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Lévy Processes
e U, V Banach spaces

o (L(t): t€]0,T]) Lévy process with values in U

o N(t,A):= )  Ix(A(L(s)) for A € B(U) with 0 ¢ A;

s€]0,t]

= number of jumps of L of size in A
e y(A):= FE[N(1,A)] for A e B(U) with 0 ¢ A (Lévy measure)
o M(t,A):= N(t,A) —tv(A) (compensated Poisson random measure)

e B:={uecU: |[u| <1} (ballin U)



Integration

Definition A function
F:0,T]xB—=V

is called stochastically Pettis integrable of order o if

(1) / (F(s, ), 0" 2 v(du)ds < oo for all v* € V*.
[0,T|x B
(2) there exists a V-valued random variable Y with E'||Y]|” < oo s.t.
(Y, v™) :/ (F(s,u),v") M(ds,du)
[0,T]x B

for all v* € V'*,



Application: Lévy-1to Decomposition

Theorem (SPA 2009)
For every Lévy Process (L(t) : t € [0,T]) there exists

ebc U

e Wiener process (W(t): t € [0,T]) in U

such that P-a.s.

L@:M+W®+/

u M (dt, du) +/ u N (dt, du)
[0,T]x B

[0, T x B¢

A\ \ . 4

Pettis integral Poisson sum

for all t € [0,T].



Excursion: Cylindrical Measures |

A linear mapping T : V* — L°(Q, P) is called cylindrical random variable.

For vf,...,v> € V* and C € B(R") define
Z:={veV: ({(vv]),...,{v,v;)) € C}.
Define a set function by
up(2) = P((Tfu;, T € C).

Then pr is @ a set function on the set of all sets of the form Z.
e called cylindrical distribution of 7'
e finite additive.

e in general not a measure on B (U) but maybe extendable.



Excursion: Cylindrical Measures ||

Definition For a cylindrical distribution 1 the function

V' = C, ©u(v”) :Z/Ve“"”"’*W(dv)

is called characteristic function.

Theorem (Levy continuity theorem)

For two cylindrical measures 11 and o the following are equivalent:
(a) p=o

(b) Pu = Po-



Excursion: Cylindrical Measures |l

Theorem: (Bochner’'s Theorem)
Let ¢ : V* — C be a function. Then the following are equivalent:

(2) there exists a cylindrical distribution with characteristic function ¢;

(b) the function ¢ satisfies:
(i) ¢(0) = 1;
(ii) ¢ is postive definite;

(iii) ¢ is continuous on every finite-dimensional subspace G C V'*.



Factorising

For F': [0,T] x B — V define the cylindrical random variable
7. V* = LYQ, P), Zv* = / (F(s,u),v") M(ds,du)
[0, T|x B

and let () be its covariance operator
Q: V=V, (Qu™)(w*) := E[(Zv*)(Zw*)},
where V' C V** It follows that () = RR™* for an operator R with
* R* 2 R
V* — L*(|0,T] x B,r ®leb) — V

and there exists a cylindrical measure m on L%([0,7] x B,v ®leb) s.t.

PZ:mOR_l



Conclusion

The relation P, = m o R~ results in:

Theorem: For a function F': [0, T]x B — V the following are equivalent:

(a) F is stochastically integrable of order «, i.e.
(Y, v™) = / (F(s,u),v") M(ds,du) = Zv*
[0,T|x B

for a V-valued random variable Y with E ||Y || < oc.

(b) m o R™! extends to a genuine measure with a-th moment.



Review: Gaussian case

Let (W (t): t € [0,T]) be a real-valued Wiener process and define
Z:V* = L°(Q, P), Zv* = / (F(s),v*) W (ds).
(0,77

Then Z is a cylindrical r.v. and its covariance operator satisfies
Q:V =V, (Qu)(w") = E|(Zv")(Zw")],
where V' C V**. It follows that () = RR" where
v 2 1200, 7], leb) 5 v

and for the canonical Gaussian cylindrical measure ~ on L*([0,T], leb)
it holds

PZ:’}/OR_l

10



Review: Gaussian case

Theorem: For a function F': [0,T] — V the following are equivalent:

(a) F is stochastically integrable of order «, i.e.

(Y,v™) = /[0 T}(F(S,u),v*> W(ds) = Zv*

for V-valued random variable Y.

(b) vo R™! extends to a genuine measure with a-th moment.
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Review: canonical Gaussian cylindrical measure ~

Definition: Let H be a Hilbert space. The cylindrical distribution -~y
with characteristic function

Ly,02
w: H— C, o(h) = e 2I"

is called canonical Gaussian cylindrical distribution.

