . . , v
∗
n ∈ V ∗ and C ∈ B(Rn) define

Z := {v ∈ V : (〈v, v∗1〉, . . . , 〈v, v∗n〉) ∈ C}.

Define a set function by

µT (Z) := P
(

(Tv∗1, . . . , T v
∗
n) ∈ C

)
.

Then µT is • a set function on the set of all sets of the form Z.

• called cylindrical distribution of T .

• finite additive.

• in general not a measure on B(U) but maybe extendable.
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Excursion: Cylindrical Measures II

Definition For a cylindrical distribution µ the function

ϕµ : V ∗ → C, ϕµ(v∗) :=

∫
V

ei〈v,v
∗〉 µ(dv)

is called characteristic function.

Theorem (Levy continuity theorem)

For two cylindrical measures µ and % the following are equivalent:

(a) µ = %;

(b) ϕµ = ϕ%.
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Excursion: Cylindrical Measures III

Theorem: (Bochner’s Theorem)

Let ϕ : V ∗ → C be a function. Then the following are equivalent:

(a) there exists a cylindrical distribution with characteristic function ϕ;

(b) the function ϕ satisfies:

(i) ϕ(0) = 1;

(ii) ϕ is postive definite;

(iii) ϕ is continuous on every finite-dimensional subspace G ⊆ V ∗.
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Factorising

For F : [0, T ]×B → V define the cylindrical random variable

Z : V ∗ → L0(Ω, P ), Zv∗ :=

∫
[0,T ]×B

〈F (s, u), v∗〉M(ds, du)

and let Q be its covariance operator

Q : V ∗ → V, (Qv∗)(w∗) := E
[
(Zv∗)(Zw∗)

]
,

where V ⊆ V ∗∗. It follows that Q = RR∗ for an operator R with

V ∗
R∗−→ L2([0, T ]×B, ν ⊗ leb)

R−→ V

and there exists a cylindrical measure m on L2([0, T ]×B, ν ⊗ leb) s.t.

PZ = m ◦R−1
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Conclusion

The relation PZ = m ◦R−1 results in:

Theorem: For a function F : [0, T ]×B → V the following are equivalent:

(a) F is stochastically integrable of order α, i.e.

〈Y, v∗〉 =

∫
[0,T ]×B

〈F (s, u), v∗〉M(ds, du) = Zv∗

for a V -valued random variable Y with E ‖Y ‖α <∞.

(b) m ◦R−1 extends to a genuine measure with α-th moment.
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Review: Gaussian case

Let (W (t) : t ∈ [0, T ]) be a real-valued Wiener process and define

Z : V ∗ → L0(Ω, P ), Zv∗ :=

∫
[0,T ]

〈F (s), v∗〉W (ds).

Then Z is a cylindrical r.v. and its covariance operator satisfies

Q : V ∗ → V, (Qv∗)(w∗) := E[(Zv∗)(Zw∗)],

where V ⊆ V ∗∗. It follows that Q = RR∗ where

V ∗
R∗−→ L2([0, T ], leb)

R−→ V

and for the canonical Gaussian cylindrical measure γ on L2([0, T ], leb)

it holds

PZ = γ ◦R−1
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Review: Gaussian case

Theorem: For a function F : [0, T ]→ V the following are equivalent:

(a) F is stochastically integrable of order α, i.e.

〈Y, v∗〉 =

∫
[0,T ]

〈F (s, u), v∗〉W (ds) = Zv∗

for V -valued random variable Y .

(b) γ ◦R−1 extends to a genuine measure with α-th moment.
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Review: canonical Gaussian cylindrical measure γ

Definition: Let H be a Hilbert space. The cylindrical distribution γ

with characteristic function

ϕ : H → C, ϕ(h) := e−
1
2‖h‖

2

is called canonical Gaussian cylindrical distribution.

Well considered:

{R : L2([0, T ], leb)→ V : γ ◦R−1extends to a measure}

is a Banach space, left and right ideal property,......
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Back to Lévy processes

For F : [0, T ]×B → V define the cylindrical random variable

Z : V ∗ → L0(Ω, P ), Zv∗ :=

∫
[0,T ]×B

〈F (s, u), v∗〉M(ds, du)

and let Q be its covariance operator

Q : V ∗ → V, (Qv∗)(w∗) := E
[
(Zv∗)(Zw∗)

]
,

where V ⊆ V ∗∗. It follows that Q = RR∗ for an operator R with

V ∗
R∗−→ L2([0, T ]×B, ν ⊗ leb)

R−→ V

and there exists a cylindrical distribution m on L2([0, T ]× B, ν ⊗ leb)

s.t.

PZ = m ◦R−1
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The canonical infinitely divisible cylindrical measure m

Theorem: Properties of the cylindrical distribution m:

(a) the characteristic function ϕm : L2([0, T ]×B, ν ⊗ leb)→ C:

ϕm(f) = exp

(∫
[0,T ]×B

(
eif(s,u) − 1− if(s, u)

)
ν(du)ds

)
.

(b) For every Lévy process the cylindrical distribution m is not σ-additive.

(c) Some more properties...

14



m-radonifying

Define the linear space and norms

Rα
m := {R : L2([0, T ]×B, ν ⊗ leb)→ V : m-radonifying of order α}

‖R‖1 :=

(∫
V

‖v‖α (m ◦R−1)(dv)

)1/α

‖R‖2 := sup
‖v∗‖61

(∫
[0,T ]×B

|R∗v∗(t, u)|2 ν(du)dt

)1/2

Theorem:

The space Rα
m with ‖·‖1 + ‖·‖2 is a Banach space.
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Hilbert spaces

Theorem If V is a Hilbert space the following are equivalent:

(a)R : L2([0, T ]×B, ν ⊗ leb)→ V is m-radonifying of order α ∈ [1, 2];

(b) R : L2([0, T ]×B, ν ⊗ leb)→ V is Hilbert-Schmidt;

(c)

∫
[0,T ]×B

‖F (s, u)‖2 ν(du)ds <∞.
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p-type Banach spaces

Definition A Banach space V is of type p ∈ [1, 2] if there exists a

constant Cp > 0 such that:

X1, . . . , Xn V -valued, independent random variables,

E ‖Xk‖p <∞ and E ‖Xk‖ = 0

=⇒ E

∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥
p

6 Cp

n∑
k=1

E ‖Xk‖p .

Examples: Hilbert spaces are of type 2

Every Banach space is of type 1

Lp is of type p for p ∈ [1, 2]

lp is of type p for p ∈ [1, 2]
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q-cotype Banach spaces

Definition A Banach space V is of cotype q ∈ [2,∞] if there exists a

constant Cq > 0 such that:

X1, . . . , Xn V -valued, independent random variables,

E ‖Xk‖q <∞ and E ‖Xk‖ = 0

=⇒ E

∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥
q

> Cq

n∑
k=1

E ‖Xk‖q .

Examples: Every Hilbert space is of cotype 2

Lq is of cotype q for q ∈ [2,∞)

lq for of cotype q for q ∈ [2,∞)
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type and cotype Banach spaces

Theorem

(a) If V is a Banach space of type p ∈ [1, 2] then∫
[0,T ]×B

‖F (t, u)‖p ν(du)dt <∞

implies that R is m-radonifying of order p.

(b) If V is a Banach space of cotype q ∈ [2,∞) then∫
[0,T ]×B

‖F (t, u)‖q ν(du)dt <∞

is necessary that R is m-radonifying of order q.
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Evolution equation on Banach spaces

dX(t) = AX(t) dt

+ F dW (t) +

∫
[0,T ]×B

G(u)M(dt, du) +

∫
[0,T ]×Bc

H(u)N(dt, du)

X(0) = x0

• A is generator of C0-semigroup (T (t))t>0;

• F : U → V linear bounded operator

• G : U → V with

∫
[0,T ]×B

〈G(u), v∗〉 ν(du) <∞ for all v∗ ∈ V ∗;

• H : U → V measurable;

• x0 ∈ V .
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Evolution equation on Banach spaces

Definition:

A V -valued process (Y (t) : t > 0) is called weak solution if P -a.s.

〈Y (t), v∗〉 = 〈y0, v
∗〉+

∫ t

0

〈Y (s), A∗v∗〉 ds+ 〈FW (t), v∗〉

+

∫
[0,t]×B

〈G(u), v∗〉M(ds, du)

+

∫
[0,t]×Bc

〈H(u), v∗〉N(ds, du)

for every v∗ ∈ D(A∗) and t > 0.
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Evolution equation on Banach spaces

Theorem: The following are equivalent:

(a) there exists a weak solution (Y (t) : t > 0);

(b) (i) t 7→ T (t)F is stochastically Pettis integrable with respect to W

(ii) (t, u) 7→ T (t)G(u) is stochastically Pettis integrable with respect to M

In this situation, the solution Y is represented P -a.s. by

Y (t) = T (t)y0 +

∫ t

0

T (t− s)F W (ds)

+

∫
[0,t]×D

T (t− s)G(u)M(ds, du)

+

∫
[0,t]×{u : ‖u‖>1}

T (t− s)H(u)N(ds, du).
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