Well considered:
{R: L*([0,T],leb) — V : vo R 'extends to a measure}

is a Banach space, left and right ideal property,......
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Back to Lévy processes

For F': [0,T] x B — V define the cylindrical random variable
7.V S IQP),  Zut = / (F(s,u),v") M(ds, du)
[0,T]x B

and let () be its covariance operator
Q:V* =YV, (Qu™)(w™) := E[(Zv*)(Zw*)},
where V' C V**. It follows that () = RR" for an operator R with
* R

v L L2([0,T] x B,r ®leb) —5 V

and there exists a cylindrical distribution m on L?([0,T] x B,v ® leb)
S.t.

PZ:mOR_l
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The canonical infinitely divisible cylindrical measure m

Theorem: Properties of the cylindrical distribution m:

(a) the characteristic function ¢,, : L*([0,T] x B, v ® leb) — C:

om(f) = exp </[O,T]><B (6if(8’u) —1—1af(s, u)) V(du)ds> .

(b) For every Lévy process the cylindrical distribution m is not o-additive.

(c) Some more properties...
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m-radonifying
Define the linear space and norms

Z° = {R: L*([0,T] x B,v ® leb) — V : m-radonifying of order o’}

e (/V ol o R1><dv>>1/a

1/2
IRlyi= sup ([ R () viduar
|v*]]<1 0,T]x B

Theorem:
The space Z¢, with ||-||; + ||-||5 is @ Banach space.
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Hilbert spaces

Theorem If V' is a Hilbert space the following are equivalent:
(a) R: L*([0,T] x B,v ® leb) — V is m-radonifying of order o € [1, 2];

(b) R: L?*([0,T] x B,v ® leb) — V is Hilbert-Schmidt;

(c) /[O’T]XB | F'(s,u)]|” v(du)ds < oo.
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p-type Banach spaces

Definition A Banach space V is of type p € [1,2] if there exists a

constant C), > 0 such that:

Xq,...,X,, V-valued, independent random variables,

E | Xi||" < oo and E || X =0

— b

> X
k=1

Examples: Hilbert spaces are of type 2
Every Banach space is of type 1
LP is of type p for p € [1, 2]
[P is of type p for p € [1, 2]

P n
<G EIXe].
k=1
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g-cotype Banach spaces

Definition A Banach space V is of cotype ¢ € [2, o] if there exists a
constant C; > 0 such that:

X1,...,X,, V-valued, independent random variables,

E | Xg]|? <ooand E || Xg]| =0

n q n
= E|) Xl =2C> EIXi.
k=1 k=1

Examples: Every Hilbert space is of cotype 2
L1 is of cotype ¢ for q € [2, )
[ for of cotype q for q € [2,00)
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type and cotype Banach spaces

Theorem
(a) If V is a Banach space of type p € [1, 2] then

[ IRl v < o
[0,T|x B

implies that R is m-radonifying of order p.

(b) If V is a Banach space of cotype ¢ € [2,00) then

[ IRl vt < oo
[0,T]x B

Is necessary that R is m-radonifying of order q.
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Evolution equation on Banach spaces

e A is generator of Cy-semigroup (T'(t))s>o0;

=

e ' : U — V linear bounded operator

o G:U — V with / (G(u),v") v(du) < oo for all v* € V*;
[0,T]x B

e HH :U — V measurable;

e rpgcV.
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Evolution equation on Banach spaces

Definition:

A V-valued process (Y (¢) : t > 0) is called weak solution if P-a.s.

(Y(t),v") = (yo,v™) —I—/O (Y(s), A*v*yds + (FW(t),v")
G(u),v™) M(ds, du
+/[o,t]><3< (w), v") M(ds, du)

+ /[O,t]xBC<H(u>’,U*>N(ds’du)

for every v* € D(A*) and t > 0.
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Evolution equation on Banach spaces

Theorem: The following are equivalent:
(a) there exists a weak solution (Y (t) : t > 0);
(b) (i) ¢+ T'(t)F is stochastically Pettis integrable with respect to W

(i) (t,u) — T(t)G(u) is stochastically Pettis integrable with respect to M

In this situation, the solution Y is represented P-a.s. by
t
Y(t)=T(t)yo + / T(t—s)FW(ds)
0
+ / T(t —s)G(u) M(ds, du)
[0,t] x D

+ / T(t—s)H(u) N(ds,du).
[0,e)x{u: [Jul>1}
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